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In previous work, we showed that in loop quantum cosmology of scalar-tensor theory (STT) with the
holonomy correction the background equations of motion in the Jordan frame have two branches, i.e., the
b, branch and the b_ branch. In the low-energy limit, the b, branch of the equations of motion reproduce
the equations of motion of classical STT, while the 5_ branch of equations of motion do not reproduce the
classical equations. In this paper, we investigate cosmological dynamics in an expanding universe whose
background is described by the b_ branch of equations of motion of STT, and we especially focus on the
dynamics of the perturbations in the low-energy limit because it is most relevant to the current observational
range. First, we show that the low-energy limit of the b_ branch of equations of motion can be a stable
attractor in the expansion phase of a universe. Then, we find a low-energy effective Hamiltonian on the
spatially flat Friedmann-Robertson-Walker background. The background part of this Hamiltonian can yield
the low-energy limit of the »_ branch of equations, and this Hamiltonian consists of constraints whose
constraint algebra is different from the classical case but also closed up to arbitrary order of perturbations.
Remarkably, we find that this Hamiltonian can be transformed into the Hamiltonian of the Einstein frame
by field redefinitions different from the classical case. Moreover, we also develop the linear cosmological
perturbation theory and apply it to study the slow-roll inflation in this context. Finally, we study a specific
model of STT. In this model, a contracting universe described by classical STT in the remote past can pass
through the bounce and evolve into an expanding universe whose background dynamics is described by the
b_ branch of equations of motion. It is also shown that the slow-roll inflation can take place in this case, and
the spectral indices of the slow-roll inflation agree well with the observations. The results in this paper
indicate that there exists an alternative consistent theory which is different from the classical theory in the

low-energy limit of loop quantum STT.

DOI: 10.1103/PhysRevD.104.123510

I. INTRODUCTION

In the past few decades, scalar-tensor theory (STT) has
been seriously considered as a natural generalization of
general relativity by many researchers in cosmology.
Recently, astrophysical observations indicate that the pre-
dictions about the slow-roll inflation in some specific
models of STT agree very well with the observational data
([1,2]), which triggers renewed research interest of various
inflationary models in STT (see, for instance, Refs. [3-6]).
Nevertheless, the quantum gravity effects in STT which
may also leave footprints during the slow-roll inflation have
been neglected to a large extent yet. Fortunately, the recent
development of loop quantum cosmology (LQC) allows us
to preliminarily investigate the quantum gravity effects
in STT.

LQC is a tentative quantum cosmology theory which
implements the quantization techniques of loop quantum
gravity on the reduced phase space in the cosmological
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case. Among the several characteristic quantum corrections
of LQC, the holonomy correction in which the holonomy
of the connection around a given square is treated as the
fundamental variable is extensively studied in the literature.
The most important effect caused by the holonomy cor-
rection is that the cosmological singularity is replaced by a
bounce. This result holds irrespective of the choice of
quantization prescription; i.e., the bounce exists no matter
we choose the standard holonomy quantization prescription
in which the Euclidean term and Lorentz term of the
Hamiltonian constraint are treated on the same footing [7,8]
or the modified holonomy quantization in which the
Euclidean term and Lorentz term are treated differently
in the way which mimics the quantization prescription of
the Hamiltonian constraint of loop quantum gravity [9—-11].
Despite the uniform existence of bounce, a different choice
of holonomy quantization prescription can lead to essen-
tially different behaviors in the effective dynamics. For
instance, in the effective dynamics of the minimally
coupled models using the standard holonomy quantization,
a collapsing classical universe in the remote past is
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connected with an expanding classical universe in the
asymptotic future via the bounce, while in the case with
the modified holonomy quantization, a contracting de-
Sitter universe in the remote past is connected with an
expanding classical universe in the asymptotic future via
the bounce.

In LQC of STT, the holonomy correction can been
studied in the Einstein frame or in the Jordan frame. In the
Einstein frame, the holonomy of the conformally trans-
formed connection is quantized, while in the Jordan frame
the holonomy of the connection itself is directly quantized.
For the sake of simplicity, in the literature, the standard or
the modified holonomy quantization has been frequently
studied in the Einstein frame in some specific models of
STT [12—-18]. In the Jordan frame, the standard holonomy
quantization was first applied to Brans-Dicke theory in
Refs. [19-21] and extended to STT in Ref. [22] on the
spatially flat Friedmann-Robertson-Walker (FRW) back-
ground. In the Einstein frame, the effective cosmological
dynamics mimics that of the minimally coupled case, while
in the Jordan frame the effective dynamics turns out to be
much different from that in the Einstein frame. A key
difference pointed out in Ref. [22] is that the background
equations of motion of STT in the Jordan frame have two
branches, namely, the b, branch and the b_ branch. In the
low-energy limit, the b, branch of equations of motion can
reproduce the equations of motion of classical STT, while
the b_ branch of equations of motion cannot reproduce the
classical equations. The two branches of equations of
motion can be connected to each other by the quantum
bounce, which means if a contracting universe described by
the b, branch of equations of motion passes through the
quantum bounce, it will evolve into an expanding universe
whose background dynamics is described by the b_ branch
of equations of motion and vice versa.

Assuming that the background dynamics of the current
expanding Universe is described by the bH_ branch of
equations of motion of STT, it is natural to ask whether
we can obtain more information relevant to observations in
this context. To get a clear and definite answer to this
question, we have to investigate both the background and
perturbation dynamics. Since the present observations of
slow-roll inflation have accumulated comparatively rich
and accurate data, provided that the slow-roll inflation can
take place in this case, we can investigate perturbation
effects during the slow-roll inflation to obtain useful
observational information. In order to do this, we have
to use the cosmological perturbation theory. Considering
that the range of the comoving wave numbers that the
current observations can cover is k > 0.002 Mpc~! and for
any wave number in this range the energy density at an
instant of the horizon crossing during the slow-roll inflation
is generally lower than the critical energy density of LQC
by many orders of magnitude, therefore, we may only focus
on the perturbation effects of these wave numbers in the

low-energy limit for the sake of simplicity. However, since
the spacetime background described by the low-energy
limit of the b_ branch of equations is nonclassical, the
evolution of cosmological perturbations propagating on
the background is nonclassical too. Hence, in this case, the
classical perturbation theory is no longer applicable, and
we have to construct an alternative cosmological perturba-
tion theory. It is only after a consistent perturbation theory
is established that we can possibly draw reliable informa-
tion from perturbations during the slow-roll inflation. To
summarize, in this paper, we aim to construct a consistent
STT on the spatially flat FRW background in the low-
energy limit which is different from the classical theory.
This theory and the classical theory can be viewed as two
different limiting cases of LQC of STT.

The structure of this paper is as follows. In Sec. II, we
review the two branches of background equations of
motion of STT in the Jordan frame and analyze the
dynamical properties in the low-energy limit of STT. In
Sec. III, we obtain the background Hamiltonian which can
yield the low-energy limit of the _ branch of equations of
motion. Using the background Hamiltonian and the
approach of anomaly-free algebra, we obtain the effective
Hamiltonian in the low-energy limit on the spatially flat
FRW background. We also introduce the field redefinitions
that can transform the Hamiltonian of the Jordan frame into
the Hamiltonian of the Einstein frame. In Sec. IV, we
expand the Hamiltonian to the second order of perturba-
tions and derive the cosmological perturbation equations of
the gauge invariant perturbed variables; we also discuss the
issue of causality with regard to the perturbation equations.
In Sec. V, we solve the perturbation equation under the
slow-roll approximation and obtain the spectral indices in
the Jordan frame; the results are compared with those in the
Einstein frame. In Sec. VI, using the results obtained in
previous sections, we study the cosmological dynamics of a
specific model of STT. In the last section, we conclude and
make some remarks.

II. BACKGROUND DYNAMICS OF LQC OF STT

In this section, we first review the two branches of
equations of motion of STT in the cosmological case, and
then, we focus on the issue of stability of dynamics in the
low-energy limit of STT.

A. Background equations of motion of STT

In this subsection, we briefly review some results
obtained in Ref. [22].
The classical action of STT we use is given by

s:/ dxr/Tdet(g)]
M
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in which M is the four-dimensional spacetime manifold,
k = 8zG, and F(¢), K(¢) are dimensionless coupling
functions of the scalar field, and V(¢) is the potential.

