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We perform the first study of the principal core g-mode oscillation in hybrid stars containing quark
matter, utilizing a crossover model for the hadron-to-quark transition inspired by lattice QCD. The ensuing
results are compared with our recent findings of g-mode frequencies in hybrid stars with a first-order phase
transition using Gibbs constructions. We find that models using Gibbs construction yield g-mode
amplitudes and the associated gravitational energy radiated that dominate over those of the chosen
crossover model owing to the distinct behaviors of the equilibrium and adiabatic sound speeds in the
various models. Based on our results, we conclude that were gmodes to be detected in upgraded LIGO and
Virgo detectors it would indicate a first-order phase transition akin to a Gibbs construction.
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I. INTRODUCTION

Dense matter inside neutron stars (NSs) could contain
unbound quarks that retain some vestige of the forces
described by the fundamental theory of the strong inter-
action, quantum chromodynamics (QCD). Lacking exact
methods for its solution, numerous models have been
constructed to investigate the hadron-to-quark transition
in the region of high baryon density and zero temperature.
On the other hand, the phase diagram of QCD at low
density (zero or small baryon chemical potential) and high
temperature is amenable to precision numerical studies
which clearly point to a crossover with no clear phase
boundary between the hadron resonance gas and the quark-
gluon plasma [1].
Recently, Kapusta and Welle [2] (KW hereafter) have

proposed a crossover model for the hadron-to-quark tran-
sition in NSs to mimic the crossover feature of finite
temperature lattice studies. The key trait of this model is an
analytic mixing or switching function that accounts for the
partial pressure of each component as a function of a single
parameter—the baryon chemical potential. They found that
NSs as massive as ∼2.2 M⊙ could be supported by their
crossover equation of state (EOS). As hadrons/nucleons

and quarks both appear explicitly as separate degrees of
freedom in the KW description, it is straightforward to
keep track of their individual contributions to the total
pressure. KW report that, within their model, between
1–10% of the total pressure could be contributed by quark
matter in the core. In treatments in which hadron and quark
interactions are intermingled, the individual contributions
from hadrons and quarks to the total pressure may not be
possible to disentangle. Given that EOSs with first-order
phase transitions treated using the Maxwell construction
face some challenges in obtaining the stable ∼2 M⊙ NSs
that have been observed, it is worthwhile to investigate
alternatives such as the crossover model for hybrid stars.
Our objective in this paper is twofold: first, we extend the

pure neutron matter (PNM) model of KW [2] to include β
equilibrium, as well as a crust for the hybrid star. We also
include vector interactions among quarks. These modifi-
cations enable a direct comparison to other approaches in
the literature [3]. Second, we investigate g-mode oscilla-
tions, a potentially observable signature of the hadron-to-
quark transition. A g mode is a specific fluid oscillation
where a parcel of fluid is displaced against the background
of a stratified environment inside a neutron star. While
pressure equilibrium is rapidly restored via sound waves,
chemical equilibrium can take longer, causing buoyancy
forces to oppose the displacement. Since cold NSs are not
convective, the opposing force sets up stable oscillations,
with a typical frequency, called the (local) Brunt-Väisälä
frequency. The kind of core g modes we study here were
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introduced in [4–7] and in a recent work, which we shall
refer to as paper I [8], we showed that the g-mode frequency
rises steeply with the onset of quarks due to a rapid change
in the equilibrium sound speed (see also Ref. [9]). Since
g-mode oscillations couple to tidal forces, they may be
excited during the merger of two NSs and provide
information on the interior composition, specifically quarks
here. In paper I, we chose a Gibbs construction for the
mixed phase, which yields NS properties that are more
compatible with astrophysical constraints than a Maxwell
construction.1 In this work, we present the systematics of
the g-mode frequency for hybrid stars in a crossover
scenario, adopting the generalized KW model as a repre-
sentative of this class. It is worth noting that Maxwell-
constructed first-order phase transitions cannot generate g
modes in the transition region, because the equilibrium and
adiabatic sound speeds both become zero (due to frozen
pressure and composition over the phase coexistence
region) there.
In the first phase of this work, we will restrict ourselves

to zero temperature without the effects of superfluidity in
both nucleons and quarks. To the best of our knowledge,
this is the first study of g mode for hybrid stars in a
crossover model. References to earlier work in which
hadronic EOSs with and without superfluidity were used
to investigate g-mode frequencies can be found in paper I
(see Refs. [21–35] therein).
Models akin to the crossover model of KW, but with

some differences, have been considered earlier in the
literature. Examples include the smooth crossover model
of Ref. [10], interpolated EOSs considered in Refs. [11–
14], and quarkyonic models of Refs. [15–18], et cetera. In
the chiral model of Refs. [19–21], a scalar fieldΦ, acting as
an order parameter, is responsible for the deconfinement
phase transition which can be first order or crossover
depending upon temperature and baryon chemical poten-
tial. Depending on the specific EOS models used in the
hadronic and quark phases, chemical potential and pressure
equilibrium between the two phases—of either the
Maxwell or the Gibbs sort—may not be realized [11]. In
such cases, several interpolation procedures have been
adopted to connect the two phases on the premise that at
high supranuclear densities, a purely hadronic phase is
untenable.
In quarkyonic models with a momentum shell structure

[15,16], quarks emerge at relatively low (but still supra-
saturation) densities but remain bound by strong inter-
actions below the Fermi surface: while hadrons and quarks
are separated in momentum space, they coexist in con-
figuration space. A key parameter that enters the calcu-
lation of the gmode is the squared adiabatic speed of sound
c2ad ¼ ð∂P=∂εÞjyi;β, where P and ε are the total pressure and

energy density, respectively, and yi;β refer to the partial
fractions of each component in beta equilibrium.2 We find
that in the quarkyonic “shell” models of Refs. [15,16], c2ad
becomes discontinuous with respect to density at the shell
boundary. To address g modes in this specific category of
quarkyonic shell models, and to extend the study of NS
oscillations to span the various ways in which quarks can
affect the dense matter EOS and the properties of NSs, such
discontinuities must be smoothed. As such a task is outside
the scope of the present work, we do not consider these
quarkyonic models in this paper.
The organization of this paper is as follows. In Sec. II, we

describe the EOSs for pure hadronic matter, pure quark
matter and leptons used in the construction of the KW
crossover model of Ref. [2] by extending it to include β
equilibrium and interactions between quarks. The rationale
for our parameter choices and the basic features of this
model are also highlighted here for orientation. Section III
reviews the thermodynamics of a multicomponent system
as pertinent to the KW description of crossover matter
generalized here to describe neutron-star matter (NSM). In
Sec. IV, the KW model formulation of crossover matter is
described followed by the procedure to render the uncon-
strained system3 in β equilibrium. This section also con-
tains a comparison of the extended KWmodel with those of
selected quarkyonic shell models. In Sec. V, the calculation
of the equilibrium and adiabatic sound speeds in the
crossover and Gibbs approaches are outlined. In Sec. VI,
we present results for the chosen EOSs and their associated
NS structural properties as well as the two speeds of sound
in the crossover model, and discuss emergent differences
from other models that include a phase transition. This
section also contains results for the sound speed difference,
the Brunt-Väisälä frequency, and the g-mode frequency in
hybrid stars along with their interpretation. Our conclusions
and outlook are in Sec. VII.

