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In this work, we consider four fðRÞ gravity models—the Hu-Sawicki, Starobinsky, Exponential and
Tsujikawa models—and use a range of cosmological data, together with Markov Chain Monte Carlo
sampling techniques, to constrain the associated model parameters. Our main aim is to compare the results we
get whenΩk;0 is treated as a free parameter with their counterparts in a spatially flat scenario. The bounds we
obtain forΩk;0 in the former case are compatible with a flat geometry. It appears, however, that a higher value
of the Hubble constant H0 allows for more curvature. Indeed, upon including in our analysis a Gaussian
likelihood constructed from the local measurement ofH0, we find that the results favor an open universe at a
little over 1σ. This is perhaps not statistically significant, but it underlines the important implications of the
Hubble tension for the assumptions commonly made about spatial curvature. We note that the late-time
deviation of the Hubble parameter from itsΛCDM equivalent is comparable across all four models, especially
in the nonflat case. When Ωk;0 ¼ 0, the Hu-Sawicki model admits a smaller mean value for Ωcdm;0h2, which
increases the said deviation at redshifts higher than unity. We also study the effect of a change in scale by
evaluating the growth rate at two different wave numbers k†. Any changes are, on the whole, negligible,
although a smaller k† does result in a slightly larger average value for the deviation parameter b.
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I. INTRODUCTION

Fourth-order metric theories of gravitation can be said
to have originated from Weyl’s 1918 nonintegrable
relativity theory [1]. This theory (or variants of it)
was further investigated by scientists such as W. Pauli,
R. Weitzenböck and F. Jüttner, and served to introduce or
promulgate key concepts such as conformal invariance,
gravitational theories based on a geometrical approach,
and the unification of the forces of Nature [2].1 However,
the popularity of Weyl’s theory soon declined, namely due
to the ambiguity of the associated Lagrangian and the
problems posed by the higher order of the field equations.
Additionally, there did not seem to be any experimental
evidence against general relativity (GR) that would favor
the introduction of a more complicated theory. It was not
until the 1970s that interest was revived. This happened as
a result of factors such as the one-loop renormalizability
of fourth-order metric theories, and the natural way in
which inflation can be incorporated into them [2].

Moreover, given a classical gravitational field arising
from the energy-momentum tensor (Tμν) of quantized
matter/radiation, the Lagrangian of fourth-order theories
helps to erase any singularities that the gravitational
interaction induces in Tμν [3].
The general class of fourth-order gravity is governed by

an action whose gravitational part reads [4,5]

S ¼
Z ffiffiffiffiffiffi−gp

16πG
fðR;RαβRαβ; RαβγδRαβγδÞd4x; ð1Þ

where g is the determinant of the metric tensor gμν, R, Rαβ

and Rαβγδ stand for the Ricci scalar and the Ricci and
Riemann tensors, respectively, f represents a generic
analytical function, and G is Newton’s constant of
gravitation. In the metric approach, the field equations
are derived by varying the action with respect to gμν [5].
Among the theories obtained in this way is conformal
Weyl gravity [6].
Another popular example is metric fðRÞ gravity.

Formulated by replacing the Ricci scalar in the GR action
with a function thereof, fðRÞ theory can be seen as a natural
extension of GR [7]. Despite its simplicity, however, it
incorporates some of the basic characteristics of higher-order
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theories of gravity (i.e., theories constructed from actions in
which the R of GR has been generalized to some function of
higher-order curvature invariants), and is furthermore advan-
tageous in that it appears to be the only higher-order theory
that does not suffer from the Ostrogradski instability [8].
The prototype of fðRÞ gravity has fðRÞ ¼ R − α4=R (where
α ∼H0 andH0 is the Hubble constant). It was adopted in an
attempt to explain late-time cosmic acceleration [9–11], but
has been ruled out on the basis of the Dolgov-Kawasaki
instability [9,12] and the fact that it does not have a viable
weak-field limit [9,13]. In general, the class of models with
fðRÞ ¼ Rþ αR−n cannot give rise to an acceptable cos-
mological expansion history for any n > 0 or n < −1 [14].
The function associated with Starobinsky’s inflationary

model [fðRÞ ¼ Rþ αR2] [15] was also one of the first to be
proposed. Since then, fðRÞ gravity has been the subject of
numerous studies. One of its apparent benefits is the ability
of certain models to reproduce both the early period of
inflation and the current acceleration [16,17]. That said, due
to the stringent constraints that a candidate model must
satisfy—for example, it has to predict a matter-dominated
cosmic era—only a few are still considered valid [7]. These
are best tested on cosmological scales. Indeed, it is here that
deviations from GR show up, so measurements of observ-
ables such as those related to galaxy clustering, the cosmic
microwave background (CMB) or weak lensing are exam-
ples of pertinent cosmological probes [18].
Among the viable fðRÞmodels are the ones put forward

by Hu and Sawicki [19], Starobinsky [20], Tsujikawa [21]
and Cognola et al. [16]. The said models are the subject
of numerous works in the literature (see, for instance,
[7,22–30]), but almost always in the context of a spatially
flat universe. In fact, the assumption that spatial curvature
is negligible is made by the greater majority of works in
the literature, with the results of missions such as Planck
[31], WMAP [32], and SDSS [33] usually used as justifi-
cation. The constraints placed by the respective studies on
the geometry of the Universe are indeed compatible with
spatial flatness. It should be remembered, however, that
they are obtained in the context of a ΛCDM cosmology.
And even with regards to the standard model, some issues
remain: the Planck temperature (TT), polarization (EEþ
lowE) and temperature-polarization cross-correlation
(TE) power spectra, for instance, appear to favor a closed
universe2 at over 2σ [31], but adding baryon acoustic
oscillation (BAO) data or measurements of the full-shape
galaxy power spectrum [FS-PðkÞ] makes the results
perfectly consistent with a flat universe. The caveat is
that the TT, TE, EEþ lowE data turns out to be in
significant tension with both BAO and FS-PðkÞ measure-
ments when a curved universe is assumed (see Ref. [34]

and works cited therein; using cosmic chronometers has
been proposed as a solution [35]).
It is well–known that standard cosmic inflation predicts a

flat geometry. This is because the curvature density parameter
Ωk decreases exponentially during the inflationary epoch, but
only grows as a power law afterwards [36]. However, models
of inflation that give rise to open [37,38] or closed universes
[39,40] are also possible, although they often require a degree
of fine tuning [36]. It has been suggested that spatial
curvature could have emerged during the evolution of the
Universe, once the growth of large-scale structure entered the
nonlinear regime. This conclusion was reached on the basis
of the silent Universe approximation [41]. The emergence of
curvature might additionally hold the key to a resolution of
the currently unresolved tension between CMB and distance-
ladder estimates of the Hubble constant [42].
In view of this, the practice of settingΩk;0 (the present-day

value of Ωk) to zero appears somewhat premature. There is
also the fact that more stringent constraints on Ωk;0 could
serve as important tests of eternal inflation models (see [43]
and references therein). Furthermore, large-scale structure
effects (such as those due to local inhomogeneities) could
bias our measurements and shift the inferred Ωk;0 from the
background value unless properly accounted for [43,44], as
could higher-order perturbations like second-order lensing
corrections [43]. Another point to keep in mind is the strong
degeneracy that frequently exists between dark energy
parameters and Ωk;0. Many times, the problem is circum-
vented either by setting the latter to zero, or by only
considering specific classes of the former. A case in point
is the dark energy equation-of-state (EoS) parameter,wde, for
which a functional form is usually assumed. The result is that
spatial curvature is mostly studied in a rather restrictive
framework. Of particular concern is the fact that if the true
value of Ωk;0 deviates from zero, assuming a flat geometry
induces errors in wde that grow rapidly with redshift, even if
the curvature is in reality only very small [45].
In this work, we consider four fðRÞ models and use

observational data to place bounds on cosmological and
model-specific parameters. Our main aim is to investigate
how constraints are affected if Ωk;0 is treated as a free
parameter. First we go over the preliminary theory (Sec. II),
then introduce the relevant likelihoods in Sec. III. Results
are presented and discussed in Sec. IV, while Sec. V is
dedicated to the concluding remarks. We use units in which
the speed of light in vacuum, c, is equal to unity.

