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It is shown that the slopes of the superhorizon hypermagnetic spectra produced by the variation of the
gauge couplings are practically unaffected by the relative strength of the parity-breaking terms. A new
method is proposed for the estimate of the gauge power spectra in the presence of pseudoscalar interactions
during inflation. To corroborate the general results, various concrete examples are explicitly analyzed.
Since the large-scale gauge spectra also determine the late-time magnetic fields, it turns out that the
pseudoscalar contributions have little impact on the magnetogenesis requirement. Conversely the parity-
breaking terms crucially affect the gyrotropic spectra that may seed, in certain models, the baryon
asymmetry of the Universe. In the most interesting regions of the parameter space, the modes reentering
prior to symmetry breaking lead to a sufficiently large baryon asymmetry while the magnetic power spectra
associated with the modes reentering after symmetry breaking may even be of the order of a few hundredths
of a nG over typical length scales comparable with the Mpc prior to the collapse of the protogalaxy. From
the viewpoint of the effective field theory description of magnetogenesis scenarios, these considerations
hold generically for the whole class of inflationary models where the inflaton is not constrained by any
underlying symmetry.
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I. INTRODUCTION

The conventional lore for the generation of the tempera-
ture and polarization anisotropies of the cosmic microwave
background relies on the adiabatic paradigm [1] that has
been observationally tested by the various releases of
the WMAP Collaboration [2–4] and later confirmed by
terrestrial and space-borne observations including the
Planck experiment [5,6]. One of the most studied lores
for the generation of adiabatic and Gaussian large-scale
curvature inhomogeneities is represented by the single-field
scenarios that are described by a scalar-tensor action where
the inflaton field φ is minimally coupled to the four-
dimensional metric (see, e.g., [7,8]).
In the framework of the adiabatic paradigm (possibly

complemented by an early stage of inflationary expansion),
it has been argued that the large-scale gauge fields could be
parametrically amplified and eventually behave as vector
random fields that do not break the spatial isotropy.
In this context, the problem is however shifted to the
invariance under Weyl rescaling that forbids any efficient

amplification of gauge fields in conformally flat (and four-
dimensional) background geometries [9]. One of the first
suggestions along this direction has been the introduction
of a pseudoscalar coupling [10–12] not necessarily coincid-
ing with the Peccei-Quinn axion [13–15]. It has been later
suggested that the resulting action could be complemented
by a direct coupling of the inflaton with the kinetic term of
the gauge fields both in the case of inflationary and
contracting universes [16–20]. The direct interaction with
the inflaton plays the role of an effective gauge coupling,
and a similar interpretation follows when the internal
dimensions are dynamical [19,20]. The origin of the scalar
and of the pseudoscalar couplings may involve not only the
inflaton but also some other spectator field with specific
physical properties [21]. In the last two decades, the
problem dubbed magnetogenesis in Ref. [19] gained some
attention (see [22–43] for an incomplete list of references
dealing with different aspects of the problem).
Even if the pseudoscalar coupling only leads to weak

breaking of Weyl invariance, it efficiently modifies the
topological properties of the hypermagnetic flux lines in the
electroweak plasma [44] as also discussed in Ref. [45] by
taking into account the chemical potentials associated with
the finite density effects. If the gyrotropy is sufficiently
large, the produced Chern-Simons condensates may decay
and eventually produce the baryon asymmetry [45–51].
These gyrotropic and helical fields play a key role in
various aspects of anomalous magnetohydrodynamics [52].
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In the collisions of heavy ions, this phenomenon is often
dubbed the chiral magnetic effect [52,53] (see also [54,55]).
There are some differences between the formulation of
anomalous magnetohydrodynamics [56,57] and the chiral
magnetic effects; while Ohmic and chiral currents are
concurrently present in the former, only chiral currents
are typically considered in the latter.
In conventional inflationary scenarios, a large class of

magnetogenesis models considered so far in the literature
can be summarized in terms of the following schematic
action1:

S ¼
Z

d4x
ffiffiffiffiffiffiffi
−G

p �
−

R
2l2

P
þ 1

2
Gαβ∂αφ∂βφþ 1

2
Gαβ∂αψ∂βψ

− Vðφ;ψÞ − λðφ;ψÞ
16π

YαβYαβ −
λðφ;ψÞ
16π

YαβỸαβ

�
; ð1:1Þ

where l2
P ¼ 8πG; Yαβ, and Ỹαβ denote, respectively, the

gauge field strength and its dual; throughout the paper, we
employ both the reduced Planck mass MP ¼ l−1

P and the
standard Planck mass MP with MP ¼ ffiffiffiffiffiffi

8π
p

MP. In
Eq. (1.1), ϕ and ψ are, respectively, the inflaton field
and a generic spectator field. There are no compelling
reasons why λðφ;ψÞ and λðφ;ψÞmust coincide or just scale
with the same law. To appreciate this statement, it suffices
to consider the simplest situation where the potential is
given by Vðφ;ψÞ ¼ VðφÞ þWðψÞ, while λ ¼ λðφÞ and
λ ¼ λðψÞ. In this case, while the evolution of the gauge
coupling e ¼ ffiffiffiffiffiffiffiffiffiffi

4π=λ
p

is controlled by the inflaton, λ only
depends on the spectator field ψ . If WðψÞ ¼ 0 and
λ ¼ λðφÞ, we could argue that the action for the hyper-
charge fields only depends on the gauge coupling, but this
is actually incorrect unless λ coincides with λ. This state-
ment gets more clear if the gauge part of the action (1.1) is
rewritten as

Sgauge ¼ −
1

4

Z
d4x

ffiffiffiffiffiffiffi
−G

p

e2

�
YαβYαβ þ

�
λ

λ

�
YαβỸαβ

�
; ð1:2Þ

where e2 ¼ 4π=λ. In spite of possible tunings, the generic
situation would imply that λ̄ and λ are neither equal nor
proportional both initially and throughout the whole
dynamical evolution.
The purpose of this paper is to demonstrate that the

slopes of the superhorizon hypermagnetic and hyperelectric
spectra produced by the variation of the gauge coupling do
not depend, in practice, on the relative weight of λ and λ.
This conclusion suggests that the magnetogenesis scenarios
are not affected by the parity-breaking terms that instead

determine the gyrotropic contributions of the gauge power
spectra. Provided the pseudoscalar interactions have certain
scaling properties, they can provide, at least, in principle, a
mechanism for the generation of the baryon asymmetry. For
the estimate of the gauge power spectra in the presence of
pseudoscalar interactions, it will not be assumed, as always
done so far, that λ and λ either scale in the same way in time
or even coincide. We rather use an approximate method that
is corroborated by explicit examples. A similar approxi-
mate method has been recently suggested for the estimate
of the polarized backgrounds of relic gravitons [58].
The obtained results have been employed to analyze a
phenomenological scenario where the modes reentering
prior to symmetry breaking lead to the production of
hypermagnetic gyrotropy. The obtained Chern-Simons
condensate affects the Abelian anomaly and ultimately
leads to the baryon asymmetry of the Universe (BAU in
what follows). The modes reentering after electroweak
symmetry breaking lead instead to ordinary magnetic fields
that can seed the large-scale magnetic fields and therefore
provide a magnetogenesis mechanism. We argue that there
exist regions of the parameter space where the BAU is
sufficiently large, and the magnetic power spectra may even
be of the order of a few hundredths of a nG over typical
length scales comparable with the Mpc prior to the collapse
of the protogalaxy. As we see, this analysis holds generi-
cally for the whole class of inflationary models where the
inflaton is not constrained by any underlying symmetry.
The layout of this paper is the following. After a

preliminary discussion of the problem and of its motiva-
tions (see Sec. II), an approximate method for the estimate
of the gauge spectra is described in Sec. III. This strategy is
based on the Wentzel-Kramers-Brillouin (WKB) approach
where, however, the turning points are fixed by the
structure of the polarized mode functions. In Sec. IV, the
obtained results are corroborated by explicit examples. In
Sec. V, the obtained results are examined in the light of
the late-time gauge spectra with particular attention to the
requirements associated with the BAU and with the
magnetogenesis constraints. Section VI contains our con-
cluding remarks. In Appendix A, we reported the exact
form of the mode functions for different expressions of the
pseudoscalar couplings. In Appendix B, the results of
the WKB approach have been explicitly compared with
the exact solutions of the mode functions. Finally, in
Appendix C, we reported some useful results holding in
the case of decreasing gauge coupling.

II. PRELIMINARY CONSIDERATIONS

A. The general lore

While we consider, for the sake of simplicity, the
evolution in a conventional inflationary background, this
choice is not exclusive since most of the present consid-
erations could also be applied to different models (e.g.,

1The greek indices run from 0 to 3. G denotes the determinant
of the four-dimensional metric Gαβ. R ¼ GμνRμν is the Ricci
scalar defined from the contraction of the Ricci tensor.
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contracting scenarios). In a conformally flat Friedmann-
Robertson-Walker metric Gμν ¼ a2ðτÞημν (where ημν is the
four-dimensional Minkowski metric), the Hamiltonian
constraint stemming from the equations derived from the
total action (1.1) is given by

3M2
PH

2¼
�
φ02

2
þVa2

�
þ
�
ψ 02

2
þWa2

�
þ 1

8πa2
ðB2þE2Þ:

ð2:1Þ
In Eq. (2.1), the prime denotes the derivation with respect to
the conformal time coordinate τ, andH ¼ a0=a is related to
the Hubble rate H as aH ¼ H. Finally, the fields E⃗ and B⃗
are the comoving hyperelectric and hypermagnetic fields.
The dominant source of the background geometry is the
field φ. During slow roll, as usual, the kinetic energy of φ
can be neglected, and the inflaton potential is generally
dominant against the potential of the spectator field,

V ≫
φ02

2a2
≫

�
W þ ψ 02

2a2

�
≫

E2 þ B2

8πa4
: ð2:2Þ

The last inequality in Eq. (2.2) guarantees that the gauge
fields will not affect the evolution of the geometry. The
comoving fields appearing in Eqs. (2.1) and (2.2) are
related to their physical counterpart as E⃗ ¼ a2

ffiffiffi
λ

p
E⃗ðphysÞ

and as B⃗ ¼ a2
ffiffiffi
λ

p
B⃗ðphysÞ. Furthermore, the components of

the field strengths are directly expressible as Yi0 ¼
−a2EðphysÞ

i , Yij ¼ −ϵijkBðphysÞ
k =a2, and similarly for the

dual strength. The evolution of the comoving fields follows
from

∇⃗ × ð
ffiffiffi
λ

p
B⃗Þ ¼ ∂τð

ffiffiffi
λ

p
E⃗Þ þ

�
λ0ffiffiffi
λ

p
�
B⃗þ ∇⃗ λ×E⃗ffiffiffi

λ
p ; ð2:3Þ

∇⃗ · ð
ffiffiffi
λ

p
E⃗Þ ¼ B⃗ · ∇⃗λffiffiffi

λ
p ; ∇⃗ ·

�
B⃗ffiffiffi
λ

p
�

¼ 0; ð2:4Þ

∇⃗ ×

�
E⃗ffiffiffi
λ

p
�
þ ∂τ

�
B⃗ffiffiffi
λ

p
�

¼ 0; ð2:5Þ

where, to avoid potential confusions, the derivations with
respect to τ have been made explicit. While both λ and λ
enter Eqs. (2.3), (2.4), and (2.5), their evolution is unre-
lated; no one orders that the two couplings are either
proportional or even equal. This aspect can be better
appreciated by considering the case where λ and λ are
both homogeneous so that Eq. (2.3) becomes

∇⃗ × B⃗ ¼ 1ffiffiffi
λ

p ∂τð
ffiffiffi
λ

p
E⃗Þ þ λ0

λ
B⃗: ð2:6Þ

With standard manipulations, Eqs. (2.5) and (2.6) can be
directly combined so that the evolution of the comoving
hypermagnetic field is ultimately given by

1ffiffiffi
λ

p ∂τ

�
λ∂τ

�
B⃗ffiffiffi
λ

p
��

−∇2B⃗ −
λ0

λ
B⃗ ¼ 0: ð2:7Þ

Equation (2.7) shows that λ and λ are not bound to scale in
the same manner unless they are proportional or even
coincide.

B. Few examples

Let us now consider, in this respect, the parametrization
λ ¼ ψ=M1, whereM1 is a typical scale and ψ is constrained
by Eq. (2.2). Since we want ψ to be light during inflation,
we require ψ� ≪ MP and m < H, where H is the typical
curvature scale during inflation. The governing equation
for ψ,

ψ 00 þ 2Hψ 0 þ ∂W
∂ψ a2 ¼ 0; WðψÞ ¼ m2ðψ − ψ�Þ2=2;

ð2:8Þ

can be rephrased in terms of μ ¼ m=H and ϵ ¼ − _H=H2,

ðaψÞ00 þ ½μ2 − ð2 − ϵÞ�a2H2ðaψÞ ¼ 0;

ϵ ¼ − _H=H2 ¼ M2
P

2
ðV;φ=VÞ2: ð2:9Þ

For μ ≪ 1, the evolution of ψ is simply given by
ψ ≃ ψ� þ ψ ið−τ=τiÞζ, where ζ ¼ ð3 − 2ϵÞ=ð1 − ϵÞ.
Consider next a generic example for the evolution of

λ ¼ λðφÞ. In the slow-roll approximation, it can be argued
that the dependence of λ upon φ follows from

λðφÞ¼e−cIðφ�;φÞ; Iðφ�;φÞ¼
1

M2
P

Z
φ

φ�

V
V;φ

dφ; ð2:10Þ

where c is an arbitrary constant which may be either
positive or negative. Equation (2.10) typically arises in
various classes of models where λ is proportional to
ða=a�Þc, and this parametrization is plausible as long as
the inflaton slowly rolls. Depending on the model, the
relation between ða=a�Þ and φ might be different, but still
the general parametrization of λ ¼ λðaÞ must hold. For
monomial potentials (e.g.,W ¼ M4

2ϕ
p), we would have, for

instance, λðφÞ ∝ e−cφ
2=ð2pM2

PÞ; note that, in general terms,
M2 ≠ M1. Within the same parametrization, other models
can be analyzed like the case of small field and hybrid
models where the potential is approximately given by
VðφÞ ¼ M4

2ð1� κφpÞ (where the plus corresponds to the
hybrid models, while the minus to the small field models).
In the case of plateaulike potentials, we have2

2In the slow-roll approximation (and in terms of the cosmic
time coordinate t), we obtain from Eq. (2.11) that Φ ¼
ln ½2M2ðt� − tÞ=3� (valid for t ≪ −t�); this also means that,
within the same approximation, H ≃M2ð1 − e−ΦÞ=2.

LARGE-SCALE GAUGE SPECTRA AND PSEUDOSCALAR … PHYS. REV. D 104, 123509 (2021)

123509-3



VðφÞ ¼ 3M2
2M

2
P

4
ð1 − e−ΦÞ2; Φ ¼

ffiffiffi
2

3

r �
φ

MP

�
: ð2:11Þ

From the above examples, we have therefore to acknowl-
edge that, in Eq. (2.6), there are three different quantities
determining the evolution of the hypermagnetic fields; two
of them have well-defined scaling properties in τ, while the
third one strongly depends on the model

λ0

λ
¼ Oðτ−1Þ; λ00

λ
¼ Oðτ−2Þ; λ0

λ
¼

�
ψ 0

M1

�
ecIðφ�;φÞ:

ð2:12Þ

Equation (2.12) shows that there are no obvious reasons to
assume that λ0 must be proportional to λ0. Even assuming
that ψ coincides with the inflaton, from Eq. (2.12), we
would have ðφ0=M1ÞecIðφ�;φÞ, which depends on the
particular model and does not necessarily demand λ ¼ λ.

C. Evolutions of the gauge coupling

In what follows, we therefore assume that λ and λ scale
differently, and the gauge power spectra are estimated as a
function of the possible dynamical evolutions. For the sake
of concreteness, during the inflationary stage, we posit that

λðτÞ ¼ λ1

�
−

τ

τ1

�
2γ

; τ ≤ −τ1; ð2:13Þ

λðτÞ ¼ λ2

�
−

τ

τ2

�
2β

; τ ≤ −τ1; ð2:14Þ

where τ1 marks the end of inflation, while jτ2j ≥ τ1. While
this choice is purely illustrative, we stress that other
complementary situations could be discussed with the
same techniques developed here.3 For τ ≥ −τ1. we also
posit that the evolution of λ is continuously matched to the
radiation-dominated phase. Since in the evolution equa-
tions of E⃗ and B⃗ there are terms going as λ00=λ, the
continuity of λ and λ0 is essential. Conversely, it is sufficient
to demand that only λ is continuous since, in the corre-
sponding equations, only terms going as λ0 may arise. With
these precisions, we have that for τ ≥ −τ1 the evolution of λ
and λ is parametrized as

λðτÞ ¼ λ1

�
γ

δ

�
τ

τ1
þ 1

�
þ 1

�
2δ

; τ ≥ −τ1; ð2:15Þ

λðτÞ ¼ λ2

�
τ1
τ2

�
2β

; τ ≥ −τ1: ð2:16Þ

Equation (2.15) describes the situation where the gauge
coupling [introduced in Eq. (1.2) and related to the inverse
of λ] increases during the inflationary phase and then
flattens out later on. Equation (2.15) could be comple-
mented with the dual evolution where the gauge coupling
decreases and then flattens out; in this case, we have

λðτÞ ¼ λ1

�
−

τ

τ1

�
−2γ̃

; τ ≤ −τ1; ð2:17Þ

λðτÞ ¼ λ1

�
γ̃

δ̃

�
τ

τ1
þ 1

�
þ 1

�
−2δ̃

; τ ≥ −τ1: ð2:18Þ

We often critically compare the physical situations implied
by Eqs. (2.15) and (2.16) and by Eqs. (2.17) and (2.18).
While we consider as more physical the case described by
Eqs. (2.15) and (2.16), the methods discussed below can
also be applied to the case where the gauge coupling is
initially very large and then decreases.