On the spatially flat FRW background, the background
equations of motion of STT with the holonomy correction
in the Jordan frame are as follows:

(F@ + 3 F@reosb) =50 (1-2). @)

o B lG(¢) b
¢+3H¢+5@¢
~ (3 cos b — I)F/@)‘_/(Q?’) —F(p)V'(9) =0, (3)
G(@) ’
2 1 _Pe
cos*h =1 pc, (4)

where ¢ is the background component of ¢. H = g is the
Hubble parameter in which a denotes the scale factor.
Throughout this paper, we use an overdot to denote the
derivative with respect to the proper time ¢ and the prime

to denote the derivative with respect to ¢; i.e., ¢ = d¢

! =i
74 (g])) = d‘;_gﬁﬁ' In Egs. (2) and (3), cos b is a component of

the holonomy function, and p, denotes the effective energy
density of the scalar field defined by

and p. = ﬁyz is the critical energy density in LQC which
depends on the Barbero-Immirzi parameter y and the
smallest quantum, A, of the area in loop quantum gravity.
From the quantum effective Friedmann equation (2), the
Klein-Gordon equation (3), and the constraint (4), we can
derive the equations of motion of the other background
variables. For instance, the evolution of cos b satisfies

cos b=¢ ”3Kp€@ y 2_%&@
’ 2p. F(¢) @) 2p.F(9) (6)

where e = sgn(HF () cos b +1F(¢)cos’b), and the
evolution of the Hubble parameter satisfies

F(¢p)H cos b — F(g) H(% cos 2b — cos b>

+ % [F(¢)cos b+ KK((Z)((;b)2 cos 2b + E(¢) cos b]
x cos b =0. (7)

From Eq. (4), we have

(cos b), = +,/1 —;2. (8)

We call the equations of motion with positive cos b the b
branch of equations of motion and the equations with
negative cos b the b_ branch of equations of motion.
In the low-energy limit f,—j — 0, the equations of motion of

classical STT can be reproduced by the b, branch of
equations of motion but not by the b_ branch of equations
of motion. From Eq. (2), we learn that H =0 when
cos b = 0, which means a universe bounces or recollapses

at cos b =0 if H # 0. Note that in classical STT, the
bounce or recollapse of a universe can also take place under
very special conditions [23]. To distinguish from the
classical bounce or recollapse, in the following, we call
the bounce or recollapse associated with cos b = 0 the
quantum bounce or recollapse. The two branches of
equations of motion are connected with each other if a
universe undergoes the quantum bounce or recollapse
during the evolution, and whether this condition can be
satisfied should be checked case by case.

In LQC of STT, the background evolution of a con-
tracting or expanding universe can be described by either
branch of equations of motion. In particular, supposing
that in a specific model of STT the quantum bounce can
take place during the evolution, then it is possible for a
contracting universe described by the b, branch of equa-
tions of motion to pass through the bounce and evolve into
an expanding universe described by the H_ branch of
equations of motion.

B. Stability analysis in the low-energy limit

Assuming that the background of an expanding universe
is described by the b_ branch of equations of motion of
STT, to ensure that a universe can evolve to a low-energy
state, the low-energy limit of the b_ branch should be an
attractor in the phase space. In this subsection, we show that
such attractor can exist under certain conditions.

From Eq. (4), we have

sin? b = ’%, 9)

and substituting it into Eq. (2), we obtain
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1 Kpe . 1. -
H—@< 3 mnb—EF((]ﬁ)) cos b.  (10)

Defining ;(Eg?ﬁ and using Eq. (3), we obtain the
following two-dimensional dynamical system in the phase
space:

dp
E =X
dy 1G'(¢)
di Z_EG(&s)Xz
(3 cos b—1)F (p)V(p) — F(d)V'(9)
y @) - ()

in which cos b and H are understood as functions of ¢ and

¢ (up to the signs of sin b and cos b) through Egs. (4)
and (10).

If the potential V(¢) has a minimum at ¢ = ¢, and
V(¢$,) =0, the dynamical system will have a fixed
point (¢ = ¢,,y = 0) around which % — 0. Moreover,

if F(¢,) > 0and K(¢,) > 0, the fixed point (¢,, 0) will be
either a sink of the dynamical system or a source of the
dynamical system, to which we give a detailed explanation
as follows: Using Eqgs. (5) and (9), we find that sin b is
either positive definite or negative definite around the fixed
point (¢,.0); i.e., the sign of sin b never changes during
the evolution near this point. Now, we analyze four
different kinds of behavior in the vicinity of this fixed point.

(i) If sin » = 0, and cos b — 1, from Eq. (10), we find
that H > 0 near the fixed point, which corresponds to an
expanding universe described by classical STT. In this case,
we can show that there exists a Lyapunov function
f= % which is positive definite and decreases mono-

tonically with respect to the proper time near this fixed
point,

df  3p.sinb

dt — FY¢)

x { 3; G($)(¢)? cos b+ F()(1 — cos b)sin b

G(p) =, .
~ _\/T'DCF4((Z)) (¢)* sin b < 0; (12)

thus, this fixed point is asymptotically stable and an
attractor, or a sink, of the dynamical system.

(i) If sin b —» 0_ and cos b — 1, we have H < 0 near
the fixed point, which corresponds to a contracting universe
described by classical STT. In this case, this fixed point is
asymptotically unstable and a source of the system.

(ii1) If sin b — 0_ and cos b — —1, we have H > 0 near
the fixed point, which corresponds to an expanding uni-
verse described by the low-energy limit of the &_ branch of

equations of motion, and we can also find a Lyapunov
function f = F?(¢)p, which is positive definite and
decreases monotonically with respect to the proper time
around this fixed point,

df

=3P @) sin 0| [5Gl cos
— F(¢)(1 +cos b) sin b}
~ \/ZEFZ@)G@))((})Z sin b < 0. (13)

In this case, the fixed point (¢,,0) is also asymptotically
stable and a sink of the system.

(iv) If sin b — 0, and cos b — 1, we have H < 0 near
the fixed point, which corresponds to a contracting universe
described by the low-energy limit of the b_ branch of
equations of motion. In this case, the fixed point (¢,,0) is
asymptotically unstable and a source of the system.

Hence, we conclude that the fixed point (¢,, 0) can also
be a local attractor of the dynamical system in the low-
energy limit with cos b — —1. Note that there might be
other local attractors corresponding to different fixed points
in the low-energy limit with cos b — —1 in a specific
model of STT.

In addition, if ¢, is a global minimum of V(¢) at which
V(¢,) = 0 and the coupling functions satisfy F(¢) > 0,
K(¢) > 0 for an arbitrary value of ¢, then from the
definition of p, we know that p, can only vanish at
(¢,,0). Since (¢hy,0) is a fixed point of the phase space,
the sign of sin b never changes during the evolution. Thus,
the phase space can be divided into two disconnected
sectors by the sign of sin ». From Eq. (10), we find that in
the sector sin b < 0 a contracting universe is described by
the b, branch, and an expanding universe is described by
the b_ branch of equations. Since the fixed point (¢,.0)
with cos b = 1 is a source of the system, we can set the
initial condition in the asymptotic past where a contracting
universe is described by the classical STT. Moreover, if
there are no limit circles and no other sinks expected for the
attractor (¢, 0) with cos b = —1 in the sin b < 0 sector, it
is possible for the solutions of equations of motion starting
from the low-energy limit with cos b — 1 to stably
approach the low-energy limit with cos b — —1. In other
words, in the sin b < 0 sector, it is possible for a con-
tracting universe described by classical STT in the asymp-
totic past to pass through the quantum bounce and approach
the low-energy limit with cos b — —1 in the expansion
phase of a universe in the asymptotic future. In Sec. VI, we
give a concrete description of such evolution in a specific
model of STT.

In the following sections of this paper, we explore the
background and perturbation dynamics of an expanding
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universe whose background is described by the »_ branch
of equations. As explained in Sec. I, we mainly focus on
the perturbation dynamics in the low-energy limit with
cos b - —1.

ITI. NONCLASSICAL HAMILTONIAN IN THE
LOW-ENERGY LIMIT

In canonical LQC, the effective Hamiltonian is crucial
for studying the evolution of the Universe. To describe the
evolution of background and perturbation more clearly, in
this section, we aim to find the effective Hamiltonian in the
low-energy limit with cos b - —1. At the end of this
section, we find that this Hamiltonian does exist, and it can
be expressed in terms of the Arnowitt-Deser-Misner
(ADM) variables or the Ashtekar variables. For the sake
|

ab

p

of simplicity, we first use the ADM formalism to derive the
Hamiltonian.

A. Background Hamiltonian in the low-energy limit

In the ADM formalism, the Hamiltonian of classical STT
is given by the combination of the Hamiltonian constraint C
smeared on some fiducial cell £ with lapse function N and
the smeared diffeomorphism constraint D, with the shift
vector N9,

H[N, N9 :/ d*x(NC + N“D,), (14)

where the Hamiltonian constraint is expressed in terms of
the ADM variables as [24]

1 [2K(qacqhd — 3 qabGea)P

- V/det(q) F(¢)

) |~ 5 FOR) + LD DL )+

-0,

and the diffeomorphism constraint is expressed as

Da = _ZQachpbc + ﬂDagb =0, (16)

in which the canonical variables satisfy the elementary
Poisson brackets,

pIG)} = 5,540 G - 5),

89 (% - ). (17)

{Qab(})’
{p(X).2(y)} =

On the spatially flat FRW background, the line element
of the homogenous part of the spacetime metric reads

ds? = —=N2d7® + a®(7)(dx® + dx3 + dx2),  (18)

where N is the homogenous part of lapse function, and
a’5,, is the homogenous part of the spatial metric g,;,. In
the following, we denote the homogenous parts of p,;,, ¢,
and 7 by pé®, ¢, and 7 respectively. On the background
level, the diffeomorphism constraint vanishes, and the
Hamiltonian is given by

HON] = / d® xNC), (19)
z

where

+

(—F'($)qupp** + F (¢),,)2]
2F($)G()

B0 0Dt + v(0)]
(15)
[
oo — _3xap’ | (ZF'(@)3a’p + F(@)7)*
F() 20 F(§)G (@)
+a’V(), (20)

in which the fundamental variables obey the commutation
relationship,

(@p) = {d) =

1
—, 21
3V, v, 1)

where V,, = [5 d®x. Then, using the Hamilton’s equation,

9 (o.m)), (22)

where O is a function of the background variables, it is easy

to obtain the classical background equations of motion.
In the low-energy limit with cos b — —1, the effective

Friedmann equation and Klein-Gordon equation reduce to

(Fo-5F@) =500
5+3H$§+%%L
4F' (p)V(d) + F()V'(¢) _
+ an 0. (24)
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We suppose that like the classical background Hamiltonian
(19) the above equations of motion can also be obtained
from some background effective Hamiltonian expressed in
terms of the ADM variables,

HYW = [ @aicy), (25)

in which Cgi) is the quantum effective background
Hamiltonian constraint in the limit cos b — —1,
which can be regarded as the classical background
Hamiltonian density plus the quantum correction function

Qa.p.$.7),

¢ = + Q(a, p.d.7) =0. (26)
In the Appendix, we show that the function Q is

given by

Qa.p.p.w) = %

Thus, the background Hamiltonian density in the limit
cos b — —1 can be expressed in terms of the background
ADM variables as

(27)

(3F'(p)a’p+F(p)n)?