II. METRIC f ðRÞ GRAVITY: PRELIMINARIES

A. The field equations

At the basis of fðRÞ theory is a generalization of the
Einstein-Hilbert action of GR to:

S ¼
Z ffiffiffiffiffiffi−gp

16πG
fðRÞd4x: ð2Þ2Adding the lensing reconstruction reduces this to a little more

than 1σ [31].
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Here, fðRÞ is a generic function of the Ricci curvature
scalar. The field equations are obtained by varying the
action with respect to the inverse metric tensor gμν [9], and
collectively read

�
Gμν þ

1

2
Rgμν −∇μ∇ν þ gμν□

�
fR −

1

2
fðRÞgμν

¼ 8πGTμν; ð3Þ

where Gμν is the Einstein tensor (Gμν ¼ Rμν − Rgμν=2),
fR ¼ df=dR, the quantity ∇μ represents the covariant
derivative operator constructed from the metric connection,
and □≡ gμν∇μ∇ν. We shall model the matter/energy
content of the Universe as a perfect fluid with proper
density ρ, corresponding isotropic pressure p and four-
velocity uμ. The energy-momentum tensor of such a fluid
reads

Tμν ¼ ðρþ pÞuμuν þ pgμν: ð4Þ

In a Friedmann-Lemaître-Robertson-Walker (FLRW) cos-
mology, the field equations [i.e., Eq. (3)] can be recast into
the form of their general relativistic counterparts [22]. We
may therefore write:

H2 ¼ 8πG
3

ρtot −
κ

a2
; ð5Þ

ä
a
¼ −

4πG
3

ðρtot þ 3ptotÞ: ð6Þ

In the above, a is the scale factor, normalized with respect to
its present-day value, andH ¼ _a=a is the Hubble parameter;
an overdot denotes differentiation with respect to cosmic
time t. The parameter κ represents the spatial curvature
and has dimensions of length−2, while ρtot ¼ ρþ ρde
and ptot ¼ pþ pde, ρ and p being the energy density and
pressure from Eq. (4). However, while in GR ρde and pde are
attributes of a physical component—namely, the vacuum
energy we denote by Λ—in fðRÞ theory they may be
expressed as a collection of terms which result from the
modification to the geometry of the space-time manifold:

8πGρde ¼
1

2
ðfRR − fÞ − 3H _fR þ 3ð1 − fRÞH2

þ 3κ

a2
ð1 − fRÞ; ð7Þ

8πGpde ¼
1

2
ðf − fRRÞ þ f̈R − ð1 − fRÞð2 _H þ 3H2Þ

þ 2H _fR þ κ

a2
ðfR − 1Þ: ð8Þ

Simply put, the impact of these geometric terms on cosmic
dynamics mimics the effects of a dark energy component

with density ρde and pressure pde [22]. We additionally note
that this effective dark energy does not interact with matter
or radiation. Consequently, conservation of energy implies
that:

_ρþ 3Hðρþ pÞ ¼ 0; ð9Þ

where ρ ¼ ρm (or ρr) and p ¼ pm (or pr). The subscripts
“m” and “r” denote matter (cold dark matter and baryons)
and radiation (photons and massless neutrinos), respectively.
As mentioned earlier, a valid fðRÞ theory must fulfill a

number of criteria [8,9,46,47]. First, since the quantity
Geff ≡G=fR acts as an effective gravitational coupling, the
requirement that the graviton carries positive kinetic energy
implies that Geff > 0, which in turn imposes the bound
fR > 0. Second, avoiding instabilities of the Dolgov-
Kawasaki type [12] necessitates that d2f=dR2 ≥ 0. As
for the cosmological dynamics, the theory should behave
like ΛCDM at high redshifts, because the standard model is
well-supported by CMB data in this regime. We therefore
expect that limR→∞ fðRÞ ¼ Rþ constant. A late-time
expansion history similar to the one in a ΛCDM cosmology
is also desirable, albeit in the absence of a cosmological
constant; that is to say, viable fðRÞ models should satisfy
the condition limR→0 fðRÞ ¼ Rþ 0 [19].
The successes of ΛCDM on Solar System scales suggest

that its phenomenology should be a limiting case [19] of any
sound alternative theory. In metric fðRÞ, however, the Ricci
curvature introduces a scalar degree of freedom, which could
cause post-Newtonian constraints obtained from Solar
System experiments to be violated. The model only remains
valid if the scalar field can somehow be “shielded” from such
experiments. This may be achieved via the so-called cha-
meleon mechanism, whereby the effective mass M of the
scalar varies according to the energy density of the local
environment. In high-density regions like the Solar System, a
large M would shorten the range of the scalar field to scales
that cannot currently be probed by weak-field experiments.
On the other hand,M would have to be small at cosmological
densities, so as to allow the scalar field to act over a long
range and drive the acceleration of the Universe [8,48,49].
One important thing to note about chameleon behavior is that
it cannot be described as a fine-tuning mechanism. Rather, it
is a natural and intrinsic property of those fðRÞ models
whose weak-field limit satisfies observational constraints.
Phase space analysis can also yield a wealth of

information. In a particularly noteworthy study that takes
this approach [14], the authors consider the quantities
m ¼ ½RfRR=fR�ðrÞ (fRR stands for d2f=dR2) and r ¼
−RfR=f and investigate the behavior of the mðrÞ curve
in the ðr;mÞ plane. It is found that for an fðRÞ model
to admit a viable matter-dominated epoch, the curve
should satisfy the conditions mðrÞ ≈þ0 and dm=dr >
−1 at r ≈ −1. Additionally, a valid period of late-time
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acceleration requires that m ¼ −r − 1 while ð ffiffiffi
3

p
−

1Þ=2 < m ≤ 1 and dm=dr < −1, or that m lies in the
range (0, 1] at r ¼ −2 [14].

B. The cosmological equations as a set of first-order
differential equations

To avoid instabilities when solving Eqs. (5) and (6)
numerically, we rewrite them as a set of first order
ordinary differential equations. To this end, we follow
Refs. [14,50–53]. The starting-point is the change of
variables given by:

s ¼ R
6ðHΛ

0 ηÞ2
; x ¼ −R0ðzÞð1þ zÞ;

y ¼ fðRÞ
6fRðHΛ

0 ηÞ2
; ωm ¼ ΩΛ

m;0ð1þ zÞ3
η2fR

;

ωr ¼
ΩΛ

r;0ð1þ zÞ4
η2fR

; K ¼ κð1þ zÞ2
ðHΛ

0 ηÞ2
: ð10Þ

Here, a prime denotes differentiation with respect to the
argument and z is the cosmological redshift, while η is
defined as the ratio H=HΛ

0 . Ωm;0 and Ωr;0 are the values of
the matter and radiation density parameters at z ¼ 0,
respectively, and a superscript Λ indicates quantities
as measured/inferred in the framework of a ΛCDM
cosmology.
We have already seen that a candidate function fðRÞ

ideally satisfies the condition limR→∞ fðRÞ ¼ Rþ constant.
This implies that Eq. (2) becomes indistinguishable from the
Einstein-Hilbert action at high redshifts, since the latter has
Lagrangian density ð ffiffiffiffiffiffi−gp

=16πGÞðR − 2ΛÞ. Consequently,
at early times the fðRÞ cosmology behaves as a ΛCDM
model having cosmological constant Λ ¼ −constant=2. Let
us reinterpret the superscript Λ as a label for the parameters
of this specific ΛCDM model. If we write the quantity
−constant=2 as ΛfðRÞ, it follows that ΛΛ ¼ ΛfðRÞ, and hence
that

ðHΛ
0 Þ2ΩΛ

Λ;0 ¼ ðHfðRÞ
0 Þ2ΩfðRÞ

Λ;0 ; ð11Þ

where ΩΛ;0 is the present-day value of the density parameter
associated with Λ. Furthermore, given that the matter
component is described by the same energy-momentum
tensor in both ΛCDM and fðRÞ gravity, and assuming that
the two theories should lead to the same physical matter
density today, we obtain the relation

ΩΛ
m;0ðHΛ

0 Þ2 ¼ ΩfðRÞ
m;0 ðHfðRÞ

0 Þ2 ¼ 8πG
3

ρmðz ¼ 0Þ: ð12Þ

In general, though,

HfðRÞ
0 ≠ HΛ

0 and ΩfðRÞ
m;0 ≠ ΩΛ

m;0; ð13Þ

since the two models are expected to diverge at late
times [19,26].
A similar conclusion can be reached for the radiation

density:

ΩΛ
r;0ðHΛ

0 Þ2 ¼ ΩfðRÞ
r;0 ðHfðRÞ

0 Þ2; ΩΛ
r;0 ≠ ΩfðRÞ

r;0 : ð14Þ

In order to account for spatial curvature, it is customary to
introduce a quantity Ωk;0 that complements Ωm;0 and Ωr;0

and is equal to −κ=H2
0. The curvature parameter κ is a

constant, so at early times an fðRÞ model mimics a ΛCDM
cosmology having κΛ ¼ κfðRÞ. Therefore, it follows that

ΩΛ
k;0ðHΛ

0 Þ2 ¼ ΩfðRÞ
k;0 ðHfðRÞ

0 Þ2: ð15Þ

κ is defined as the ratio k=R2
0, k being the normalized

curvature parameter (equal to �1 or 0) andR0 the present-
day value of the non-normalized scale factor. So if
κΛ ¼ κfðRÞ, it must mean that at high redshifts, an fðRÞ
model with current scale factor R̂0 behaves as a ΛCDM
model that also has R0 ¼ R̂0.

