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Dark matter (DM) can be trapped by the gravitational field of any star, since collisions with nuclei in
dense environments can slow down the DM particle below the escape velocity (vesc) at the surface of the
star. If captured, the DM particles can self-annihilate, and, therefore, provide a new source of energy for
the star. We investigate this phenomenon for capture of DM particles by the first generation of stars
[Population III (Pop III) stars], by using the multiscatter capture formalism. Pop III stars are particularly
good DM captors, since they form in DM-rich environments, at the center of ∼106 M⊙ DM minihalos, at
redshifts z ∼ 15. Assuming a DM-proton scattering cross section (σ) at the current deepest exclusion limits
provided by the XENON1T experiment, we find that captured DM annihilations at the core of Pop III stars
can lead, via the Eddington limit, to upper bounds in stellar masses that can be as low as a few M⊙ if the
ambient DM density (ρX) at the location of the Pop III star is sufficiently high. Conversely, when Pop III
stars are identified, one can use their observed mass (M⋆) to place bounds on ρXσ. Using adiabatic
contraction to estimate the ambient DM density in the environment surrounding Pop III stars, we place
projected upper limits on σ, for M⋆ in the 100 M⊙–1000 M⊙ range, and find bounds that are competitive
with, or deeper than, those provided by the most sensitive current direct detection experiments for both
spin-independent and spin-dependent (SD) interactions, for a wide range of DMmasses. Most intriguingly,
we find that Pop III stars with massM⋆ ≳ 300 M⊙ could be used to probe the SD proton-DM cross section
below the “neutrino floor,” i.e. the region of parameter space where DM direct detection experiments will
soon become overwhelmed by neutrino backgrounds.
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I. INTRODUCTION

One of the most profound mysteries nature has presented
us with is usually wrapped in two very descriptive,
although sometimes misleading, words: dark matter
(DM). It was Fritz Zwicky who, in 1933, coined the term
dunkle Materie (i.e. dark matter) when describing the
nonluminous mass that he inferred must have been present
in abundance in the Coma Cluster of galaxies [1,2]. It took
almost four decades until this idea reemerged at the
forefront of the literature. In 1970, Rubin and Ford showed
that rotation curves of stars in galaxies are “flat,” a fact that
can be interpreted as evidence of nonluminous matter at
galactic scales [3]. Since then, a large body of evidence has

emerged that supports the dark matter hypothesis. Only
20% of the matter in the Universe is made of regular,
baryonic matter. The other 80% is dark matter, whose
existence is inferred via its gravitational effects, on all
scales. DM leaves its imprint in the cosmic microwave
background radiation [4–7], since it provides the gravita-
tional restoring force for the acoustic oscillations of the
photon-baryon plasma before recombination.
Under the influence of gravity, the primordial density

fluctuations generated by cosmic inflation grow into over-
dense regions dominated by dark matter in what is
commonly referred to as hierarchical structure formation.
DM forms minihalos that grow, via mergers, into larger and
larger halos with a rich substructure. Numerical simulations
show that those overdense regions are connected by DM
filaments, and separated by large, underdense regions. As
such, DM provides the scaffolding upon which regular,
baryonic matter gravitationally collapses to form galaxies
and galaxy clusters. Using gravitational lensing, the Sloan
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Digital Sky Survey confirmed the predominance of dark
matter in galaxies [8]. Moreover, gravitational lensing has
been used to map the structures DM forms at galaxy cluster
[9] and cosmological [10–12] scales.
Today, the experimental hunt for dark matter has three

prongs: particle production, direct detection, and indirect
detection. So far, the Large Hadron Collider (LHC) has
found no evidence of any physics outside of the standard
model of particle physics, which, in turn, implies con-
straints on phenomenological models of DM. Indirect
detection experiments seek to observe the products of
annihilation (or decay) of DM that could emerge from
nearby astrophysical sites where DM densities are high. Of
such places, the center of our Galaxy and nearby dwarf
spheroidal satellites of the Milky Way are prime targets.
Expected signals include, but are not limited to, gamma
rays. An antiproton and a gamma-ray excess compared to
known backgrounds have been found in Alpha Magnetic
Spectrometer and Fermi data, respectively. Both can be
explained by the same DM particle model, a ∼60 GeV
DM particle self-annihilating [13–15]. Alternatively, the
gamma-ray signal could come from point sources, such as
pulsars [16,17], and the antiproton excess could be due to
collisions between cosmic-ray protons accelerated in the
presence of a local supernova remnant (SNR) and the
protons in the SNR cloud [18]. Dwarf spheroidal satellite
galaxies of the Milky Way are another prime target for
detecting DM-DM annihilation signals. In a lack thereof,
the Fermi satellite data was used to place the most stringent
bounds on the dark matter annihilation cross section to
date [19–21].
Direct detection experiments are extremely challenging.

They are very sensitive, to the point of being able to detect
the minute amount of energy a dark matter particle deposits
inside the detector as it collides with an atomic nucleus
[22,23]. Shielding from cosmic-ray backgrounds means
that these experiments have to be performed in deep
underground laboratories. Of the ten currently operational
direct detection experiments, only the DAMA/LIBRA
experiment in Gran Sasso, Italy, produced a detection
signal [24–26]. Since 1998, the DAMA/LIBRA experiment
has found an annual modulation in its signal that matches
the modulation predicted by [23]. Although this is the
cleanest hint of a dark matter detection yet, unfortunately, it
has not been confirmed by other direct detection experi-
ments exploring the same region of the parameter space,
such as XENON1T. To settle this controversy, a new NaI
experiment (the same detector material as DAMA/LIBRA)
has been developed: COSINE [27]. It will soon either refute
or confirm the DAMA signal.1 Another hint of DM
detection came recently from XENON1T, the world’s most
sensitive DM direct detection experiment. An excess in the

electronic recoil events could be explained by, among other
things, solar axions [29]. While solar axions are not a dark
matter candidate, their detection, if confirmed, would be the
first discovery of a particle outside of the standard model
of particle physics. This would provide insights into the
production of axions in the early Universe, which could
serve as dark matter candidates.
In lack of a clear, independently confirmed detection

signal from direct detection experiments, we are left with
exclusion limits on how strong DM and baryonic matter
can interact. As experiments become more and more
sensitive, they rule out larger and larger swaths of the
possible DM-nucleon scattering cross section σ vs DM
particle mass (mX) parameter space. However, an increase
in sensitivity comes at a price. In the near future, it is
expected that the XENON1T experiment will become
sensitive to neutrinos. At that stage, any possible DM
signal would be swamped by an overwhelming neutrino
background, the so-called neutrino floor. As such, new
detection strategies will have to be implemented. In this
paper we discuss one such strategy, which relies on the
capture of dark matter by the first generation of stars, the
so-called Population III (Pop III) stars.
Astrophysical objects have a long history as DM probes

in the literature. In the 1980s, some of the seminal papers
developing the mathematical formalism for capture of dark
matter [30–33] considered the potentially observable
effects on the Sun from DM trapped inside it. All those
works assumed that one collision with nuclei is sufficient
to capture a DM particle inside a celestial object. This
assumption can be bypassed by using the multiscatter
capture formalism [34–38]. As such, one can estimate
capture rates in very dense environments, where, on
average, a DM particle will collide multiple times per
crossing with regular matter inside the astrophysical
capturing object. The potential observable effects of cap-
tured DM have been used in the literature to constrain DM
properties by using Pop III stars [39–41], neutron stars
[35,38,42–61], white dwarfs [35,36,62–64], and exoplanets
[65], to name a few.
In this work, we demonstrate how the observation of any

Pop III star can be used to place very stringent constraints
on the strength of the proton-DM scattering cross section.
Most importantly, if the ambient DM density (ρX) is
sufficiently high, Pop III stars can be used to probe below
the neutrino floor, which will soon limit direct detection
experiments on Earth. The paper is organized as follows:
In Sec. II we review the main properties, as inferred from
numerical simulations, of Pop III stars. In Sec. III we
briefly review the formalism used to calculate how effi-
ciently DM is captured or evaporated by astrophysical
objects and apply it to Pop III stars; in the process, we find
that the heating from annihilations of captured DM inside
the star leads to an upper bound on the stellar mass (M⋆). In
Sec. IV we show how one can use the mere observation of a

1Recently, another experiment (ANAIS) has analyzed their
three-year data and found no annual modulation [28].
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Pop III star of a given mass to place constraints on the
product between the DM-nucleon cross section (σ) and the
ambient DM density (ρX). Assuming direct detection
experiments will identify DM in the near future, and using
upper bounds from XENON1T on σ, we then obtain
projected bounds on ρX, for Pop III stars of various masses.
Conversely, using the adiabatic contraction formalism to
estimate the possible range of ρX at the location of Pop III
stars, and including the possible effects of DM annihila-
tions on the ambient DM density, we calculate exclusion
regions in the σ vs mX parameter space corresponding to
Pop III stars of masses between 100 M⊙ and 1000 M⊙. We
find that Pop III stars can be used to probe below the
neutrino floor for spin-dependent (SD) experiments, such as
PICO. For spin-independent (SI) experiments, at the higher
end ofmX, i.e.mX ≳ 105 GeV, we find that Pop III stars are
placing constraints on σ that are stronger than those placed
by the most sensitive direct detection experiments currently
available, such as XENON1T. Regarding sub-GeV DM, we
considered the case of strongly interacting thermal thermal
DM models, such as strongly interacting massive particle
(SIMP) and Co-SIMP DM, as well as the standard thermal
weakly interacting massive particles (WIMPs), and found
exclusion regions in the σ −mX parameter space that are
deeper than any current experiments. Section V is dedicated
to a discussion of the implications and limitations of our
approach. The paper ends with five appendixes, in the
following order: In Appendix A we review the technical
details of the multiscatter DM capture formalism and
present derivations of analytic closed form formulas for
the total capture rates in various limiting regimes of interest.
This could be very useful in practice, for future research,
since calculating the capture rates numerically could turn
out to be computationally expensive. In Appendix B we
estimate the temperature of captured DM (TX), which will
be necessary when evaluating evaporation rates for DM
when considering sub-GeV DM models. In Appendix C we
derive and validate a closed form analytic approximation
of the evaporation rates of DM from Pop III stars. In
Appendix D we discuss in more detail the DM models
considered in this paper (thermal WIMPs, thermal sub-GeV
Co-SIMP DM, and nonthermal superheavy DM) and the
conditions necessary for the equilibrium between capture
and annihilation/evaporation to be attained on timescales
shorter than the lifetime of the star. Finally, in Appendix E,
we apply the commonly used adiabatic compression for-
malism to estimate the ambient DM density relevant for the
capture of DM by Pop III stars. Additionally, we estimate
the role of DM annihilations in the ambient medium, and
find the so-called annihilation plateau for each of the DM
models considered.

II. THE FIRST STARS IN THE UNIVERSE

Below we give a brief summary of the status of the
literature regarding the formation of the first stars, also

called Pop III stars, our candidate targets as DM
probes. They formed at the center of DM minihalos
(Mhalo ∼ 106 M⊙), when the Universe was roughly
400 Myr old, corresponding to redshifts z ∼ 15. At that
epoch, pristine, zero metallicity gas from big bang nucleo-
synthesis is cool enough to start its gravitational infall into
the potential well provided by the high DM density regions
at the center of the halo. As the gas collapses it will form
one, or sometimes a few, clumps, separated by distances as
large as a few parsecs. Those gas clumps are as massive as
20; 000 M⊙ each, with the most massive one located close
to the center of the DM halo (see Fig. 14 of [66]). The
balance between heating and cooling, which for pristine,
zero metallicity clouds is quite poor, determines the stage
when this collapse stops. If fragmentation during this phase
plays an important role, the outcome would be that each of
those gas clumps forms several Pop III stars. Conversely, if
fragmentation is suppressed, the formation of Pop III stars
is monolithic. Currently the consensus is that, “At the end
of the initial collapse, a small protostellar core has formed
at the center of the minihalo” [67]. This protostellar core is
surrounded by an accretion disk, roughly 10 A.U. in size,
which can sometimes fragment. As shown in [68], for
example, the most massive of those stellar fragments
remains close to the center; in addition, there could be
other, smaller fragments fragments in highly complex
orbits, “most of which migrate towards the center of the
cloud” (see Fig. 5 of [68]). This picture is confirmed by
most hydrodynamical simulations, which demonstrate that
typically one or just a few Pop III stars form per minihalo,
with masses up to ∼1000 M⊙ and within the inner 10 A.U.
of the DM halo. More explicitly, simulations have shown
that the most massive protostars remain close to the center
of the cloud, which itself is aligned with the center of the
DM halo [66,67,69–75], with some of the smaller frag-
ments being dynamically ejected from the central region of
the halo, while others will move inward and get accreted by
the central, most massive object [68,76–78].
Fragmentation of the collapsing gas and/or of the

accretion disk is the primary mechanism that controls
the multiplicity of Pop III stars per micro DM halo,
and prior to Pop III hosting halo mergers is the only
mechanism that determines this important parameter. In the
first decade of the 20th century a preliminary standard
model has emerged in the literature, in view of the
consensus in the results from the vast majority of simu-
lations [66,69–72,79,80]. It was believed that Pop III stars
generally form in isolation, and “at most one massive
(M ≫ M⊙) metal free star forms per pre-galactic halo”
(from abstract of Ref. [69]). This picture has recently
undergone some scrutiny, since more recent simulations
started to indicate that protostellar disks around primoridial
stars can become gravitationally unstable and fragment to
build up binary or higher-order multiple stellar systems
[76,81,82]. However, the following consensus emerges
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from most simulations: the first stars have a top-heavy
initial mass function, and they form in relatively small
numbers per DM halo. The first to simulate fully three-
dimensional Pop III star formation including both frag-
mentation (up to the resolution of the simulation) and
radiative feedback found an average of three stars forming
in each of the cosmologically simulated DM halos of
Ref. [83]. Additionally, each subsequent generation of stars
that are formed in a given halo will be, on average, of
smaller mass. Thus more massive Pop III stars are going to
be found in more solitary environments, allowing a single,
massive Pop III star to dominate the baryonic mass of a
halo. More recent simulations have found similar halo
statistics. Figure 7 of [84] demonstrates that halos form a
median of four stars and a maximum of 16 stars, with a
sharp decrease in the number of halos forming greater than
six massive Pop III stars. The centrality of these objects is
also of importance. Susa et al. [83] find that the most
massive Pop III stars form, on average, more centrally than
less massive stars with a significant fraction of stars larger
than 100 M⊙ forming within 100 A.U. of the center of the
minihalo. The same simulations found no halos with more
than one star if the first star is formed over around 150 M⊙
(Fig. 11 of [83]). We note that the primary targets of our
method of constraining DM will be Pop III stars more
massive than ∼150 M⊙, and, as such, those are expected to
form in isolation, one per DM halo, and with locations
closely aligned with the center of the DM halo.
One of the key effects that needs to be taken into account