III. THE GENERAL ARGUMENT AND THE
POWER SPECTRA

A. Quantum fields and their evolution

In what follows, the right (i.e., R) and left (i.e., L)
polarizations are defined, respectively, by the subscripts �,

ε̂ð�Þðk̂Þ ¼ ê⊕ðk̂Þ � iê⊗ðk̂Þffiffiffi
2

p ; ε̂ðþÞðk̂Þ≡ ε̂Rðk̂Þ;

ε̂ð−Þðk̂Þ≡ ε̂Lðk̂Þ; ð3:1Þ

where k̂, ê⊕, and ê⊗ denote a triplet of mutually orthogonal
unit vectors defining, respectively, the direction of propa-
gation and the two linear (vector) polarizations. From
Eq. (3.1), the vector product of k̂ with the circular polar-
izations is given by k̂ × ε̂ð�Þ ¼∓ iε̂ð�Þ. If both λ and λ are
homogeneous (as we assume hereunder), the quantum
Hamiltonian associated with the gauge action (1.2)
becomes

ĤYðτÞ ¼
1

2

Z
d3x

�
π̂2i þ F ðπ̂iŶi þ Ŷiπ̂iÞ þ ∂iŶk∂iŶk

−
�
λ0

λ

�
Ŷi∂jŶkϵ

ijk

�
; ð3:2Þ

where Ŷi is the quantum field operator corresponding to the
(rescaled) vector potential Yi ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
λ=ð4πÞp

Yi defined in the
Coulomb gauge [59] which is probably the most conven-
ient for this problem since it is invariant under
Weyl rescaling. In Eq. (3.2), π̂i ¼ Ŷ0

i − FŶi denotes the
canonical momentum operator; to make the notation
more concise, the rate of variation of the gauge coupling

F ¼ ffiffiffi
λ

p 0=
ffiffiffi
λ

p
has been introduced throughout. The

3Without specific fine-tunings in the simplest situation, it is
however plausible to think that τ2 ¼ Oðτ1Þ.
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evolution equations of the field operators following from
the Hamiltonian (3.2) are (units ℏ ¼ c ¼ 1 are adopted)

π̂0i ¼ i½ĤY; π̂i� ¼ −F π̂i þ∇2Ŷi þ
λ0

λ
ϵijk∂jŶk;

Ŷ0
i ¼ i½ĤY; Ŷi� ¼ π̂i þ FŶi: ð3:3Þ

The initial data of the field operators appearing in Eqs. (3.2)
and (3.3) must obey the canonical commutation relations at
equal times,

½Ŷiðx⃗1; τÞ; π̂jðx⃗2; τÞ� ¼ iΔijðx⃗1 − x⃗2Þ;

Δijðx⃗1 − x⃗2Þ ¼
Z

d3k
ð2πÞ3 e

ik⃗·ðx⃗1−x⃗2Þpijðk̂Þ; ð3:4Þ

where pijðk̂Þ ¼ ðδij − k̂ik̂jÞ. The function Δijðx⃗1 − x⃗2Þ is
the transverse generalization of the Dirac delta function
ensuring that both the field operators and the canonical
momenta are divergenceless. The mode expansion for the
hyperelectric and hypermagnetic fields can be easily
written in the circular basis of Eq. (3.1) as4

Êiðx⃗; τÞ ¼ −
X
α¼�

Z
d3k

ð2πÞ3=2 ½gk;αðτÞâk;αε
ðαÞ
i ðk̂Þe−ik⃗·x⃗ þ H:c:�;

ð3:5Þ

B̂kðx⃗; τÞ ¼ −iϵijk
X
α¼�

Z
d3k

ð2πÞ3=2 kj½fk;αðτÞâk;αε
ðαÞ
i ðk̂Þe−ik⃗·x⃗

− H:c:�; ð3:6Þ

where, incidentally, the hyperelectric field operator coin-
cides (up to a sign) with the canonical momentum (i.e.,
Êi ¼ −π̂i ¼ −

ffiffiffi
λ

p ðŶi=
ffiffiffi
λ

p Þ0), while the hypermagnetic
operator is simply B̂k ¼ ϵijk∂iŶj. The hypermagnetic
and hyperelectric mode functions (i.e., fk;αðτÞ and
gk;αðτÞ, respectively) must preserve the commutation
relations (3.4), and this is why their Wronskian
Wα ¼ fk;αg�k;α − f�k;αgk;α must be normalized as Wα ¼ i
for α ¼ �. In other words, the Wronskian normalization
must be independently enforced for each of the two circular
polarizations.
The actual evolution of the mode functions follows by

inserting the expansions (3.5) and (3.6) into Eq. (3.3), and
the final result is

f0k;� ¼ gk;� þ Ffk;�; ð3:7Þ

g0k;� ¼ −k2fk;� − Fgk;� ∓
�
λ0

λ

�
kfk;�: ð3:8Þ

Equations (3.7)–(3.8) have actually the same content of
Eqs. (2.5) and (2.6), and their solutions are thoroughly
discussed in the last part of this section and also in Sec. IV.

B. General forms of the gauge power spectra

From the Fourier transform of the field operators (3.5)
and (3.6),

Êiðq⃗; τÞ ¼ −
X
α¼�

½εðαÞi ðq̂Þgq;αâq⃗;α þ εðαÞ�i ð−q̂Þg�q;αâ†−q⃗;α�;

ð3:9Þ

B̂kðp⃗; τÞ ¼ −iϵijk
X
α¼�

½piε
ðαÞ
j ðp̂Þfp;αâp⃗;α

þ piε
ðαÞ�
j ð−p̂Þf�p;αâ†−p⃗;α�: ð3:10Þ

As a consequence, the two-point functions constructed
from Eqs. (3.9) and (3.10) consist of the symmetric
contribution and of the corresponding antisymmetric part,5

hÊiðk⃗; τÞÊjðp⃗; τÞi ¼
2π2

k3
½PEðk; τÞpijðk̂Þ

þ iPðGÞ
E ðk; τÞϵijlk̂l�δð3Þðp⃗þ k⃗Þ;

ð3:11Þ

hB̂iðk⃗; τÞB̂jðp⃗; τÞi ¼
2π2

k3
½PBðk; τÞpijðk̂Þ

þ iPðGÞ
B ðk; τÞϵijlk̂l�δð3Þðp⃗þ k⃗Þ:

ð3:12Þ

In Eqs. (3.11) and (3.12), PEðk; τÞ and PBðk; τÞ denote the
hyperelectric and the hypermagnetic power spectra whose
explicit expressions are given by

PEðk; τÞ ¼
k3

4π2
½jgk;−j2 þ jgk;þj2�;

PBðk; τÞ ¼
k5

4π2
½jfk;−j2 þ jfk;þj2�: ð3:13Þ

When either λ → 0 or λ0 → 0, the anomalous coupling
disappears from the Hamiltonian (3.2), and Eqs. (3.7) and

4We note that the creation and annihilation operators âk;α and
â†k;α are directly defined in the circular basis, and they obey the

standard commutation relation ½âk⃗;α; âp⃗;β� ¼ δð3Þðk⃗ − p⃗Þδαβ. In
Eqs. (3.5) and (3.6) “H.c.” denotes the Hermitian conjugate; note,
in this respect, that, unlike the linear polarizations, the circular
polarizations are complex vectors.

5The expectation values are computed from Eqs. (3.9) and
(3.10). By recalling that 2εðþÞ

i ðk̂Þεð−Þj ðk̂Þ ¼ ½pijðk̂Þ − iϵijlk̂
l�,

where, as in Eq. (3.4), pijðk̂Þ ¼ ðδij − k̂ik̂jÞ is the traceless
projector, and ϵijl is the Levi-Civita symbol in three spatial
dimensions. See, in this respect, the definitions of Eq. (3.1).
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(3.8) imply that the hyperelectric and hypermagnetic mode
functions have a common limit. If fk and gk denote the
common solutions of Eqs. (3.7) and (3.8) for λ → 0, we
have that limλ→0

fk;� ¼ e−iπ=4fk and limλ→0
gk;� ¼ eiπ=4gk;

the phase factor follows from the definition of the circular
modes of Eq. (3.1). In the limit λ → 0, the gyrotropic
contributions appearing in Eqs. (3.11) and (3.12),

PðGÞ
E ðk; τÞ ¼ k3

4π2
½jgk;−j2 − jgk;þj2�;

PðGÞ
B ðk; τÞ ¼ k5

4π2
½jfk;−j2 − jfk;þj2�; ð3:14Þ

will vanish. The superscript (G) reminds us that power
spectra of Eq. (3.14) determine the corresponding gyro-
tropies defined, respectively, by the expectation values of

the two pseudoscalar quantities hB⃗ · ∇⃗ × B⃗i and

hE⃗ · ∇⃗ × E⃗i. While the magnetic gyrotropies are gauge
invariant (and have been originally introduced by
Vainshtein and Zeldovich in the context of the mean-field
dynamo theory [60–63]), the corresponding helicities (e.g.,
Y⃗ · E⃗ and Y⃗ · B⃗) are not gauge invariant, and this is why we
refrain from using them.6

Even if we mainly introduced the comoving power
spectra, for the phenomenological applications, what mat-
ters are not directly the comoving spectra of Eqs. (3.13) and
(3.14) but rather their physical counterparts. From the
relations between the physical and the comoving fields
introduced prior to Eqs. (2.3)–(2.5), the physical power
spectra are given by

PðphysÞ
X ðk; τÞ ¼ PXðk; τÞ

λðτÞa4ðτÞ ; ð3:15Þ

where PXðk; τÞ generically denotes one of the comoving
quantities listed in Eqs. (3.13) and (3.14). Let us finally
remember that the energy density of the gauge field follows
from the corresponding energy-momentum tensor derived
from the action (1.2). Using Eqs. (3.11) and (3.12), we can
obtain hρ̂Yi. To compare the energy density of the para-
metrically amplified gauge fields with the energy density of
the background geometry, we introduce the spectral energy
density in critical units,

ΩYðk; τÞ ¼
1

ρcrit

dhρ̂i
d ln k

¼ 2

3H2M2
Pa

4
½PEðk; τÞ þ PBðk; τÞ�

¼ 2

3H2M2
P
λ½PðphysÞ

E ðk; τÞ þ PðphysÞ
B ðk; τÞ�; ð3:16Þ

where we expressedΩYðk; τÞ both in terms of the comoving
and of the physical power spectra. To guarantee the absence
of dangerous backreaction effects, ΩYðk; τÞmust always be
subcritical throughout the various stages of the evolution
and for all relevant scales; this requirement must be
separately verified both during and after inflation.

C. WKB estimates of the mode functions

We now solve Eqs. (3.7) and (3.8) by using the WKB
approximation for each of the two circular modes since the
presence of the anomalous contribution slightly modifies
the structure of the turning points.7 After combining
Eqs. (3.7) and (3.8), the evolution of the hypermagnetic
mode functions is given by

f00k;� þ
�
k2 � k

λ0

λ
−

ffiffiffi
λ

p 00ffiffiffi
λ

p
�
fk;� ¼ 0; ð3:17Þ

which is ultimately analogous to the decoupled equation
already discussed in Eq. (2.7). Having determined the
solution of Eq. (3.17), the hyperelectric mode functions
follow directly from Eq. (3.7) which is in fact a definition
of gk;�, i.e., gk;� ¼ f0k;� − Ffk;�. For the present ends,
Eq. (3.17) can be viewed as

f00k;� þ
�
k2 −

w00
�

w�

�
f� ¼ 0; ð3:18Þ

where now w�ðk; τÞ are two undetermined functions
obeying

w00
�

w�
¼∓ k

λ0

λ
þ

ffiffiffi
λ

p 00ffiffiffi
λ

p : ð3:19Þ

Since the left and right modes become of the order of
jw00

�=w�j at different times, from Eq. (3.18), the hyper-
magnetic mode functions can be formally expressed as

fk;�ðk; τÞ ¼
1ffiffiffiffiffi
2k

p e−ikτ; k2 ≫
����w00

�
w�

����; ð3:20Þ

fk;�ðk; τÞ ¼ Ak;�w�ðk; τÞ þ Bk;�w�ðk; τÞ
Z

τ dτ0

w2
�ðk; τ0Þ

;

k2 ≪
����w00

�
w�

����: ð3:21Þ6The hypermagnetic gyrotropy has some advantages in com-
parison with the case of the Chern-Simons number density (i.e.,
nCS ∝ Y⃗ · B⃗). The difference of nCS at different times is always
gauge invariant[64]. However, at a fixed time, nCS (unlike the
corresponding gyrotropy) is gauge dependent.

7A similar technique has been originally employed in the
context of the polarized backgrounds of relic gravitons [58].
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The values of Ak;� and Bk;� are determined by matching
the solutions (3.20) and (3.21) at the turning point τex when
a given scale exits the effective horizon associated with
jw00

�=w�j. The second turning point (denoted by τre)
corresponds to the moment at which the given scale
reenters the effective horizon.8 The explicit expressions
of fk;�ðτÞ and of gk;�ðτÞ valid for τ < τre are

f�ðk; τÞ ¼
w�ðτÞ
w�;ex

ff�;ex þ ½g�;ex þ ðF ex

− G�;exÞf�;ex�I�ðτex; τÞg; ð3:22Þ

g�ðk; τÞ ¼
w�;ex

w�ðτÞ
½g�;ex þ ðF ex − G�;exÞf�;ex�

þ w�ðτÞ
w�;ex

ðG� − F Þff�;ex þ ½g�;ex

þ ðF ex − G�;exÞf�;ex�I�ðτex; τÞg; ð3:23Þ

where G� ¼ w0
�=w�. For the sake of conciseness, we wrote

f�;ex ¼ fk;�ðτexÞ, g�;ex ¼ gk;�ðτexÞwith the caveat that τex
is actually different for the left and right modes; the same
notation has been also adopted for G�;ex and for F ex.
Finally, the integrals I�ðτex; τÞ appearing in Eq. (3.23) are
defined as

I�ðτex; τÞ ¼ w2
�;ex

Z
τ

τex

dτ0

w2
�ðτ0Þ

; G� ¼ w0
�

w�
: ð3:24Þ

Since the left and right polarizations have different turning
points, the two polarizations will hit the effective horizon at
slightly different times τ� ¼ −ð1þ ϵ�Þ=k with jϵ�ðkÞj ≪
1 provided

ffiffiffi
λ

p 00=
ffiffiffi
λ

p ¼ Oðτ−2Þ and λ0=λ ¼ Oðτ−1−αÞ with
α > 0. In the case of Eq. (2.13), the WKB estimates of the
mode functions for the left and right polarizations can be
expressed as

fk;�ðτÞ ≃
eikτ�ffiffiffiffiffi
2k

p
� ð−kτÞγ
ð1þ ϵ�Þγ

þ ð1þ ϵ�Þγ
ð1 − 2γÞ ð−kτÞ1−γ

�
;

ð3:25Þ

gk;�ðτÞ ≃ i

ffiffiffi
k
2

r �
ð−kτÞγð1þ ϵ�Þγ −

i
2γ þ 1

ð−kτÞγþ1

ð1þ ϵ�Þγ
�
;

ð3:26Þ

where ϵ� ¼ ϵ�ðk; βÞ. The same analysis (with different
results) can be easily applied to different situations, such as
the one of Eq. (2.17).

D. WKB estimates of the power spectra

The hypermagnetic power spectrum obtained from
Eqs. (3.13) and (3.25) is different depending upon the
value of γ: if γ > 1=2 and jϵ�ðk; βÞj < 1, the second term at
the right-hand side of Eq. (3.25) dominates, while the first
term gives the dominant contribution for γ < 1=2. The
hypermagnetic power spectrum is therefore given by

PBðk; τÞ ≃
a4H4

2π2
jkτj5−j2γ−1j½1þOðϵþ þ ϵ−Þ�: ð3:27Þ

The WKB estimates leading to Eq. (3.27) (and to the other
results of this section) are accurate for the slopes of the
power spectra, while the amplitudes are determined up to
Oð1Þ numerical factors, as we see in the following section;
this is why in Eq. (3.27) we used a sign of approximate
equality. The same analysis leading to Eq. (3.27) can be
repeated in the case of the hyperelectric power spectrum,

PEðk; τÞ ≃
a4H4

2π2
jkτj4−2γ½1þOðϵþ þ ϵ−Þ�: ð3:28Þ

Note, in this case, the absence of absolute values in the
exponent. Inserting the mode functions (3.26) in Eq. (3.14),
the order of magnitude of the gyrotropic components can be
easily determined,

PðGÞ
B ðk; τÞ ≃ a4H4Oðϵþ − ϵ−Þjkτj5−j2γ−1j; ð3:29Þ

PðGÞ
E ðk; τÞ ≃ a4H4Oðϵþ − ϵ−Þjkτj4−2γ: ð3:30Þ

The gauge power spectra of Eqs. (3.27) and (3.28) and
Eqs. (3.29) and (3.30) have been obtained in the case when
the gauge coupling increases during inflation [see
Eq. (2.13)]. The same analysis can be repeated when the
gauge coupling decreases during inflation, as suggested by
Eq. (2.17). The results for the hypermagnetic and for the
hyperelectric power spectra are, this time,

P̃Bðk; τÞ ≃
a4H4

2π2
jkτj4−2γ̃½1þOðϵ̃þ þ ϵ̃−Þ�; ð3:31Þ

P̃Eðk; τÞ ≃
a4H4

2π2
jkτj5−j2γ̃−1j½1þOðϵ̃þ þ ϵ̃−Þ�: ð3:32Þ

In Eqs. (3.31) and (3.32), we used the tilde to distinguish
the power spectra obtained in the case of decreasing
coupling from the ones associated with the increasing
coupling. With the same notation, the gyrotropic spectra
are given by

P̃ðGÞ
B ðk; τÞ ≃ a4H4Oðϵ̃þ − ϵ̃−Þjkτj4−2γ̃; ð3:33Þ

P̃ðGÞ
E ðk; τÞ ≃ a4H4Oðϵ̃þ − ϵ̃−Þjkτj5−j2γ̃−1j: ð3:34Þ

8In what follows, we are interested in the general expressions
of the gauge power spectra prior to τre. The discussion of the late-
time power spectra is postponed to Sec. V.
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The results of the WKB approximation are corroborated by
a number of examples in the following section. Even if we
preferentially treat the case of increasing coupling, we note
that the case of decreasing coupling can be formally
recovered from the one where the gauge coupling increases.
For instance, if γ → γ̃, we have that the gauge spectra of
Eqs. (3.29) and (3.30) turn into the ones of Eqs. (3.31) and
(3.32) with the caveat that PBðk; τÞ → P̃Eðk; τÞ and that
PEðk; τÞ → P̃Bðk; τÞ. This is, after all, a direct consequence
of the duality symmetry [65–67].

