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We examine nonrelativistic particles that decay into relativistic products in big rip, little rip, and
pseudorip models for the future evolution of the Universe. In contrast to decays that occur in standard
ΛCDM, the evolution of the ratio r of the energy density of the relativistic decay products to the energy
density of the initially decaying particles can decrease with time in all of these models. In big rip and little
rip models, r always goes to zero asymptotically, while this ratio evolves to infinity or a constant in
pseudorip models.
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The evolution of decaying particles in the context of the
expanding universe has long been a topic of interest [1–12].
In the early universe, when the expansion is dominated by
either radiation or nonrelativistic matter, exponential decay
always leads to the same general result: the disappearance
of the initial decaying particles and the production of the
corresponding decay products, with the density of the
latter always eventually dominating the former. However,
Ref. [13] provided an interesting caveat to this result. If the
decaying particles are nonrelativistic, with density ρM, and
the decay products are relativistic, with density ρR, then in a
ΛCDM universe, the ratio r of the density of the decay
products to the density of the decaying particles,

r≡ ρR=ρM; ð1Þ

need not asymptotically approach infinity, as it always does
in a radiation or matter-dominated expansion. Instead, for a
sufficiently long decay lifetime, this ratio approaches a
constant value. When this constant is less than 1, the energy
density of the decay products never dominates the energy
density of the decaying particles. Here we extend this work
to expansion laws corresponding to big rip, little rip, and
pseudorip models and uncover similarly unusual behavior:
in all three models, the value of r can decrease with time,
and in big rip and little rip models, r always asymptotically
approaches zero.
For a nonrelativistic component with density ρM

decaying with lifetime τ into a relativistic component with
density ρR, the equations governing the evolution of the
decaying particle and its decay products are [10]

dρM
dt

¼ −3HρM − ρM=τ; ð2Þ

dρR
dt

¼ −4HρR þ ρM=τ; ð3Þ

where H is the time-dependent Hubble parameter:

H ≡ _a
a
¼

�
8πGρ
3

�
1=2

; ð4Þ

with ρ being the total energy density and a the scale factor,
and we assume a flat universe throughout. (For other types
of energy exchange, see Ref. [14].)
Equations (2) and (3) can be combined to yield an

equation for r:

dr
dt

¼ 1

τ
þ
�
1

τ
−H

�
r: ð5Þ

When the universe is dominated by matter or radiation, H
decreases with time, so we necessarily have r → ∞ as
t → ∞, as expected.
However, when the universe enters a vacuum-energy

dominated state, H approaches a constant value, HΛ,
given by

HΛ ¼
�
8πGρΛ

3

�
1=2

; ð6Þ

where ρΛ is the (constant) vacuum energy density. Defining
the time tΛ ≡ 1=HΛ and substitutingH ¼ 1=tΛ into Eq. (5),
this equation can be solved analytically to yield [13]

r ¼
�

tΛ
tΛ − τ

��
exp

��
1

τ
−

1

tΛ

�
t

�
− 1

�
; ð7Þ

where we have taken r ¼ 0 at t ¼ 0.
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As noted in Ref. [13], Eq. (7) corresponds to two very
different types of evolution, depending on the ratio of τ to
tΛ. For lifetimes short compared to tΛ, i.e., when τ < tΛ,
Eq. (7) gives r → ∞, just as in the case for decays during a
radiation or matter-dominated expansion phase. In this
case, the energy density of the decaying particles becomes
infinitesimally small compared to the energy density of the
decay products. However, when τ > tΛ, the value of r in
Eq. (7) asymptotically approaches a constant, so that the
density of the decaying nonrelativistic particles never
disappears relative to the decay-produced radiation
(although both go to zero in the limit of large t).
Furthermore, when τ > 2tΛ, the asymptotic ratio of the
density of the decay-produced radiation to the density of
the decaying particles never exceeds 1, so that the decay
products never even dominate the decaying particles.
This result may seem counterintuitive, but Ref. [13]

provides a simple explanation. The radiation redshifts
relative to matter as one extra power of the scale factor,
which corresponds, in a vacuum-dominated universe, to an
exponential function of time. Then in calculating the ratio
of decay-produced radiation to decaying matter, this
exponential factor cancels the exponential decay of the
matter, resulting in a constant final ratio of matter to
radiation.
Given this unusual behavior, we are motivated to

consider more extreme expansion laws that have been
proposed for the future evolution of the Universe, all of
which involve values for H that increase with time. While
the current expansion is dominated by a combination of
dark matter and dark energy, we will be interested in a
future epoch in which the dark energy is completely
dominant and the dark matter can be neglected. Our results
will then be equally valid regardless of whether it is the
dark matter itself that is decaying (as was assumed in
Ref. [13]), or some other nonrelativistic component.
The three models we consider are the big rip model

