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Based on a binary tree model for the self-intersection of cosmic string loops containing high harmonics
we estimate the number of self-intersections of the parent and daughter loops and the associated cusp
production to determine the most likely number of cusp events per period on the resultant non-self-
intersecting loops, and provide an updated calculation for the gravitational wave signal that arrives on Earth
from cusps on such loops. This is done for different numbers of cusps supported from the cosmic strings of
the network, and for different harmonic distributions on the loops. We plot our results of the event rate of
gravitational waves emanating from the cusps in terms of redshift, having fixed the value of Gμ and the
received frequency of the signal, and compare our results to those in [B. P. Abbott et al., Constraints on
cosmic strings using data from the first Advanced LIGO observing run, Phys. Rev. D 97, 102002 (2018); R.
Abbott et al., Constraints on Cosmic Strings Using Data from the Third Advanced LIGO–Virgo Observing
Run, Phys. Rev. Lett. 126, 241102 (2021)].
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I. INTRODUCTION

Cosmic strings are linelike topological defects which
may have formed in the early universe by symmetry
breaking phase transitions and are predicted by a wide
range of models [1–7]. Given that they could have formed
in the early universe, depending on the energy scale at
which this occurred it would have determined their string
tension μ, which provides a natural dimensionless coupling
parameter when coupled to gravityGμ. This combination is
what is commonly constrained by observations, hence
provide insights into the physics of the very early universe,
such as the value of parameters associated with grand
unification theories from which strings can emerge [5].
A network of cosmic strings, once formed, consists

primarily of long infinite strings stretching across the
observable universe, and loops of string. Following an
initial period of friction domination, the traditional picture
of the network evolution is one where the long string
density decreases as they intercommute forming loops
which in turn decay primarily due to gravitational wave
emission. This is based primarily on what is known as the
Nambu-Goto approximation, where the strings are consid-
ered as effectively infinitely thin linelike objects evolving
under their tension. As a result, the cosmic string network,
in the scale of a Hubble volume and at cosmic time t,
consists of a number of long (infinite) strings that stretch
across the Hubble volume and a significantly larger number
of closed loops [8,9].

The possible detection of the gravitational waves emitted
from the evolving network of loops of string remains a holy
grail of early universe cosmology, providing perhaps the
first observational signatures of physics of that era, which
could also include the first evidence of string theory
through observations of cosmic superstrings. Therefore
the direct observations of gravitational waves (GW) by
the LIGO/VIRGO consortium [10] has renewed interest in
searching for the gravitational signal produced by cosmic
strings, and has led to two recent LIGO/VIRGO constraint
papers [11,12]. The strings emit gravitational waves as they
oscillate and this is the main mechanism that leads to their
decay, according to the Nambu-Goto model. We will adopt
that type of model in this paper, but we need to mention that
there is a school of thought that argues the primary decay
route for strings is through particle production associated
with the fact that cosmic strings are really field theory
objects typically modelled as Abelian-Higgs strings, and as
such have another mode of decay [13,14]. We will describe
the gravitational wave signal of cosmic strings produced by
cusp events on cosmic string loops. Our approach will be
different from other work in one critical feature. Following
on from [15], we will aim to investigate the impact initial
loops containing modes of high harmonics can have on the
signal, by introducing a toy model to predict the average
number of daughter loops a given parent loop produces,
and the number of associated cusps produced on these
loops. The result will be the derivation of the signal for
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classes of cosmic string network models which contain
parent loops of high harmonic order in them [15].
The paper is laid out as follows: in Sec. II we first discuss

the cosmic string networks and define the functions
required to describe them, for example as used in the most
recent LIGO cosmic strings constraint paper [12]. We then
introduce a toy model in Sec. III that can be used to provide
an analytic approach to describe the splitting of loops
through self-intersections with respect to their harmonic
order and apply the results to our cosmic string model. In
Section IV we calculate the gravitational wave burst
(GWB) signal, i.e. the gravitational wave signal from cusps
on cosmic strings, for the parameter values that we derived
with our toy model. In Sec. V we calculate the rate of
GWBs from the cosmic string network determined by our
model, and then in Sec. VI we compare the results based on
our choice of parameters with the LIGO results of [11,12].
Finally we conclude in Sec. VII.

II. COSMIC STRING NETWORK

In this approach the string is a one-dimensional
object and its world history can be represented by a
two-dimensional surface in spacetime, the worldsheet,
which is described by the mapping functions

Xμ ¼ Xμðτ; σÞ: ð2:1Þ

These map the worldsheet parameters (τ, σ), used to
describe the two-dimensional surface, to spacetime coor-
dinates. The parameter σ corresponds to the position on the
string and it is subject to periodic identification, since we
are considering closed loops of string. The strings follow a
two-dimensional wave equation of motion in flat spacetime
(we use the convention for the Minkowsi metric
ημν ¼ diagð−1;þ1;þ1;þ1Þ). We fix the gauge-invariance
of the cosmic string solutions using the conformal gauge
and the time gauge [8]. The loops move periodically with
fundamental period T ¼ l=2, where l is its invariant length,
and frequency ω1 ¼ 4π=l. The loop will emit gravitational
waves at the discrete frequencies ωm ¼ mω1, where m
belongs to the set of natural numbers and runs from 1, the
fundamental harmonic order of the loop, up to the maxi-
mum harmonic order of the loop N. The movement of the
loops is described as the sum of a left-moving wave b⃗ and a
right-moving wave a⃗,

X⃗ðt; σÞ ¼ 1

2
½a⃗ðσ − tÞ þ b⃗ðσ þ tÞ�; ð2:2Þ

which we will also refer to as the string movers. We will
denote u ¼ σ − τ and v ¼ σ þ τ. Note that we have
normalized the left- and right-movers by l=2π and the
dimensionless parameters u and v range in the interval
½0; 2πÞ, as in [15,16].

A network of cosmic strings evolving from the friction
dominated period consists of a distribution of long (infinite)
strings stretching across the observable universe and loops,
which were either chopped off the long strings as they self-
intercommute or were originally produced as the network
formed during the phase transition responsible for it (for
details see Refs. [6,8,17]). As the network evolves, new
loops are constantly chopping off the long strings, and
decaying primarily via gravitational radiation. Although
much is known about the network and its properties, many
key aspects remain unknown and have to be estimated
based either on empirical arguments or simulations. For
example, what is the typical size of a loop formed
compared to the Hubble scale (∼t) at the time of formation,
what do typical loops look like in terms of the number of
harmonics contained on them, how many cusps are
produced as they oscillate and how many kinks does a
typical loop contain, what is the effect of gravitational
backreaction on the evolution of the network, and how does
it affect the string energy density scaling with the back-
ground energy density? They are important questions, their
solutions lead to key parameters which play crucial roles in
determining the observational consequences of cosmic
strings. Our goal here is to try and reduce the uncertainty
in a few of these parameters, and in doing so, show the
impact they can have in estimating the amount of the
gravitational radiation emitted from cusp events on loops of
cosmic strings. Given the uncertainty in the typical loop
size produced, we will follow earlier work and consider the
Model 1 that was introduced in the LIGO collaboration
paper [11]. For a recent review of the loop distribution
function see Ref. [18]. A key assumption of this model
is that all loops chopped off the long string network at a
cosmic time ti are non-self-intersecting with period
Ti ¼ li=2 where li is the length of the cosmic string loop
formed and is given by

li ≃ αti: ð2:3Þ

Here, α < 1 is a dimensionless parameter whose precise
value is unknown, and depends on the mechanisms that
caused the loop to form. For example in Model 1 of [11],
they assume α ∼ 0.1.
Our main goal is to calculate the event rate of GWBs

from loops of cosmic string in such a network, where we
also allow for high-harmonic loops to be present and model
their evolution. To achieve this we will follow closely the
calculation from [19], adopting the cosmic string network
from [11,12], while adding a model representing the
evolution of high-harmonic loops. We begin by introducing
the following functions for cosmic time and proper dis-
tance, which generally have to be evaluated numerically
(see Sec. VA), as only their asymptotic form can be
obtained analytically. The cosmic time is defined as
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tðzÞ ¼ φtðzÞ
H0

ð2:4Þ

where

φtðzÞ ¼
Z

∞

z

dz0

Hðz0Þð1þ z0Þ ; ð2:5Þ

the proper distance (or cosmic distance) is defined as

rðzÞ ¼ φrðzÞ
H0

ð2:6Þ

where

φrðzÞ ¼
Z

z

0

dz0

Hðz0Þ ; ð2:7Þ

and the proper spatial volume between redshifts z and
zþ dz is

dVðzÞ ¼ φVðzÞ
H3

0

dz ð2:8Þ

where

φVðzÞ ¼
4πφ2

rðzÞ
ð1þ zÞ3HðzÞ : ð2:9Þ

In the above, we have expressed the Hubble parameter at
redshift z as

HðzÞ ¼ H0HðzÞ ð2:10Þ

where, in terms of the density parameters for the cosmo-
logical constant (ΩΛ), radiation (ΩR) and matter (ΩM)

HðzÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩΛ þ ΩMð1þ zÞ3 þ ΩRGðzÞð1þ zÞ4

q
; ð2:11Þ

with ΩΛ ¼ 1 − ΩM − ΩR. The radiation-matter equality
redshift is estimated to be zeq ¼ 3366. We will use the
same values for the cosmological parameters as used in
[11]. These are the Planck 2015 results presented in [20],
with H0 ¼ 100h km s−1Mpc−1, h ¼ 0.678, ΩM ¼ 0.308,
ΩR ¼ 9.1476 × 10−5 The function GðzÞ is related to the
entropy released from the particle species when they
become non-relativistic as the universe cools. It varies
mainly during the epochs of electron-positron annihilation
and the QCD phase transition [17], and can be approxi-
mated by the piecewise-function

GðzÞ ¼
8<
:

1 z < 109;

0.83 109 < z < 2 × 1012;

0.39 2 × 1012 < z:

ð2:12Þ

The integrals for φtðzÞ (2.5) and φrðzÞ (2.7) cannot be
evaluated analytically for general z, and need to be
computed numerically. However, in the limit z ≫ 1, deep
in the radiation dominated era we can simplify the Hubble
parameter (2.11) yielding

HðzÞ ≃
ffiffiffiffiffiffi
ΩR

p
z2: ð2:13Þ

Then, using (2.13), the integral (2.5) can easily be calcu-
lated

φtðzÞ ¼
1

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ΩRGðzÞ

p 1

z2
; ð2:14Þ

for z ≫ 1. We cannot use the above method to calculate the
large z limit of ϕr, because the limits of integration in (2.7)
extend beyond the range of validity of the approximation
(2.13), all the way down to z ¼ 0. Numerically we find that
for z ≫ 1, we obtain the constant solution

φrðzÞ ≃ 3.39; ð2:15Þ

For z ≪ 1, we can estimate φt to be

φtðzÞ ¼
Z

∞

0

dz0

Hðz0Þð1þ z0Þ : ð2:16Þ

Upon calculating the above integral, we find the small z
value of φtðzÞ is roughly constant ≃0.96. Finally, to
calculate the small z behavior of φrðzÞ, we perform a
Taylor series expansion of the integrand function in (2.7)
around z ¼ 0, obtaining to leading order

φrðzÞ ¼ z; ð2:17Þ

for z ≪ 1.
In what follows we will adopt a large loop scenario

where the parameter α ¼ 0.1 in Eq. (2.3) [11,17]. The rate
of length loss remains the same as in the small loop case,
i.e. dl=dt ¼ −ΓGμ, implying that large loops live longer
than small loops, and moreover they can survive for longer
than a Hubble time. This means that we will need to use a
different treatment for the large loop network as we need to
include the fact their length decreases due to gravitational
radiation. The parameter Γ ∼ 50 is determined from
numerical simulations of the decay of loops—see for
example [8]. We first define the relative size of a loop
of length l compared to the age of the universe, t, as

γ ¼ l=t ð2:18Þ
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and the loop distribution function as