C(O) _ 3kap?
- 2a*F($)G(p)

(13 Y .
- F(q_ﬁ) + V(¢)

(28)

Comparing (28) with the classical background Hamiltonian
density (20), we find that they differ only by the sign of the
term 3F'(¢)a’p.

Now, we discuss the relationship between the two
background Hamiltonians (19) and (25) and the back-
ground Hamiltonian of LQC of STT [22],

a3 2
R
(BF(§) a4 F(@)7)

2 FG()

+ a3v((}s)] . (29)

Y 4apqca) PP

Using the following commutation relation,

Ky\/K
{b, a3} = v (30)
we find that
, asinb cos b
,— = . 31
{a KV\/K} 3V, ( )

Comparing (31) with the commutation relation in (21),
we find that in the low-energy limit with cos b — 1 the
conjugate momentum p corresponds to —¢ Si;‘_”, while in
the low-energy limit with cos b - —1 the conjugate
momentum p corresponds to 480t Recall that

sin’h = %, and we conclude that the classical background

Hamiltonian (19) and the background Hamiltonian (25) can
be regarded as two different limiting cases of the back-
ground Hamiltonian (29) of LQC.

B. Anomaly-free constraints

To obtain more information relevant to observations in
the low-energy limit with cos b — —1, we need to explore
the theory beyond the background level. Inspired by the
existence of the background Hamiltonian (25), it is rea-
sonable to assume that on the spatially flat FRW back-
ground a more general Hamiltonian exists. We suppose that
this Hamiltonian can also be written as a linear combination
of the constraints like the classical theory,

H, [N, N¢| L £ x(NC, +ND,),  (32)

in which we assume that the diffeomorphism constraint D,,
keeps its classical expression (16) because in loop
quantum gravity the diffeomorphism constraint does not
receive quantum corrections, and only the Hamiltonian
constraint does. Inspired by the expressions of the back-
ground Hamiltonian constraint (28) and the -classical
full Hamiltonian constraint (15), we suppose that the
Hamiltonian constraint in the low-energy limit with
cos b — —1 takes the following form in ADM formalism,

1 |:2K<qaCde -
det(q) F(¢)

b_:

aei(q) [—f(as) 4L gD, D) +

:0’

“ L (F(@)aamp” +F (¢)”)2]
2F(9)G(¢)
" 0D + V(o)

(33)
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in which f(¢), g(¢), and h(¢) are undetermined functions of
¢. On the background level, the terms containing the spatial
derivatives vanish, and (33) reduces to the background
Hamiltonian constraint (28). Although the forms of f(¢),
9(¢), and h(¢) do not affect the background dynamics, it
does not mean that these functions can be arbitrary functions
of ¢ because they should be subject to some restrictions. To
be specific, we require that the effective theory in the low-
energy limit with cos b — —1 should have a closed con-
straint algebra, which means the effective theory should be
manifestly consistent. When calculating the constraint alge-
bra, the terms that cannot be expressed as functions of the
constraints are called anomalies. The consistency condition
requires that any anomaly in the constraint algebra
should vanish. In LQC with inverse-volume corrections or

|

(C, M1.C, N} =D [% g0

"rJ

holonomy corrections, it turns out that this consistency
condition is strong enough to determine the structure of
the quantum constraint algebra and fix most of the under-
mined functions in the constraint [25-30].

In the context, we consider in this paper the diffeo-
morphism constraint keeps the classical form. Since the
Hamiltonian constraint (33) is a tensor density of weight
one, the Poisson bracket between the smeared diffeomor-
phism constraint and the smeared Hamiltonian constraint is
naturally proportional to the Hamiltonian constraint. Thus,
we only need to focus on the Poisson bracket between two
smeared Hamiltonian constraints

Denoting  C, [M] = [; d*>xMC,  and
Js d* xN°“D,, we have

D[NY] =

(MD,N — NDbM)] + / &> xq*w(MD,N — ND,M)(D,)A,
z

+ / & xp®(MD,N = ND,M)(Dyp) A; + / &> x(qcap®)q"" (MD,N = ND ,M)(Dyp) A
z z

+ / & x(q.qp°?)q**(MD,D,N — ND,D,M)A, + / &* xnqg®*(MD,D,N — ND,D,M)As, (34)
z z

in which A4, to As are anomalies which read explicitly as

D) 2FG@) 1P F@h&)
ASTEG) T G T G T Glh)
IDF@ P
YRy R ey
PGPS L EGVS@) PO
LETTFGGG) 2k PG T G@)
g’(¢)
TF@)
pomLEWPI) 170
! F()G() « Glp)
o 1F/< @) _1F@)9(6)

k Gl@) « G(&)

Since these anomalies should vanish, we have to solve
the equations

A=0  (i=1,2..5).

At first sight, the number of equations is two more than the
number of undermined functions; however, it is not difficult
to check that only three out of the five equations are
independent. By solving these equations, we can express
the undetermined functions in terms of the known functions

F(¢) and K(9),

[

1) = 5 (35)

9(¢) = g F3t ) (36)
K@) AF)

hg) = B<F4<¢> 0 ) (37)

where B is an arbitrary constant. Furthermore, by requiring
that the Hamiltonian constraint (33) should reduce to the
Hamiltonian constraint of the minimally coupled case when
F(¢) = K(¢) = 1, we obtain B = 1. Hence, the anomaly-
free Hamiltonian constraint in the low-energy limit with
cos b — —1 reads

C, = 1 |:2K(QaCde - %(’Iachd)pabpai
- /det(q) F(¢)
NUCTWEESLn
2F(9)G(¢)
1o 1 1
det(‘])[ %) 3)+§q hDanW
1(K(#) 4F @) w
3 (Fag i ) e (DD + V(@)
— 0. (38)

The existence of (38) guarantees that on the perturbation
level the covariance of the theory is maintained not only to
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linear order of perturbation but also up to all higher order
perturbations.

The Poisson bracket between two smeared Hamiltonian
constraints reads

{Cy_[M],C,,_[N]}

q*>(MD,N — ND,M)|,  (39)

1
=PlF)

in which the prefactor - denotes the quantum modifi-
cation of the constraint afgebra

It should be pointed out that our derivation of the low-
energy effective Hamiltonian constraint (38) is tied to the
spatially flat FRW background, which is different from the
fact the classical Hamiltonian constraint (15) holds inde-
pendently of any background metric. So far, it is not clear
whether our result remains unchanged on other spacetime
backgrounds.

We mention that we choose ADM variables to express
the constraints only for convenience of calculation. In fact,
the constraints can also be formulated in terms of the

|

Ashtekar variables in loop quantum gravity. We can extend
the ADM phase space to the phase space of connection
variables by introducing the su(2)-valued triad e¢ and its
co-triad e}, which satisfy q,, = eie}d;;, ¢° = efe’d'. In
the new phase space, the basic variables are the densitized
triad and its conjugate momentum,

E¢ = \/det(q)e?,
. 2K 1 )
K, = b"aeé—— be ceqls 40
=) P qavec =5 (P"dnc) (40)

using which we can define the Ashtekar connection
Al =T + yK' which satisfies
{ALR). EZ()} = rx8,836%) (3 - 3), (41)
where I, is the spin connection compatible with the triad.
The Hamiltonian constraint (38) (modulo the Gauss
constraint) can be reexpressed in terms of the Ashtekar
variables,

A= BB tip, 202 + @)K K + 1 P ORLE @]
_ — LES r
- 2,<,/\det lex 7 W S E () G(¢)/[detE] Lk
11 L(K(p) 4(F(¢)
]|~ DD @)+ (i (D“D)Db+ V()
F(¢) 2\F'(¢) « F(¢)
=0, (42)
where F,,' = 20,A} +€jk"A£A’,§ is the curvature of {3 (%), pH)} = 5, 5!1)5( (% =7),
Ashtekar connection. The diffeomorphism constraint and L )
the Gauss constraint retain their classical form which {¢(%),z2(y)} = V(3 -y), (44)

should be expressed in terms of the Ashtekar variables.
As expected, the expression in (42) is more complex than
the one in (38). In the following calculation, we still use the
ADM variables.

C. The Einstein frame formulation

It is well known that based on different choices of
fundamental variables the classical STT can be formulated
in the Jordan frame or the Einstein frame. In this
subsection, we show that in the low-energy limit with
cos b — —1 the constraints in the Jordan frame can also be
transformed into the Einstein frame by field redefinitions.

