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In previous work, we showed that in loop quantum cosmology of scalar-tensor theory (STT) with the
holonomy correction the background equations of motion in the Jordan frame have two branches, i.e., the
bþ branch and the b− branch. In the low-energy limit, the bþ branch of the equations of motion reproduce
the equations of motion of classical STT, while the b− branch of equations of motion do not reproduce the
classical equations. In this paper, we investigate cosmological dynamics in an expanding universe whose
background is described by the b− branch of equations of motion of STT, and we especially focus on the
dynamics of the perturbations in the low-energy limit because it is most relevant to the current observational
range. First, we show that the low-energy limit of the b− branch of equations of motion can be a stable
attractor in the expansion phase of a universe. Then, we find a low-energy effective Hamiltonian on the
spatially flat Friedmann-Robertson-Walker background. The background part of this Hamiltonian can yield
the low-energy limit of the b− branch of equations, and this Hamiltonian consists of constraints whose
constraint algebra is different from the classical case but also closed up to arbitrary order of perturbations.
Remarkably, we find that this Hamiltonian can be transformed into the Hamiltonian of the Einstein frame
by field redefinitions different from the classical case. Moreover, we also develop the linear cosmological
perturbation theory and apply it to study the slow-roll inflation in this context. Finally, we study a specific
model of STT. In this model, a contracting universe described by classical STT in the remote past can pass
through the bounce and evolve into an expanding universe whose background dynamics is described by the
b− branch of equations of motion. It is also shown that the slow-roll inflation can take place in this case, and
the spectral indices of the slow-roll inflation agree well with the observations. The results in this paper
indicate that there exists an alternative consistent theory which is different from the classical theory in the
low-energy limit of loop quantum STT.

DOI: 10.1103/PhysRevD.104.123510

I. INTRODUCTION

In the past few decades, scalar-tensor theory (STT) has
been seriously considered as a natural generalization of
general relativity by many researchers in cosmology.
Recently, astrophysical observations indicate that the pre-
dictions about the slow-roll inflation in some specific
models of STT agree very well with the observational data
([1,2]), which triggers renewed research interest of various
inflationary models in STT (see, for instance, Refs. [3–6]).
Nevertheless, the quantum gravity effects in STT which
may also leave footprints during the slow-roll inflation have
been neglected to a large extent yet. Fortunately, the recent
development of loop quantum cosmology (LQC) allows us
to preliminarily investigate the quantum gravity effects
in STT.
LQC is a tentative quantum cosmology theory which

implements the quantization techniques of loop quantum
gravity on the reduced phase space in the cosmological

case. Among the several characteristic quantum corrections
of LQC, the holonomy correction in which the holonomy
of the connection around a given square is treated as the
fundamental variable is extensively studied in the literature.
The most important effect caused by the holonomy cor-
rection is that the cosmological singularity is replaced by a
bounce. This result holds irrespective of the choice of
quantization prescription; i.e., the bounce exists no matter
we choose the standard holonomy quantization prescription
in which the Euclidean term and Lorentz term of the
Hamiltonian constraint are treated on the same footing [7,8]
or the modified holonomy quantization in which the
Euclidean term and Lorentz term are treated differently
in the way which mimics the quantization prescription of
the Hamiltonian constraint of loop quantum gravity [9–11].
Despite the uniform existence of bounce, a different choice
of holonomy quantization prescription can lead to essen-
tially different behaviors in the effective dynamics. For
instance, in the effective dynamics of the minimally
coupled models using the standard holonomy quantization,
a collapsing classical universe in the remote past is*hanyu@xynu.edu.cn
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connected with an expanding classical universe in the
asymptotic future via the bounce, while in the case with
the modified holonomy quantization, a contracting de-
Sitter universe in the remote past is connected with an
expanding classical universe in the asymptotic future via
the bounce.
In LQC of STT, the holonomy correction can been

studied in the Einstein frame or in the Jordan frame. In the
Einstein frame, the holonomy of the conformally trans-
formed connection is quantized, while in the Jordan frame
the holonomy of the connection itself is directly quantized.
For the sake of simplicity, in the literature, the standard or
the modified holonomy quantization has been frequently
studied in the Einstein frame in some specific models of
STT [12–18]. In the Jordan frame, the standard holonomy
quantization was first applied to Brans-Dicke theory in
Refs. [19–21] and extended to STT in Ref. [22] on the
spatially flat Friedmann-Robertson-Walker (FRW) back-
ground. In the Einstein frame, the effective cosmological
dynamics mimics that of the minimally coupled case, while
in the Jordan frame the effective dynamics turns out to be
much different from that in the Einstein frame. A key
difference pointed out in Ref. [22] is that the background
equations of motion of STT in the Jordan frame have two
branches, namely, the bþ branch and the b− branch. In the
low-energy limit, the bþ branch of equations of motion can
reproduce the equations of motion of classical STT, while
the b− branch of equations of motion cannot reproduce the
classical equations. The two branches of equations of
motion can be connected to each other by the quantum
bounce, which means if a contracting universe described by
the bþ branch of equations of motion passes through the
quantum bounce, it will evolve into an expanding universe
whose background dynamics is described by the b− branch
of equations of motion and vice versa.
Assuming that the background dynamics of the current

expanding Universe is described by the b− branch of
equations of motion of STT, it is natural to ask whether
we can obtain more information relevant to observations in
this context. To get a clear and definite answer to this
question, we have to investigate both the background and
perturbation dynamics. Since the present observations of
slow-roll inflation have accumulated comparatively rich
and accurate data, provided that the slow-roll inflation can
take place in this case, we can investigate perturbation
effects during the slow-roll inflation to obtain useful
observational information. In order to do this, we have
to use the cosmological perturbation theory. Considering
that the range of the comoving wave numbers that the
current observations can cover is k ≥ 0.002 Mpc−1 and for
any wave number in this range the energy density at an
instant of the horizon crossing during the slow-roll inflation
is generally lower than the critical energy density of LQC
by many orders of magnitude, therefore, we may only focus
on the perturbation effects of these wave numbers in the

low-energy limit for the sake of simplicity. However, since
the spacetime background described by the low-energy
limit of the b− branch of equations is nonclassical, the
evolution of cosmological perturbations propagating on
the background is nonclassical too. Hence, in this case, the
classical perturbation theory is no longer applicable, and
we have to construct an alternative cosmological perturba-
tion theory. It is only after a consistent perturbation theory
is established that we can possibly draw reliable informa-
tion from perturbations during the slow-roll inflation. To
summarize, in this paper, we aim to construct a consistent
STT on the spatially flat FRW background in the low-
energy limit which is different from the classical theory.
This theory and the classical theory can be viewed as two
different limiting cases of LQC of STT.
The structure of this paper is as follows. In Sec. II, we

review the two branches of background equations of
motion of STT in the Jordan frame and analyze the
dynamical properties in the low-energy limit of STT. In
Sec. III, we obtain the background Hamiltonian which can
yield the low-energy limit of the b− branch of equations of
motion. Using the background Hamiltonian and the
approach of anomaly-free algebra, we obtain the effective
Hamiltonian in the low-energy limit on the spatially flat
FRW background. We also introduce the field redefinitions
that can transform the Hamiltonian of the Jordan frame into
the Hamiltonian of the Einstein frame. In Sec. IV, we
expand the Hamiltonian to the second order of perturba-
tions and derive the cosmological perturbation equations of
the gauge invariant perturbed variables; we also discuss the
issue of causality with regard to the perturbation equations.
In Sec. V, we solve the perturbation equation under the
slow-roll approximation and obtain the spectral indices in
the Jordan frame; the results are compared with those in the
Einstein frame. In Sec. VI, using the results obtained in
previous sections, we study the cosmological dynamics of a
specific model of STT. In the last section, we conclude and
make some remarks.

II. BACKGROUND DYNAMICS OF LQC OF STT

In this section, we first review the two branches of
equations of motion of STT in the cosmological case, and
then, we focus on the issue of stability of dynamics in the
low-energy limit of STT.

A. Background equations of motion of STT

In this subsection, we briefly review some results
obtained in Ref. [22].
The classical action of STT we use is given by

S ¼
Z
M

d4x
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
j detðgÞj

p
×

�
1

2κ
FðϕÞRð4Þ −

1

2
KðϕÞð∂μϕÞ∂μϕ − VðϕÞ

�
; ð1Þ
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in which M is the four-dimensional spacetime manifold,
κ ¼ 8πG, and FðϕÞ, KðϕÞ are dimensionless coupling
functions of the scalar field, and VðϕÞ is the potential.
On the spatially flat FRW background, the background

equations of motion of STT with the holonomy correction
in the Jordan frame are as follows:

�
Fðϕ̄ÞH þ 1

2
_Fðϕ̄Þ cos b

�
2

¼ κ

3
ρe

�
1 −

ρe
ρc

�
; ð2Þ

̈ϕ̄þ 3H _̄ϕþ 1

2

_Gðϕ̄Þ
Gðϕ̄Þ

_̄ϕ

−
ð3 cos b − 1ÞF0ðϕ̄ÞVðϕ̄Þ − Fðϕ̄ÞV 0ðϕ̄Þ

Gðϕ̄Þ ¼ 0; ð3Þ

cos2b ¼ 1 −
ρe
ρc

; ð4Þ

where ϕ̄ is the background component of ϕ. H ≡ _a
a is the

Hubble parameter in which a denotes the scale factor.
Throughout this paper, we use an overdot to denote the
derivative with respect to the proper time t and the prime

to denote the derivative with respect to ϕ; i.e., _̄ϕ≡ dϕ̄
dt ,

V 0ðϕ̄Þ≡ dVðϕ̄Þ
dϕ̄

. In Eqs. (2) and (3), cos b is a component of

the holonomy function, and ρe denotes the effective energy
density of the scalar field defined by

ρe ≡Gðϕ̄Þ
2

ð _̄ϕÞ2 þ Fðϕ̄ÞVðϕ̄Þ;

Gðϕ̄Þ≡ 3

2κ
ðF0ðϕ̄ÞÞ2 þ Fðϕ̄ÞKðϕ̄Þ; ð5Þ

and ρc ≡ 3
Δκγ2 is the critical energy density in LQC which

depends on the Barbero-Immirzi parameter γ and the
smallest quantum, Δ, of the area in loop quantum gravity.
From the quantum effective Friedmann equation (2), the

Klein-Gordon equation (3), and the constraint (4), we can
derive the equations of motion of the other background
variables. For instance, the evolution of cos b satisfies

_cos b ¼ ϵ

ffiffiffiffiffiffiffiffiffi
3κρe

p
2ρc

Gðϕ̄Þ
Fðϕ̄Þ ð

_̄ϕÞ2 − 3

2

ρe
ρc

_Fðϕ̄Þ
Fðϕ̄Þ ; ð6Þ

where ϵ≡ sgnðHFðϕ̄Þ cos bþ 1
2
_Fðϕ̄Þ cos2 bÞ, and the

evolution of the Hubble parameter satisfies

Fðϕ̄Þ _H cos b − _Fðϕ̄ÞH
�
3

2
cos 2b − cos b

�

þ 1

2
½ _Fðϕ̄Þ _cos bþ κKðϕ̄Þð _̄ϕÞ2 cos 2bþ F̈ðϕ̄Þ cos b�

× cos b ¼ 0: ð7Þ

From Eq. (4), we have

ðcos bÞ� ¼ �
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

ρe
ρc

r
: ð8Þ

We call the equations of motion with positive cos b the bþ
branch of equations of motion and the equations with
negative cos b the b− branch of equations of motion.
In the low-energy limit ρe

ρc
→ 0, the equations of motion of

classical STT can be reproduced by the bþ branch of
equations of motion but not by the b− branch of equations
of motion. From Eq. (2), we learn that H ¼ 0 when
cos b ¼ 0, which means a universe bounces or recollapses
at cos b ¼ 0 if _H ≠ 0. Note that in classical STT, the
bounce or recollapse of a universe can also take place under
very special conditions [23]. To distinguish from the
classical bounce or recollapse, in the following, we call
the bounce or recollapse associated with cos b ¼ 0 the
quantum bounce or recollapse. The two branches of
equations of motion are connected with each other if a
universe undergoes the quantum bounce or recollapse
during the evolution, and whether this condition can be
satisfied should be checked case by case.
In LQC of STT, the background evolution of a con-

tracting or expanding universe can be described by either
branch of equations of motion. In particular, supposing
that in a specific model of STT the quantum bounce can
take place during the evolution, then it is possible for a
contracting universe described by the bþ branch of equa-
tions of motion to pass through the bounce and evolve into
an expanding universe described by the b− branch of
equations of motion.