F ðγ; tÞ ¼ nðl; tÞt4 ð2:19Þ

where nðl; tÞ is the number density of loops of length l at
cosmic time t. For simplicity, we will also assume that the
loops do not self-intersect [21]. Therefore, taking into
account the length decrease due to the gravitational wave
emission, a loop formed at cosmic time ti will have a length
at a later time, t, given by

lðtÞ ¼ αti − ΓGμðt − tiÞ ð2:20Þ

The loop distribution of large loops in the radiation era
(z > 3366) is [8,11]

F radðγÞ ¼
Crad

ðγ þ αÞ5=2 Θðα − γÞ; ð2:21Þ

where Crad is a constant specific to the radiation era. The
Heaviside step function ensures that γ < α, which is always
true since all the loops are formed with a length αt and decay
throughout their evolution. In the matter era the loop
distribution function consists of two different contributions;
one from loops formed in the radiation era that survive into
the matter era, and one from loops formed it the matter era,
i.e. at times t > teq. Loops formed in the radiation era will
have length at cosmic time t > teq which is less than the
length of a loop formed at teq, i.e. lðtÞ < αteq − ΓGμðt − teqÞ,
since any loopwith length larger than thiswouldhave formed
in the matter era. Thus, if we define the function

βðtÞ ¼ αteq − ΓGμðt − teqÞ ð2:22Þ

we can then write for the loop distribution function con-
tributionwhich consists of the radiation era loops that survive
into the matter era

F ð1Þ
matðγÞ ¼

Crad

ðγ þ αÞ5=2
�
teq
t

�
1=2

Θð−γ þ βðtÞÞ; ð2:23Þ

while for the contribution to the loop distribution function
from loops formed in the matter era, we have

F ð2Þ
matðγÞ ¼

Cmat

ðγ þ αÞ2Θðα − γÞΘðγ − βðtÞÞ; ð2:24Þ

where Cmat is a constant specific to the matter era. The
function Θðα − γÞ ensures that all loops considered have
lengths smaller than the formation length at time t, and the
function Θðγ − βðtÞÞ ensures that no loops surviving from
the radiation era are taken into account in the matter era loop
distribution. Therefore, the total matter era loop distribution
function is

FmatðγÞ ¼ F ð1Þ
matðγÞ þ F ð2Þ

matðγÞ: ð2:25Þ

The constantsCrad andCmat are obtained numerically and are
given by [8,11,22],

Crad ≃ 1.6; Cmat ≃ 0.48: ð2:26Þ

III. A TOY MODEL FOR THE LOOP EVOLUTION

The value of the average number of cusps per loop
period, denoted by c in the following, is a key quantity in
the calculation of the GWB signals emitted from cusps on
cosmic strings, but remains an elusive one due to the many
unknown parameters of cosmic string loop initial condi-
tions and evolution. In [15] we determined average values
of c for loops with high harmonics, but we did not take into
account the fact that these loops would naturally self-
intersect within a period of their evolution, thereby pro-
ducing daughter loops. This is important, as the LIGO
bounds are based on the assumption that the loops being
considered are not self-intersecting. Earlier work to deter-
mine the number of final cusps per period emerging from
loops with higher harmonics which then self-intersect can
be found in Ref. [23], where they used numerical simu-
lations to characterize attractor non-self-intersecting loop
shapes, beginning with initial loops containing M higher
harmonic modes. They argued that such loops have on
average M2 cusps, and discovered that, on average, large
loops will split into 3M stable loops within two oscillation
periods (independently of M), with the stable loops being
described by a degenerate kinky loop, co-planar and
rectangular. These final loops were found to have a 40%
chance of containing a cusp. In this section, we will
introduce a toy model that estimates c based on a
combination of analytical assumptions about the statistical
properties of the loop self-intersection.
Our motivation for developing this model is to estimate

the contribution to the GWB signal from high harmonic
cosmic string loops that chop off the long string network.
These loops could potentially support a large number of
cusps that could emit an enhanced GWB signal. Earlier
approaches to calculate the gravitational wave signal from
cosmic string loops have generally assumed that the cosmic
string network follows the one scale model, and that loops
do not undergo any further self-intersection, while at the
same time it is assumed that loops contain roughly one cusp
per period, c ¼ 1 [11,12,24]. While this may be a reason-
able approximation, it does mean that a large signal that
could be emitted from high harmonic cosmic string loops
chopping from the long string network is ignored. Such a
possibility was recently investigated by us in [15] where we
pointed out that such high harmonic loops can have many
cusps and in principle can influence the overall GW signal
considerably. However, we did not have a model of how the
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loops themselves could self-intersect and lead to a family of
non-self-intersecting loops.
The picture we have in mind is one in which at any point

in the network evolution there is a significant number of
large string loops (possibly containing high harmonics),
which subsequently self-intersect forming daughter loops
that can also self-intersect, and so on until non-intersecting
descendant loops are formed. The scaling nature of the
long-string network means that approximately half of the
string network length gets transferred to newly formed
loops in each Hubble time. While most of these loops will
self-intersect within one oscillation period, the relevant
timescale will be of order one tenth of a Hubble time
(α ≃ 0.1) and so such high-harmonic loops can provide a
significant correction to the standard calculation of the
gravitational wave signal from strings. In this context, we
will aim to quantify the impact of multiple cusp events from
high-harmonic order loops by modeling the loops’ self-
intersection history, thereby allowing us to provide an
integrated effect for the value of c, based on cusps being
formed at different stages of the loops’ lifetimes, while at
the same time keeping all the assumptions of the one
scale model.
To determine this integrated effect, there are a number of

steps that we will follow. First we need to assume the
distribution of harmonics on the loops that have chopped
off the long string network. For any given loop, we can
calculate the number of cusps that it will produce during its
lifetime, for a given probability that it might self-intersect,
forming two smaller loops with each self-intersection. The
chopping process is modeled using the binary tree evolu-
tion introduced in Sec. III A below. At each level of the tree,
the probability that a loop will chop is given by the results
of Siemens and Kibble in Ref [16] (in which they
determined the probability of an odd-harmonic string of
harmonic order N to self-intersect), while the number of
cusps per period on the loop being analyzed was obtained
by us in [15]. The number of cusps per period produced
from each loop is thus averaged over the loop’s lifetime, by
considering all the possible evolutions it might have (i.e.
adding different binary trees, each with an assigned
probability). Having calculated this quantity for odd-
harmonic strings for several harmonic orders, we can
compute the cusps per period for a given distribution of
harmonics of the parent loops, which provides us with an
estimate for c for a network of string loops that chop off
following such a binary tree evolution. We will begin by
making the simplest assumptions concerning the evolution,
which is what makes this a toy model. In Sec. III F, we will
discuss how these assumptions could be improved.
Note that there have been other publications where it was

assumed that the evolution of a string can be imitated with a
binary tree. In [25], the binary tree had nodes correspond-
ing to loops that chop with a given constant probability, that
was independent of the harmonic order of the initial loop,

or the tree level. Moreover the maximum number of tree
levels was also not restricted by the harmonic order of the
initial loop. The authors found that if the probability of self-
intersection is larger than 1=2 there is a probability that the
loops would chop infinitely, i.e. binary trees occurred with
an infinite number of tree levels. A similar approach was
assumed by Bennett in [26], where the production and
absorption of cosmic string loops from the long string
network was studied, with smaller loops becoming less
likely to reabsorb on the long string network as time went
on. Bennett modeled the loop self-intersection by assuming
that for each loop there was a probability to split into two
equally sized daughter loops. He also assumed that the two
daughter loops would oscillate with half the period of their
parent loop and, therefore, they would split faster into two
equally sized loops, compared to their parent loop. In [27],
Scherrer and Press tackled the problem of loop fragmenta-
tion in a numerical manner. Two different families of
cosmic string loops were assumed, and each family of
strings was tested for self-intersections, their evolution
tracked using a numerical method until stable non-self-
intersecting loops were produced. They found that the
probability of chopping was not a constant but it reduced
with each loop generation. Moreover, the splitting of the
loops did not necessarily occur in half, but over all length
scales in a rather uniform distribution, i.e. the production of
very small daughter loops was also observed. It was also
found that if one assumes the splitting of loops into two
with a probability that would decrease at each generation,
then this analytic approach matched the numerical results
well, when it comes to the daughter loops produced at each
generation. We note with interest that they also determined
that there was a correlation between the harmonic order of
the parent loop, and the number of daughter loops, but it
was not studied as to whether the maximum number of
generations also depended on the harmonic order of the
parent loop.
Finally, we should comment on the fact that the total

number of daughter loops described using a binary tree
model increases exponentially with the tree height.
In particular, a fully expanded binary tree of height n,
i.e. one where all of its nodes split, has 2n daughter loops.
By fully expanded binary tree we mean that any node at any
level of the tree splits, until it reaches height n. In the above,
we imply that a single loop is a binary tree of height 0. In
any intermediate situation, i.e. at any tree where the nodes
split or do not split with some probability, the increase will
be exponential but with a basis less than 2. Therefore, it is
reasonable to anticipate that any quantity that is a linear
function of the number of daughter loops will inherit an
exponential behavior. With our toy model we will provide
an evaluation of the average cusp number produced per
fundamental period T ¼ l=2 from a cosmic string network
of loops in a unit spacetime volume, νðtÞ. At the same time,
wewill not use the results of the toy model to make changes

EFFECT OF HIGH HARMONIC LOOPS ON GRAVITATIONAL … PHYS. REV. D 104, 123505 (2021)

123505-5



to any of the quantities of the “one-scale” model of Sec. II.
Rather, our results will provide an integrated value for the
parameter c, for a string network that otherwise follows
the “one-scale” approach. We will use the properties of the
odd-harmonic family of cosmic string loops as provided in
[15,16], and modify the estimation of the cusps per period
that we provided in [15] by calculating an effective value
for c with the toy model.
A nice feature of our model is that it will also provide

a means of estimating the number of stable non-self-
intersecting loops originating from a parent loop. By parent
loop we define a cosmic string loop which has been
produced from the long cosmic string network and has
not yet self-intersected [23]. Note that in the “one-scale”
model of Sec. II, all loops are parent loops since they do not
self-intersect. However, here we will allow them to self-
intersect and calculate an integrated value of c, over their
lifetime.
In what follows, in Sec. III A, we will begin by

discussing the assumptions of the toy model. Then we
will derive formulas for the stable loop number and the
number of cusps produced by each loop. In order to carry
out the analytic calculations we will use the symbolic
software Mathematica, and will describe the details of the
calculation in Appendix B. We will then calculate the cusps
produced from a unit volume of the cosmic string network,
νðtÞ, using the results of Sec. II. Finally, in Sec. III F, we
will discuss the limitations and possible issues of this toy
model, as well as ideas of how it could be improved.