If F(¢) > 0, G(¢p) > 0, we can define

N — N Na — NJa ~ _ Ya ~ab — a

N:F%(qs)’ N :N7 qab:F((Z)’ ph:F(¢)p h»
< VG  _F ()7 + F($)qupp®”

¢_/ N G(9) #3)

It is easy to check that

and all the other Poisson brackets between the above
canonical variables are vanishing. It can be directly checked
that the Hamiltonian (32) can be rewritten in terms of the
redefined variables as

H

o~

BN, W] = / & x(NCE + NeDF)),  (45)
z

1 1
2K ~ac~ __~a ~c ~ab~cd:|
det(q) { <q 9bd 2CI b4 d)P p

(46)

(47)
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in which R® is the curvature scalar of the rescaled metric
Gaps @°° is the inverse of the rescaled metric, D, is the
derivative compatible with the rescaled metric, and
V(g) = FH(d)V().

The Hamiltonian constraint (46) and the diffeomorphism
constraint (47) are exactly of the form of the minimally
coupled case. In this sense, we claim that the theory in the
low-energy limit with cos & — —1 can also be transformed
into the Einstein frame by field redefinitions. Nevertheless,
the frame transformation in this case is different from that
in the classical case. In the Hamiltonian formalism of the
classical theory, the transformation from the Jordan frame
to the Einstein frame is accomplished by the following
redefinition of variables:

N=+/F(¢)N, N =N<,
L b pub
9ap =F(¢)qab’ P =F(¢)7

4 Glp) . _F(p)a—F(d)qup™
¢:/ﬁ¢FW)’”: G - (48)

in which the variables with a hat denote variables of the
Einstein frame. Note that in the Hamiltonian formalism the
variables N> and ¢, transform in the same way, which
correspond to the spacetime metric redefinition §,, =
F(¢)gay in the Lagrangian formalism of the classical
STT. In (43), the variables N? and ¢, transform in different
ways, which do not correspond to any spacetime metric
redefinition. In fact, there does not exist a Lagrangian that
can yield the Hamiltonian in Eq. (32) by Legendre trans-
formation, which is not unusual in LQC since there does
not exist a manifestly covariant Lagrangian which can yield
the equations of motion of canonical LQC either. |

It is natural to ask whether the Jordan frame and the
Einstein frame are physically equivalent in the limit
cos b - —1. In Sec. V, we compare the results of the
two frames in the case of slow-roll inflation.

IV. COSMOLOGICAL PERTURBATIONS

In this section, we construct the linear perturbation
theory on the spatially flat FRW background. First of
all, we split the variables as

N=N+6N,  N*=G5N,
Qap = @8y +8qup. P = p&» +5p®,
p=¢+6p, m=7x+6m (49)

then, we expand the Hamiltonian (32) to second order of
perturbations,

H, [N.5N,5N]

= H}[N] + H[N] + H}[5N] + D@[5N?),  (50)

where

H}) (V] = /Zd"xﬁdfl H) (V) = /ffoCEf%

Hl(f){(SN}E/d?’XéNCE,I)a D<2){5N}E/d3X5NaDgl)’
5 2

(51)

in which the expression of C;fi) is given in Eq. (28), and
Dgl), Cél_) denote the linearly perturbed diffeomorphism

constraint and the linearly perturbed Hamiltonian con-
straint respectively,

DY = —2425,.0,6p" — 2p6°8,8q,, + pd*<d,5q,. + 70,54 = 0, (52)
am_ [ kp? 3p2(F'(#))>  pF()a  F@)7  a =\ w
G, < 2aF(@) | 4aF§)G@)  20G(@) 4a56<¢>+2v(¢))5 O
_2kap  3ap(F'(¢))*  F'(P)z ub
+( F@) T F@G@) *aG(éﬁ))ﬁ“b‘”’
Caeanr (LY L2 e ((F@ N 37 (F(@ 7 (F@)N | 5007
+[ ey (F(&)) e <F<¢>G<¢‘s>> T (G@)) 2 <G<&5>> " V("’)}‘”’
3pF'(¢p) F(P)z 1 b < a 1y,
+ ( (@) + 56 ($)>5ﬂ+7aKF3 @)5 b549.0,8G e b ($)> 5%9,0,6¢
=0, (53)

and Cg is given by
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o_ (_ 3 _IPF@)) _pF@r | FDT V@) s 2
@ _(_8a3F(¢) 16a3F( )G(@) 84°G +16G7G(¢)+ P )(5 *5qap)

AL
@
<5K,, PF@) 3P @i F@F
) ®
+

7 Vf})> 56"644p6q.q
+( ); i 5ac5bd5p“b5pc_d+ @() j(on )
*[‘31? <F<1$)>/ 4 (15 5?8 >> +3a2p”< 55)) 47* _@> v ]

_|_
(
2Kp p (F'(¢ 3) F'(p) ﬁ'> e _( KD (F_,(ﬁb»z F(§)z )(5ab5qab)( 8,40p°%)

iz () sfp( G 356 346G

N

/ G( F(¢) 2aF(¢) 256 G(¢)

()
L) (8] 5 () ol

‘ [ (w) o P<F<¢§GZ¢>> o (i) ot

e e 258 5 5o

) 5 54(9,0,84,)5 ~ (2671515, 4 51069457 )(8,64,) D84 ca

dxa*F3 ()

+3 ( Ffé)) i(ZS(zZ)) >5ab(6a5¢)8b5¢. (54)

Using the Hamiltonian (50), we can derive the Hamilton’s equations of motion of the perturbed variables,

o (2
(- zémﬁ o) o 4<¢>‘5“5M‘5’”“1+ (i ety ) o
< toon (,;g +5 g;))(écdéch)éab—k ))5 74
o) o ) 3 .
d‘;”f 26, oNY 1 pothd N+ < <P 5 4aF(( @), é’gé(()}) 40@(’_[_2 —%V((Z))éN(S“"

1G(#)
R ~[( 3xp 1p*(F($))? | pF(d)z  F(
@ dacad‘SN*NKALaBF(&) T SF@G( 7

(W PAF D) | 3pF@DE  FDF V(I
)
)

" \2dF@) s F@GG) | 2056@) | 4G@)

2
(U PR (0 SPGB g

+
2 ) (5855 68 - (58 s
(83558 L ) o

1
TP [267leseld bl 4 salbel déff}aeafach] : (56)

)
F

+
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(#)z T R@) F@ 0P D) g, FD
G () aG@) *N[a @ +< 2085G(3) (&))5 2t G(@)

259 368

5ab5 ab

+

dsp _ (3pF'(§)
dr

" 9ap? < (F

" [<3Kap2 (F

) 2 \F($)G(¢) G@))”‘z;; G(9)
Kp? / 1 AHY)2 \ 7 = 1A\ 7 =2 H)\ 7 a _
(2 ) 2 () 25 () () o
+ (eor (55) -~ (i) 2 (Ggy) Jowor - (2 (55) 5 (G3) )
—Kia (F3t$>>/5alb54d(acad5quh) + a(zﬁ(((fb)) i(f;(("z)) >5ﬂb8aab5¢]. (58)

A. Gauge invariant variables

In the canonical theory, the gauge transformation of the perturbed variable is governed by the perturbed diffeomorphism
constraint and the perturbed Hamiltonian constraint. Since in our case the perturbed Hamiltonian constraint receives
quantum corrections, the gauge transformation of the perturbed variable is also subject to quantum corrections. In this
subsection, we construct the gauge invariant variables following the techniques introduced in Ref. [31].

If the lapse function and the shift vector had local infinitesimal variations,

N — N + 6v, N¢ = N¢ 4 514, (59)

the gauge transformations of a perturbed phase space variable 6X generated by the perturbed Hamiltonian and
diffeomorphism constraints are given by

Sis0.5010X = {6X, H [50] + D@ [507)}, (60)

in which the left-hand side of Eq. (60) denotes the gauge transformations of §X. Using Eq. (39), it is not difficult to prove
that the gauge transformation of the time derivative of a perturbed phase space variable satisfies

dsx\ d N
(50,507 (?) - 5(5[5%5#]5)() = {5X7 D@ [W(S bab&)] } (61)

Using Eq. (60), we derive the gauge transformations of the following perturbed phase space variables:

8150500 ap = 2028, D)5V + < i’g + 32( (fG(Zb); +- éf;’;) 50541, (62)
B Y (a0 I LA UL ) "
Sl50.6000p"" = =2p6°10.60") + p6?° 0,60 + <2aF((;§) 1aF ()G +2a3G((}5) +4a5G((}§) 2V(gb) Svs?,  (63)
_ (3pF'(¢) | F(d)m
6[51},51}“]5¢ — ( (lG(&) + aSG(é))éy (64)
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To simplify the analysis, we separately consider different modes of perturbations. For the scalar mode of perturbations,

we denote

SN =Ng, SN =65%9,B,

From Eq. (55), we find

5pab:@{2(lda

uN |“\adr 2F(p) dr

, (d_w_ 1 F/(3) dog
dr 2 F(¢) dr

We parametrize the scalar components of the variations

by two scalar functions v, and » such that
5v = Ny, v = 50, v. (67)