B. Stability analysis in the low-energy limit

Assuming that the background of an expanding universe
is described by the b− branch of equations of motion of
STT, to ensure that a universe can evolve to a low-energy
state, the low-energy limit of the b− branch should be an
attractor in the phase space. In this subsection, we show that
such attractor can exist under certain conditions.
From Eq. (4), we have

sin2 b ¼ ρe
ρc

; ð9Þ

and substituting it into Eq. (2), we obtain
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H ¼ 1

Fðϕ̄Þ
� ffiffiffiffiffiffiffi

κρc
3

r
sin b −

1

2
_Fðϕ̄Þ

�
cos b: ð10Þ

Defining χ ≡ _̄ϕ and using Eq. (3), we obtain the
following two-dimensional dynamical system in the phase
space:

dϕ̄
dt

¼ χ;

dχ
dt

¼ −3Hχ −
1

2

G0ðϕ̄Þ
Gðϕ̄Þ χ

2

þ ð3 cos b − 1ÞF0ðϕ̄ÞVðϕ̄Þ − Fðϕ̄ÞV 0ðϕ̄Þ
Gðϕ̄Þ ; ð11Þ

in which cos b and H are understood as functions of ϕ̄ and
_̄ϕ (up to the signs of sin b and cos b) through Eqs. (4)
and (10).
If the potential Vðϕ̄Þ has a minimum at ϕ̄ ¼ ϕ̄o and

Vðϕ̄oÞ ¼ 0, the dynamical system will have a fixed
point ðϕ̄ ¼ ϕ̄o; χ ¼ 0Þ around which ρe

ρc
→ 0. Moreover,

if Fðϕ̄oÞ > 0 andKðϕ̄oÞ > 0, the fixed point ðϕ̄o; 0Þwill be
either a sink of the dynamical system or a source of the
dynamical system, to which we give a detailed explanation
as follows: Using Eqs. (5) and (9), we find that sin b is
either positive definite or negative definite around the fixed
point ðϕ̄o; 0Þ; i.e., the sign of sin b never changes during
the evolution near this point. Now, we analyze four
different kinds of behavior in the vicinity of this fixed point.
(i) If sin b → 0þ and cos b → 1, from Eq. (10), we find

that H > 0 near the fixed point, which corresponds to an
expanding universe described by classical STT. In this case,
we can show that there exists a Lyapunov function
f ≡ ρe

F3ðϕ̄Þ which is positive definite and decreases mono-

tonically with respect to the proper time near this fixed
point,

df
dt

¼ −
3ρc sin b

F4ðϕ̄Þ

×

� ffiffiffiffiffiffiffi
κ

3ρc

r
Gðϕ̄Þð _̄ϕÞ2 cos bþ _Fðϕ̄Þð1 − cos bÞ sin b

�

≃ −
ffiffiffiffiffiffiffiffiffi
3κρc

p Gðϕ̄Þ
F4ðϕ̄Þ ð

_̄ϕÞ2 sin b < 0; ð12Þ

thus, this fixed point is asymptotically stable and an
attractor, or a sink, of the dynamical system.
(ii) If sin b → 0− and cos b → 1, we have H < 0 near

the fixed point, which corresponds to a contracting universe
described by classical STT. In this case, this fixed point is
asymptotically unstable and a source of the system.
(iii) If sin b → 0− and cos b → −1, we haveH > 0 near

the fixed point, which corresponds to an expanding uni-
verse described by the low-energy limit of the b− branch of

equations of motion, and we can also find a Lyapunov
function f̃ ≡ F3ðϕ̄Þρe which is positive definite and
decreases monotonically with respect to the proper time
around this fixed point,

df̃
dt

¼ −3ρcF2ðϕ̄Þ sin b

� ffiffiffiffiffiffiffi
κ

3ρc

r
Gðϕ̄Þð _̄ϕÞ2 cos b

− _Fðϕ̄Þð1þ cos bÞ sin b

�

≃

ffiffiffiffiffi
3κ

ρc

s
F2ðϕ̄ÞGðϕ̄Þð _̄ϕÞ2 sin b < 0: ð13Þ

In this case, the fixed point ðϕ̄o; 0Þ is also asymptotically
stable and a sink of the system.
(iv) If sin b → 0þ and cos b → 1, we have H < 0 near

the fixed point, which corresponds to a contracting universe
described by the low-energy limit of the b− branch of
equations of motion. In this case, the fixed point ðϕ̄o; 0Þ is
asymptotically unstable and a source of the system.
Hence, we conclude that the fixed point ðϕ̄o; 0Þ can also

be a local attractor of the dynamical system in the low-
energy limit with cos b → −1. Note that there might be
other local attractors corresponding to different fixed points
in the low-energy limit with cos b → −1 in a specific
model of STT.
In addition, if ϕ̄o is a global minimum of Vðϕ̄Þ at which

Vðϕ̄oÞ ¼ 0 and the coupling functions satisfy Fðϕ̄Þ > 0,
Kðϕ̄Þ > 0 for an arbitrary value of ϕ̄, then from the
definition of ρe we know that ρe can only vanish at
ðϕ̄o; 0Þ. Since ðϕ̄0; 0Þ is a fixed point of the phase space,
the sign of sin b never changes during the evolution. Thus,
the phase space can be divided into two disconnected
sectors by the sign of sin b. From Eq. (10), we find that in
the sector sin b < 0 a contracting universe is described by
the bþ branch, and an expanding universe is described by
the b− branch of equations. Since the fixed point ðϕ̄o; 0Þ
with cos b ¼ 1 is a source of the system, we can set the
initial condition in the asymptotic past where a contracting
universe is described by the classical STT. Moreover, if
there are no limit circles and no other sinks expected for the
attractor ðϕ̄o; 0Þ with cos b ¼ −1 in the sin b < 0 sector, it
is possible for the solutions of equations of motion starting
from the low-energy limit with cos b → 1 to stably
approach the low-energy limit with cos b → −1. In other
words, in the sin b < 0 sector, it is possible for a con-
tracting universe described by classical STT in the asymp-
totic past to pass through the quantum bounce and approach
the low-energy limit with cos b → −1 in the expansion
phase of a universe in the asymptotic future. In Sec. VI, we
give a concrete description of such evolution in a specific
model of STT.
In the following sections of this paper, we explore the

background and perturbation dynamics of an expanding
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universe whose background is described by the b− branch
of equations. As explained in Sec. I, we mainly focus on
the perturbation dynamics in the low-energy limit with
cos b → −1.

III. NONCLASSICAL HAMILTONIAN IN THE
LOW-ENERGY LIMIT

In canonical LQC, the effective Hamiltonian is crucial
for studying the evolution of the Universe. To describe the
evolution of background and perturbation more clearly, in
this section, we aim to find the effective Hamiltonian in the
low-energy limit with cos b → −1. At the end of this
section, we find that this Hamiltonian does exist, and it can
be expressed in terms of the Arnowitt-Deser-Misner
(ADM) variables or the Ashtekar variables. For the sake

of simplicity, we first use the ADM formalism to derive the
Hamiltonian.

A. Background Hamiltonian in the low-energy limit

In the ADM formalism, the Hamiltonian of classical STT
is given by the combination of the Hamiltonian constraint C
smeared on some fiducial cell Σ with lapse function N and
the smeared diffeomorphism constraint Da with the shift
vector Na,

H½N;Na� ¼
Z
Σ
d3xðNC þ NaDaÞ; ð14Þ

where the Hamiltonian constraint is expressed in terms of
the ADM variables as [24]

C ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp �

2κðqacqbd − 1
2
qabqcdÞpabpcd

FðϕÞ þ ð−F0ðϕÞqabpab þ FðϕÞπÞ2
2FðϕÞGðϕÞ

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p �
−

1

2κ
FðϕÞRð3Þ þ 1

κ
qabDaDbFðϕÞ þ

KðϕÞ
2

qabðDaϕÞDbϕþ VðϕÞ
�

¼ 0; ð15Þ

and the diffeomorphism constraint is expressed as

Da ¼ −2qabDcpbc þ πDaϕ ¼ 0; ð16Þ

in which the canonical variables satisfy the elementary
Poisson brackets,

fqabðx⃗Þ; pcdðy⃗Þg ¼ δcðaδ
d
bÞδ

ð3Þðx⃗ − y⃗Þ;
fϕðx⃗Þ; πðy⃗Þg ¼ δð3Þðx⃗ − y⃗Þ: ð17Þ

On the spatially flat FRW background, the line element
of the homogenous part of the spacetime metric reads

ds2 ¼ −N̄2dτ2 þ a2ðτÞðdx21 þ dx22 þ dx23Þ; ð18Þ

where N̄ is the homogenous part of lapse function, and
a2δab is the homogenous part of the spatial metric qab. In
the following, we denote the homogenous parts of pab, ϕ,
and π by pδab, ϕ̄, and π̄ respectively. On the background
level, the diffeomorphism constraint vanishes, and the
Hamiltonian is given by

Hð0Þ½N̄� ¼
Z
Σ
d3 xN̄Cð0Þ; ð19Þ

where

Cð0Þ ¼ −
3κap2

Fðϕ̄Þ þ ð−F0ðϕ̄Þ3a2pþ Fðϕ̄Þπ̄Þ2
2a3Fðϕ̄ÞGðϕ̄Þ

þ a3Vðϕ̄Þ; ð20Þ

in which the fundamental variables obey the commutation
relationship,

fa2; pg ¼ 1

3Vo
; fϕ̄; π̄g ¼ 1

Vo
; ð21Þ

where Vo ≡
R
Σ d

3x. Then, using the Hamilton’s equation,

dO
dτ

¼ fO;H0½N̄�g; ð22Þ

whereO is a function of the background variables, it is easy
to obtain the classical background equations of motion.
In the low-energy limit with cos b → −1, the effective

Friedmann equation and Klein-Gordon equation reduce to

�
Fðϕ̄ÞH −

1

2
_Fðϕ̄Þ

�
2

¼ κ

3
ρe; ð23Þ

̈ϕ̄þ 3H _̄ϕþ 1

2

_Gðϕ̄Þ
Gðϕ̄Þ

_̄ϕ

þ 4F0ðϕ̄ÞVðϕ̄Þ þ Fðϕ̄ÞV 0ðϕ̄Þ
Gðϕ̄Þ ¼ 0: ð24Þ

NONCLASSICAL COSMOLOGICAL DYNAMICS IN THE LOW- … PHYS. REV. D 104, 123510 (2021)

123510-5



We suppose that like the classical background Hamiltonian
(19) the above equations of motion can also be obtained
from some background effective Hamiltonian expressed in
terms of the ADM variables,

Hð0Þ
b−
½N̄� ¼

Z
Σ
d3 xN̄Cð0Þb−

; ð25Þ

in which Cð0Þb−
is the quantum effective background

Hamiltonian constraint in the limit cos b → −1,
which can be regarded as the classical background
Hamiltonian density plus the quantum correction function
Qða; p; ϕ̄; π̄Þ,

Cð0Þb−
¼ Cð0Þ þQða; p; ϕ̄; π̄Þ ¼ 0: ð26Þ

In the Appendix, we show that the function Q is
given by

Qða; p; ϕ̄; π̄Þ ¼ 6pF0ðϕ̄Þπ̄
aGðϕ̄Þ : ð27Þ

Thus, the background Hamiltonian density in the limit
cos b → −1 can be expressed in terms of the background
ADM variables as

Cð0Þb−
¼−

3κap2

Fðϕ̄Þ þ
ð3F0ðϕ̄Þa2pþFðϕ̄Þπ̄Þ2

2a3Fðϕ̄ÞGðϕ̄Þ þa3Vðϕ̄Þ: ð28Þ

Comparing (28) with the classical background Hamiltonian
density (20), we find that they differ only by the sign of the
term 3F0ðϕ̄Þa2p.
Now, we discuss the relationship between the two

background Hamiltonians (19) and (25) and the back-
ground Hamiltonian of LQC of STT [22],

Hð0Þ
LQC½N̄� ¼

Z
Σ
d3 xN̄

�
−

3

κγ2
a3

Fðϕ̄Þ
sin2b
Δ

þ
ð3F0ðϕ̄Þa3 sin b

κγ
ffiffiffi
Δ

p þFðϕ̄Þπ̄Þ2
2a3Fðϕ̄ÞGðϕ̄Þ þa3Vðϕ̄Þ

�
: ð29Þ

Using the following commutation relation,

fb; a3g ¼ κγ
ffiffiffiffi
Δ

p

2Vo
; ð30Þ

we find that

�
a2;−

a sin b

κγ
ffiffiffiffi
Δ

p
�

¼ cos b
3Vo

: ð31Þ

Comparing (31) with the commutation relation in (21),
we find that in the low-energy limit with cos b → 1 the
conjugate momentum p corresponds to − a sin b

κγ
ffiffiffi
Δ

p , while in

the low-energy limit with cos b → −1 the conjugate
momentum p corresponds to a sin b

κγ
ffiffiffi
Δ

p . Recall that

sin2b ¼ ρe
ρc
, and we conclude that the classical background

Hamiltonian (19) and the background Hamiltonian (25) can
be regarded as two different limiting cases of the back-
ground Hamiltonian (29) of LQC.

B. Anomaly-free constraints

To obtain more information relevant to observations in
the low-energy limit with cos b → −1, we need to explore
the theory beyond the background level. Inspired by the
existence of the background Hamiltonian (25), it is rea-
sonable to assume that on the spatially flat FRW back-
ground a more general Hamiltonian exists. We suppose that
this Hamiltonian can also be written as a linear combination
of the constraints like the classical theory,

Hb− ½N;Na� ¼
Z
Σ
d3 xðNCb− þ NaDaÞ; ð32Þ

in which we assume that the diffeomorphism constraint Da
keeps its classical expression (16) because in loop
quantum gravity the diffeomorphism constraint does not
receive quantum corrections, and only the Hamiltonian
constraint does. Inspired by the expressions of the back-
ground Hamiltonian constraint (28) and the classical
full Hamiltonian constraint (15), we suppose that the
Hamiltonian constraint in the low-energy limit with
cos b → −1 takes the following form in ADM formalism,

Cb− ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp �

2κðqacqbd − 1
2
qabqcdÞpabpcd

FðϕÞ þ ðF0ðϕÞqabpab þ FðϕÞπÞ2
2FðϕÞGðϕÞ

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p �
−

1

2κ
fðϕÞRð3Þ þ 1

κ
qabDaDbgðϕÞ þ

hðϕÞ
2

qabðDaϕÞDbϕþ VðϕÞ
�

¼ 0; ð33Þ
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inwhich fðϕÞ, gðϕÞ, and hðϕÞ are undetermined functions of
ϕ. On the background level, the terms containing the spatial
derivatives vanish, and (33) reduces to the background
Hamiltonian constraint (28). Although the forms of fðϕÞ,
gðϕÞ, and hðϕÞ do not affect the background dynamics, it
does not mean that these functions can be arbitrary functions
of ϕ because they should be subject to some restrictions. To
be specific, we require that the effective theory in the low-
energy limit with cos b → −1 should have a closed con-
straint algebra, which means the effective theory should be
manifestly consistent. When calculating the constraint alge-
bra, the terms that cannot be expressed as functions of the
constraints are called anomalies. The consistency condition
requires that any anomaly in the constraint algebra
should vanish. In LQC with inverse-volume corrections or

holonomy corrections, it turns out that this consistency
condition is strong enough to determine the structure of
the quantum constraint algebra and fix most of the under-
mined functions in the constraint [25–30].
In the context, we consider in this paper the diffeo-

morphism constraint keeps the classical form. Since the
Hamiltonian constraint (33) is a tensor density of weight
one, the Poisson bracket between the smeared diffeomor-
phism constraint and the smeared Hamiltonian constraint is
naturally proportional to the Hamiltonian constraint. Thus,
we only need to focus on the Poisson bracket between two
smeared Hamiltonian constraints.
Denoting Cb− ½M�≡ R