Equations (12)–(15) make it possible to rewrite HfðRÞ
0 ,

ΩfðRÞ
m;0 , Ω

fðRÞ
r;0 and ΩfðRÞ

k;0 in terms of their ΛCDM counter-
parts [as was already done for the expressions in Eq. (10)].
This is especially convenient, because it enables us to
construct informative priors for the fðRÞ cosmological
parameters using Planck constraints [31], which makes the
process of sampling the parameter space much more
efficient.
Let us now return to Eq. (10). In terms of the new

variables (η, s, x, y, ωm, ωr, and K), the system of
cosmological equations to be solved becomes:

η0ðzÞ ¼ η

zþ 1
ð2 − sþ KÞ; ð16Þ

s0ðzÞ ¼ −
s

zþ 1

�
x
R
þ 4 − 2sþ 2K

�
; ð17Þ

x0ðzÞ ¼ 1

Γðzþ 1Þ ½ðxΓÞ
2 þ sðxΓ − 1Þ þ 3y − 1þ ωr

− Kð1þ xΓÞ� − xΓ0ðzÞΓ−1; ð18Þ

y0ðzÞ ¼ −
1

zþ 1

�
s
x
R
þ yð4 − xΓ − 2sþ 2KÞ

�
; ð19Þ

ω0
mðzÞ ¼

ωm

zþ 1
ðxΓþ 2s − 2K − 1Þ; ð20Þ

ω0
rðzÞ ¼

ωr

zþ 1
ðxΓþ 2s − 2KÞ; ð21Þ

K0ðzÞ ¼ −
2K
zþ 1

ðK − sþ 1Þ; ð22Þ
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where Γ is equal to fRR=fR and serves to identify the
particular fðRÞ model.

C. Specific f ðRÞ models

Among the viable fðRÞ models are the ones put forward
by Hu and Sawicki [19], Starobinsky [20], Tsujikawa [21]
and Cognola et al. [16]. In this subsection, we take a closer
look at each of them in turn.

1. The Hu-Sawicki model

Hu and Sawicki proposed a class of “broken power-law”
models [19]:

fðRÞHS ¼ R − μ2
c1ðR=μ2ÞnHS

1þ c2ðR=μ2ÞnHS
: ð23Þ

Here, c1 and c2 are dimensionless parameters, nHS repre-
sents a positive constant that is usually assumed to be an
integer, and μ2 ≈Ωm;0H2

0.
It may be shown that the Hu-Sawicki model includes

ΛCDM as a limiting case and can, in fact, be seen as a late-
time modification of the latter [23]. Moreover, it is possible
to explicitly incorporate the cosmological constant Λ into
Eq. (23) by making the substitutions [30]

Λ ¼ μ2c1
2c2

; b ¼ 2c
1−n−1HS
2

c1
; ð24Þ

which cast fðRÞHS into the form [30,54]:

fðRÞHS ¼ R − 2Λ
�
1 −

1

1þ ½R=ðbΛÞ�nHS
�
: ð25Þ

Equation (25) makes it apparent that at high redshifts, when
R ≫ Λ, fðRÞHS reduces to R − 2Λ and ΛCDM is conse-
quently recovered [54]. The differences that emerge at lower
redshifts are quantified by the deviation parameter b [30]
(b ¼ 0 corresponds to ΛCDM). Constraints placed on b by
means of cosmological data, therefore, translate into bounds
on the allowed variation from the standard model.
Additionally, the time at which these variations set in is
controlled by nHS: the larger the value of this parameter, the
longer it takes for the Hu-Sawicki model to diverge from
ΛCDM [19]. We shall follow other works in the literature and
(without loss of generality) set nHS to unity [22,23,30].
Furthermore, only non-negative values of b will be consid-
ered. The reason is that when nHS ¼ 1, fRR ¼ 4bΛ2=
ðRþ bΛÞ3, and so having b < 0 would mean that fRR
becomes negative as soon as R > −bΛ. We have already
seen that viable fðRÞ models have fRR ≥ 0.
Before proceeding to the next model, it would be

interesting—and extremely useful for setting up the
numerical procedures performed later—to determine at
what redshift the Hu-Sawicki model becomes effectively

indistinguishable from ΛCDM. To this end, we adopt a
procedure similar to the one proposed in Ref. [26] for
exponential fðRÞ. Equation (25) allows us to deduce that
if fðRÞHS is to approach R − 2Λ at high redshifts, the
magnitude of 1=f1þ ½RfðRÞ=ðbΛÞ�nHSg must decrease
asymptotically to zero as we go back in time. This may
be expressed as the requirement that at some redshift zbound,
the quantity 1=ð1þ ½RfðRÞ=ðbΛÞ�nHSÞ is equal to ϵ (with
ϵ ≪ 1), at which point any differences between the fðRÞ
model and ΛCDM are negligible. Moreover, at z ¼ zbound
one expects RfðRÞ to take the form RΛ þ ξ (for some
jξj ≪ RΛ). With these considerations in mind, we may
write

1þ
�
RΛ þ ξ

bΛ

�
nHS

≈ 1þ
�
RfðRÞ

bΛ

�nHS
¼ 1

ϵ
;

⇒

�
bΛ

RΛ þ ξ

�
nHS

≈
ϵ

1 − ϵ
;

⇒
bΛ

RΛ þ ξ
≈
�

ϵ

1 − ϵ

�
n−1HS ¼ ν;

⇒
bΛ
RΛ ≈ ν

�
1þ ξ

RΛ

�
;

and if terms higher than first order in ϵ or ξ=RΛ are
discarded, it follows that

ν ¼
�

ϵ

1 − ϵ

�
n−1HS ¼ ϵn

−1
HSð1 − ϵÞ−n−1HS

≈ ϵn
−1
HS

�
1þ ϵ

nHS

�
≈ ϵn

−1
HS ;

bΛ
RΛ ≈ ν

�
1þ ξ

RΛ

�
≈ ϵn

−1
HS

�
1þ ξ

RΛ

�
≈ ϵn

−1
HS ≈ ν: ð26Þ

Therefore, bΛ=RΛ ≈ ν at z ¼ zbound. Using the relation
RΛ ¼ 3H2

0½Ωm;0ð1þ zÞ3 þ 4ΩΛ;0�, we solve for zbound and
find that

zbound ¼
�
ΩΛ;0

Ωm;0

�
b
ν
− 4

��
1=3

− 1: ð27Þ

In the case of the Hu-Sawicki model, the ratio bΛ=RΛ

(henceforth referred to as ν) equates to ½ϵ=ð1 − ϵÞ�n−1HS at
z ¼ zbound. The remaining models will give rise to different
expressions for bΛ=RΛ, which will all be functions of
the quantity ϵ obtained by putting fðR½z ¼ zbound�Þ ¼ R −
2Λð1 − ϵÞ (thus, ϵ differs from model to model). All we
need to remember, however, is that ϵ is a positive constant
much smaller than unity. More details about the values we
choose for ϵ are given in Sec. III.
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2. The Starobinsky model

Starobinsky proposed the function [20]:

fðRÞS ¼ Rþ λRS

��
1þ R2

R2
S

�−nS
− 1

�
; ð28Þ

where nS and λ denote positive constants, and the third
constant, RS, is expected to be of the order of the present-
day Ricci scalar [21]. We write fðRÞS in the form of a
perturbed ΛCDM Lagrangian [22]:

fðRÞS ¼ R − 2Λ
�
1 −

�
1þ R2

ðbΛÞ2
�−nS

�
; ð29Þ

which clearly shows that fðRÞS → R − 2Λ when R ≫ Λ or
when b → 0. Λ and b may be expressed in terms of the
original parameters as λRS=2 and 2=λ, respectively [22].
The redshift zbound is again given by Eq. (27). Now,

however, we have that

ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ1=nS

1 − ϵ1=nS

s
: ð30Þ

Without loss of generality, we shall put nS equal to unity
from now on.