A. Assumptions of the model

First of all, we will assume that the loops maintain their
Nambu-Goto nature and can be described via any type of
Nambu-Goto loop solution. In [16], a specific Nambu-Goto
loop set of solutions called the odd-harmonic string was
presented and we tested their behavior at cusp points in
[15]. Wewill assume that at any stage of evolution the loops
belong to this set of solutions. We will call the initial loop
chopped from the long string network the parent loop, and
all the loops produced through self-intersections starting
from the parent loop, daughter loops. A loop will self-
intersect if and only if the equation

x⃗ðσ; tÞ ¼ x⃗ðσ0; tÞ ð3:1Þ

has at least one solution. In the above, σ and σ0 both belong
in the interval ½0; 2πÞ. After a self-intersection happens, the
parent loop will split into two daughter loops which will
have different initial conditions than the parent loop.
If Eq. (3.1) has no solution then the parent loop is a stable
loop, i.e. it will evolve periodically without any self-
intersection occurring in its lifetime. We will assume that
each loop will self-intersect at one point only, producing
two daughter loops, excluding the remote case of a loop
self-intersecting at two points simultaneously. The daughter

loops produced will be checked for self-intersections as we
did in the case of the parent loop, and they may or may not
produce more daughter loops. Note that Eq. (3.1) was used
to calculate the probability of self-intersection of an odd-
harmonic loop in [16], and we will use these results to find
the probability of a loop to split.
Eventually, the system will reach an equilibrium state

where all possible self-intersections have happened, and it
will consist of a number of stable loops, all produced from
the initial parent loop. Note that we are sure that the
equilibrium stage will be reached, since our assumed self-
intersection probability of the loops (obtained from [16]) is
decreasing with the harmonic order, unlike in [25], where
under a given probability the system of loops can self-
intersect indefinitely. At any stage of evolution, when we
refer to the system at some time t we will mean all the
daughter loops produced from the initial parent loop that
exist at that time, or in the case that the parent loop does not
self-intersect the term system will refer simply to the
parent loop.
Every time a loop self-intersects its length is reduced and

divided between the two daughter loops. If l is the length of
the initial loop, and l1 and l2 the lengths of the daughter
loops, then it does not necessarily hold that l ¼ l1 þ l2,
since some of the initial loop energy turns into kinetic
energy of the daughter loops. However, we will assume that
the above equality holds and the kinetic energy is negli-
gible. The simplest scenario for how the length is divided is
to assume that it is halved, i.e. that the daughter loops have
equal length l1 ¼ l2. We will assume that this is the case for
any self-intersection that occurs, while acknowledging that
it is an important restriction we are imposing on the loop
evolution. Since the length is halved, the fundamental
harmonic of the loop that chops, which is the one with the
longest wavelength, will no longer be present on the
daughter loops, which will therefore have a total number
of harmonics smaller than those of the parent loop. We will
fix how the harmonics transition after a chopping, assum-
ing that the daughter loops have harmonic order Ni − 2
given that they were produced from a loop of harmonic
order Ni. This ensures that the total harmonics are reduced
as the loops chop, and they maintain the odd number of
harmonics format. We will also assume that any self-
intersection occurs after the loop has oscillated for half
of its period. This choice is also based on the average value
for the time it takes for a loop to self-intersect. In this toy
model, there will be no need to determine the size of the
loops, which is a subject of debate as we discussed
in Sec. II.
The splitting of the parent loop forms a full binary tree,

which we will simply call binary tree or tree in the
following [28]. We will call “internal nodes” the points
(in our case loops) that are linked to points at the next level
of the tree, and “leaves” the points of the tree that are not
linked with points at the next level. The height of the tree h
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is the number of levels it has. A tree that consists of a single
leaf has a total height zero. The top level of the tree is the
level at height zero, while the bottom level is the level
corresponding to its maximum height. We will denote by N
the harmonic order of the highest harmonic order loop,
which occurs at height h ¼ 0 and corresponds to the parent
loop. Then, a loop of order Ni, which corresponds to one of
the daughter loops after i splittings of the parent loop,
occurs at level of height

h ¼ N − Ni

2
; ð3:2Þ

where N and Ni obtain odd integer values. The index i
corresponds to the height of the tree level. Each possible
system which evolved from a parent loop, as we defined it
above, can thus be described using a binary tree.
We can assign a function PðNi; Ni−2Þ between any two

neighboring levels of the tree, which is the probability of
the loop of order Ni splitting to two loops of order Ni−2.
Also, we assume that for any loop, the left-moving and
right-moving functions have an equal number of harmon-
ics, as was assumed in [15,16]. The impact and significance
of our assumptions on the model will be discussed in
Sec. III F.

B. The average number of stable loops and cusps
produced from the parent loop

Below, we present our method for calculating the
splitting of a parent loop, described by the odd-harmonic
string, as well as the evaluation of the average number of
stable loops and the average number of cusps emitted from
the system over its lifetime, with respect to the harmonic
order of the parent loop.
At each harmonic order we have a total number of

possible binary trees, which is known and given below in
Eq. (3.4), Sec. III C. To find the average number of stable
loops from a parent loop of harmonic order N, we calculate
the number of stable loops for each of the possible binary
trees and then we average over all the binary trees, given
that we know the probability of each binary tree to occur.
The number of cusps is computed in a similar manner. We
calculate for each possible binary tree the value of the total
number of cusps produced by the system divided by the
total number of periods of the system. By total number of
cusps produced we mean the sum of all cusp events that
occurred in the system of loops until all loops in the system
have vanished, i.e. in the lifetime of the system. By total
number of periods we mean the number of periods of the
parent loop (which is equal to Tl ¼ l=2) that have occurred
in the lifetime of the system (which is τl ¼ l=ΓGμ). Note
that the lifetime of the system is always less than or equal to
the lifetime of the parent loop. Once more, averaging over
the values for all binary trees we obtain the final result for
the average number of cusps per period of an N harmonic

order loop.We can then use this value of cusps per period, c,
as an estimate for the number of cusps per period produced
from an N order harmonic string throughout its lifetime, as
part of a cosmic string network following the “one-scale”
evolution.

C. Calculation for any harmonic order

For the probability of self-intersection of anN order odd-
harmonic loop, we will use the values obtained from
Figure 3 in [16]. In table I, we present these probability
values in terms of the harmonic order. The probability value
of an Ni harmonic order loop not to self-intersect is
PðNi; NiÞ ¼ 1 − PðNi; Ni − 2Þ. The number ε in Table I
associated with Ni > 11 is considered to be much smaller
than unity, which indicates the very low probability of a
high-harmonic loop not to self-intersect. We will set it to be
ε ¼ 0.01. The first order harmonic loop has zero chance of
self-intersection, i.e. Pð1; 1Þ ¼ 1.
For the number of cusps per period of a loop of a given

harmonic order Ni, cNi
, we will use the values obtained for

the odd-harmonic loops presented by us in [15]. Regarding
the total number of periods, in terms of the period of the
parent loop, this will be calculated by dividing the total
lifetime of the tree by the period of the parent loop. The
lifetime of stable loops is significantly larger than the
lifetime of a loop that self-intersects, since ΓGμ ≤ 10−6 and
so, while the period is l=2, the lifetime of a non-self
intersecting loop is l=ΓGμ (see Sec. III B). Also, the
lifetime of a stable loop is larger the smaller its tree height.
Therefore, the total lifetime of the tree is given by the sum
of the lifetime of the stable loop with the smallest tree
height plus the lifetime of the loops that precede it.
Let us denote by aðhÞ the number of trees of a given

height h, where h ≥ 0 takes positive integer values. Then, it
can be proven that the recurrence relation [29]

aðhþ1Þ¼ aðhÞ2þ2aðhÞ½aðh−1Þþaðh−2Þþ �� �þa0�;
a0 ¼ 1 ð3:3Þ

holds. If we also denote by bðhÞ the cumulative number of
trees up to height h we know that it is also expressed by the
following recurrence relation [30]

TABLE I. The probability of a loop of harmonic order Ni self-
intersecting into two loops of harmonic order Ni − 2, taken from
Ref. [16].

Harmonic order Ni Probability of self-intersection

3 Pð3; 1Þ ¼ 0.6
5 Pð5; 3Þ ¼ 0.8
7 Pð7; 5Þ ¼ 0.9
9 Pð9; 7Þ ¼ 1–0.05
≥ 11 PðNi; Ni-2Þ ¼ 1-ε
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bðhþ 1Þ ¼ bðhÞ2 þ 1; b0 ¼ 1: ð3:4Þ

Note that the zero height values are obvious, since they
correspond to a single point. The simplicity of relation
(3.4), allows us to find the total number of all trees with
height from 0 to h. This describes the total number of
configurations we can potentially have when a loop of
harmonic order N self-intersects, corresponding to trees
of maximum height h ¼ ðN − 1Þ=2. We notice that the
number of trees increases in a recurrence power law
manner. This implies that the value for height h is the
square of the previous value, which is the square of the
value before that, and so on and so forth, corresponding to a
very rapid increase of the total cumulative number of trees
with respect to height.
We will now define the trees with same type, i.e. the trees

that have the same number of leaves and internal nodes at
each level. Note that this definition implies that these trees
have the same height, h too. An example of trees of the
same type are the trees that appear in figures 3(c) and 3(d).
We define the multiplicity (also called cardinality) dðhÞ, as
the number of different types of trees with height h. For
example, from Fig. 3 we can see that dð2Þ ¼ 2. The
recurrence series of the tree multiplicity is given in [31].
We can also define the degeneracy of a tree type Dðh; iÞ, to
be the number of trees of height h that belong to the same
tree type. The index i, running from 1 to dðhÞ, labels the
different tree types at height h. For example, from Figs. 3(c)
and 3(d), it follows that for h ¼ 2 the degeneracy is
Dð2; 1Þ ¼ 2, since we have two degenerate loops in that
tree type. Given the above, we can also write the number of
trees of a given height in terms of the tree degeneracy

aðhÞ ¼
XdðhÞ
i¼1

Dðh; iÞ ð3:5Þ

and the cumulative number of trees up to height h is
written as

bðhÞ ¼
Xh
j¼0

aðjÞ ¼
Xh
j¼0

XdðjÞ
i¼1

Dðj; iÞ: ð3:6Þ

1. Calculation of the average number of stable loops

In our model we deal with loops of harmonic order K,
whereK is odd. Each loop can self-intersect producing other
(lower) odd-harmonic order loops. This process can continue
and loops of harmonic ordersK −M are produced, whereM
takes even values and satisfies 0 ≤ M ≤ K − 1. Then, the
tree height is given by h ¼ M=2.
We will define the final harmonic order of such an

evolving string loop to be the smallest harmonic order of
any of the stable loops of the system, K −M. Note that this

does not prevent the system from also including stable
loops with harmonic order greater than K −M.
Let us now derive a formula for the average number of

stable loops formed from a parent loop of harmonic order
K. We should start with the calculation of the number of
stable loops for trees with fixed tree height, between
harmonic order K and K −M. This is described by the
quantity

fK;K−M ¼
XdK;K−M

i¼1

ciK;K−MP
iðK;K −MÞDi

K;K−M; ð3:7Þ

and includes all trees of fixed height M=2. In the above,
dK;K−M is dðM=2Þ, which is the number of different types of
trees with heightM=2. The quantity ciK;K−M is the number of
stable loops (leaves) of treeswith heightM=2 and of the same
type i. Also,PiðK;K −MÞ is the probability of trees of type i
and height M=2 to occur. As mentioned above, each tree
configuration has a given probability of occurring, and the
total probability of trees of type i is the sum of the
probabilities of all trees of type i. Finally, the quantity
Di

K;K−M is the degeneracy of trees of the same type i and
height M=2. Note that we use the notation dK;K−M and
Di

K;K−M, instead of dðM=2Þ and Dðh ¼ M=2; iÞ, respec-
tively, to specify the initial and final harmonic orders for the
calculation in our summation formula [32].
Given the above, we can calculate the average number of

stable loops produced from a parent loop of harmonic order
N if we sum the above quantity fK;K−M, defined in (3.7),
over all possible tree heights, i.e. ranging from 0 (which
corresponds to the case where the parent loop does not self-
intersect) to ðN − 1Þ=2 (the maximum tree height for an
N order harmonic loop that is allowed to self-intersect
down to first order harmonic loops).
If we denote the average number of stable loops of an

N order harmonic string by slN, we can thus write

slN ¼
XN−1

2

i¼0

fN;N−2i; ð3:8Þ

where N is odd. Note that the subscript where N appears
twice (i.e. subscript N, N for i ¼ 0) implies an N harmonic
order loop that does not self-intersect. Since the minimum
harmonic order is 1 ¼ N − ðN − 1Þ, the maximum height is
ðN − 1Þ=2. The summation of all tree configuration prob-
abilities over all possible tree heights is equal to 1 by
definition (see Appendix B).