IV. EXPLICIT EXAMPLES

The auxiliary equation (3.19) is solved in a number of
explicit cases. The obtained solutions are analyzed in the
large-scale limit, and in this way, the WKB power spectra
deduced at the end of the previous section are recovered.
For a direct solution, it is practical to introduce a new time
coordinate (conventionally referred to as the η time) by
positing that dτ ¼ Ndη; in the η parametrization, Eq. (3.19)
becomes

Z̈� ¼∓ k
λ0

λ
N2Z� þ b̈

b
Z�; Z� ¼ w�ffiffiffiffi

N
p ; b ¼

ffiffiffiffi
λ

N

r
;

ð4:1Þ
where the overdot9 now denotes a derivation with respect to
η; Z� and b are the rescaled versions of w� and

ffiffiffi
λ

p
,

respectively. The form Eq. (4.1) can be further simplified
by choosing an appropriate form for NðτÞ. Since N is, by
definition, a real quantity, we must have N2 > 0; this
means, in particular, that if λ0=λ < 0, it is natural to posit
ðdη=dτÞ2 ¼ N−2 ∝ −λ0=λ. Conversely, if λ0=λ > 0, we
would instead choose ðdη=dτÞ2 ¼ N−2 ∝ λ0=λ.

A. Solutions of the auxiliary equation

In Eqs. (2.13) and (2.14), λ and λ evolve during an
inflationary stage of expansion without the constraint of
being equal so that the combinations appearing in
Eq. (3.19) turn out to be

λ0

λ
¼ −

b0
τ1

�
−

τ

τ1

�
−1−α

;

ffiffiffi
λ

p 00ffiffiffi
λ

p ¼ γðγ − 1Þ
τ2

; ð4:2Þ

where b0 and α have been introduced, and they are

b0 ¼ 2β

�
λ2
λ1

��
τ1
τ2

�
2β

; α ¼ 2ðγ − βÞ: ð4:3Þ

The explicit form of Eqs. (4.2) and (4.3) determines the
mutual relation between the η parametrization and the

conformal time10 so that, after simple algebra, Eq. (4.1)
becomes

Z̈� ∓ q2Z� −
ν2 − 1=4

η2
Z� ¼ 0; ν ¼

���� 2γ − 1

1 − α

����;
q2 ¼ b0k

τ1
¼ b0k

η1
: ð4:4Þ

From the relation between η and the τ,

dη¼ dτ
NðτÞ ⇒

�
−
η

η1

�
¼
�
−
τ

τ1

�ð1−αÞ=2
; η1¼

2τ1
ð1−αÞ ;

ð4:5Þ

and depending on the convenience, Eqs. (4.2)–(4.5) give
the explicit form of NðτÞ or NðηÞ,

NðτÞ ¼ ð−τ=τ1Þð1þαÞ=2 ⇒ NðηÞ ¼ ð−η=η1Þð1þαÞ=ð1−αÞ;

α ≠ 1: ð4:6Þ

From Eqs. (4.1) and (4.6), we can deduce bðηÞ and,
ultimately, the explicit form of Eq. (4.4). All in all, the
solutions of Eq. (4.4) in the η parametrization are

Zþðq; ηÞ ¼
ffiffiffiffiffiffiffiffiffi
−qη

p ½Cq;þIνð−qηÞ þDq;þKνð−qηÞ�; ð4:7Þ

Z−ðq; ηÞ ¼
ffiffiffiffiffiffiffiffiffi
−qη

p ½Cq;−Jνð−qηÞ þDq;−Yνð−qηÞ�: ð4:8Þ

In Eq. (4.7), Iνð−qηÞ and Kνð−qηÞ are the modified
Bessel functions, while in Eq. (4.8), Jνð−qηÞ and
Yνð−qηÞ denote the ordinary Bessel functions (see, e.g.,
[68,69]). It is interesting to remark, at this point, that in the
dual case [see Eq. (2.17) and discussion therein] the explicit
expression of the auxiliary equation (4.4) has a similar
form,

̈̃Z�� q̃2Z̃�−
ν̃2−1=4

η2
Z̃�¼0; ν̃¼ 2γ̃þ1

j1− α̃j ; q̃2¼ b̃0k
τ1

;

ð4:9Þ

where this time b̃0 and α̃ are

b̃0 ¼ 2β̃

�
τ2
τ1

�
2β̃
�
λ2
λ1

�
; α̃ ¼ 2ðβ̃ − γ̃Þ: ð4:10Þ

By comparing Eqs. (4.2) and (4.9), it is clear that ν ≠ ν̃.
Owing to the different form of Eq. (4.9), the solutions (4.7)
and (4.8) are

9It is also common to employ the overdot to denote a
derivation with respect to the cosmic time coordinate. To avoid
confusion, the two notations are never used in the same context.

10Note that b0 has been introduced in Eq. (4.3), while now we
also defined b0 ¼ ð2b0Þ=ð1 − αÞ.
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Z̃þðq̃; ηÞ ¼
ffiffiffiffiffiffiffiffiffi
−q̃η

p ½C̃q̃;þJν̃ð−q̃ηÞ þ D̃q̃;þY ν̃ð−q̃ηÞ�; ð4:11Þ

Z̃−ðq̃; ηÞ ¼
ffiffiffiffiffiffiffiffiffi
−q̃η

p
½C̃q̃;−Iν̃ð−q̃ηÞ þ D̃q̃;−Kν̃ð−q̃ηÞ�; ð4:12Þ

where, as in Eqs. (4.7) and (4.8), we introduced the
appropriate Bessel functions. To avoid digressions, the full
expressions of the hypermagnetic and hyperelectric mode
functions can be found in Eqs. (A1) and (A2) and Eqs. (A6)
and (A7). For the explicit evaluations of the power spectra,
the expressions of the hypermagnetic and hyperelectric
mode functions should be computed for typical wave-
lengths larger than the effective horizon, and this discussion
can be found in Appendix B. In what follows, we
concentrate on the most relevant physical aspects and
encourage the reader to consult the Appendixes for the
technical aspects of the problem.

B. The exit of the left and right modes

In view of the large-scale limit of the power spectra, it is
useful to remember that the exit of a given circular mode is
fixed by the equation

k2≃ ∓ k
λ0

λ
þ

ffiffiffi
λ

p 00ffiffiffi
λ

p : ð4:13Þ

Equations (2.13) and (2.14) and Eqs. (4.2) and (4.3) imply,
in the case of increasing coupling, that the explicit form of
Eq. (4.13) is

ð−kτÞ2 ≃�ð−kτÞ1−αxα1b0 þ γðγ − 1Þ; ð4:14Þ

where x1 ¼ kτ1 and τ1 approximately denotes, by defini-
tion, the end of the inflationary phase. For the scales
relevant for the present problem, x1 is so small that the limit
b0x1 ≪ 1 is always verified in spite of the value of b0. For a
generic wave number k, assuming the standard postinfla-
tionary thermal history, the actual value of x1 is

x1 ¼
k

a1H1

¼ 10−23.05
�

k
Mpc−1

��
rT
0.01

�
−1=4

×

�
h20ΩR0

4.15 × 10−5

�
−1=4

�
AR

2.41 × 10−9

�
−1=4

; ð4:15Þ

where, as usual, ΩR0 is the critical fraction of radiation in
the concordance paradigm, rT is the tensor to scalar ratio,
and AR is the amplitude of curvature inhomogeneities. It
follows from Eq. (4.15) that for typical wavelengths
OðMpcÞ (and even much shorter) x1 is as small as
10−23. From Eq. (4.3), b0 cannot be too large even for
quite extreme values of λ2=λ1. Since xα1b0 ≪ 1 (provided
α > 0), the solution of Eq. (4.14) is

τ�ðkÞ¼−
1

k
½c0ðγÞþϵ�ðk;β;γÞ�; jϵ�ðk;β;γÞj≪1; ð4:16Þ

where c0 and ϵ�ðk; β; γÞ follow by consistency with
Eq. (4.21),

c0ðγÞ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
γðγ−1Þ

p
¼Oð1Þ; ϵ�ðk;β;γÞ¼� b0

2c0ðγÞ
�

x1
c0ðγÞ

�
α

:

ð4:17Þ
It is always possible to rescale the value of c0 since it is just
anOð1Þ contribution; in practice, the turning points assume
the form

τ� ≃ −
1

k
ð1þ ϵ�Þ; ϵ�ðk; αÞ ¼ � b0

2
xα1; ð4:18Þ

which basically correspond to the WKB estimate of Sec. III
[see discussion after Eq. (3.24)]. Even if ϵ� ¼ ϵ�ðk; αÞ, for
the sake of conciseness in the explicit expressions, we
neglect the dependence upon k and α unless strictly
necessary. Concerning the result of Eq. (4.18), the follow-
ing three comments are in order:

(i) The explicit expression of the turning points holds
provided α ≠ 1 and α ≠ 0;

(ii) Equations (4.2) and (4.3) imply that λ0=λ andffiffiffi
λ

p 00=
ffiffiffi
λ

p
both scale as τ−2 when α → 1.

(iii) In the limit α → 0, Eqs. (4.17) and (4.18) imply that
ϵ� ≃ b0=2 which may be larger than 1 as long as
b0 > 1; for α → 0, the structure of the turning points
might then be altered in comparison with the results
of Eqs. (4.17) and (4.18).

The above remarks suggest that, besides the case α > 0, the
limits α → 1 and α → 0 must be separately addressed.
When α → 1, Eq. (4.14) becomes

ð−kτ2Þ ≃�x1b0 þ γðγ − 1Þ: ð4:19Þ

Even if Eq. (4.19) implies a modified structure of the
turning points, the final results for the power spectra are
fully compatible with the WKB estimates. If α → 0,
Eq. (4.14) becomes

ð−kτÞ2 ∓ b0ð−kτÞ − γðγ − 1Þ ≃ 0: ð4:20Þ

As long as b0 ≪ 1, the solution of Eq. (4.20) has again the
form (4.18). However, for b0 ≫ 1, the solution of
Eq. (4.20) is rather τ� ¼ �b0=k, as it follows by neglecting
the third term at the right-hand side of Eq. (4.20). In this
limit, b0 may affect the overall amplitudes, while the slopes
of the gauge power spectra do coincide, as we see, with the
ones deduced in the original WKB approximation. It
follows from the above considerations that the solutions
of the auxiliary equations (4.7) and (4.8) and (4.11) and
(4.12) must always be evaluated in the small argument limit
when the relevant modes are larger than the effective
horizon. Since this point might not be immediately
obvious, we note that from Eqs. (4.3) and (4.4) that it is
immediate to express −qη in terms of τ,
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−qη¼2
ffiffiffiffiffiffiffiffiffi
x1b0

p
j1−αj

�
−
η

η1

�
¼cðzÞ; cðzÞ¼2

ffiffiffiffiffiffiffiffiffi
x1b0

p
j1−αj z

ð1−αÞ=2;

z¼
�
−
τ

τ1

�
: ð4:21Þ

It is therefore possible to work directly either with cðzÞ or
with ð−qηÞ depending on the convenience.

C. Scales of the problem

For the typical scales of the problem, the condition
ð−qηÞ ≪ 1 is always verified. The magnetogenesis require-
ments involve typical wave numbers OðMpc−1Þ so that the
corresponding wavelengths reenter the effective horizon
prior to equality,

τk
τeq

¼
ffiffiffi
2

p �
H0

k

��
ΩM0ffiffiffiffiffiffiffiffi
ΩR0

p
�

¼1.06×10−2
�
h20ΩM0

0.1386

��
h20ΩR0

4.15×10−5

�
−1=2

�
k

Mpc−1

�
−1
;

ð4:22Þ

where τk ¼ 1=k denotes the reentry time of a generic
wavelength, and τeq is the time of matter-radiation equality.
As long as k ¼ OðMpc−1Þ, the relation between ð−qηÞ and
ð−kτÞ is illustrated in Fig. 1 where the contours actually

correspond to the common logarithm of ð−qηÞ when ð−kτÞ
and α vary in their respective physical ranges. In Figs. 1
and 2, we illustrate different values of x1. The rationale for
these values can be understood by looking at Eqs. (4.15)
and (4.22). In short the idea is the following:

(i) Let us start from the scales OðMpc−1Þ, which
are the ones relevant for magnetogenesis; according
to Eq. (4.15), we see that for k ¼ Mpc−1 that
x1 ¼ Oð10−23Þ. From Fig. 1, we see that ð−qηÞ <
Oð10−20Þ; this means that the solutions of the
auxiliary equations [i.e., Eqs. (4.7) and (4.8)] can
always be evaluated in the limit of small arguments,
i.e., for ð−qηÞ ≪ 1.

(ii) The same conclusion holds when x1 ≪ 10−23; in the
right plot of Fig. 1, we took a smaller value, i.e.,
x1 ¼ Oð10−26Þ. Also, in this case, the results of
Fig. 1 show that ð−qηÞ ≪ 1.

(iii) Finally, the condition ð−qηÞ ≪ 1 is also verified for
x1 ≫ 10−23; in Fig. 2, we illustrate the cases x1 ¼
Oð10−14Þ and Oð10−16Þ, and we can clearly see
that ð−qηÞ ≪ 1,

As expected on the basis of the general arguments given
above, for α → 0, the relation between ð−qηÞ and ð−kτÞ is
singular; the same is true when α → 1. This is why both
cases are separately treated. If the typical wavelength is
increased (i.e., for smaller k) the smallness of ð−qηÞ
persists as it can be deduced from the right plot in

FIG. 1. The relation given in Eq. (4.21) is graphically illustrated for x1 ¼ Oð10−23Þ (right plot) and for x1 ¼ Oð10−26Þ (left plot). The
labels on the various contours denote the common logarithm of ð−qηÞ, while on the horizontal axis we report the common logarithm of
ð−kτÞ. When k ¼ OðMpc−1Þ (or smaller), the regions where ð−qηÞ ≪ 1 coincide with the wavelengths that are larger than the Hubble
radius [i.e., ð−kτÞ ≪ 1]. We recall, in this respect, that the connection between x1 and k follows from Eq. (4.15). This means that if we
want to compute the power spectra for typical wavelengths larger than the Hubble radius, we can safely take the limit ð−qηÞ ≪ 1 in the
solutions of Eq. (4.4). Two singular cases must be separately treated, namely, α → 1 and α → 0. The details of this discussion can be
found in Appendix B.
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Fig. 1 where x1 ¼ Oð10−26Þ. The values of b0 are not
crucial, and it can be directly checked that whenever b0
increases from 1 to 106 the patterns of the relation
illustrated in Fig. 1 are very similar.
For the present purposes, also, the scales associated with

the electroweak physics are particularly important. In
particular, as we see, the scales k ¼ OðkewÞ reenter prior
to symmetry breaking, while the magnetogenesis scales
reenter after the electroweak phase transition Depending on
the various parameters, the bunch of wave numbers
corresponding to the electroweak scale are Oð109Þ Mpc−1,

kew ¼
�
8π3NeffΩR0

45

�
1=4

ffiffiffiffiffiffiffi
H0

MP

s
Tew

¼ 2.6 × 109
�

Neff

106.75

�
1=4

×

�
h20ΩR0

4.15 × 10−5

�
1=4

�
Tew

100 GeV

�
Mpc−1: ð4:23Þ

The Mpc−1 units are not ideal but give an idea of the
hierarchy of the scales. It is furthermore essential to bear in
mind that kew is the (comoving) electroweak wave number
and not simply the Hubble rate at the electroweak time.
According to Eq. (4.22), the scales corresponding to kew
reenter the effective horizon when τk ¼ Oð10−11Þτeq, i.e.,
much earlier than the magnetogenesis wavelengths. From

Eq. (4.15), the value of x1 corresponding to kew is therefore
Oð10−14Þ. In Fig. 2, the plot at the left illustrates the
relation between ð−qηÞ and ð−kτÞ for x1 ¼ Oð10−14Þ; in
the plot at the right, we assume a slightly smaller wave
number with x1 ¼ Oð10−16Þ.