3. The Exponential model

In this case, the fðRÞ function reads [16]

fðRÞE ¼ Rþ β½expð−γRÞ − 1�; ð31Þ

or equivalently [22]

fðRÞE ¼ R − 2Λ
�
1 − exp

�
−

R
bΛ

��
; ð32Þ

with Λ ¼ β=2 and b ¼ 2=ðγβÞ. β and γ are two constants
that characterize the model; γ must be positive so that b ≥ 0
and at high redshifts, when R ≫ Λ, the exponential
function becomes negligible and ΛCDM is recovered
[26]. This also happens as b → 0.
The redshift zbound may be estimated from Eq. (27) by

making use of the relation

ν ¼ 1

ln ð1=ϵÞ : ð33Þ

4. The Tsujikawa model

The model proposed by Tsujikawa is based on the
function [21]

fðRÞT ¼ R − ζRT tanh

�
R
RT

�
; ð34Þ

where ζ and RT are positive constants. We may alterna-
tively write

fðRÞT ¼ R − 2Λ tanh

�
R
bΛ

�
: ð35Þ

Here, b ¼ 2=ζ and Λ ¼ ζRT=2 [22], and the model
becomes equivalent to ΛCDM either when R ≫ Λ or when
b → 0 (since tanh ½R=ðbΛÞ� → 1 in both cases). The
quantity ν required to calculate zbound [Eq. (27)] is given by

ν ¼ 1

arctanhð1 − ϵÞ : ð36Þ

D. Perturbations in f ðRÞ gravity
We start by considering the perturbed field equations:

δGμ
νfR þ ðRμ

ν −∇μ∇ν þ δμν□ÞfRRδRþ ðδgμα∇ν∇α

− δμνδgαβ∇α∇βÞfR þ ðgαμδΓγ
αν − δμνgαβδΓγ

βαÞ∂γfR

¼ 8πGδTμ
ν : ð37Þ

In the above, the quantities δGμ
ν , δR, δgμν, and δΓμ

σν denote
perturbations in the Einstein tensor, the Ricci scalar, the
metric tensor and the metric connection, respectively, while
δμν is the Kronecker delta. Perturbations in quantities related
to the geometry of the space-time manifold appear on the
left-hand side of Eq. (37). Meanwhile, the right-hand side
constitutes the perturbed part δTμ

ν of the energy-momentum
tensor, and may be expanded as follows [55,56]:

δT0
0 ¼ −δρm; δT0

i ¼ ðρm þ pmÞvi;
δTi

0 ¼ −ðρm þ pmÞvi; δTi
j ¼ δpmδ

i
j: ð38Þ

Here, ρm and pm are the background values of the matter
energy density and pressure, respectively, and δρm, δpm

their associated perturbations. The 3-vector vi represents
the perturbation in the spatial velocity. We keep to the
perfect-fluid form and hence do not consider anisotropic
stresses (which explains why δTi

j ¼ 0 for i ≠ j) [57].
In the conformal Newtonian gauge, the perturbed FLRW

metric takes the form:

ds2 ¼ a2ðτÞ½−ð1þ 2ΦÞdτ2 þ γijð1 − 2ΨÞdxidxj�; ð39Þ

where γij ¼ δij½1þ 1
4
κðx2 þ y2 þ z2Þ�−2 [57], τ is the

conformal time (which is related to the cosmic time t
via the scale factor: dτ ¼ dt=a), and we have made use of
quasi-Cartesian coordinates [58].3 The scalar potentials
Φðτ; x⃗Þ and Ψðτ; x⃗Þ constitute the metric perturbations in

3In 3D Euclidean space with a Cartesian coordinate system,
the 3-metric γij has components δij, rather than δij½1þ 1

4
κ

ðx2 þ y2 þ z2Þ�−2. We shall be using x⃗ as shorthand for the
spatial vector ðx; y; zÞ.
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our particular gauge; they are assumed to satisfy the
condition jΦj, jΨj ≪ 1.
The next step involves modeling perturbations as wave

functions in momentum space. A perturbation δgðτ; x⃗Þ in
physical space translates into a sum (or integral) over k†-
modes in momentum space. For instance, in the absence of
spatial curvature, we have that

δgðτ; x⃗Þ ¼
X
k†

δĝðτ; k†Þeik⃗†·x⃗: ð40Þ

Each of the modes in question has a characteristic comov-
ing wave vector k⃗† (and corresponding wave number

k† ¼ jk⃗†j). Since we consider perturbations to linear order
only, it follows that if δgðτ; x⃗Þ satisfies a particular
equation, then the individual modes summed over in
Eq. (40) also satisfy that equation, albeit for different
values of k†. In other words, perturbations with a different
wave number decouple, and so we can write our equations
in terms of a generic mode δĝðτ; k†ÞQðx⃗; k†Þ [55,59]. In
spherical coordinates, the purely spatial part of each mode
of oscillation is given by

Qðx⃗; k†Þ ¼ Θl
βðk†ÞðrÞYlmðθ;ϕÞ; ð41Þ

where Ylm denotes the spherical harmonics and the form of
the function Θl

β depends on the value of κ (refer to [59,60]
for more details). It may be shown that in the flat case, the

right-hand side of Eq. (41) reduces to eik⃗†·x⃗.
In momentum space, then, the time-time component of

Eq. (37) reads [61]:

2fRfΨðk2† − 3κÞ þ 3H½Ψ0ðτÞ þΦH�g þ fRR½3H0ðτÞδR
− k2†δR − 3HδR0ðτÞ� − 3HδRf0RRðτÞ þ 3f0RðτÞ½2HΦ

þ Ψ0ðτÞ� þ 8πGa2ρmδm ¼ 0; ð42Þ

with

δR ¼ 2

a2
fk2†ðΦ − 2ΨÞ − 3½2ΦH0ðτÞ þ 3HΨ0ðτÞ þHΦ0ðτÞ

− 2κΨþ Ψ00ðτÞ þ 2ΦH2�g; ð43Þ

where H is the conformal Hubble parameter [equivalent to
the ratio a0ðτÞ=a], and the matter density contrast function,
δm, is defined as δρm=ρm. We remark that, despite the hat
notation ð^Þ not being adopted, Φ, Ψ, δm and v actually
correspond to Φ̂ðτ; k†Þ, Ψ̂ðτ; k†Þ, δ̂mðτ; k†Þ and v̂ðτ; k†Þ,
respectively; Qðx⃗; k†Þ has been factored out of Eqs. (42)
and (43).
Contrary to what happens in ΛCDM, Φ and Ψ are not

equal in fðRÞ gravity [61]:

Ψ −Φ ¼ fRRδR
fR

: ð44Þ

The above relation follows from the i − j component
(i ≠ j) of Eq. (37). At this stage, we may simplify
Eqs. (42) and (43) using the sub-Hubble and quasistatic
approximations,4 whence they become:

2fRΨðk2† − 3κÞ − fRRk2†δRþ 8πGa2ρmδm ¼ 0; ð45Þ

δR ¼ 2

a2
½k2†ðΦ − 2ΨÞ þ 6κΨ�: ð46Þ

Let us now take a look at the perturbed version of energy-
momentum conservation. The condition ∇μT

μ
ν ¼ 0 still

holds, but in this case Tμ
ν ¼ T̃μ

ν þ δTμ
ν (the tilde denotes

the unperturbed part), and the covariant derivative ∇μ must
be constructed from the perturbed metric tensor of Eq. (39)
[65]. The relation∇μT

μ
ν ¼ 0may consequently be expanded

as follows:

∇̃μT̃
μ
ν þ ∇̃μδT

μ
ν þ δΓμ

σμT̃σ
ν − δΓσ

νμT̃
μ
σ ¼ 0; ð47Þ

where ∇̃μ derives from the background metric, T̃μ
ν is the

unperturbed energy momentum tensor from Eq. (4), δTμ
ν is

its perturbed counterpart [Eq. (38)], and δΓμ
νσ represents the

perturbed Christoffel symbols. The first term in Eq. (47)
has no perturbed components and is therefore conserved
separately, giving rise to the familiar relation5 ρ0mðτÞ ¼
−3Hðρm þ pmÞ ¼ −3Hρmð1þ wmÞ. The remaining terms
yield the equations [61]:

δ0mðτÞ ¼ ð1þ wmÞ½−k†vþ 3Ψ0ðτÞ�; ð48Þ

v0ðτÞ ¼ Hvð3wm − 1Þ þ k†

�
Φþ wmδm

1þ wm

�
; ð49Þ

which can readily be combined to give:

δ00mðτÞ þHδ0mðτÞ þ k2†Φ − 3Ψ00ðτÞ − 3HΨ0ðτÞ ¼ 0; ð50Þ

provided that the matter component may be described as a
distribution of dust (with wm ¼ 0). The parameter v that
appears in Eqs. (48) and (49) is the velocity potential

4Sub-Hubble approximation: we assume that the relevant
modes are well within the Hubble radius (the “horizon”) during
the time of interest, i.e., they have k† ≫ H.
Quasistatic approximation: can be stated as the condition that
jY 0ðτÞj ≲HjYj, where Y ¼ Φ, Ψ, H, Φ0ðτÞ, Ψ0ðτÞ or H0ðτÞ
[62,63]. In other words, the temporal evolution of Y may
essentially be attributed to the expansion of the Universe [64],
and is thus negligible in comparison to any spatial changes (in Y).

5wm is the equation-of-state parameter for the matter compo-
nent [not to be confused with ωm from Eq. (10)].