[15,16], the little rip model [17,18], and the pseudorip
model [19]. These models are all characterized by a value
of H that increases with time, but with different final
outcomes. In the big rip, the value of H goes to infinity at a
finite time, resulting in a future singularity. In the little rip,
H increases monotonically and becomes arbitrarily large,
but it never becomes infinite at a finite time. Finally, in the
pseudorip, H increases monotonically but asymptotically
approaches a constant value.
Since the time derivative of H is given by

_H ¼ −
1

2
ρð1þ wÞ; ð8Þ

all three of these types of behavior require a dark energy
component with w < −1, which violates the weak energy
condition (see Ref. [20] for a detailed discussion). Hence,
from that standpoint all of these models are a priori less
plausible than either ΛCDM or dark energy models with

w > −1. However, observations by themselves do not rule
out w < −1. In a flat universe, and using Planck 2018 data,
weak lensing, baryon acoustic oscillation, and supernova
data, Ref. [21] finds

w ¼ −1.028� 0.031; ð9Þ

at the 68% confidence level. While the central value of
w < −1 should not be taken too seriously, this result
illustrates that observations are far from ruling out these
more exotic models. Furthermore, it is possible for models
to approximate ΛCDM arbitrarily closely at present, but
then to evolve into any of the three types of future evolution
considered here; a variety of examples of such models are
discussed in Ref. [22]. Thus, observational data can never
entirely rule out future big rip, little rip, or pseudorip
evolution.
Consider first the big rip model [15,16]. Big rip

evolution can arise if the dark energy has a “phantom”
equation of state parameter, w (the ratio of the dark energy
pressure to density), such that w < −1. Then the phantom
dark energy density increases with a, instead of decreasing
as is the case for all fluids with w > −1. The evolution of
the scale factor in a universe containing both matter and
phantom dark energy is given by [15]

a ¼ aðtmÞ½−wþ ð1þ wÞðt=tmÞ�2=3ð1þwÞ; ð10Þ

where tm is the time at which the matter and phantom dark
energy densities are equal. Big rip models are characterized
by a future singularity: as t approaches ½w=ð1þ wÞ�tm, the
scale factor and phantom energy density both go to infinity
in a big rip. It is more natural to express the scale factor in
terms of the time at which this singularity occurs, namely
trip ¼ ½w=ð1þ wÞ�tm. Then the Hubble parameter in the big
rip model is

H ¼ −
2

3ð1þ wÞðtrip − tÞ : ð11Þ

Using this form for H, we have numerically integrated
Eq. (5) for w ¼ −1.05 and τ=trip ¼ 0.1, 0.3, and 1.0; the
results are shown in Fig. 1. The evolution of r for the big rip
cosmology is strikingly different from its evolution in
ΛCDM. As is the case for ΛCDM, r initially increases,
but instead of increasing to arbitrary large values or
asymptotically approaching a constant value (the two
possibilities for ΛCDM), it reaches a maximum value
and then decreases, approaching zero as t reaches trip.
Thus, in the big rip cosmology, the decay-produced
radiation density is always asymptotically subdominant
compared to the density of the decaying particles, and the
ratio between these two quantities becomes arbitrarily
small as t → trip.
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Big rip evolution represents a rather extreme case,
resulting as it does in a future singularity. A less extreme
class of models, dubbed the “little rip,” occurs when
H → ∞ not at a finite time, but as t → ∞ [17,18].
While they do not result in a future singularity, little rip
models do lead to the dissolution of all bound structures as
H becomes arbitrarily large. In general, these models
correspond to dark energy with a density that increases
with the scale factor, but more slowly than a power law
(e.g., logarithmically). In terms of the time evolution of the
scale factor, any expansion law of the form

a ¼ efðtÞ; ð12Þ
where f̈ > 0 and fðtÞ is a nonsingular function of t, will
correspond to a little rip [17]. There is an infinite set of such
models, so we will examine one of the simplest, namely

a ¼ a0eð1=2Þðt=t0Þ
2

: ð13Þ
Here a0 and t0 are a fiducial scale factor and time,
respectively. Then H is given by

H ¼ t
t20
: ð14Þ

Using this value for H in Eq. (5), we have generated
curves for r as a function of t=τ, which are shown in Fig. 2
for several values of τ=t0. We see that even for the case of
the little rip, the generic late-time evolution is a ratio of ρR

to ρM that decreases with time. In this case, however, the
ratio goes to zero as t → ∞.
Finally, we consider the pseudorip [19]. In these

models, H is always an increasing function of time, as
in the case of the big or little rip models, but it asymp-
totically approaches a constant, as in ΛCDM. Just as in the
case of the little rip, there are an infinite set of such models,
so we will choose a single representative model to examine
here, namely