2. Calculation of the average number of cusps per period

For the calculation of the average cusp number, we will
need to define both the period of the daughter loops, and the
total number of periods in the lifetime of the system (see
Sec. III B). As we discussed in Sec. III A, in our toy model
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a loop that self-intersects will split into two equal sized
loops, and since the period of a loop is proportional to its
length, this implies that the period of the two new loops will
be half that of their parent loop. Therefore, we can write a
recursion relation for the periods of a loop of harmonic
order K −M emerging from a loop of harmonic order
K −M þ 2

TðKÞ
K−M ¼ TK−Mþ2

2
ð3:9Þ

where 2 ≤ M ≤ K − 1. The superscript (K) indicates the
harmonic order of the parent loop of the system. It is also
useful to know how long a loop lives. If the loop self-
intersects, it will live for half its period, according to our
assumptions in Sec. III A. Therefore, the expression for its
lifetime is

T ðKÞ
K−Mþ2;K−M ¼ TðKÞ

K−Mþ2

2
; ð3:10Þ

where 2 ≤ M ≤ K − 1. The notation T ðKÞ
K−Mþ2;K−M means

the lifetime of a loop of harmonic order K −M created
from a loop of harmonic orderK −M þ 2, with parent loop
of harmonic orderK. If the loop does not self-intersect, then
if formed at time ti its lifetime [see (2.20)] is given by

t ¼ ðαþ ΓGμÞti
ΓGμ

: ð3:11Þ

In this case, the lifetime of the loop (for α ≫ ΓGμ) is

T ðKÞ
K−M;K−M ¼ TðKÞ

K−Mþ2

ΓGμ
: ð3:12Þ

We remind the reader of the notation being used in (3.10)
and (3.12), the subscript K −M, K −M indicates a loop of
orderK −M that does not self-intersect, while the subscript
K −M þ 2, K −M indicates a loop of order K −M þ 2
that self-intersects, splitting into two K −M loops.
The total lifetime of the system will be the total time

from the moment the parent loop of harmonic order K is
created until all of the loops that were created via self-
intersections have evaporated. Note that the lifetime of a
stable loop is significantly larger than a loop that self-
intersects, because ΓGμ ≤ 10−6. From Eq. (3.12), we can
see that the larger the harmonic order K −M the longer the
stable loop lives. Therefore, the total lifetime of a system
with leaves having maximum harmonic order K −M will
be given by

T ðKÞ
K−M ¼ T K

K;K−2 þ T K
K−2;K−4 þ � � �

þ T ðKÞ
K−M−2;K−M þ TðKÞ

K−M;K−M: ð3:13Þ

The highest order harmonic leaf does not necessarily
correspond to a single loop of the system, since there
can be multiple stable loops of the same harmonic order.
Equation (3.13) summarizes the lifetimes of loops from
harmonic order K to harmonic order K −M, which
corresponds to a stable loop.
For a parent loop with harmonic order K formed at time

ti we need M=2 steps in the tree (i.e. M=2 differences in
height) to reach a loop of harmonic order K −M.
Therefore, the period of the K −M harmonic order loop
can be written as

TðKÞ
K−M ¼ 2−

M
2TðKÞ

K ¼ 2−
M
2
αti
2

¼ 2−
Mþ2
2 αti; ð3:14Þ

where we have used the fact that the period of the loops is
halved at each intersection. The harmonic order M takes
integer values in the interval ½0; K − 1�. The lifetime
of a loop of harmonic order K −M þ 2 which splits (into
a K −M harmonic order loop) is

T ðKÞ
K−Mþ2;K−M ¼ TðKÞ

K−Mþ2

2
¼ TðKÞ

K−M; ð3:15Þ

and we can write it in terms of the period of the parent K
harmonic loop as

T ðKÞ
K−Mþ2;K−M ¼ 2−

Mþ2
2 αti ð3:16Þ

where 2 ≤ M ≤ K − 1. If we apply the parameter trans-
formationM → M þ 2, we find that Eq. (3.16) is written as

T ðKÞ
K−M;K−M−2 ¼ 2−

Mþ4
2 αti; ð3:17Þ

where 0 ≤ M ≤ K − 3. Combining Eqs. (3.14) and (3.17),
we find that,

T ðKÞ
K−M;K−M−2

TðKÞ
K−M

¼ 1

2
ð3:18Þ

with 0 ≤ M ≤ K − 3. For the case of a stable loop,
combining Eqs. (3.9) and (3.12), we find that

T ðKÞ
K−M;K−M

TðKÞ
K−M

¼ TðKÞ
K−Mþ2

ΓGμTðKÞ
K−M

¼ 2TðKÞ
K−M

ΓGμTðKÞ
K−M

¼ 2

ΓGμ
: ð3:19Þ

Given the above results, we can calculate the total
number of cusp events produced by a tree with starting
harmonic order K and finishing with order K −M

gK;K−M ¼
XdK;K−M

i¼1

PiðK;K −MÞc̃iK;K−MDi
K;K−M; ð3:20Þ

using the same reasoning as in Eq. (3.7). The upper sum
limit dK;K−M is dðM=2Þ, i.e. the number of different types
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of tree with height M=2. The probability PiðK;K −MÞ is
the probability of trees of type i and height M=2. Also,
Di

K;K−M is the degeneracy of trees of the same type i and
with height M=2. Finally, the quantity c̃iK;K−M corresponds
to the total number of cusps produced from the nodes and
the leaves of the tree of type i

c̃iK;K−M ¼
XM=2−1

j¼0

T ðKÞ
K−2j;K−2j−2

TðKÞ
K−2j

cK−2jniðK;K−M;K−2jÞ

þ
XM=2

j¼0

T ðKÞ
K−2j;K−2j

TðKÞ
K−2j

cK−2jliðK;K−M;K−2jÞ: ð3:21Þ

Note that by total number of cusps we mean all the cusp
events produced from the creation until the evaporation of
the loop of type i and height M=2. In (3.21), the first sum
summarizes the cusp contribution from the nodes (i.e. loops
that split) of the tree and niðK;K−M;K−2jÞ is the number of

nodes at tree height K − 2j for a loop with initial harmonic
order K and final K −M. The second sum in (3.21)
summarizes the cusp contribution from the leaves (i.e.
stable loops) of the tree and liðK;K−M;K−2jÞ is the number of

leaves at tree height K − 2j for a loop with initial harmonic
order K and final K −M [32]. The nodes contribute cusp

events for the half of their period, T ðKÞ
K−2j;K−2j−2, after which

they split. The leaves contribute for much longer since they

do not split, T ðKÞ
K−2j;K−2j. The parameter cK−2j is the number

of cusps per period of an odd-harmonic loop of harmonic
order K − 2j, the values of which are given in Table 1 of
[15]. The fractions in Eq. (3.21) give the number of periods
for which the corresponding loop oscillates until it chops or
evaporates.
Having calculated the total number of cusps produced

for a tree configuration of a given height, we will sum over
the possible tree heights. We will also normalize the result
with respect to the total number of periods the Kth order
harmonic parent loop oscillates, 2=ΓGμ, to finally obtain
the average cusps per period of a Kth order harmonic loop

cðKÞ ¼ ΓGμ
2

XK−1
2

i¼0

gK;K−2i: ð3:22Þ

In deriving the above equation, we followed the same
reasoning as in our derivation of the stable loop number
formula (3.8) in Sec. III C 1.

D. Number of stable loops and cusps
per period with harmonic order

The number of different tree configurations increases
rapidly with the tree height. As we can see from the
recurrence relation (3.6), the number of configurations is 1
for h ¼ 0, 2 for h ¼ 1, 5 for h ¼ 2, 26 for h ¼ 3, 677 for

h ¼ 4, and so on so forth. In Appendix Awe show how the
binary tree builds up for harmonics from N ¼ 1 to N ¼ 5,
but it is clear these numbers rise rapidly and require a
numerical algorithm if we are to determine the number of
stable loops and cusps per period for h ≫ 2. We present
such a method in Appendix B, and also calculate the results
numerically using a Monte Carlo approach, to compare
with our analytic results. In this section we present and
compare our results for the number of stable loops and
cusps per period as a function of harmonic order.
Specifically, in Table II, we present the results that were

obtained using the analytic method that was implemented
with Mathematica. This method allows us to reach results
for harmonic order of the parent loop ranging from 1 to 17,
the limit coming from the fact that the computational time
increases rapidly with harmonic order. The number of
cusps per period at harmonic order 17 was not possible to
be calculated due to the computational time required. We
find that the Monte Carlo method is much faster than the
analytic one and allows us to calculate data for higher
harmonic loops. The results of both approaches are the
same up to the third significant figure.
It is worth comparing the data for the average number of

cusps per period from the stable loops in Table II with the
number of cusps per period analyzed in [15] for a class of
odd-harmonic-loops which did not take into account any
self-intersections. For harmonics below N ¼ 5, the two are
comparable, but above that the toy model numbers increase
dramatically compared to [15], increasing exponentially
rather than linearly. In fact using the least squares method to
the data from Table II, we find that the number of cusps are
related to the harmonic order via

lnðcÞ ¼ aþ lnðβÞN ⇒ c ¼ eaβN ð3:23Þ

where a ¼ 0.348 and lnðβÞ ¼ 1.42. These exponentially
large cusp numbers for high harmonic loops should be
taken with a grain of salt given the ansatz we are making

TABLE II. The average number of stable loops and cusps per
period calculated using the method described in Appendix B, for
loops of harmonic order 1 to 17. Note that the unknown value at
harmonic order 17 is due to very long execution time.

Harmonic order
Average number of

stable loops
Average number of
cusps per period

1 1 2.00
3 1.6 4.8
5 2.76 9.68
7 5.07 18.8
9 9.68 36.7
11 19.2 72.8
13 38.0 144
15 75.2 286
17 154 Unknown
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about the self-intersections of a loop into two equal sized
loops. This is too prescriptive, especially for the high
harmonic cases where it is likely much smaller loops will
be chopped off the network first. With that in mind, we
focus our attention on the results for the lower harmonic
parent loops from N ¼ 1 to N ¼ 7. We discuss this issue
further in Sec. III F.

E. Calculation of the number of cusps per period for a
cosmic string network

When we calculate signals from a network of cosmic
strings, we will need some additional assumptions regard-
ing the harmonic order distribution of the strings in the
network to implement our results. In particular, regarding
the gravitational wave signal, the number of cusp events per
unit spacetime volume is [24]

νðtÞ ¼ cnlðtÞ
Tl

; ð3:24Þ

where c is the average number of cusps per period,
Tl ¼ l=2 ¼ αt, and nlðtÞ is the number density of loops.
The value of c will be calculated in this section, using
Eq. (3.22) and an assumed distribution for the harmonics of
the loops in the string network. It is usually assumed that
c ∼ 1. To compute the value of c using our results from the
toy model in Sec. III, we will need to assume a distribution
of the harmonic order of the loops in a unit volume. There is
not a great deal known about this, so we will follow a
conservative approach and assume that low harmonic loops
dominate over high harmonic loops when created from the
long string network, and also that the density of loops of a
given harmonic order drops with the harmonic order.
Further, as we have just discussed, we will also take into
account only loops with harmonic order from N ¼ 1 to
N ¼ 7. Given these assumptions, we will aim to split the
harmonic order distribution of loops in a cosmic string
network volume into first, third, fifth and seventh order
harmonic loops, following a discrete distribution. The
simplest and most straight forward way to achieve this
is to assume a uniform distribution of the aforementioned
harmonics. In this case, the average cusp number per period
from a unit spacetime volume will be the average of the
values for the cusps per period presented in Table II, for
harmonic order of the parent loop from N ¼ 1 to N ¼ 7.
Denoting this as c, we find that it is given by c ¼ 8.82. We
will use this result in Sec. V, to modify the current
assumption for the cusps per period when estimating the
amplitude of the gravitational waves originating from cusps
on cosmic strings. The current assumption for the cusps per
period from a unit volume is taken to be between c ¼ 1 and
c ¼ 0.1 [11,24].
Although we have just presented one estimate for c

based on a uniform distribution of harmonics, the fact that
we do not really understand the way the loops are

distributed in terms of harmonic number suggests we
should consider a number of possible cases. We do this
below, with the only requirement for the discrete harmonic
distribution being that it should drop off quickly with the
harmonic order. A discrete distribution that satisfies the
above requirement is Benford’s law. A set of numbers PðdÞ
(in our case the percentage of loops of a given harmonic)
given by Benford’s law satisfy

PðdÞ ¼ logb

�
1þ 1

d

�
: ð3:25Þ

The parameter b will be fixed to b ¼ 5, since we are
interested in taking into account the harmonics N ¼ 1 to
N ¼ 7 in the string network. This yields Pð1Þ ¼ 0.43,
Pð2Þ ¼ 0.25, Pð3Þ ¼ 0.18 and Pð4Þ ¼ 0.14, which satisfy