In the following, we denote the scalar component of the
gauge transformations of 6X by 65, 5,40X = 6, ,0X. In
accord with the standard treatment in classical cosmology,
we set N = a and denote the corresponding conformal time
as dn. Substituting Eq. (65) into Egs. (62)-(64), and using
Eq. (61) along with the canonical background equations of
motion in (A2), we find
5 [v0,7] 5¢ = é’) r/v()»

5[170,v]w = 5[1:0.1/']E =,

S(ug.0) (Ey) = (68)

6[v0,1;] (l/_/.n) = (5[170,U]W).ﬂ’ F4 (¢)

where the subscript “7” denotes the derivative with respect

to the conformal time, ie., v, = ‘;—"7 and the conformal

Hubble parameter H is defined by H = % Substituting
Eq. (66) into Egs. (62)—(64)and using Eq. (68), we get

5[vo.v](p = (’l) 5[1;0,1)]3 = Fz(a))y,n' (69)
From Egs. (68) and (69), we obtain

S(u0.0] [F*(9)(B — F2(P)E )] = —y.
Siue.0] [(F(9)(B = FX(P)E,)) | = —(v0) - (70)

We define the following variables:

0)’,7 + HU(),

__SF(@) e
=035 % + 9B~ FPDE,)
+ PGB -F@IE,),. ()
N V) YR
=3 B P@E,).  (7)

599" = 6 + F2(§)g, (B - FX(P)E,)].  (73)

1F@»@>K 0
"V TR )
>5ab + 87870, ad— - (56% By —> 3 — 5¢5249,9,B + (5cdacad3)5ab} (66)

5qab = 2&2 [_l//(sab + aaabE} (65)

5¢> 5% 4259519 ,.0,4E — (5cdacadE)5ab]

where

F’((iﬁ)éﬁ,ﬂ> . (74)

o=@ (n-"03

2F(9)
Obviously, @ and W can reproduce the Bardeen potentials if
F(¢) = 1. Using Egs. (68)~(70), it is direct to check that
8100 ® = 8[ 1)¥ = 814,109 = 0, which means these
variables are gauge invariant.

B. Evolution equations of gauge invariant variables

In this subsection, we derive the second order evolution
equations of the gauge invariant variables.

We consider the gauge invariant scalar modes ﬁrst The
perturbed constraint equations D( ) =0 and C =0 can
be, respectively, rewritten in terms of the gauge invariant
variables as

0u[FF ()Y, + G®] = - G(h)¢,,0,6¢%".  (75)

K

VY - 3F2($)GY, — |3G* =~ FX($)G(9)(¢,)* | @

(4a’F'(9)V ()
()51, (76)

= gFQ (D)[G()b.,05' +

+a’F(p)V'

where V? = §9,0,.

Then, substituting Eq. (66) into Eq. (56) and taking into
account the background equations of motion, it is straight-
forward to show that the off-diagonal part of Eq. (56)
yields

D=1, (77)

and the diagonal part of Eq. (56) yields the following
equation:
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F(9)¥,, +2F*(9) (H + 51;((?) g?),,?> ¥, +00, + [Z—g + %}
=3 [G(@)3,505 — (4 F D)V (§) + @F(@)V'(§)5¢°. (78)

where the subscript “##n” denotes the second derivative with respect to the conformal time.
Moreover, substituting Eq. (57) into Eq. (58), we find that the perturbed Klein-Gordon equation can be expressed in
terms of the gauge invariant variables,

Gl 26 L Gl 2545 — 25401
't (FZ(WG(&) <G(¢”*">5¢’” A g
=[O+ 3, =2 P DV + FBV ) =0 (79)
where
N g 1 AR S0 T TS L T | |G@) (5 1 /
A=~y o) 757 OO + 35735 P+ G Lo (@@ -5 ravia)
168V G) P GV + 4BV + POV @) (%0)

Introducing the auxiliary gauge invariant variables

_ay/G(¢)
vy = F%((;ﬁ) <5¢GI+

*(¢)

., ) p Q—W(pw (81)

and using Eqgs. (75)—(79), after tedious calculation, we obtain

1 2 - 1 2 _
A szvs + WF((ﬁ),qUS,n T [Zs,;m + @) F(¢).q25,n} vg = 0. (82)

It is not difficult to show that the Hamiltonian of gauge invariant scalar perturbations which can yield Eq. (82) is given by

- N F4(¢ 2 -
MW = [ @y 8 00 @) =2 (s b s F Do) )8 89)

in which zg denotes the conjugate momentum of vg which satisfies {vg(¥), z5(¥)} = 63 (X - y).

For tensor perturbation, we have 8q,, = a*h,,, where h,, is a symmetric trace-free and transversal tensor satisfying
50, hy. = 6*hy;, = 0. Since from Eq. (62) it is easy to see that the tensor perturbation is gauge invariant, we can define
the auxiliary gauge invariant variables

a
= —_—, vy = Zrhgy,. 84
T RE ) T = Zrlap (84)

From the Hamilton’s equations of perturbed variables, we obtain the equation of motion of vy,

1 2 - 1 2 -
WVZUT + %F(db),,,vm T gyt @F(Qﬁ),qzr,q vr =0, (85)

UT,lm -

which takes exactly the same form as Eq. (82) except that the subscript “S” is replaced by “7”. It can be shown that the
Hamiltonian of tensor perturbations which can yield Eq. (85) is given by
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@i _1 3 N 2 ab
H;’[N] —41251 xizan((;s) |:ﬂ'T—|-5 (O4vr)0pvr

_F ‘;(T‘*?’) (Zm . ﬁ F(és),,,z”> v%} . (86)

in which 77 denotes the conjugate momentum of vp.
Note that the equations of motion of vg and vy can

reproduce the Mukhonov equations of scalar and

tensor perturbations of the minimally coupled case if

F(¢) = G(¢) = 1. For brevity, we also call Egs. (82)
and (85) the Mukhonov equations in the following sections.

C. Causality

As illustrated by Eqgs. (82) and (85), the square of the
propagation speed of perturbations satisfies

1
=} = (87)

Fi(¢)’

where cg and ¢y denote the propagation speed of scalar
perturbation and tensor perturbation, respectively. Thus, we
get cg > 1 when F(¢) < 1 such that the speed of pertur-
bations seems to become superluminal. However, consid-
ering that not only the propagation speed of the scalar and
tensor perturbations can receive quantum gravity correc-
tions but the propagation speed of electromagnetic fields
can also be affected by quantum gravity effects, we should
compare the propagation speed of the scalar and tensor
perturbations with the physical speed (instead of the
classical speed) of electromagnetic fields on the same
quantum effective spacetime background.

In the case we consider, the Hamiltonian constraint of
electromagnetic fields is given by [32]

EMa_ [ 5 27 a b
C, [N _/zd xN[a(gb) =) qupmin
d
+ﬂ<¢)%@qacqbdFabed ) (88)

in which the functions a(¢) and f(¢) denote the unde-
termined quantum corrections. In the classical case, we
have @ = # = 1. The conjugate variables in (88) are the
spatial component of the vector potential A, and its
conjugate momentum z¢. The spatial component of the
field strength tensor is defined by F,, = 9,4, — 0,A,.

The diffeomorphism constraint of electromagnetic fields
is given by [32]

DEM) [Na] = / dPxN 7 F . (89)
z

Note that we require that like the gravitational part the
diffeomorphism constraint of electromagnetic fields does

not receive quantum corrections either. Now, the total
Hamiltonian constraint and diffeomorphism constraint
read, respectively, as

CL°YIN] = C,_[N] + CPM ), (90)
D[N = D[N¢] + DEM[N], (91)
Straightforward calculation gives
{Cgﬂ)tal) [M} Cg)tolal) [N] }

=D

1 ab
) (MD,N — ND,M)

+DEWa(¢)p(h)q** (MD,N = ND,M)].  (92)
To obtain a first class constraint algebra, we should require

1

a(p)p(d) = )

As shown in Ref. [33], the group velocity of electromag-
netic wave propagating on the spatially flat FRW back-

ground is
cem = \/@p, (94)

where @ and f denote the background value of a(¢) and
B(p), respectively. Then, using Egs. (93) and (87), we
obtain

(93)

CEM:CSZCT:Fz((Z)a (95)

which indicates that the causality is still respected by the
quantum corrections.

V.SOLUTIONS OF THE MUKHANOYV EQUATIONS
UNDER SLOW-ROLL APPROXIMATION

In this section, we solve the Mukhanov equations under
slow-roll approximation to obtain spectral indices of the
perturbations. To justify this practice, we assume that the
slow-roll inflation can take place, and for any wave number
in the present observational range the energy density at the
instant of the horizon crossing is significantly lower than
the critical energy density of LQC.

Due to their complex forms, it is difficult to directly
solve the Mukhanov equations (82) and (85). For conven-
ience, we define a new time variable d{ which relates to the
conformal time by

1

d¢ = de. (96)
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Since the conformal time di corresponds to the choice of
the lapse function N = a, it is easy to see that the new time
variable d¢ corresponds to the choice of the lapse function
N = aF?*(¢$). Using this new variable, the Mukhanov
equations of scalar perturbation and tensor perturbation
can be reexpressed in a relatively simple form,

d*vsr — Vg — ( 1 dzgq

5T por=0; (97
zsr d&? )US’T &7)

and the perturbed Hamiltonian (83) and (86) can also be
rewritten in a simple form,

Hg)r = TS.T/
b

1 (J{ZZS’T b
) (E e >””}’ .

dx {”é,r + 89 (0,vs.7)Opvs T

where Tg =1 and Tr = ;.