Σ d3xMCb− and D½Na�≡R
Σ d3 xNaDa, we have

fCb− ½M�;Cb− ½N�g ¼ D
�
fðϕÞ
FðϕÞq

abðMDbN −NDbMÞ
�
þ
Z
Σ
d3 xqabπðMDaN −NDaMÞðDbϕÞA1

þ
Z
Σ
d3 xpabðMDaN −NDaMÞðDbϕÞA2 þ

Z
Σ
d3 xðqcdpcdÞqabðMDaN −NDaMÞðDbϕÞA3

þ
Z
Σ
d3 xðqcdpcdÞqabðMDaDbN −NDaDbMÞA4 þ

Z
Σ
d3 xπqabðMDaDbN −NDaDbMÞA5; ð34Þ

in which A1 to A5 are anomalies which read explicitly as

A1 ¼−
fðϕÞ
FðϕÞ−

2

κ

F0ðϕÞf0ðϕÞ
GðϕÞ þ 1

2κ

F0ðϕÞg0ðϕÞ
GðϕÞ þFðϕÞhðϕÞ

GðϕÞ ;

A2 ¼ 2
fðϕÞF0ðϕÞ
F2ðϕÞ þ 2

f0ðϕÞ
FðϕÞ − 4

g0ðϕÞ
FðϕÞ ;

A3 ¼−
2

κ

ðF0ðϕÞÞ2f0ðϕÞ
FðϕÞGðϕÞ þ 1

2κ

ðF0ðϕÞÞ2g0ðϕÞ
FðϕÞGðϕÞ þF0ðϕÞhðϕÞ

GðϕÞ

þ g0ðϕÞ
FðϕÞ ;

A4 ¼−
1

κ

ðF0ðϕÞÞ2fðϕÞ
FðϕÞGðϕÞ −

1

κ

F0ðϕÞg0ðϕÞ
GðϕÞ ;

A5 ¼−
1

κ

F0ðϕÞfðϕÞ
GðϕÞ −

1

κ

FðϕÞg0ðϕÞ
GðϕÞ :

Since these anomalies should vanish, we have to solve
the equations

Ai ¼ 0 ði ¼ 1; 2…5Þ:

At first sight, the number of equations is two more than the
number of undermined functions; however, it is not difficult
to check that only three out of the five equations are
independent. By solving these equations, we can express
the undetermined functions in terms of the known functions
FðϕÞ and KðϕÞ,

fðϕÞ ¼ B
F3ðϕÞ ; ð35Þ

gðϕÞ ¼ B
3

1

F3ðϕÞ ; ð36Þ

hðϕÞ ¼ B

�
KðϕÞ
F4ðϕÞ −

4

κ

ðF0ðϕÞÞ2
FðϕÞ5

�
; ð37Þ

where B is an arbitrary constant. Furthermore, by requiring
that the Hamiltonian constraint (33) should reduce to the
Hamiltonian constraint of the minimally coupled case when
FðϕÞ ¼ KðϕÞ ¼ 1, we obtain B ¼ 1. Hence, the anomaly-
free Hamiltonian constraint in the low-energy limit with
cos b → −1 reads

Cb− ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp �

2κðqacqbd − 1
2
qabqcdÞpabpcd

FðϕÞ

þ ðF0ðϕÞqabpab þ FðϕÞπÞ2
2FðϕÞGðϕÞ

�

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p �
−

1

2κ

1

F3ðϕÞR
ð3Þ þ 1

3κ
qabDaDb

1

F3ðϕÞ

þ 1

2

�
KðϕÞ
F4ðϕÞ −

4

κ

ðF0ðϕÞÞ2
F5ðϕÞ

�
qabðDaϕÞDbϕþ VðϕÞ

�
¼ 0: ð38Þ

The existence of (38) guarantees that on the perturbation
level the covariance of the theory is maintained not only to
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linear order of perturbation but also up to all higher order
perturbations.
The Poisson bracket between two smeared Hamiltonian

constraints reads

fCb− ½M�;Cb− ½N�g

¼ D

�
1

F4ðϕÞ q
abðMDbN − NDbMÞ

�
; ð39Þ

in which the prefactor 1
F4ðϕÞ denotes the quantum modifi-

cation of the constraint algebra.
It should be pointed out that our derivation of the low-

energy effective Hamiltonian constraint (38) is tied to the
spatially flat FRW background, which is different from the
fact the classical Hamiltonian constraint (15) holds inde-
pendently of any background metric. So far, it is not clear
whether our result remains unchanged on other spacetime
backgrounds.
We mention that we choose ADM variables to express

the constraints only for convenience of calculation. In fact,
the constraints can also be formulated in terms of the

Ashtekar variables in loop quantum gravity. We can extend
the ADM phase space to the phase space of connection
variables by introducing the su(2)-valued triad eai and its
co-triad eia which satisfy qab ¼ eiae

j
bδij, q

ab ¼ eai e
b
jδ

ij. In
the new phase space, the basic variables are the densitized
triad and its conjugate momentum,

Ea
i ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞ

p
eai ;

Ki
a ≡ 2κffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp �
pbcqabeic −

1

2
ðpbcqbcÞeia

�
; ð40Þ

using which we can define the Ashtekar connection
Ai
a ≡ Γi

a þ γKi
a which satisfies

fAi
aðx⃗Þ; Eb

j ðy⃗Þg ¼ γκδijδ
b
aδ

ð3Þðx⃗ − y⃗Þ; ð41Þ

where Γi
a is the spin connection compatible with the triad.

The Hamiltonian constraint (38) (modulo the Gauss
constraint) can be reexpressed in terms of the Ashtekar
variables,

CðAÞb−
¼ 1

F3ðϕÞ
Ea
i E

b
j

2κ
ffiffiffiffiffiffiffiffiffiffiffiffijdetEp j ½ϵ

ij
k F

k
ab−2ðγ2þF2ðϕÞÞKi

½aK
j
b��þ

1

2FðϕÞGðϕÞ ffiffiffiffiffiffiffiffiffiffiffiffiffijdetEjp �
−
1

κ
F0ðϕÞKi

aEa
i þFðϕÞπ

�
2

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
jdetEj

p �
−
1

κ

1

F4ðϕÞD
aDaFðϕÞþ

1

2

�
KðϕÞ
F4ðϕÞþ

4

κ

ðF0ðϕÞÞ2
F5ðϕÞ

�
ðDaϕÞDaϕþVðϕÞ

�
¼ 0; ð42Þ

where Fab
i ≔ 2∂ ½aAi

b� þ ϵjk
iAj

aAk
b is the curvature of

Ashtekar connection. The diffeomorphism constraint and
the Gauss constraint retain their classical form which
should be expressed in terms of the Ashtekar variables.
As expected, the expression in (42) is more complex than
the one in (38). In the following calculation, we still use the
ADM variables.

C. The Einstein frame formulation

It is well known that based on different choices of
fundamental variables the classical STT can be formulated
in the Jordan frame or the Einstein frame. In this
subsection, we show that in the low-energy limit with
cos b → −1 the constraints in the Jordan frame can also be
transformed into the Einstein frame by field redefinitions.
If FðϕÞ > 0, GðϕÞ > 0, we can define

Ñ≡ N

F
5
2ðϕÞ ; Ña≡Na; q̃ab≡ qab

FðϕÞ ; p̃ab≡FðϕÞpab;

ϕ̃≡
Z

dϕ

ffiffiffiffiffiffiffiffiffiffiffi
GðϕÞp
FðϕÞ ; π̃≡FðϕÞπþF0ðϕÞqabpabffiffiffiffiffiffiffiffiffiffiffi

GðϕÞp : ð43Þ

It is easy to check that

fq̃abðx⃗Þ; p̃cdðy⃗Þg ¼ δcðaδ
d
bÞδ

ð3Þðx⃗ − y⃗Þ;
fϕ̃ðx⃗Þ; π̃ðy⃗Þg ¼ δð3Þðx⃗ − y⃗Þ; ð44Þ

and all the other Poisson brackets between the above
canonical variables are vanishing. It can be directly checked
that the Hamiltonian (32) can be rewritten in terms of the
redefined variables as

HðEÞ
b−

½Ñ; Ña� ¼
Z
Σ
d3 xðÑCðEÞ þ ÑaDðEÞ

a Þ; ð45Þ

where

CðEÞ ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðq̃Þp �

2κ

�
q̃acq̃bd −

1

2
q̃abq̃cd

�
p̃abp̃cd

�

−
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðq̃Þp
2κ

R̃ð3Þ þ π̃2

2
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðq̃Þp

þ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðq̃Þ

p �
1

2
q̃abðD̃aϕ̃ÞD̃bϕ̃þ ṼðϕÞ

�
¼ 0; ð46Þ

DðEÞ
a ¼ −2q̃abD̃cp̃bc þ π̃D̃aϕ̃ ¼ 0; ð47Þ

YU HAN PHYS. REV. D 104, 123510 (2021)

123510-8



in which R̃ð3Þ is the curvature scalar of the rescaled metric
q̃ab, q̃ab is the inverse of the rescaled metric, D̃a is the
derivative compatible with the rescaled metric, and
ṼðϕÞ≡ F4ðϕÞVðϕÞ.
The Hamiltonian constraint (46) and the diffeomorphism

constraint (47) are exactly of the form of the minimally
coupled case. In this sense, we claim that the theory in the
low-energy limit with cos b → −1 can also be transformed
into the Einstein frame by field redefinitions. Nevertheless,
the frame transformation in this case is different from that
in the classical case. In the Hamiltonian formalism of the
classical theory, the transformation from the Jordan frame
to the Einstein frame is accomplished by the following
redefinition of variables:

N̂≡ ffiffiffiffiffiffiffiffiffiffi
FðϕÞ

p
N; N̂a≡Na;

q̂ab≡FðϕÞqab; p̂ab≡ pab

FðϕÞ ;

ϕ̂≡
Z

dϕ

ffiffiffiffiffiffiffiffiffiffiffi
GðϕÞp
FðϕÞ ; π̂≡FðϕÞπ−F0ðϕÞqabpabffiffiffiffiffiffiffiffiffiffiffi

GðϕÞp ; ð48Þ

in which the variables with a hat denote variables of the
Einstein frame. Note that in the Hamiltonian formalism the
variables N2 and qab transform in the same way, which
correspond to the spacetime metric redefinition ĝab ≡
FðϕÞgab in the Lagrangian formalism of the classical
STT. In (43), the variablesN2 and qab transform in different
ways, which do not correspond to any spacetime metric
redefinition. In fact, there does not exist a Lagrangian that
can yield the Hamiltonian in Eq. (32) by Legendre trans-
formation, which is not unusual in LQC since there does
not exist a manifestly covariant Lagrangian which can yield
the equations of motion of canonical LQC either.

It is natural to ask whether the Jordan frame and the
Einstein frame are physically equivalent in the limit
cos b → −1. In Sec. V, we compare the results of the
two frames in the case of slow-roll inflation.

IV. COSMOLOGICAL PERTURBATIONS

In this section, we construct the linear perturbation
theory on the spatially flat FRW background. First of
all, we split the variables as

N ¼ N̄ þ δN; Na ¼ δNa;

qab ¼ a2δab þ δqab; pab ¼ pδab þ δpab;

ϕ ¼ ϕ̄þ δϕ; π ¼ π̄ þ δπ; ð49Þ

then, we expand the Hamiltonian (32) to second order of
perturbations,

Hb− ½N̄; δN; δNa�
¼ Hð0Þ

b−
½N̄� þHð2Þ

b−
½N̄� þHð2Þ

b−
½δN� þ Dð2Þ½δNa�; ð50Þ

where

Hð0Þ
b−
½N̄�≡

Z
Σ
d3xN̄Cð0Þb−

; Hð2Þ
b−
½N̄�≡

Z
Σ
d3xN̄Cð2Þb−

;

Hð2Þ
b−
½δN�≡

Z
Σ
d3 xδNCð1Þb−

; Dð2Þ½δN�≡
Z
Σ
d3 xδNaDð1Þ

a ;

ð51Þ

in which the expression of Cð0Þb−
is given in Eq. (28), and

Dð1Þ
a , Cð1Þb−

denote the linearly perturbed diffeomorphism
constraint and the linearly perturbed Hamiltonian con-
straint respectively,

Dð1Þ
a ¼ −2a2δac∂bδpbc − 2pδbc∂cδqab þ pδbc∂aδqbc þ π̄∂aδϕ ¼ 0; ð52Þ

Cð1Þb−
¼

�
−

κp2

2aFðϕ̄Þ þ
3p2ðF0ðϕ̄ÞÞ2
4aFðϕ̄ÞGðϕ̄Þ −

pF0ðϕ̄Þπ̄
2a3Gðϕ̄Þ −

Fðϕ̄Þπ̄2
4a5Gðϕ̄Þ þ

a
2
Vðϕ̄Þ

�
δabδqab

þ
�
−
2κap
Fðϕ̄Þ þ

3apðF0ðϕ̄ÞÞ2
Fðϕ̄ÞGðϕ̄Þ þ F0ðϕ̄Þπ̄

aGðϕ̄Þ
�
δabδpab

þ
�
−3κap2

�
1

Fðϕ̄Þ
�0

þ 9

2
ap2

� ðF0ðϕ̄ÞÞ2
Fðϕ̄ÞGðϕ̄Þ

�0
þ 3pπ̄

a

�
F0ðϕ̄Þ
Gðϕ̄Þ

�0
þ π̄2

2a3

�
Fðϕ̄Þ
Gðϕ̄Þ

�0
þ a3V 0ðϕ̄Þ

�
δϕ

þ
�
3pF0ðϕ̄Þ
aGðϕ̄Þ þ Fðϕ̄Þπ̄

a3Gðϕ̄Þ
�
δπ þ 1

aκF3ðϕ̄Þ δ
a½bδc�d∂c∂dδqab þ

a
3κ

�
1

F3ðϕ̄Þ
�0
δab∂a∂bδϕ

¼ 0; ð53Þ

and Cð2Þb−
is given by
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Cð2Þb−
¼