X4
d¼1

PðdÞ ¼ 1; ð3:26Þ

as expected. Then, we find that for this distribution of the
parent loop harmonics the average number of cusps per
period from a unit volume is c ¼ 6.43. Note that this
distribution provides us with only one choice of values for
the distribution of harmonics of the parent loops.
Another distribution which provides us with possible

values of the parent loop harmonics (that decrease as the
harmonic order increases) is the geometric distribution

Gðp; kÞ ¼ ð1 − pÞkp ð3:27Þ

where k ¼ f0;Zþg and 0 < p ≤ 1. In the above, we can
fix the value of p and obtain the values Gðp; kÞ for
harmonics 1 to infinity, since k can obtain the value of
any natural number, with

X∞
k¼0

Gðp; kÞ ¼ 1: ð3:28Þ

This distribution has the advantage that it allows for
different initial values of the density of parent loops of a
given harmonic, by using different values for p, unlike the
even distribution and Benford’s law. However, since we
would like to focus on loops of harmonics up to N ¼ 7, we
will choose values of p, such that higher order parent loops
are scarce in the unit volume. To choose such values, let us
first produce the formula that calculates c for this distri-
bution. This is given by

c ¼
X∞
k¼0

Gðp; kÞc2kþ1 ð3:29Þ

where the subscript 2kþ 1 corresponds to the harmonic
order of the parent loop, which contains odd values only,
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and the values of c2kþ1 are given in Table II. Using
Eq. (3.23), we find that

c ¼
X∞
k¼0

ð1 − pÞkpeaβ2kþ1: ð3:30Þ

By summing the above, we find that

c ¼ peaβ
1

1þ ðp − 1Þβ2 ; ð3:31Þ

for ð1 − pÞβ2 < 1. Note that the sum is of the form of a
geometric series, i.e. the sum of numbers in a geometric
progression xk, with x ¼ ð1 − pÞβ2. This sum is known to
converge if and only if the above inequality holds. Since the
value of β has been found using the least square method, we
find that the above sum converges if and only if p > 0.94.
For example, for p ¼ 0.95, we find that c ¼ 38.9.
However, we are interested in the values of the sum from
k ¼ 0 (which corresponds to N ¼ 1) to k ¼ 3 (N ¼ 7), and
we would like to consider the case where the higher
harmonic contributions are negligible by minimizing their
appearance in the distribution. Therefore, regardless of the
sum convergence, we can examine the behavior of the
truncated sum for any value of p. We find that the values of
c with regards to p, calculated using the sum of the first 4
terms of (3.30), lie in the interval [0, 5.03]. The maximum
value of the plot corresponds to p ¼ 0.35, which has a
relatively large percentage of high harmonic loopsP∞

k¼4 Gð0.35; kÞ ¼ 0.18, which are neglected. Preferably,
we would like a value of p that contains mainly lower
harmonic order loops (up toN ¼ 7), such that it follows the
pattern that the harmonic order loop distribution drops
quickly with N. For p ¼ 0.6, the percentages of the parent
loops of each harmonic order are given by,Gð0.6; 0Þ ¼ 0.6,
Gð0.6; 1Þ ¼ 0.24, Gð0.6; 2Þ ¼ 0.1, Gð0.6; 3Þ ¼ 0.04.
Finally, the rest of the harmonic order loops sum to a total
percentage of

P∞
k¼4 Gð0.35; k > 3Þ ¼ 0.02, which we will

consider negligible. For this case, the value of cusps per
period is c ¼ 4.0. Note that around this value of p, the
value of c is relatively stable, and the aforementioned value
represents the distribution well.
Given the above calculations, the three different distri-

butions we used (the uniform distribution, Benford’s law
and the geometric distribution) provide a value of c
evaluated over the lowest four harmonics that does not
vary significantly from distribution to distribution. In the
case of the uniform distribution the harmonic order of the
loops is equally distributed, while in the other two cases
the percentage of loops of a given harmonic drops as the
harmonic order increases. Based on the intuition obtained
from numerical simulations of loops, we are disregarding
cases where the percentage of loops increases as their
harmonic order increases, which needs to be borne in mind
when considering these results. Given the three estimates

for c, namely c ∼ 8.82, 6.64 and 4.0 for the uniform, Benford
and geometric distributions respectively, we see that for the
case of harmonics up to N ∼ 7, our approach suggests the
average number of cusps on a non-self intersecting loop is
typically of order 4–10 suggesting it could have an impact on
the results presented in [11,12] where c ∼ 1 was assumed.
We will develop this argument in Sec. VI.

F. Possible improvements of the model

A possible criticism of the toy model is that kinks formed
during the self-intersection process of the loops are
ignored. As discussed in [8,23], the occurrence of cusps
is suppressed with the presence of kinks on the Kibble-
Turok sphere. Therefore, this toy model gives an enhanced
number of cusps per period output, which also rises rapidly
as the harmonic order of the loops increases. A way to
counter this enhancement of cusp events would be to add a
suppression factor which would account for the kink effect
on the cusp production, see for example [23]. Another
factor that suppresses cusps is the gravitational back-
reaction around cusps and kinks, which rounds off kinks
and makes cusps weaker [33,34]. This phenomenon could
also introduce a suppression factor for the cusp occurrence
on the evolution of the loops. However, it could have a
countereffect toward enhancement of the cusp number due
to the rounding of the kinks.
Another issue is the percentage of the lifetime of the Ni

harmonic self-intersecting loop, which we assumed to be
half of the period. Could a better assumption work? An idea
would be to check how many solutions Eq. (3.1) has, i.e.
how many possible self-intersections could happen, and
split the lifetime to that fraction of the period. Also, the
assumption of the harmonic order of the daughter loops
always following the rule of being minus 2 of the loop that
chopped would change in this picture, which would allow
the loop to chop into smaller loops from earlier stages of
evolution. This would also affect our assumption on the
length of the daughter loops. For a numerical simulation of
a loop chopping see [18,23,27]. It was their numerical
results that lead to our decision to only consider loops up to
harmonic order N ¼ 7 of the parent loop. It appears likely
that at higher harmonics a parent loop would quickly self-
intersect into much smaller loops, and hence it would not
follow our ansatz rule that harmonics decrease by 2 at each
step. This would lead to a significant change in the values
of stable loops and cusps that would be calculated.
The restriction of the odd-harmonics only loops implies

that the strings produced cannot obtain any even harmonic
values, which fixes the evolution of the loops to a particular
shape. Given the freedom of any harmonic order, the binary
trees would have different branches. Furthermore, the
results we find could be heavily dependent on the string
solution family that one assumes. For example, in [27], two
relatively similar families of stings are assumed, yet the
difference in the results is significant.

DESPOINA PAZOULI et al. PHYS. REV. D 104, 123505 (2021)

123505-12



Also, recall that we do not take into account the kinetic
energy lost every time a loop self-intersects and forms two
daughter loops. If this energy could be a significant
percentage of the system energy, it could cause the system
to diminish faster.
Furthermore, the main essence of this model, which

renders it analytical, is the stochastic behavior of the system
of loops and their odd-harmonic string behavior at any
stage of the evolution. This kind of assumption could be
quite restrictive for such a complicated system and it could
prove inadequate compared to a potential numerical sim-
ulation that follows the exact motion of the strings on a grid
at every time interval of the system’s evolution. Such
models have been developed (see for example [27]) but
they are not directly comparable to our model due to the
different string configuration assumed. However, a numeri-
cal model developed using the odd-harmonic string and
calculating the stable loops and the total cusps produced
would be comparable with this toy model, and it could be a
way of testing our assumptions and results.
Finally, our assumed harmonic distribution in the loops

chopped-off the long string network in Sec. III E, is
somewhat restricted due to the limitations of our model,
namely that the maximum harmonic of the loops chopped
is N ¼ 7, and the fact that we assumed that the low
harmonics would dominate, aiming to adopt a conservative
approach.
The aim of this toy model is to give a general idea of how

the value of c, the number cusps per period from a
spacetime volume of loops, could be enhanced if we took
into account the high-harmonic loop contribution to cusp
production in the “one-scale” string network, and to probe
the stochastic evolution of loops. Although the result of
c ∼ 4–10 appears to be fairly robust, in view of the three
distributions we have used to model the harmonic content
of parent loops in the network, we appreciate that we have
had to make a number of assumptions that make this a
toy model.

IV. PROPAGATION OF GWBS IN FLRW
SPACETIME

In this section we return to the cosmology, to estimate the
GWBs emitted from Nambu-Goto closed cosmic strings,
given our new estimates for the parameter c. It was
calculated in [24] that the GWB amplitude propagated in
an FLRW flat spacetime, which is observed at redshift z,
distance rðzÞ and frequency f ¼ frec is given by

h̃cuspðf; zÞ ¼ Cg1
Gμl2=3

ð1þ zÞ1=3f1=3rðzÞ ; ð4:1Þ

where

g1 ¼ ðja⃗00ðuc; vcÞjjb⃗00ðuc; vcÞjÞ−1=3; ð4:2Þ

and the dimensionless parameter g1 is evaluated at the cusp
point ðuc; vcÞ, a⃗00ðuc; vcÞ≡ ∂2a⃗

∂ðuÞ2, etc. Also, C is a constant,

calculated to be C=2π ≃ 0.8507 [24,32]. The quantity h̃ is
the logarithmic Fourier transform of the GWB amplitude
[35]. The Fourier transform of the GWB amplitude is

hcuspðf; zÞ ¼ Cg1
Gμl2=3

ð1þ zÞ1=3f4=3rðzÞ ; ð4:3Þ

which coincides with the result in [11].
We can use the cosmic distance approximation, with t0

denoting the age of the universe,

rðzÞ ¼ t0z
1þ z

ð4:4Þ

provided in [24] to simplify the expression for the GWB
amplitude, leading to

h̃cuspðf; zÞ ¼ Cg1
Gμl2=3

ð1þ zÞ1=3f1=3
1þ z
t0z

; ð4:5Þ

which is the result obtained in [24] and used in [11].
The value of the angle θdiv, which is the beaming angle

of the GWB signal is given by [24]

θdivðf; zÞ ¼
�

4ffiffiffi
3

p
g2ð1þ zÞfl

�
1=3

≃ ðg2ð1þ zÞflÞ−1=3;

ð4:6Þ
where the dimensionless parameter g2 is defined as

g2 ¼ ðmin ðja⃗00ðuc; vcÞj; jb⃗00ðuc; vcÞjÞÞ−1: ð4:7Þ

As with g1, g2 has typically been assumed to be of order
unity [11,24], and in [15] we confirmed this is a good
approximation by considering a class of odd harmonic
loops which led to many cusp forming events, allowing us
to obtain excellent statistics on the distribution of values for
g1 and g2. The restriction applied by the angle θdiv is that
the GWB is only observed if the angle between the velocity
of the cusp and the direction of the observer is less than θdiv.
Note that although the cosmic string loop emits at

discrete frequencies fm, where m is the harmonic mode,
we consider a high frequency continuous approach to reach
the GWB amplitude expression [24]. Then, the low
frequency limit m ≃ 1, i.e. fm ¼ fem ¼ ð1þ zÞf ≃ T−1

1

(where fem is the frequency of the emitted GWB at the
source), of the GWB amplitude would be

h̃cuspLF ðzÞ ≃ Cg1Gμl
1

rðzÞ ; ð4:8Þ

and therefore, the high frequency amplitude compared to
the low frequency one is h̃cuspðzÞ ≃ θmh̃

cusp
LF ðzÞ, where
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θm ≃ ðð1þ zÞflÞ−1=3 ≃m−1=3: ð4:9Þ

Since the cosmic string loop emits at frequencies fm with
jmj ≥ 1, the condition θm ≤ 1 should hold for the continu-
ous limit. This restriction is necessary to make sure that we
do not take into account non-existing modes with jmj ≤ 1.