D. Comparison with the WKB results

The problem we are now facing is to compare the
approximate results of the WKB approximation with the
explicit examples following from the exact solutions of
Eq. (4.4). This analysis is actually quite lengthy but
essential. The details of this comparison can be found in
Appendix B, and here, we focus on the final results. Let us
start with the case of increasing gauge coupling; in this
case, the approximate results for the mode functions have
been deduced in Eqs. (3.25) and (3.26). The hypermagnetic
and the hyperelectric power spectra have been instead
computed in Eqs. (3.27) and (3.28); the corresponding
gyrotropic contributions are reported in Eqs. (3.29) and
(3.30). The solutions of the auxiliary equation (4.4) can be
classified from the values of α and γ. In particular, the
values of α and b0 control the pseudoscalar coupling, while
the value of γ controls the scalar coupling; the explicit
expressions of the pump fields are given in Eq. (4.2).
The strategy followed in the comparison (see

Appendix B) has been to solve the auxiliary equation (4.4)
and to compute the exact form of the mode functions. If we
are interested in the spectra for typical wavelengths larger

FIG. 2. We graphically illustrate the relation (4.21) for x1 ¼ Oð10−14Þ (left plot) and for x1 ¼ Oð10−16Þ (right plot). As in Fig. 1, the
labels on the various contours denote the common logarithm of ð−qηÞ, while on the horizontal axis we illustrate the common logarithm
of ð−kτÞ. The results of this figure show that when k is much larger than OðMpc−1Þ we still have that ð−qηÞ ≪ 1 provided ð−kτÞ ≪ 1.
Even if the ranges of ð−qηÞ and ð−kτÞ are different, if we want to compute the power spectra for typical wavelengths larger than the
Hubble radius, we can take the limit ð−qηÞ ≪ 1 in the solutions of Eq. (4.4). We remember again that the explicit connection between x1
and k can be found in Eq. (4.15).
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than the Hubble radius [i.e., ð−kτÞ ≪ 1], Figs. 1 and 2
show that the solutions of the auxiliary equations must be
evaluated in their small argument limit [i.e., ð−qηÞ ≪ 1]. If
this limit is taken consistently, the spectra can be explicitly
computed and finally compared with the WKB results. The
essence of the comparison can be summarized as follows:

(i) In the case α > 0, WKB results and the approach
based on the auxiliary equation (4.4) give coincident
results. The difference between the two strategies is
that the results based on Eq. (4.4) capture with
greater accuracy the numerical prefactor which is
however not essential to estimate the power spectra
at a later time (see also, in this respect, the results
of Sec. V).

(ii) The explicit analysis of B assumes that the gauge
coupling increases [see Eq. (2.15) and discussion
therein]. The WKB estimates obtained in the case of
decreasing gauge coupling [see Eqs. (2.17)] also
match the results following from Eq. (4.4).

(iii) The discussion of the case α > 0 does not apply
when α → 0 and α → 1. As discussed in connection
with Figs. 1 and 2, in these two cases, the relation
between ð−qηÞ and ð−kτÞ gets singular. In these two
separate situations, the explicit solutions and the
power spectra are discussed in the last part of
Appendix B. The general conclusion of the WKB
approximation presented in Sec. III also holds in the
limit α → 0 and α → 1.

(iv) The same discussion carried on in the case of
increasing gauge coupling also applies, with some
differences, to the case of decreasing gauge coupling
of Eq. (2.17). To avoid lengthy digressions, a swift
version of this analysis has been relegated to
Appendix C; the explicit discussion merely repro-
duces the same steps of the one already presented in
Appendix B.

Based on the results of Appendixes B and C, we therefore
claim that the slopes of the large-scale gauge spectra are not
affected by the strength of the pseudoscalar terms that
solely determine the gyrotropic contributions. This con-
clusion is quite relevant from the phenomenological view-
point for two independent reasons. If we simply look at the
hypermagnetic power spectra with the aim of addressing
the magnetogenesis requirements, we can expect that the
role of the pseudoscalar interactions (associated with α and
b0) are completely negligible. Conversely, different values
of α are essential to deduce the gyrotropic contributions that
determine the baryon asymmetry of the Universe. These
two complementary expectations are explicitly discussed
in Sec. V.

V. LATE-TIME POWER SPECTRA AND SOME
PHENOMOLOGY

The pseudoscalar couplings do not affect the slopes of
the large-scale hypermagnetic and hyperelectric power

spectra at early times, while the gyrotropic components
depend (more or less severely) on the anomalous contri-
butions. The impacts of these results on the late-time power
spectra are considered. For the comparison of the late-time
gauge spectra with the observables, we assume that, after
the end of inflation, the radiation background dominates
below a typical curvature scale Hr. In the simplest
situation,Hr coincides withH1. In this situation, according
to Eq. (4.22), the different wavelengths reenter the effective
horizon at different times during the radiation-dominated
stage. The first aspect to appreciate is that the hyper-
magnetic and the gyrotropic power spectra computed when
the gauge coupling flattens out do not exactly coincide the
power spectra outside the horizon but can be obtained from
them via a specific unitary transformation that depends on
the rate of variation of the gauge coupling after inflation.

A. Comparing late-time power spectra

If the gauge coupling e ¼ ffiffiffiffiffiffiffiffiffiffi
4π=λ

p
increases and then

flattens out, Eqs. (2.15) and (2.16) imply that fk�ðτÞ and
gk�ðτÞ can be expressed for τ > −τ1 in terms of the
corresponding mode functions computed for τ ≤ −τ1 [70],

fk�ðτÞ ¼ Að�Þ
ff ðz1; z; δÞfk;� þ Að�Þ

fg ðz1; z; δÞ
gk;�
k

; ð5:1Þ

gk�ðτÞ ¼ Að�Þ
ff ðz1; z; δÞkfk;� þ Að�Þ

gg ðz1; z; δÞgk;�; ð5:2Þ

where fk;� and gk;� denote the hypermagnetic and hyper-
electric mode functions at the end of inflation (i.e.,
evaluated for τ ¼ −τ1). Since in Eq. (2.16) we assumed
that λ is constant for τ > −τ1, it follows that the various
coefficients appearing in Eqs. (5.1) and (5.2) are not

different for the left and right modes, e.g., AðþÞ
ff ¼ Að−Þ

ff ¼
Affðz1; z; δÞ and similarly for all the other coefficients
whose common expressions are

Affðz1;z;δÞ¼
π

2

ffiffiffiffiffiffiffi
z1z

p ½Yσ−1ðz1ÞJσðzÞ−Jσ−1ðz1ÞYσðzÞ�;

Afgðz1;z;δÞ¼
π

2

ffiffiffiffiffiffiffi
z1z

p ½Jσðz1ÞYσðzÞ−Yσðz1ÞJσðzÞ�;

Agfðz1;z;δÞ¼
π

2

ffiffiffiffiffiffiffi
z1z

p ½Yσ−1ðz1ÞJσ−1ðzÞ−Jσ−1ðz1ÞYσ−1ðzÞ�;

Aggðz1;z;δÞ¼
π

2

ffiffiffiffiffiffiffi
z1z

p ½Jσðz1ÞYσ−1ðzÞ−Yσðz1ÞJσ−1ðzÞ�:
ð5:3Þ

In Eq. (5.3), as usual, JσðxÞ and YσðxÞ denote the standard
Bessel functions [68,69]; furthermore z1, z, and δ are
defined as

z1¼ðδ=γÞkτ1; z¼kτþkτ1ð1þδ=γÞ; σ¼ δþ1=2:

ð5:4Þ
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An expression analogous to Eq. (5.3) can be easily derived
in the case of decreasing gauge coupling and can be found
in Appendix C. It can be explicitly verified that Eqs. (5.1)
and (5.2) obey the Wronskian normalization. Furthermore,
from Eq. (5.4), we have that for τ ¼ −τ1, zð−τ1Þ ¼ z1
and, consequently, Affðz1; z1Þ ¼ Aggðz1; z1Þ ¼ 1, while
Agfðz1;z1Þ¼Afgðz1;z1Þ¼0. It is finally relevant to appre-
ciate that, in the limit δ ≪ 1, Affðz1; zÞ ¼ Aggðz1; zÞ →
cos kðτ þ τ1Þ and Afgðz1;zÞ¼−Agfðz1;zÞ→ sinkðτþτ1Þ.
The late-time power spectra following from Eqs. (5.1)

and (5.2) do not coincide with the early-time power spectra
evaluated in the large-scale limit, as it is sometimes
suggested. In the case Eq. (5.3), the obtained expressions
get simpler if we observe that

jAffðz1; z; δÞfk;�j2 ≪
����Afgðz1; z; δÞ

gk;�
k

����2; ð5:5Þ

jAgfðz1; z; δÞkfk;�j2 ≪ jAggðz1; z; δÞgk;�j2: ð5:6Þ

Thanks to Eqs. (5.5) and (5.6), all the late-time comoving
spectra easily follow. In view of the applications, the
following three relevant results are mentioned:

PBðk;τÞ¼a41H
4
1Qðα;γ;δÞ

�
k

a1H1

�
4−2γ−2δ

FBðkτ;δÞ; ð5:7Þ

PEðk;τÞ¼a41H
4
1Qðα;γ;δÞ

�
k

a1H1

�
4−2γ−2δ

FEðkτ;δÞ; ð5:8Þ

PðGÞ
B ðk; τÞ ¼ a41H

4
1Q

ðGÞðα; γ; δ; b0Þ

×

�
k

a1H1

�
4−α−2γ−2δ

FBðkτ; δÞ: ð5:9Þ

Since we want to be able to take smoothly the limit where
the postinflationary gauge coupling is completely frozen
(i.e., δ → 0), the explicit expressions of FBðkτ; δÞ and
FEðkτ; δÞ are evaluated in the regime 0 ≤ δ < 1=2,

FBðkτ;δÞ¼ jkτjJ2δþ1=2ðkτÞ; FEðkτ;δÞ¼ jkτjJ2δ−1=2ðkτÞ:
ð5:10Þ

Equations (5.7) and (5.8) are consistent with the main
findings of this analysis, namely, the fact that for any α ≥ 0
the slopes of the gauge power spectra do not depend upon α
which instead appears in the spectral slope of Eq. (5.9).
Similarly Qðα; γ; δÞ and QðGÞðα; γ; δ; b0Þ do depend on α
but not on k. Provided α ≠ 0 and α ≠ 1, we have, in
particular,

QBðα; γ; δÞ ¼
22δ−4ðγ2 þ 1Þ

π2

�
δ

γ

�
−2δ

Γ2ðδþ 1=2Þ;

QðGÞ
B ðα; γ; δ; b0Þ ¼ b0

22δ−4fγ½3þ 2γðγ − 1Þ�g
π2

×

�
γ

δ

�
−2δ

Γ2ðδþ 1=2Þ; α > 0:

ð5:11Þ

In the cases α ¼ 1 and α ¼ 0, the expressions (5.11) are
slightly different and follow from the results obtained in
Sec. IV. The late-time power spectra of Eqs. (5.7), (5.8),
and (5.9) have been obtained in the case of increasing
gauge coupling. From the results of Appendix C, the
relevant expressions valid in the case of decreasing gauge
coupling easily follow, if needed. If the gauge coupling
decreases, the evolution is likely to start in a nonperturba-
tive regime. For this reason, we consider this case as purely
academic as recently pointed out in a related context [70].
In what follows, we consider the situation where, for

T > Tew, the electroweak symmetry is restored. Around
T ≃ Tew, the ordinary magnetic fields are proportional to
the hypermagnetic fields through the cosine of the
Weinberg’s angle θW , i.e., cos θWB⃗. To illustrate the gauge
spectra for different values of α, we consider the simplest
scenario where the modes reentering above the electroweak
temperature will affect the baryon asymmetry of the
Universe (BAU). Conversely the magnetic power spectra
obtained from the modes reentering for T < Tew are
compared with the magnetogenesis requirements.

1. Magnetogenesis considerations

While the modes inside the Hubble radius at the electro-
weak time reentered right after inflation, themagnetogenesis
wavelengths crossed the effective horizon much later but
always prior to matter-radiation equality [see Eq. (4.22) and
discussion therein]. For τ > τk, the conductivity dominates,
andwhile the electric fields are suppressed by the finite value
of the conductivity, the magnetic fields are not dissipated at
least for typical scales smaller than the magnetic diffusivity
scale. The mode functions for τ ≥ τk are suppressed with
respect to their values at τk,

fkðτÞ ¼ fkðτkÞe−k2=k2d ; gkðτÞ ¼ ðk=σemÞgkðτkÞe−k2=k2d ;

k−2d ¼
Z

τ

τk

dz=σemðzÞ; ð5:12Þ

where σem is the standard conductivity of the plasma, and kd
denotes the magnetic diffusivity momentum. The ratio
ðk=kdÞ2 appearing in Eq. (5.12) is actually extremely
small in the phenomenologically interesting situation
since around τ ¼ τeq [and for k ¼ O ðMpc−1Þ] the
ratio ðk=kdÞ2 ¼ Oð10−26Þ.

LARGE-SCALE GAUGE SPECTRA AND PSEUDOSCALAR … PHYS. REV. D 104, 123509 (2021)

123509-13



While so far we just considered comoving fields, what
matters for the magnetogenesis requirements are instead the
physical power spectra prior to the gravitational collapse of
the protogalaxy. Recalling Eq. (3.15), the physical power
spectrum is

PðphysÞ
B ðk; τÞ ¼ PBðk; τÞ

a4λ
cos2θW; ⇒

PðphysÞ
B ðk; τ�Þ ¼

PBðk; τkÞ
a4kλk

�
ak
a�

�
4

cos2θW: ð5:13Þ

The first expression of Eq. (5.13) is just the definition
of the physical power spectrum obtained by evaluating,
after symmetry breaking, the two-point function of
Eqs. (3.11) and (3.12) as a function of the physical fields;

PðphysÞ
B ðk; τ�Þ is instead the physical power spectrum

computed at a reference time τ� > τk under the further
assumption that the mode functions follow from Eq. (5.12)
for τ > τk. In a conservative perspective, the magneto-
genesis requirements roughly demand that the magnetic
fields at the time of the gravitational collapse of the
protogalaxy should be approximately larger than a (min-
imal) power spectrum which can be estimated between
Oð10−32Þ andOð10−22Þ nG2. The least demanding require-
ment,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðphysÞ
B ðk; τ�Þ

q
> 10−16 nG; ð5:14Þ

should then be complemented with the stricter limit,

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðphysÞ
B ðk; τ�Þ

q
> 10−11 nG: ð5:15Þ

The value 10−16 nG follows by assuming that, after
compressional amplification, every rotation of the
Galaxy increases the initial magnetic field of one e-fold.
According to some, this requirement is not completely
realistic since it takes more than one e-fold to increase the
value of the magnetic field by one order of magnitude, and
this is the rationale for the most demanding condition
associated with 10−11 nG.

2. Baryogenesis considerations

The considerations associated with the BAU involve
typical k modes in the range aewHew ≤ k < kσ, where kσ
denotes the diffusivity scale associated with electroweak
conductivity. While the contribution of the hypermagnetic
gyrotropy determines the baryon to entropy ratio
ηB ¼ nB=ς, the hyperelectric gyrotropy is washed out
inside the Hubble radius. Denoting by Neff the effective
number of relativistic degrees of freedom at the electroweak
epoch, the expression of the BAU [44,45,71] is

ηBðx⃗; τÞ ¼
nB
ς

¼ 3g02nf
32π2H

�
T
σc

�
GðBÞðx⃗; τÞ
Ha4ρcrit

;

GðBÞðx⃗; τÞ ¼ B⃗ · ∇⃗ × B⃗; ð5:16Þ

where ς ¼ 2π2T3Neff=45 is the entropy density of the
plasma, and g0 (with g0 ≃ 0.3) is the Uð1ÞY coupling at the
electroweak time and nf the number of fermionic gener-
ations. In what follows, Neff is fixed to its standard model
value (i.e., Neff ¼ 106.75). In Eq. (5.16), σc denotes the
electroweak conductivity. Equation (5.16) holds when the
rate of the slowest reactions in the plasma (associated with
the right electrons) is larger than the dilution rate caused by
the hypermagnetic field itself; at the phase transition, the
hypermagnetic gyrotropy is converted back into fermions
since the ordinary magnetic fields does not couple to
fermions. Since all quantities in Eq. (5.16) are comoving,
hηBðx⃗; τÞi for τ ¼ τew is determined by the averaged
gyrotropy,

hηBðx⃗; τewÞi ¼
3nfα02

4πσ0a4ewρcritHew

Z
kσ

0

PðGÞ
B ðk; τÞdk; ð5:17Þ

where σ0 accounts for the theoretical uncertainty associated
with the determination of the chiral conductivity of the
electroweak plasma11 according to σc ¼ σ0T=α0 with
α0 ¼ g02=ð4πÞ. The upper limit of integration in
Eq. (5.17) coincides with diffusivity momentum, and it
is useful to express kσ in units of Hew ¼ aewHew, where
H−1

ew ¼ Oð1Þ cm is the Hubble radius at the electroweak
time,

kσ
aewHew

¼ 3.5 × 108
ffiffiffiffiffiffiffiffiffiffiffiffi
σ0

α0Neff

r �
Tew

100 GeV

�
−1=2

: ð5:18Þ

The typical diffusion wave number exceeds the electroweak
Hubble rate by approximately 8 orders of magnitude.