II. EQUATION OF STATE

In the KW description of the crossover transition, EOSs
in the pure hadronic and quark phases are combined using a
mixing or switch function that depends on the baryon
chemical potential (to be described below). We therefore
begin by discussing EOS models that we use in each of
these two sectors. As we extend the KW model to include
leptons, the EOS in the leptonic sector is also provided.
These EOSs are first set forth without reference to baryon
number conservation, charge neutrality, as well as chemical

1See Table VII in Ref. [3] for a comprehensive comparison of
Gibbs, Maxwell and certain crossover models.

2c2ad is different from the squared equilibrium speed of sound
c2eq ¼ dP=dε commonly defined as c2s in the literature for static
EOS models.

3The unconstrained system here refers to matter in which
baryon number conservation, charge neutrality and β equilibrium
are not imposed.
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equilibrium (i.e., unconstrained), which are imposed at the
appropriate junctures.

A. Pure hadronic matter

To describe nucleons, we use the Zhao-Lattimer (ZL)
[16] parametrization of the EOS of neutron-star matter.
With reasonable adjustments of its parameters, this EOS
can be made consistent with laboratory data at nuclear
saturation density nsat ≃ 0.16 fm−3 as well as recent chiral
effective field theory calculations of Refs. [22,23] in which
error quantifications up to ∼2.0nsat were made. The high-
density behavior can be controlled by varying the slope of
the symmetry energy parameter, L, at nsat within the range
established from analyses of nuclear and observational
data, see, e.g., Ref. [24], and a power-law index.
Consistency with astrophysical data on known masses
and radii of NSs is also attainable with this EOS.
To begin with, no constraints are placed on the multi-

particle system and therefore the independent variables are
the baryon density nB and the individual particle fractions
yn, yp. The total energy density of nucleons with a common
mass mH ¼ 939.5 MeV is described by the ZL functional

εH ¼ 1

8π2ℏ3

X
h¼n;p

�
kFhðk2Fhþm2

HÞ1=2ð2k2Fhþm2
HÞ

−m4
H ln

�
kFhþðk2Fhþm2

HÞ1=2
mH

��

þ4n2Bynyp

�
a0
nsat

þ b0
nγsat

½nBðynþypÞ�γ−1
�

þn2Bðyn−ypÞ2
�
a1
nsat

þ b1
nγ1sat

½nBðynþypÞ�γ1−1
�
: ð1Þ

The Fermi momentum of nucleon species h4 is given by
kFh ¼ ð3π2ℏ3nByhÞ1=3. The constants a0, b0 and γ refer to
isospin symmetric matter, whereas a1, b1 and γ1 refer to
that of isospin asymmetric matter. The chosen values of
these constants are listed in a later section.
The corresponding chemical potentials are

μn ¼ðk2Fnþm2
HÞ1=2þ4nByp

�
a0
nsat

þ b0
nγsat

½nBðynþypÞ�γ−1
�

þ4n2Bypyn
b0
nγsat

ðγ−1Þ½nBðynþypÞ�γ−2

þ2nBðyn−ypÞ
�
a1
nsat

þ b1
nγ1sat

½nBðynþypÞ�γ1−1
�

þn2Bðyn−ypÞ2
b1
nγ1sat

ðγ1−1Þ½nBðynþypÞ�γ1−2; ð2Þ

μp ¼ðk2Fpþm2
HÞ1=2þ4nByn

�
a0
nsat

þ b0
nγsat

½nBðynþypÞ�γ−1
�

þ4n2Bypyn
b0
nγsat

ðγ−1Þ½nBðynþypÞ�γ−2

−2nBðyn−ypÞ
�
a1
nsat

þ b1
nγ1sat

½nBðynþypÞ�γ1−1
�

þn2Bðyn−ypÞ2
b1
nγ1sat

ðγ1−1Þ½nBðynþypÞ�γ1−2: ð3Þ

Note the opposite yh and signs in the second and fourth
terms of μn and μp, respectively.
The pressure is obtained from the thermodynamic

identity

PH ¼ nB
X
h¼n;p

μhyh − εH ð4Þ

and the equilibrium speed of sound from

�
ceq
c

�
2

¼ dPH

dεH
: ð5Þ

The adiabatic speed of sound is obtained by taking partial
derivatives of the pressure and the total energy density with
respect to baryon density while keeping all particle frac-
tions fixed

�
cad
c

�
2

¼ ∂PH

∂nB
����
yh

�∂εH
∂nB

����
yh

�
−1
: ð6Þ

This is made particularly convenient by the choice of
starting with a completely unconstrained system.

B. Pure quark matter

For the calculation of the quark EOS, we use the vMIT
bag model [25,26]. The Lagrangian density of this model is

L ¼
X

q¼u;d;s

½ψ̄qði=∂ −mq − BÞψq þ Lvec�Θ; ð7Þ

where Lvec describes repulsive interactions between quarks
of mass mq confined within a bag as denoted by the Θ
function:

Lvec ¼ −Gv

X
q

ψ̄ γμVμψ þ ðm2
V=2ÞVμVμ: ð8Þ

B is a constant which reflects the cost of confining the
quarks inside the bag, and the mq are the current quark
masses. Perturbative contributions [27,28] are not included
in vMIT because these become relevant at densities well
above those achievable in the cores of the most massive
neutron stars.

4While the symbols “H” and “h” connote hadrons, they
actually refer to nucleons in the context of this paper.
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The state functions, energy density, chemical potential
and pressure, corresponding to the above Lagrangian
(before any constraints of baryon number conservation,
charge neutrality, and chemical equilibrium are applied) for
matter containing u, d and s quarks are

εQ ¼
X

q¼u;d;s

εq þ
1

2
aℏ½nBðyu þ yd þ ysÞ�2 þ

B
ℏ3

; ð9Þ

εq ¼
3

8π2ℏ3

�
kFqðk2Fq þm2

qÞ1=2ð2k2Fq þm2
qÞ

−m4
q ln

�
kFq þ ðk2Fq þm2

qÞ1=2
mq

��
; ð10Þ

μq ¼ ðk2Fq þm2
qÞ1=2 þ aℏnBðyu þ yd þ ysÞ; ð11Þ

PQ ¼ nB
X

q¼u;d;s

μqyq − εQ; ð12Þ

where a≡ ðGv=mVÞ2 and kFq ¼ ðπ2ℏ3nByqÞ1=3. The value
of the vector interaction parameter a is varied in the range
ð0.1–0.3Þ fm−2 to obtain different stiffness in the quark
sector.

C. Leptons

Owing to the smallness of the electromagnetic fine
structure constant α ≃ 1=137, leptons are treated as non-
interacting, relativistic particles for which

εL ¼ 1

8π2ℏ3

X
l

�
kFlðk2Fl þm2

l Þ1=2ð2k2Fl þm2
l Þ

−m4
l ln

�
kFl þ ðk2Fl þm2

l Þ1=2
ml

��
; ð13Þ

μl ¼ ðk2Fl þm2
l Þ1=2; ð14Þ

PL ¼ nB
X
l

ylμl − εL; ð15Þ

kFl ¼ ð3π2ℏ3nBylÞ1=3; l ¼ e; μ: ð16Þ

At low baryon densities only electrons are present in the
system, with muons appearing at a density nB such that
μe −mμ ¼ 0. Depending on the parametrization choice,
this condition also gives the density at which muons vanish.