A. Set of values for g1, g2 and c

In this section we will estimate the values of g1 and g2
using our results for the second derivatives of the right- and
left-movers at the cusp occuring on odd-harmonic cosmic
strings, ja⃗00ðuc; vcÞj and jb⃗00ðuc; vcÞj, which were calculated
in terms of the harmonic order in [15]. Combining them
with the results we obtained for our toy model in section III
we will obtain sets of values for g1, g2 and c, by assuming
the harmonic order distribution of the parent loops in a unit
spacetime volume.
In [15] we concluded that the values of g1 and g2 are of

order unity for the odd-harmonic family of strings, with
their average value increasing slowly as the harmonic order
increases. This was calculated by considering a large
number of loops of each harmonic order from N ¼ 1 up
to N ¼ 21. In particular, we found that 0.38 < g1 < 1 and
0.34 < g2 < 1. Since the values of the second derivatives
do not differ a lot with respect to the harmonic order, an
approach to estimate g1 and g2 would be to calculate them
by averaging over the complete set of values for g1 and g2 at
each cusp event regardless of the harmonic order. The only
assumption of this model is that the harmonic order
distribution ranges from N ¼ 1 to N ¼ 21, without assum-
ing the percentage of parent loops at each harmonic order.
Averaging over a total of 278069 cusp events, we find that
g1 ¼ 0.489 and g2 ¼ 0.305. In particular, we averaged over
30000 cusp events from each harmonic order, except the
21st harmonic order where we used 6699 events and the
23rd harmonic order where we used 1370. This reduction in
the number of events in higher harmonic order loops is
because of the increased computation time the higher
harmonic order loops require to be analyzed. This result
of g1 suppresses the GWB amplitude (4.3) by around half,
compared to the estimation of [24], while the observation
angle of the GWB from cusps, which is θdiv, will increase
by a factor of 1.5 compared to [24]. For this estimation, we
will use c ¼ 1, which is the value used in [11,24] for the
average cusps per period. Thus, one of the sets of values
that we will use for the estimation of the GWB amplitude is
ðg1 ¼ 0.489; g2 ¼ 0.305; c ¼ 1Þ, which we will call set 1.
We will call set 0 the values ðg1 ¼ 1; g2 ¼ 1; c ¼ 1Þ, which
is the set of values assumed in both [11,24].
To estimate values of c ≠ 1, we will use our assumptions

of the harmonic order distribution of the parent loops in a
spacetime volume dVðzÞ, which were presented in Sec. III
E. Using this distribution of harmonics, we will also
calculate the corresponding average values of g1 and g2.
Note that the distribution of the harmonics is assumed to

include parent loops of harmonic orders from N ¼ 1 to
N ¼ 7. For the uniform distribution case, we find that
ðg1 ¼ 0.680; g2 ¼ 0.699; c ¼ 8.82Þ, for Benford’s law we
find ðg1 ¼ 0.773; g2 ¼ 0.779; c ¼ 6.43Þ and for the geo-
metric distribution, ðg1 ¼ 0.839; g2 ¼ 0.842; c ¼ 4.0Þ. For
ease of viewing, these model values are summarized in
Table III.

V. RATE OF GWBS FROM A COSMIC STRING
NETWORK

In this section we will calculate the GWBs observed on
Earth using the semianalytic Model 1 from [11], which we
have presented in Sec. II. Our aim is to calculate the rate of
GWBs emitted from cusps on cosmic strings arriving to
Earth for this cosmic string network using the odd-
harmonic string assumptions presented in IVA, and to
compare our results with those presented in [11].

A. Calculation of the GWB event rate

We can write the length l of a loop in terms of the
amplitude h, the frequency f and the redshift z

lðh; z; fÞ ¼
�
hf4=3ð1þ zÞ1=3φrðzÞ

g1GμH0

�
3=2

: ð5:1Þ

The above is obtained by inverting Eq. (4.3). We can also
express θdiv in terms of h, f and z. By combining Eqs. (4.6)
and (5.1), we find

θdivðh; f; zÞ ¼
�
g2

�
f2hð1þ zÞφrðzÞ

g1GμH0

�
3=2

�−1=3
: ð5:2Þ

Finally, we define the number of cusps per unit space
time volume and for GWBs of amplitudes between h and
hþ dh [11]

νðh; z; fÞdh ¼ νðlðh; zÞ; zÞ dl
dh

dh ¼ νðlðh; zÞ; zÞ 3

2h
ldh

ð5:3Þ
where we used the quantity νðh; z; fÞ defined in Eq. (3.24).
We can define the rate of GWBs in the unit spacetime

volume dVðzÞ and in an interval of amplitudes from h to
hþ dh, [11]

TABLE III. The values of g1, g2 and c derived in Sec. IVA for
the five models being considered when evaluating the GWB event
rate from cosmic strings.

Model g1 g2 c

Set 0 (LIGO/VIRGO Ref [11]) 1.0 1.0 1.0
Set 1 (Ref [15]) 0.489 0.305 1.0
Set 2 (Uniform) 0.680 0.699 8.82
Set 3 (Benford) 0.773 0.779 6.43
Set 4 (Geometric) 0.839 0.842 4.0
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d2R
dVðzÞdh ¼

�
θdivðh; z; fÞ

2

�
2

ð1þ zÞ−1νðh; z; fÞΘð1 − θdivðh; z; fÞÞ: ð5:4Þ

We use Eq. (5.3) to change the coordinates of ν from h to l in the above expression, and find that

d2R
dVðzÞdh ¼

�
θdivðh; z; fÞ

2

�
2

ð1þ zÞ−1Þ 3

2h
lðh; z; fÞνðl; z; fÞΘð1 − θdivðh; z; fÞÞ

¼
�
θdivðh; z; fÞ

2

�
2

ð1þ zÞ−1Þ 3

2h
lðh; z; fÞ 2

lðh; f; zÞ cnðh; z; fÞΘð1 − θdivðh; z; fÞÞ: ð5:5Þ

Using Eq. (2.8), we find the derivative of R in terms of the redshift

d2R
dzdh

¼
�
θdivðh; z; fÞ

2

�
2 3cφVðzÞ
H3

0ð1þ zÞhtðzÞ4F ðl; z; fÞΘð1 − θdivðh; z; fÞÞ: ð5:6Þ

Finally, substituting θdiv from Eq. (5.2), we reach the expression

d2R
dzdh

ðh; f; zÞ ¼ 3

4

g1
g2=32

GμcφVðzÞ
H2

0f
2ð1þ zÞφrðzÞtðzÞ4

1

h2
F ðl; zÞΘð1 − θdivðh; f; zÞÞ: ð5:7Þ

The above expression is true for any cosmological era, i.e. for all redshifts, and for any cosmic string model.
Wewill now proceed to calculate the rate of GWBs separating the matter era calculation from the radiation era calculation

(i.e. we will no longer use interpolating functions between the two eras). During the radiation era, z > zeq ¼ 3366, we
substitute Eq. (2.21) into the GWB rate (5.7) to find that the rate of GWBs during the radiation era is

d2Rrad

dzdh
ðh; f; zÞ ¼ 3

g1
g2=32

Gμπc
f2

H2
0φrðzÞ

ð1þ zÞ5φtðzÞ4HðzÞ
1

h2
Cradh

H0

φtðzÞ
�
hf4=3ð1þzÞ1=3φrðzÞ

g1GμH0

�
3=2 þ ΓGμ

i
5=2

× Θð1 − θdivðh; f; zÞÞΘðα − γðh; f; zÞÞ; ð5:8Þ

where we used Eq. (2.9) to substitute φVðzÞwith φrðzÞ and Eq. (2.5) to substitute tðzÞwith φtðzÞ. Also, recall that α ∼ 0.1 is
a constant determining the size of the loops formed from the long string network, andHðzÞ is the Hubble constant at redshift
z normalized by H0, defined in Eq. (2.10).
During the matter era, z < zeq ¼ 3366, we substitute Eq. (2.25) into the GWB rate (5.7) to find that the rate of GWBs

during the matter era is

d2Rmat

dzdh
ðh; f; zÞ ¼ d2Rð1Þ

mat

dzdh
ðh; f; zÞ þ d2Rð2Þ

mat

dzdh
ðh; f; zÞ; ð5:9Þ

where the first term on the right-hand-side of the equation corresponds to the GWBs originating from loops that formed in
the radiation era and survive into the matter era, and the second term on the right-hand side of the equation corresponds to
the GWBs originating from matter era loops. They are given by

d2Rð1Þ
mat

dzdh
ðh; f; zÞ ¼ 3

g1
g2=32

Gμπc
f2

H2
0φrðzÞ

ð1þ zÞ5φtðzÞ4HðzÞ
1

h2

�
φtðzeqÞ
φtðzÞ

�
1=2 Cmath

H0

φtðzÞ
�
hf4=3ð1þzÞ1=3φrðzÞ

g1GμH0

�
3=2 þ ΓGμ

i
2

× Θð1 − θdivðh; f; zÞÞΘð−γðh; f; zÞ þ βðtÞÞ; ð5:10Þ

and
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d2Rð2Þ
mat

dzdh
ðh; f; zÞ ¼ 3

g1
g2=32

Gμπc
f2

H2
0φrðzÞ

ð1þ zÞ5φtðzÞ4HðzÞ
1

h2
Cmath

H0

φtðzÞ
�
hf4=3ð1þzÞ1=3φrðzÞ

g1GμH0

�
3=2 þ ΓGμ

i
5=2

× Θð1 − θdivðh; f; zÞÞΘðγðh; f; zÞ − βðtÞÞΘðα − γÞ; ð5:11Þ

respectively. Note that

γðzÞ ¼ lðzÞ
tðzÞ ¼

H0

φtðzÞ
�
hf4=3ð1þ zÞ1=3φrðzÞ

g1GμH0

�
3=2

ð5:12Þ

and

βðzÞ ¼ α
φtðzeqÞ
H0

−
ΓGμ
H0

ðφtðzÞ − φtðzeqÞÞ; ð5:13Þ

as can be seen from Eqs. (2.18) and (2.22). The rate of
GWBs is obtained by integrating over the redshift and the
amplitude of the GWBs, and it is given by the integral

Rðh; zÞ ¼
Z

zmax

0

Z
hmaxðzÞ

hminðzÞ

d2Rðh; f; zÞ
dzdh

dzdh ð5:14Þ

The range of integration for h is limited by the conditions
we have imposed. The beaming angle of the cusps satisfies
θdiv < 1, providing the lower limit hminðzÞ

hðzÞ > hminðzÞ ¼
g1GμH0

g2=32 ð1þ zÞf2φrðzÞ
; ð5:15Þ

and holds for any era. During the radiation era, the upper
limit hmaxðzÞ comes from considering the evolution of hðzÞ,
when α > γ holds leading to

hðzÞ < hmaxðzÞ ¼
g1GμH0α

2=3tðzÞ2=3
f4=3ð1þ zÞ1=3φrðzÞ

: ð5:16Þ

Turning our attention to the upper limit of the integral over
the redshift, zmax, it can be obtained by combining
equations (5.15) and (5.16), where we find

φtðzÞð1þ zÞ ≥ H0

αg2f
: ð5:17Þ

As we are working in the regime where z ≫ 1, we can use
the large redshift expression for φtðzÞ, given in Eq. (2.14)
which simplifies things considerably. Since the value of
zmax varies with g2, which we determine numerically for the
various models we considered in Sec. IVA, we have
presented its value with respect to g2 in Table IV.
Turning our attention now to the matter era, we need to

consider both the limits of integration for the loops
surviving from the radiation era, as well as those for the
loops formed in the matter era. For the former the inequality

−γðzÞ þ βðzÞ ≥ 0 ð5:18Þ

holds, restricting the loop length within the limits of loops
formed in the matter era. Using equations (5.12)–(5.13),
and substituting lðh; z; fÞ from Eq. (5.1), (5.18) becomes

h ≤ hmax ¼
g1GμH

1=3
0

f4=3ð1þ zÞ1=3φrðzÞ
ðφtðzÞβðzÞÞ2=3: ð5:19Þ

Recalling βðzÞ > 0 as it is the length of a loop at time tðzÞ,
which was formed at tðzeqÞ, and requiring that hmin [given
by Eq. (5.15)] is less than hmax, we find that

0≤−
H0

g2fð1þzÞþðαþΓGμÞφtðzeqÞ−ΓGμφtðzÞ: ð5:20Þ

The inequality (5.20) provides us with a value zmin, where
zmin is the redshift where all the loops that formed in the
radiation era but survived into the matter era vanished.
Solving (5.20) numerically, we find that the g2 term is small
compared to the remaining terms, implying little sensitivity
in zmin to g2. We find that zmin ¼ 0.288 in the matter era.
Finally, for the loops formed in the matter era, the relevant
inequalities become 1 − θm ≥ 0, γðzÞ − βðzÞ ≥ 0 and
α − γðzÞ ≥ 0. Combining these we obtain the constraints
on hmin namely

h ≥ hð1Þmin ¼ hmin; ð5:21Þ

h ≥ hð2Þmin ¼
g1GμH

1=3
0 φtðzÞ2=3βðzÞ2=3

f4=3ð1þ zÞ1=3φrðzÞ
; ð5:22Þ

h ≤ hmax ¼
g1GμH

1=3
0 α2=3φtðzÞ2=3

f4=3ð1þ zÞ1=3φrðzÞ
; ð5:23Þ

TABLE IV. The values of the limit of integration zmax in the
radiation era for each value that g2 takes in the set 0 to set 4.