B. The range α ≥ 1

The slopes of the hyperelectric and hypermagnetic
power spectra at early times do not depend on the strength
of the anomalous interactions. The corresponding gyro-
tropic spectra, on the contrary, depend explicitly on α and
b0. In what follows, we illustrate this general aspect in
terms of the late-time power spectra. In Fig. 3, the various
curves correspond to different values of the magnetic power
spectra at late times. The labels appearing on the contours

denote the common logarithm of
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PðphysÞ
B

q
expressed in nG,

i.e., log
h ffiffiffiffiffiffiffiffiffiffiffiffiffi

PðphysÞ
B

q
=nG

i
. On the horizontal axis, the values

11Typical values of range σ0 between 1 and 10. For the
illustrative purposes of this discussion, the values of σ0 are
immaterial, and we then fix σ0 ¼ 1 (see also [72,73]).
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of γ are reported, while on the common logarithm of the
comoving wave number k is plotted in units of Mpc−1. To
obtain the physical spectra of Fig. 3, we used Eq. (5.7)
evaluated at τk [see Eq. (4.22)] and then computed the
physical power spectrum according to Eq. (5.13). In Fig. 3,
the dashed and thick lines correspond to the cases α ¼ 1

and α > 1, respectively. The slight mismatch between the
thick and dashed contour plots does not come from the
slope of the power spectra but from a minor difference in
the overall amplitude which is immaterial for the present
considerations. In the left plot, we illustrate the case
δ ¼ 0.1, while in the 8 cm right plot, we considered the
limit δ → 0 by setting δ ¼ 10−4. In both plots of Fig. 3,

there are regions where
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PðphysÞ
B

q
> 10−11 nG and even a

region where
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PðphysÞ
B

q
¼ Oð10−2Þ nG showing that mag-

netogenesis is possible in this case.
The results of Fig. 3 ultimately demonstrate that the

values of α ≥ 1 do not modify the late-time magnetic
spectra. The rationale for this result can be understood, in
simpler terms, by appreciating that the slopes of the large-
scale hyperelectric and hypermagnetic fields at the end of
inflation do not depend on α and b0. The gyrotropic

contributions, on the contrary, do depend on the values
of α and, to a lesser extent, on b0. This aspect is
summarized in Fig. 4 where we illustrate the magnitude
of the gyrotropic contributions in the case α ≥ 1. As already
mentioned, to make the comparison more physical, we
directly illustrate the baryon asymmetry ηB which is
proportional to the magnetic gyrotropy, and it is computed
from Eqs. (5.16) and (5.17). The labels on the curves
correspond this time to the common logarithm of ηB. We
see that as α increases the associated baryon asymmetry
decreases sharply. This reduction is partially compensated
by an increase of b0, while in the left plot of Fig. 4, we took
b0 ¼ 1, and in the right plot, b0 ¼ 104. The rationale for
this result is that, in practice, the magnetic gyrotropy scales
linearly with b0, while the α enters the gyrotropy via xα1;
since x1 ≪ 1, a small increment in α implies a very large
suppression that cannot be compensated by b0. A large
value of b0 can be obtained from Eq. (4.3) either by
increasing λ2=λ1 or by imposing a large hierarchy between
τ1 and τ2. Since both tunings are somehow unnatural, we
regard the case b0 ¼ Oð1Þ as the most plausible.
Furthermore, as we see in a moment, large values of b0
quickly lead to a violation of the critical density bound. All

FIG. 3. The physical spectra of the magnetic field are illustrated at late time. The dashed line denotes the case α ¼ 1, while the full line
corresponds to the generic case α > 1. As explicitly indicated, the left and right plots differ because of the values of δ; since we are
interested in the situation where the gauge coupling flattens out after inflation, we have that δ ≪ 1. From the comparison of the two plots
of this figure, the slopes of the power spectra are not affected when δ passes from 0.1 to 10−4 (as long as δ ≪ 1). The results of both plots
primarily demonstrate that different values of α lead to the same slopes of the magnetic power spectra at late time. We recall that α
controls the profile of the pseudoscalar coupling, while γ accounts for the evolution of the scalar coupling [see Eq. (4.2) and discussion
thereafter]. The second point illustrated by both plots is that the late-time power spectra are phenomenologically relevant; as suggested

after Eq. (5.13),) we must have
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
PðphysÞ
B ðk; τ�Þ

q
> 10−11 nG to fulfil the most demanding magnetogenesis constraints [see Eqs. (5.14)

and (5.15) and discussion therein]. The cases α > 1 and α → 1 have been treated explicitly in Appendix B [see, in particular, Eqs. (B13)
and (B33)].
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in all, when α ≥ 1, the conclusions can be summarized in
the following manner:

(i) Different values of α do not affect the late-time form
of the hypermagnetic power spectra and of their
magnetic part obtained by projecting the hyper-
charge field through the cosine of the Weinberg
angle; this result also confirms, as expected from the
results of Sec. IV, that the pseudoscalar interactions
do not help, in practice, with the magnetogenesis
requirements of Eqs. (5.14) and (5.15).

(ii) The pseudoscalar interactions and the different
values of α are instead crucial for the estimate of
the gyrotropic spectra and for the calculation of
the BAU.

(iii) Finally, if we consider the obtained results at face
value, we are led to conclude that, in the case α ≥ 1,
the magnetogenesis requirements (5.14) and (5.15)
can be easily satisfied, but the BAU cannot be
correctly reproduced unless we choose some ex-
treme corners of the parameter space.

Concerning the last point, in the above list of items, it is
useful to stress that the typical values of of the magnetic
power spectra appearing in Fig. 3 not only satisfy the
magnetogenesis requirements but can even be OðnGÞ over
the typical scale of the gravitational collapse of the
protogalaxy.

C. The range 0 ≤ α < 1

Based on the previous trends, we expect that for even
smaller values of α the weight of the gyrotropic contribu-
tions increase, while the slopes of the hypermagnetic and
hyperelectric power spectra remain practically unaffected.
This means, in particular, that we also expect that the BAU
limits and the magnetogenesis requirements could be
jointly satisfied. Generally speaking, this is what happens
with one important caveat; as α → 0, the turning points do
not depend, in practice, on the values of α. For this reason,
in Fig. 6, we separately discussed the case α → 0. Figure 5
illustrates the different values of ηB in the range 0 < α < 1.
From the comparison of Figs. 4 and 5, we can appreciate
that as the values of α decrease below 1 the corresponding
values of the gyrotropic spectra increase sharply. In Figs. 4
and 5, we considered the limit δ → 0 since larger values of
δ only modify the actual numerical values of the gyrotropy
but do not alter the main conclusions. The difference
between the two plots in Fig. 5 is simply given by the
range of γ; in the left plot, 0 < γ < 1=2, while in the right
plot γ > 1=2. As in the general case, also for α → 0, the
slopes of the hyperelectric and hypermagnetic power
spectra are not modified at large scales. However the
corresponding amplitudes are comparatively more affected
than in the case α > 0. This is exactly what happens in

FIG. 4. The gyrotropic contribution is illustrated for different values of α ≥ 1 (reported on the vertical axis) and γ (appearing on the
horizontal axis). In both plots, for the sake of simplicity, we took the limit δ → 0, since, as previously established, different values of
δ ≪ 1 are practically indistinguishable. The physical spectra of the magnetic field are illustrated at late time. The range of α coincides
with the one of Fig. 3. We see that the values of the baryon asymmetry that are phenomenologically more relevant occur for large γ and
small α (i.e., in the bottom right corner of the right plot). What is more relevant for the present considerations is that different values of α
strongly affect the gyrotropic spectra, and the resulting values of ηB [see Eq. (5.16) and discussion thereafter]. If the two plots of this
figure are compared with Fig. 3, we are led to conclude that when α ≥ 1 that the magnetogenesis requirements of Eqs. (5.14) and (5.15)
can be easily satisfied, but it is impossible to reproduce the correct value of the BAU (except for some corners of the parameter space
characterized by extreme values of γ).
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FIG. 5. The gyrotropic contribution is illustrated in the plane ðγ; log αÞ and for 0 < α < 1. In this range, the value of the obtained
baryon asymmetry can be phenomenologically relevant. Since the magnetic power spectra are practically independent on α, we conclude

that for 0 < α < 1 the requirement
ffiffiffiffiffiffiffiffiffiffiffiffiffi
PðphysÞ
B

q
> 10−11 nG is satisfied, and the hypermagnetic gyrotropy is sufficiently large to seed the

BAU [see also Eqs. (5.16) and (5.17) and discussion therein]. As we can clearly appreciate by comparing the two plots of this figure, the
preferable values of α and γ are in the ranges 0 < α < 1 and γ > 1. This conclusion excludes, by construction, the case α → 0. In this
case, the η-time parametrization is singular (see also Appendix B); when α → 0, the phenomenological implications are separately
discussed hereunder (see, in particular, Figs. 6 and 7).

FIG. 6. We illustrate the gyrotropic contribution in the case α → 0. Special care is required since now the gyrotropic spectra depend
explicitly on b0; this happens because, for α → 0, the solution for the mode functions involves the Whittaker’s functions whose
asymptotic limits involve b0 (see Appendix B). For different values of b0 and γ, the BAU can be reproduced with a preference for the
range γ > 1=2. The obtained values of the baryon asymmetry are compatible with the ones already deduced in Fig. 5 when 0 < α < 1.
The difference here is that the amplitude of the hypermagnetic fields is more affected than in the case α ≠ 1. This aspect is more
specifically illustrated in Fig. 7.
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Fig. 6, where, in the left plot, we illustrate the gyrotropic
contribution, and in the right plot, we compute the power
magnetic power spectrum. It is finally useful to discuss also
the gauge power spectra in the limit α → 0. To avoid
repetitive remarks (and the proliferation of figures), we
only treat in detail the case α → 0, but the obtained results
are also applicable when α ≪ 1. In Fig. 7, in the left plot,
we illustrate the spectral energy density during inflation for
the maximal frequency of the spectrum. To avoid drastic
departure from the isotropy, ΩYðk; τÞ introduced in
Eq. (3.16) must be sufficiently small, and the shaded
region of the left plot in Fig. 7 corresponds to the plausible
requirement that ΩYðkmax; τÞ < 10−6. In the plot at the
right, the full curves correspond to b0 → 0, while the
dashed lines have been computed for b0 → 2. Since the
dashed and full lines are parallel, the slopes of the physical
spectra are the same. Whenever b0 ≠ 0, the amplitude of
the physical power spectrum increases. This change in the
amplitude could be however compensated by a shift in γ.
We conclude that the overall amplitude of late-time power
spectra is only marginally controlled by b0. The pheno-
menological discussion of this section can be summarized
as follows:

(i) The slopes of the late-time magnetic power
spectra are completely insensitive to the pseudosca-
lar coupling (associated with α) but only depend on

the scalar coupling (associated with γ); this con-
clusion matches the results discussed for α ≥ 1 and
completes the analysis.

(ii) If 0 ≤ α < 1, the baryogenesis and the magneto-
genesis requirements can be simultaneously satisfied
so there exist some regions of the parameter space
where the large-scale magnetic fields and the BAU
are generated at once by using the same set of
parameters; in particular, it turns out that the relevant
phenomenological region is given by 0 < α < 1
and γ > 1=2.

(iii) If α → 0, the power spectra can be computed exactly
in terms of Whittaker’s functions, and the main
features of this case coincide with what happens
for α ≪ 1.

(iv) For α → 0, the baryogenesis and the magnetogenesis
requirements are simultaneously satisfied provided
γ > 1=2 and in the case where b0 < Oð3Þ.

This discussion presented in this section refers to the case
of increasing gauge coupling. A similar discussion can be
carried on for a decreasing gauge coupling. In this case,
however, we must expect a strongly coupled regime at the
beginning of the cosmological evolution, and we therefore
regard this case as less appealing (see also, in this respect,
Ref. [70]). However, with the strategy described in Sec. IV
and with the explicit results of Appendix C, it is possible to

FIG. 7. We illustrate the late-time magnetic power spectrum in the case α → 0, where the amplitude of the magnetic power spectra
depends on the values of b0 defined in Eqs. (4.2) and (4.3). In the plot at the left, we illustrate the critical density bound in the plane
ðb0; γÞ; if b0 falls outside the shaded area, the produced gauge fields are overcritical. Therefore, the complementary white region is
excluded. In the plot at the right, the full line refers to b0 → 0, while the dashed curves correspond to b0 ¼ 2. The results of Figs. 6 and 7
demonstrate that the magnetogenesis and the baryogenesis requirements can be met for α → 0 provided the values of b0 and γ fall within
the shaded area of the plot at the left. In other words, not all the values of b0 are possible; if b0 is larger than Oð3Þ, the critical density
bound associated with the produced gauge fields is violated. This is why, in the previous figure, b0 has been chosen to be smaller than
about 3. From the right plot, we can also appreciate that different values of b0 do not modify the late-time slopes of the magnetic
spectrum since the dashed and full lines (corresponding to different values of b0) are practically parallel.
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compute the wanted spectra. We want to stress, in this
respect, that also in the case of decreasing gauge coupling
the hypermagnetic and the hyperelectric gauge spectra are,
in practice, not affected by the pseudoscalar interactions
in the same sense discussed when the gauge coupling
increases and then flattens out. In particular, it can be
verified that the approximate duality symmetry connecting
Eqs. (3.27) and (3.28) and Eqs. (3.31) and (3.32) holds, in
spite of the values of α, and in the long wavelength limit.

VI. GENERICNESS OF THE OBTAINED RESULTS

A. Effective approach to inflationary scenarios

When the dependence of the Lagrangian on the inflaton
field is unconstrained by symmetry principles (or by other
aspects of the underlying theory), the effective approach
suggests that the corresponding inflationary scenario is

generic. If we focus, for simplicity, on the case of single-
field inflationary models, the lowest order effective
Lagrangian [corresponding to a portion of Eq. (1.1)] is a
fair approximation to the full theory and can be written as12

Linf ¼
ffiffiffiffiffiffiffi
−G

p �
−
M2

PR
2

þ 1

2
Gαβ∂αφ∂βφ − VðφÞ

�
: ð6:1Þ

In the effective approach, Eq. (6.1) is the first term of a
generic theory where the higher derivatives are suppressed
by the negative powers of a large massM that specifies the
scale of the underlying description. The leading correction
to Eq. (6.1) consists of all possible terms containing four
derivatives; following the classic analysis of Weinberg [7]
and barring for some minor differences the correction
consists of 12 terms,

ΔLinf ¼
ffiffiffiffiffiffiffi
−G

p
½c1ðϕÞðGαβ∂αϕ∂βϕÞ2 þ c2ðϕÞGμν∂μϕ∂νϕ□ϕþ c3ðϕÞð□ϕÞ2

þ c4ðϕÞRμν∂μϕ∂νϕþ c5ðϕÞRGμν∂μϕ∂νϕþ c6ðϕÞR□ϕþ c7ðϕÞR2 þ c8ðϕÞRμνRμν

þ c9ðϕÞRμανβRμανβ þ c10ðϕÞCμανβCμανβ þ c11ðϕÞRμανβR̃μανβ þ c12ðϕÞCμανβC̃
μανβ�; ð6:2Þ

where the dimensionless scalar ϕ ¼ φ=M has been intro-
duced for convenience. In Eq. (6.2), the notations are
standard. Rμανβ and Cμανβ denote the Riemann and Weyl
tensors, while R̃μανβ and C̃μανβ are the corresponding duals.
Furthermore □ϕ ¼ Gαβ∇α∇βϕ and so on and so forth.
From the parametrization of Eq. (6.2), it follows that the
leading correction to the two-point function of the scalar
mode of the geometry comes from the terms containing
four derivatives of the inflaton field, while in the case of the
tensor modes the leading corrections stem from CμανβC̃

μανβ

and RμανβR̃μανβ which are typical of Weyl and Riemann
gravity [74,75]. Incidentally both terms break parity and are
therefore capable of polarizing the stochastic backgrounds

of the relic gravitons [58] by ultimately affecting the
dispersion relations of the two circular polarizations.

B. Effective approach to magnetogenesis scenarios

The analysis leading to Eq. (6.2) and to the results of
Ref. [7] can be extended to include the hypercharge fields
[76]. In full analogy with Eq. (6.2), rather than assuming
a particular underlying description, the idea is to include
all the generally covariant terms potentially appearing
with four space-time derivatives in the effective action
and to weight them by inflaton-dependent couplings. The
Lagrangian density associated with Eq. (1.2) is now be
complemented by

ΔLgauge ¼
ffiffiffiffiffiffiffi
−G

p

16πM2
½λ1ðϕÞRYαβYαβ þ λ2ðϕÞRμ

νYμαYαν þ λ3ðϕÞRμανβYμαYνβ

þ λ4ðϕÞCμανβYμαYνβ þ λ5ðϕÞ□ϕYαβYαβ þ λ6ðϕÞ∂μϕ∂νϕYμαYνα þ λ7ðϕÞ∇μ∇νϕYναYμα

þ λ8ðϕÞRYαβỸαβ þ λ9ðϕÞRμ
νYανỸμα þ λ10ðϕÞRμανβYμαỸνβ þ λ11ðϕÞCμανβYμαỸνβ

þ λ12ðϕÞ□ϕYαβỸαβ þ λ13ðϕÞ∂μϕ∂νϕỸμαYνα þ λ14ðϕÞ∇μ∇νϕYναỸμα�: ð6:3Þ

Equation (6.3) contains 14 distinct terms; seven of them do
not break parity and are weighted by the couplings λiðϕÞ
(with i ¼ 1;…; 7). The remaining seven contributions are

weighted by the prefactors λjðϕÞ (with j ¼ 8;…; 14) and
contain parity-breaking terms. Equation (6.3) is also
applicable when the various λi and λj are ψ-dependent
quantities. In the latter case, the collection of the contri-
butions with four derivatives must be considered in con-
junction with the supplementary restrictions associated

12In Eq. (6.1), we considered, for simplicity, that the potential
appearing in Eq. (1.1) only depends on φ, i.e., Vðφ;ψÞ≡ VðφÞ.
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with the physical nature of the spectator fields. Finally, if
the couplings depend simultaneously on the inflaton ϕ and
on ψ , further terms (containing the covariant gradients of
ψ) have to be included in the effective Lagrangian [76].
For the sake of illustration, we stick to the simplest
situation of the single-field inflationary scenarios. When
the ϕ-dependent couplings disappear, the first three terms
have been analyzed by Drummond and Hathrell [77], and
more recently, the same terms (without the parity-breaking
contributions) have been considered in Ref. [78] for the
analysis of photon propagation in curved space-times.
The Riemann coupling associated with λ10ðϕÞ has been
proposed in Ref. [58]; this term may ultimately polarize
the relic graviton background. The effective action (6.3)
does not include terms like ðYμνYμνÞ2 (appearing, for
instance, in the Euler-Heisenberg Lagrangian). These
terms should only enter the effective action if the gauge
fields are a source of the background and break explicitly
the isotropy. In this case, the gauge background affects the
dispersion relations [79], but this is not the situation
discussed here.