III. THERMODYNAMICS OF
MULTICOMPONENT SYSTEMS

The original formulation of the KW approach deals with
one nucleon, the neutron, and three massless quarks (the
latter are, operationally, a single species with multiplicity
3). Before the KWapproach can be applied to more realistic

neutron-star matter with the EOSs of the previous section, it
must be generalized to include several particle species. To
that end, we begin with a brief review of multicomponent
thermodynamics to introduce the fundamental result from
which the aforementioned generalization will be performed
in the next section. The relations laid out below are
particularly helpful in highlighting the role of the (baryon
chemical potential dependent) switch function S, which is
instrumental in realizing a crossover transition.
The number density of a single-component system in the

grand-canonical ensemble is given by the total derivative of
the pressure with respect to the chemical potential,

n ¼ dP
dμ

: ð17Þ

The equivalent expression for a multicomponent system is
obtained from the grand potential

ΦðT; V; μiÞ ¼ U − TS −
X
i

Niμi ð18Þ

or, in units of energy density,

ϕ ¼ ε − Ts −
X
i

niμi: ð19Þ

The differential of ϕ is

dϕ ¼ dε − sdT −
X
i

nidμi; ð20Þ

which implies that the number density of particle species i
is given by

ni ¼ −
∂ϕ
∂μi

����
T;μj

: ð21Þ

The thermodynamic identity

ε ¼ Ts − Pþ
X
i

niμi ð22Þ

means that P ¼ −ϕ and therefore

ni ¼
∂P
∂μi

����
μj

; ð23Þ

where the temperature T has been suppressed as, in what
follows, only cold matter is considered.
Equation (23) is central to the subsequent discussion

where we show the manner in which the individual number
densities of the various nucleonic and quark species are
modified by the switch function S of the KW machinery.
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IV. UNCONSTRAINED AND
BETA-EQUILIBRATED CROSSOVER MATTER

In this section, we start with the crossover EOS where
baryon number conservation, charge neutrality, and weak
interaction equilibrium are not imposed, i.e., “uncon-
strained” matter. Working with unconstrained quantities
enables us to calculate the various partial derivatives
required in the determination of the squared adiabatic
speed of sound c2ad (see Sec. V) prior to the imposition
of the conditions mentioned above.
In the KW description of crossover matter, the pressure is

given by

PB ¼ ð1 − SÞPH þ SPQ; ð24Þ
where PH and PQ are the hadron and quark pure-phase
pressures, respectively, and the switch function

S ¼ exp

�
−
�
μ0
μ

�
4
�

ð25Þ

gives the fraction of quark matter to the total baryonic
matter in the crossover setting, with μ being the average
hadronic chemical potential

μ ¼ nnμn þ npμp
nn þ np

; ð26Þ

and μ0 a typical energy scale for the crossover. This choice
for μ will be justified in the next section.
Applying Eq. (23) to hadrons leads to

n�h ¼ ð1 − SÞ ∂PH

∂μh þ S
∂PQ

∂μh þ ðPQ − PHÞ
∂S
∂μh ;

¼ ð1 − SÞnh þ 0þ ðPQ − PHÞ
4μ40S
μ5

∂μ
∂μh ;

¼ ð1 − SÞnh þ ðPQ − PHÞ
4μ40S
μ5

nh
nn þ np

;

¼ nh

�
1 − S

�
1 −

4μ40
μ5

PQ − PH

nn þ np

��
; ð27Þ

where n�i ¼ nBy�i refers to a crossover-matter density and
ni ¼ nByi to a pure-phase density. Thus, in the present
context, the starred fractions are the physical quantities,
whereas the unstarred ones are merely bookkeeping devi-
ces. For leptons this distinction is irrelevant.
For quarks, one obtains

n�q ¼ ð1 − SÞ ∂PH

∂μq þ S
∂PQ

∂μq þ ðPQ − PHÞ
∂S
∂μq ;

¼ 0þ Snq þ 0 ¼ Snq: ð28Þ

Finally, the energy density ε is obtained from Eq. (22)
using Eq. (24) for the pressure, Eqs. (27)–(28) for the

number densities of hadrons and quarks, respectively, and
the pure-phase chemical potentials defined in Sec. II.

A. Beta equilibrium

We turn now to the discussion of neutron-star matter
that consists of nucleons, leptons and quarks. Initially,
the system is entirely unconstrained with nB and yi
(i ¼ n; p; u; d; s; e; μ) as the free variables. Then, strong
equilibrium

μn ¼ 2μd þ μu; μp ¼ 2μu þ μd; ð29Þ

and weak equilibrium

μn ¼ μp þ μe; μe ¼ μμ; μd ¼ μs; ð30Þ

are enforced, as well as charge neutrality

n�p þ ð2n�u − n�d − n�sÞ=3 − ðne þ nμÞ ¼ 0 ð31Þ

and baryon number conservation

n�n þ n�p þ ðn�u þ n�d þ n�sÞ=3 − nB ¼ 0: ð32Þ

These conditions eliminate the particle fractions in favor of
the total baryon density:

yi → yi;βðnBÞ; i ¼ n; p; u; d; s; e; μ: ð33Þ

B. Comparison of KW with McLerran-Reddy
and Zhao-Lattimer EOSs

In this subsection, we briefly discuss interesting simi-
larities and differences between the crossover model of KW
[2] and recently proposed quarkyonic “shell” models of
McLerran-Reddy (MR) [15] and Zhao-Lattimer (ZL) [16],
and explain the reason why the latter is not suitable for
g-mode calculations in its present form. The baryon number
densities in the quarkyonic matter descriptions of MR [15]
and ZL [16] are

n�h ¼
k3Fh−k30h
3π2ℏ3

¼ k3Fh
3π2ℏ3

�
1−

k30h
k3Fh

�
¼ nh

�
1−

k30h
k3Fh

�
; ð34Þ

where k0h are the minimum momenta of hadrons or
nucleons in quarkyonic matter, which depend on the
corresponding Fermi momenta kFh and thus the baryon
number density. The precise way in which kFh − k0h
depends on a chosen momentum scale Λ and a common
transition density nt is detailed in Eq. (17) of Ref. [16].
Comparing the above expression to Eq. (27) from the

previous section, it becomes clear that the presence of the
hadron shell in the MR and ZL approaches forces hadrons
to higher-momentum states much like S does in the KW
scheme:
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S

�
1 −

4μ40
μ5

PQ − PH

nn þ np

�
¼∧ k30h
k3Fh

: ð35Þ

This means that any particle species participating in SðμÞ
(that is, a species i for which ∂μ=∂μi ≠ 0) will invariably
inherit a shell-like term in its crossover-matter number
density. In quarkyonic matter realizations, such a term is
desirable for baryons but not for quarks and therefore μ
must be a function of baryonic chemical potentials only.
Note that in the case of KW, the quark densities in

crossover-matter n�q are the product of the corresponding
pure-phase densities and the quark-to-baryon fraction S
which is an a priori assumption. On the other hand, for both
MR and ZL models, the densities and fractions of baryons
and quarks in the quarkyonic phase are determined by the
solution of the equilibrium equations.
Here, we should point out that in the MR and ZL

implementations of the quarkyonic matter scenario, the
nucleonic Fermi momenta are weakly dependent on baryon
density when the latter exceeds the transition density, nt;
that is,

jk∞;i − kFi;βj=k∞;i ≪ 1 for all nB > nt; ð36Þ

where k∞;i ≡ kFi;βðnB → ∞Þ. On the other hand, the
nucleonic chemical potentials and, by extension, the
pressure change very rapidly with kFi for nB > nt due to
the presence of denominators ∝ ð1 − KiÞ [see Eqs. (19)–
(20) in [16] ] in their kinetic parts, where