Value of g2 zmax

Set 0, g2 ¼ 1.000 3.81 × 1020

Set 1, g2 ¼ 0.305 1.16 × 1020

Set 2, g2 ¼ 0.699 2.66 × 1020

Set 3, g2 ¼ 0.779 2.97 × 1020

Set 4, g2 ¼ 0.842 3.21 × 1020
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respectively. We find that hð1Þmin ≥ hð2Þmin for all z in the matter
era, by plotting both functions. Therefore, the crucial

constraint on hmin is h ≥ hð1Þmin ¼ hmin.

VI. RESULTS

We can now determine the rate of GWBs from cusps on
cosmic strings in redshift intervals defined by

RðzÞ ¼
Z

zþΔz

z

Z
hmaxðz0Þ

hminðz0Þ

d2R
dz0dh

dhdz0 ð6:1Þ

where from now on, we choose the frequency to be
f ¼ 100 Hz, similarly to that used in [11]. The range of
redshifts appearing in the figures will be divided into 1000
intervals ranging from z1 ¼ 10−12 to z2 ¼ 1032, in
Eq. (6.1). Δz is the interval width at redshift z, and the
integration has a lower limit of

z ¼ z1

�
z2
z1

�b
n ð6:2Þ

and an upper limit of

zþ Δz ¼ z1

�
z2
z1

�bþ1
n

; ð6:3Þ

where the counter b takes integer values in the interval
0 ≤ b ≤ n and n ¼ 1000. Note that the functional form of
d2R=dzdh, as well as the limits of integration hminðzÞ and
hmaxðzÞ, change with the cosmological era, matter or
radiation. Therefore, we will deal with the rate of GWBs
from the loops formed in the radiation era, the loops
surviving into the matter era and the loops formed in the
matter era separately.
For the loops formed in the radiation era, we will

integrate the function in Eq. (5.8), with limits of integration
hminðzÞ and hmaxðzÞ given by equations (5.15) and (5.16)
respectively, and with the redshift ranging from z ¼ zeq ¼
3366 to z ¼ zmax, which depends on the value of g2. This
corresponds to integer values of the counter b from 352 to
roughly 476 (depending on the value of g2). The integral of
d2R=dzdh over h is calculated analytically. After integrat-
ing it we obtain the function

dRrad

dz
ðz; hmaxðzÞÞ −

dRrad

dz
ðz; hminðzÞÞ; ð6:4Þ

which is a function of redshift only. It is not possible to
integrate this function analytically over z, so this is done
numerically over the redshifts in the intervals given by (6.1).
Since we calculate this for redshifts z ≫ 1, we use the
asymptotic expressions for φtðzÞ and φrðzÞ, given by
equations (2.14) and (2.15), respectively. For 3366 ≤ z ≤
109 (i.e.b ∈ ½352; 476�),we setGðzÞ ¼ 1 (seeEq. (2.12), and

we numerically integrate the above function over z, thus
obtaining the plot of the rate of GWBs (6.1) for this range of
redshifts.We apply the samemethod for 109 < z ≤ 2 × 1012

(i.e. 477 ≤ b ≤ 551), setting G ¼ 0.83. Finally, we move to
the region of redshifts 2 × 1012 < z ≤ zmax, which corre-
sponds to the integral bins 552 ≤ b ≤ 739. This is a
challenging regime to work in, as the two leading terms in
equation (6.4) are within 10−12 of each other, leading to
numerical errors dominating the solution, which only
increase with increasing z. This issue appears for z > 1016

in particular. To resolve it we increase themaximummachine
precision inMathematica, ensuring it calculates all the digits
that are significant for the function (6.4). Then, we apply a
fifth order Taylor series around a number of redshift points,
between z ¼ 2 × 1018 and 2 × 1020 allowing us to resolve
the issue of numerical accuracy.When integrating over z, we
use the expressions obtained from the Taylor series to obtain
the final result, which is the rate of the GWBs given in
Eq. (6.1). In this way, we can finally obtain the plot ofRðzÞ in
the radiation era.
During the matter era, we have two types of loops, the

ones that formed in the radiation era and survived into the
matter era, which are given by Eq. (5.10), and the ones
formed in the matter era, which are given by Eq. (5.11). We
plot these in separate figures over the redshifts [0.288,
3366], which correspond to the b values in the interval
[261, 352]. Note that during the matter era we cannot use
the asymptotic expressions for φtðzÞ and φrðzÞ, apart from
z ≪ 1. Therefore the equations are solved numerically,
applying the following procedure. First, we create a list of
the redshift values for each interval from z to zþ Δz in the
matter era, which consists of the points

zi ¼ zþ i
Δz
n

ð6:5Þ

where i takes on integer values such that 0 ≤ i ≤ n. We can
easily integrate Eq. (6.4) for each value z ¼ zi using for
example Simpson’s rule, leading to the desired result (6.1).
Figure 1 shows the event rate of GWBs, given in Eq. (6.1),

versus redshift. The orange line corresponds to the event rate
during the radiation era (zeq ¼ 3366 < z < zmax). Thematter
era contribution, (10−8 < z < zeq), is shownbyboth the light
red shaded plot, which corresponds to the event rate arising
from radiation era formed loops, and the blue shaded plot,
which corresponds to the event rate from matter era formed
loops. This figure has been reproduced using thevalues of g1,
g2 and c or Set 0, which are the same assumptions as used in
[11], and it corresponds to the upper left-hand-side plot of
their Fig. 7. Note that the blue shaded region that overlaps
with the light red region differs in our plot compared to theirs.
However, this does not affect the event rate as it is not the
dominant contribution of GWBs, since the event rate from
radiation loops surviving into matter is stronger by at least
one order of magnitude.
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Finally we turn our attention to how the results of the
GWBs are modified in our new models. The impact is
shown in Fig. 2. In particular we plot the event rate for
different values of g1, g2 and the cusp number, c, based on
the results of our toy model of Sec. III and IVA, and
summarized in Table III. Out of the three sets of values
ðg1; g2; cÞ presented in IVA, it is set 2 that has the greatest
impact to the event rate compared to set 0 (the values used
in [11]). In particular, we can see in Fig. 2 that the change is
an increase of one order of magnitude. Note that during the
era where matter formed loops and radiation formed loops
that survive into the matter era coexist, we have plotted the
integral of the quantity on the left-hand side of Eq. (5.9),
unlike in Fig. 1 where we have plotted the quantities on the
right-hand side of Eq. (5.9) separately. The results that are
provided using the set 1 values are effectively the same as
the results of [11], which use the set 0 values. The results

using the set 3 and set 4 values have a difference of around
half an order of magnitude compared to the set 0 results. In
Table V, we can see the relative difference of the event rate
values of each set compared to the event rate values of set 0,
i.e. the event rate values as calculated by LIGO in [11]. In
particular if we denote by RiðzÞ, where i ¼ 1, 2, 3, 4, the
value of the event rate for each of the sets provided in
Table III, and by R0ðzÞ the values of the event rate for set 0,
then the relative difference presented in Table V for each set
is equal to

jRiðzÞ − R0ðzÞj
R0ðzÞ

: ð6:6Þ

As we can see from the table, the greatest relative difference
during the matter era and during the greatest part of the
radiation era corresponds to the Set 2 values, while the
greatest difference for redshift larger than 1016 corresponds
to the set 3 values. Finally, the set 1 values, which
correspond to the only results where the toy model
presented in Sec. III is not applied to, exhibits the smallest
deviation from the set 0 values, as expected given that it
uses the key value for c assumed in the LIGO paper [11].

VII. CONCLUSIONS

The impact of the LIGO observations on the status of
cosmic strings has been profound, with very tight con-
straints emerging on the string tension as seen for example
in [12], where they found that Gμ < 9.6 × 10−9 for their
Model 1, which is the model that we use to compare our
results with. When assessing the constraints, it is important
to bear in mind that there is significant modelling involved,
in this case in the specific properties of the cosmic string
networks. This is the case when considering the emission of
GWs from cusps forming on a network of cosmic strings.
Two of the key parameters are known as g1 and g2 and are
defined in terms of the second derivatives of the left and
right movers on the string [see Eqs. (4.2) and (4.7)]. They
typically are taken to have values of order unity, and in an
earlier paper, we analyzed whether this was a good

FIG. 2. The plot of the GWB event rate, RðzÞ, versus redshift, z,
for Gμ ¼ 10−8 and f ¼ 100 Hz. The red plot corresponds to the
set 0 values g1 ¼ g2 ¼ 1, c ¼ 1 and the blue plot corresponds to
the set 2 values ðg1 ¼ 0.680; g2 ¼ 0.699; c ¼ 8.82Þ and shows an
increase of roughly one order of magnitude over the set 0 results.

TABLE V. In this table, we present the relative differences
between the set 1 to 4 event rate values with respect to the set 0
event rate values.

Redshift Set 1 Set 2 Set 3 Set 4

10−8 6.24 × 10−9 7.82 5.43 3.00
10−4 6.24 × 10−9 7.82 5.43 3.00
1 4.65 × 10−9 7.82 5.43 5.20
104 2.33 × 10−7 7.82 5.43 3.00
108 1.08 × 10−4 7.82 5.43 3.00
1012 4.05 × 10−2 7.74 5.40 2.00
1016 0.94 2.99 20.3 13.0
1020 0.99 2.52 26.4 17.6

FIG. 1. The plot of the GWB event rate, RðzÞ, versus redshift, z,
for Gμ ¼ 10−8, g1 ¼ g2 ¼ 1, c ¼ 1 and f ¼ 100 Hz, for the
“one-scale” cosmic string network model.
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assumption by considering cusp production on a class of
high harmonic cosmic strings [15], coming to the con-
clusion after analyzing the properties of tens of thousands
of cusp events that indeed the quantities g1 and g2 were
consistent with unity. The third key parameter which had to
be assumed in [11,12] was c, the typical number of cusps to
be found on a stable non-self-intersecting loop. This was
taken to be unity, but also values closer to 0.1 were also
considered (see also [19,24]). In [15] we were unable to
determine this number because our loops tended to self
intersect and we were unable to follow their full evolution.
An independent determination of this parameter, hence of
the GWB signal from cusp events has been the motivation
behind this paper. We have developed an algorithm with
which we can estimate c. Our approach has not involved
solving the dynamical equations of motion for a network,
and trying to determine the resulting distribution of cusps.
This is notoriously difficult to do in a way that allows one to
keep control over all the relevant length scales and times
involved. Rather, we have followed the idea first proposed
in [25,26], in which the authors considered a binary tree
approach, where an initial loop of a given harmonic order
would self-intersect according to certain probabilities
which related to the size of the loop being produced and
the length of the original loop etc... This probabilistic
approach allowed them to estimate the type of loop
configurations one could expect at the end of an evolution.
We have modified this approach in this paper, proposing a
new binary tree algorithm (see Sec. III) which leads to
predictions for the number of stable non-self-intersecting
loops emerging from a given parent loop of odd harmonic
number N. By slightly modifying the ansatz to consider
only the smaller harmonic numbers (N ≤ 7) we developed
and analyzed a series of toy models in which the cusp
distribution on loops of non-self intersecting string can be
determined. Of course our answers depend to some degree
on the assumptions that we make, by far the most
significant being that a given loop, if it intersected, did
so as to produce two equal sized loops, with harmonic
number reduced by 2 on each of the loops, but what is
noticeable is the robust nature of the results. For example,
we find that typically a network can effectively have of
order 4–8 or so cusps per period, which is just under an
order of magnitude larger than is assumed. Moreover,
coupled with our previous results for the parameters g1
and g2, these results for c have allowed us to compare our
results for the GW bursts with those of [19,24]. The key
result is plotted in Fig. 2 where we see that the impact of the
slightly larger cusp number is to increase the event rate of
GWBs by just under an order of magnitude. Although this
sounds a lot, in reality, given the range of values involved
for the event rates it means that the usual assumption of
c ∼ 1 is probably a good working assumption. In many
ways, this is a reassuring result. The vanilla model assumed
to date and that has led to the published constraints seems

robust. There are of course a number of places where this
analysis could be improved upon. Allowing loops to chop
off the network with arbitary sizes compared to the parent
loop would be a good start, if somewhat challenging, and
allowing for the higher harmonic modes in a more
systematic way would be worth investigating, even though
as we have argued, we do not believe they are likely to
survive as such high harmonic loops self-intersect rapidly.