C. Effective action during a quasi-de Sitter stage

As in Eq. (6.2), the higher derivatives appearing in
Eq. (6.3) are suppressed by the negative powersM. During
a quasi-de Sitter stage, Eq. (6.3) always leads to an
asymmetry between the hypermagnetic and the hyper-
electric susceptibilities. Indeed, the full gauge action
obtained from the sum of Eqs. (1.2) and (6.3) becomes

Sgauge ¼
Z

d3x
Z

dτðLgauge þ ΔLgaugeÞ

¼ 1

2

Z
d3x

Z
dτðχ2EE2 − χ2BB

2 þ χ2E⃗ · B⃗Þ; ð6:4Þ

where χ2E and χ2B denote the hyperelectric and the hyper-
magnetic susceptibilities, while χ2 is the strength of the
anomalous couplings. In the formal limitM → ∞, we have

that χE ¼ χB ∝
ffiffiffi
λ

p
and χ ∝

ffiffiffi
λ

p
. The comoving fields E⃗

and B⃗ appearing in Eq. (6.4) are defined as B⃗ ¼ a2χBB⃗
ðphysÞ

and as E⃗ ¼ a2χEE⃗
ðphysÞ; in the limit χE → χB, the two

previous rescalings exactly coincide with the ones already
discussed in Sec. III. The explicit expressions of the
hyperelectric and the hypermagnetic susceptibilities can
be computed in general terms; however, for the present
ends, it is sufficient to consider the case of a quasi-de Sitter
stage of expansion,

χ2E ¼ λ

4π

�
1þ H2

M2
dð1ÞE − ϵ

H2

M2
dð2ÞE − ϵ

H2

M2
dð3ÞE

þ ffiffiffi
ϵ

p H2MP

M3
dð4ÞE þ ffiffiffi

ϵ
p

η
H2MP

M3
dð5ÞE

�
; ð6:5Þ

χ2B ¼ λ

4π

�
1þ H2

M2
dð1ÞB − ϵ

H2

M2
dð2ÞB

−
ffiffiffi
ϵ

p H2MP

M3
dð3ÞB þ ffiffiffi

ϵ
p

η
H2MP

M3
dð4ÞB

�
; ð6:6Þ

χ2 ¼ λ

4π

�
1þ H2

M2
dð1Þ − ϵ

H2

M2
dð2Þ − ϵ

H2M2
P

M4
dð3Þ

þ ffiffiffi
ϵ

p H2MP

M3
dð4Þ þ ffiffiffi

ϵ
p

η
MPH2

M3
dð5Þ

�
; ð6:7Þ

where ϵ ¼ − _H=H2 and η ¼ ϕ̈=ðH _ϕÞ are the relevant slow-
roll parameters13 (see, for instance, [8,80]). The coefficients
of Eqs. (6.5), (6.6), and (6.7) can be accurately computed in
terms of λiðϕÞ and λjðϕÞ appearing in Eq. (6.3) [76].
However, the naturalness of the couplings and the absence
of fine-tunings implies that all the λiðϕÞ are of the order
of λðϕÞ and similarly for the λjðϕÞ which should all
be OðλÞ. In this situation, the leading contribution to the
gauge power spectra is given by the leading-order action.
The same conclusion follows if λiðϕÞ ≪ λðϕÞ and
λiðϕÞ ≪ λðϕÞ. In the opposite situation λiðϕÞ ≫ λðϕÞ
and λiðϕÞ ≫ λðϕÞ, the hyperelectric and the hypermagnetic
susceptibilities may evolve at different rates. Barring for
this possibility that implies an explicit fine-tuning, the
results of the previous sections hold provided the higher-
order corrections are generically subleading, and this is the
last step of this discussion.

D. Generic corrections during a quasi-de Sitter stage

If none of the couplings λiðϕÞ and λjðϕÞ are fine-tuned to
be artificially much larger than all the others, the first
possibility suggested by Eqs. (6.5), (6.6), and (6.7) is that ϵ
is smaller than 1 but not too small. In this case, the change
of _ϕ during a Hubble time H−1 follows from the back-
ground evolution, and in this limit, M ≃

ffiffiffiffiffi
2ϵ

p
MP. This

means that, for generic theories of inflation (i.e., when φ is
not constrained by symmetry principles), M cannot be
much smaller than

ffiffiffiffiffi
2ϵ

p
MP, otherwise _ϕ=H would diverge.

If M ¼ ffiffiffiffiffi
2ϵ

p
MP, then H=M is slightly larger than H=MP.

In the case of conventional inflationary scenarios, we have
thatM2

PH
2=M4

P ¼ ϵAR=8, whereAR ¼ 2.41 × 10−9 is the
amplitude of the curvature inhomogeneities assigned at the
pivot scale kp ¼ 0.002 Mpc−1. If we keep track of the
various factors, the leading contributions to χ2E, χ

2
B, and χ2

are all OðA0=ϵÞ where A0 ¼ 8π3AR ≃ 6 × 10−7.
The situation described in the previous paragraph is not

the one compatible with the current phenomenological

13The slow-roll parameter defining η should not be confused
with the η time defined in Sec. IV; there is no possible
misunderstanding since the two quantities are never used in
the same context.
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estimates of rT ranging between rT < 0.07 [81] and
rT < 0.01 [82,83]. Since the consistency relations stipulate
that ϵ ≃ rT=16, we have to acknowledge that ϵ < 10−3

which is not the situation discussed in the previous para-
graph. We should then require, in the present context, that
M ≫

ffiffiffiffiffi
2ϵ

p
MP, implying M ≃MP and ϵ ≪ 1. This means

that the leading contributions appearing in Eqs. (6.5), (6.6),

and (6.7) are associated with dð1ÞE , dð1ÞB , and dð1Þ.
All in all, if λi and λj are not fine-tuned, the leading-order

expressions of the susceptibilities, as established above, are
obtained by setting M ∼MP and ϵ ≪ 1,

χX¼
ffiffiffiffiffiffi
λ

4π

r ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þαX

�
H
MP

�
2

s
; χ¼

ffiffiffiffiffiffi
λ

4π

s ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þα

�
H
MP

�
2

s
;

ð6:8Þ

where X ¼ E, B so that αX and α do not depend on ϕ. It
should now be clear that Eqs. (6.4) and (6.8) lead exactly to
the same conclusions of the leading-order contribution of
Eq. (1.2). This conclusion can also be reached in rigorous
terms by noting that the explicit form of the gauge action
can be extended to the case (6.4); this extension follows by
adopting a new time parametrization and a consequent
redefinition of the susceptibilities, namely,

τ → s ¼ sðτÞ; dτ ¼ nðsÞds;
n2 ¼ χ2E=χ

2
B; χ ¼ ffiffiffiffiffiffiffiffiffiffi

χEχB
p

: ð6:9Þ

The s-time parametrization is vaguely analogous to the η
time, and this is why we always used an overdot. It should
be stressed, however, that the auxiliary equation written in
the η time [see Eq. (4.4) and discussion therein] applies
when the gauge coupling is not asymmetric. In terms of χ

and n, the comoving fields are now given by B⃗ ¼ ∇⃗ ×
Y⃗=

ffiffiffi
n

p
and by E⃗ ¼ −ðχ= ffiffiffi

n
p Þ∂sðY⃗=χÞ, where Y⃗ is, as usual,

the comoving vector potential. If the these expressions are
inserted into Eq. (6.4), the full action takes the following
simple form:

Sgauge ¼
1

2

Z
d3x

Z
ds

�
_Y2
a þ

�
_χ

χ

�
2

Y2
a − 2

�
_χ

χ

�
Ya

_Ya

− ∂iYa∂iYa − CðsÞYa∂bYmϵ
abm

�
; ð6:10Þ

where CðsÞ ¼ ∂sχ
2=χ2 where the overdots now denote a

derivation with respect to the new time coordinate s and
should not be confused with the derivation with respect to
the η time. From the action (6.10), it is possible to solve the
dynamics also in the case when the gauge couplings are
asymmetric. In our case, however, it is sufficient to note that
from Eq. (6.8)

χE ¼ χB½1þOð10−10Þ�; n ¼ 1þOð10−10Þ: ð6:11Þ

In Eq. (6.10), to leading order, s → τ, χ →
ffiffiffi
λ

p
, and

χ →
ffiffiffi
λ

p
. The resulting expression for the gauge action is

then

Sgauge ¼
1

2

Z
d3x

Z
dτ

�
Y02

a þ F 2Y2
a − 2FYaY0

a

− ∂iYa∂iYa −
λ0

λ
Ya∂bYmϵ

abm

�
: ð6:12Þ

From Eq. (6.12), the canonical momenta can be deduced as
πa ¼ Y0

a − FYa; the canonical Hamiltonian associated
with Eq. (6.12) turns out to be exactly the one already
discussed in Eq. (3.2).
The results of this investigations are, overall, as generic

as the conventional models of inflation where the depend-
ence of the Lagrangian on the inflaton field is practically
unconstrained by symmetry. This means that there are
classes of models where this conclusion does not immedi-
ately follow, at least, in principle. One possibility, as
already mentioned, is that some of the couplings λiðϕÞ
and λiðϕÞ are artificially tuned to be very large. From the
viewpoint of the underlying inflationary model, it could
also happen that the inflaton has some particular symmetry
(like a shift symmetry φ → φþ const); this possibility
reminds of the relativistic theory of Van der Waals (or
Casimir-Polder) interactions [84,85] and leads to a specific
class of magnetogenesis scenarios [86]. Another nongene-
ric possibility implies that the rate of inflaton roll defined
by η remains constant (and possibly much larger than 1), as
it happens in certain fast-roll scenarios [87–89]. In all these
cases, χE and χB may have asymmetric evolutions, and the
general results reported here cannot be applied.

VII. FINAL REMARKS

The slopes of the large-scale hypermagnetic and hyper-
electric power spectra amplified by the variation of the gauge
coupling from their quantum mechanical fluctuations are
insensitive to the relative strength of the parity-breaking
terms. The pseudoscalar contributions to the effective action
control instead the slopes and amplitudes of the gyrotropic
spectra. After proposing a strategy for the approximate
estimate of the gauge power spectra, we analyzed a number
of explicit examples and found that they all corroborate the
general results. The form of the gauge spectra for a generic
variation of the pseudoscalar interaction term λ has been
discussed in connection with the dynamics of the gauge
coupling which is related, within the present notations, to the
inverse of λ. The scaling of ðλ0=λÞ (where the prime denotes
the conformal time derivative) ultimately determines the
properties of the corresponding power spectra. If ðλ0=λÞ
decreases as τ−1−α, two different physical regimes emerge.
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When α > 1, the hypermagnetic and hyperelectric power
spectra are practically unaltered by the presence of the
pseudoscalar terms. This is true both for the early-time and
late-time power spectra. If 0 < α < 1, the slopes of the
hypermagnetic and hyperelectric power spectra are still not
affected, but the overall amplitude gets modified depending
on the value of α. Two particular limits must be separately
treated, and they correspond to the boundaries of the two
regions (i.e., α → 1 and α → 0).
The production of the Chern-Simons condensates has

been investigated under the assumption that the gauge
coupling smoothly evolves during a quasi-de Sitter phase
and then flattens out in the radiation epoch by always
remaining perturbative. In all physical limits, the gauge
power spectra have been also illustrated at late times with
the purpose of discussing the phenomenological impact of
the various regions of the parameter space. By focussing on
the case of increasing gauge coupling (which we regard as
the most plausible), we showed that the magnetogenesis
requirements are satisfied in spite of the pseudoscalar
couplings. In practice, only the region 0 ≤ α ≪ 1 is
relevant for the generation of the baryon asymmetry. In
the case of decreasing gauge couplings, the results are
quantitatively different, but the general logic remains the
same. All in all, we summarize the phenomenological
implications of this analysis in the following manner:

(i) If α ≥ 1, the magnetogenesis requirements can be
reproduced, but the BAU is not generated except for
a corner of the parameter space where the rate of
variation of the gauge coupling is close to the critical
density limit.

(ii) If 0 ≤ α < 1, we have instead that the baryogenesis
and the magnetogenesis requirements are simulta-
neously satisfied so that the large-scale magnetic
fields and the BAU can be seeded by the same
mechanism and in the same region of the param-
eter space.

(iii) In the most promising region of the parameter space,
ηB ¼ Oð10−10Þ (or slightly larger), while the mag-
netic power spectra associated with the modes
reentering after symmetry breaking may even be
of the order of a few hundredths of a nG over typical
length scales comparable with the Mpc prior to the
collapse of the protogalaxy.

Concerning the above statements, we first remark that the
regions where ηB is a bit larger than 10−10 should not be
excluded since various processes can independently reduce
the BAU generated in this way. The second comment is
that, in this analysis, we mainly focused on the case of
increasing gauge coupling. For decreasing gauge cou-
plings, only a few results have been reported just to avoid
a repetitive analysis. In spite of that, when the gauge
coupling decreases, the main theoretical result still holds;
the slopes of the large-scale hypermagnetic and hyper-
electric power spectra are insensitive to the relative strength

of the parity-breaking terms that are instead essential to
compute the gyrotropies and the values of the Chern-
Simons condensates.
We finally demonstrated that the proposed approaches

and the obtained results hold generically for the whole class
of inflationary models where the inflaton is not constrained
by any underlying symmetry. This question has been
addressed in the framework of the effective field theory
description of the inflationary scenarios which can be
extended to include the contributions of the hypercharge
field. Rather than assuming a particular underlying descrip-
tion, all the generally covariant terms potentially appearing
with four space-time derivatives in the effective action have
been included and weighted by inflaton-dependent cou-
plings. During a quasi-de Sitter stage, the corrections are
immaterial in the case of generic inflationary models but
may become relevant in some nongeneric scenarios where
either the inflaton has some extra symmetry or the higher-
order terms are potentially dominant. In this sense, the
present findings both simplify and generalize the effective
description of the gauge fields during inflation and in the
subsequent stages of the expansion.
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APPENDIX A: EXPLICIT FORMS OF THE MODE
FUNCTIONS IN THE GENERAL CASE

Since for τ < −τ� the Wronskian normalization must be
enforced [see Eq. (3.6) and discussion thereafter], the
explicit form of the mode functions follows from
Eqs. (4.7) and (4.8). In particular, the hypermagnetic mode
functions fk;�ðτÞ are

fk;þðτÞ¼
eikτþffiffiffiffiffi
2k

p
Δþ

ffiffiffiffiffi
z
zþ

r ��
IνðzÞ

�
dKν

dz

�
þ
−KνðzÞ

�
dIν
dz

�
þ

�

þ
�
1

2
− i

�
x1½IνðzÞKνðzþÞ−IνðzþÞKνðzÞ�

	
;

ðA1Þ

fk;−ðτÞ ¼
eikτ−ffiffiffiffiffi
2k

p
Δ−

ffiffiffiffiffi
z
z−

r ��
JνðzÞ

�
dYν

dz

�
−
− YνðzÞ

�
dJν
dz

�
−

�

þ
�
1

2
− i

�
x1½JνðzÞYνðz−Þ − Jνðz−ÞYνðzÞ�

	
:

ðA2Þ

If SνðzÞ represents any of the four different Bessel functions
appearing above, the concise notation employed in
Eqs. (A1) and (A2) corresponds to
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SνðzÞ ¼ Sν½cðzÞ�; Sνðz�Þ ¼ Sν½c�� ¼ Sν½cðz�Þ�;�
dSν
dz

�
�
¼

�
dSν
dz

�
z¼z�

: ðA3Þ

Recalling Eqs. (4.4) and (4.21), the definitions of ν and cðzÞ
are

cðzÞ ¼ 2
ffiffiffiffiffiffiffiffiffi
b0x1

p
j1 − αj z

ð1−αÞ=2 ¼ 2
ffiffiffiffiffiffiffi
qx1

p
j1 − αj

�
−

τ

τ1

�ð1−αÞ=2
;

ν ¼
���� 2γ − 1

1 − α

����; ðA4Þ

where x1 ¼ kτ1 ≪ 1. In full analogy with Eq. (A4), the
explicit expression of cðz�Þ is given by

cðz�Þ ¼
2

ffiffiffiffiffiffiffiffiffi
b0x1

p
j1 − αj z

ð1−αÞ=2
� ¼ 2

ffiffiffiffiffi
b0

p
j1 − αj x

α=2
1 ½1þ ϵ�ðkÞ�ð1−αÞ=2;

ðA5Þ

(see also Figs. 1 and 2 and discussion therein). Since x1
ranges between Oð10−23Þ (or smaller) and Oð10−14Þ [see
Eq. (4.15) and discussion therein], there are three comple-
mentary cases where Eqs. (A4) and (A5) can be analyzed,

(i) When x1 ≪ 1, we have that jcðz�Þj ≪ 1 (both for
0 < α < 1 and for α > 1).