KMR
i ¼

�
k0i
kFi

�
2
�
1þ 2Λ3

k3Fi

�
; ð37Þ

KZL
i ¼

�
k0i
kFi

�
2
�
1þ Λ2

k2Fi

�
: ð38Þ

These terms remain close to zero [i.e., ð1 − KiÞ−1 → ∞], in
equilibrium matter as a result of the aforementioned
behavior of the nucleonic Fermi momenta, throughout
the quarkyonic regime. These two features of MR and
ZL are responsible for divergent pressure derivatives with
respect to kFi which, in turn, lead to superluminal adiabatic
sound speeds. Thus MR and ZL, in their current formu-
lations, are unsuitable for our purposes and we do not apply
them in g-mode calculations for crossover matter.

V. SOUND SPEEDS

In this section, we describe how calculations of the
squared adiabatic and equilibrium sound speeds, c2ad and
c2eq, required in the calculation of g-mode frequencies, are
performed. As one of our objectives is to provide contrasts
between g-mode frequencies in crossover matter and the
case of a first-order transition treated via the Gibbs
construction, both cases are considered below.

A. Sound speeds in crossover matter

Within the KW framework, the total pressure and energy
density in the crossover region are

P ¼ PB þ Pe þ Pμ; ð39Þ

ε ¼ εB þ εe þ εμ; ð40Þ

εB ¼ −PB þ
X

i¼n;p;u;d;s

n�i μi: ð41Þ

Using these, the adiabatic speed of sound is obtained by
first calculating the expression

c2adðnB; yiÞ ¼
∂P
∂nB

����
yi

� ∂ε
∂nB

����
yi

�
−1

ð42Þ

and then evaluating it in β equilibrium

c2ad;βðnBÞ ¼ c2ad½nB; yi;βðnBÞ�: ð43Þ

The equilibrium sound speed is given by the total deriv-
atives of the pressure and the energy density with respect to
the baryon density after the enforcement of β equilibrium,

c2eq ¼
dPβ

dnB

�
dεβ
dnB

�
−1
: ð44Þ

B. Sound speeds with Gibbs construction

As in the crossover matter case, all thermodynamic
quantities are expressed in terms of functions of the total
baryon density nB, and the individual particle fractions yn,
yp, ye, yμ, yu, yd, ys which are, at this point, independent
variables. That is,

εH ¼ εHðnB; yn; ypÞ; PH ¼ PHðnB; yn; ypÞ;
μh ¼ μhðnB; yn; ypÞ; ð45Þ

εQ ¼ εQðnB; yu; yd; ysÞ; PQ ¼ PQðnB; yu; yd; ysÞ;
μq ¼ μqðnB; yqÞ; ð46Þ

εL ¼ εLðnB; ye; yμÞ; PL ¼ PLðnB; ye; yμÞ;
μl ¼ μlðnB; ylÞ: ð47Þ

The conditions for weak equilibrium, charge neutrality
and baryon number conservation are applied afterwards.
These introduce another independent variable, χ, which is
the volume fraction of quarks in the mixed phase of Gibbs
construction:

PH ¼ PQ; μn ¼ 2μd þ μu; μp ¼ 2μu þ μd; ð48Þ
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μn ¼ μp þ μe; μe ¼ μμ; μd ¼ μs; ð49Þ

3ð1 − χÞyp þ χð2yu − yd − ysÞ − 3ðye þ yμÞ ¼ 0; ð50Þ

3ð1 − χÞðyn þ ypÞ þ χðyu þ yd þ ysÞ − 3 ¼ 0: ð51Þ

Solving these equations eliminates the yi and χ in favor
of nB. Thus the state variables become functions of only nB
according to the rule

QðnB; yi; yj;…Þ → Q½nB; yiðnBÞ; yjðnBÞ;…� ¼ QðnBÞ:

Then, the thermodynamics of the mixed ð �Þ phase are

ε� ¼ ð1 − χÞεH þ χεQ þ εL; ð52Þ

P� ¼ PH þ PL ¼ PQ þ PL;

¼ ð1 − χÞPH þ χPQ þ PL; ð53Þ

μ�h ¼ μh; μ�q ¼ μq; ð54Þ

y�h ¼ ð1 − χÞyh; y�q ¼ χyq: ð55Þ

Quantities corresponding to leptons are not affected by the
ratio of the two baryonic components in the mixed phase.
The mixed phase extends over those densities nB for

which 0 ≤ χðnBÞ ≤ 1. In contrast to the crossover case
where S operates at all densities, χ is active only when the
above condition is satisfied. Moreover, in the case of a
Gibbs construction of the first-order phase transition
scenario, χ and yi are treated on an equal footing with
no prior assumptions regarding their density dependence,
whereas in the crossover scenario, S has a definitive
functional form which the particle fractions must be
adjusted to fit. As a consequence, even though both χ
and S describe the quark-to-baryon fraction, the former is a
quantity for which we solve while the latter acts as a
constraint replacing the Gibbs condition for mechanical
equilibrium.
The sound speeds are obtained following the prescription

outlined in the previous subsection. Alternatively, the
adiabatic sound speed in the mixed phase can be calculated
from the corresponding ones in the pure hadronic and quark
phases separately according to Ref. [8]

1

c�2ad
¼ 1 − χ

c2ad;H
þ χ

c2ad;Q
: ð56Þ

VI. RESULTS

We turn now to present results based on calculations of
the crossover EOS, associated NS properties, the two sound
speeds and the resulting g-mode frequencies. For contrast,
results corresponding to pure hadronic matter and those for

a first-order phase transition treated using the Gibbs
construction are also presented.

A. EOS and structural properties of NSs

To construct crossover models, we have chosen the
parameter values shown in Table I, labeled as XOA,
XOB and XOC, for the parametrization of the EOSs used
in this work.5 These sets of parameters correspond to the
nuclear and neutron-star properties shown in Table II.
For XOA, all values are within 1-σ deviations of

empirical/observational constraints discussed below.
While XOB and XOC do not perform as well, they are
used here to illustrate some important physics related to the
behavior of the g-mode frequency. Specifically, with XOB
we investigate g-mode frequency features corresponding to
a sound-speed peak due to proton disappearance, whereas
in XOC the peak in the speed of sound is not related to a
change in the number of degrees of freedom. Models
labeled ZL (nucleons only) and Gibbs (nucleons plus
quarks with a Gibbs construction) use the appropriate
parameters of XOA.
We wish to note that the values of the symmetry

energy Sv and its slope L at nsat used in our work (see
Table II) lie in the range≃31�2MeV and ≃51� 11 MeV,
respectively, recommended in Ref. [24]. These values
led to the bounds on the radius of a 1.4 M⊙ star to
be R1.4 ≃ 12� 1 km.
Interpretations of the recent PREX-II experiment carried

out at the Jefferson Lab (JLab) measuring the neutron skin
thickness of 208Pb [29], R

208Pb
skin ¼ 0.283� 0.071 fm, how-

ever, widely vary in their inferences of the appropriate
values of Sv and L to be used. For example, Reed et al. [30],
using relativistic mean-field theory calculations to analyze
the JLab data, conclude that Sv ¼ 38.1� 4.7 MeV and
L ¼ 106� 37 MeV, values that are significantly higher

TABLE I. Parameter sets for the EOSs used in this work.