when estimating the typical mass of a Pop III star is
radiative feedback, which has the potential to shut off
accretion, and, as such, limit the stellar mass. However,
regarding this issue, a recent review by prominent authors
of this field states [85], “any firm conclusions about the
resulting mass spectrum of Pop. III stars in the presence
of radiative feedback seems premature at this stage.”
However, note that cosmological 3D hydrodynamical
simulations regularly find final masses in excess of
100 M⊙ [83], with some finding Pop III stars as massive
as 1000 M⊙ [86].
There are two main mechanisms that suppress fragmen-

tation in the cloud: magnetic field interactions in the gas
cloud and darkmatter self-annihilation. Severalmechanisms
have been studied which generate magnetic fields in these
pristine gas clouds, however, a generic feature is that these
magnetic fields are relatively weak [85]. In the presence of
these fields, angular momentum transfer occurs by both
protostellar jets and magnetic breaking. This causes gas to
fall directly onto the protostar instead of forming a disk.
Without a disk, fragmentation cannot occur, and the result is
a single,massive, central star [74].Aweaker suppression can
come from considering dark matter annihilation during the
collapse of minihalos. Without dark matter annihilation,
fragmentation is seen to occur in collapsing Pop III halos
[76,81,82,87]. Adiabatic contraction can bring dark matter

with the collapsing baryons, causing density and thus the
annihilation rate to increase several orders of magnitude
(since the annihilation rate scales with the square of the
number density). It is unclear if dark matter annihilation is
energetic enough to overcome H2 cooling, however, sim-
ulations show that dark matter annihilation can impact the
dynamics of the accretion disk and thus reduce the level of
fragmentation [77,88,89]. In light of these (radiative feed-
back, magnetic fields, dark matter annihilation, and other)
effects, any absolute statements regarding the mass spec-
trum of Pop III stars are premature beyond what we have
seen in simulations to this point: a low number of massive,
central Pop III stars forming in each halo. Consequently,
these very massive, central stars are hot and emit a lot of
photoionizing radiation. As such, Pop III stars usher in
the epoch of reionization, when the baryonic gas in the
Universe becomes fully ionized. This transition is complete
by redshift z ∼ 7.
We end this section with a brief discussion regarding the

role of the heating from DM annihilation on the formation
of the first stars. This has been initially investigated by
Freese et al. [90], who found that under certain conditions,
dark matter heating can overcome the dominant cooling
mechanisms. This would subsequently halt the collapse of
the protostellar gas cloud when the baryon number density
is roughly n ∼ 1017 cm−3, well below the typical n ∼
1022 cm−3 when DM heating is not included. As such,
DM heating could lead to the formation of a new phase in
the stellar evolution, a dark star. These puffy objects are
powered by dark matter annihilations. Dark stars can grow
to be supermassive [91], and could be observed with the
upcoming James Webb Space Telescope (JWST) [92].
Their observation would indirectly confirm the existence
of dark matter. In contrast, if dark matter heating plays a
little role in the formation of the first stars, a proto–Pop III
star is born when the baryons have collapsed up to
n ∼ 1022 cm−3. Pop III stars and dark stars have very
different photometric signatures [92,93], and as such,
JWST could be used to disambiguate between those
two. For the reminder of this paper we will assume that
at least some of the first stars will be Pop III stars, and that
those objects will be found with an upcoming telescope,
such as JWST. In fact, we want to point out that [94] has
already found a candidate Pop III stellar system at z ∼ 7 in
the MUSE deep lensed Hubble Space Telescope field.

III. CAPTURE AND EVAPORATION OF DM
BY POP III STARS AND THEIR
OBSERVATIONAL EFFECTS

Via collisions with nuclei inside any compact, astro-
physical object, such as a star, neutron star, or white
dwarf, a DM particle can be slowed below the escape
velocity at the surface of the object, and thus become
trapped by its gravitational field. Subsequent collisions lead
to further slowing down, and eventually the captured DM
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sinks toward the center of the star, forming a self-
gravitating DM core. This is, in essence, what is commonly
referred to as DM capture. This phenomenon was studied
initially for WIMPs in the 1980s, when the single scattering
capture formalism of [30,32,33] was developed. In practice,
the formalism is limited to the case when DM particles are,
on average, experiencing at most one collision with nuclei
inside the star as they traverse it, hence “single scattering.”
This is a valid approximation when the capturing object is
not too compact and/or when the cross section of inter-
action between DM and baryons is not too high, which is a
direct consequence of the average number of collisions per
crossing of an object of radius R⋆, with target nuclei
number density nT, also called the optical depth, given by:
τ ¼ 2R⋆σnT . Whenever τ ≪ 1, one can safely apply the
single scatter formalism of DM capture. Conversely, when
τ ≫ 1, one should use the more general, multiscatter
formalism, developed by [34].2 In the next few paragraphs,
we give a brief review of the multiscatter formalism, and
the closed form analytical approximations we derived for
the total capture rates, in various limiting regimes. The
interested reader should consult Appendix A for technical
details. As DM particles, coming from a reservoir with
number density nX, cross an astrophysical object with nT
number density of scattering nuclei, they will be captured at
a rate given by [35]:

Ctot ¼
X∞
N¼1

CN

¼
X∞
N¼1

πR2⋆|{z}
capture area

×nX

Z
∞

0

fðuÞdu
u

ðu2 þ v2escÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DMflux

× pNðτÞ|fflffl{zfflffl}
prob: forN collisions

× gNðuÞ|fflffl{zfflffl}
prob: of capture

: ð1Þ

Throughout, we will denote by CN the capture rate after
exactly N collisions with nuclei inside the star. Note that
for nonrelativistic DM, such as in the case of our work,
nX ¼ ρX

mX
. Therefore, since Pop III stars form in DM-rich

environments (see Appendix E for estimates of ρX), they
are particularly efficient at capturing DM. In Ref. [41], we
showed that the probability of N collisions between DM
and nuclei inside the star has the following closed form:

pNðτÞ ¼
2

τ2

�
N þ 1 −

ΓðN þ 2; τÞ
N!

�
; ð2Þ

where Γða; bÞ is the incomplete gamma function. For the
probability that a DM particle is slowed down below vesc by
exactly N collisions we assume, following [35],

gNðuÞ ¼ Θðumax;N − uÞ; ð3Þ

where ΘðxÞ is the Heaviside step function. Throughout, we
denote by umax;N ¼ vesc½ð1 − βþ=2Þ−N − 1�1=2 the maxi-
mum value of the velocity a DM particle can have, far from
the star, such that it will be slowed down below the escape
velocity after N collisions. Here βþ ≡ 4mmX=ðmþmXÞ2,
with m being the mass of the target nucleus. In our work,
we assume a Maxwell-Boltzmann distribution fMBðuÞ for
the velocities of DM particles surrounding the star. There is
only one unique parameter describing such a distribution,
the velocity dispersion (v̄). In Appendix E, we estimate that
the dispersion velocity for DM in 106 M⊙ minihalos where
Pop III stars form is, to within factors of order unity,
v̄ ¼ 10 km s−1. For more details on how we implement the
calculation of Ctot from Eq. (1) numerically, and for useful
analytical approximations and their derivation, see
Appendix A. To facilitate the understanding of the main
body of the paper, without the need to refer to appendixes,
we summarize below the main results regarding the
behavior of the capture rates.
For mX ≫ m, and in the multiscatter regime (τ ≫ 1) we

find [see Eqs. (A8) and (A16a)] that the total capture rate
has the following scaling:

Ctot ∼
ρXσ

m2
Xv̄

3

M3⋆
R2⋆

; ð4Þ

whereas for single scattering capture (τ ≪ 1) we find two
distinct scaling relations:

Ctot ¼ C1∼
ρXσ

m2
Xv̄

3

M3⋆
R2⋆

if mX ≫ 3m

�
vesc
v̄

�
2

; ð5aÞ

Ctot ¼ C1∼
ρXσ

mXv̄
M2⋆
R⋆

if
m
3

�
v̄
vesc

�
2

≪mX ≪ 3m

�
vesc
v̄

�
2

:

ð5bÞ

It is noteworthy, and perhaps somewhat unexpected, that
at the higher end of the DM particle mass where the
single scattering approximation holds, we recover the
same scaling with relevant parameters as one has in
the multiscatter capture regime, as one can see from
Eqs. (4) and (5a).
For sub-GeV DM particles, one needs to include the

effects of “evaporation,” i.e. the loss of captured DM, as
they may be up-scattered to velocities above the escape
velocity (vesc) via collisions with nuclei, especially near the
center of the star, where nuclei are the most energetic. In
Appendix C we obtain and validate the following approxi-
mation for the evaporation rate of DM particles from a star:

E ≈
3V⋆n̄pucσ
2V1

ffiffiffi
π

p e
−v2escμ

u2cΘ
ð1þξ1=2Þ

: ð6Þ
2See also [35–37,95].
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We assumed that the internal structure of the star is well
modeled by a n ¼ 3 polytrope, as is the case for the
radiation pressure dominated Pop III stars considered here.
Throughout, V⋆ represents the volume of the star, n̄p is the

average proton number density, uc ≡
ffiffiffiffiffiffi
2Tc
mp

q
, i.e. the average

thermal velocity of protons at the center of the star,
μ≡mX=m, Θ≡ TX=Tc, and ξ1 ≈ 6.89 is the first node
of the Lane-Emden function for n ¼ 3. Additionally,
Vi ≡ R

⋆ dVe−imXΦ=TX , with ΦðrÞ being the gravitational
potential inside the star. Note how the exponential term
suppresses the evaporation rates for mX ≳ 1 GeV.
The interplay of capture, annihilation, and evaporation

of DM inside the star can be modeled by the differential
equation

_NX ¼ Ctot − ΓA − ENX; ð7Þ

where Ctot is the total capture rate and ΓA is the annihilation
rate, which can be recast as: ΓA ¼ CAN

j
X, with CA being an

NX-independent annihilation coefficient, and j being the
number of DM particles entering each annihilation event.
In this paper we consider four different scenarios for
the annihilation events: p/s-wave annihilations (j ¼ 2;
DMþ DM → SMþ SM), SIMP DM [96] (j ¼ 3;
DMþ DMþ DM → DMþ DM), or Co-SIMP [97]
(j ¼ 2; DMþ DMþ SM → DMþ SM).
For j ¼ 2 Eq. (7) has the following analytic solution:

NXðtÞ ¼
ffiffiffiffiffiffiffiffi
Ctot

CA

s
tanhð κtτeqÞ

κ þ 1
2
Eτeq tanhð κtτeqÞ

; ð8Þ

with τeq ≡ 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
CtotCA

p
, and κ ≡

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2τ2eq=4

q
. Whenever

t ≫ τeq=κ, the number of DM particles inside the star (NX)
attains a constant, limiting value. Previous work on Pop III
stars showed that, for WIMP-like dark matter, equilibrium
( _NX ¼ 0) is quickly reached within the lifetime of the star
[39]. The same holds true for superheavy dark matter
(mX ≳ 108 GeV), assuming an annihilation cross section at
the unitarity limit, as shown in [41]. In Appendix D we
revisit and generalize on those investigations, including the
role of evaporation for light DM. For nonthermal DM,
where the annihilation cross section is not constrained by
the thermal relic abundance, we obtain the minimum
annihilation cross section such that equilibrium between
capture/evaporation/annihilation can be reached within a
fraction of the lifetime of the star. This can potentially have
important repercussions on our ability to constrain DM-
proton interaction cross sections, since DM will annihilate
outside of the star as well, at a rate controlled by the
annihilation cross section. If this process operates for
sufficiently long times, the DM ambient densities are
reduced to a time-dependent plateau value (the annihilation

plateau) from their initial, adiabatically contracted assumed
profile. In Appendixes D and E we discuss in detail the
interplay between the requirement of efficient equilibration
of the DM capture and annihilation/evaporation processes
inside the star and the annihilation of DM in the vicinity of
the star. In all of the bounds on σ we present we will
include, whenever significant, the effects of this annihila-
tion plateau.
After this equilibrium is reached, the rate of change of

DM particles in the stellar core becomes zero, and one
obtains a stable energy source from dark matter annihila-
tions with luminosity. At mX ≳ 1 GeV, when we can
neglect evaporation, this becomes

LDM ¼ fΓAmX ¼ fCtotmX; ð9Þ

with f being the model-dependent, order unity fraction
of the rest mass energy (mX) that is deposited inside the star
as a result of DM annihilations. For simplicity we assume
f ¼ 1, i.e. all the energy from DM annihilations gets
deposited inside the star. Our results scale linearly with
f, and as such it would be straightforward to adjust them
for any arbitrary f. An example calculation of dark matter
luminosity from annihilations is presented in Fig. 1, for
mX ≳ 102 GeV. Assuming XENON1T [98] SI upper
bounds on σ,

σ ≲ 8 × 10−41 cm2

�
mX

108 GeV

�
; ð10Þ

we obtain the maximum possible luminosity due to
captured DM (LDM) at a given DM particle mass (mX),
for Pop III stars of mass 100 M⊙, 300 M⊙, and 1000 M⊙,
respectively.