�
−

3κp2

8a3Fðϕ̄Þ −
7p2ðF0ðϕ̄ÞÞ2

16a3Fðϕ̄ÞGðϕ̄Þ −
pF0ðϕ̄Þπ̄
8a5Gðϕ̄Þ þ

Fðϕ̄Þπ̄2
16a7Gðϕ̄Þ þ

Vðϕ̄Þ
8a

�
ðδabδqabÞ2

þ
�

5κp2

4a3Fðϕ̄Þ þ
9p2ðF0ðϕ̄ÞÞ2
8a3Fðϕ̄ÞGðϕ̄Þ þ

3pF0ðϕ̄Þπ̄
4a5Gðϕ̄Þ þ Fðϕ̄Þπ̄2

8a7Gðϕ̄Þ −
Vðϕ̄Þ
4a

�
δacδbdδqabδqcd

þ
�
−

κa

Fðϕ̄Þ þ
aðF0ðϕ̄ÞÞ2
2Fðϕ̄ÞGðϕ̄Þ

�
ðδabδpabÞ2 þ 2κa

Fðϕ̄Þ δacδbdδp
abδpcd þ Fðϕ̄Þ

2a3Gðϕ̄Þ ðδπÞ
2

þ
�
−
3κap2

2

�
1

Fðϕ̄Þ
�00

þ 9ap2

4

� ðF0ðϕ̄ÞÞ2
Fðϕ̄ÞGðϕ̄Þ

�00
þ 3a2pπ̄

2

�
F0ðϕ̄Þ
Gðϕ̄Þ

�00
þ π̄2

4a3

�
Fðϕ̄Þ
Gðϕ̄Þ

�00
þ a3

2
V 00ðϕ̄Þ

�
ðδϕÞ2

þ
�

2κp

aFðϕ̄Þ þ
3pðF0ðϕ̄ÞÞ2
aFðϕ̄ÞGðϕ̄Þ þ

F0ðϕ̄Þπ̄
a3Gðϕ̄Þ

�
δqabδpab −

�
κp

aFðϕ̄Þ þ
3pðF0ðϕ̄ÞÞ2
2aFðϕ̄ÞGðϕ̄Þ þ

F0ðϕ̄Þπ̄
2a3Gðϕ̄Þ

�
ðδabδqabÞðδcdδpcdÞ

þ
�
−
κp2

2a

�
1

Fðϕ̄Þ
�0

þ 3p2

4a

� ðF0ðϕ̄ÞÞ2
Fðϕ̄ÞGðϕ̄Þ

�0
−

pπ̄
2a3

�
F0ðϕ̄Þ
Gðϕ̄Þ

�0
−

π̄2

4a5

�
Fðϕ̄Þ
Gðϕ̄Þ

�0
þ a

2
V 0ðϕ̄Þ

�
δabδqabδϕ

þ
�
−2κap

�
1

Fðϕ̄Þ
�0

þ 3ap

� ðF0ðϕ̄ÞÞ2
Fðϕ̄ÞGðϕ̄Þ

�0
þ π̄

a

�
F0ðϕ̄Þ
Gðϕ̄Þ

�0�
δabδpabδϕ

þ
�
−

Fðϕ̄Þπ̄
2a5Gðϕ̄Þ þ

pF0ðϕ̄Þ
a3Gðϕ̄Þ

�
δabδqabδπ þ F0ðϕ̄Þ

aGðϕ̄Þ δabδp
abδπ þ

�
3p
a

�
F0ðϕ̄Þ
Gðϕ̄Þ

�0
þ π̄

a3

�
Fðϕ̄Þ
Gðϕ̄Þ

�0�
δϕδπ

þ 1

κa

�
1

F3ðϕ̄Þ
�0
δa½bδc�dð∂c∂dδqabÞδϕ −

1

4κa3F3ðϕ̄Þ ½2δ
a½cδe�dδbf þ δa½bδc�dδef�ð∂eδqabÞ∂fδqcd

þ a
2

�
KðϕÞ
F4ðϕÞ −

4

κ

ðF0ðϕÞÞ2
F5ðϕÞ

�
δabð∂aδϕÞ∂bδϕ: ð54Þ

Using the Hamiltonian (50), we can derive the Hamilton’s equations of motion of the perturbed variables,

dδqab
dτ

¼ 2a2δcða∂bÞδNc þ
�
−
2κap

Fðϕ̄Þ þ
3apðF0ðϕ̄ÞÞ2
Fðϕ̄ÞGðϕ̄Þ þ F0ðϕ̄Þπ̄

aGðϕ̄Þ
�
δN δab

þ N̄

��
−

2κa
Fðϕ̄Þ þ

aðF0ðϕ̄ÞÞ2
Fðϕ̄ÞGðϕ̄Þ

�
ðδcdδpcdÞδab þ

4κa
Fðϕ̄Þ δacδbdδp

cd þ
�

2κp
aFðϕ̄Þ þ

3pðF0ðϕ̄ÞÞ2
aFðϕ̄ÞGðϕ̄Þ þ

F0ðϕ̄Þπ̄
a3Gðϕ̄Þ

�
δqab

−
�

κp

aFðϕ̄Þ þ
3pðF0ðϕ̄ÞÞ2
2aFðϕ̄ÞGðϕ̄Þ þ

F0ðϕ̄Þπ̄
2a3Gðϕ̄Þ

�
ðδcdδqcdÞδab þ

F0ðϕ̄Þ
aGðϕ̄Þ δπδab

þ
�
−2κap

�
1

Fðϕ̄Þ
�0

þ 3ap

� ðF0ðϕ̄ÞÞ2
Fðϕ̄ÞGðϕ̄Þ

�0
þ π̄

a

�
F0ðϕ̄Þ
Gðϕ̄Þ

�0�
δϕδab

�
; ð55Þ

dδpab

dτ
¼ −2pδcða∂cδNbÞ þ pδab∂cδNc þ

�
κp2

2aFðϕ̄Þ −
3p2ðF0ðϕ̄ÞÞ2
4aFðϕ̄ÞGðϕ̄Þ þ

pF0ðϕ̄Þπ̄
2a3Gðϕ̄Þ þ

Fðϕ̄Þπ̄2
4a5Gðϕ̄Þ −

a
2
Vðϕ̄Þ

�
δNδab

−
1

aκF3ðϕ̄Þ δ
a½bδc�d∂c∂dδN þ N̄

��
3κp2

4a3Fðϕ̄Þ þ
7p2ðF0ðϕ̄ÞÞ2
8a3Fðϕ̄ÞGðϕ̄Þ þ

pF0ðϕ̄Þπ̄
4a5Gðϕ̄Þ −

Fðϕ̄Þπ̄2
8a7Gðϕ̄Þ −

Vðϕ̄Þ
4a

�
ðδcdδqcdÞδab

−
�

5κp2

2a3Fðϕ̄Þ þ
9p2ðF0ðϕ̄ÞÞ2
4a3Fðϕ̄ÞGðϕ̄Þ þ

3pF0ðϕ̄Þπ̄
2a5Gðϕ̄Þ þ Fðϕ̄Þπ̄2

4a7Gðϕ̄Þ −
Vðϕ̄Þ
2a

�
δacδbdδqcd

−
�

2κp

aFðϕ̄Þ þ
3pðF0ðϕ̄ÞÞ2
aFðϕ̄ÞGðϕ̄Þ þ

F0ðϕ̄Þπ̄
a3Gðϕ̄Þ

�
δpab þ

�
κp

aFðϕ̄Þ þ
3pðF0ðϕ̄ÞÞ2
2aFðϕ̄ÞGðϕ̄Þ þ

F0ðϕ̄Þπ̄
2a3Gðϕ̄Þ

�
ðδcdδpcdÞδab

þ
�
κp2

2a

�
1

Fðϕ̄Þ
�0

−
3p2

4a

� ðF0ðϕ̄ÞÞ2
Fðϕ̄ÞGðϕ̄Þ

�0
þ pπ̄
2a3

�
F0ðϕ̄Þ
Gðϕ̄Þ

�0
þ π̄2

4a5

�
Fðϕ̄Þ
Gðϕ̄Þ

�0
−
a
2
V 0ðϕ̄Þ

�
δϕδab

þ
�

Fðϕ̄Þπ̄
2a5Gðϕ̄Þ −

pF0ðϕ̄Þ
a3Gðϕ̄Þ

�
δπδab −

1

κa

�
1

F3ðϕ̄Þ
�0

δa½bδc�d∂c∂dδϕ

−
1

2κa3F3ðϕ̄Þ ½2δ
a½cδe�dδbf þ δa½bδc�dδef�∂e∂fδqcd

�
; ð56Þ
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dδϕ
dτ

¼
�
3pF0ðϕ̄Þ
aGðϕ̄Þ þ Fðϕ̄Þπ̄

a3Gðϕ̄Þ
�
δN þ N̄

�
Fðϕ̄Þ

a3Gðϕ̄Þ δπ þ
�
−

Fðϕ̄Þπ̄
2a5Gðϕ̄Þ þ

pF0ðϕ̄Þ
a3Gðϕ̄Þ

�
δabδqab þ

F0ðϕ̄Þ
aGðϕ̄Þ δabδp

ab

þ
�
3p
a

�
F0ðϕ̄Þ
Gðϕ̄Þ

�0
þ π̄

a3

�
Fðϕ̄Þ
Gðϕ̄Þ

�0�
δϕ

�
; ð57Þ

dδπ
dτ

¼ π̄∂aδNa −
a
3κ

�
1

F3ðϕ̄Þ
�0
δab∂a∂bδN

þ
�
3κap2

�
1

Fðϕ̄Þ
�0

−
9

2
ap2

� ðF0ðϕ̄ÞÞ2
Fðϕ̄ÞGðϕ̄Þ

�0
−
3pπ̄
a

�
F0ðϕ̄Þ
Gðϕ̄Þ

�0
−

π̄2

2a3

�
Fðϕ̄Þ
Gðϕ̄Þ

�0
− a3V 0ðϕ̄Þ

�
δN

þ N̄

��
3κap2

�
1

Fðϕ̄Þ
�00

−
9ap2

2

� ðF0ðϕ̄ÞÞ2
Fðϕ̄ÞGðϕ̄Þ

�00
− 3a2pπ̄

�
F0ðϕ̄Þ
Gðϕ̄Þ

�00
−

π̄2

2a3

�
Fðϕ̄Þ
Gðϕ̄Þ

�00
− a3V 00ðϕ̄Þ

�
δϕ

þ
�
κp2

2a

�
1

Fðϕ̄Þ
�0

−
3p2

4a

� ðF0ðϕ̄ÞÞ2
Fðϕ̄ÞGðϕ̄Þ

�0
þ pπ̄
2a3

�
F0ðϕ̄Þ
Gðϕ̄Þ

�0
þ π̄2

4a5

�
Fðϕ̄Þ
Gðϕ̄Þ

�0
−
a
2
V 0ðϕ̄Þ

�
δabδqab

þ
�
2κap

�
1

Fðϕ̄Þ
�0

− 3ap

� ðF0ðϕ̄ÞÞ2
Fðϕ̄ÞGðϕ̄Þ

�0
−
π̄

a

�
F0ðϕ̄Þ
Gðϕ̄Þ

�0�
δabδpab −

�
3p
a

�
F0ðϕ̄Þ
Gðϕ̄Þ

�0
þ π̄

a3

�
Fðϕ̄Þ
Gðϕ̄Þ

�0�
δπ

−
1

κa

�
1

F3ðϕ̄Þ
�0
δa½bδc�dð∂c∂dδqabÞ þ a

�
KðϕÞ
F4ðϕÞ −

4

κ

ðF0ðϕÞÞ2
F5ðϕÞ

�
δab∂a∂bδϕ

�
: ð58Þ

A. Gauge invariant variables

In the canonical theory, the gauge transformation of the perturbed variable is governed by the perturbed diffeomorphism
constraint and the perturbed Hamiltonian constraint. Since in our case the perturbed Hamiltonian constraint receives
quantum corrections, the gauge transformation of the perturbed variable is also subject to quantum corrections. In this
subsection, we construct the gauge invariant variables following the techniques introduced in Ref. [31].
If the lapse function and the shift vector had local infinitesimal variations,

N → N þ δv; Na → Na þ δva; ð59Þ

the gauge transformations of a perturbed phase space variable δX generated by the perturbed Hamiltonian and
diffeomorphism constraints are given by

δ½δv;δva�δX ¼ fδX;Hð2Þ
b−
½δv� þ Dð2Þ½δva�g; ð60Þ

in which the left-hand side of Eq. (60) denotes the gauge transformations of δX. Using Eq. (39), it is not difficult to prove
that the gauge transformation of the time derivative of a perturbed phase space variable satisfies

δ½δv;δva�

�
dδX
dτ

�
−

d
dτ

ðδ½δv;δva�δXÞ ¼
�
δX;Dð2Þ

�
N̄

a2F4ðϕ̄Þ δ
ab∂bδv

��
: ð61Þ

Using Eq. (60), we derive the gauge transformations of the following perturbed phase space variables:

δ½δv;δva�δqab ¼ 2a2δcða∂bÞδvc þ
�
−
2κap
Fðϕ̄Þ þ

3apðF0ðϕ̄ÞÞ2
Fðϕ̄ÞGðϕ̄Þ þ F0ðϕ̄Þπ̄

aGðϕ̄Þ
�
δvδab; ð62Þ

δ½δv;δva�δpab ¼ −2pδcða∂cδvbÞ þ pδab∂cδvc þ
�

κp2

2aFðϕ̄Þ −
3p2ðF0ðϕ̄ÞÞ2
4aFðϕ̄ÞGðϕ̄Þ þ

pF0ðϕ̄Þπ̄
2a3Gðϕ̄Þ þ

Fðϕ̄Þπ̄2
4a5Gðϕ̄Þ −

a
2
Vðϕ̄Þ

�
δvδab; ð63Þ

δ½δv;δva�δϕ ¼
�
3pF0ðϕ̄Þ
aGðϕ̄Þ þ Fðϕ̄Þπ̄

a3Gðϕ̄Þ
�
δv: ð64Þ
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To simplify the analysis, we separately consider different modes of perturbations. For the scalar mode of perturbations,
we denote