Model Parameter XOA XOB XOC Units

ZL a0 −96.64 −90.39 −96.64 MeV
b0 58.85 52.60 58.85 MeV
γ 1.40 1.446 1.40
a1 −26.06 −232.78 −28.15 MeV
b1 7.34 212.46 7.83 MeV
γ1 2.45 1.1 3.5

vMIT mu 5.0 5.0 5.0 MeV
md 7.0 7.0 7.0 MeV
ms 150.0 150.0 150.0 MeV
a 0.20 0.23 0.15 fm2

B1=4 180.0 180.0 180.0 MeV

KW μ0 1.8 1.8 1.8 GeV

5The method to determine the constants for the ZL para-
metrization is described in Refs. [8,16].

g MODES OF NEUTRON STARS WITH HADRON-TO-QUARK … PHYS. REV. D 104, 123032 (2021)

123032-7



than those deduced in earlier works. Furthermore, the
bound R1.4 > 13.25 km was found there. Reinhard et al.
[31], use covariant relativistic mean-field theory (with
density-dependent couplings) and nonrelativistic energy
functionals to analyze the PREX-II data and combine it
with the dipole polarizability data of 208Pb to arrive at Sv ¼
32� 1 MeV and L ¼ 54� 8 MeV. In addition, these

authors obtain R
208Pb
skin ¼ 0.19� 0.02 fm in accord with

earlier deductions. Similar results are obtained by Essick
et al. [32] who report Sv ¼ 34� 3 MeV, L ¼ 58�
18 MeV and R

208Pb
skin ¼ 0.19þ0.03

−0.04 fm from a nonparametric
EOS coupled with Gaussian processes. Combining recent
mass and radius measurement from radio and x-ray data

from NICER, Biswas [33] finds R
208Pb
skin ¼ 0.20� 0.05 fm

and R1.4 ¼ 12.75þ0.42
−0.54 km using nuclear EOSs with piece-

wise polytrope parametrization. Given the fluid state of
theoretical inferences from the analysis of JLab data, we
have opted to stick with the values used in Table II.
Figure 1 shows mass versus radius (M − R) curves for all

the models considered along with the recent constraints

TABLE II. Nuclear and neutron-star properties corresponding to the parametrizations shown in Table I. The symbols refer to nsat:
nuclear saturation density, E0: energy per particle at nsat, K0: compression modulus of symmetric nuclear matter at nsat, Sv: symmetry
energy at nsat, L: slope of SðnÞ at nsat, nβμ;on: onset density of muons, nβμ;off : turnoff density of muons, and nβp;off : turnoff density of
protons. Quantities related to neutron stars are R: radius,M: mass, β ¼ GM=Rc2: compactness, nc: central density, pc: central pressure,
εc: central energy density, Λ: dimensionless tidal deformability, c2eq: squared equilibrium sound speed, and c2ad: squared adiabatic sound
speed. The subscripts 1.4 and max denote the masses of stars in M⊙.

Property XOA XOB XOC ZL Gibbs Units

nsat 0.16 0.16 0.16 0.16 0.16 fm−3

E0 −16.0 −16.0 −16.0 −16.0 −16.0 MeV
K0 250.0 260.0 250.0 250.0 250.0 MeV
Sv 31.6 30.0 30.0 31.6 31.6 MeV
L 43.0 70.0 65.0 43.0 43.0 MeV
nβμ;on 0.13 0.15 0.14 0.13 0.13 fm−3

nβμ;off 1.39 0.77 1.67 � � � 1.32 fm−3

nβp;off � � � 0.88 � � � � � � � � � fm−3

R1.4 12.4 12.4 13.8 12.4 12.4 km
β1.4 0.167 0.166 0.150 0.166 0.166
nc;1.4=nsat 2.64 3.16 1.96 2.64 2.68
pc;1.4 60.2 73.6 41.7 60.0 69.8 MeV fm−3

εc;1.4 424.7 518.4 316.7 424.9 436.3 MeV fm−3

Λ1.4 428.9 426.7 841.3 430.1 421.2
ðc2eqÞc;1.4 0.398 0.331 0.294 0.397 0.406 c2

ðc2adÞc;1.4 0.429 0.331 0.497 0.426 0.528 c2

RMmax
11.5 10.4 13.0 11.1 11.2 km

Mmax 2.11 2.04 2.13 2.23 2.08 M⊙
βmax 0.270 0.289 0.242 0.295 0.275
nc;max=nsat 5.83 7.38 4.70 6.14 6.32
pc;max 362.7 696.1 213.4 577.0 457.7 MeV fm−3

εc;max 1142.9 1549.5 886.8 1202.4 1264.9 MeV fm−3

Λmax 13.8 6.4 30.1 6.2 11.1
ðc2eqÞc;max 0.426 0.566 0.316 0.767 0.576 c2

ðc2adÞc;max 0.507 0.818 0.353 0.889 0.653 c2

Legred et al.
Gibbs
XOA
XOB
XOC
ZL

10 12 14 16 18
0.75

1.00

1.25

1.50

1.75
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2.25
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M
(M
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la
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FIG. 1. Neutron-starM − R curves for the various EOS models
used in this work. The black, dashed lines represent the
90% confidence level constraints extracted from recent radio,
x-ray, and gravitational-wave observations by Legred et al. [34].
Models corresponding to the “A” parameter set fit these con-
straints well with differences between the three depending on the
order of the transition to quark matter or the lack thereof. While
stars with M ≤ 1.8 M⊙ using model XOB are within the
constraints, with model XOC only stars close to the maximum
mass satisfy the Legred et al. constraints.
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obtained by Legred et al. [34], which combined available
observations including the radio mass measurements of
PSR J0348þ 0432 and J0470þ 6620 [35–37], the mass
and tidal deformability measurements of GW170817 and
GW190425 [38–40], and the x-ray mass and radius con-
straints from latest NICER measurements of J0030þ 0451

and J0470þ 6620 [41–44]. The constraints of Legred et al.
were obtained by using the hierarchical inference [45] and a
nonparametric survey through Gaussian processes condi-
tioned on existing EOS models in the literature [46–48].
The left panel of Fig. 2 displays results of the pressure

versus baryon number density (P − nB) relation for the
various models used in the present work, in contrast to
those inferred from Ref. [34] mentioned above (the black
dashed boundaries, adapted from their Fig. 4). To provide a
comparison, results of energy versus density E vs nB of
β-equilibrated NSM are shown in the right panel of Fig. 2,

together with those for NSM from the chiral effective
theory calculations of Ref. [23] where 1-σ and 2-σ error
estimates up to ∼2.0nsat were provided. Although not
shown, we also find that results of the crossover, ZL
and Gibbs models for P − nB and E vs nB are consistent
with microscopic Greens’ function calculations of Gandolfi
et al. [49].
The squared adiabatic and equilibrium sound speeds c2ad

and c2eq versus baryon density nB are shown in the left and
right panels of Fig. 3, respectively. Both c2ad and c2eq
increase monotonically with nB for the ZL model in which
nucleons are the only baryons. The nonmonotonic behav-
iors of the other curves are due to admixtures of nucleons
and quarks in the baryon sector. The c2eqðnBÞ for the Gibbs
model suddenly drops (rises) at the onset (end) of the mixed
phase (the latter not shown in the figure), whereas c2adðnBÞ
varies smoothly. Results for the crossover models XOA and