FIG. 1. Upper bounds on the luminosity from captured dark
matter annihilations for Pop III stars of various masses in the
mass range of 102–1015 GeV. We assume here v̄ ¼ 106 cm s−1

and ρX ¼ 1016 GeV cm−3. For the proton-DM cross section we
used XENON1T SI bounds.
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From Fig. 1, we note the two distinct trends for the
upper bounds that any DM direct detection experiment
places on LDM: a constant value at highmX, and Lmax

DM ∝ mX

for low mX. This transition at mX ¼ 3mðvesc=v̄Þ2 is to be
expected, in view of our results for the scaling of Ctot
[Eqs. (5a) and (5b)]. Moreover, since LDM ∝ σ=mX for
mX ≳ 3mðvesc=v̄Þ2, and in view of the upper bound from
XENON1T σ ∝ mX, we can understand the trend from
Fig. 1, where at the high-mass end Lmax

DM ∝ m0
X. Conversely,

for mX ≲ 3mðvesc=v̄Þ2, a consequence of the capture rate
being proportional to σ=mX is that Lmax

DM ∝ mX, as found
numerically in Fig. 1.
As alluded to before, at mX ≲ 1 GeV we include the

effects of DM evaporation. In the case of j ¼ 2 (p/s-wave
annihilation or Co-SIMP DM), in view of Eq. (8), one can
include analytically the role of evaporation in the DM
luminosity after equilibrium has been reached in the
following way:

LDM ¼ fΓAmX ¼ fCtotmX

ðκ þ 1
2
EτeqÞ2

: ð11Þ

As expected, the effect of evaporation is to reduce the
amount of the rest mass energy from captured DM particles
that is deposited inside the star. Additionally, note that even
if E is significant, its effects on the DM luminosity can be
irrelevant if Eτeq ≪ 1.
Using these calculations for the luminosity from dark

matter self-annihilations, we can estimate an upper bound
on the mass of Pop III stars shining at the Eddington limit.
For stars that are radiation pressure dominated, the mass
and luminosity become linearly proportional. Additionally,
any further accretion or additional luminosity for a star is
disrupted by the radiation pressure and is not allowed. We
can write the Eddington luminosity as

LEdd ¼
4πcGM⋆

κρ
; ð12Þ

where G is the universal gravitational constant, c is the
speed of light,M⋆ is the mass of the star in question, and κρ
is the stellar atmospheric opacity. The dominant opacity
source in metal-free, hot atmospheres is Thompson electron
scattering, which is a function of the hydrogen fraction (X)
of the star: κρ ¼ κes ¼ 0.2ð1þ XÞ cm2 s−1. As the star
ages, the hydrogen fraction decreases while the fraction of
other elements increases, making κρ a function of the age/
metallicity of the star. In this work we assume a big bang
nucleosynthesis (BBN) composition of Pop III stars,
resulting in an Eddington luminosity of

LEdd ¼ 3.7142 × 104ðM⋆=M⊙ÞL⊙: ð13Þ

Reinterpreting the Eddington luminosity not as a maxi-
mum luminosity, but as a maximum mass bound, we can

calculate what the maximum mass of Pop III stars would
be, via the following criterion:

LnucðM⋆Þ þ LDMðM⋆Þ ≤ LEddðM⋆Þ; ð14Þ

with the bound being saturated for a star of M⋆ ¼ Mmax.
We include contributions to the luminosity from both DM-
DM annihilations and hydrogen burning in the core. For the
contribution from nuclear fusion, we find an interpolating
function that fits well the zero age main sequence (ZAMS)
Pop III models as tabulated in Table I. We therefore assume
that, to a good approximation, the rate of hydrogen fusion,
and therefore Lnuc, will not be affected by dark matter
annihilations taking place inside the stellar core. A full
hydrodynamic simulation, which is beyond the scope of
this paper, would be required to account for the possible
effect of the DM annihilations on the nuclear luminosity.
However, based on the stellar thermostat effect, we expect
that the core temperature, and therefore the nuclear lumi-
nosity, will not change significantly even if there is an
additional source of energy from DM annihilations. If
anything, DM annihilations would lead to an increase in
core temperature, and therefore to an increase in the nuclear
luminosity. As such, our bounds should be viewed as
conservative.
In Table I we list the relevant parameters, such as mass,

radius, escape velocity, and luminosity due to nuclear
fusion, for Pop III stellar models from [40,99,100].
As mentioned previously, in order to apply our

Eddington limit criterion [Eq. (14)], and therefore find
the maximum mass a Pop III can have if the effects of
captured DM annihilations are taken into account, we need
a fitting formula for LnucðM⋆Þ. We find that

TABLE I. Stellar mass, radius, and luminosity in solar units for
the ZAMS Pop III models of [40,99,100] we consider in this
paper.

M⋆½M⊙� R⋆½R⊙� vesc½vesc;⊙� Lnuc½L⊙�
1 0.875 1.072 1.91 × 100

1.5 0.954 1.257 1.05 × 101

2 1.025 1.401 3.29 × 101

3 1.119 1.642 1.46 × 102

5 1.233 2.019 8.46 × 102

10 1.400 2.680 7.27 × 103

15 1.515 3.156 2.34 × 104

20 1.653 3.488 5.11 × 104

30 2.123 3.769 1.45 × 105

50 2.864 4.190 4.25 × 105

100 4.118 4.942 1.40 × 106

200 6.140 5.723 3.97 × 106

300 7.408 6.382 6.57 × 106

400 9.030 6.674 9.89 × 106

600 11.24 7.326 1.61 × 107

1000 12.85 8.845 2.02 × 107
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Lnuc ≃ 10
log ð3.71×104L⊙s=ergÞ

1þexpð−0.85 logðxÞ−1.95Þ · x
2.01

x0.48þ1 erg=s; ð15Þ

where x≡ M⋆
M⊙

and L⊙ ≡ 3.846 × 1033 erg=s. This formula

interpolates between the lower mass regime (Lnuc ∝ M3⋆)
and the Eddington limited regime (Lnuc ∝ M⋆). An exam-
ple of the calculation of the Eddington limit, DM lumi-
nosity, and nuclear luminosity is presented in Fig. 2.
In Fig. 2, the maximum mass corresponds to the

intersection of the sum LDM þ Lnuc with the Eddington
limit. We note a break in the power law for the dark matter
luminosity around M⋆ ∼ 20 M⊙. This power law comes
from the dependence on radius with mass that we derived
for our Pop III star data. The piecewise expression we adopt
for the rest of this paper is

R⋆
R⊙

≈

8<
:

0.88ðM⋆
M⊙

Þ0.20 if M⋆ ≲ 20 M⊙;

0.32ðM⋆
M⊙

Þ0.55 if M⋆ ≳ 20 M⊙:
ð16Þ

These homology relations were found by fitting two
distinct power laws to the data in Table I. Since in
Fig. 2 we consider the case of a 104 GeV DM particle,
in view of Eq. (5b), LDM ∝ M2⋆=R⋆, and in view of Eq. (16)
we predict, and confirmed numerically, that LDM ∝ M1.8⋆
(for M⋆ ≲ 20 M⊙), and LDM ∝ M1.45⋆ (for M⋆ ≳ 20 M⊙).
We note that for mX ≳ 3mðvesc=v̄Þ2, we expect a different
scaling of LDM with M⋆, in view of Eqs. (4) and (5a).
Namely, LDM ∝ M2.6⋆ (for M⋆ ≲ 20 M⊙) and LDM ∝ M1.9⋆
(for M⋆ ≳ 20 M⊙), respectively. The main point is that all

of those indicate an increase with stellar mass faster than
M⋆. Therefore, for a sufficiently large M⋆, one is guaran-
teed to find that the sum Lnuc þ LDM reaches the Eddington
limit, which directly implies a maximum stellar mass.
Upper bounds on Pop III stellar masses obtained by

imposing the sub-Eddington condition [Eq. (14)] and
assuming XENON1T SI limits on σ are shown in Fig. 3.
For v̄ we have assumed a fiducial value of 10 km=s,
representative of the 106 M⊙ minihalos hosting Pop III
stars [39] (see also Appendix E). Reading the plot verti-
cally, we note that for a given mX, an increase in the
ambient DM density, ρX, leads to tighter bounds, as
evidenced by the darkening of the colors in the heat
map as we progress upward, toward higher ρX, in bins
of fixed mX. This is to be expected, since LDM ∝ ρX,
and thereforeMmax is inversely proportional to the ambient
DM density. We now move to discussing the trends in the
heat map if we read it horizontally, keeping ρX fixed.
Remember, Lmax

DM ∝ mX, whenever mX ≲ 3mðvesc=v̄Þ2, and
Lmax
DM ∝ m0

X, when mX ≳ 3mðvesc=v̄Þ2, as evidenced by the
two distinct trends of Lmax

DM in Fig. 1. This implies upper
bounds on Pop III stellar mass that are insensitive with mX
at the higher end of the DM particle mass range, and
bounds that become weaker as we decrease mX, whenever
mX ≲ 3mðvesc=v̄Þ2. Both of those trends can be seen
in Fig. 3.
In the next section we demonstrate that the mere

observation of a Pop III star of any mass can be, in

FIG. 2. Luminosity as a function of stellar mass for 104 GeV
dark matter and a DM density of ρX ¼ 1016 GeV cm−3. Two
things to note are (a) the nuclear fusion luminosity approaches the
Eddington limit for large stellar masses and (b) the sum of LDM
and Lnuc and its intersection with LEdd defines the maximummass
for a given density and mass of dark matter. In this specific
calculation, we find a maximum mass of Mmax ∼ 1100 M⊙. We
can see the same result in Fig. 3—the maximum mass of a Pop III
star considering 104 GeV dark matter at an ambient density of
1016 GeV cm−3 is of order 103 M⊙.

FIG. 3. Maximum stellar mass as a function of mX and ρX
assuming X1T SI DM-proton cross section bounds and v̄ ¼
106 cm s−1 when including the effects of annihilation of captured
dark matter by Pop III stars. The gray area corresponds to bounds
weaker than 104 M⊙, where other mechanisms, such as frag-
mentation of the gas cloud or radiative feedback, would be
dominant in determining the maximum stellar mass [78].
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principle, used to place constraints on the DM-proton
scattering cross section.

IV. CONSTRAINING DM PROPERTIES
USING POP III STARS

In this section we demonstrate a method for placing
bounds on dark matter properties through the observation
of Pop III stars. As discussed in the previous section, the
capture and annihilation of dark matter particles by Pop III
stars in dense DM environments provides an additional
source of stellar luminosity. This extra power source places
limits on the maximum mass it can attain via the Eddington
luminosity, as demonstrated in Sec. III (Fig. 3). Here,
instead, we pose the following question: what information
about dark matter can we ascertain if we were to observe
any Pop III star, of a given mass? The mere existence of the
star already implies something about the luminosity due to
captured DM: LDM ≤ LEddðM⋆Þ − LnucðM⋆Þ, which is just
the sub-Eddington condition of Eq. (14), rearranged in
order to demonstrate the idea of constraining DM proper-
ties. Whenever v̄ ≪ vesc (which is the case for Pop III
stars), and mX ≫ m,3 it turns out that this condition can be
recast as

fmX

ffiffiffiffiffiffiffiffi
24π

p
GM⋆R⋆

ρX
mXv̄

X∞
N¼1

pNðτÞ
�
1−

�
1þ2A2

Nv̄
2

3v2esc

�
e−A

2
N

�
|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

total capture rateðCtot≡
P

∞
N¼1

CNÞ

≤LEddðM⋆Þ−LnucðM⋆Þ; ð17Þ

with A2
N ¼ ð3Nmv2escÞ=ðmXv̄2Þ, when mX ≫ m, and

A2
N ¼ ð3NmXv2escÞ=ðmv̄2Þ, when m ≫ mX. We have used

the fact that LDM ¼ fmXCtot [Eq. (9)],
4 and for the total

capture rate Ctot ¼
P

N¼∞
N¼1 CN , with CN given by Eq. (A7).

In all of our numerical results we used the full, non-
approximated, CN from Eq. (A2). However, in order to gain
physical insight and understand the behavior of our bounds,
it is easiest if we use the approximated CN of Eq. (A7), as
done in Eq. (17). Since the sum on the lhs is directly
proportional to the DM-proton scattering cross section,5 we
can use Eq. (17) to place upper bounds on σ × ρX. Using
constraints on σ from direct detection experiments, we can
break this degeneracy, and use our method to place upper
bounds on ρX at the center of minihalos hosting Pop III
stars. Additionally, one can estimate the ambient DM
density at the location of the star. In Appendix E, we
apply the well-established adiabatic contraction formalism

to do just that. This leads to the exciting possibility of
constraining the DM-proton scattering cross section (σ) via
Eq. (17) by finding numerically the value of σ which
saturates the inequality.
We start with our projected bounds on ρX × σ, inferred

from assuming the possible identification of of Pop III stars
of various mass. To this aim, we recast Eq. (17) by isolating
on the lhs all the unconstrained parameters (in this case ρX
and τ ∝ σ):

ρX
X∞
N¼1

pNðτÞ
�
1 −

�
1þ 2A2

Nv̄
2

3v2esc

�
e−A

2
N

�

≤
LEddðM⋆Þ − LnucðM⋆Þffiffiffiffiffiffiffiffi

24π
p

f

v̄
GM⋆R⋆

: ð18Þ

Next, we approximate the sum in Eqs. (17) and (18), and
find that it takes three possible values: 1 (region II, i.e.
τ ≫ 1 and kτ ≫ 1), 2=3τ (region III, i.e. τ ≪ 1 and k ≫ 1),
and 2=3kτ (region IV, i.e. k ≪ 1 and τ ≪ 1, and region I,
i.e. kτ ≫ 1 and τ ≫ 1). This allows us to explicitly express
LDM ∝ ρXσ, as expected. See Appendix A for details on
how we obtained the three approximate values mentioned
above. In Fig. 4, we plot the various regions of validity for
those three approximations in the σ-mX parameter space.
Note that the location of the k ¼ 1, τ ¼ 1, and kτ ¼ 1 lines
that separate the σ −mX parameter space into the four
regions (labeled I–IV in Fig. 4) will be different for
different mass stars, which can be most easily understood
from the following scaling relations for τ ¼ 2R⋆σnT
(with nT the number density of target nuclei) and k≡
3

minðm;mXÞ
maxðm;mXÞ

v2esc
v̄2 (with m being the mass of the target nuclei):

k ≈ 104
M⋆
M⊙

R⊙

R⋆

�
10 km s−1

v̄

�
2 minðmX;mÞ
maxðmX;mÞ ; ð19Þ

τ ≈ 10−5
�

σ

1.26 × 10−40 cm2

�
M⋆
M⊙

�
R⊙

R⋆

�
2

: ð20Þ

Throughout our work, we assume that collisions with the
more abundant H nuclei (i.e. protons) dominates the
capture. This simplification leads to an underestimate of
the total capture rates, and therefore all of our bounds
would become more stringent if the effects of collisions
with He nuclei were taken into account. In obtaining the
result of Eq. (20), we assumed the fraction ofH in a Pop III
star to be given by BBN, i.e. X ≈ 0.75.
Having found approximations for

P∞
N¼1 pNðτÞ×

ð1 − ð1þ 2A2
Nv̄

2

3v2esc
Þe−A2

N Þ, we can use them to calculate the

capture rates in each of the four regions identified [see the
underbraced part of Eq. (17) or (A8)]. Perhaps the most
intriguing, and somewhat unexpected, region of the σ −mX
parameter space is what we called region II, in which the
sum attains its maximum value, 1. Physically, in that

3For the case of mX ≪ m all we need to do is to replace
mX ↔ m in AN .4At low mX we include the effects of DM evaporation as per
Eq. (11).