SPATIAL CURVATURE IN fðRÞ GRAVITY PHYS. REV. D 104, 123503 (2021)

123503-7



associated with vi. In momentum space, we have that6

viS ¼ −k−1† ∇i�v, ∇⃗� being the covariant derivative operator
constructed from the (unperturbed) spatial metric γij of
Eq. (39). Under the sub-Hubble and quasistatic approxima-
tions, Eq. (50) further simplifies to

δ00mðτÞ þHδ0mðτÞ þ k2†Φ ¼ 0: ð51Þ

To obtain an expression for Φ, we insert Eq. (46) into
Eqs. (44) and (45) and solve the last two forΦ (andΨ), then
use the solution to substitute for Φ in Eq. (51), which
becomes [68]

δ00mðτÞ þHδ0mðτÞ − 4πρmδma2Geff ¼ 0; ð52Þ

with

Geff

G
¼ k2†½a2fR þ 4fRRðk2† − 3κÞ�

fR½3fRRk2†ðk2† − 4κÞ þ a2fRðk2† − 3κÞ� : ð53Þ

In terms of our new variables [see Eq. (10)], Geff=G
reads:

Geff

G
¼ k2†ωma3η2½a2 þ 4Γðk2† − 3κÞ�

ΩΛ
m;0½a2ðk2† − 3κÞ þ 3k2†Γðk2† − 4κÞ� : ð54Þ

III. OBSERVATIONAL DATA AND
CORRESPONDING LIKELIHOODS

In this section, we employ Bayesian statistics and place
constraints on cosmological/model-specific parameters by
utilizing Markov Chain Monte Carlo (MCMC) sampling
techniques. We make use of a customized version of the
Cosmic Linear Anisotropy Solving System (CLASS) v.2.6.3
[69], in conjunction with MONTE PYTHON v.3.0.1 [70,71]. For
the MCMC part of the study, we consider as baseline
parameters the quantities H0 (in units of km s−1 Mpc−1),
Ωb;0h2, Ωcdm;0h2, Ωk;0, b, ns and ln ð1010AsÞ, where Ωb;0

and Ωcdm;0 are the present-day values of the baryon and cold
dark matter density parameters, respectively, ns stands for the
index of the primordial scalar power spectrum and As its
amplitude, and h is equivalent to H0=ð100 km s−1 Mpc−1Þ.
The associated priors are listed in Table I. All other
parameters take their CLASS default values, except for the
reionization optical depth (which is set to 0.0544 [31]). As is
varied subject to a Gaussian likelihood having a mean of
2.10 × 10−9 and a standard deviation of 0.03 × 10−9 [31].

The contour plots presented in this work were con-
structed using the MCMC analysis package GETDIST

v.1.0.3 [72].
We compare model predictions with measurements of

observables related to Type Ia supernovae (SNeIa), the
cosmic microwave background (CMB), baryon acoustic
oscillations (BAOs), cosmic chronometers and redshift-
space distortions (RSDs). Below is a brief description of the
respective datasets.
SNeIa: We make use of the Pantheon dataset, which is

based on a sample of 1048 SNeIa in the redshift range
0.01 < z < 2.3 [73].
CMB: Here, we work with four distance priors: the shift

parameterR, theacoustic scale lA, the indexof theprimordial
scalar power spectrum ns, and the quantity Ωb;0h2. The
observational values of these four priors and the associated
covariance matrix were obtained from Ref. [74].
BAO: Our dataset consists of the BAO measurements

from the 6dF Galaxy Survey [75], as well as those derived
from the main Galaxy sample of SDSS DR7 [76], the
SDSS-DR12 Lyα-quasar cross-correlation function [77]
and the Lyα-Forest catalogue from the same data release
[78], and a BOSS galaxy selection constructed from the
CMASS, LOWZ, LOWZE2 and LOWZE3 samples [79].
This choice of BAO data was made with the aim of
removing or at least reducing potential correlations
between BAO and RSD measurements.
Cosmic chronometers: The best cosmic chronometers

are massive galaxies which acquired most of their stellar
mass very rapidly at high redshifts, and have been evolving
without major episodes of star formation since then.
Consequently, their age may be inferred from that of their
stellar population. Once the age difference Δt between two
such galaxies (located at redshifts z and zþ Δz) has been
determined, it is possible to calculate HðzÞ directly by
means of the relation HðzÞ ¼ −ð1þ zÞ−1Δz=Δt [80,81].
We consider the set of Hubble parameter values listed in
Table II.
HR

0 : For part of the analysis, we make use of a Gaussian
likelihood for H0 constructed from the local measurement of
Ref. [88], which was obtained via the distance-ladder
approach and amounts to 74.03� 1.42 km s−1 Mpc−1.

TABLE I. The flat priors assigned to the baseline parameters.

Parameter Min Max

H0ðkm s−1 Mpc−1Þ 50 90
Ωb;0h2 0.005 0.040
Ωcdm;0h2 0.05 0.20
Ωk;0 −0.3 0.3
b 0.0 1.0
ns 0.75 1.25
ln ð1010AsÞ 2.8 3.2

6Every vector can be decomposed into the sum of a scalar part
viS (so called because it may be expressed as the gradient of a
scalar field) and a vector part with zero divergence, viV [57,66,67].
In first-order perturbation theory, the two parts evolve independ-
ently of each other, and only viS contributes to the formation of
structure [57].
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The tension between this value of the Hubble constant and
the Planck constraints on H0 [31] is still unresolved, so it is
crucial that we investigate any implications that an H0

likelihood might have for the inferred fðRÞ parameter
constraints.
RSD: The collection of fσ8ðzÞ data points we work with

is provided in Table III, and has been adopted from the
compilation in Ref. [89].
To calculate fσ8ðzÞ for a given model, we need two

quantities: the growth rate fðzÞ, and the standard deviation
of density perturbations in spheres of radius 8h−1 Mpc,
σ8ðzÞ. The former is a function of δm, the matter density
contrast:

f ¼ dðln δmÞ
d ln a

: ð55Þ

δm may in turn be obtained from Eq. (52) by solving it
as part of the system of differential equations given
by Eqs. (16)–(20) [with ωr and K as defined in Eq. (10)].7

Since the expression for Geff=G [Eq. (53)] is dependent
on k†, it is necessary to choose an appropriate comoving
wave number at which to evaluate fðzÞ. We shall focus
exclusively on values of k† in the range 0.02h Mpc−1 ≤
k† ≤ 0.2h Mpc−1. This choice of bounds is based on two
considerations: first, modes with k† ≲ 0.2h Mpc−1 re-
present perturbations which may safely be considered
linear [96], and second, the mode that crosses the horizon
at matter-radiation equality has8 k† ∼ 0.015h Mpc−1. The
latter implies that smaller scales—corresponding to a
larger k†—would be well within the horizon during the
epochs of interest i.e., deep in the matter era and
throughout the subsequent period of acceleration. We
shall therefore determine fðzÞ for two different values of
k†: k† ¼ 0.1h Mpc−1 and k† ¼ 0.05h Mpc−1. In both
cases, k2† is much larger than we could reasonably expect
jκj to be ðk2† ≫ jκjÞ, and so Eq. (53) may be simplified to:

Geff

G
¼ a2fR þ 4fRRk2†

fRð3fRRk2† þ a2fRÞ
: ð56Þ

Finally, to solve Eq. (52) we require a pair of initial
conditions. The simplest choice is δmðainiÞ ¼ aini and
δ0mða ¼ ainiÞ ¼ 1 [or equivalently, δmðτiniÞ ¼ aini and
δ0mðτ ¼ τiniÞ ¼ HðainiÞa2ini], aini and τini being the scale
factor and conformal time, respectively, at which the initial

TABLE II. Cosmic chronometer data. Each value of HðzÞ is
listed together with the corresponding redshift z and error σ.

Ref. z HðzÞ σ

ðkm s−1 Mpc−1Þ
[82] 0.0700 69.0 19.6
[82] 0.1200 68.6 26.2
[83] 0.1700 83.0 8.0
[81] 0.1791 75.0 4.0
[81] 0.1993 75.0 5.0
[82] 0.2000 72.9 29.6
[83] 0.2700 77.0 14.0
[82] 0.2800 88.8 36.6
[81] 0.3519 83.0 14.0
[84] 0.3802 83.0 13.6
[83] 0.4000 95.0 17.0
[84] 0.4004 77.0 10.2
[84] 0.4247 87.1 11.2
[84] 0.4497 92.8 12.9
[85]a 0.4700 89.0 49.6
[84] 0.4783 80.9 9.0
[86] 0.4800 97.0 62.0
[81] 0.5929 104.0 13.0
[81] 0.6797 92.0 8.0
[81] 0.7812 105.0 12.0
[81] 0.8754 125.0 17.0
[86] 0.8800 90.0 40.0
[83] 0.9000 117.0 23.0
[81] 1.0370 154.0 20.0
[83] 1.3000 168.0 17.0
[87] 1.3630 160.0 33.6
[83] 1.4300 177.0 18.0
[83] 1.5300 140.0 14.0
[83] 1.7500 202.0 40.0
[87] 1.9650 186.5 50.4

aIn this case, σ was calculated by summing the systematic and
statistical errors in quadrature.

TABLE III. LSS data. Each fσ8ðzÞ measurement is listed
together with the corresponding redshift z and error σfσ8, while
Column 5 contains the values of Ωm;0 for the respective fiducial
cosmologies.