FIG. 2. Left panel: pressure versus baryon density as obtained by the assorted EOSs used herein compared with the astrophysical
constraints of Legred et al. [34] (in black, dashed lines). All parametrizations meet these constraints successfully with the exception of
XOC which fails to stay in the allowed region around 2.0nsat, where nsat ¼ 0.16 fm−3. Right panel: energy per particle versus baryon
density of beta-equilibrium matter for the various EOSs used in this work compared with the 1-σ and 2-σ constraints from Drischler et al.
[23] obtained in a chiral EFT framework. Results corresponding to Gibbs and ZL are not shown because, over the range of densities
displayed, they are identical to XOA. Only XOA remains within the 2-σ constraints of [23] up to ∼2.0nsat.

FIG. 3. Left panel: the squared adiabatic sound speed c2ad as a function of the baryon density nB. Right panel: the squared equilibrium
sound speed c2eq as a function of the baryon density nB.
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XOC are similar in structure, whereas those for XOB show
more structure at large nB due to the disappearance of
protons. With the exception of model XOB, c2ad > c2eq for
all other models at all nB.
Figure 4 shows the difference of the inverses of the

adiabatic and equilibrium sound speeds, Δðc−2Þ≡ 1=c2eq −
1=c2ad as a function of the baryon density. This quantity is
particularly important in the context of g modes because it
enters directly in the calculation of the Brunt-Väisälä
frequency (discussed in more detail in the next section).
A comparison between this figure and Figs. 5–7, which

show the particle fractions corresponding to the three
crossover models used in this work, reveals a direct
correlation between sharp maxima in the former and
particle appearance/disappearance in the latter. Smooth

maxima, such as those exhibited by XOA around
0.7 fm−3 and XOC around 0.4 fm−3, reflect nonmonotonic
behaviors in the slopes of the quark and the neutron
fractions. Also worth noting is that, in the present frame-
work and with the chosen parametrizations, quarks are
never the dominant contributors to the baryon density for
densities relevant to neutron stars.
Consequently, the contributions of quarks to the total

baryon number as well as the total mass of the star (both
baryonic and gravitational) are rather small in the models
considered, as shown in Table III for stars with gravitational
mass M ¼ 2 M⊙. These are straightforwardly calculated as
follows: the solution of the Tolman–Oppenheimer–Volkoff
(TOV) equations [73,74] gives, among other things, the
baryon density as a function of the star’s radius, nBðrÞ.
The quark particle fractions as functions of the baryon
density are obtained from the β-equilibrated equivalents of
Eqs. (28) and (55) for the KWand Gibbs cases, respectively.

FIG. 4. Difference between the inverse-squared sound speeds
versus the baryon number density. The peaks in the vicinity of nsat
correspond to muon appearance and are present in all models.
The peak at ∼3nsat for Gibbs occurs at the onset of the mixed
phase which extends beyond the densities shown here. The peak
around 5.5nsat for XOB is the combined effect of muon and
proton disappearance in this model. On the other hand, the peak
at ∼2.5nsat for XOC results from inflection points in the quark
and neutron fractions.

FIG. 5. Particle fractions of the crossover model XOA versus
baryon density. Quarks are still present below 0.3 fm−3 but at two
orders of magnitude less than what is shown here.

FIG. 6. Particle fractions of model XOB versus baryon density.
Muons drop out of the system at 0.77 fm−3 and protons at
0.88 fm−3 leading to a sharp peak in the adiabatic sound speed
(cf. Fig. 4). Electrons are still present above 0.85 fm−3 but at two
orders of magnitude less than what is shown here.

FIG. 7. Particle fractions of model XOC versus baryon density.
The inflectionary behavior of the quark and neutron fractions
around 0.4 fm−3 is responsible for the broad peak behavior of
XOC occurring in Fig. 4.
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Explicitly, yqðrÞ ¼ y�q;β½nBðrÞ�. For the quark baryon frac-
tion at each radius we divide this by 3. The quark particle
densities are then nqðrÞ¼yqðrÞnBðrÞ.The baryon number
due to quarks of all species q ¼ u, d, s in the star is given by
the integral

NQ ¼ 4π

Z
R

0

drr2
P

qnqðrÞ=3
½1 − 2GMðrÞ=r�1=2 : ð57Þ

Here, MðrÞ is the total gravitational mass of the star
as a function of its radius r, also given by the solution of
the TOV equations. Therefore, the amount of baryonic
mass in the star provided by quarks is MB

Q ¼ mHNQ

[50]. For the quark gravitational mass we begin by
calculating the quark energy density as a function
of the radius according to εQðrÞ ¼ ε�Q;β½nBðrÞ�, where
ε�Q¼−SPQþ

P
qn

�
qμq. Afterwards, we perform the integral

MG
Q ¼ 4π

R
R
0 drr2εQðrÞ.

Specifically, in model XOA, quarks contribute less than
0.5% of the total baryon number, about 1% of particles in
its 2 M⊙ stars are quarks and they are responsible for
around 0.35% (0.5%) of the total baryonic (gravitational)
mass of the star. For XOB and Gibbs models, quarks
contribute about 2% of the total baryon number, over 5% of
the total particle number, and 2% (3%) of the total baryonic
(gravitational) mass of the respective 2 M⊙ stars. In model
XOC, quarks are, for all intents and purposes, irrelevant. As
noted before, such a clean separation may not be possible in
treatments that intermingle hadron/nucleon and quark
interactions.

B. Sound speeds and the Brunt-Väisälä frequency

Having outlined the thermodynamics of the multi-
component system and the specific models employed in
our study of the smooth crossover transition in neutron
stars, we turn now to the calculation of the star’s g-mode

frequencies. Our main goal is to compare the behavior of
the g-mode frequencies in the crossover model with those
in the Gibbs mixed phase. The g-mode frequencies
[νg ¼ ω=ð2πÞ] and normalized amplitudes for the radial
and tangential parts of the fluid perturbation (ξr and ξh,
respectively) are estimated within the relativistic Cowling
approximation (see below) by computing numerical sol-
utions to the following equations of motion for fluid
variables U, V [8]

dU
dr

¼ g
c2ad

U þ eλ=2
�
lðlþ 1Þeν

ω2
−

r2

c2ad

�
V;

dV
dr

¼ eλ=2−ν
ω2 − N2

r2
U þ gΔðc−2ÞV; ð58Þ

which are simplified forms of the original perturbation
equations [4,51,52]. In Eq. (58), U¼r2eλ=2ξr, V¼ω2rξh ¼
δP=ðεþPÞ, Δðc−2Þ ¼ c−2eq − c−2ad and λ and ν are metric
functions. The scale of the mode frequency is set by the
Brunt-Väisälä frequency

N2 ¼ g2Δðc−2Þeν−λ; ð59Þ

where g ¼ −∇P=ðεþ PÞ.
The relativistic Cowling approximation neglects the back

reaction of the gravitational potential by excluding metric
perturbations that must accompany matter perturbations in
a general relativistic treatment [53–58]. It reduces the
number and complexity of the equations we have to solve,
while providing results for g-mode frequencies that are
accurate at the few % level [59]. Details on the solution
methods for Eq. (58) and relevant boundary conditions are
provided in Ref. [8].