5This subtle point can be most easily understood if we look at
the limiting behaviors from Eq. (4) and Eqs. (5a) and (5b). For
more details see Appendix A.
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region, the scattering cross section is sufficiently high to
efficiently lead to the capture of all DM particles crossing
the star. This leads to a particularly simple form for the total
capture rate, which now becomes just the number of DM
particles crossing the star per unit time, i.e. flux × area:

CII
tot ≈ 8 × 1043 s−1

�
ρX

1014 GeVcm−3

��
102 GeV

mX

�

×

�
10 km s−1

v̄

�
M⋆
M⊙

R⋆
R⊙

: ð21Þ

Continuing to region III (single scatter and k ≫ 1) we find
that

CIII
tot≈5.4×1038 s−1

�
ρX

1014 GeVcm−3

��
σ

1.26×10−40 cm2

�

×

�
102 GeV

mX

��
10 kms−1

v̄

��
M⋆
M⊙

�
2
�
R⋆
R⊙

�
−1
: ð22Þ

This is just the scaling from Eq. (5b), with numerical
factors explicitly shown here. Moving to regions IV (single

scatter and k ≪ 1) and I (multiscatter and kτ ≪ 1Þ, we find,
remarkably, that the capture rates have the exact same form,

CI
tot ¼ CIV

tot

≈ 6.26 × 1028 s−1
�

ρX
1014 GeVcm−3

�

×

�
σ

1.26 × 10−40 cm2

��
108 GeV

mX

�
2
�
10 km s−1

v̄

�
3

×

�
M⋆
M⊙

�
3
�
R⋆
R⊙

�
−2
: ð23Þ

This is a highly counterintuitive result, since in region IV the
single scatter approximation holds, whereas region I iswhere
the multiscatter approach is necessary. The fact that there is a
smooth continuity between those two is not unexpected.
What is surprising is the large swath of parameter space for
which both the single scatter approximation and the multi-
scatter yield exactly the same result, even if in one case the
controlling parameter τ is much larger than one (region I) vs
much less than unity (region IV).
In Fig. 5 we present a numerical validation of our

analytic approximations of the total capture rates of
Eqs. (21)–(23). Note the excellent agreement between
the full numeric result and our approximations, which
only breaks down at boundaries of regions II and III.
From Eq. (17), and using the three different forms of Ctot

from Eqs. (21)–(23), we can place numerical bounds on
ρXσ. Note that from the independence of σ in CII

tot, the total
capture rate in region II, we could directly constrain the DM
density at the location of the star, without any knowledge of
σ. For compact objects, such as neutron stars, it turns out
that region II is in parameter space that is not yet ruled out

FIG. 4. Leading-order approximate values of
P∞

N¼1 pNðτÞ×
ð1 − ð1þ 2A2

N v̄
2

3v2esc
Þe−A2

N Þ in various regions of the σ −mX parameter

space are given in each corresponding region. The line of τ ¼ 1
separates the single scatter (τ ≲ 1) from multiscatter regime
(τ ≳ 1). The multiscatter region can be further subdivided into
two regions: region I (τ ≳ 1 and kτ ≲ 1) and region II (τ ≳ 1 and
kτ ≳ 1), where the sum takes the value: 2=3kτ and 1, respectively.

We define k in the following way: k≡ A2
1 ¼ 3v2esc

v̄2
minðmX ;mÞ
maxðmX ;mÞ.

Furthermore, note that the line k ¼ 1 separates the single scatter
capture in two two distinct regions: k ≫ 1, where the sum is 2=3τ
(region III), and k ≪ 1, where the sum is 2=3kτ (region IV). Most
remarkably, we find that in region IV (single scatter, and kτ ≪ 1)
and region I (multiscatter, and kτ ≪ 1) the sum, and therefore the
capture rates, have the exact same parametric scaling.

FIG. 5. The relative error in the analytic approximations of the
capture rate in the four regions of interest (I–IV), when compared
to a full numerical calculation. Note how, apart from the naturally
emerging boundary lines defined by τ ¼ 1, k ¼ 1, and kτ ¼ 1,
our approximations hold very well, with a relative error less than
10% throughout.
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by direct detection experiments, for both SD and SI σ. This
means that, in principle, if the effects of DM heating could
be observed in neutron stars, besides acting as probes of
DM, neutron stars (NSs) could also be used to constrain the
DM density in their environment if capture becomes so
efficient that the entire DM flux crossing the NS is trapped.
Returning to the focus of our paper, Pop III stars, we get the
following constraints on ρXσ:

ρXσ≲
( ðπ

6
Þ1=2 v̄

v2esc
m

XM⋆
LEddðM⋆Þ−LnucðM⋆Þ

f for regionIII;

ð π
54
Þ1=2 v̄3

v4esc
mX
XM⋆

LEddðM⋆Þ−LnucðM⋆Þ
f for regions IVandI:

ð24Þ

The above equation comes from Eq. (18) by using the
appropriate approximations for the sum on the lhs: 2=3τ
(region III) and 2=3kτ (regions IVand I). As usual, by X we
denote the hydrogen mass fraction of the star, and f the
fraction of the annihilation energy deposited in the star. In
obtaining the bounds for region IV (τ ≪ 1 and k ≪ 1) and
region I (τ ≫ 1 and kτ ≪ 1Þ, we have explicitly replaced k

with its definition: k≡ 3
minðmX ;mÞ
maxðmX ;mÞ

v2esc
v̄2 . From Eq. (24), we

expect that our bounds on ρXσ vs mX will be constant for
lower mX (i.e. region III, where k ≫ 1) and will scale
linearly with mX at larger DM particle mass, corresponding
to k ≪ 1 (regions I and IV), a trend that can be seen
explicitly in Fig. 6. As expected, the tightest bounds in
Fig. 6 are placed through the observation of the most
massive Pop III stars, since more massive stars lead to more
efficient capture rates, and therefore a larger LDM. This is a
major benefit of our method, as more massive stars are
easier to detect than their less massive counterparts due to
their greater luminosity.

As mentioned before, the DM luminosity is sensitive to
the product ρX × σ, both in the single scatter and multi-
scatter capture regimes. As such, without any other
information aside from the mass of a hypothetically
observed Pop III star, we can only constrain this product.
We now proceed to break down the degeneracy between ρX
and σ, and place exclusion limits on each of those two
independent parameters. If direct detection experiments are
to find the DM particle, both σ and mX are going to be in a
relatively narrow swath of the σ −mX parameter space,
between current bounds and the neutrino floor. In Fig. 7, we
calculate projected bounds on the ambient DM density at
the location of Pop III stars, implied by the observation of a
Pop III star, and assuming the DM-proton scattering cross
section is anywhere in the band of parameter space where
SI direct detection experiment could identify it. This
represents a method for constraining the central DM
density in halos, a parameter that is beyond the reach of
current numerical simulations. In order to place the con-
straints on ρX presented in Fig. 7, we numerically solve
Eq. (18) for the DM density that saturates the sub-
Eddington bound for a variety of proton-DM cross sections
and for hypothetical Pop III stars with mass ranging
between 10 M⊙ and 1000 M⊙. For σ, we assume values
that are still allowed by direct detection experiments, but
above the neutrino floor. Note that our projected bounds
will actually become weaker as direct detection experi-
ments further constrain σ to lower values. This is to be
expected, since pushing σ to lower values implies higher ρX
in order to maintain the capture rate, and LDM, constant.

FIG. 6. Projected bounds on ðρX × σÞ vs mX imposed by the
potential observation of Pop III stars. In obtaining these limits we
only assume the observation of a hypothetical Pop III star, of a

given mass. The thin vertical lines correspond to k≡ 3 m
mX

v2esc
v̄2 ¼ 1

for each star.

FIG. 7. Projected constraints on ambient DM density at the
center of Pop III host DM minihalos as a function of DM mass,
assuming σ have been positively identified by SD direct detection
experiments. For the solid/dashed exclusion limit lines we
assume the DM-proton scattering cross section at the current
XENON1T limit/XENON neutrino floor given by [98,101].
The shaded regions represent the regions in the ρX −mX
parameter space ruled out by the detection of Pop III star with
mass M⋆. The purple lines/regions represent the bounds when
M⋆ ¼ 1000 M⊙, while the blue lines/regions represent the
bounds when M⋆ ¼ 10 M⊙.
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We note a broken power law behavior for our projected
upper bounds on ρX with mX: at high mX the bounds are
constant, whereas at lower mX they scale like m−1

X . Both of
those are a consequence of the two different scaling
relations valid for the total capture rate: Ctot ∼ ρXσ=mX

(region III, where k ≫ 1) and Ctot ∼ ρXσ=m2
X (regions IV

and I, where k ≪ 1). Since we use bounds from direct
detection: σ ∝ mX, leading to Lmax

DM ∼ ρXmX (region III) and
Lmax
DM ∼ ρX (regions IV and I). This, in turn, leads to the

observed broken power law trend in the ρX projected upper
bounds. Additionally, for higher mass stars, the bounds are
stronger, which is a consequence of higher capture rates for
the case of more massive Pop III stars. For the most massive
star we consider here, M⋆ ¼ 1000 M⊙, using the current
best bounds on σ places a limit on ρX as low as
1014 GeV cm−3 for DM masses ≳106 GeV. This value
ranges from ∼1014–1017 GeVcm−3 for σ between the
current best bounds and the neutrino floor. For the lowest
DM mass (mX ¼ 102 GeV), our bounds range from
∼1018–1021 GeV cm−3. A similar analysis on the M⋆ ¼
10 M⊙ case shows a limit of ∼1017 − 1020 GeVcm−3 for
DM masses ≳105 GeV and ∼1019 − 1022 GeV cm−3 for
mX ¼ 102 GeV. We want to emphasize once more that our
constraints on ρX are forecast bounds, assuming identifi-
cation of DM from direct detection experiments and the
observation of a Pop III star of a given mass.
We discuss below the implications of our results regard-

ing the possibility of constraining the DM density at the
center of DM halos hosting Pop III stars. Figure 7 outlines
the main findings: a way to constrain the DM ambient
density toward the center of halos with maximum values as
low as ρX ∼ 1014 GeV cm−3 for the most massive stars.
Analytically, dark matter halo profiles can be well under-
stood by the Navarro-Frenk-White (NFW) profile, as
outlined in [102]. These profiles become altered due to
the infall of baryonic matter to the center of the halo, which
pulls the dark matter closer to the center in a process known
as adiabatic contraction. Previous work has been done to
study DM capture and annihilation in the first stars using
these adiabatically contracted profiles [39]. However,
although analytical methods can be used to estimate the
ambient DM density at the edge of the baryonic core, as
done in [103] and this paper (see Appendix E), numerical
simulations, such as those done in [69], are unable to
resolve the density toward the edge of the baryonic core.
Hence, we provide a novel method for constraining this
property through the observation of Pop III stars, in
conjunction with the possible upcoming identification of
σ and mX by direct detection experiments. Our findings,
outlined in Fig. 7, demonstrate that realistic bounds on the
DM density can be placed across all DM masses.
We conclude this section with the most exciting appli-

cation of our method: using Pop III stars to place upper
bounds on the DM-proton scattering cross section. In [104]
we apply this method to the candidate Pop III complex at

z ∼ 7 identified in the MUSE Hubble deep lensed field by
[94] and find exclusion limits on σ that are competitive,
or deeper than, those obtained by the most sensitive
direct detection experiments to date: XENON1T (SI) and
PICO60 (SD). Additionally, for SD constraints, our bounds
probe well below the neutrino floor. Moreover, for sub-
GeV DM, we placed bounds on the DM-proton interaction
cross section for WIMPDM and the theoretically motivated
Co-SIMP model [97].
In this paper, we will focus on the projected upper

limits resulting from the potential detection of Pop III stars
at redshifts of z ∼ 10–20, which iswhere JWSTismost likely
to find Pop III stars. For constraining σ, we assume a central
DM density corresponding to adiabatically contracted
NFW profiles with enhanced densities of ρX ¼ 1013 −
1016 GeV cm−3 for Pop III stars formed at z ∼ 10–20 (see
Appendix E for details on DM densities at the center of
Pop III–forming halos). The range in ρX corresponds to
different assumptions on the number density of the collaps-
ing baryonic cloud when compression of the DM densities
due to infall of baryons will cease to be efficient. We
represent our uncertainty in the central density by placing
a range of constraints on σ, corresponding to the possible
range of DM densities. Additionally, we take into consid-
eration the possible effects DM annihilation would have on
the ambient DM density. For 2 → 2 processes, such as p/s-
wave annihilations, one finds that ρ−1X ðtÞ ¼ ρ−1X0 þ ρ−1APðtÞ,
with ρ−1X0 being the initial DM density, and the annihilation
plateau (value reached at later times) given by ρAPðtÞ ¼
mX=ðhσvitÞ. Regarding hσvi, for WIMPs we use the value
that leads to freeze-out of the observed thermal relic
abundance appropriate for each case: the standard hσvi ∼
10−26 cm3 s−1 (s-wave) and hσvi ∼ 10−24=x cm3 s−1