During the slow-roll period, both the scalar field and the
Hubble parameter vary very slowly with respect to the
proper time. It is useful to introduce the four slow-roll

parameters,

_ G()
" 2HG(¢)’

€=—=, €3= F(CZ) €
*ny O 2HF(@R) !

6‘1:E a)
H? Hg;ﬁ

(99)

and the slow-roll condition is satisfied if ¢; < 1 for all ¢;.
Using the relation dt = adn = aF?*(¢)d¢ and the def-
inition of zg in Eq. (81), we have

D) (b
TR (5¢ +(H-"W’))T)’

- 3“VG(‘})@ - (100)

1 _

L | p2(yat(1 = e, + ey 363+ €4), (101)
Zs dc

1 d* -

—E55 o P P)aPH(2 - 2e, + 36, — Ses + 3ey). (102)

For simplicity, in Egs. (101) and (102), both the time
variation and higher order terms of €; have been neglected,
and the same is done in the following calculations.

From the equation

d 1
¢ (W) ~—(1+e +4e),  (103)

we obtain

1

FYP)a*H> ~ —— 104
(¢)a 214 26 + 8es (104)
Substituting Eq. (104) into Eq. (102), we get
1 d?zg  mg
zg d* G
mg=2—6€; + 3¢, —2lez +3¢4.  (105)
Similarly, for tensor perturbation, we obtain
1 dZZT mT
= myp =2 —3¢; — 15¢;. (106)

zr d?

Hence, in the slow-roll period, the Mukhanov equations can
be approximately written as

(Vg.T —-1/4)
52

where in order to proceed we have introduced the variables
Ug and vr,

1 3
Vg = \/Ezi_zel + ey —Tez + €y, (108)

(109)

US,T = 0, (107)

3
ﬁ§—€1—5€3.

Bl —

vr =4/ mg+

o5}

A. Spectral indices of the slow-roll inflation

Now, let us solve the Mukhanov equation of scalar
perturbation first. The treatment mimics that in classical
theory. First, we promote the quantities vy and zg to
quantum operators which satisfy the equal time commu-
tation relation,

[05(£. 7). 25(C. 5)] = i6%) (3 - 3),
[05(¢.X). 5(¢. )] = [#5(¢. %), £5(£.5)] = 0,

where we have set 72 =1, and using the Heisenberg’s
equation of motion, we get

(110)

dp 1. ) .
S = [, HY] = 7.

P (111)

Then, we Fourier decompose ¥ as

®S(§9 )_é)
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where k = |/€| Plugging Eq. (112) into Egs. (110) and (111)

and requiring [as(k; ). &;(lzz)] = 53)(k, — k,), we obtain

dvg, . dvsk _

Usk =2 dC Sk dz_: (113)

With the help of Egs. (107) and (112), we obtain the
evolution equation of vg,

dzvSk (l/% - 1/4)
dé’z + kZ—T USk:O. (114)
The solution for vg; is given by
VAl
se(@)="—"lei( VHL (KIZ) + o (K)H) (KIZD). (115)
where Hf,l’z) are Hankel functions. To determine the

coefficients cl(l_c') and cz(l_c'), we can use the asymptotic
property of the Hankel functions in the limit of small scales
where k|C| > 1,

USk(C)|k\c\>>1

1 _ ) S .
~ ci(k e—t§(1+2vs)etk\éj\ + oo (k el§(1+2v5)e—1k\é’\ )
Tlen® o () |
(116)
Substituting Eq. (116) into Eq. (113), we obtain
1 (k)P = lea (k)P = 1. (117)

Assuming that only the positive frequency solution remains
in the small scale limit for the wave numbers which lie in
the current observational range, we can set

ci (k) =1, (118)
which corresponds to selecting the Bunch-Davies vacuum
for these wave numbers when |£| > 1.

Using the asymptotic property of the Hankel functions in
the large scale limit k|{| < 1, we obtain

O =572 (3) TOsNEI. (119

Introducing the variable Ry(() =%, from the
definition of the power spectrum of scalar perturbation

Pr(k,{) = 2,[2 IR(£)]?, we get

22y5F2 1-2vg k 3-2ug
Pr(k.() = 3( )ICI2 (5> . (120)

T ZS

Moreover, from the equation

1z vs—g 121
g d* (121)

we obtain

o [¢fvs; (122)
plugging Eq. (122) into Eq. (120), we find that P becomes
time independent in the large scale limit.

From Eq. (122), we get

1
27Vs

5 = s , (123)

¢

in which {* denotes an arbitrary instant, and 7 = zg[,_-.
Substituting Eq. (123) into Eq. (120), we have

1 k*P2s
PR RO .
where we have used I'(vg) ~T'(3). The above expression
can be simplified by choosing the instant |£*| = 1. Note that
at this instant we also have F?($)aH = k because from
Eq. (104) we learn that ‘—é‘ ~ F?(¢p)aH. Then, substituting
Eq. (100) into Eq. (124), we find that P can also be
expressed as

~N 7

I H*F($)
47 G(§) ()

(125)

k= Fz(cZ))aH'
Now, the spectral index of scalar perturbation is given by

. dlnPR
~ dlnk

ng —

k=F*(¢)aH

B 1  dinPg
- \dInk/dt dt

~ (4(:'1 - 262 + 1463 - 264)|k=F2((i))aH'

k=F?($)aH
(126)

For tensor perturbation, we find that the solution for
v (£) takes the same form as vg () except that vg should
be replaced by vy. Introducing the variable h; = ”Z—TTk and
using the definition of the power spectrum of tensor
perturbation P, (k,{) = 2"; |h|?, then simply following
the above treatment for scalar perturbation, we obtain

243 2% :
Py=—x |l = 5 H'F(¢) :

k=F?($)aH

(127)

from which the spectral index of tensor perturbation can be
read as
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_dlnPh
"=k

where we have used Eq. (109) in the last step. Moreover, it

is easy to show that z; o |{ |%‘”T; thus, P, also becomes
time independent in the large scale limit.
The tensor-to-scalar ratio now reads

Pi g GG
P H’F?

R

r=
k=F*(¢)aH

=~ —16(e; + 5€3) =2 (3)ans (129)

where in the last step we have used the background
equation of motion (7) in the limit cos b — —1 along
with the slow-roll condition. Comparing Eq. (129) with
Eq. (128), we find r ~ —8ny.

It is worth mentioning that in the Jordan frame of
classical STT the spectral indices are given by [34]

ng — 12 (dey — 26, + 2€3 — 2€4) [j—an»

nr= (261 - 263)|k:aH7

r~—8ny. (130)

Obviously, the spectral indices in the classical case differ
from the spectral indices in the case cos b — —1 in two
aspects: the coefficient before ¢; and the instant at which
they take value. Nevertheless, the consistency relation
between the tensor-to-scalar ratio and the tensor spectral
index remains the same in both cases.

Under the slow-roll approximation, the background
equations in the Jordan frame can be approximated as

kYD)
TSR0
g AP AV L FOVE)

G(¢)

Using (131), the power spectrum of the scalar perturba-
tions can be expressed in terms of ¢,

G() (@) =r@
_® Fl°<¢>c<¢>v3<$>_ ]

1222 (4F3 () F (B)V() + FH @)V (H)) ke (yar’
(132)

1
PRN_Z

Direct calculations show that the slow-roll parameters
can be expressed as

3 1
€ = 2€F _EGFV —Eev,

7 1
€~ —2€p — S €rv +5ey +4depg +egy — 4np —ny,

2

€3~ —2€p — %epv, €4~ —2€pG — %EGV, (133)
where
L _LE@)? _TF@F@V(P)
Tk 6@ Tk GV
. 1F2< HV @) _TFQF DG @)
Tk GVEe) T Tk G
. ElFZ( DGGV@D)  _IFDFG)
o GV Tk G

1F2< W' ()
VE GOV (134)

such that the indices in the Jordan frame can also be
given by

ng — 1 = —(16€p + 6epy + 3ey + derg

+ecv = 8np = 20v) k2 gy (135)

rx~ 16(8€F+4€FV +€V)|k:F2((?))aH' (136)

B. Comparison with the results in the Einstein frame

The analysis in the previous subsection is performed in
the Jordan frame. In this subsection, we check whether the
results are equivalent to those in the Einstein frame.