FIG. 8. The Brunt-Väisälä frequency in a hybrid star of mass
2.0 M⊙ for the Gibbs and crossover models. The Brunt-Väisälä
frequency for the “good” crossover model XOA is very similar to
the nucleonic ZL EOS (which includes muons), whereas the
Gibbs model shows a distinct peak corresponding to the rapid
onset of quark matter. Parameters for the nuclear and quark EOSs
are as in Table I.

TABLE III. Various representations of the quark content of
2 M⊙ NSs corresponding to the Gibbs and the three crossover
models in this paper. The symbols are MB: the total baryonic
mass, Ybar

Q : contribution of quarks to the total baryon number/total

baryon number, Ypart
Q : quark particle number/total particle num-

ber, Ynuc
Q : quark particle number/nucleon number, MB

Q=MB:
contribution of quarks to the total baryonic mass/total baryonic
mass, and MG

Q=MG: contribution of quarks to the total gravita-
tional mass/total gravitational mass.

MB Ybar
Q Ypart

Q
Ynuc
Q MB

Q=MB MG
Q=MG

Model ðM⊙Þ (×10−2) (×10−2) (×10−2) (×10−2) (×10−2)

XOA 2.31 0.35 1.03 1.04 0.35 0.50
XOB 2.33 2.15 6.18 6.58 2.15 3.04
XOC 2.29 0.06 0.19 0.19 0.06 0.09
Gibbs 2.35 1.91 5.53 5.85 1.91 2.89
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Figure 8 is a comparison of the Brunt-Väisälä frequency
in the three models considered in this work. The crossover
model, where quarks are always present in the core EOS,
albeit in minuscule fractions, resembles the purely nucle-
onic ZL EOS in this respect, while the sudden onset of
quarks in the Gibbs model is clearly imprinted in the form
of a sharp peak. Quarks enter at a density nB ≃ 0.514 fm−3

corresponding to r=R ¼ 0.473 (r ¼ 0 at the center) in the
Gibbs model. As a consequence of the difference of
sound speeds being negative in distinct density regimes
for XOB (Fig. 4), the corresponding Brunt-Väisälä fre-
quency is imaginary, implying an instability to convection.6

However, convection is absent at zero temperature; there-
fore these regions are unphysical and can play no role in the
global g-mode spectrum. Accordingly, XOB is omitted
from Figs. 9–11.
Figure 9 compares the g-mode frequency, νg ¼ ω=ð2πÞ,

for the crossover and Gibbs models. While XOA and XOC
are very similar to the nucleonic ZL EOS (which includes
muons), the Gibbs model shows a distinctly rising spectrum
corresponding to the rapid onset of quark matter. These
findings are consistent with the result for the Brunt-Väisälä
frequency in Fig. 8 and the conclusions in paper I. In the
crossover model XOB, protons disappear above some
critical density. In contrast to the smooth behavior of g-
mode frequencies in XOA and XOC, the sudden disap-
pearance of protons in XOB produces a sharp rise in the
spectrum akin to the Gibbs case but renders g modes to
become unstable (not shown in Fig. 9), confirming that
dramatic changes in the g-mode frequency require the
appearance or disappearance of a (strongly interacting)

particle species, not merely a smooth change in compo-
sition. This is why, except for extreme parameter choices,
crossover models will not show the g-mode feature result-
ing from the presence of quarks that Gibbs models do.
The panels in Fig. 10 show the comparison of the core g-

mode amplitude between the three chosen models (ZL,
crossover and Gibbs). The radial component ξr of the
fundamental mode (labeled “g1” in the panels) has no
nodes in the core, while the radial part of the first overtone
(labeled “g2”) has one, as expected. The horizontal
component ξh has one more node than the corresponding
radial component of the same order. The larger amplitude
of ξh relative to ξr indicates that the gmode is dominated by
transverse motion of the perturbed fluid. While there is little
difference between the ZL and crossover models in the
profile of these eigenfunctions, the Gibbs case is markedly
different. Its amplitude relative to the other two is larger,

FIG. 9. The g-mode frequency as a function of the stellar mass
in the Gibbs, crossover, and ZL models. Parameters for the
nuclear and quark EOSs are as in Table. I. The g modes
corresponding to XOB are unstable, and therefore this model
is excluded from the present and the next two figures.

FIG. 10. Amplitudes of the radial (r) and transverse (h)
components of the g-mode displacement (eigenfunctions) as a
function of distance from the center for the ZL, XOA, XOC and
Gibbs EOSs for a ∼2 M⊙ star. The order of the mode (g1 is
fundamental, g2 is overtone) is indicated in the legend in the
panels.

6This feature could be an artifact of the Cowling approxima-
tion, but will likely be absent in the solution of the full general
relativistic treatment [53–58] of the gmode in which c2eq does not
enter explicitly.
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and it changes abruptly upon the onset of quark matter in
the core.
The energy per unit radial distance dET=dr contained in

the oscillatory motion corresponding to a frequency ω is
given in terms of the amplitude as [51]

dET

dr
¼ ω2r2

2
ðεþ PÞeðλ−νÞ=2½ξ2reλ þ lðlþ 1Þξ2h�: ð60Þ

Figure 11 shows the comparison of the core g-mode
energy/unit distance for the three chosen models (ZL,
crossover and Gibbs) for a ∼2 M⊙ star. The typical scale
of the energy/unit distance deep in the core is approx-
imately 1050 ergs=km for the ZL and crossover models,
while it is of order 1051 ergs=km for the Gibbs case. While
the profiles are similar for the first two, the mode energy in
the Gibbs case is overwhelmingly larger in the core, once
quark matter appears. Thus, both the frequency and the
amplitude (and hence the energy) of the core g mode is
strongly amplified in quark matter in comparison to
nucleonic matter or weaker forms of the phase transition.
This can have bearing on the gravitational wave detection
of g modes excited in neutron star mergers as dis-
cussed below.