(p-wave) [105]. Unless otherwise specified, x ¼ mX=TX,
with TX being the captured DM temperature, which we
calculate in Appendix B. For nonthermal DM, when hσvi is
not fixed by the relic abundance, in AppendixDwe calculate
the lower bound on hσvi that leads to an equilibration of
the capture and annihilation/evaporation processes in a
timescale much shorter than the lifetime of the star. We find
that this is in both cases much lower than the unitarity limit,
therefore equilibration is physically possible. For the case of
thermalDMwehave explicitly checked in the sameappendix
that the freeze-out hσvi is sufficiently high to ensure rapid
equilibration.
Figure 8 shows our main results: competitive bounds can

be placed on the σ −mX parameter space through the
detection of Pop III stars in sufficiently high density DM
regions detected long after they enter the zero age main
sequence. For comparison, we have included the current
best bounds on this parameter space available from the
XENON1T one-year direct detection experiment for SI
interactions and the PICO-60 experiments for SD inter-
actions. We have also included the deepest bounds
which could be placed by each experiment (black lines).
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Direct detection experiments on Earth are fast-approaching
limits on their ability to constrain DM parameter space due
to the flood of atmospheric neutrinos [101]. Below the so-
called neutrino floor, these experiments will be unable to
discern DM signals from the background flux of neutrinos

and will thus lose constraining power. Our results suggest
that we can compete with the current bounds placed by the
XENON1T one-year experiment for SI interactions. When
considering SD interactions, for all DM densities and stellar
masses considered, we predict that Pop III stars, if observed

FIG. 8. Projected bounds on DM-nucleon scattering cross section as a function of DMmass placed by the potential observation of Pop
III stars with masses ranging from 100 M⊙ (green) to 1000 M⊙ (purple). Ambient DM densities are found from adiabatically contracted
NFW profiles. We represent the inherent uncertainty of this procedure by colored shaded regions. They each represent the range of upper
bounds on σ which can be placed for a given Pop III stellar mass, when ρX takes the following range of possible values:
1013 GeV cm−3 ≲ ρXð0Þ≲ 1016 GeV cm−3. For each star, we consider the effects of annihilations in the region surrounding the star on
the ambient density for t ¼ 1 Myr. Left panels: bounds placed for the s-wave annihilation channel, with the top panel being spin-
independent bounds and the bottom panel spin-dependent bounds. Right panels: bounds placed on WIMP DM annihilating through the
p-wave channel, again with the top panel being spin independent and the bottom spin dependent. For the spin-independent bounds, the
blue region is the excluded region from the XENON1T experiment, the gray region from the most stringent bounds below 6 GeV
[98,106–108], and the solid black line represents the neutrino floor for the XENON1T experiment. For the SD parameter space, the blue
region is the excluded region from the PICO-60 experiment, the gray region is from the most stringent bounds below 6 GeV
[106,107,109,110], and the solid black line represents the neutrino floor for this experiment. Note that the detection of all Pop III masses
considered here can be used to rule out previously unexplored parameter spaces for sufficiently high DM densities.
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and confirmed, would rule out a large swath of parameter
space currently untouched by the best bounds given by
direct detection. Perhaps the most exciting finding of this
work is that we are able to probe below the neutrino floor
region limiting SD direct detection experiments.
Above mX ∼ 106 GeV, the linear relationship for our

projected limits on σ from Fig. 8 can be easily understood.
When k ≪ 1, i.e. for higher mX, the luminosity due to
captured DM annihilations scales like LDM ∝ σ=mX, and
therefore the bounds on σ scale linearly withmX. Of course,
this assumes ρX is independent of mX, i.e. given by the
initial, adiabatically contracted profile. For low-mass
WIMP DM, annihilations are much more efficient in the
ambient medium surrounding the star and so at late times
the DM density becomes dependent on mX, as per the
“annihilation plateau” discussed in detail in Appendix E.
The bounds in Fig. 8 are those for a star detected at around
t ∼ 106 yr after entering the main sequence, when it is most
likely to be detected. The annihilation plateau effect is
evident in the bounds on s-wave DM in Fig. 8 for
1 GeV≲mX ≲ 106 GeV. For the higher densities, in this
mass region the bounds scale like σ ∝ m−1

X . Without the
annihilation plateau, when mX is in this range, k ≫ 1, and
so LDM ∝ σρX

m0
X
. However, at late times, for s-wave annihi-

lation the ambient DM density scales like ρX ∝ mX, and so
the bounds become inversely related to mX. For the p-wave
channel, the annihilation plateau becomes evident at lower
DM masses than the s-wave channel due to its lower
annihilation cross section. In the right panels of Fig. 8, the
annihilation plateau effect can be seen for the M⋆ ¼
1000 M⊙ star in the mass region 10−1 GeV≲mX≲
1 GeV. Here, the bounds have the relationship σ ∝ m−2

X .
This is because the p-wave annihilation cross section
scales like hσvi ∝ m−1

X and the annihilation plateau like
ρAP ∝

mX
hσvi. Thus, at late times, ρX ∝ m2

X. In both the p-wave

and s-wave cases, below mX ∼ 1 GeV the effects of
evaporation become prominent and thus our bounds
become asymptotic as seen on both sides of Fig. 8. As
the bounds cross the boundary of regions II and III of the
σ −mX parameter space, they begin curving toward the
right, forming a small section of lower bounds. As noted in
the discussion of Fig. 4, in region II the DM capture rate is
independent of σ, and so the bounds we find in this region
have σ dependence from evaporation only and are from
solving Eq. (14) with the DM luminosity given by Eq. (11).
Figure 8 shows that in the highest density environments

predicted in adiabatically contracted Pop III star-forming
DM halos, the observation of Pop III stars places tighter
bounds on σ than possible with direct detection experi-
ments. For the lowest densities we consider here
(ρX ∼ 1013 GeVcm−3), the bounds we place are deeper
than current bounds on SD interactions across all DM
masses. Referring to Appendix E, we can see that this
density is approximately that of the DM density at the edge

of the baryonic core for baryonic densities of nB ¼
1013 cm−3 for a potential z ∼ 15 system. These bounds
are quite conservative as the baryonic cloud continues to
collapse up to the formation of a protostellar core, at
nB ∼ 1022 cm−3, which would correspond to an adiabati-
cally contracted value for ρX of ∼1019 GeV cm−3.
Realistically, we expect the typical density for a Pop III
host DM minihalo to be somewhere between 1013 and
1019 GeV cm−3. To be conservative, we will consider an
upper limit of ρX ∼ 1016 GeVcm−3. Increasing the DM
density from 1013 GeV cm−3 has the effect of placing
tighter constraints on σ. For our highest DM density
considered (ρX ¼ 1016 GeVcm−3), the bounds placed by
all stellar masses are deeper than the XENON1T one-year
bounds for SI interactions once DMmasses are≳105 GeV.
Since LDM ∝ ρX, our projected bounds are deeper for
higher ρX, as evidenced in Fig. 8. Also, higher mass
Pop III stars lead to more stringent bounds, since more
massive stars are more efficient DM captors. We assumed
that the Pop III stars are within 10 A.U. of the center of the
DM halo, as demonstrated by numerous hydrodynamical
simulations [66–73,75] which show that Pop III stars form
either in isolation or a few per DM minihalo, with most of
them within the central 10 A.U. and the most massive ones
closest to the center.
Next, for illustrative purposes, we will show the pos-

sibility of constraining σ through the detection of a young
Pop III star, such that the annihilation plateau is not
relevant. Figures 9 and 10 show projected bounds in the
low-mass WIMP DM regime, for both spin-dependent
(bottom panels) and spin-independent (top panels) DM,
when considering s-wave and p-wave annihilation proc-
esses, respectively. BBN places the a stringent limit on the
lowest value of mX for WIMPs at roughly 10 MeV [111],
which is a value we will adopt here. More information on
these models can be found in Appendix D. In each case we
consider three stars of mass M ¼ 100 M⊙, 300 M⊙, and
1000 M⊙. We assume an adiabatically contracted halo with
ambient DM densities of ρX ∼ 1016 GeVcm−3 for the left
panels and ρX ∼ 1013 GeV cm−3 for the right panels of the
figures. Our bounds are placed using a hypothetical star that
just formed, and as such do not include the effects of the
annihilation plateau. We include those effects in Fig. 8, in
which case the effects of DM annihilations on the ambient
medium are considered for roughly 1 Myr, i.e. the expected
lifetime on the zero age main sequence of such massive
Pop III stars. For both s-wave and p-wave annihilations,
for the (conservative) densities considered, our method
rules our large portions of parameter space for both the
spin-independent and spin-dependent DM models. These
excluded regions include portions of parameter space
currently inaccessible to ground-based direct detection
experiments. Interestingly, our method results not in a
strict upper bound on σ, but rather excluded regions of
parameter space defined by an upper and lower bound.
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The flat lower limit (upper bound on σ) of our excluded
regions arise via the same mechanism as in Fig. 8: because
we are not considering the annihilation plateau, LDM ∼
σmX for low-mass DM, giving insensitivity to DM mass.
We also see a region of parameter space in which we lose
constraining power and instead are left with an open
“funnel” region, joining the upper and lower limits. In
this region, evaporation dominates capture, since evapora-
tion is independent of the ambient DM density, whereas the

capture rate scales linearly with density ρX. Thus, we lose
the ability to constrain regions of parameter space as we
move to lower mass stars and lower ambient DM densities
due to the lower capture rates associated with these
systems. This effect happens for a wider range of DM
densities and stellar parameters in the p-wave case due to its
lower annihilation cross section. We note that the M⋆ ¼
300 M⊙ case when considering s-wave annihilations shows
part of the “transition” regime, where evaporation starts to

FIG. 9. Projected bounds in the σ −mX parameter space for low-mass (10−4 GeV ≲mX ≲ 1 GeV) WIMP DM which annihilate via
s-wave processes. The top and bottom panels compare our bounds to the most recent exclusion limits for both the SI [98,106–108] and
SD [106,107,109,110] interactions, as well as the “discovery limit” of direct detection experiments [112,113]. We assume an
adiabatically contracted halo with initial densities ρXð0Þ ∼ 1016 ¼ GeV cm−3 (left panels) and ρXð0Þ ¼ 1013 GeV cm−3 (right panels).
The bounds are placed at t ¼ 0 and thus do not include the annihilation plateau. In all observations of a Pop III star, large portions of
previously unexplored parameter space are ruled out. The precise shape of these regions is described in the text.
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become more dominant over capture rate. The upper limits
(lower bounds on σ) of our excluded region arise from
solving Eq. (17) in region II of the σ −mX parameter space
(Fig. 4) and depends on both the DM capture rate and the
DM evaporation rate.
We next move our focus to non-WIMP sub-GeV DM

modes. Figure 11 shows the projected bounds in the
low-mass region for strongly interacting thermal DM.
We focus our attention on two such models: the SIMP
[96] that can annihilate via the following 3 → 2 process,

DMþ DMþ DM → DMþ DM, and the Co-SIMP model
of [97], in which the following process is responsible for
thermal production: DMþ DMþ SM → DMþ SM. For
more details on those models see Appendix D. If we allow
both of these processes to happen simultaneously, the Co-
SIMP channel is dominant inside the star, in view of a high
density of baryons, whereas outside of the star the SIMP
annihilations would be dominant, with Co-SIMP annihi-
lations essentially being negligible. Moreover, we point out
that out of those two models, only the Co-SIMP DM

FIG. 10. Projected bounds in the σ −mX parameter space for low-mass (10−4 GeV ≲mX ≲ 1 GeV) WIMP DM which annihilate via
p-wave processes. The top and bottom panels compare our bounds to the most recent exclusion limits for both the SI [98,106–108] and
SD [106,107,109,110] interactions, as well as the discovery limit of direct detection experiments [112,113]. We assume an adiabatically
contracted halo with initial densities ρXð0Þ ∼ 1016 ¼ GeV cm−3 (left panels) and ρXð0Þ ¼ 1013 GeV cm−3 (right panels). The bounds
are placed at t ¼ 0 and thus do not include the annihilation plateau. In all observations of a Pop III star, large portions of previously
unexplored parameter space are ruled out. The precise shape of these regions is described in the text.
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interactions can lead to a transfer of energy to baryons
inside a star, which is one of the fundamental assumptions
we make in this work. We take an initial DM density in the
ρX ∼ 1013 − 1016 GeV cm−3 range, and, assuming SIMP
annihilations outside of the star, we time evolved ρX to
t ¼ 1 Myr to include the effects of the so-called annihi-
lation plateau. For more details on the initial and the time

evolved ρX see Appendix E. Note that, for all densities and
stars considered, we rule out large swaths of previously
unexplored parameter space. For reference, we have placed
current direct detection limits on SI and SD searches.
We also include a projected SI neutrino floor for future
He-based experiments [114] and show that, in high density
environments, we place projected constraints below this