(ii) If α → 1, Eqs. (A4) and (A5) are formally divergent.
(iii) Finally, for α → 0, we have that

cðz�Þ ¼ 2
ffiffiffiffiffi
b0

p ½1þ ϵ��.
All in all the cases, α ¼ 0 and α ¼ 1 are not singular, but
they must be separately treated as we showed in the bulk of
the paper. In Eqs. (A1) and (A2), we also introduced Δ�,
which are the Wronskians of the corresponding solutions,

Δþ ¼ IνðzþÞ
�
dKν

dz

�
þ
− KνðzþÞ

�
dIν
dz

�
þ

¼ −
ð1 − αÞ
2zþ

¼ −
ð1 − αÞx1

2
; ðA6Þ

Δ− ¼ Jνðz−Þ
�
dYν

dz

�
−
− Yνðz−Þ

�
dJν
dz

�
−

¼ ð1 − αÞ
πz−

¼ ð1 − αÞx1
π

; ðA7Þ

where z� ¼ ð−τ�=τ1Þ ¼ ð1þ ϵ�Þ=x1. Finally, recalling
the notations of Eqs. (A1) and (A2) and Eqs. (A6) and
(A7), the hyperelectric mode functions gk;�ðτÞ are

gk;þ
k

¼ −
eikτþ

x1Δþ
ffiffiffiffiffi
2k

p
ffiffiffiffiffi
z
zþ

r �
x1
z

�
1

2
− γ

��
1

2
− i

�
½KνðzþÞIνðzÞ − KνðzÞIνðzþÞ�

þ
��

dKν

dz

�
þ

�
dIν
dz

�
−
�
dIν
dz

�
þ

�
dKν

dz

��
þ
�
1

2
− i

�
x1

�
KνðzþÞ

�
dIν
dz

�
− IνðzþÞ

�
dKν

dz

��

þ 1

z

�
1

2
− γ

��
IνðzÞ

�
dKν

dz

�
þ
− KνðzÞ

�
dIν
dz

�
þ

�	
; ðA8Þ

gk;−
k

¼ −
eikτ−

x1Δ−
ffiffiffiffiffi
2k

p
ffiffiffiffiffi
z
z−

r �
x1
z

�
1

2
− γ

��
1

2
− i

�
½Yνðz−ÞJνðzÞ − YνðzÞJνðz−Þ�

þ
��

dYν

dz

�
−

�
dJν
dz

�
−
�
dJν
dz

�
−

�
dYν

dz

��
þ
�
1

2
− i

�
x1

�
Yνðz−Þ

�
dJν
dz

�
− Jνðz−Þ

�
dYν

dz

��

þ 1

z

�
1

2
− γ

��
JνðzÞ

�
dYν

dz

�
−
− YνðzÞ

�
dJν
dz

�
−

�	
: ðA9Þ

It is is useful to mention that in the examples discussed here
we always considered the case α ≥ 0. For the sake of
completeness, we want also to discuss the case
−1 < α < 0, where the equation defining the turning points
can be written as

ð−kτÞ2 ≃�ð−kτÞ1−αb0xα1 þ γðγ − 1Þ: ðA10Þ

If α is negative, the term xα1 in Eq. (A10) is, in principle,
extremely large [recall, in this respect, that according to

Eq. (4.15) x1 ¼ Oð10−20Þ]. The second term at the
right-hand side of (A10) can then be neglected, and the
solution is

−kτ� ≃ b1=ð1þαÞ
0 xα=ðαþ1Þ

1 eiσ� ; ðA11Þ

where σþ ¼ 0 and σ− ¼ π=ð1þ αÞ. It is inappropriate to
talk about turning points in this case since we are in the
situation where cðzÞ and c� are both very large, and the
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magnetic spectra are exponentially divergent. The mode
functions of (A1) and (A2) and of (A8) and (A9) must be
evaluated for cðzÞ ≫ 1 and c� ≫ 1. Up to irrelevant
numerical factors, the magnetic power spectrum can be
written, in this case, as

PBðk; τÞ ≃ a4H4ð−kτÞð9þαÞ=2x−α=21 b−1=20 ecþðb0;x1Þ;

cþðb0; x1Þ ¼
2

j1 − αj b
1=ðαþ1Þ
0 xα=½2ðαþ1Þ�

1 : ðA12Þ

From Eq. (A12), we observe that the exponential diver-
gence in the hypermagnetic power spectra has a counterpart
in the electric case. To avoid that the critical density bound
during inflation is strongly violated, we must therefore
require that the power spectra are not affected by the
exponential increase. From Eq. (A12), this happens pro-
vided α < −0.01 assuming x1 ¼ Oð10−23Þ, as required by
Eq. (4.15). But this means, according to Eq. (A12) that the
power spectrum at the end of inflation is of the order of
H4

1x
9=2
1 which is irrelevant for any observational purpose.

APPENDIX B: COMPARING THE WKB RESULTS
AND THE EXACT SOLUTIONS

In Sec. IV, we showed, in general terms, that the
auxiliary equation [i.e., Eq. (3.19)] can be solved explicitly
by introducing a new time parametrization (i.e., the η time).
In terms of the η time, Eq. (3.19) assumes a more friendly
aspect [see, e.g., Eqs. (4.1) and (4.4)]; the resulting
equation can then be solved for different values of α and
compared with the WKB expectation. In what follows, for
the sake of accuracy, we analyze the whole range of α by
separating the generic case (i.e., α > 0) from the particular
cases α ¼ 0 and α ¼ 1. We remind the reader that the
parametrization of the pump fields λ and λ is the one
introduced in Eqs. (4.2) and (4.3); in particular, α and b0
control the strength of the pseudoscalar term, while γ is
associated with the evolution of the scalar contribution.

1. The generic case α > 0

Recalling the relation between η parametrization and
conformal time [see, for instance, Eq. (4.5)], we have from
Eq. (4.18) that at the turning points τ ¼ τ�,

−qη� ¼ 2
ffiffiffiffiffi
b0

p
j1 − αj x

α=2
1 ð1þ ϵ�Þð1−αÞ=2 ≪ 1: ðB1Þ

Since the critical values of α are avoided by requiring
α ≠ 1 and α ≠ 0, Eq. (B1) holds separately for the ranges
0 < α < 1 and for α > 1. The mode functions (4.7) and
(4.8) can therefore be matched with their plane-wave limit.
As already mentioned, these results can be founds in
Eqs. (A1) and (A2) and Eqs. (A6) and (A7). To compute
the power spectra, it is necessary to study the

hypermagnetic and hyperelectric mode functions for typ-
ical wavelengths larger than the effective horizon. This is
the purpose of the present Appendix. The obtained results
are compared with the WKB results valid in the same limit.

a. Explicit expression of the mode functions
in the long-wavelength limit

In the small argument limit, Eqs. (A1) and (A2) become

fk;�ðτÞ ¼ −
1ffiffiffiffiffi
2k

p ½Ak;�ð−kτÞ1=2þð1−αÞν=2

− Bk;�ð−kτÞ1=2−ð1−αÞν=2�; ðB2Þ

Ak;� ¼ ð1þ ϵ�Þ−1=2−ð1−αÞν=2
2ν

�
2

ð1 − αÞ
�
1

2
− i

�
−

ν

1þ ϵ�

�
;

ðB3Þ

Bk;� ¼ ð1þ ϵ�Þ−1=2þð1−αÞν=2

2ν

�
2

ð1 − αÞ
�
1

2
− i

�
þ ν

1þ ϵ�

�
:

ðB4Þ

Equations (B2), (B3), and (B4) hold provided ν ≠ 0; as
ν → 0, the small argument limit of the corresponding
Bessel functions involves a logarithmic correction
[68,69] which is also present in the absence of anomalous
contributions (i.e., for λ → 0). For the sake of conciseness,
this discussion is omitted, but the final result is the same
since the limit of Eqs. (A1) and (A2) for ν → 0 reproduce
the WKB results in the same limit (i.e., γ → 1=2). The
hyperelectric mode functions of Eqs. (A6) and (A7) are
obtained with the same strategy,

gk;�ðτÞ ¼
ffiffiffi
k
2

r
½Ck;�ð−kτÞ−1=2þð1−αÞν=2

þDk;�ð−kτÞ−1=2−ð1−αÞν=2�; ðB5Þ

Ck;� ¼ ð1þ ϵ�Þ1=2−ð1−αÞν=2
2ν

��
1

2
− i

��
1 − 2γ

1 − α
þ ν

�

−
νð1 − αÞ
2ð1þ ϵ�Þ

�
1 − 2γ

1 − α
þ ν

��
; ðB6Þ

Dk;� ¼ ð1þ ϵ�Þ1=2þð1−αÞν=2

2ν

��
1

2
− i

��
2γ − 1

1 − α
þ ν

�

−
νð1 − αÞ
2ð1þ ϵ�Þ

�
1 − 2γ

1 − α
− ν

��
: ðB7Þ

b. Hypermagnetic power spectra in the
long-wavelength limit

If Eqs. (B2), (B3), and (B4) are inserted into Eq. (3.13),
the hypermagnetic power spectrum turns out to be
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PBðk;τÞ ¼
a4H4

8π2
fjAk;þð−kτÞ5=2þð1−αÞν=2

−Bk;þð−kτÞ5=2−ð1−αÞν=2j2þjAk;−ð−kτÞ5=2þð1−αÞν=2

−Bk;−ð−kτÞ5=2−ð1−αÞν=2j2g: ðB8Þ

Equation (B8) implies that the power spectrum outside the
horizon has always the same slope for jkτj ≪ 1. Indeed,
depending on the interval of α, the combination ð1 − αÞν
takes two opposite expressions. In the range 0 < α < 1
(thanks to the absolute values entering the definition of ν),
we have that ð1 − αÞν ¼ j2γ − 1j; for the same reason when
α > 1, we rather have ð1 − αÞν ¼ −j2γ − 1j. In summary,
we have

0 < α < 1 ⇒ ð1 − αÞν ¼ ð1 − αÞ
���� 2γ − 1

1 − α

���� ¼ j2γ − 1j;

ðB9Þ

α > 1 ⇒ ð1 − αÞν ¼ ð1 − αÞ
���� 2γ − 1

1 − α

���� ¼ −j2γ − 1j:

ðB10Þ

For 0 < α < 1, the contributions proportional to Bk;�
dominate in Eq. (B8), and therefore, we obtain

PBðk;τÞ¼
a4H4

8π2
½jBk;þj2þjBk;−j2�ð−kτÞ5−j2γ−1j; 0<α<1:

ðB11Þ

Conversely, in the range α > 1, the contributions propor-
tional to Ak;� dominate in Eq. (B8), and the hypermagnetic
power spectrum becomes

PBðk;τÞ¼
a4H4

8π2
½jAk;þj2þjAk;−j2�ð−kτÞ5−j2γ−1j; α>1:

ðB12Þ

Equations (B11) and (B12) imply that the WKB result of
Eq. (3.27) is recovered up to an overall amplitude. Even
though the prefactors are immaterial for the comparison,14

it is amusing to remark that, to the lowest order in jϵ�j < 1,
the amplitudes in Eqs. (B11) and (B12) coincide. Indeed,
using the shorthand notation μ ¼ jγ − 1=2j, the prefactors
of Eqs. (B11) and (B12) give exactly the same result,

PBðk; τÞ ¼
a4H4

8π2

�
4μðμþ 1Þ þ 5

16μ2
þ ð8μ3 − 4μ2 þ 2μ − 5Þðϵþ þ ϵ−Þ

16μ2
þOðϵ2þÞ þOðϵ2−Þ

�
ð−kτÞ5−2μ: ðB13Þ

As in the case of Eq. (B2), also Eq. (B13) holds provided μ ≠ 0; once more, if μ → 0, there are logarithmic divergences
coming from the small argument limit of the Bessel functions appearing in Eqs. (A1) and (A2) that must be separately
treated. This is actually not surprising since ν ≠ 0 implies μ ≠ 0 (provided, as we are assuming in this portion of the
discussion, α ≠ 1). All in all, we then conclude that, within the accuracy of the approximation, Eq. (B13) coincides with the
result of Eq. (3.27). The same analysis leading to the general result (B13) can be repeated in the case of the gyrotropic
spectra by inserting Eqs. (B2), (B3), and (B4) into Eq. (3.14),

0 < α < 1 ⇒ PðGÞ
B ðk; τÞ ¼ a4H4

8π2
½jBk;þj2 − jBk;−j2�ð−kτÞ5−2μ;

¼ a4H4

8π2

�ð8μ3 − 4μ2 þ 2μ − 5Þðϵþ − ϵ−Þ
16μ2

�
ð−kτÞ5−2μ; ðB14Þ

α > 1 ⇒ PðGÞ
B ðk; τÞ ¼ a4H4

8π2
½jAk;þj2 − jAk;−j2�ð−kτÞ5−2μ:

¼ a4H4

8π2

�ð8μ3 − 4μ2 þ 2μ − 5Þðϵþ − ϵ−Þ
16μ2

�
ð−kτÞ5−2μ: ðB15Þ

Again Eqs. (B14) and (B15) coincide, up to numerical
factors, with the spectra already deduced in Eq. (3.29).

c. Hyperelectric power spectra in the
long-wavelength limit

Since the coefficients of Eqs. (B6) and (B7) not only
contain ν but also the explicit value of γ [see Eq. (3.17) and
comment thereafter], in the derivation of the hyperelectric
power spectra, we must distinguish the different ranges
of γ. The reason for this difference is that the hyperelectric

14The reason is that the WKB result reproduces the exact
amplitude up to overall constant terms Oð1Þ.
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mode functions do not simply coincide with the derivative of fk;�ðτÞ, but they are shifted by Ffk;�ðτÞ. Inserting then
Eq. (B5) into Eq. (3.13) and assuming 0 < α < 1, the hyperelectric power spectra turn out to be

PEðk;τÞ¼
a4H4

8π2
½jDk;þj2þjDk;−j2�ð−kτÞ4−2γ; 0<α<1; γ>1=2;

¼a4H4

8π2

�ð4μðμþ1Þþ5Þð2γþ2μ−1Þ2
64μ2

þð2μþ1Þð4μ2þ5Þð2γþ2μ−1Þ2
64μ2

ðϵþþϵ−ÞþOðϵ2þÞþOðϵ2−Þ
�
ð−kτÞ4−2γ;

ðB16Þ

PEðk; τÞ ¼
a4H4

8π2
½jCk;þj2 þ jCk;−j2�ð−kτÞ4−2γ; 0 < α < 1; 0 < γ < 1=2;

¼ a4H4

8π2

�ð4ðμ − 1Þμþ 5Þð−2γ þ 2μþ 1Þ2
64μ2

−
½ð2μ − 1Þð4μ2 þ 5Þð−2γ þ 2μþ 1Þ2�

64μ2
ðϵþ þ ϵ−Þ þOðϵ2þÞ þOðϵ2−Þ

�
ð−kτÞ4−2γ: ðB17Þ

As in the hypermagnetic case, Eqs. (B16) and (B17) ultimately coincide,15

PEðk; τÞ ¼
a4H4

8π2
fðγ2 þ 1Þ þ γ½2ðγ − 1Þγ þ 3�ðϵþ þ ϵ−Þ þOðϵ2þÞ þOðϵ2−Þgð−kτÞ4−2γ; 0 < α < 1; ðB18Þ

and this result holds in spite of the interval of γ. Finally, the gyrotropic spectrum associated with Eq. (B18) is

PðGÞ
E ðk; τÞ ¼ a4H4

8π2
½γð2ðγ − 1Þγ þ 3Þðϵþ þ ϵ−Þ þOðϵ2þÞ −Oðϵ2−Þ�ð−kτÞ4−2γ; 0 < α < 1: ðB19Þ

Equations (B18) and (B19) hold in the interval 0 < α < 1. Since the logic has been already illustrated, we now simply
mention that when α > 1 the roles of Ck;� and Dk;� appearing in Eqs. (B6) and (B7) are exchanged. This means Ck;�
determines the spectra for γ > 1=2, while Dk;� is relevant for the range 0 < γ < 1=2. Thus, also for α > 1, the power
spectra coincide exactly with Eqs. (B18) and (B19). Indeed, as already observed in Eqs. (B9) and (B10), this happens since
2μ ¼ ð1 − αÞν, where, as usual, ν ¼ j2γ − 1j=j1 − αj. If α > 1, we have 2μ ¼ −j2γ − 1, and this ultimately implies that
Eqs. (B18) and (B19) are verified.