δN ¼ N̄φ; δNa ¼ δab∂bB; δqab ¼ 2a2½−ψδab þ ∂a∂bE�: ð65Þ

From Eq. (55), we find

δpab ¼ Fðϕ̄Þa
2κN̄

�
2

�
1

a
da
dτ

−
1

2

F0ðϕ̄Þ
Fðϕ̄Þ

dϕ̄
dτ

���
φ − ψ −

F0ðϕ̄Þ
Fðϕ̄Þ δϕ

�
δab þ 2δacδbd∂c∂dE − ðδcd∂c∂dEÞδab

�

− 2

�
dψ
dτ

−
1

2

F0ðϕ̄Þ
Fðϕ̄Þ

dδϕ
dτ

�
δab þ δacδbd∂c∂d

dE
dτ

−
�
δcd∂c∂d

dE
dτ

�
δab − δacδbd∂c∂dBþ ðδcd∂c∂dBÞδab

�
: ð66Þ

We parametrize the scalar components of the variations
by two scalar functions v0 and v such that

δv ¼ N̄v0; δva ¼ δab∂bv: ð67Þ

In the following, we denote the scalar component of the
gauge transformations of δX by δ½δv;δva�δX ¼ δ½v0;v�δX. In
accord with the standard treatment in classical cosmology,
we set N̄ ¼ a and denote the corresponding conformal time
as dη. Substituting Eq. (65) into Eqs. (62)–(64), and using
Eq. (61) along with the canonical background equations of
motion in (A2), we find

δ½v0;v�ψ ¼−Hv0; δ½v0;v�E¼v; δ½v0;v�δϕ¼ ϕ̄;ηv0;

δ½v0;v�ðψ̄ ;ηÞ¼ðδ½v0;v�ψÞ;η; δ½v0;v�ðE;ηÞ¼v;ηþ
v0

F4ðϕ̄Þ ; ð68Þ

where the subscript “η” denotes the derivative with respect
to the conformal time, i.e., v;η ≡ dv

dη, and the conformal

Hubble parameter H is defined by H≡ a;η
a . Substituting

Eq. (66) into Eqs. (62)–(64)and using Eq. (68), we get

δ½v0;v�φ ¼ ðv0Þ;η þHv0; δ½v0;v�B ¼ F2ðϕ̄Þv;η: ð69Þ

From Eqs. (68) and (69), we obtain

δ½v0;v�½F2ðϕ̄ÞðB − F2ðϕ̄ÞE;ηÞ� ¼ −v0;

δ½v0;v�½ðF2ðϕ̄ÞðB − F2ðϕ̄ÞE;ηÞÞ;η� ¼ −ðv0Þ;η: ð70Þ
We define the following variables:

Φ≡ φ −
5

2

F0ðϕ̄Þ
Fðϕ̄Þ δϕþ GðB − F2ðϕ̄ÞE;ηÞ

þ F2ðϕ̄ÞðB − F2ðϕ̄ÞE;ηÞ;η; ð71Þ

Ψ≡ ψ −
1

2

F0ðϕ̄Þ
Fðϕ̄Þ δϕ − GðB − F2ðϕ̄ÞE;ηÞ; ð72Þ

δϕGI ≡ δϕþ F2ðϕ̄Þϕ̄;η½ðB − F2ðϕ̄ÞE;ηÞ�; ð73Þ

where

G≡ F2ðϕ̄Þ
�
H −

F0ðϕ̄Þϕ̄;η

2Fðϕ̄Þ
�
: ð74Þ

Obviously,Φ andΨ can reproduce the Bardeen potentials if
Fðϕ̄Þ ¼ 1. Using Eqs. (68)–(70), it is direct to check that
δ½v0;v�Φ ¼ δ½v0;v�Ψ ¼ δ½v0;v�δϕ

GI ¼ 0, which means these
variables are gauge invariant.

B. Evolution equations of gauge invariant variables

In this subsection, we derive the second order evolution
equations of the gauge invariant variables.
We consider the gauge invariant scalar modes first. The

perturbed constraint equations Dð1Þ
a ¼ 0 and Cð1Þb−

¼ 0 can
be, respectively, rewritten in terms of the gauge invariant
variables as

∂a½F2ðϕ̄ÞΨ;η þ GΦ� ¼ κ

2
Gðϕ̄Þϕ̄;η∂aδϕ

GI; ð75Þ

∇2Ψ − 3F2ðϕ̄ÞGΨ;η −
�
3G2 −

κ

2
F2ðϕ̄ÞGðϕ̄Þðϕ̄;ηÞ2

�
Φ

¼ κ

2
F2ðϕ̄Þ½Gðϕ̄Þϕ̄;ηδϕ

GI
;η þ ð4a2F0ðϕ̄ÞVðϕ̄Þ

þ a2Fðϕ̄ÞV 0ðϕ̄ÞÞδϕGI�; ð76Þ

where ∇2 ≡ δab∂a∂b.
Then, substituting Eq. (66) into Eq. (56) and taking into

account the background equations of motion, it is straight-
forward to show that the off-diagonal part of Eq. (56)
yields

Φ ¼ Ψ; ð77Þ

and the diagonal part of Eq. (56) yields the following
equation:
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F2ðϕ̄ÞΨ;ηη þ 2F2ðϕ̄Þ
�
Hþ F0ðϕ̄Þ

2Fðϕ̄Þ ϕ̄;η

�
Ψ;η þ GΦ;η þ

�
dG
dη

þ G2

F2ðϕ̄Þ
�
Φ

¼ κ

2
½Gðϕ̄Þϕ̄;ηδϕ

GI
;η − ð4a2F0ðϕ̄ÞVðϕ̄Þ þ a2Fðϕ̄ÞV0ðϕ̄ÞÞδϕGI�; ð78Þ

where the subscript “ηη” denotes the second derivative with respect to the conformal time.
Moreover, substituting Eq. (57) into Eq. (58), we find that the perturbed Klein-Gordon equation can be expressed in

terms of the gauge invariant variables,

δϕGI
;ηη þ

�
2G

F2ðϕ̄Þ þ
1

Gðϕ̄Þ ðGðϕ̄ÞÞ;η
�
δϕGI

;η þAa2δϕGI −
1

F4ðϕ̄Þ∇
2δϕGI

− ϕ̄;η½Φ;η þ 3Ψ;η� − 2
a2

Gðϕ̄Þ ð4F
0ðϕ̄ÞVðϕ̄Þ þ Fðϕ̄ÞV 0ðϕ̄ÞÞΦ ¼ 0; ð79Þ

where

A ¼ −
1

Fðϕ̄Þ ðFðϕ̄Þ;ηηÞ −
1

4

1

G2ðϕ̄Þ ðGðϕ̄Þ;ηÞ
2 þ 1

2

1

Gðϕ̄Þ ðGðϕ̄Þ;ηηÞ þ
1

Gðϕ̄Þ
�
G0ðϕ̄Þ
Gðϕ̄Þ

�
−2F0ðϕ̄ÞVðϕ̄Þ − 1

2
Fðϕ̄ÞV 0ðϕ̄Þ

�

þ 16
ðF0ðϕ̄ÞÞ2
Fðϕ̄Þ Vðϕ̄Þ þ 9F0ðϕ̄ÞV 0ðϕ̄Þ þ 4F00ðϕ̄ÞVðϕ̄Þ þ Fðϕ̄ÞV 00ðϕ̄Þ

�
: ð80Þ

Introducing the auxiliary gauge invariant variables

vS ≡ a
ffiffiffiffiffiffiffiffiffiffiffi
Gðϕ̄Þ

p
F

3
2ðϕ̄Þ

�
δϕGI þ F2ðϕ̄Þ

G
ϕ̄;ηΨ

�
; zS ≡ a

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Fðϕ̄ÞGðϕ̄Þ

p
G

ϕ̄;η; ð81Þ

and using Eqs. (75)–(79), after tedious calculation, we obtain

vS;ηη −
1

F4ðϕ̄Þ∇
2vS þ

2

Fðϕ̄ÞFðϕ̄Þ;ηvS;η −
1

zS

�
zS;ηη þ

2

Fðϕ̄ÞFðϕ̄Þ;ηzS;η
�
vS ¼ 0: ð82Þ

It is not difficult to show that the Hamiltonian of gauge invariant scalar perturbations which can yield Eq. (82) is given by

Hð2Þ
S ½N̄� ¼

Z
Σ
d3 x

N̄

2aF2ðϕ̄Þ
�
π2S þ δabð∂avSÞ∂bvS −

F4ðϕ̄Þ
zS

�
zS;ηη þ

2

Fðϕ̄ÞFðϕ̄Þ;ηðzSÞ;η
�
v2S

�
; ð83Þ

in which πS denotes the conjugate momentum of vS which satisfies fvSðx⃗Þ; πSðy⃗Þg ¼ δð3Þðx⃗ − y⃗Þ.
For tensor perturbation, we have δqab ¼ a2hab, where hab is a symmetric trace-free and transversal tensor satisfying

δab∂ahbc ¼ δabhab ¼ 0. Since from Eq. (62) it is easy to see that the tensor perturbation is gauge invariant, we can define
the auxiliary gauge invariant variables

zT ≡ affiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2κFðϕ̄Þ

p ; vT ≡ zThab: ð84Þ

From the Hamilton’s equations of perturbed variables, we obtain the equation of motion of vT ,

vT;ηη −
1

F4ðϕ̄Þ∇
2vT þ 2

Fðϕ̄ÞFðϕ̄Þ;ηvT;η −
1

zT

�
zT;ηη þ

2

Fðϕ̄ÞFðϕ̄Þ;ηzT;η
�
vT ¼ 0; ð85Þ

which takes exactly the same form as Eq. (82) except that the subscript “S” is replaced by “T”. It can be shown that the
Hamiltonian of tensor perturbations which can yield Eq. (85) is given by
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Hð2Þ
T ½N̄� ¼ 1

4

Z
Σ
d3x

N̄

2aF2ðϕ̄Þ
�
π2T þ δabð∂avTÞ∂bvT

−
F4ðϕ̄Þ
zT

�
zT;ηη þ

2

Fðϕ̄ÞFðϕ̄Þ;ηzT;η
�
v2T

�
; ð86Þ

in which πT denotes the conjugate momentum of vT .
Note that the equations of motion of vS and vT can

reproduce the Mukhonov equations of scalar and
tensor perturbations of the minimally coupled case if
Fðϕ̄Þ ¼ Gðϕ̄Þ ¼ 1. For brevity, we also call Eqs. (82)
and (85) the Mukhonov equations in the following sections.

C. Causality

As illustrated by Eqs. (82) and (85), the square of the
propagation speed of perturbations satisfies

c2S ¼ c2T ¼ 1

F4ðϕ̄Þ ; ð87Þ

where cS and cT denote the propagation speed of scalar
perturbation and tensor perturbation, respectively. Thus, we
get cS > 1 when Fðϕ̄Þ < 1 such that the speed of pertur-
bations seems to become superluminal. However, consid-
ering that not only the propagation speed of the scalar and
tensor perturbations can receive quantum gravity correc-
tions but the propagation speed of electromagnetic fields
can also be affected by quantum gravity effects, we should
compare the propagation speed of the scalar and tensor
perturbations with the physical speed (instead of the
classical speed) of electromagnetic fields on the same
quantum effective spacetime background.
In the case we consider, the Hamiltonian constraint of

electromagnetic fields is given by [32]

CðEMÞ
b−

½N� ¼
Z
Σ
d3xN

�
αðϕÞ 2πffiffiffiffiffiffiffiffiffiffiffiffiffi

detðqÞp qabπaπb

þ βðϕÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffi
detðqÞp
16π

qacqbdFabFbd

�
; ð88Þ

in which the functions αðϕÞ and βðϕÞ denote the unde-
termined quantum corrections. In the classical case, we
have α ¼ β ¼ 1. The conjugate variables in (88) are the
spatial component of the vector potential Aa and its
conjugate momentum πa. The spatial component of the
field strength tensor is defined by Fab ≡ ∂aAb − ∂bAa.
The diffeomorphism constraint of electromagnetic fields

is given by [32]

DðEMÞ½Na� ¼
Z
Σ
d3xNaπbFab: ð89Þ

Note that we require that like the gravitational part the
diffeomorphism constraint of electromagnetic fields does

not receive quantum corrections either. Now, the total
Hamiltonian constraint and diffeomorphism constraint
read, respectively, as

CðtotalÞ
b−

½N� ¼ Cb− ½N� þCðEMÞ
b−

½N�; ð90Þ

DðtotalÞ½Na� ¼ D½Na� þDðEMÞ½Na�: ð91Þ

Straightforward calculation gives

fCðtotalÞ
b−

½M�;CðtotalÞ
b−

½N�g

¼ D

�
1

F4ðϕÞ q
abðMDbN − NDbMÞ

�
þ DðEMÞ½αðϕÞβðϕÞqabðMDbN − NDbMÞ�: ð92Þ

To obtain a first class constraint algebra, we should require

αðϕÞβðϕÞ ¼ 1

F4ðϕÞ : ð93Þ

As shown in Ref. [33], the group velocity of electromag-
netic wave propagating on the spatially flat FRW back-
ground is

cEM ¼
ffiffiffiffiffiffi
ᾱ β̄

q
; ð94Þ

where ᾱ and β̄ denote the background value of αðϕÞ and
βðϕÞ, respectively. Then, using Eqs. (93) and (87), we
obtain

cEM ¼ cS ¼ cT ¼ 1

F2ðϕ̄Þ ; ð95Þ

which indicates that the causality is still respected by the
quantum corrections.