FIG. 11. Top and bottom panels contrast our bounds to the most recent exclusion limits for SI [98,106–108] and SD
[106,107,109,110] interactions from various experiments, each with the name listed inside the corresponding region. Additionally,
we plot the limiting region, inaccessible to direct detection experiments, labeled discovery limit, i.e. the neutrino floor [112,113]. Right
and left panels correspond to the two ends of the ρX interval considered: 1013 − 1016 GeV cm−3. The initial ambient DM densities
[ρXðt ¼ 0Þ] used when placing these constraints are those given by adiabatically contracted NFW profiles. The densities considered
here are at t ¼ 1 Myr. Projected bounds on σ −mX parameter space from the potential observation of Pop III stars with masses ranging
from M⋆ ¼ 100 M⊙–1000 M⊙. The DM particle models considered when placing these bounds are the SIMP/Co-SIMP models
when the effects of the annihilation plateau due to SIMP dark matter are most prominent and thus the projected bounds most
conservative (see Appendix E).
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neutrino floor for DM masses in the range mX∼0.1–1GeV.
Intriguingly, the projected bounds encapsulate a region
defined by an upper and lower bound. The upper bound
arises from solving the inequality LDM ≤ LEdd − Lnuc in
region III of σ −mX parameter space (see Fig. 4) and results
from the sensitivity of both capture and evaporation onσ. The
lower bound, on the other hand, results from solutions in
region II and relies solely on the sensitivity of evaporation
on σ. This is evident when considering the independence of
the capture rate on σ in region II in contrast to the universal
dependence of the evaporation rate on σ. The result is a
bounded region ruling out swaths of parameter space that are
not currently constrained by direct detection experiments.
An important feature of these bounds is the funnel region
of unconstrained parameter space for ρXðt ¼ 0Þ ¼
1013 GeV cm−3 and M⋆ ¼ 100 M⊙ and M⋆ ¼ 300 M⊙.
This effect emerges from the loss of constraining power
due to the dominance of evaporation over capture for these
parameters. Note that Ctot ∼ ρX, irrespective of mX and σ,
whileE ∼ ρ0X. Thus, a lower DMdensity implies a lower rate
of capture but an unaffected evaporation rate. This leads to a
diminishing effect onDM luminosity and effectively a loss of
constraining power in the funnel region.
The broken power law of the upper bounds we place in

Fig. 11 can be understood in the followingway: at the higher
end ofmX, the DMdensity is not affected by the annihilation
plateau, and, as such, the upper bounds on σ are insensitive
to mX, a consequence of LDM ∼ σm0

X in region III of
parameter space. At lower mX, we note an inverse relation-
ship between σ andmX in the upper bounds. Specifically, for
mX ∼ 10−4 − 10−2 GeV for ρXð0Þ ¼ 1016 GeVcm−3 and
mX ∼ 10−4 − 10−3 GeV for ρXð0Þ ¼ 1013 GeVcm−3. This
inverse relationship is easily understood by considering
Eq. (18) for region III and Eq. (E13) in the limit that
ρAP ≪ ρ0. Since σ ∼ 1=ρX and ρX ≈ ρ3→2

AP ∼mX at t ¼
1 Myr for lower DM masses, the following relationship
emerges σ ∼ 1=mX, as demonstrated in the plot. A similar
analysis for the lower bound would show that the flattening
of this bound (in the same mass ranges we see an inverse
relationship for the upper bound) is also a result of the
annihilation plateau.
An intriguing question to ask is: for a given stellar mass,

what minimum ambient DM density is necessary for
constraining below the neutrino floor or the current
XENON1T bounds? We will focus here only on the case
of mX ≳ 100 GeV. To answer this question, we note that at
large mX, both our method and the direct detection experi-
ments predict bounds that scale linearly with mX. For the
neutrino floor bounds we take

σNF;X1T ≈ 10−50.7
cm2

GeV
mX; ð25Þ

σNF;C3F8
≈ 10−46.1

cm2

GeV
mX; ð26Þ

while the current XENON1T limits are given by Eq. (10).
Under the τ ≫ 1 limit, we can approximate the sum in
Eq. (18) with 2=3kτ, and solve for ρX:

ρX;NF;X1T≡1050.7
GeV
cm2

ffiffiffiffiffiffiffiffi
8π

243

r
1

M⋆
v̄3

v4esc

LEddðM⋆Þ−LnucðM⋆Þ
f

;

ð27Þ

ρX;X1T ≡ 1047.9
GeV
cm2

ffiffiffiffiffiffiffiffi
8π

243

r
1

M⋆
v̄3

v4esc

LEddðM⋆Þ − LnucðM⋆Þ
f

:

ð28Þ

This provides an analytical method to estimate the DM
density necessary for our method to predict upper bounds
on σ that are at the XENON neutrino floor and the current
XENON1Tone-year limits. For densities higher than ρX;NF

(ρX;X1T), the observation of a Pop III star of mass M⋆ will
place bounds deeper than the neutrino floor (XENON1T
one-year bounds). In Table II, we give ρX;NF;X1T and ρX;X1T
for Pop III stars in the mass range M⋆ ¼ 100–1000 M⊙.
Note that the values for ρX;NF range from ∼1017 GeVcm−3
up to ∼1018 GeV cm−3. For ρX;X1T, the values range from
∼1014 GeVcm−3 to ∼1015 GeVcm−3. This means that
placing bounds tighter than the current best bounds from
the XENON1T one-year experiment is very plausible
through the observation of Pop III stars.
Regarding the SD proton-DM interactions, we point

out that all of our bounds, even for the smallest M⋆ and
lowest ρX considered, are many orders of magnitude
deeper than those placed by the PICO-60 experiment for
mX ≳ 105 GeV. Moreover, Pop III stars more massive than
∼300 M⊙ probe below the C3F8 neutrino floor, even for
the lowest ρX ∼ 1013 GeVcm−3.
We conclude this paper with Sec. V, where we summa-

rize our main results and discuss their implications and
potential limitations.

TABLE II. Table showing the DM densities that would imply
bounds on σ −mX parameter space competitive with the neutrino
floor [ρX;NF, Eq. (27)] or the current XENON1T one-year
experiment [ρX;X1T , Eq. (28)] for a given stellar mass. DM
densities higher than the values quoted here would lead to bounds
deeper than the neutrino floor/XENON1T experiment for a given
Pop III mass.

M⋆½M⊙� Log10ðρX;NF;X1T=GeVcm−3Þ Log10ðρX;X1T=GeVcm−3Þ
100 18.0 15.2
200 17.6 14.8
300 17.3 14.5
400 17.2 14.4
600 16.9 14.1
1000 16.8 14.0
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V. SUMMARY AND DISCUSSION

In this paper, we study the observable effects of DM
capture on Pop III stars. In Sec. III, we find that the
additional heat source due to captured DM annihilations
can lead to upper limits on Pop III stellar masses. Assuming
the DM-proton scattering cross section (σ) at the upper
bound given by XENON1T for SI scattering, and for
sufficiently high ambient DM densities at the location of
the star (ρX), we find that this maximum Pop III stellar mass
can be as low as ∼10 M⊙ (see Fig. 3). In Sec. IV, we
provide a novel way to place competitive bounds on the
product of two very important DM parameters: the DM
density at the center of minihalos hosting Pop III stars (ρX),
and the DM-proton scattering cross section (σ) (see Fig. 6).
In practice, our projected bounds are obtained by assuming
the upcoming, potential identification of Pop III stars
and their corresponding masses, and by imposing the
Eddington luminosity limit. Having constrained σ × ρX,
we can break this degeneracy if we know either of those
two parameters. In Fig. 7, we forecast limits on the DM
density at the center of Pop III star hosting minihalos by
assuming direct detection experiments will identify DM
somewhere in the allowed region of the σ −mX parameter
space, between the current XENON1T bounds and the
neutrino floor. If, conversely, SD experiments such as
PICO-60 identify DM first, then our projected bounds
on ρX will be even deeper, since our method is insensitive to
the SI/SD distinction, and direct detection experiments can
only find σSD with values larger than any possible σSI, that
is not yet ruled out. In Fig. 8, we present upper limits on σ
vs mX, assuming adiabatically contracted DM densities in
the Pop III star hosting minihalo. Most intriguingly, we
show that with our method, Pop III stars can be used to
probe below the neutrino floor. We note here that a major
benefit of our method is that higher mass stars allow us to
place tighter bounds due to their enhancement of DM
luminosity. This is beneficial because the future detection
of Pop III stars is more likely to occur for more massive
stars. Lastly, in Fig. 11, we present our SI/SD bounds on σ
for thermal sub-GeV DM, assuming Co-SIMP/SIMP DM.
We point out that if we assume only Co-SIMP DM, our
bounds will not be affected by the annihilation plateau, and
therefore rule out even a larger swath of parameter space. In
a future publication we plan to extend our sub-GeVanalysis
to other DM models.
We also recognize that this method makes assumptions

about DM properties, such as the ability to self-annihilate,
and so it is somewhat limited in that regard. However, note
that for thermal DM, annihilations are a key ingredient in
the DM production mechanism. Therefore, this is not an
assumption of the model, but rather a necessity to explain
the observed relic abundance. However, the unitarity limit
places an upper bound on the mass of a thermal relic of
roughly 300 TeV [115]. Mechanisms for thermal DM to

bypass the unitarity limit have been identified in the
literature. For example, see [116] for a thermal DM model,
with mX up to ∼PeV. For higher mass DM, self-
annihilations are not a requirement, but rather an
assumption we make. It is, however, a natural one, as in
most models the DM particle is its own antipartner.
Secondly, we make the assumption that Pop III stars can
reach masses in excess of 100 M⊙, and that those objects
usually are found within the inner 10 A.U. of the host DM
microhalo. Regarding the mass spectrum of Pop III stars,
simulations are not yet conclusive. However, once found,
the mass will be the primary observable that we use, so no
assumption needs to be made there. Regarding the central-
icity of the first stars, this assumption is supported by
N-body simulations [66,67,69–73,75] that find that even
when the gas cloud fragments, and forms multiple stars, the
most massive one is usually closest to the center, and most
of those stars are within the central 10 A.U. of the center of
the DM halo. Most importantly for our work, Pop III stars
more massive than ∼150 M⊙ almost exclusively form in
isolation, one per microhalo [83]. For more details on this
point see Sec. II. When we use our formalism to place
bounds on the DM-proton interaction cross section, a
potential limitation comes from the uncertainty in the
ambient DM density at the center of DM halos. For this
work we used the well established adiabatic contraction
formalism (see Fig. 18 in Appendix E), which is supported
by numerical simulations of high redshift DM microhalos
[69,117–119] (also see Fig. 17). At lower redshifts, well
after the first stars have formed, baryonic feedback effects
are expected to be important, and, as such, adiabatic
compression should be suppressed. Even so, for the
Milky Way DM halo, rotation curve Gaia DR2 data offer
the first experimental evidence of DM density compression
in the presence of baryons [120]. However, one should
point out that the current resolution of hydrodynamic
N-body simulations is not sufficiently high to probe the
inner parsec regions of the DMminihalos deep enough, and
therefore one needs to resort to analytical approximations,
such as adiabatic contraction, when estimating ρX in the
ambient environment of Pop III stars near the center of their
host halos. In the near future, more sophisticated simu-
lations should be able to verify our estimates on ρX, and as
such, narrow down the uncertainty bands in our σ vs mX
exclusion limits. We point out once more the complemen-
tarity of our method with direct detection experiments. If
the proton-DM cross section interaction will be identified
by such experiments, then we can use our method to place
bounds on the DM density at the location of the first stars
once those are observed with JWST and/or the Roman
telescopes. Direct dynamical measurements of the DM
density in those extremely distant microhalos would be
nearly impossible, and as such our method could be used to
bypass this limitation.

CONSTRAINING DARK MATTER PROPERTIES WITH THE … PHYS. REV. D 104, 123031 (2021)

123031-19



ACKNOWLEDGMENTS

C. I. would like to thank Katherine Freese and Paolo
Gondolo for sharing the code we used in Appendix E to
calculate the adiabatically contracted NFW profiles. This is
the same code used in [121], where the conditions for the
formation of dark stars were first identified. C. L. thanks
Colgate University for the financial support, via the
Research Council student wage grant, and the Justus ’43
and Jayne Schlichting Student Research Funds.

APPENDIX A: MULTISCATTER CAPTURE
OF DARK MATTER

We start this appendix with a brief review of the
formalism we used to calculate the rates of DM capture
by Pop III stars. Then we proceed to calculate closed form,
analytic approximations for the total capture rates that can
be very useful both from a practical standpoint and for
explicitly displaying the dependence of the capture rates in
the multiscatter regime with physical parameters of interest.
We first introduced those closed form analytic approxima-
tions for the total capture rates in [37]; however, in view
of the word count limitations for that Comment, we could
not present derivations there. In this appendix we fill in
those details.
For any astrophysical object, the main parameter that

controls the capture is the optical depth τ≡ 2R⋆σnT , with
R⋆ being the radius of the star, σ being the DM-target
nucleus scattering cross section, and nT being the number
density of target nuclei inside the stars. Whenever τ ≪ 1
one can use the single scattering formalism introduced
by Gould [32,33] in the late 1980s. Whenever τ ≳ 1, one
has to use the more general multiscatter formalism [35,37].
In our work, we will exclusively use the latter, since, in
the limit of τ ≪ 1, it naturally covers the single scattering
regime.
DM particles in the vicinity of any massive object are

attracted by its gravitational field. As a DM particle crosses
a star, it interacts with the nuclei inside, and after each
collision it loses an energy of ΔEi ¼ −βþEi. Here, Ei
represents the energy of the DM particle before the ith
collision, and βþ is related to the mass of the DM particle
(mX) and mass of the target nuclei (m) in the following
way: βþ ≡ 4mmX=ðmþmXÞ2. If collisions are efficient
enough to slow the DM particle below the escape
velocity at the surface of the star, the DM particle becomes
trapped.
The capture rates after exactly N collisions (CNÞ

depend on two distinct quantities: the flux of dark matter
particles entering the surface of the star and the probability
of capture after exactly N collisions with the nuclei inside
the star (gN). Therefore, the total capture rate can be
written as in Eq. (1), which we reproduce here for
convenience:

Ctot ¼
X∞
N¼1

CN

¼
X∞
N¼1

πR2⋆|{z}
capture area

×nX

Z
∞

0

fðuÞdu
u

ðu2 þ v2escÞ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}
DMflux

× pNðτÞ|fflffl{zfflffl}
probability forN collisions

× gNðuÞ|fflffl{zfflffl}
probability of capture

; ðA1Þ

where u represents the DM velocity far from the
gravitational potential well of the star, pNðτÞ is the
probability that a DM with optical depth τ experiences
exactly N collisions [given by Eq. (2)], and gNðuÞ is the
probability of capture after exactly N collisions. The latter
has the following approximate form [35]: gNðuÞ ¼
Θðumax;N − uÞ, where ΘðxÞ is the Heaviside step function
and umax;N ¼ vesc½ð1 − βþ=2Þ−N − 1�1=2 is the maximum
value of the velocity a DM particle can have, far from the
star, such that it will be slowed down below the escape
velocity after N collisions.
Assuming a Maxwellian velocity distribution, the gen-

eral formula of capture after N scatters is [35,37]

CN ¼ 1

3
πR2⋆pNðτÞ

ffiffiffi
6

p
nXffiffiffi
π

p
v̄

�
ð2v̄2 þ 3v2escÞ

− ð2v̄2 þ 3v2NÞ exp
�
−
3ðv2N − v2escÞ

2v̄2

��
; ðA2Þ

where v̄ represents the dispersion velocity of DM particles
inside the halo and vN ¼ vescð1 − hziβþÞ−N=2 is the veloc-
ity of DM after N scatters, where hzi accounts for the
scatter angle and has an average value of 1

2
[35].