Ref. z fσ8ðzÞ σfσ8 Ωfid
m;0

[90,91] 0.020 0.314 0.048 0.266
[92] 0.440 0.413 0.080 0.270
[92] 0.600 0.390 0.063 0.270
[92] 0.730 0.437 0.072 0.270
[93] 0.600 0.550 0.120 0.300
[93] 0.860 0.400 0.110 0.300
[94] 1.400 0.482 0.116 0.270
[95] 0.978 0.379 0.176 0.310
[95] 1.230 0.385 0.099 0.310
[95] 1.526 0.342 0.070 0.310
[95] 1.944 0.364 0.106 0.310

7We solve everything in terms of a by making use of the
relations d=dz ¼ −a2d=da and d=dτ ¼ Ha2d=da.

8As calculated for aΛCDM cosmology by using Planck values
[31].
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conditions are applied. However, this is only an option if
two requirements are met: firstly, aini must correspond to a
time when the Universe is deep in the matter-dominated
epoch. Secondly, the given initial conditions are only valid
for a ΛCDM cosmology [96]. This is where the quantity
zbound derived in Sec. II C turns out to be useful. Let us
recall that when z ¼ zbound, fðRÞ ¼ R − 2Λð1 − ϵÞ for
some ϵ ≪ 1. Therefore, by calculating zbound for a given
set of values fb;Ωm;0;ΩΛ;0g, we can ensure that the initial
conditions in question are applied during the “ΛCDM
epoch,” i.e., at a redshift zinið¼ a−1ini − 1Þ which satisfies
zini ≥ zbound. This is also important because zini is the
redshift at which we stop providing the integrator with
the equations for ΛCDM and switch to fðRÞ [we check that
the value of Γ exceeds machine precision before apply-
ing Eq. (18)].
Since we want zini to correspond to the matter-dominated

epoch, the specific value of ϵ is dependent upon the
dynamics of the model being considered. For instance,
in the case of the Hu-Sawicki model, it suffices to have
ϵ ∼ 10−5. On the other hand, the Exponential model
converges to ΛCDM extremely rapidly and hence a smaller
ϵð∼10−50Þ works better.9 It should be noted, however, that
the final results are not dependent on the exact value of ϵ
(provided ϵ is sufficiently small). This was verified for both
the Exponential and Tsujikawa models.
As previously suggested, the model is allowed to evolve

identically to ΛCDM for redshifts z > zini. At z ¼ zini,
therefore, we must also specify initial conditions
for Eqs. (16)–(20). These conditions are essentially
the ΛCDM limits of η and the parameters defined
in Eq. (10).
The second quantity we need in order to

determine fσ8ðzÞ is the standard deviation, σ8ðzÞ, which
is given by:

σ28ðzÞ ¼
Z

∞

0

δ2mðz; k†Þk2þns
†

�
4Ask

1−ns�
25H4

0Ω2
m;0

�
T2ðk†ÞW2ðk†Þdk†:

ð57Þ

In the above, k� denotes the pivot scale at which ns and As

are defined (here equal to 0.05 Mpc−1 [31]), and the
function Wðk†Þ represents the Fourier transform of a
spherical top-hat window function having radius R8

ð¼ 8h−1 MpcÞ:

Wðk†Þ ¼
3

k2†R
2
8

�
sin ðk†R8Þ

k†R8

− cos ðk†R8Þ
�
: ð58Þ

We model the transfer function Tðk†Þ as detailed in the
work of Eisenstein and Hu [97].
Since the density contrast function is not scale invari-

ant in fðRÞ gravity, every different value of k† we
consider entails that we solve Eq. (52) numerically for
δm over the required redshift range. The results are stored
in a table, and at a given redshift z, δmðz; k†Þ is extracted
from the table by interpolation for all relevant comoving
wave numbers k†, and used to calculate the integrand in
Eq. (57). Hence it becomes necessary to truncate the
range of wave numbers over which integration is per-
formed. To this end, we plot the integrand as a function of
k† for various values of z, then infer the cutoff point from
the outcome. Figure 1 shows a sample of such plots.
The intuitive choice would be k† ≈ 0.5h Mpc−1, but one
must keep in mind that perturbations evolve nonlinearly
for values of k† larger than around 0.2h Mpc−1.
Consequently, the linear perturbation equations we work
with do not give an accurate description of structure
growth beyond this limit. Nonetheless, k† ¼ 0.5h Mpc−1

is a good starting point. We refine it further by calculating
σ8;0 [¼ σ8ðz ¼ 0Þ] for a ΛCDM cosmology from Eq. (57)
and comparing it with the value returned by the default
CLASS code. The two are closest when the upper inte-
gration limit is ≈0.4h Mpc−1.
Finally, we correct for the Alcock-Paczynski effect by

scaling (multiplying) the theoretical value of fσ8ðzÞ by the

FIG. 1. The variation of the integrand in Eq. (57) with
comoving wave number at z ¼ 0 (only the k†-dependent part
is plotted). The curves labeled “Hu-Sawicki” (“Starobinsky”) are
based on the mean parameter values presented in Ref. [23]
(Ref. [7]), with the remaining parameters fixed according to either
the Planck 2018 [31] or the WMAP 9-year [32] results. The label
“ΛCDM” indicates that only Planck or WMAP values were used.

9In the case of the Exponential and Tsujikawa models, the
convergence is so fast that δini and δ0ini must be applied at a
redshift zini which is strictly greater than zbound (if the condition of
matter domination is to be met). To avoid computations with very
small numbers, we switch from ΛCDM to fðRÞ at a redshift z in
the range zini < z < zbound.
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factor HfidðzÞdA;fidðzÞ=HðzÞdAðzÞ [98,99], where dAðzÞ is
the angular diameter distance to redshift z and a subscript
‘fid’ labels quantities pertaining to the fiducial cosmology.
This refers to the cosmology in whose framework the
observational value at the same redshift, ½fσ8ðzÞ�obs, was
obtained.

IV. RESULTS

A. The Hu-Sawicki model

The mean values and 1σ confidence intervals for the Hu-
Sawicki model are presented in Table IV, with a selection of
2D and 1D posterior distributions shown in Figs. 2 and 3.
The tabulated results and the latter figure allow us to deduce
that varying k† from 0.1h Mpc−1 to 0.05h Mpc−1 has
minimal impact on the cosmological parameter constraints,
but shifts the mean deviation parameter b to larger values.
Another prominent characteristic is the negative correlation
between Ωm;0 and H0. This is due to the fact that the
theoretical expressions for many of the observables we use
contain the product Ωm;0H2

0, which implies that combina-
tions of the parameters Ωm;0 and H0 that give rise to the
same value of Ωm;0H2

0 are equally likely with respect to the
observables in question. Similarly, the effects that varia-
tions in Ωk;0 would have on the primary CMB anisotropies
may be offset by changes inH0. This happens if the angular
diameter distance to last scattering remains unaltered [36],
and explains the correlation between Ωk;0 and H0.
The addition of HR

0 to the dataset yields a larger mean
value of H0, as expected. In view of the above-mentioned
correlations, it becomes clear why this also causes a marked
shift toward smaller (larger) values in the 1D posterior
distribution for Ωm;0 (Ωk;0).
Fig. 2 illustrates how constraints are altered when the

assumption of spatial flatness is relaxed. On the whole,
confidence intervals tend to become wider,10 with the
difference being most apparent for the Ωm;0 vs H0 contour

plot. Indeed, the negative correlation between the two
quantities is much stronger for a flat universe. This feature
arises due to the fact that H0 is correlated with Ωk;0.

B. The Starobinsky model

The inferred parameter constraints, including those for
the deviation parameter, are presented in Table V and in
Figs. 4 and 5. The effects that using a different wave
number, introducing curvature or including a Gaussian
likelihood forH0 have on the constraints are much the same
as for the Hu-Sawicki model. We again note that the mean
value of b becomes slightly larger when k† ¼ 0.05h Mpc−1

(relative to what we get when k† ¼ 0.1h Mpc−1 in the
nonflat case), and that the HR

0 likelihood makes the

FIG. 2. A comparison between the posterior distributions for
the main parameters of the spatially flat ðΩk;0 ¼ 0Þ Hu-Sawicki
model and its nonflat ðΩk;0 ≠ 0Þ counterpart. Darker (lighter)
shades denote 1σ (2σ) confidence regions.

TABLE IV. Mean values and 1σ confidence intervals for the Hu-Sawicki model parameters.