V. SOLUTIONS OF THEMUKHANOVEQUATIONS
UNDER SLOW-ROLL APPROXIMATION

In this section, we solve the Mukhanov equations under
slow-roll approximation to obtain spectral indices of the
perturbations. To justify this practice, we assume that the
slow-roll inflation can take place, and for any wave number
in the present observational range the energy density at the
instant of the horizon crossing is significantly lower than
the critical energy density of LQC.
Due to their complex forms, it is difficult to directly

solve the Mukhanov equations (82) and (85). For conven-
ience, we define a new time variable dζ which relates to the
conformal time by

dζ ¼ 1

F2ðϕ̄Þ dη: ð96Þ
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Since the conformal time dη corresponds to the choice of
the lapse function N̄ ¼ a, it is easy to see that the new time
variable dζ corresponds to the choice of the lapse function
N̄ ¼ aF2ðϕ̄Þ. Using this new variable, the Mukhanov
equations of scalar perturbation and tensor perturbation
can be reexpressed in a relatively simple form,

d2vS;T
dζ2

−∇2vS;T −
�

1

zS;T

d2zS;T
dζ2

�
vS;T ¼ 0; ð97Þ

and the perturbed Hamiltonian (83) and (86) can also be
rewritten in a simple form,

Hð2Þ
S;T ¼ ϒS;T

Z
Σ
d3x

�
π2S;T þ δabð∂avS;TÞ∂bvS;T

−
�

1

zS;T

d2zS;T
dζ2

�
v2S;T

�
; ð98Þ

where ϒS ¼ 1 and ϒT ¼ 1
4
.

During the slow-roll period, both the scalar field and the
Hubble parameter vary very slowly with respect to the
proper time. It is useful to introduce the four slow-roll
parameters,

ϵ1¼
_H
H2

; ϵ2¼
̈̄ϕ

H _̄ϕ
; ϵ3¼

_Fðϕ̄Þ
2HFðϕ̄Þ; ϵ4¼

_Gðϕ̄Þ
2HGðϕ̄Þ; ð99Þ

and the slow-roll condition is satisfied if ϵi ≪ 1 for all ϵi.
Using the relation dt ¼ adη ¼ aF2ðϕ̄Þdζ and the def-

inition of zS in Eq. (81), we have

vS ¼
a

ffiffiffiffiffiffiffiffiffiffiffi
Gðϕ̄Þ

p
F

3
2ðϕ̄Þ

�
δϕGI þ

_̄ϕ

ðH − _Fðϕ̄Þ
2Fðϕ̄ÞÞ

Ψ
�
;

zS ¼
a

ffiffiffiffiffiffiffiffiffiffiffi
Gðϕ̄Þ

p
_̄ϕ

F
3
2ðϕ̄ÞðH − _Fðϕ̄Þ

2Fðϕ̄ÞÞ
; ð100Þ

then, using the definition of slow-roll parameters, we obtain

1

zS

dzS
dζ

≃ F2ðϕ̄ÞaHð1 − ϵ1 þ ϵ2 − 3ϵ3 þ ϵ4Þ; ð101Þ

1

zS

d2zS
dζ2

≃ F4ðϕ̄Þa2H2ð2 − 2ϵ1 þ 3ϵ2 − 5ϵ3 þ 3ϵ4Þ: ð102Þ

For simplicity, in Eqs. (101) and (102), both the time
variation and higher order terms of ϵi have been neglected,
and the same is done in the following calculations.
From the equation

d
dζ

�
1

F2ðϕ̄ÞaH
�
≃ −ð1þ ϵ1 þ 4ϵ3Þ; ð103Þ

we obtain

F4ðϕ̄Þa2H2 ≃
1

ζ2
1

1þ 2ϵ1 þ 8ϵ3
: ð104Þ

Substituting Eq. (104) into Eq. (102), we get

1

zS

d2zS
dζ2

≃
mS

ζ2
;

mS ≡ 2 − 6ϵ1 þ 3ϵ2 − 21ϵ3 þ 3ϵ4: ð105Þ

Similarly, for tensor perturbation, we obtain

1

zT

d2zT
dζ2

≃
mT

ζ2
; mT ≡ 2 − 3ϵ1 − 15ϵ3: ð106Þ

Hence, in the slow-roll period, the Mukhanov equations can
be approximately written as

d2vS;T
dζ2

−∇2vS;T −
ðν2S;T − 1=4Þ

ζ2
vS;T ¼ 0; ð107Þ

where in order to proceed we have introduced the variables
νS and νT ,

νS ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mS þ

1

4

r
≃
3

2
− 2ϵ1 þ ϵ2 − 7ϵ3 þ ϵ4; ð108Þ

νT ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mS þ

1

4

r
≃
3

2
− ϵ1 − 5ϵ3: ð109Þ

A. Spectral indices of the slow-roll inflation

Now, let us solve the Mukhanov equation of scalar
perturbation first. The treatment mimics that in classical
theory. First, we promote the quantities vS and πS to
quantum operators which satisfy the equal time commu-
tation relation,

½v̂Sðζ; x⃗Þ; π̂Sðζ; y⃗Þ� ¼ iδð3Þðx⃗ − y⃗Þ;
½v̂Sðζ; x⃗Þ; v̂Sðζ; y⃗Þ� ¼ ½π̂Sðζ; x⃗Þ; π̂Sðζ; y⃗Þ� ¼ 0; ð110Þ

where we have set ℏ ¼ 1, and using the Heisenberg’s
equation of motion, we get

dv̂S
dζ

¼ 1

i
½v̂S;Hð2Þ

S � ¼ π̂S: ð111Þ

Then, we Fourier decompose v̂S as

v̂Sðζ; x⃗Þ

¼ 1

ð2πÞ32
Z

d3k⃗½âSðk⃗ÞvSkðζÞeik⃗·x⃗ þ â†Sðk⃗Þv�SkðζÞe−ik⃗·x⃗�;

ð112Þ
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where k≡ jk⃗j. Plugging Eq. (112) into Eqs. (110) and (111)
and requiring ½âSðk⃗1Þ; â†Sðk⃗2Þ� ¼ δð3Þðk⃗1 − k⃗2Þ, we obtain

vSk
dv�Sk
dζ

− v�Sk
dvSk
dζ

¼ i: ð113Þ

With the help of Eqs. (107) and (112), we obtain the
evolution equation of vSk,

d2vSk
dζ2

þ
�
k2 −

ðν2S − 1=4Þ
ζ2

�
vSk ¼ 0: ð114Þ

The solution for vSk is given by

vSkðζÞ¼
ffiffiffiffiffiffiffiffi
πjζjp
2

½c1ðk⃗ÞHð1Þ
νS ðkjζjÞþc2ðk⃗ÞHð2Þ

νS ðkjζjÞ�; ð115Þ

where Hð1;2Þ
ν are Hankel functions. To determine the

coefficients c1ðk⃗Þ and c2ðk⃗Þ, we can use the asymptotic
property of the Hankel functions in the limit of small scales
where kjζj ≫ 1,

vSkðζÞjkjζj≫1

≃
1ffiffiffiffiffi
2k

p ½c1ðk⃗Þe−iπ4ð1þ2νSÞeikjζj þ c2ðk⃗Þeiπ4ð1þ2νSÞe−ikjζj�:

ð116Þ

Substituting Eq. (116) into Eq. (113), we obtain

jc1ðk⃗Þj2 − jc2ðk⃗Þj2 ¼ 1: ð117Þ

Assuming that only the positive frequency solution remains
in the small scale limit for the wave numbers which lie in
the current observational range, we can set

c1ðk⃗Þ ¼ 1; c2ðk⃗Þ ¼ 0; ð118Þ

which corresponds to selecting the Bunch-Davies vacuum
for these wave numbers when jζj ≫ 1

k.
Using the asymptotic property of the Hankel functions in

the large scale limit kjζj ≪ 1, we obtain

vSkðζÞjkjζj≪1 ≃
−i
2

ffiffiffi
π

p
�
2

k

�
νS
ΓðνSÞjζj12−νS : ð119Þ

Introducing the variable RkðζÞ≡ vSk
zS
, from the

definition of the power spectrum of scalar perturbation
PRðk; ζÞ≡ k3

2π2
jRkðζÞj2, we get

PRðk; ζÞ ¼
22νSΓ2ðνSÞ

π3
jζj1−2νS

z2S

�
k
2

�
3−2νS

: ð120Þ

Moreover, from the equation

1

zS

d2zS
dζ2

≃
ν2S − 1

4

ζ2
; ð121Þ

we obtain

zS ∝ jζj12−νS ; ð122Þ

plugging Eq. (122) into Eq. (120), we find that PR becomes
time independent in the large scale limit.
From Eq. (122), we get

zS ¼ z�S

				 ζζ�
				
1
2
−νS

; ð123Þ

in which ζ� denotes an arbitrary instant, and z�S ≡ zSjζ¼ζ� .
Substituting Eq. (123) into Eq. (120), we have

PR ≃
1

4π2
jkζ�j3−2νS
ðz�SÞ2ðζ�Þ2

; ð124Þ

where we have used ΓðνSÞ ≃ Γð3
2
Þ. The above expression

can be simplified by choosing the instant jζ�j ¼ 1
k. Note that

at this instant we also have F2ðϕ̄ÞaH ¼ k because from
Eq. (104) we learn that 1

jζj ≃ F2ðϕ̄ÞaH. Then, substituting

Eq. (100) into Eq. (124), we find that PR can also be
expressed as

PR ≃
1

4π2
H4F7ðϕ̄Þ
Gðϕ̄Þð _̄ϕÞ2

				
k¼F2ðϕ̄ÞaH

: ð125Þ

Now, the spectral index of scalar perturbation is given by

nS − 1≡ d lnPR

d ln k

				
k¼F2ðϕ̄ÞaH

¼
�

1

d ln k=dt
d lnPR

dt

�				
k¼F2ðϕ̄ÞaH

≃ ð4ϵ1 − 2ϵ2 þ 14ϵ3 − 2ϵ4Þjk¼F2ðϕ̄ÞaH: ð126Þ

For tensor perturbation, we find that the solution for
vTkðζÞ takes the same form as vSkðζÞ except that νS should
be replaced by νT. Introducing the variable hk ≡ vTk

zT
and

using the definition of the power spectrum of tensor
perturbation Phðk; ζÞ≡ 2k3

π2
jhkj2, then simply following

the above treatment for scalar perturbation, we obtain

Ph ≡ 2k3

π2
jhkj2 ≃

2κ

π2
H2F5ðϕ̄Þ

				
k¼F2ðϕ̄ÞaH

; ð127Þ

from which the spectral index of tensor perturbation can be
read as
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nT ≡ d lnPh

d ln k
≃ ð2ϵ1 þ 10ϵ3Þjk¼F2ðϕ̄ÞaH; ð128Þ

where we have used Eq. (109) in the last step. Moreover, it
is easy to show that zT ∝ jζj12−νT ; thus, Ph also becomes
time independent in the large scale limit.
The tensor-to-scalar ratio now reads

r≡ Ph

PR
≃ 8κ

Gðϕ̄Þð _̄ϕÞ2
H2F2

				
k¼F2ðϕ̄ÞaH

≃ −16ðϵ1 þ 5ϵ3Þjk¼F2ðϕ̄ÞaH; ð129Þ

where in the last step we have used the background
equation of motion (7) in the limit cos b → −1 along
with the slow-roll condition. Comparing Eq. (129) with
Eq. (128), we find r ≃ −8nT .
It is worth mentioning that in the Jordan frame of

classical STT the spectral indices are given by [34]

nS − 1 ≃ ð4ϵ1 − 2ϵ2 þ 2ϵ3 − 2ϵ4Þjk¼aH;

nT ≃ ð2ϵ1 − 2ϵ3Þjk¼aH;

r ≃ −8nT: ð130Þ

Obviously, the spectral indices in the classical case differ
from the spectral indices in the case cos b → −1 in two
aspects: the coefficient before ϵ3 and the instant at which
they take value. Nevertheless, the consistency relation
between the tensor-to-scalar ratio and the tensor spectral
index remains the same in both cases.
Under the slow-roll approximation, the background

equations in the Jordan frame can be approximated as

H2 ≃
κ

3

Vðϕ̄Þ
Fðϕ̄Þ ;

3H _̄ϕ ≃ −
4F0ðϕ̄ÞVðϕ̄Þ þ Fðϕ̄ÞV 0ðϕ̄Þ

Gðϕ̄Þ : ð131Þ

Using (131), the power spectrum of the scalar perturba-
tions can be expressed in terms of ϕ̄,

PR ≃
1

4π2
H4F7ðϕ̄Þ
Gðϕ̄Þð _̄ϕÞ2

				
k¼F2ðϕ̄ÞaH

≃
κ3

12π2
F10ðϕ̄ÞGðϕ̄ÞV3ðϕ̄Þ

ð4F3ðϕ̄ÞF0ðϕ̄ÞVðϕ̄Þ þ F4ðϕ̄ÞVðϕ̄ÞÞ2
				
k¼F2ðϕ̄ÞaH

:

ð132Þ

Direct calculations show that the slow-roll parameters
can be expressed as

ϵ1 ≃ 2ϵF −
3

2
ϵFV −

1

2
ϵV;

ϵ2 ≃ −2ϵF −
7

2
ϵFV þ 1

2
ϵV þ 4ϵFG þ ϵGV − 4ηF − ηV;

ϵ3 ≃ −2ϵF −
1

2
ϵFV; ϵ4 ≃ −2ϵFG −

1

2
ϵGV; ð133Þ

where

ϵF ≡ 1

κ

ðF0ðϕ̄ÞÞ2
Gðϕ̄Þ ; ϵFV ≡ 1

κ

Fðϕ̄ÞF0ðϕ̄ÞV 0ðϕ̄Þ
Gðϕ̄ÞVðϕ̄Þ ;

ϵV ≡ 1

κ

F2ðϕ̄ÞðV 0ðϕ̄ÞÞ2
Gðϕ̄ÞV2ðϕ̄Þ ; ϵFG ≡ 1

κ

Fðϕ̄ÞF0ðϕ̄ÞG0ðϕ̄Þ
G2ðϕ̄Þ ;

ϵGV ≡ 1

κ

F2ðϕ̄ÞG0ðϕ̄ÞV 0ðϕ̄Þ
G2ðϕ̄ÞVðϕ̄Þ ; ηF ≡ 1

κ

Fðϕ̄ÞF00ðϕ̄Þ
Gðϕ̄Þ ;