We note that the probability of exactly N scatters, pNðτÞ,
can be approximated as follows:

pNðτÞ≈
2τN

N!ðN þ 2Þ þOðτNþ1Þ if τ ≪ 1; ðA3aÞ

pNðτÞ≈
2

τ2
ðN þ 1ÞΘðτ − NÞ if τ ≫ 1: ðA3bÞ

We verified numerically that the sums defining the total
capture rates from Eq. (A1) will generally converge if
Ncut ≈ τ. In our work, we perform the sums numerically
until they have converged. However, it is very useful for
future work to investigate if a closed form can be found for
Ctot, given the form of CN from Eq. (A2). In Ref. [37], we
presented such a closed form; in view of the word count
limitations, we were not able to provide a derivation. We
sketch it below. First, we define the exponential factor Rv in

Eq. (A2), as Rv ≡ 3ðv2N−v2escÞ
2v̄2 . Under different mass limits, Rv

behaves differently because of vN . WhenmN ≃mX, βþ ≃ 1

and vN ∼ vescð2N − 1Þ1=2. In the other limiting case where
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m ≪ mX, βþ ≃ 4m=mX and vN ≃ vescð1þ Nm=mXÞ1=2.
Rv then becomes

Rv ≈
3

2
ð2N − 1Þ v

2
esc

v̄2
if m ∼mX; ðA4aÞ

Rv ≈
3

2
N
mN

mX

v2esc
v̄2

if m ≪ mX: ðA4bÞ

Equation (A2) can then be expanded under the limit
Rv ≫ 1 and Rv ≪ 1 as

CN ≈
1

3

�
6

π

�
1=2

πR2pNðτÞnX
3v2esc þ 2v̄2

v̄
; ðA5aÞ

CN ≈
3

2

�
6

π

�
1=2

πR2pNðτÞ
nXv4esc
v̄3

βþhzi

× ðN þ N2βþhziÞ: ðA5bÞ

Using the τ ≫ 1 approximation of pNðτÞ from
Eq. (A3b), we get the total capture rate up to Nmax number
of scatters:

Ctot;Nmax
≈
�
2

3π

�
1=2 πR2

τ2
nX

3v2esc þ 2v̄2

v̄
NmaxðNmax þ 3Þ;

ðA6aÞ

Ctot;Nmax
≈
�
6

π

�
1=2 πR2

τ2
nX

v4esc
v̄3

βþhziNmaxðNmax þ 1Þ

× ðNmax þ 2Þ
�
1þ βþhzi

4
ð1þ 3NmaxÞ

�
: ðA6bÞ

The above equations would hold only when τ ≫ 1 and
Nmax < τ. When Nmax ≳ τ, in view of the Θðτ − NÞ factor
in the approximate form of pNðτÞ [Eq. (A3b)], the sum
converges around Nmax ∼ τ and Ctot;Nmax

reduces to
Ctot;τ ≈ Ctot.
For Pop III stars, the escape velocity is much larger than

the thermal velocity of dark matter (vesc ≫ v̄). Assuming
there is a definite hierarchy between mX and m, i.e. if
mX ≫ m or mX ≪ m, Eq. (A2) could be simplified as

CN ¼
ffiffiffiffiffiffiffiffi
24π

p
nXGM⋆R⋆

1

v̄
pNðτÞ

�
1 −

�
1þ 2A2

Nv̄
2

3v2esc

�
e−A

2
N

�
;

where A2
N ¼ 3Nv2esc

v̄2
minðmX;mÞ
maxðmX;mÞ : ðA7Þ

We point out that the above equation is slightly different
from the corresponding one in [35], where the sign in front

of the term 2A2
Nv̄

2

3v2esc
appears as a “−.” This is one of the

typographical errors we found in [35] which are explained
in [37]. Using Eq. (A7), the total capture rate becomes

CtotðmXÞ

¼ ðconstÞ × nX
X∞
N¼1

pNðτÞ
�
1 −

�
1þ 2A2

Nv̄
2

3v2esc

�
e−A

2
N

�
;

ðA8Þ

where, for simplicity, we introduced the following notation:
const ¼ ffiffiffiffiffiffiffiffi

24π
p

GM⋆R⋆=v̄. To further simplify this expres-
sion, and extract some useful information, we divide the
analytical derivation into two cases: single scatter and
multiscatter. For the former (τ ≪ 1), Ctot ¼ C1 and
A2
N ¼ A2

1 ≡ k. Since k appears in the exponent, we have
two distinct cases. Therefore, when τ ≪ 1 and k ≫ 1
(region III of Fig. 4), the total capture rate can be
approximated as

CtotðmXÞ ≃ ðconstÞ × nXp1ðτÞ ≃ ðconstÞ × nX
2τ

3
: ðA9Þ

Conversely, when τ ≪ 1 and k ≪ 1 (region IV of Fig. 4),
using 2kv̄2

3v2esc
¼ 2 m

mX
≪ 1, the total capture rate becomes

CtotðmXÞ ≃ ðconstÞ × nXp1ðτÞ
�
1 −

�
1þ 2

m
mX

�
ð1 − kÞ

�

≃ ðconstÞ × nX
2kτ
3

: ðA10Þ

For the multiscatter case(τ ≫ 1), let us introduce the
following notation:

X∞
N¼1

pNðτÞ
�
1 −

�
1þ 2A2

Nv̄
2

3v2esc

�
e−A

2
N

�

¼ T1 − T2 − T3; ðA11Þ

where T1 ≡P∞
N¼1 pNðτÞ, T2 ≡P∞

N¼1 pNðτÞe−A2
N , and

T3 ≡P∞
N¼1 pNðτÞ 2A

2
Nv̄

2

3v2esc
e−A

2
N . We can simplify A2

N as

A2
N ¼ NA2

1 ¼ Nk ¼ N 3mv2esc
mXv̄2

. For T1, we can directly get

T1 ¼ 1 − p0ðτÞ ≃ 1. For T2 and T3, we first need to expand
the exponential terms into the sum of a series: e−A

2
N ¼

e−Nk ¼ P∞
j¼0

ð−NkÞj
j! ¼ P∞

j¼0
ð−kÞj
j! Nj. Then, for τ ≫ 1, and

using the approximate form of pNðτÞ from Eq. (A3b) times
N to some power j, and summing from N ¼ 1 to ∞, is
approximately equal to doing the integration over the same
range. By keeping the leading-order term of the integration,
we get the following:
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X∞
N¼1

pNðτÞN ≈
Z

τ

1

2

τ2
ðN þ 1ÞNdN ≈

2

3
τ;

X∞
N¼1

pNðτÞN2 ≈
Z

τ

1

2

τ2
ðN þ 1ÞN2dN ≈

1

2
τ2;

X∞
N¼1

pNðτÞN3 ≈
2

5
τ3…: ðA12Þ

This leads to a more general format:

X∞
N¼1

pNðτÞNj ≈
2

jþ 2
τj: ðA13Þ

Finally, by substituting Eq. (A13) into the definitions of
T2 and T3, we obtained the following closed form:

T2 ≡
X∞
N¼1

pNðτÞe−A2
N ≈

X∞
j¼0

2ð−kτÞj
j!ðjþ 2Þ

¼ 2e−kτð−1þ ekτ − kτÞ
ðkτÞ2 ; ðA14Þ

T3 ≡
X∞
N¼1

pNðτÞ
2A2

Nv̄
2

3v2esc
e−A

2
N ¼ 2m

mX

X∞
N¼1

pNðτÞNe−A
2
N

≈
X∞
j¼0

2τð−kτÞj
j!ðjþ 3Þ ¼

4m
mX

e−kτð−2þ 2ekτ − 2kτ − k2τ2Þ
k3τ2

:

ðA15Þ

We can further approximate the expansions of T2 and T3

in Eqs. (A14) and (A15), depending on the value of kτ.
By combining the T1, T2, and T3 approximate values, and
keeping only leading-order terms, we get

X∞
N¼1

pNðτÞ
�
1 −

�
1þ 2A2

Nv̄
2

3v2esc

�
e−A

2
N

�

¼ 2

3
kτ if kτ ≪ 1 and τ ≫ 1; ðA16aÞ

X∞
N¼1

pNðτÞ
�
1 −

�
1þ 2A2

Nv̄
2

3v2esc

�
e−A

2
N

�

¼ 1 if kτ ≫ 1 and τ ≫ 1: ðA16bÞ

The two results above represent the values thatP∞
N¼1pNðτÞð1−ð1þ 2A2

Nv̄
2

3v2esc
Þe−A2

N Þ take in regions I and II,

respectively, of Fig. 4. The values in regions III and IV can
be inferred from Eqs. (A9) and (A10), respectively.

APPENDIX B: TEMPERATURE OF CAPTURED
DARK MATTER

At any spatial point inside of a star, stellar material is
in approximate local thermodynamic equilibrium at some
temperature TXðrÞ. Captured dark matter inside the star
scatters off of those baryons, bringing the distribution of
dark matter particles to a Maxwellian form:

fXðvX; rÞ ∼ exp

�
−E
kTX

�
; ðB1Þ

where E ¼ 1
2
mXv2X þmXΦðrÞ is the total energy of the

dark matter particle, k is Boltzmann’s constant, and TX is
the dark matter kinetic temperature. This temperature is not
a well-defined quantity; dark matter particles traverse
through a range of radii throughout their orbits, and thus
experience a range of interactions at different local kinetic
temperatures. In fact, there is no single value TX for which
the above expression is exactly true since these dark matter
particles are undergoing processes that will equilibrate the
dark matter to different local temperatures as it traverses a
star. Following [31], we assume that the dark matter particle
distribution is described by a single, orbit-averaged temper-
ature TX which satisfies not the collisional Boltzmann
equation, but rather its first energy moment. For time-
independent distributions, requiring that the first moment is
satisfied is equivalent to there being no net flow of energy
into the dark matter distribution from the solar material.
The effects of heat flow have been included by [122].
Comparing their results with those of [31], we note that, to
leading order, the effects of heat flow on evaporated DM
are subdominant. In what follows, for simplicity, we
neglect those subleading effects, and follow the approach
presented in [31].
Letting σXðθÞ be the differential scattering cross section,

and letting ΔEðvX; vp; θÞ be the energy transfer to a
dark matter particle from a collision, the energy-moment
equation is

Z
d3r

Z
d3vXfXðvX; rÞ

Z
d3vpfpðvp; rÞ

×
Z

d cos θσXðθÞjvX − vpjΔEðvX; vp; θÞ ¼ 0: ðB2Þ

To proceed in a more general situation, we introduce the
Knudsen number of a weakly interacting mixture of two
Maxwell gases, defined as

Kn ¼ ðnpσXLÞ−1; ðB3Þ

where np is the number density of background particles
(protons), σX is the interaction dark matter–proton inter-
action cross section, and L is the length scale of the system
over which interactions can occur. When Kn ≫ 1, dark
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matter undergoes many interactions over the length scale L.
For dark matter–proton interactions inside the star, we
adopt the length scale of [31] as the radius at which the dark
matter is in approximate thermodynamic equilibrium with
the core:

3

2
kTc ¼ mXΦðrXÞ → rX ¼ L

¼
�
9

4π

kTc

Gρcmp

�
1=2

ffiffiffiffiffiffiffi
mp

mX

r
: ðB4Þ

In the large Kn limit, we can treat the system with
statistical mechanics. Such is the case for all of our systems.
The lowest Knudsen number we encounter in our analysis
is for a 100 M⊙ Pop III star in an ambient DM density of
log10 ðρX½GeVcm−3�Þ ¼ 13 which gives a value of Kn ∼
102 at both mX ∼ 10−4 GeV and mX ∼ 1015 GeV with a
maximum value of Kn at mX ∼ 105 GeV. To estimate ρc;p,
we use the polytropic approximation of Eq. (B9), and
confirmed this approximation to hold from MESA simu-
lations of ZAMS Pop III stars to order of magnitude. We
take σX from our bounds without evaporation (see Fig. 8).
With such high Kn, the processes governing the velocity

distribution of baryons and dark matter allow us to treat
both the protons and the dark matter as Maxwellian gases.
Plugging in Maxwellian distributions for both the protons
and the dark matter, one obtains, from Eq. (B2),

Z
d3rnpðrÞ

Z
d3vX exp

�
−E
kTX

�

×
Z

d3vp exp

�
−mpv2p
2kTðrÞ

�
jvX − vpjhΔEi ¼ 0; ðB5Þ

where “h·i” denotes the average over scattering angle θ.
This is, in principle, a simple transcendental equation for
TX for a given energy transfer hΔEi, relative velocity
jvX − vpj, and TðrÞ. As outlined in Sec. IVand Appendix A
of [31], we can rewrite Eq. (B5) as

Z
R⋆

0

npðrÞ
�
mpTX þmXTðrÞ

mXmp

�
1=2

½TðrÞ − TX�

× exp

�
−mXΦðrÞ

kTX

�
r2dr ¼ 0; ðB6Þ

where ΦðrÞ is the gravitational potential defined by
ΦðrÞ≡ R

r
0 dr

0GMðr0Þ=r02. Next we use the n ¼ 3 poly-
tropic model approximation in order to calculate Φ. This
assumption is always valid whenever the ratio between
the radiation pressure and the gas pressure is a constant
throughout the star, and this is the case for the radiation
pressure dominated M⋆ ≳ 100 M⊙ Pop III stars on the
ZAMS. We have also checked this assumption by using the
MESA stellar evolution code.