C. Discussion

The results in the previous subsection raise some points
that are noteworthy. In particular, they highlight the relation
between the behaviors of the speeds of sound and of the
particle concentrations, and the spectrum of the g-mode
signal. Thus, the latter becomes a diagnostic which dis-
tinguishes nucleonic and hybrid matter as well as the Gibbs
and crossover transitions.
Peaks in the sound-speed difference δc≡ c2ad − c2eq, and

the difference of the inverses Δðc−2Þ≡ 1=c2eq − 1=c2ad
occur when particles appear or disappear [i.e., when the

number of degrees of freedom (DOF) of the system
changes] and when the particle concentrations yiðnBÞ are
not monotonic or have inflection points (i.e., their first or
second derivatives with respect to nB change sign).
The introduction or removal of a particle species from

the system occurs when the relevant chemical potential
either exceeds or falls below its rest mass threshold while
maintaining charge neutrality. Whereas the functional form
of the yi’s depends on the parametrization of the EOS, a
change in the number of DOFs also leads to nonmonotonic
or inflectional behavior to the concentrations of particles
already present in the system. Thus, in some sense, specific
choices of the EOS parameters can mimic aspects of the
emergence of new particles that are relevant to the sound
speeds.
Signals of g mode with a characteristic fast rise in its

frequency (such as those corresponding to Gibbs shown in
Fig. 9 and XOB for which the g mode becomes unstable)
can occur only when particle species enter or leave the
system. In such cases, the peaks in Δðc−2Þ are sharp and
asymmetric: vertical rise and quasi-Lorentzian decay for
appearance (see Fig. 4, Gibbs), and quasi-Lorentzian rise
and vertical drop for disappearance (XOB); whereas peaks
due to parametrizations resemble symmetric Gaussians
(XOC). Therefore, this kind of signal cannot be produced
by quarks in matter with a smooth crossover because
quarks are always present: their concentrations are vanish-
ingly small at lower densities but never identically zero.
It is, however, possible to parametrize the hadronic EOS

such that, in β-equilibrated crossover matter, protons exit
the system. The magnitude of the peak of Δðc−2Þ appears
to be proportional to the number of remaining DOFs
(smallest in PNM; largest in n − uds − e matter). This
produces g-mode frequency spectra similar to those found
in matter with a Gibbs construction. So, although quarks
are not directly responsible for this effect, they do serve the
purpose of amplifying it.
For the specific case of crossover model XOB, a rather

extreme parametrization (K ¼ 260 MeV, Sv ¼ 30 MeV,
L ¼ 70 MeV, γ1 ¼ 1.1) was required for the proton dis-
appearance while also meeting neutron-star constraints and
having a peak at low-enough densities to be relevant.
Consequently, the tentative conclusion is that hyperons or a
first-order transition into quark matter through Gibbs
construction are more likely to cause a distinctive peak
in the Brunt-Väisälä frequency than a crossover transition;
nevertheless, the latter remains a viable, if improbable,
option.
It is pertinent to mention that we have not performed

calculations for first-order transitions with a Maxwell
construction, which assume a sufficiently large surface
tension between the pure hadronic and quark phases in bulk
separated by a sharp boundary. It has been shown that in
such cases, gmodes always vanish when the perturbed fluid
element adjusts instantaneously (i.e., a very rapid

FIG. 11. Energy/unit distance of the fundamental g mode as a
function of distance from the center for the ZL, XOA, XOC, and
Gibbs EOS for a ∼2 M⊙ star. Note that the mode energies in the
ZL and crossover cases are scaled up by a factor of 10 for the
purpose of comparison.
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conversion) to maintain thermodynamic equilibrium, but
can arise if the microscopic phase conversion at the
interface is slow enough, leading to distinctive features
on the extended hybrid branch of NSs [60,61]. Such g
modes associated with a discontinuity in density (“dis-
continuity g modes,” which are different from the “compo-
sitional gmodes” that we consider) has been widely studied
in the literature; see e.g., extensive discussions in
Refs. [62–66].

VII. SUMMARY AND CONCLUSIONS

The main objectives of this work were to examine g-
mode frequencies in a smooth crossover scenario of the
hadron-to-quark transition, and to compare them with those
of a first-order transition treated using Gibbs and Maxwell
constructions in paper I [8]. For the crossover model, we
chose the recent approach adopted by Kapusta and Welle
[2], who constructed an EOS for PNM that resembled the
smooth crossover observed in lattice calculations at finite
temperatures. We have generalized their approach to β-
equilibrated NSM so that comparisons with the results of
paper I could be made. To describe nucleons, we used the
ZL parametrization [16] which reproduces near-saturation
laboratory data as well as results of chiral EFT calculations
[22,23] up to ∼2.0nsat. For quark matter we used the vMIT
model [25] with repulsive interactions. Results of our
crossover EOSs tally with observational findings of the
radii of ∼1.4 and ∼2.0 M⊙ NSs [41–44]. Calculations of
the equilibrium and adiabatic speeds of sound were
performed following the procedures developed in paper
I. Our work here is focused on zero temperature and does
not consider superfluidity in either nucleons or quarks.
Inclusion of these effects will be taken up in a future work.
The results of the amplitudes of the g-mode frequencies

and their associated amplitudes of the gravitational energy
radiated for the chosen hadron-to-quark crossover models
lie between those of the first-order phase transitions that
employ Maxwell and Gibbs constructions. For the case of
the Maxwell construction, the transition region is devoid of
g-mode frequencies as the equilibrium and adiabatic sound
speeds both vanish. Consequently, g-mode oscillations are
permitted only for the pure nucleonic and quark phases.
Their amplitudes in these regions are, however, rather
small. In contrast, the mixed phase in the case of the
Gibbs construction yields amplitudes of g-mode frequen-
cies and the energy radiated that are significantly larger
than those of the crossover model.
We note that g-mode frequencies can be exceptionally

large in the presence of superfluidity (≈750 Hz for a
hyperonic star [67] and ≈450 Hz for a nucleonic star
[68,69]), similar to the results for the Gibbs mixed
phase. However, the reason for the enhancement in the

two cases is different. In the case of superfluidity, the
temperature-dependence of the entrainment terms serves to
increase the g-mode frequency at typical neutron star
temperatures, while in the Gibbs case, the enhancement
is purely composition dependent. A study of resonant
excitations of such superfluid modes in coalescing neutron
star binaries [70] suggests that the amplitude of these
modes is weaker by a factor of 20 or so, compared to modes
from the normal fluid. Note that the g modes we discuss
here are also higher in frequency compared to the low-
frequency g modes (∼50 Hz) that might strain the neutron
star crust to breaking point and lead to precursor flares in
gamma-ray bursts [71].
The relatively larger frequency, amplitude and energy of

the g mode in the Gibbs case inferred from Figs. 9–11 have
observational implications for gravitational waves from
neutron star mergers. It has been established that g modes
can couple to tidal forces and draw energy and angular
momentum from the binary to the neutron star, leading to
an accelerated merger and a concomitant phase shift in the
gravitational waveform [6]. This coupling will be largest
for the Gibbs case, with its higher energy at resonance, and
also because higher resonance frequencies are excited later
in the inspiral, when tidal forces are strongest. Estimates of
the resulting phase shift were presented in paper I [Eq. (89)]
and found to be comparable to that from g modes in
ordinary neutron stars (due to longer merger times) within
uncertainties arising from the value of the tidal coupling. As
these uncertainties are reduced through improved theoreti-
cal calculations, the case of a hybrid star may be distin-
guished from an ordinary neutron star. We also infer from
our results that were high-frequency gmodes to be detected
in upgraded LIGO and Virgo observatories, it would
indicate a first-order phase transition akin to a Gibbs
construction. In light of data from GW170817, lower
bounds on the excitation of nonradial oscillations in binary
mergers [72] affirm that a third generation network with its
improved sensitivity and larger bandwidth can shed new
light on the composition of the neutron star core.
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