Parameter Flat Nonflat Nonflat (þHR
0 ) Nonflat

k† ¼ 0.1h Mpc−1 k† ¼ 0.1h Mpc−1 k† ¼ 0.1h Mpc−1 k† ¼ 0.05h Mpc−1

H0 68.5280þ0.4797−0.4851 68.6490þ0.6385−0.6645 69.6890þ0.6044−0.6139 68.6880þ0.6543−0.6640
103Ωb;0h2 22.4790þ0.1441−0.1460 22.4290þ0.1727−0.1714 22.4500þ0.1723−0.1722 22.4310þ0.1776−0.1808
Ωcdm;0h2 0.1188þ0.0010−0.0010 0.1195þ0.0016−0.0016 0.1195þ0.0015−0.0016 0.1194þ0.0016−0.0017
103Ωk;0 … 0.8322þ1.9912−1.9341 2.7676þ1.8587−1.8470 0.8799þ2.0596−2.0515
104b 0.2739þ0.1789−0.2739 0.7607þ0.5798−0.7607 0.2089þ0.0343−0.2089 1.9176þ8.3473−1.9176
ns 0.9705þ0.0041−0.0041 0.9688þ0.0051−0.0051 0.9689þ0.0052−0.0051 0.9689þ0.0054−0.0053
ln ð1010AsÞ 3.0442þ0.0148−0.0144 3.0443þ0.0148−0.0145 3.0442þ0.0148−0.0146 3.0441þ0.0148−0.0145
ΩΛ;0(derived) 0.6989þ0.0062−0.0061 0.6979þ0.0062−0.0062 0.7049þ0.0059−0.0057 0.6982þ0.0067−0.0065

10This is easier to deduce from the tabulated results.
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constraints on Ωk;0 compatible with a spatially curved
universe at ∼1σ.

C. The Exponential model

Here, the mean values for the deviation parameter b are
significantly larger than the ones obtained in the context of

the Hu-Sawicki and Starobinsky models. As may be
inferred from Table VI, the constraints on b are consistent
with zero, i.e., with the ΛCDM limit, within a 2σ
confidence interval. Moreover, from Figs. 6 and 7 we
observe that the posteriors for log10 b are non-Gaussian.
Including the HR

0 likelihood again leads to non-null spatial
curvature at a little over 1σ.

FIG. 3. Marginalized 2D and 1D posterior distributions for the main parameters of the spatially nonflat Hu-Sawicki model. The ‘þHR
0 ’

that appears in the legend indicates the use of a Gaussian likelihood for H0.

TABLE V. Mean values and 1σ confidence intervals for the Starobinsky model parameters.

Parameter Flat Nonflat Nonflat (þHR
0 ) Nonflat

k† ¼ 0.1h Mpc−1 k† ¼ 0.1h Mpc−1 k† ¼ 0.1h Mpc−1 k† ¼ 0.05h Mpc−1

H0 68.4080þ0.4792−0.4852 68.6270þ0.6541−0.6569 69.5520þ0.6097−0.6178 68.5910þ0.6512−0.6586
103Ωb;0h2 22.4560þ0.1451−0.1442 22.4260þ0.1700−0.1734 22.4390þ0.1716−0.1718 22.4250þ0.1703−0.1729
Ωcdm;0h2 0.1191þ0.0010−0.0010 0.1195þ0.0015−0.0015 0.1196þ0.0015−0.0016 0.1195þ0.0015−0.0015
103Ωk;0 … 0.8160þ1.9832−1.9055 2.6443þ1.8679−1.8506 0.7448þ2.0605−1.8984
b 0.0122þ0.0055−0.0122 0.0057þ0.0011−0.0057 0.0064þ0.0074−0.0064 0.0132þ0.0021−0.0132
ns 0.9699þ0.0041−0.0041 0.9687þ0.0051−0.0051 0.9686þ0.0052−0.0051 0.9687þ0.0050−0.0051
ln ð1010AsÞ 3.0441þ0.0149−0.0144 3.0443þ0.0149−0.0143 3.0442þ0.0149−0.0145 3.0442þ0.0152−0.0144
ΩΛ;0 (derived) 0.6974þ0.0063−0.0060 0.6976þ0.0063−0.0061 0.7036þ0.0059−0.0057 0.6974þ0.0064−0.0058
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FIG. 4. A comparison between the posterior distributions for
the main parameters of the spatially flat ðΩk;0 ¼ 0Þ Starobinsky
model and its nonflat ðΩk;0 ≠ 0Þ counterpart.

FIG. 5. Marginalized 2D and 1D posterior distributions for the main parameters of the spatially nonflat Starobinsky model.

FIG. 6. A comparison between the posterior distributions for
the main parameters of the spatially flat ðΩk;0 ¼ 0Þ Exponential
model and its nonflat ðΩk;0 ≠ 0Þ counterpart.
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D. The Tsujikawa model

The derived confidence regions for the main parameters
of this model are depicted in Figs. 8 and 9, where we
represent a selection of pairwise posterior probability
functions. We also show the corresponding marginalized
1Ddistributions. In similar fashion to the Exponentialmodel,
the posterior distributions for log10 b are characterized

by a non-Gaussian profile, and the constraints on b include
the ΛCDM limit, i.e., b ¼ 0, within a 2σ confidence
interval.
We report the inferred mean parameter values and the

associated uncertainties in Table VII. As was observed for
the other fðRÞ models, Ωk;0 deviates from zero at a little
over 1σ when we introduce a likelihood for H0.

TABLE VI. Mean values and 1σ confidence intervals for the Exponential model parameters.

Parameter Flat Nonflat Nonflat (þHR
0 ) Nonflat

k† ¼ 0.1h Mpc−1 k† ¼ 0.1h Mpc−1 k† ¼ 0.1h Mpc−1 k† ¼ 0.05h Mpc−1

H0 68.3990þ0.4800−0.4810 68.5510þ0.6598−0.6648 69.5060þ0.6030−0.6096 68.5650þ0.6520−0.6657
103Ωb;0h2 22.4560þ0.1457−0.1448 22.4210þ0.1701−0.1719 22.4360þ0.1702−0.1697 22.4220þ0.1719−0.1715
Ωcdm;0h2 0.1191þ0.0010−0.0010 0.1195þ0.0016−0.0016 0.1196þ0.0015−0.0016 0.1195þ0.0015−0.0016
103Ωk;0 … 0.7000þ2.0506−1.9734 2.5938þ1.8411−1.8318 0.7216þ1.9878−1.9544
b 0.1601þ0.0916−0.1565 0.1641þ0.0850−0.1599 0.1608þ0.1800−0.1800 0.1769þ0.0920−0.1727
ns 0.9697þ0.0041−0.0041 0.9686þ0.0051−0.0052 0.9684þ0.0051−0.0051 0.9686þ0.0051−0.0052
ln ð1010AsÞ 3.0443þ0.0147−0.0146 3.0441þ0.0149−0.0144 3.0440þ0.0148−0.0145 3.0442þ0.0149−0.0144
ΩΛ;0 (derived) 0.6972þ0.0063−0.0061 0.6971þ0.0063−0.0061 0.7032þ0.0060−0.0057 0.6971þ0.0063−0.0061

FIG. 7. Marginalized 2D and 1D posterior distributions for the main parameters of the spatially nonflat Exponential model.
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E. Comparison with ΛCDM
Next, we use the same datasets to constrain the param-

eters of the ΛCDM model, and consider three cases:
(1) Ωk;0 ¼ 0, (2) freely varying Ωk;0, and (3) freely varying
Ωk;0 plus a Gaussian likelihood for H0, with the latter
constructed as outlined in Sec. III. The fðRÞ models have
an extra degree of freedom relative toΛCDM (the deviation
parameter, b). Hence, a robust comparison entails that we
use a statistic which also takes this into account, because
although more degrees of freedom can mean that the model
is better able to approximate the data, this usually comes at
the cost of weaker parameter constraints. We therefore
employ the Akaike information criterion (AIC) [100]:

AIC ¼ 2p − 2 lnðLmaxÞ; ð59Þ

as well as the Bayesian information criterion (BIC) [101]:

BIC ¼ p lnN − 2 lnðLmaxÞ; ð60Þ

and use them to gauge the performance of the fðRÞ
models in relation to ΛCDM. In the above equations,
p is the amount of free parameters, N the number of

FIG. 8. A comparison between the posterior distributions for
the main parameters of the spatially flat ðΩk;0 ¼ 0Þ Tsujikawa
model and its nonflat ðΩk;0 ≠ 0Þ counterpart.

FIG. 9. Marginalized 2D and 1D posterior distributions for the main parameters of the spatially nonflat Tsujikawa model.
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observations,11 and Lmax denotes the maximum like-
lihood. When comparing two models, the quantity of
interest is the difference between their AIC (BIC) values,
as this indicates the level of support for the model with
the smaller AIC (BIC): a jΔAICj that lies in the range
from 2 to 4 provides considerable support, while values
greater than 10 are effectively conclusive. In the case of
the BIC, a difference of magnitude 2 is considered to
favor the model having the smaller BIC, and (absolute)
differences of 6 or more constitute strong evidence [102].