ηV ≡ 1

κ

F2ðϕ̄ÞV 00ðϕ̄Þ
Gðϕ̄ÞVðϕ̄Þ ; ð134Þ

such that the indices in the Jordan frame can also be
given by

nS − 1 ≃ −ð16ϵF þ 6ϵFV þ 3ϵV þ 4ϵFG

þ ϵGV − 8ηF − 2ηVÞjk¼F2ðϕ̄ÞaH; ð135Þ

r ≃ 16ð8ϵF þ 4ϵFV þ ϵVÞjk¼F2ðϕ̄ÞaH: ð136Þ

B. Comparison with the results in the Einstein frame

The analysis in the previous subsection is performed in
the Jordan frame. In this subsection, we check whether the
results are equivalent to those in the Einstein frame.
In the following, we drop a “tilde” to denote the variables

in the Einstein frame. From the transformation of the
variables in (43), we find that the background and perturbed
variables in the Einstein frame are related to their counter-
parts in the Jordan frame by

ã ¼ affiffiffiffiffiffiffiffiffiffi
Fðϕ̄Þ

p ; dt̃ ¼ 1

F
5
2ðϕ̄Þ dt;

H̃ ≡ 1

ã
dã
dt̃

¼ F
5
2ðϕ̄Þ

�
H −

_Fðϕ̄Þ
2Fðϕ̄Þ

�
; ð137Þ

and

δϕ̃ ¼
ffiffiffiffiffiffiffiffiffiffiffi
GðϕÞp
FðϕÞ δϕ; φ̃ ¼ φ −

5

2

F0ðϕ̄Þ
Fðϕ̄Þ δϕ;

ψ̃ ¼ ψ −
1

2

F0ðϕ̄Þ
Fðϕ̄Þ δϕ; Ẽ ¼ E; h̃ab ¼ hab: ð138Þ

From Eqs. (72), (73), (74), and (81), we find that the
curvature perturbation R in the Jordan frame satisfies
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R≡ vS
zS

¼ ψ −
1

2

F0ðϕ̄Þ
Fðϕ̄Þ δϕþ

H − _Fðϕ̄Þ
2Fðϕ̄Þ
_̄ϕ

δϕ: ð139Þ

Recall that in the Einstein frame the curvature perturbation
is defined by

R̃≡ ψ̃ þ H̃

d ¯̃ϕ=dt̃
δϕ̃: ð140Þ

With the help of Eqs. (137) and (138), it is easy to find
R̃ ¼ R. Furthermore, it can be shown that the power
spectrum P̃R̃ in the Einstein frame satisfies

P̃R̃ ≃
1

4π2
H̃4

ðd ¯̃ϕ=dt̃Þ2
				
k¼ã H̃

¼ 1

4π2
F7ðϕ̄ÞH4ð1 − ϵ3Þ4

Gðϕ̄Þð _̄ϕÞ2
				
k¼F2ðϕ̄Þã H̃ð1−ϵ3Þ

≃ PR: ð141Þ

Moreover, since the tensor perturbation is invariant under
the conformal transformation, we have h̃k ¼ hk, and the
power spectrum P̃h̃ in the Einstein frame satisfies

P̃h̃ ≃
2κ

π2
H̃2

				
k¼ã H̃

¼ 2κ

π2
F5ðϕ̄ÞH2ð1 − ϵ3Þ2

				
k¼F2ðϕ̄ÞaHð1−ϵ3Þ

≃ Ph: ð142Þ

In the Einstein frame, to linear order of the slow-roll
parameters, the spectral index of the scalar perturbation is
expressed by

ñS − 1≡ d ln P̃R̃

d ln k
≃ 4ϵ̃1 − 2ϵ̃2;

ñT ≡ d ln P̃h̃

d ln k
≃ 2ϵ̃1; ð143Þ

and using Eq. (137), we find that

ϵ̃1 ≡ 1

H̃2

dH̃
dt̃

¼
5
2
F4ðϕ̄ÞH _Fðϕ̄Þ þ F5ðϕ̄Þ½ _Hð1 − ϵ3Þ −H_ϵ3�

F5ðϕ̄ÞH2ð1 − ϵ3Þ2
				
k¼ã H̃

≃ ðϵ1 þ 5ϵ3Þ
				
k¼F2ðϕ̄ÞaH

; ð144Þ

ϵ̃2 ≡ 1

H̃

d2 ¯̃ϕ=dt̃2

d ¯̃ϕ=dt̃

¼
3
2
Gðϕ̄Þ _̄ϕ _Fðϕ̄Þ þ 1

2
Fðϕ̄Þ _Gðϕ̄Þ _̄ϕþ Fðϕ̄ÞGðϕ̄Þ ̈ϕ̄

Fðϕ̄ÞGðϕ̄ÞHð1 − ϵ3Þ _̄ϕ

				
k¼ã H̃

≃ ðϵ2 þ 3ϵ3 þ ϵ4Þ
				
k¼F2ðϕ̄ÞaH

: ð145Þ

Substituting Eqs. (144) and (145) into Eq. (143), we can
easily show that ñS ≃ nS and ñS ≃ nT . Moreover, the tensor-
to-scalar ratio in the Einstein frame satisfies r̃ ≃ −8ñT ≃ r.
Thus, we conclude that the power spectra and spectral
indices in the Einstein frame coincide with the ones in the
Jordan frame to linear order of slow-roll parameters.
However, we should mention that further calculation shows
that the coincidence of the results between the two frames
does not hold to higher orders of slow-roll parameters.

VI. COSMOLOGICAL DYNAMICS OF A SPECIFIC
MODEL OF STT

In this section, we apply the results obtained in the
previous sections to study a specific model of STT. To be
specific, in action (1) we choose

FðϕÞ¼ 1

ð1þξκϕ2Þ12 ; KðϕÞ¼ 1; VðϕÞ¼ λ

4
ϕ4; ð146Þ

in which the dimensionless coupling parameters ξ and λ are
set to be greater than zero.
The background equations of motion are as follows:

�
H

ð1þ ξκϕ̄2Þ12 −
1

2

ξκϕ̄ _̄ϕ

ð1þ ξκϕ̄2Þ32 cos b
�

2

¼ κ

3
ρe

�
1 −

ρe
ρc

�
;

ð147Þ

̈ϕ̄þ 3H _̄ϕþ 1

2

_Gðϕ̄Þ
Gðϕ̄Þ

_̄ϕ −
− 3

4
λξκϕ̄5ðcos bþ 1Þ − λϕ̄3

ð1þ ξκϕ̄2Þ32Gðϕ̄Þ ¼ 0;

ð148Þ

cos2 b ¼ 1 −
ρe
ρc

; ð149Þ

where

ρe ≡Gðϕ̄Þ
2

ð _̄ϕÞ2 þ λϕ̄4

4ð1þ ξκϕ̄2Þ12 ;

Gðϕ̄Þ≡ 3

2

ξ2κϕ̄2

ð1þ ξκϕ̄2Þ3 þ
1

ð1þ ξκϕ̄2Þ12 : ð150Þ

Defining χ ≡ _̄ϕ, the dynamical equations of the scalar
field read
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dϕ̃
dt

¼ χ; ð151Þ

dχ
dt

¼ −3Hχ −
1

2

_Gðϕ̄Þ
Gðϕ̄Þ χ

−
3
4
λξκϕ̄5ðcos bþ 1Þ þ λϕ̄3

ð1þ ξκϕ̄2Þ32Gðϕ̄Þ ; ð152Þ

where H and cos b are understood as functions of ϕ and χ
via Eqs. (147) and (149). Since ξ > 0, λ > 0, we have
Fðϕ̄Þ > 0, Kðϕ̄Þ > 0, and Vðϕ̄Þ ≥ 0 for arbitrary values
of ϕ̄. Moreover, from Eqs. (151) and (152), we find that
the dynamical systems have only two fixed points:
(ϕ̄ ¼ 0,χ ¼ 0) with cos b ¼ 1 and (ϕ ¼ 0,χ ¼ 0) with
cos b ¼ −1. According to the arguments in Sec. II, the
phase space is naturally divided into two disconnected
sectors by sin b < 0 and sin b > 0. In the former sector,
the fixed point (ϕ̄ ¼ 0,χ ¼ 0) with cos b ¼ 1 is the source
of the system, and the fixed point (ϕ̄ ¼ 0,χ ¼ 0) with
cos b ¼ −1 is the sink of the system, while in the other
sector the case is just the opposite. Furthermore,

considering that the effective energy density is bounded
from above by ρc, none of the phase space trajectories of
solutions of equations can approach infinity in the phase
space. Thus, if there are no limit circles in the sector
sin b < 0, all trajectories of solutions starting from the
source in the asymptotic past will evolve to the sink in the
asymptotic future, which implies that each phase space
trajectory passes through the bounce during the evolution.
Hence, in this model, a classical contracting universe in the
remote past can successfully evolve into an expanding
universe described by the b− branch of equations via the
bounce. In addition, since Fðϕ̄Þ ¼ 1 at the fixed point, we
find that general relativity is the attractor of this model.
To illustrate the behavior of the solutions, in Fig. 1(a), we

show the trajectories of solutions of equations in the
contraction phase of a universe in the sector sin b < 0
of the phase space.
Now, we derive the spectral indices of the slow-roll

inflation in this context. In the Jordan frame, the number of
e-folds from the moment at which k ¼ F2ðϕ̄ÞaH until the
end of inflation is given by

N ¼
Z

te

ti

Hdt ¼
Z

ϕ̄i

ϕ̄e

H
ðdϕ̄=dtÞ dϕ̄ ≃ κ

Z
ϕ̄i

ϕ̄e

Gðϕ̄ÞVðϕ̄Þ
4Fðϕ̄ÞF0ðϕ̄ÞVðϕ̄Þ þ F2ðϕ̄ÞV 0ðϕ̄Þ dϕ̄

¼
�
3

16
ð1þ ξκϕ̄2Þ þ 1

20ξ
ð1þ ξκϕ̄2Þ52 þ 1

16
lnð1þ ξκϕ̄2Þ

�				ϕ̄¼ϕ̄i

ϕ̄¼ϕ̄e

; ð153Þ
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FIG. 1. Panel (a) shows the solutions of the equations of the model with classical initial conditions in the ϕ̄ − _̄ϕ diagram in the sector
sin b < 0. For better clarity, we select λ ¼ ξ ¼ 1. The dashed lines depict the evolution in the contraction phase of a universe. In the
contraction phase, all solutions started from the origin in the remote past with classical initial conditions and end up at the bounce surface
shown by the external curve. As a representative, the closed curve a shows the complete solution for the initial condition
ϕ ¼ 1 × 103 κ−

1
2, _ϕ ¼ 1 × 102 κ, in which the dashed line depicts the contraction phase, and the solid line depicts the expansion phase.

This solution originated from the remote past, passes through the bounce, and evolves to the origin in the asymptotic future, and this
solution also has an inflationary phase. Panel (b) shows the evolution of cos b andH around the bounce for the solution a. t ¼ 0 denotes
the instant of bounce. The quantities are given by setting κ ¼ 1.
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where ti denotes the moment at which k ¼ F2ðϕ̄ÞaH, te
denotes the end of inflation, and ϕ̄i ≡ ϕ̄jt¼ti , ϕ̄e ≡ ϕ̄jt¼te .
The value of ϕ̄e can be derived from the condition jϵ1j ¼ 1.
Using the relation in Eq. (133), we can deduce that ϕ̄e is
determined by

8þ 10ξκϕ̄2
e

κϕ̄2
e½32 ξ2κϕ̄2

e þ ð1þ ξκϕ̄2
eÞ52�

¼ 1: ð154Þ

Using Eqs. (132), (135), and (136), we derive the power
spectrum and spectral index of the scalar perturbation and
the tensor-to-scalar ratio,

PR ≃
κ3λ

768π2
κ3ϕ̄6

i ½32 ξ2κϕ̄2
i þ ð1þ ξκϕ̄2

i Þ52�
ð1þ ξκϕ̄2

i Þ2
; ð155Þ

nS−1≃−
24ξ3κ2ϕ̄4

i þ48ξ2κϕ̄2
i þð24þ28ξκϕ̄2

i Þð1þξκϕ̄2
i Þ

5
2

κϕ̄2
i ½32ξ2κϕ̄2

i þð1þξκϕ̄2
i Þ

5
2�2 ;

ð156Þ

r ≃
128

κϕ̄2
i ½32 ξ2κϕ̄2

i þ ð1þ ξκϕ̄2
i Þ52�

: ð157Þ

From Eq. (153), we find that in the case ξ ≫ ð16N
3
Þ32, we

have

1þ ξκϕ̄2
i ≃

16

3
N

�
1 −

4

15
σ

�
; ð158Þ

where σ ≡ 1
ξ ð16N3 Þ32. Substituting Eq. (158) into Eqs. (155),

(156), and (157), in the case ξ ≫ ð16N
3
Þ32, we obtain

PR ≃
λ

18π2ξ2
N2

�
1þ 7

15
σ

�
; nS − 1≃−

2

N

�
1þ 1

10
σ

�
;

r≃
3

N2

�
1−

2

15
σ

�
: ð159Þ

For k ¼ 0.002 Mpc−1, the current observation gives

PR ¼ ð2.35� 0.07Þ × 10−9;

nS ¼ 0.9649� 0.0042; r < 0.056; ð160Þ

at 68% C.L. [2].
Assuming that N ≃ 60 for k ¼ 0.002 Mpc−1, in the limit

ξ → ∞, we have

nS → 0.9667; r → 8.3 × 10−4; ð161Þ

which is in complete agreement with the observation. In
addition, for the Higgs field with the self-coupling param-
eter λ ≃ 0.13, we obtain ξ ≃ 3.4 × 104, nS ≃ 0.966,

r ≃ 8.1 × 10−4. In Fig. 2, we show the theoretical predic-
tions of nS and r for different values of ξ.
The fact that the above result agrees well with the

observation can be easily explained in the Einstein frame.
In the large ξ limit, we have