2. The particular case α= 0

a. Exact form of the mode functions

When λ and λ are proportional, we have that λ0=λ ¼ b0=τ and α → 0 in Eqs. (4.2) and (4.3). In this situation, the explicit
expression of Eq. (3.17) is

f00k;� þ
�
k2 � kb0

τ
−
γðγ − 1Þ

τ2

�
fk;� ¼ 0; gk;� ¼ f0k;� −

γ

τ
fk;�: ðB20Þ

Equation (4.21) implies that, in the limit, ð−qηÞ ¼ 2
ffiffiffiffiffi
b0

p ð−kτÞ, which is smaller than 1 even for moderate values of b0.
Since jqη�j ¼ 2b0, there are in fact two possibilities: (i) if b0 ≤ Oð1Þ, we are, in practice, in the same situation of α > 0.
(ii) Conversely, if b0 > Oð1Þ, at the tuning points jqη�j > Oð1Þ, while, depending on the specific value of b0, ð−qηÞ can
either be smaller or larger than 1. This means that, for α → 0 and b0 ≫ 1, the Bessel functions should not be expanded in the
limit of small arguments but rather in the large argument limit.
We could consider, again, the limits of Eqs. (A1) and (A2) and Eqs. (A8) and (A9) in the various regions of the parameter

space. However, to avoid a repetitive (and lengthy) discussion, it is preferable to solve directly Eq. (B20) in terms of
Whittaker’s functions [68,69]. After an appropriate rotation in the complex plane, Eq. (B20) becomes

15In fact, when γ > 1=2 [as in Eq. (B16)], we have that μ ¼ γ − 1=2; conversely if γ < 1=2 [as in Eq. (B17)], we must have that
μ ¼ 1=2 − γ.
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d2fk;�
dy2

þ
�
−
1

4
∓ ib0

2y
−
γðγ − 1Þ

y2

�
fk;� ¼ 0; ðB21Þ

where y ¼ 2ikτ. The solution of Eq. (B21) with the correct
boundary conditions is

fk�ðyÞ ¼
e−iπ=4�πb0=4ffiffiffiffiffi

2k
p W∓ib0=2;μðyÞ; μ ¼ jγ − 1=2j;

ðB22Þ

gk�ðyÞ ¼ i
ffiffiffiffiffi
2k

p
e−iπ=4�πb0=4

�
y� ðib0 ∓ 2γÞ

2y
W∓ib0=2;μðyÞ

−
W1∓ib0=2;μðyÞ

y

�
; ðB23Þ

where Wζ;μðxÞ is the Whittaker’s function with generic
argument x and indices ðζ; μÞ.

b. Gauge spectra and comparison with the WKB result

After inserting Eq. (B22) into Eqs. (3.13) and (3.14), the
hypermagnetic power spectra in the large-scale limit during
inflation (i.e., jkτj ≪ 1) become

PBðk; τÞ ¼ a4H4CBðγ; b0Þð−kτÞ5−2jγ−1=2j; ðB24Þ

PðGÞ
B ðk; τÞ ¼ a4H4CðGÞB ðγ; b0Þð−kτÞ5−2jγ−1=2j; ðB25Þ

where CBðγ; b0Þ and CðGÞB ðγ; b0Þ are two k-independent
prefactors,

CBðγ; b0Þ ¼
22μ−4Γ2ðμÞ

π3

�
e−πb0=2Γ2ðμþ 1=2Þ

jΓð1=2 − ib0=2þ μÞj2 þ
eπb0=2Γ2ðμþ 1=2Þ

jΓð1=2þ ib0=2þ μÞj2
�
;

CðGÞB ðγ; b0Þ ¼
22μ−4Γ2ðμÞ

π3

�
e−πb0=2Γ2ðμþ 1=2Þ

jΓð1=2 − ib0=2þ μÞj2 −
eπb0=2Γ2ðμþ 1=2Þ

jΓð1=2þ ib0=2þ μÞj2
�
; ðB26Þ

where, as in Eq. (B22), we use μ ¼ jγ − 1=2j. From
Eqs. (B23), (3.13), and (3.14), the hyperelectric power
spectra evaluated in the large-scale limit are

PEðk; τÞ ¼ a4H4CEðγ; b0Þð−kτÞ4−2γ; ðB27Þ

PðGÞ
E ðk; τÞ ¼ a4H4CðGÞE ðγ; b0Þð−kτÞ4−2γ: ðB28Þ

As in the case of Eqs. (B24) and (B25), the k-independent

prefactors CEðγ; b0Þ and CðGÞE ðγ; b0Þ turn out to be

CEðγ; b0Þ ¼
22γ−3Γ2ðγ þ 1=2Þ

π3

�
e−πb0=2Γ2ðγÞ

jΓðγ − ib0=2Þj2
þ eπb0=2Γ2ðγÞ
jΓðγ þ ib0=2Þj2

�
;

CðGÞE ðγ; b0Þ ¼
22γ−3Γ2ðγ þ 1=2Þ

π3

�
e−πb0=2Γ2ðγÞ

jΓðγ − ib0=2Þj2
−

eπb0=2Γ2ðγÞ
jΓðγ þ ib0=2Þj2

�
: ðB29Þ

Before concluding this part of the analysis, we make two
remarks. While it is true that for α → 0 the scalar and the
pseudoscalar couplings are proportional, Eq. (B20) may
also arise when λ does not depend on τ and λ ∝ ln ð−τ=τ1Þ.
This case is however automatically included in the results
of Eqs. (B24) and (B25) and Eqs. (B27) and (B28) by
demanding that γ → 0. The second remark is that the same
structure of the turning points occurs when 0 < α ≪ 1,
and this case is briefly analyzed at the end of Appendix A.

3. The particular case α= 1

a. Exact form of the mode functions

In Eqs. (4.4) and (4.5), the limit α → 1 implies ν → ∞
and η → constant, respectively. The singularity of ν just
signals that the rescaling to the η time is immaterial since
λ0=λ ¼ −b0τ1=τ2 and

ffiffiffi
λ

p 00=
ffiffiffi
λ

p
scale in the same way as a

function of τ. It is therefore simpler to go back to Eq. (3.17)
in the case α ¼ 1,

f00k;� þ
�
k2 ∓ x1b0

τ2
−
γðγ − 1Þ

τ2

�
fk;� ¼ 0: ðB30Þ

The solution of Eq. (B30) is

fk�ðτÞ ¼
N �ffiffiffiffiffi
2k

p ffiffiffiffiffiffiffiffi
−kτ

p
Hð1Þ

μ� ð−kτÞ; ðB31Þ

where Hð1Þ
μ� ð−kτÞ denotes the standard Hankel’s functions

[68,69], and

N �¼
ffiffiffi
π

2

r
eiπð2μ�þ1Þ; μ2�¼ðγ−1=2Þ2�x1b0: ðB32Þ
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As previously noted in the case generic case α > 0, when
γ → 1=2, the Bessel index is μ� ¼ �b0x1. Since b0x1 falls
between 10−26 and 10−14, we have, in practice, that μ� → 0
when γ → 1=2. In this case, a logarithmic enhancement of
Hankel’s functions is expected large scales.

b. Gauge spectra and comparison with the WKB result

Inserting Eqs. (B30) into Eqs. (3.13) and (3.14), the
hypermagnetic power spectra are

PBðk; τÞ ¼
H4a4

16π3
½2μþΓ2ðμþÞð−kτÞ5−2μþ

þ 22μ−Γ2ðμ−Þð−kτÞ5−2μ− �; ðB33Þ

PðGÞ
B ðk; τÞ ¼ H4a4

16π3
½22μ−Γ2ðμ−Þð−kτÞ5−2μ−

− 2μþΓ2ðμþÞð−kτÞ5−2μþ�: ðB34Þ

Equations (B33) and (B34) can always be expanded in the
limit b0x1 ≪ 1, and the final result is

PBðk; τÞ ¼ PBðk; τÞ½1þOðx21b20Þ�; ðB35Þ

PðGÞ
B ðk; τÞ ¼ x1b0PBðk; τÞ

½ln ð−kτ=2Þ − ψðjγ − 1=2jÞ�
j2γ − 1j

× ½1þOðx21b20Þ�; ðB36Þ

where ψðxÞ denotes here the Digamma function, and

PBðk; τÞ ¼
H4a4

π3
22jγ−1=2j−3Γ2ðjγ − 1=2jÞð−kτÞ5−2jγ−1=2j:

ðB37Þ

Again Eqs. (B35), (B36), and (B37) are consistent with all
the previous estimates and corroborate the WKB results.
Before computing the hyperelectric power spectra, we

note that the mode functions gk;� obtained from Eq. (B30)
take two different forms depending upon the value of γ;
more specifically,

gk;�ðτÞ¼
ffiffiffi
k
2

r
N �

�
½μ�þðγ−1=2Þ�H

ð1Þ
μ� ð−kτÞffiffiffiffiffiffiffiffi
−kτ

p

−
ffiffiffiffiffiffiffiffi
−kτ

p
Hð1Þ

μ�−1ð−kτÞ
	
; 0< γ<1=2; ðB38Þ

gk;�ðτÞ ¼
ffiffiffi
k
2

r
N �

�
½ðγ − 1=2Þ − μ��

Hð1Þ
μ� ð−kτÞffiffiffiffiffiffiffiffi
−kτ

p

þ
ffiffiffiffiffiffiffiffi
−kτ

p
Hð1Þ

μ�þ1ð−kτÞ
	
; γ > 1=2: ðB39Þ

When 0 < γ < 1=2, we have that Hð1Þ
μ�−1ð−kτÞ ¼

Hð1Þ
−γ−1=2ð−kτÞ; since, in general, Hð1Þ

−γ−1=2ð−kτÞ ¼

eiπðγþ1=2ÞHð1Þ
γ1=2ð−kτÞ [68,69], the overall result for the

hyperelectric spectrum is the same for Eqs. (B38) and
(B39),

PEðk; τÞ ¼ PEðk; τÞ½1þOðx21b20Þ�; ðB40Þ

PðGÞ
E ðk; τÞ ¼ x1b0PEðk; τÞ

½ln ð−kτ=2Þ − ψðjγ − 1=2jÞ�
j2γ − 1j

× ½1þOðx21b20Þ�; ðB41Þ

where, in analogy with Eq. (B37), we introduced PEðk; τÞ
which is defined as

PEðk; τÞ ¼
H4a4

π3
22γ−2Γ2ðγ þ 1=2Þð−kτÞ4−2γ: ðB42Þ

To simplify the forthcoming phenomenological consider-
ations, it is practical to remark that the amplitudes of the
power spectra appearing in Eqs. (B13)–(B18) (and obtained
in the generic case α > 0) coincide, in practice, with the
prefactors of Eqs. (B37)–(B40). For instance, by comparing
Eqs. (B13) and (B37) it is possible to verify that

4μðμþ 1Þ þ 5

128π2μ2
∼
2j2γ−1j−3Γ2ðjγ − 1=2jÞ

π3
; ðB43Þ

where, according to the previous results, μ ¼ jγ − 1=2j.
Since the approximate equality of Eq. (B43) holds within
an order of magnitude, we can argue that there are indeed
only two complementary phenomenological ranges,
namely, the region α ≥ 1 and the case 0 ≤ α < 1.

APPENDIX C: DECREASING GAUGE
COUPLING: PARTICULAR CASES

For the sake of completeness in this appendix, we are
collecting some of the results that are relevant when the
gauge coupling decreases during inflation and then flattens
out later on.

1. The particular case α= 0

In the limit α → 0, Eq. (B21) will keep the same form
with slightly different parameters; more specifically, we
have

b0 → −b̃0 ¼ ð2γ̃=τ1Þðτ1=τ2Þ2γ̃ðλ2=λ1Þ;
μ → μ̃ ¼ ðγ̃ þ 1=2Þ: ðC1Þ

In terms of the parameters defined in Eq. (C1), the analogs
of Eqs. (B22) and (B23) are therefore given by
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fk;�ðyÞ ¼
e−iπ=4∓πb̃0=4ffiffiffiffiffi

2k
p W�ib̃0=2;μ̃

ðyÞ; μ̃ ¼ γ̃ þ 1=2;

ðC2Þ

gk;�ðyÞ ¼ i
ffiffiffiffiffi
2k

p
e−iπ=4∓πb̃0=4

�
yþ ð2γ̃ ∓ ib̃0Þ

2y
W�ib̃0=2;μ̃

ðyÞ

−
W1�ib̃0=2;μ̃

ðyÞ
y

�
: ðC3Þ

From Eqs. (C2) and (C3), we can estimate the hyper-
magnetic power spectra,

P̃Bðk; τÞ ¼ a4H4C̃Bðγ̃; b̃0Þð−kτÞ4−2γ̃; ðC4Þ

P̃ðGÞ
B ðk; τÞ ¼ a4H4C̃ðGÞB ðγ̃; b̃0Þð−kτÞ4−2γ̃; ðC5Þ

where C̃Bðγ̃; b̃0Þ and C̃ðGÞB ðγ̃; b̃0Þ are defined as

C̃Bðγ̃; b̃0Þ ¼
22γ̃−3

π3
Γ2ðγ̃ þ 1=2Þ

�
eπb̃0=2Γ2ðγ̃Þ

jΓðγ̃ − ib̃0=2Þj2
þ e−πb̃0=2Γ2ðγ̃Þ
jΓðγ̃ þ ib̃0=2Þj2

�
;

C̃ðGÞB ðγ̃; b̃0Þ ¼
22γ̃−3

π3
Γ2ðγ̃ þ 1=2Þ

�
eπb̃0=2Γ2ðγ̃Þ

jΓðγ̃ − ib̃0=2Þj2
−

e−πb̃0=2Γ2ðγ̃Þ
jΓðγ̃ þ ib̃0=2Þj2

�
: ðC6Þ

Finally, in the hyperelectric case, the gauge power spectra are

P̃Eðk; τÞ ¼ a4H4½C̃ð0ÞE ðγ̃Þð−kτÞ5−j2γ̃−1j þ C̃ð1ÞE ðγ̃; b̃0Þð−kτÞ4−2γ̃�; ðC7Þ

P̃ðGÞ
E ðk; τÞ ¼ a4H4½C̃ðGÞE ðγ̃; b̃0Þð−kτÞ4−2γ̃�; ðC8Þ

where the various coefficients are now given by

C̃ð0ÞE ðγ̃Þ ¼ 2j2γ̃−1j−3

π3
Γ2ðγ̃ þ 1=2Þ;

C̃ð1ÞE ðγ̃; b̃0Þ ¼ b̃20
22γ̃−3

π3
Γ2ðγ̃ þ 1=2Þ

�
eπb̃0=2Γ2ðγ̃Þ

jΓðγ̃ þ ib̃0=2Þj2
þ e−πb̃0=2Γ2ðγ̃Þ
jΓðγ̃ − ib̃0=2Þj2

�
;

C̃ðGÞE ðγ̃; b̃0Þ ¼ b̃20
22γ̃−3

π3
Γ2ðγ̃ þ 1=2Þ

�
eπb̃0=2Γ2ðγ̃Þ

jΓðγ̃ þ ib̃0=2Þj2
−

e−πb̃0=2Γ2ðγ̃Þ
jΓðγ̃ − ib̃0=2Þj2

�
: ðC9Þ

2. The particular case α= 1

In the case α ¼ 1, the basic evolution of the mode
function appearing in Eq. (B30) gets modified as

f00k;� þ
�
k2 ∓ x1b̃0

τ2
−
μ̃2� − 1=4

τ2

�
fk;� ¼ 0;

μ̃2� ¼ ðγ̃ þ 1=2Þ2 � x1b̃0: ðC10Þ

The same steps of Eqs. (B31) and (B32) can be repeated
since Eq. (C10) has an exact solution of the same kind of
the one previously discussed. As before, the crucial
observation is that, in spite of the values of b0, x1 is so
small that the obtained results can always be expanded for
x1 ≪ 1. Large-scale power spectra are unaffected by the
anomalous contribution. For instance, the hypermagnetic
power spectra are given by

P̃Bðk; τÞ ¼
H4a4

16π3
½2μ̃þΓ2ðμ̃þÞð−kτÞ5−2μ̃þ

þ 22μ̃−Γ2ðμ̃−Þð−kτÞ5−2μ̃− �; ðC11Þ

P̃ðGÞ
B ðk; τÞ ¼ H4a4

16π3
½2μ̃þΓ2ðμ̃þÞð−kτÞ5−2μ̃þ

− 22μ̃−Γ2ðμ̃−Þð−kτÞ5−2μ̃− �: ðC12Þ

With the same technique, we can obtain the explicit

expressions of P̃Eðk; τÞ and P̃ðGÞ
E ðk; τÞ. If P̃Bðk; τÞ and

P̃Eðk; τÞ are expanded in the limit jkτj ≪ 1, the resulting
expressions are

P̃Bðk;τÞ¼
H4a4

π3
22γ̃−2Γ2ðγ̃þ1=2Þð−kτÞ4−2γ̃½1þOðx21b̃20Þ�;

ðC13Þ

LARGE-SCALE GAUGE SPECTRA AND PSEUDOSCALAR … PHYS. REV. D 104, 123509 (2021)

123509-29



P̃Eðk; τÞ ¼
H4a4

π3
2j2γ̃−1j−3Γ2ðjγ̃ − 1=2jÞð−kτÞ5−j2γ̃−1j

× ½1þOðx21b̃20Þ�; ðC14Þ

and similarly for the gyrotropic contribution that is propor-
tional to x1b̃0.

3. Late-time gauge spectra

In the case of decreasing gauge coupling, Eq. (5.3) has
basically the same form, but the Bessel indices and the
related arguments are clearly different. For the present
purposes, the relevant results are

Ãffðz1; zÞ ¼
π

2

ffiffiffiffiffiffiffi
z1z

p ½Y σ̃−1ðz1ÞJσ̃ðzÞ − Jσ̃−1ðz1ÞY σ̃ðzÞ�;

Ãfgðz1; zÞ ¼
π

2

ffiffiffiffiffiffiffi
z1z

p ½Jσ̃ðz1ÞY σ̃ðzÞ − Y σ̃ðz1ÞJσ̃ðzÞ�;

Ãgfðz1; zÞ ¼
π

2

ffiffiffiffiffiffiffi
z1z

p ½Y σ̃−1ðz1ÞJσ̃−1ðzÞ − Jσ̃−1ðz1ÞY σ̃−1ðzÞ�;

Ãggðz1; zÞ ¼
π

2

ffiffiffiffiffiffiffi
z1z

p ½Jσ̃ðz1ÞY σ̃−1ðzÞ − Y σ̃ðz1ÞJσ̃−1ðzÞ�;
ðC15Þ

where now z1, z and σ̃ are defined as

z1¼ðδ̃=γ̃Þkτ1; z¼ τþτ1½1þðδ̃=γ̃Þ�; σ̃¼jδ̃−1=2j:
ðC16Þ

Equations (C15) and (C16) have been deduced by
assuming that the gauge coupling first decreases and then
flattens out after inflation. This happens, for instance,
in the case of the profile of Eqs. (2.17) and (2.18).
Equations (C15) and (C16) [which are the analog of
Eqs. (5.3) and (5.4)] apply in the situation where the
gauge coupling increases and the flattens out after
inflation.
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