H ¼ H1 þ ðH2 −H1Þ tanhðt=t0Þ: ð15Þ

In this model, when t ≪ t0, the Universe is in a de Sitter
phase with constant Hubble parameter, H ¼ H1. When
t ∼ t0, H increases with time, asymptotically approaching
H2, where we take H2 > H1. The time t0 simply specifies
the characteristic time at which this transition takes place.
Taking (somewhat arbitrarily) t0 ¼ τ, we have integrated

Eq. (5) for this model; the corresponding behavior of r as a
function of t is shown in Fig. 3. The behavior of r in this
pseudorip model is quite similar to the case of ΛCDM.
Note that the asymptotic value of H in this model is H2.
When this asymptotic value satisfies H2τ < 1, the value of
r evolves to infinity, just as for ΛCDM. On the other hand,
when the H2τ > 1, r evolves to a constant value. The
difference from ΛCDM is that r can undergo an earlier
phase in which it decreases with time, just as in the case of
the big rip and little rip models; such behavior is impossible
for a universe dominated by a cosmological constant or any
fluid with w > −1.

FIG. 2. The ratio r of decay-produced relativistic energy
density to the density of decaying nonrelativistic matter as a
function of the time t measured in units of the decaying particle
lifetime τ for the little rip model given by Eq. (14) with, from top
to bottom, τ=t0 ¼ 1.0 (red), 2.0 (blue), and 3.0 (black).

FIG. 1. The ratio r of decay-produced relativistic energy
density to the density of decaying nonrelativistic matter as a
function of the time t measured in units of the decaying particle
lifetime τ for a big rip cosmology with w ¼ −1.05 and a future
singularity at the time trip. From top to bottom, the curves
correspond to τ=trip ¼ 0.1 (red), 0.3 (blue), and 1.0 (black).
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As we have investigated only a single set of example
models for each type of future evolution, it is reasonable to
question the extent to which our results are generic. From
Eq. (5), we see that at early times, when ðHτ − 1Þr < 1, the
value of r necessarily increases with time, as is evident in
all three types of evolution (as well as in standard ΛCDM).
In the case of the big rip and little rip, H increases at late
times to arbitrarily large values. When H becomes larger
than 1=τ, the ratio r begins to decrease. Finally, when
H ≫ 1=τ, Eq. (5) has an approximate analytic solution,
namely

r ≈
1

Hτ
: ð16Þ

In big rip models, H → ∞ at trip, so Eq. (16) tells us that
r → 0 at trip as well. Similarly, since H increases to
arbitrarily large values in little rip models, we have
r → 0 in those models. Equation (16) has a simple physical
interpretation: if matter is decaying at a rate 1=τ, then at a
given Hubble time 1=H, the fraction of the matter that has
decayed into radiation is just ð1=τÞð1=HÞ.
The case of the pseudorip more closely resembles

ΛCDM. Since H asymptotically goes to a constant at late
times, the pseudorip evolves asymptotically to ΛCDM.
Hence, r will be given by Eq. (7) at late times, with tΛ
corresponding to the asymptotic value of 1=H. This is
apparent in Fig. 3, in that the asymptotic behavior of r
depends entirely on the value of H2τ. However, the
evolution ofH at earlier times allows r to evolve differently
from its behavior in ΛCDM. In particular we can have
intervals over which r decreases with time; such behavior is
impossible in ΛCDM.
In summary, the late-time evolution of the ratio r of

the energy density of the relativistic decay products to
that of the initially decaying particles depends on the
asymptotic evolution of H. In models for which H is an
unbounded increasing function of t (big rip and little rip)
the value of r reaches a maximum and decreases
asymptotically to zero, in sharp contrast to the behavior
of r in ΛCDM. Pseudo-rip models, in contrast, exhibit a
value for r that goes to either infinity or a nonzero
constant at late times.
Of course, in all of these models, both the decaying

particle energy density and the density of the decay
products rapidly go to zero, and neither has an effect on
the overall expansion rate. What is interesting is the way
that the evolution of these quantities violates our intuition
from particle decays in the early universe, when the
expansion is dominated by matter or radiation, and the
decaying particle density rapidly becomes subdominant
compared to the density of the decay products.

R. J. S. was supported in part by the Department of
Energy (DE-SC0019207).

[1] D. A. Dicus, E. W. Kolb, and V. L. Teplitz, Phys. Rev. Lett.
39, 168 (1977).

[2] D. A. Dicus, E. W. Kolb, and V. L. Teplitz, Astrophys. J.
221, 327 (1978).

[3] D. Lindley, Mon. Not. R. Astron. Soc. 188, 15P (1979).
[4] S. Weinberg, Phys. Rev. Lett. 48, 1303 (1982).
[5] L. M. Krauss, Nucl. Phys. B227, 556 (1983).
[6] M. S. Turner, G. Steigman, and L. M. Krauss, Phys. Rev.