In the following, we drop a “tilde” to denote the variables
in the Einstein frame. From the transformation of the
variables in (43), we find that the background and perturbed
variables in the Einstein frame are related to their counter-
parts in the Jordan frame by

a=—2 di =
F($) <¢)

o1 a_ A F(¢
and
- \G(9) . 5F(})
=TF TR
_1F(9) _ :
V= W_E F(&) 5¢7 E=FE, hab - hab' (138)

From Egs. (72), (73), (74), and (81), we find that the
curvature perturbation R in the Jordan frame satisfies
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1FP(¢) . H 3
2F(¢ o9 +

v
R —S:y/—
<s

<>

Recall that in the Einstein frame the curvature perturbation
is defined by

5. (140)

v dg)di

With the help of Egs. (137) and (138), it is easy to find
R = R. Furthermore, it can be shown that the power
spectrum Py in the Einstein frame satisfies

(141)

k=F?(¢)a H(1-e;)

Moreover, since the tensor perturbation is invariant under
the conformal transformation, we have h; = hy, and the
power spectrum Pj in the Einstein frame satisfies

- 2K -~ 2K
P;l Z—Hz 3 :—2F5(¢)H2(1—€g)2 )
2 k=aH k=F?($)aH(1-e3)
P, (142)

In the Einstein frame, to linear order of the slow-roll
parameters, the spectral index of the scalar perturbation is
expressed by

dinPyp .
ng—1= dlnlzz ~4€ — 26,,
5 dln P; B
nr = dlnkhzzel’ (143)
and using Eq. (137), we find that
. 1dH
€ = =5—
"TH
_3FYQ)HF(p) + F($)[H(1 - &3) — Hés]
F()H?(1 = €3)? k=afi
~ (€] + 5€3) , (144)
k=F?($)aH

o~ (62 + 3(:'3 + 64) .
k=F?(p)aH

Substituting Eqs. (144) and (145) into Eq. (143), we can
easily show that 7ig ~ ng and 7ig ~ ny. Moreover, the tensor-
to-scalar ratio in the Einstein frame satisfies 7 ~ —87i; ~ r.
Thus, we conclude that the power spectra and spectral
indices in the Einstein frame coincide with the ones in the
Jordan frame to linear order of slow-roll parameters.
However, we should mention that further calculation shows
that the coincidence of the results between the two frames
does not hold to higher orders of slow-roll parameters.

VI. COSMOLOGICAL DYNAMICS OF A SPECIFIC
MODEL OF STT

In this section, we apply the results obtained in the
previous sections to study a specific model of STT. To be
specific, in action (1) we choose

1

e

K@)=1. V#)=34" (46)

in which the dimensionless coupling parameters £ and A are
set to be greater than zero.
The background equations of motion are as follows:

H 1 & 2« <_&>
<(1+§K$2)% 2(1_‘_{:’«'?)2)%005 b> —3,0e 1 o)

(147)
= 1G(P): -3k (cos b+ 1) — A
3Hp +——tgh — . =0,
A T LA TR TP
(148)
2p—1-Pe 149
cos 1 o (149)
where
:@ Ay A
pe=—75"(9) +4(1+§;<J>2)%’
o3 &P !
G(¢)_2(1+§m§s2)3 o (150)

Defining y = 5;5, the dynamical equations of the scalar
field read
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deg considering that the effective energy density is bounded

dt =X (151) from above by p,, none of the phase space trajectories of

solutions of equations can approach infinity in the phase

dy 1G(§Z) space. Thus, if there are no limit circles in the sector
ar —3Hy — 5@1 sin b < 0, all trajectories of solutions starting from the
3 15 %5 -3 source in the asymptotic past will evolve to the sink in the
_34k¢(cos b+ 1) + A , (152)  asymptotic future, which implies that each phase space

trajectory passes through the bounce during the evolution.

(14 &xd?)G(9)
Hence, in this model, a classical contracting universe in the
where H and cos b are understood as functions of ¢ and ¥ remote past can successfully evolve into an expanding
via Egs. (147) and (149). Since £ >0, 4> 0, we have  universe described by the b_ branch of equations via the

F (@ >0, K(¢) >0, and V(¢) > 0 for arbitrary values  bounce. In addition, since F (¢p) = 1 at the fixed point, we
of ¢. Moreover, from Eqs. (151) and (152), we find that  find that general relativity is the attractor of this model.

the dynamical systems have only two fixed points: To illustrate the behavior of the solutions, in Fig. 1(a), we
(¢ =0y,=0) with cosb=1 and (¢ =0,y =0) with  show the trajectories of solutions of equations in the
cos b = —1. According to the arguments in Sec. II, the  contraction phase of a universe in the sector sin b < 0
phase space is naturally divided into two disconnected  of the phase space.

sectors by sin b < 0 and sin b > 0. In the former sector, Now, we derive the spectral indices of the slow-roll

the fixed point (¢ = 0,y = 0) with cos b =1is the source inflation in this context. In the Jordan frame, the number of
of the system, and the fixed point (¢ = 0,y = 0) with  e-folds from the moment at which k = F?(¢)aH until the
cos b = —1 is the sink of the system, while in the other  end of inflation is given by

sector the case is just the opposite. Furthermore,
|

t, b: H - & G Y Vv 7 _
N = Hdt:/ _7d¢:1</ == (¢2 (¢)2_ = d¢
I 3. (dg/d1) 3. AF(P)F ()V(9) + F*(d)V'(9)
3 - 1 —n\5 1 - (i:&i
== 2+ —(1 2): +—In(1 2 153
10+ 8087 51+ i) g1+ 5| (1)
)
2 10
Ht) =~
1 cos b(t) l,'l \\\\‘~ 5
. g 0 " o .
-1 ," -5
-2 \‘\__, ! -10
003 -0.02 -001 000 001 002 003
t
(a) (b)

FIG. 1. Panel (a) shows the solutions of the equations of the model with classical initial conditions in the ¢ — ¢) diagram in the sector
sin b < 0. For better clarity, we select A = £ = 1. The dashed lines depict the evolution in the contraction phase of a universe. In the
contraction phase, all solutions started from the origin in the remote past with classical initial conditions and end up at the bounce surface
shown by the external curve. As a representative, the closed curve a shows the complete solution for the initial condition
¢ =1x103k72, ¢ = 1 x 10%k, in which the dashed line depicts the contraction phase, and the solid line depicts the expansion phase.
This solution originated from the remote past, passes through the bounce, and evolves to the origin in the asymptotic future, and this
solution also has an inflationary phase. Panel (b) shows the evolution of cos b and H around the bounce for the solution a. t = 0 denotes

the instant of bounce. The quantities are given by setting k = 1.
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where t; denotes the moment at which k = F?(¢)aH, t,
denotes the end of inflation, and ¢; = ¢|,_, . . = ¢|,—, .
The value of ¢, can be derived from the condition |e;| = 1.
Using the relation in Eq. (133), we can deduce that ¢, is
determined by

8 + 10&kgh?
k23 Ex? + (1+ Exd?)?)
Using Egs. (132), (135), and (136), we derive the power

spectrum and spectral index of the scalar perturbation and
the tensor-to-scalar ratio,

=1. (154)

L PR ERD? + (1 + Exd?)l]
76877 (1 + Exp?)? ’

P (155)
AP+ 48RP + (24+28Ek?) (1 +Ex2):
kD7 REKDF + (1 +Exg? T2

nS—l:—

(156)

. 128
R IRERG + (1+ &)l

(157)

From Eq. (153), we find that in the case & > (IGTN)%, we
have

1+§;«7>,2:1—6N[1—i }

1
3 150‘ (158)

where o = %(@)3 Substituting Eq. (158) into Egs. (155),
(156), and (157), in the case & > (MTN)%, we obtain

P A N2 |1+ ! 1 2 1+ !
~— —o|, neg—1o~—— —o0],
R=182222 15° s Nl T10°

30, 2
Vel T

For k = 0.002 Mpc~!, the current observation gives

(159)

Pr = (2.354+0.07) x 107?,

ng = 0.9649 £ 0.0042, r <0.056, (160)
at 68% C.L. [2].
Assuming that N =~ 60 for k = 0.002 Mpc~!, in the limit
& - o0, we have
ng — 0.9667, r—8.3x 1074, (161)
which is in complete agreement with the observation. In
addition, for the Higgs field with the self-coupling param-

eter A~0.13, we obtain &~3.4x10* ng~0.966,

10°

1072

10.002

§=34x10*

\L/‘

7
§=55x10%

1074
0.95 0.955 0.96 0.965 0.97 0.975 0.98

ns

FIG.2. Two dimensional observational constraints on the slow-
roll inflation of the model in the (ng, r) plane with the number of
e-folds N = 60 and the wave number k = 0.002 Mpc™' in the
low-energy limit with cos b — —1. The dotted curves represent
the 68% C.L. (inside) and 95% C.L. (outside) boundaries derived
by the joint analysis of Planck2018 + BK15 + BAO. The solid
curve show the theoretical predictions of the model with the
increase of &.

r=~8.1 x 107*. In Fig. 2, we show the theoretical predic-
tions of ng and r for different values of &.

The fact that the above result agrees well with the
observation can be easily explained in the Einstein frame.
In the large & limit, we have

3 G(%)Nln 72
b= [ap Pt ei). (162)

where u= \/% The potential in the Einstein frame

becomes

- - 1

V=F)V() g@u — M2, (163)

which coincides with the a-attractor potential favored by
the current observation [35].

It is necessary to mention that two requirements should
be satisfied in order to make the above analysis of the slow-
roll inflation justified: 1. The slow-roll inflation satisfying
the observational constraints in (160) can take place in
this model. 2. For k > 0.002 Mpc~!, the energy density at
k = F*(¢)aH must be smaller than the critical energy
density by many orders of magnitude in order that the
Mukhanov equations (82) and (85) are applicable.

Let us check whether the first requirement can be
satisfied. To find out which solutions can pass through
the slow-roll inflation satisfying the observational

123510-20



NONCLASSICAL COSMOLOGICAL DYNAMICS IN THE LOW- ...