¯̃ϕ≡
Z

dϕ

ffiffiffiffiffiffiffiffiffiffiffi
Gðϕ̄Þ

p
FðϕÞ ≃

1

μ
lnð1þ ξκϕ̄2Þ; ð162Þ

where μ≡
ffiffiffiffi
8κ
3

q
. The potential in the Einstein frame

becomes

Ṽ ≡ F4ðϕ̄ÞVðϕ̄Þ ≃ 1

4ξ2
ð1 − e−μ

¯̃ϕÞ2; ð163Þ

which coincides with the α-attractor potential favored by
the current observation [35].
It is necessary to mention that two requirements should

be satisfied in order to make the above analysis of the slow-
roll inflation justified: 1. The slow-roll inflation satisfying
the observational constraints in (160) can take place in
this model. 2. For k ≥ 0.002 Mpc−1, the energy density at
k ¼ F2ðϕ̄ÞaH must be smaller than the critical energy
density by many orders of magnitude in order that the
Mukhanov equations (82) and (85) are applicable.
Let us check whether the first requirement can be

satisfied. To find out which solutions can pass through
the slow-roll inflation satisfying the observational
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FIG. 2. Two dimensional observational constraints on the slow-
roll inflation of the model in the (nS, r) plane with the number of
e-folds N ¼ 60 and the wave number k ¼ 0.002 Mpc−1 in the
low-energy limit with cos b → −1. The dotted curves represent
the 68% C.L. (inside) and 95% C.L. (outside) boundaries derived
by the joint analysis of Planck2018þ BK15þ BAO. The solid
curve show the theoretical predictions of the model with the
increase of ξ.
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constraints, considering that in the phase space every
solution can reach the bounce surface, we can use numeri-
cal analysis to check which phase space points on the
bounce surface can lead to the desired slow-roll inflation.
Note that there exists a symmetry of the phase space

equations of motion; given a solution ðϕ̄ðtÞ; _̄ϕðtÞÞ of the

equations of motion, ð−ϕ̄ðtÞ;− _̄ϕðtÞÞ is also a solution.
Therefore, in the discussion of background dynamics, it

suffices to focus on _̄ϕB > 0 and allow ϕ̄B to take both

positive and negative values, where ðϕ̄B;
_̄ϕBÞ represents the

phase space points on the bounce surface. Since the

effective potential in the Jordan frame Vðϕ̄Þ ¼ λϕ̄4

4ð1þξκϕ̄2Þ12
increases monotonically with respect to ϕ̄ for ϕ̄ > 0, for
given ξ and λ, jϕ̄Bj is bounded from above by jϕ̄maxj which
is uniquely determined by

λϕ̄4
max

4ð1þ ξκϕ̄2
maxÞ12

¼ ρc: ð164Þ

We denote the value of ϕ̄B that can lead to the desired slow-
roll inflation by ϕ̄sl

B and the set of ϕ̄sl
B by Ω, then our task is

to fix the range of Ω.
To check whether the second requirement can be

satisfied, we can select the energy density ρi ≡
ρjk¼F2ðϕ̄ÞaH with k ¼ 0.002 Mpc−1 and check whether
the fraction ρi

ρc
is significantly smaller than 1.

In Table I, we list the numerical results for different ξ and
λ, from which we see that the two requirements can indeed
be satisfied.
We mention that the analysis in this section is based on

the choice that a contracting universe is described by
classical STT in the asymptotic past. If we ask that the
background dynamics of a contracting universe is described
by the low-energy limit of the b− branch of equations of
motion in the asymptotic past, then after the bounce an
expanding universe will be described by the bþ branch of
equations of motion, and numerical analysis shows that the
slow-roll inflation satisfying the observational constraints
cannot take place in this case.

VII. SUMMARY AND REMARKS

The previous investigation of LQC of STT with the
holonomy correction shows that in the cosmological case

there exists two different branches of background equations
of motion in the Jordan frame, i.e., the bþ branch and the
b− branch. In the low-energy limit, the bþ branch of
equations reproduce the equations of classical STT, while
the b− branch of equations do not. The evolution of an
expanding universe can be described by either of the two
branches. In this paper, we mainly study the cosmological
dynamics of an expanding universe described by the b−
branch of equations of motion and especially focus on the
perturbation dynamics in the low-energy limit with
cos b → −1 because it can provide important information
of the holonomy correction even when the energy density is
significantly lower than the Planck scale. The main results
obtained in this paper are summarized as follows.
First, using the method of dynamical analysis, we show

that the low energy limit with cos b → −1 can be a local
attractor in the expansion phase of a universe, which means
it is possible for the solutions of the background equations
of motion to stably evolve to the low-energy limit with
cos b → −1. Then, we derive the background Hamiltonian
(25) which can yield the background equations of motion in
the limit cos b → −1, we also show that the background
Hamiltonian (25) and the classical background
Hamiltonian (19) can be regarded as two different limiting
cases of the background Hamiltonian (29) of LQC in the
low-energy limit. Next, by imposing the anomaly-free
condition, we obtain a unique set of constraints which
can yield a closed constraint algebra on the spatially flat
FRW background in the low-energy limit. In particular, the
constraint algebra (39) between two smeared Hamiltonian
constraints explicitly shows that the spacetime structure is
deformed by quantum corrections. In this way, we fix the
anomaly-free Hamiltonian (32). We also show that the
constraints can be reexpressed in terms of the Ashtekar
variables. Moreover, we find that using the field redefini-
tions in (43) the Hamiltonian (32) can be rewritten in the
form of the minimally coupled case, and this fact allows us
to compare the physical results between the Jordan frame
and the Einstein frame.
In the latter half of the paper, we mainly focus on the

cosmological perturbations in this context and their appli-
cations in slow-roll inflation. First, we expand the
Hamiltonian (32) to second order of perturbations and
derive the canonical equations of the perturbed variables;
then, we construct the gauge invariant perturbed variables
and derive the second order evolution equations of the

TABLE I. Conditions for occurrence of the slow-roll inflation satisfying the constraints in (160) and the value of ρi=ρc for various ξ

and λ in the case _̄ϕB > 0. The value of the scalar field is given by setting κ ¼ 1 and cos bi ≡ cos bjk¼F2ðϕ̄ÞaH with k ¼ 0.002 Mpc−1.

ξ λ ϕmax Ω ρi=ρc cos bi

1 × 10−2 1.88 × 10−12 3.81 × 104 ½−ϕmax;−20.9� ∪ ½3.83;ϕmax� 8.95 × 10−9 −1þ 4.48 × 10−9

6 × 102 4.76 × 10−5 8.11 × 102 ½−ϕmax;−2.02� ∪ ½−0.99;ϕmax� 6.85 × 10−8 −1þ 3.43 × 10−8

3.4 × 104 0.13 1.14 × 102 ½−ϕmax;−0.81� ∪ ½−0.26;ϕmax� 5.65 × 10−10 −1þ 2.83 × 10−10
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perturbed variables from the canonical equations. From
these equations, we learn that the propagation speed of the
perturbations is subject to the quantum gravity effects.
Nevertheless, it can be proved that the causality is still
respected by quantum corrections. Furthermore, we solve
the Mukhanov equations under the slow-roll approximation
and compare the results derived in the Jordan frame with
those in the Einstein frame. It is found that to linear order of
slow-roll parameters the power spectra and spectral indices
in the Jordan frame coincide with those in the Einstein
frame. Finally, we study a specific model of STT using the
results obtained in the previous sections. We find that in this
model a contracting universe described by classical STT in
the remote past can pass through the bounce and evolve
into an expanding universe described by the b− branch of
equations of motion, and finally, it will approach the
minimally coupled case in the asymptotic future. We also
show that in this case the slow-roll inflation can take place,
and the spectral indices of the slow-roll inflation agree well
with the latest astrophysical observations.
To summarize, in this paper, we have constructed an

alternative consistent theory different from the classical
STT in the low-energy limit of LQC in the Jordan frame,
and the two theories can be regarded as different limiting
cases of loop quantum STT.
At the end of this paper, we list some future

research directions that the analysis in this paper can be
extended to.
(1) The fact that the constraint algebra associated with

the Hamiltonian constraint (38) is closed to arbitrary
order of perturbations on the spatially flat FRW
background allows us to perform the analysis
involving higher order perturbations such as calcu-
lating the non-Gaussianity in the limit cos b → −1.

Besides, it is also worth exploring whether the above
result can be extended to other backgrounds with
different topologies or symmetries.

(2) In the solution (115) of Eq. (114), we choose
c1ðkÞ ¼ 1, c2ðkÞ ¼ 0 for the comoving wave
numbers k ≥ 0.002 Mpc−1, which corresponds to
selecting the Bunch-Davies vacuum in the small
scale limit for these wave numbers. In this treatment,
we are actually assuming that the preinflationary
quantum gravity effects on these wave numbers can
be neglected. To verify the justifiability of this
assumption, in future work, we can derive the
perturbation equations that are valid in the whole
energy range of LQC and analyze the preinflationary
quantum effects on these wave numbers.

(3) The fact that there exist two different effective theories
in the low-energy limit of LQC has previously been
pointed out in Ref. [11] for the minimally coupled
case; however, in Ref. [11], the authors used the
modified holonomy quantization prescription, which
is different from our case since we use the standard
holonomy quantization prescription for the nonmini-
mally coupled case in this paper. Recently, the
modified holonomy quantization prescription has
been extended to Brans-Dicke theory in Ref. [36],
and it is interesting to generalize the results there to
STT in the future research.
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APPENDIX: DERIVATION OF THE QUANTUM CORRECTION TERM IN EQ. (27)

The smeared background Hamiltonian in the low-energy limit with cos b → −1 is expressed as

Hð0Þ
b−

¼
Z
Σ
d3xN̄½Cð0Þ þQða; p; ϕ̄; π̄Þ�; ðA1Þ

where the expression of Cð0Þ is in (20).
Using the Hamilton’s equation and the commutation relation in (21), we obtain the canonical equations of motion of the

background variables,

da
dτ

¼ N̄

�
−κp

Kðϕ̄Þ
Gðϕ̄Þ −

π̄

2a2
F0ðϕ̄Þ
Gðϕ̄Þ þ

1

6a
∂Q
∂p

�
;

dp
dτ

¼ N̄

�
−
κp2

2a
Kðϕ̄Þ
Gðϕ̄Þ −

pπ̄
a3

F0ðϕ̄Þ
Gðϕ̄Þ þ

π̄2

4a5
Fðϕ̄Þ
Gðϕ̄Þ −

1

6a
∂Q
∂a −

a2

2
Vðϕ̄Þ

�
;

dϕ̄
dτ

¼ N̄

�
−
3p
a
F0ðϕ̄Þ
Gðϕ̄Þ þ

π̄

a3
Fðϕ̄Þ
Gðϕ̄Þ þ

∂Q
∂π̄

�
;

dπ̄
dτ

¼ N̄

�
3κap2

�
Kðϕ̄Þ
Gðϕ̄Þ

�0
þ 3pπ̄

a

�
F0ðϕ̄Þ
Gðϕ̄Þ

�0
−

π̄2

2a3

�
Fðϕ̄Þ
Gðϕ̄Þ

�0
− a3V 0ðϕ̄Þ − ∂Q

∂ϕ̄
�
: ðA2Þ

YU HAN PHYS. REV. D 104, 123510 (2021)

123510-22



From these equations, we find that on the constraint surface Cð0Þb−
þQ ¼ 0 the Friedmann equation and Klein-Gordon

equation read, respectively, as�
Fðϕ̄ÞH −

1

2
_Fðϕ̄Þ

�
2

¼ κ

3
ρe þ

κ

3
Xða; p; ϕ̄; π̄Þ − κp

a
Yða; p; ϕ̄; π̄Þ þ Y2ða; p; ϕ̄; π̄Þ; ðA3Þ

̈ϕ̄þ 3H _̄ϕþ 1

2

_Gðϕ̄Þ
Gðϕ̄Þ

_̄ϕ −
2F0ðϕ̄ÞVðϕ̄Þ − Fðϕ̄ÞV 0ðϕ̄Þ

Gðϕ̄Þ þ 1

a6Fðϕ̄Þ
ffiffiffiffiffiffiffiffiffiffiffi
Gðϕ̄Þ

p Zða; p; ϕ̄; π̄Þ ¼ 0; ðA4Þ

where

Xða; p; ϕ̄; π̄Þ ¼ F0ðϕ̄Þ3a2p − Fðϕ̄Þπ̄
a3

∂Q
∂π̄ −

1

2
Gðϕ̄Þ

�∂Q
∂π̄

�
2

þ Fðϕ̄ÞQ
a3

;

Yða; p; ϕ̄; π̄Þ ¼ ðF0ðϕ̄ÞÞ23a2p − Fðϕ̄ÞF0ðϕ̄Þπ̄
a3Gðϕ̄Þ −

F0ðϕ̄Þ
2

∂Q
∂π̄ þ Fðϕ̄Þ

6a2
∂Q
∂p ;

Zða; p; ϕ̄; π̄Þ ¼
�
F0ðϕ̄Þ3a2p − Fðϕ̄Þπ̄ffiffiffiffiffiffiffiffiffiffiffi

Gðϕ̄Þ
p ; a3Fðϕ̄ÞQ

�
−
�
a3

ffiffiffiffiffiffiffiffiffiffiffi
Gðϕ̄Þ

q ∂Q
∂π̄ ; a3Fðϕ̄ÞCð0Þ

�
: ðA5Þ

Comparing Eqs. (A3) and (A4) with Eqs. (23) and (24), we find the following equations must be satisfied:

κ

3
Xða; p; ϕ̄; π̄Þ − 6κp

6a
Yða; p; ϕ̄; π̄Þ þ Y2ða; p; ϕ̄; π̄Þ ¼ 0;

1

a6Fðϕ̄Þ
ffiffiffiffiffiffiffiffiffiffiffi
Gðϕ̄Þ

p Zða; p; ϕ̄; π̄Þ ¼ 6F0ðϕ̄ÞVðϕ̄Þ
Gðϕ̄Þ ; ðA6Þ

which together with the constraint Cð0Þb−
þQ ¼ 0 give the following solution:

Qða; p; ϕ̄; π̄Þ ¼ 6pF0ðϕ̄Þπ̄
aGðϕ̄Þ þ ACð0Þ; ðA7Þ

where A is an arbitrary constant. In the case Fðϕ̄Þ ¼ Kðϕ̄Þ ¼ 1, the background Hamiltonian should reduce to the

background Hamiltonian of the minimally coupled case, which gives A ¼ 0. Thus, we obtain Qða; p; ϕ̄; π̄Þ ¼ 6pF0ðϕ̄Þπ̄
aGðϕ̄Þ .
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