Lett. 52, 2090 (1984).

[7] A. G. Doroshkevich and M. Yu. Khlopov, Mon. Not. R.
Astron. Soc. 211, 277 (1984).

[8] L. M. Krauss, Gen. Relativ. Gravit. 17, 89 (1985).
[9] J. Ellis, D. V. Nanopoulos, and S. Sarkar, Nucl. Phys. B259,

175 (1985).
[10] R. J. Scherrer and M. S. Turner, Phys. Rev. D 31, 681

(1985).
[11] R. J. Scherrer and M. S. Turner, Astrophys. J. 331, 19

(1988).

FIG. 3. The ratio r of decay-produced relativistic energy
density to the density of decaying nonrelativistic matter as a
function of the time t measured in units of the decaying particle
lifetime τ for the pseudorip model given by Eq. (15) with t0 ¼ τ.
From top to bottom, the curves correspond to H1τ ¼ 0.125,
H2τ ¼ 0.5 (red), H1τ ¼ 0.5, H2τ ¼ 2.0 (blue), and H1τ ¼ 2.0,
H2τ ¼ 8.0 (black).

CAMERON E. NORTON and ROBERT J. SCHERRER PHYS. REV. D 104, 123506 (2021)

123506-4

https://doi.org/10.1103/PhysRevLett.39.168
https://doi.org/10.1103/PhysRevLett.39.168
https://doi.org/10.1086/156031
https://doi.org/10.1086/156031
https://doi.org/10.1093/mnras/188.1.15P
https://doi.org/10.1103/PhysRevLett.48.1303
https://doi.org/10.1016/0550-3213(83)90574-6
https://doi.org/10.1103/PhysRevLett.52.2090
https://doi.org/10.1103/PhysRevLett.52.2090
https://doi.org/10.1093/mnras/211.2.277
https://doi.org/10.1093/mnras/211.2.277
https://doi.org/10.1007/BF00760108
https://doi.org/10.1016/0550-3213(85)90306-2
https://doi.org/10.1016/0550-3213(85)90306-2
https://doi.org/10.1103/PhysRevD.31.681
https://doi.org/10.1103/PhysRevD.31.681
https://doi.org/10.1086/166534
https://doi.org/10.1086/166534


[12] R. J. Scherrer andM. S. Turner, Astrophys. J. 331, 33 (1988).
[13] L. M. Krauss and R. J. Scherrer, Phys. Rev. D 75, 083524

(2007).
[14] J. D. Barrow and T. Clifton, Phys. Rev. D 73, 103520

(2006).
[15] R. R. Caldwell, Phys. Lett. B 545, 23 (2002).
[16] R. R. Caldwell, M. Kamionkowski, and N. N. Weinberg,

Phys. Rev. Lett. 91, 071301 (2003).
[17] P. H. Frampton, K. J. Ludwick, and R. J. Scherrer, Phys.

Rev. D 84, 063003 (2011).

[18] P. H. Frampton, K. J. Ludwick, S. Nojiri, S. D. Odintsov,
and R. J. Scherrer, Phys. Lett. B 708, 204 (2012).

[19] P. H. Frampton, K. J. Ludwick, and R. J. Scherrer, Phys.
Rev. D 85, 083001 (2012).

[20] S. M. Carroll, M. Hoffman, and M. Trodden, Phys. Rev. D
68, 023509 (2003).

[21] N. Aghanim et al., Astron. Astrophys. 641, A6 (2020).
[22] A. V. Astashenok, S. Nojiri, S. D. Odintsov, and R. J.

Scherrer, Phys. Lett. B 713, 145 (2012).

EVOLUTION OF DECAYING PARTICLES AND DECAY … PHYS. REV. D 104, 123506 (2021)

123506-5

https://doi.org/10.1086/166535
https://doi.org/10.1103/PhysRevD.75.083524
https://doi.org/10.1103/PhysRevD.75.083524
https://doi.org/10.1103/PhysRevD.73.103520
https://doi.org/10.1103/PhysRevD.73.103520
https://doi.org/10.1016/S0370-2693(02)02589-3
https://doi.org/10.1103/PhysRevLett.91.071301
https://doi.org/10.1103/PhysRevD.84.063003
https://doi.org/10.1103/PhysRevD.84.063003
https://doi.org/10.1016/j.physletb.2012.01.048
https://doi.org/10.1103/PhysRevD.85.083001
https://doi.org/10.1103/PhysRevD.85.083001
https://doi.org/10.1103/PhysRevD.68.023509
https://doi.org/10.1103/PhysRevD.68.023509
https://doi.org/10.1051/0004-6361/201833910
https://doi.org/10.1016/j.physletb.2012.06.017