PHYS. REV. D 104, 123510 (2021)

TABLE I. Conditions for occurrence of the slow-roll inflation satisfying the constraints in (160) and the value of p,/p, for various &

and / in the case ¢p5 > 0. The value of the scalar field is given by setting k = 1 and cos b; = cos b|k:F2(J,)aH with k = 0.002 Mpc~.

"5 A ¢max Q pi//)c COos bi

1x1072 1.88 x 1072 3.81 x 10* [P max> —20.9] U [3.83, Pnay 8.95 x 107° —1+4.48x107°
6 x 10? 476 x 1073 8.11 x 107 [=@Pmax> —2.02] U [<0.99, ¢ 6.85x 1078 -1+343x1078
3.4 x10* 0.13 1.14 x 10? [—Pmax> —0.81] U [=0.26, P s 5.65 x 1010 —1+2.83x 10710

constraints, considering that in the phase space every
solution can reach the bounce surface, we can use numeri-
cal analysis to check which phase space points on the
bounce surface can lead to the desired slow-roll inflation.
Note that there exists a symmetry of the phase space

equations of motion; given a solution (¢(z), ¢(t)) of the

equations of motion, (—¢(t),—¢(¢)) is also a solution.
Therefore, in the discussion of background dynamics, it

suffices to focus on ¢y > 0 and allow ¢ to take both

positive and negative values, where (¢, ¢g) represents the
phase space points on the bounce surface. Since the
effective potential in the Jordan frame V(¢) = Ll

4(1+&g?)2
increases monotonically with respect to ¢ for ¢ > 0, for
given £ and 4, || is bounded from above by |¢.x| Which

is uniquely determined by

Aa)“max

— 164
4(1 + Ekprax )2 (164

= Pc-

We denote the value of ¢ that can lead to the desired slow-
roll inflation by ¢3 and the set of ¢3 by Q, then our task is
to fix the range of Q.

To check whether the second requirement can be
satisfied, we can select the energy density p; =
Plier(@yan With k =0.002 Mpc™' and check whether
the fraction Z—C is significantly smaller than 1.

In Table I, we list the numerical results for different £ and
A, from which we see that the two requirements can indeed
be satisfied.

We mention that the analysis in this section is based on
the choice that a contracting universe is described by
classical STT in the asymptotic past. If we ask that the
background dynamics of a contracting universe is described
by the low-energy limit of the H_ branch of equations of
motion in the asymptotic past, then after the bounce an
expanding universe will be described by the b, branch of
equations of motion, and numerical analysis shows that the
slow-roll inflation satisfying the observational constraints
cannot take place in this case.

VII. SUMMARY AND REMARKS

The previous investigation of LQC of STT with the
holonomy correction shows that in the cosmological case

there exists two different branches of background equations
of motion in the Jordan frame, i.e., the », branch and the
b_ branch. In the low-energy limit, the b, branch of
equations reproduce the equations of classical STT, while
the b_ branch of equations do not. The evolution of an
expanding universe can be described by either of the two
branches. In this paper, we mainly study the cosmological
dynamics of an expanding universe described by the b_
branch of equations of motion and especially focus on the
perturbation dynamics in the low-energy limit with
cos b — —1 because it can provide important information
of the holonomy correction even when the energy density is
significantly lower than the Planck scale. The main results
obtained in this paper are summarized as follows.

First, using the method of dynamical analysis, we show
that the low energy limit with cos b — —1 can be a local
attractor in the expansion phase of a universe, which means
it is possible for the solutions of the background equations
of motion to stably evolve to the low-energy limit with
cos b — —1. Then, we derive the background Hamiltonian
(25) which can yield the background equations of motion in
the limit cos b — —1, we also show that the background
Hamiltonian (25) and the classical background
Hamiltonian (19) can be regarded as two different limiting
cases of the background Hamiltonian (29) of LQC in the
low-energy limit. Next, by imposing the anomaly-free
condition, we obtain a unique set of constraints which
can yield a closed constraint algebra on the spatially flat
FRW background in the low-energy limit. In particular, the
constraint algebra (39) between two smeared Hamiltonian
constraints explicitly shows that the spacetime structure is
deformed by quantum corrections. In this way, we fix the
anomaly-free Hamiltonian (32). We also show that the
constraints can be reexpressed in terms of the Ashtekar
variables. Moreover, we find that using the field redefini-
tions in (43) the Hamiltonian (32) can be rewritten in the
form of the minimally coupled case, and this fact allows us
to compare the physical results between the Jordan frame
and the Finstein frame.

In the latter half of the paper, we mainly focus on the
cosmological perturbations in this context and their appli-
cations in slow-roll inflation. First, we expand the
Hamiltonian (32) to second order of perturbations and
derive the canonical equations of the perturbed variables;
then, we construct the gauge invariant perturbed variables
and derive the second order evolution equations of the
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perturbed variables from the canonical equations. From
these equations, we learn that the propagation speed of the
perturbations is subject to the quantum gravity effects.
Nevertheless, it can be proved that the causality is still
respected by quantum corrections. Furthermore, we solve
the Mukhanov equations under the slow-roll approximation
and compare the results derived in the Jordan frame with
those in the Einstein frame. It is found that to linear order of
slow-roll parameters the power spectra and spectral indices
in the Jordan frame coincide with those in the Einstein
frame. Finally, we study a specific model of STT using the
results obtained in the previous sections. We find that in this
model a contracting universe described by classical STT in
the remote past can pass through the bounce and evolve
into an expanding universe described by the b_ branch of
equations of motion, and finally, it will approach the
minimally coupled case in the asymptotic future. We also
show that in this case the slow-roll inflation can take place,
and the spectral indices of the slow-roll inflation agree well
with the latest astrophysical observations.

To summarize, in this paper, we have constructed an
alternative consistent theory different from the classical
STT in the low-energy limit of LQC in the Jordan frame,
and the two theories can be regarded as different limiting
cases of loop quantum STT.

At the end of this paper, we list some future
research directions that the analysis in this paper can be
extended to.

(1) The fact that the constraint algebra associated with
the Hamiltonian constraint (38) is closed to arbitrary
order of perturbations on the spatially flat FRW
background allows us to perform the analysis
involving higher order perturbations such as calcu-
lating the non-Gaussianity in the limit cos b — —1.

|

Besides, it is also worth exploring whether the above
result can be extended to other backgrounds with
different topologies or symmetries.

In the solution (115) of Eq. (114), we choose
ci(k) =1, cy(k)=0 for the comoving wave
numbers k > 0.002 Mpc™', which corresponds to
selecting the Bunch-Davies vacuum in the small
scale limit for these wave numbers. In this treatment,
we are actually assuming that the preinflationary
quantum gravity effects on these wave numbers can
be neglected. To verify the justifiability of this
assumption, in future work, we can derive the
perturbation equations that are valid in the whole
energy range of LQC and analyze the preinflationary
quantum effects on these wave numbers.

The fact that there exist two different effective theories
in the low-energy limit of LQC has previously been
pointed out in Ref. [11] for the minimally coupled
case; however, in Ref. [11], the authors used the
modified holonomy quantization prescription, which
is different from our case since we use the standard
holonomy quantization prescription for the nonmini-
mally coupled case in this paper. Recently, the
modified holonomy quantization prescription has
been extended to Brans-Dicke theory in Ref. [36],
and it is interesting to generalize the results there to
STT in the future research.

(@)
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APPENDIX: DERIVATION OF THE QUANTUM CORRECTION TERM IN EQ. (27)

The smeared background Hamiltonian in the low-energy limit with cos b — —1 is expressed as

HY =

where the expression of C is in (20).

)= [[@aNIC + 0fap.d. 7).
>

(A1)

Using the Hamilton’s equation and the commutation relation in (21), we obtain the canonical equations of motion of the

background variables,

o)
2o £5-570. 20 12 20)
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From these equations, we find that on the constraint surface CEE) + Q = 0 the Friedmann equation and Klein-Gordon

equation read, respectively, as

_ -\? « K _. kp _ >
(F@1-3@)) =500+ 5 X0 87) =L . 87) + a5, (A3)
= 1G(g) 2 2F()V(h) - F()V'(§) 1 =
3H ———¢ - = Z(a,p,¢p,7) =0, A4
P 6@ G(®)  wr@)Jow) L (A4)
where
_ F"32—F'—8gl
X(a,p,¢,ﬂ) — (¢) a; <¢)”% _z < )
- o _ (F'(¢)*3a’p - F(§)F (¢)n _F'($) 9Q ¢) 9Q
Wa.p.§.7) = SG@P) 2 07 6d ap
_ ()3 _
2la.ppr) = {70 £< ¢>F( Fhe} - {@\ow 5 e . (3)
Comparing Eqgs. (A3) and (A4) with Egs. (23) and (24), we find the following equations must be satisfied:
_ 6 _
§X<a,p,¢,->—ﬂy<a p.b. %)+ Y*(a.p,p.7) =0,
1 - _G6F(¢)V(e)
fz s 3 ) - = A6
TN AT A
which together with the constraint CES) + Q = 0 give the following solution:
5 7 = P @DE
Ny = A7
Qla,p, ¢, 7) = GD) (A7)

where A is an arbitrary constant. In the case F(¢) =

background Hamiltonian of the minimally coupled case, which gives A = 0. Thus, we obtain Q(a, p, ¢, 7) =

K(¢) = 1, the background Hamiltonian should reduce to the

6pF (P
aG(p) *
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