Our results are presented in Table VIII. The BIC penalizes
more heavily for extra parameters, and in fact ΛCDM comes
out on top when the five models are compared using this
statistic. On the other hand, the AIC values for the
Exponential and Tsujikawa models are relatively close to
their ΛCDM counterparts, which implies that these fðRÞ
models perform similarly to ΛCDM when assessed with the
AIC. The Starobinsky model is disfavored, albeit not
strongly. The Hu-Sawicki model, however, appears to be
ruled out by both information criteria. It is interesting to note
that despite the extra free parameter, the nonflat models get
lower AIC and BIC scores than the respective flat ones
when no likelihood forH0 has been included in the analysis.

TABLE VII. Mean values and 1σ confidence intervals for the Tsujikawa model parameters.

Parameter Flat Nonflat Nonflat (þHR
0 ) Nonflat

k† ¼ 0.1h Mpc−1 k† ¼ 0.1h Mpc−1 k† ¼ 0.1h Mpc−1 k† ¼ 0.05h Mpc−1

H0 68.3970þ0.4811−0.4815 68.5620þ0.6480−0.6591 69.4970þ0.6085−0.6144 68.5540þ0.6552−0.6608
103Ωb;0h2 22.4550þ0.1448−0.1450 22.4220þ0.1713−0.1712 22.4340þ0.1722−0.1734 22.4210þ0.1706−0.1706
Ωcdm;0h2 0.1191þ0.0010−0.0010 0.1195þ0.0015−0.0016 0.1197þ0.0016−0.0016 0.1196þ0.0015−0.0016
103Ωk;0 … 0.7180þ1.9853−1.9563 2.5897þ1.8825−1.8542 0.7129þ1.9839−1.9624
b 0.3028þ0.1854−0.2950 0.2999þ0.1775−0.2920 0.3022þ0.1848−0.2965 0.3312þ0.1815−0.3235
ns 0.9697þ0.0041−0.0041 0.9686þ0.0052−0.0051 0.9684þ0.0052−0.0052 0.9686þ0.0051−0.0051
ln ð1010AsÞ 3.0443þ0.0148−0.0144 3.0442þ0.0149−0.0145 3.0442þ0.0150−0.0145 3.0442þ0.0149−0.0145
ΩΛ;0 (derived) 0.6972þ0.0063−0.0061 0.6971þ0.0063−0.0061 0.7031þ0.0059−0.0057 0.6970þ0.0063−0.0061

TABLE VIII. The AIC and BIC statistics for the Hu-Sawicki, Starobinsky, Exponential, Tsujikawa and ΛCDM
models. ΔAIC and ΔBIC are calculated by using the AIC and BIC values for ΛCDM as baseline. The constraints on
the parameters of the standard model are independent of k†, so in this case we do not distinguish between the
scenarios with Ωk;0 ≠ 0, k† ¼ 0.1h Mpc−1 and Ωk;0 ≠ 0, k† ¼ 0.05h Mpc−1.

Model Statistic Flat Nonflat Nonflat (þHR
0 ) Nonflat

k† ¼ 0.1h Mpc−1 k† ¼ 0.1h Mpc−1 k† ¼ 0.1h Mpc−1 k† ¼ 0.05h Mpc−1

Hu-Sawicki AIC 1089.02 1082.37 1106.86 1085.78
ΔAIC 13.48 4.36 16.21 7.77
BIC 1124.08 1122.43 1146.92 1125.84
ΔBIC 18.50 9.37 21.21 12.78

Starobinsky AIC 1077.55 1081.38 1093.36 1080.45
ΔAIC 2.01 3.37 2.71 2.44
BIC 1112.60 1121.44 1133.43 1120.51
ΔBIC 7.02 8.38 7.72 7.45

Exponential AIC 1077.13 1079.01 1092.32 1079.51
ΔAIC 1.59 1.00 1.67 1.50
BIC 1112.18 1119.07 1132.39 1119.57
ΔBIC 6.60 6.01 6.68 6.51

Tsujikawa AIC 1077.59 1079.66 1092.06 1079.51
ΔAIC 2.05 1.65 1.41 1.50
BIC 1112.64 1119.72 1132.13 1119.57
ΔBIC 7.06 6.66 6.42 6.51

ΛCDM AIC 1075.54 1078.01 1090.65 1078.01
BIC 1105.58 1113.06 1125.71 1113.06

11N ¼ 1105 in the absence of a likelihood for H0, and 1106
otherwise.
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The Starobinsky model is the only one that does not follow
this trend.
The affinity of the Exponential and Tsujikawa models to

ΛCDM concurs with the fact that for the greater majority of
the cosmological evolution, they are essentially identical to
the standard model. It is only at very late times that deviations
set in, and when they do, they provide a neat mechanism for
dark energy that is still painfully lacking in ΛCDM. These
two models augment the benefits of ΛCDM with a well-
motivated theoretical basis for the observed acceleration of
the Universe, and in this sense are especially appealing.

V. CONCLUSION

The work presented here focuses on four fðRÞmodels and
places constraints on their parameters by means of data from
SNeIa, the CMB, BAOs, cosmic chronometers and RSDs.
The action of fðRÞ gravity is constructed from that of GR

by generalizing the Ricci scalar R to a function thereof.
This results in a model that can be seen as a natural
extension of GR, and that can furthermore explain the
current accelerated expansion of the Universe without any
need for dark energy. We study fðRÞ gravity in the context
of the Hu-Sawicki [19], Starobinsky [20], Exponential [16]
and Tsujikawa [21] models. A common feature of these
four models is the fact that the respective fðRÞ functions
can all be expressed in the form fðRÞ ¼ R − 2ΛX, where Λ
is the cosmological constant and X represents a quantity
that goes to unity at high redshifts. Thus, any differences
from ΛCDM emerge at late times.
The main aim of our work is to investigate in what

ways, if any, the behavior of the models changes when the
assumption of spatial flatness is relaxed. To this end, we
use MCMC techniques to sample the parameter space of
both cosmological and model-specific parameters, ini-
tially putting Ωk;0 ¼ 0, then allowing it to vary. As
expected, constraints on cosmological parameters tend
to be tighter when Ωk;0 is set to a fixed value. To further
probe the role of curvature, we plot the ratio HðzÞ=HΛCDM
for each of the four models over the redshift range [0, 5].
HðzÞ is evaluated by using the mean parameter values
listed in Tables IV–VII, whereas HΛCDM corresponds to a
flat ΛCDM cosmology whose parameters are assigned the
Planck values from Ref. [31]. Figure 10 shows that in the
nonflat case (no H0 likelihood), the departure from
ΛCDM is comparable across the four models; any
variations at low redshifts mainly arise from the fact that
the models have a different Hubble constant. We have
checked that this also holds if k† ¼ 0.05h Mpc−1. Similar
behavior is noted when we adopt the parameter values
from the fourth column of Tables IV–VII, i.e., those
obtained with an additional likelihood—a normal distri-
bution constructed from the local measurement of H0.
Now, however, the maximum value of HðzÞ=HΛCDM
increases, reflecting the higher averages we get for H0

in the presence of said likelihood. In the flat scenario, the
curve for the Hu-Sawicki model stands out from the rest at
redshifts z > 1 (Fig. 11). This is due to a larger deviation
from ΛCDM, which may in turn be attributed to a smaller
mean value of Ωcdm;0h2 (a quantity equal to 0.1188,
compared to 0.1191 for the other models).12

FIG. 10. The variation of HðzÞ=HΛCDM with redshift at late
times. HðzÞ was calculated using the mean values from the third
column of Tables IV–VII, and thus describes the expansion of a
universe with Ωk;0 ≠ 0. HΛCDM corresponds to a ΛCDM cosmol-
ogy in which the density parameters and H0 take the Planck
TT;TE;EEþ lowEþ lensing mean values, and Ωk;0 ¼ 0. There-
fore, the ratioHðzÞ=HΛCDM does not go to unity at high redshifts.

FIG. 11. Same as for Fig. 10, except that in this case, HðzÞ is
the Hubble parameter for a spatially flat universe, and was
obtained using the mean values from the second column of
Tables IV–VII.

12We point out that the separation between the Hu-Sawicki and
the three other curves in Fig. 11 (for redshifts z > 1) is, in fact,
not much bigger than that between the upper- and lower- most
curves in some of the other cases we consider. The crucial
difference is that here we do not get a gradual change from model
to model.
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On the whole, our results are consistent with spatial
flatness. We note, nonetheless, that the constraints obtained
upon adding HR

0 to the dataset favor an open universe at a
little over 1σ. This is in line with the fact that H0 is
correlated with Ωk;0, so a higher mean value for the Hubble
constant translates into a largerΩk;0. It would seem prudent,
therefore, not to exclude spatial curvature before the nature
of the Hubble tension has been clarified. Indeed, model-
independent estimates of Ωk;0, obtained in Ref. [103] using
cosmic chronometer data and a Gaussian process
reconstruction of the HII galaxy Hubble diagram, show
that while the Planck value for the Hubble constant lends
support to a flat universe, the local measurement of H0

rules it out at around 3σ.
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