APPENDIX A: EXAMPLES OF TREE
EVOLUTION FOR LOW HARMONICS

In this section we will provide an example of the toy
model calculations presented in III C for cosmic string
loops of harmonic order N ¼ 1, N ¼ 3 and N ¼ 5.
The simplest possible case for the binary tree is the case

of the N ¼ 1 odd-harmonic string, which does not self-
intersect and hence does not produce any daughter loops.
For this case we know that the stable loops produced will
always correspond to a single loop with average cusps per
period c1 ¼ 2 (as is found in [15]).

1. The N = 3 parent loop case

For the case of the N ¼ 3 odd-harmonic string, we have
two possible states of evolution, hence two binary trees.
The first tree is where the parent loop does not self-
intersect, and the second is where the parent loop self-
intersects, producing two N ¼ 1 daughter loops.
To calculate the number of stable loops, we note that the

binary tree in the case of no self-intersection has one leaf,
i.e. one stable loop, and its probability of occurring is
½1 − Pð3; 1Þ� ¼ 0.4. The binary tree in the case of self-
intersection has two leaves and its probability of occurring
is Pð3; 1Þ ¼ 0.6. Averaging over the two possible cases we
find that the average number of stable loops for N ¼ 3 is

nð3Þs ¼ 2Pð3; 1Þ þ ½1 − Pð3; 1Þ� ¼ 1.6: ðA1Þ

The lifetime of a loop is τl ¼ li=ΓGμ. The period of the

N ¼ 3 loop is Tð3Þ
3 ¼ l=2 ¼ αti=2. Note that we do not

specify the value of α, i.e. whether the loops are small or
large, because it cancels. If it splits into two equal sized

loops, each will have period Tð3Þ
1 ¼ ðl=2Þ=2 ¼ Tð3Þ

3 =2 [see
Eq. (3.9)]. The two daughter loops produced will be of
harmonic order N ¼ 1 and they will not split further. This
means that they will live for a time τ ¼ li=4γGμ, since they
lose energy with rate ΓGμ [see Eq. (3.12)]. Therefore, the
average number of cusps emitted from the system per
period of the initial loop defined in Eqs. (3.20)–(3.22)
consists of two terms, one with weight Pð3; 3Þ ¼ 0.4,
which corresponds to the loop that does not self-intersect
and one with weight Pð3; 1Þ − 0.6, which corresponds to
the self-intersecting loop. In case (a), the total number of
cusps emitted from the system on average is
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c3

αti
ΓGμ
αti
2

¼ c3
2

ΓGμ
; ðA2Þ

while the total number of periods is

αti
ΓGμ
αti
2

¼ 2

ΓGμ
; ðA3Þ

as we calculated in the previous section. Therefore, in the
case that the loop does not split it produces c3 cusps per
period, as expected. In case (b), the total number of cusps
formed on the system is

c3
αti
4
αti
2

þ 2c1

αti
2ΓGμ
αti
4

¼ 1

2
c3 þ

4

ΓGμ
c1: ðA4Þ

The first term on the right-hand side of (A4), corresponds to
the average number of cusp events that occurred from the
parent N ¼ 3 loop, in the half period interval before it
splits, and the second term corresponds to the average
number of cusp events that occurred from the two N ¼ 1
loops. Note that c3=2 ≪ 4c1=ΓGμ since ΓGμ is of the order
10−6 or smaller. We can now calculate the average number
of cusps emitted from the system of the N ¼ 3 loop per
period of the initial loop, which is

cð3Þ ¼ Pð3; 3Þc3 þ Pð3; 1Þ
�
1

2
c3 þ

4

ΓGμ
c1

�
ΓGμ
2

≃ 4.8:

ðA5Þ

In the above, we have used the values c1 ¼ 2 and c3 ¼ 5.96
from Table 1 of [15].

2. The N = 5 parent loop case

In the case of the fifth order odd-harmonic loop we have
5 configurations, as we can see in Figure 3. Two of the
configurations (3(c) and 3(d)), are identical. They account
for the case where only one of the two daughter loops at

height h ¼ 2 self-intersects. Since labelling the loops is not
of importance in our calculations, we can account for these
two configurations as one configuration of multiplicity two.
The probability of configuration (a) of plot 3 to occur is
Pð5; 5Þ. The probability of configuration (b) is the prob-
ability of the 5 order loop to self-intersect, and none
of the daughter loops to do so, which corresponds to
Pð5; 3Þ½1 − Pð3; 1Þ�2. Using the same reasoning, the prob-
ability of configurations (c) and (d) is Pð5; 3Þ Pð3; 1Þ
½1 − Pð3; 1Þ�, and of (e) is Pð5; 3ÞPð3; 1Þ2.
We find that the average number of stable loops is

nð5Þs ¼ Pð5; 5Þ þ 2Pð5; 3Þ½1 − Pð3; 1Þ�2
þ 6Pð5; 3ÞPð3; 1Þ½1 − Pð3; 1Þ�
þ 4Pð5; 3ÞPð3; 1Þ2 ¼ 2.76: ðA6Þ

The total number of cusps per period produced on
average from the configuration (a) of plot 3 coincides with
c5 from Table 1 of [15], similarly to the N ¼ 3 case. Its
lifetime is also the same as the lifetime of an N ¼ 5 string
loop that does not self-intersect, αti=ΓGμ. The total number
of cusps on average produced from configuration (b) is

c5
αti
4
αti
2

þ 2c3

αti
2ΓGμ
αti
4

¼ 1

2
c5 þ

4c3
ΓGμ

≃
4c3
ΓGμ

: ðA7Þ

The configurations (c) and (d) each produce a total number
of cusps per period

c5
αti
4
αti
2

þ c3
αti
8
αti
4

þ c3

αti
2ΓGμ
αti
4

þ 2c1

αti
4ΓGμ
αti
8

≃
2c3 þ 4c1

ΓGμ
: ðA8Þ

Finally, the configuration (e) produces the following total
number of cusps per period

c5
αti
4
αti
2

þ 2c3
αti
8
αti
4

þ 4c1

αti
4ΓGμ
αti
8

≃
8c1
ΓGμ

: ðA9Þ

(a) (b) (c) (d) (e)

FIG. 3. All the possible cases of evolution for a fifth order harmonic string. (a) The case where the parent loop does not chop into
daughter loops. (b) The case where the parent loop chops into two third order harmonic loops. (c) The case where the parent loop chops
into one third order and two rst order harmonic loops.(d) The case which is the symmetric of the previous one. (e) The case where the
parent loop chops into four rst order harmonic loops.
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Given the above, we find that an N ¼ 5 loop, which is allowed to self-intersect, will produce on average

Pð5; 5Þc5 þ Pð5; 3Þ½1 − Pð3; 1Þ�22c3 þ 2Pð5; 3ÞPð3; 1Þ½1 − Pð3; 1Þ�ðc3 þ 2c1Þ þ 4Pð5; 3ÞPð3; 1Þ2c1 ¼ 9.7 ðA10Þ

cusps per period of the initial loop.

APPENDIX B: IMPLEMENTATION WITH
MATHEMATICA

The flow chart of the method we used to calculate higher
order harmonic cases is the following:
(1) Set the value of “treeheight” (which is equal to the

longest tree height minus one) to the value that we
are interested in calculating. Note that the harmonic
order of the parent loop K is related to the value of
“treeheight” according to

K ¼ 2 “treeheight”þ 3 ðB1Þ

Then, we initialize the value of a list for the tree of
height 0 and the tree of height 1, which will be
needed to calculate trees of higher height. This list is
defined to include the following elements; the tree
height, the number of leaves, the number of equiv-
alent trees with the given characteristics, the prob-
ability of each tree configuration, and a list called
“newconttreedata” which contains all the informa-
tion for the structure of the tree, i.e. its internal nodes
and leaves at every level of the tree, and calculates
their cusp contribution according to Eq, (3.21). We
also need a method to produce the trees of the next
level, given that we have calculated all possible trees
of a given level. For this, we use a list “conttree”,
which contains all the information needed for this
purpose. We initialize the value of “conttree” for the
smallest value (i.e. for transitioning from the level 0
tree to 1). The list includes the probability of the
parent loop spliting, which is PðK;K − 2Þ, and its
cusp contribution. We also initialize the list “All-
ContTrees”, which contains all trees used to produce
next level trees, and the list “AllTrees”, which
contains all trees.

(2) For the values between 1 and “treeheight” repeat the
following
(a) Initialize the list that saves the new trees types,

produced in this iteration. Also, set the number
of tree categories, given by the length of “All-
ContTrees”.

(b) For all the tree types previously found (i.e. up to
the previously calculated trees) repeat the fol-
lowing
(i) Set the variables (of the given tree category)
for the height “h”, for the number of total leaves
(“leaves”), for the number of leaves at the bottom
layer (“bleaves”), for the number of trees of this

type (“n”) and the probability of this tree type
(“P”). Also keep in a list (called “conttreedata”)
the number of leaves and internal nodes at every
level of this type of tree.
(ii) For all the possible values of leaves on the
bottom layer (i.e. values between 1 and
“bleaves”) repeat the following

For the value of the bottom leaves “i” of the previous
tree, calculate the values of “h”, “leaves”, “bleaves”,
“n” and “P” and the information for leaves and
internal nodes for the new tree type (the list “new-
conttreedata”). The height of the new tree will be
(hþ 1), the number of bottom leaves will be 2i, the
number of total leaves will be leavesþ 1, the number
of trees of this type will be

n

�
bleaves

i

�
: ðB2Þ

Note that in the above we have used the binomial
coefficient

�
n

k

�
¼ n!

k!ðn − kÞ! ; ðB3Þ

defined for positive integer values of n and k. The
probability of the new tree is

P × PðK − 2h;K − 2hÞbleaves−i
PðK − 2h;K − 2h − 2Þi
PðK − 2h − 2; K − 2h − 2Þ2i; ðB4Þ

where P is the probability of the tree type of
“treeheight” ¼ h. We also create the list used to create
the hþ 2 trees.

Add the above calculated tree to the list of trees.
(3) Use the formulas (3.7)–(3.8) to calculate the average

number of stable loops and the formulas (3.20)–
(3.22) to calculate the average number of cusps.

(4) Print the results analytically and then the numerical
values by using the specified values for the cusps per
period from Table I in [15] and the probabilities
PðM;M − 2Þ from Table I.

Note that we also use the Monte Carlo method to test
numerically the above results. We find the same values with
both methods.
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