For a polytrope of an arbitrary index n, the following
relationship holds: ρðξÞ ¼ ρcθ

nðξÞ. We denoted by ρc the
central density, ξ≡ ðr=R⋆Þξ1 being the dimensionless
radial variable, and ξ1 being the first node of the Lane-
Emden function θ, which corresponds to the surface of the
star (R⋆). The Lane-Emden function obeys the following
differential equation:

1

ξ2
d
dξ

�
ξ2

dθðξÞ
dξ

�
¼ −θðξÞn: ðB7Þ

For n ¼ 3 one can show numerically that ξ1 ≈ 6.89.
Moreover, the Lane-Emden function obeys the following
boundary conditions at ξ ¼ 0 (the center of the star):
θð0Þ ¼ 1, and dθ=dξ ¼ 0. One can show that for a polytrope
the amount of baryonic mass enclosed by a radius r,
corresponding to a dimensionless radial variable ξ, is

MðrÞ ¼ −4πρcðR⋆=ξ1Þ3ξ2dθ=dξ:

Using the definition of the gravitational potential from
above, we find that the integral can be performed analyti-
cally, with the following result:

ΦðξÞ ¼ 4πGρc

�
R⋆
ξ1

�
2

½1 − θðξÞ�: ðB8Þ

Moreover, we find that the central density for a polytropic
star can be expressed as

ρc ¼
M⋆

−4πðR⋆
ξ1
Þ3ξ21ðdθdξÞ1

: ðB9Þ

Combining Eqs. (B8) and (B9), and the fact that for n ¼ 3

we can use the following approximation: ξ21ðdθdξÞ1 ≈ 2.We get
he following, simpler form of the gravitational potential for
an n ¼ 3 polytropic star:

ΦðξÞ ≈ v2esc
ξ1
4
ð1 − θðξÞÞ; ðB10Þ

with v2esc ¼ 2GM⋆=R⋆ being the escape velocity at the
surface of the star.
Using the n ¼ 3 polytrope, and the assumption of P ∼

Pgas ∼ Prad (i.e. a constant ratio between the gas and
radiation pressure throughout the star) we can show that
nðξÞ ¼ ncθ3ðξÞ (i.e. n ¼ 3 polytrope) implies that TðξÞ ¼
TcθðξÞ. We adopt Tc ∼ 108 K, a value verified by simu-
lations of Pop III stars with MESA. Introducing the follow-
ing dimensionless variables,
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ξ≡ r
R⋆

ξ1; μ≡mX

m
;

Φ̃ðrÞ≡mΦðrÞ
kTc

; and Θ≡ TX

Tc
; ðB11Þ

we can rewrite Eq. (B6) as

Z
ξ1

0

θðξÞ3 exp
�
−μ
Θ

ΦðξÞ
��

Θþ μθðξÞ
μ

�
1=2

× ½Θ − θðξÞ�ξ2dξ ¼ 0: ðB12Þ

Standard numerical techniques, such as FSOLVE and
QUAD in the PYTHON SciPy package, can solve this equation
easily, giving the dark matter temperature inside a star TX
as a function of dark matter mass mX. The results of this
calculation are presented in Fig. 12. They key takeaway is
that, to order of magnitude, the dark matter temperature
is the core temperature of the star. When the dark matter
mass is much larger than the proton mass, the dark matter
temperature is the exactly equal to core temperature of
baryons inside the star; in the other limit when the dark
matter mass is much less than the proton mass, the dark
matter temperature is roughly half of the core temperature.

APPENDIX C: DM EVAPORATION RATES

For DM with mX ≲ 1 GeV one needs to consider the
effects of evaporation [123], i.e. the process via which DM
particles can be up-scattered to velocities above the escape
velocity via collisionswith nuclei. In this appendixwe derive
and validate an analytic approximation for the evaporation
rate of dark matter from Pop III stars, by assuming they are
well described by n ¼ 3 polytropic models.
We start by estimating the mX below which evaporation

becomes relevant. In order to obtain an order of magnitude
approximation, we compare the average thermal velocity of
DM particles at the core of a Pop III star of a given mass to

the escape velocity. Whenever the thermal velocity is
higher than the escape velocity, evaporation becomes
relevant. Technically one should use the escape velocity
at the core, however, for the purpose of this order of
magnitude analysis we will use the escape velocity at the
surface, which is lower than the escape velocity at the core.
This, in turn, means that we are overestimating the mX
below which DM evaporation becomes relevant. As we
have seen in Appendix B, TX becomes constant throughout
the star, and a very good order of magnitude estimate is
TX ∼ Tc, with Tc ∼ 108 K, the central temperature of the
Pop III star. The condition vX ≳ vesc, i.e. evaporation being
efficient, can be recast into

mX ≲ 1 GeV

�
R⋆=R⊙

M⋆=M⊙

�
: ðC1Þ

For the 100 M⊙ Pop III stars this becomes mX ≲
4 × 10−2 GeV, whereas for the heaviest Pop III stars
considered (1000 M⊙), evaporation becomes relevant at
mX ≲ 1.4 × 10−2 GeV. Therefore, at masses below
∼10−2 GeV we will need to include the effects of DM
evaporation. Below we derive an analytic approximation
for the evaporation rate, E.
In [123] Gould derives analytic closed form evaporation

rates from a stellar shell, assuming captured DM particles
follow a truncated Maxwell-Boltzmann distribution:

fXðwÞ ¼
e−w

2=v2XΘðvc − wÞffiffiffiffiffi
π3

p
v3X

h
Erfðvc=vXÞ − 2ffiffi

π
p vc

vX
e−v

2
c=v2X

i : ðC2Þ

Here w is the DM particle speed, vX ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TX=mX

p
is the

thermal average DM speed, vc represents the cutoff in the
DM distribution, and henceforth we will assume it to be
equal to the escape velocity from a given shell: ve. We point
out that compared to Eq. (C2), Gould does not include the
appropriate normalization factor for a truncated DM dis-
tribution (i.e. 1=½Erfðvc=vXÞ− 2ffiffi

π
p vc

vX
e−v

2
c=v2X �) in his Eq. (3.8)

in [123]. In what follows we will account for this factor.
Below we briefly describe the steps of the calculation that
will lead to our approximation of the evaporation rate used
throughout this paper: Eq. (6).
We start with the rate with which a DM particle of

velocity w will scatter to velocity v, as a result of collisions
with nuclei inside the star. This is derived by Gould in
[123], his Eq. (3.1), which we reproduce here for clarity:

R�ðw→ vÞ¼ 2ffiffiffi
π

p μ2þ
μ

v
w
nðrÞ

×σ

�
χð�α−;αþÞþχð�β−;βþÞeμðw2−v2Þ=u2ðrÞ

�
:

ðC3Þ

FIG. 12. Numerical solution to Eq. (B12) for a 100 M⊙,
300 M⊙, and 1000 M⊙ star. Note that when μ ≳ 1, Θ ≈ 1; when
μ ≪ 1, Θ ≈ 0.59.
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The upper (lower) sign corresponds to up-scattering (v > w)
[down-scattering (v < w)]. The most important mechanism
relevant for DM evaporation is the former. Here nðrÞ
represents the number density of target baryons inside
the shell, and uðrÞ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2TðrÞ=mp
is the thermal average

velocity of a target nuclei of mass m. The following nota-
tions are used: χða;bÞ≡R

b
a dye

−y2 , α�≡ðm=2TðrÞÞ1=2×
ðμþv�μ−wÞ, β� ≡ ðm=2TðrÞÞ1=2ðμ−v� μþwÞ, μ� ≡ μ�1

2
,

μ≡ mX
m . Next,we consider the rate atwhich aDMparticle of a

fixed velocity w escapes, i.e. up-scatters to any velocity v
greater than the escape velocity at the shell veðrÞ:

Ωþ
veðwÞ≡

Z
∞

ve

Rðw → vÞdv: ðC4Þ

Again, this has been calculated analytically by Gould [123]:

Ωþ
veðwÞ ¼

1

2π1=2
2TðrÞ
m

1

μ2
σnðrÞ
w

½μðαþe−α2− − α−e−α
2
þÞ

þ ðμ − 2μαþα− − 2μþμ−Þχðα−; αþÞ
þ 2μ2þχðβ−; βþÞeð−mX=2TÞðv2−w2Þ�;

where α� and β� are evaluated for v ¼ ve. Next we can
calculate the total evaporation rate from the shell by
integrating over the velocity distribution of DM particles:

RðvcjveÞ≡
Z

∞

0

fXðwÞΩþ
veðwÞdw:

Assuming vc ¼ ve [i.e. the Maxwell-Boltzmann (MB) dis-
tribution is truncated to the escape velocity], and μ ≪ 1,
which is valid for Pop III stars, in view of our discussion at
the beginning of this section, we obtain the following
estimate for the total evaporation rate from the shell:

Rðvc ¼ vejveÞ ≈
2ffiffiffi
π

p nðrÞσuðrÞe−v2e=v2X : ðC5Þ

The evaporation coefficient (E) is defined in the following
way:

E ¼
R
dVnXRðvc ¼ vejveÞR

dVnX
; ðC6Þ

with the integrals being done over the volume of the star, and
nX representing the number density of DM particles inside
the star. In Appendix B we have shown that DM particles
attain an isothermal sphere distribution:

nXðrÞ ¼ nX;ce−mXΦðrÞ=TX : ðC7Þ

The gravitational potential is defined by ΦðrÞ≡R
r
0 dr

0GMðr0Þ=r02 and we calculated it using the
n ¼ 3 polytropic model approximation in Appendix B:

Eq. (B10). Next we use this potential, in combination with
nX from Eq. (C7) to evaluate the integral in the definition
of the evaporation coefficient from Eq. (6). For the escape
velocity from a shell at radius ξ we get v2eðξÞ ¼
v2escð1þ ξ1=2θðξÞÞ. Remarkably, we find that for the
case of n ¼ 3, the exponential term that comes from
multiplying nX and Rðvc ¼ vejveÞ is now ξ independent:
e−ΦðrÞmX=TXe−v

2
e=v2X ¼ e−v

2
esc=v2Xð1þξ1=2Þ. Therefore the integral

at the numerator can be performed, if we know the radial
dependence ofnðrÞ (the number density of protons) anduðrÞ
(their average thermal velocity). Using the n ¼ 3 polytrope,
and the assumption of P ∼ Pgas ∼ Prad (i.e. a constant ratio
between the gas and radiation pressure throughout the star)
we have nðξÞ ¼ ncθ3ðξÞ and TðξÞ ¼ TcθðξÞ, which implies
uðξÞ ¼ ucθ1=2ðξÞ. Lastly, we find that for an n ¼ 3 poly-
trope, the central proton density nc can be related to the

average proton density: nc ≈ n̄pðξ
3
1

6
Þ. Putting everything

together, the radial integral at the numerator of Eq. (6)
becomes, up to parameters that are ξ independent, and
therefore can be factored out,

R ξ1
0 dξξ2θ7=2ðξÞ. For n ¼ 3

we can approximate numerically this integral to 3=2. Finally
combining everythingwehave so far,weget the result quoted
in Eq. (6), which we reproduce here:

E ≈
3V⋆n̄pucσ
2V1

ffiffiffi
π

p e
−v2escμ

u2cΘ
ð1þξ1=2Þ

: ðC8Þ

Throughout we denote V1 ≡
R
dVe−mXΦðrÞ=TX . This is an

integral that can be performed numerically, but for which
we will also find an analytic approximation. Defining the
general case of the effective volume of index j as
Vj ≡

R
dVe−jΦðrÞmX=TX , and using the standard second-order

FIG. 13. Comparison of the evaporation rate coefficient ob-
tained numerically from Eq. (C6) vs our analytic approximation
of Eq. (C8). Note the excellent agreement between the two, for
Pop III stars with masses ranging from 100 M⊙ to 1000 M⊙.
Note that the rates are almost insensitive to the stellar mass, until
the exponential decay factor kicks in. For higher mass stars this
cutoff comes at lower mX, as expected.
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approximation for the Lane-Emden functions of arbitrary
index, θðξÞ ≈ 1 − 1=6ξ2, we find that

Vj≈
4π

3j3=2
r3X

� ffiffiffi
π

6

r
Erf

� ffiffiffiffiffi
3j
2

r
R⋆
rX

�
−

ffiffi
j

p R⋆
rX

exp

�
−
3

2

R2⋆
r2X

j

��
;

ðC9Þ

with r2X ≡ 9TX
4πGρcmX

. We want to point out that when using
Eq. (C8) in order to place bounds on σ vs mX for sub-GeV
DMmodels, we always calculate numericallyV1, and do not
rely on the approximation of Eq. (C9).
We end this section with Fig. 13, a plot that validates our

analytic approximation for the evaporation rate coefficient.

APPENDIX D: EQUILIBRATION TIMESCALE
AND LOWER BOUNDS ON AN ANNIHILATION

CROSS SECTION

Our formalism relies on the assumption of an efficient
equilibration between capture and annihilations/evaporation
of dark matter. This leads to a time-independent number of
DM particles inside the star, and to a simple form of the
heating injected by DM annihilations, as presented in
Eq. (11). In this section, we investigate the conditions under
which the timescale for this equilibration is much shorter
than the lifetime of the star.
We start by briefly reviewing the DMmodels considered.

First, for the WIMP window, which is bound at the
lower end of mX (the Lee-Weinberg bound [124]) by mX ≳
10 GeV, and the higher end of mX (the Griest-
Kamionkowski bound [115]) by mX ≲ 120 TeV. We point
out that the so-called Lee-Weinberg limit has actually been
found, independently, by several groups [124–128] and that
its value is actually model dependent. For instance, for
Majorana fermions, where the annihilation cross section is
p-wave suppressed, the Lee-Weinberg limit is enhanced by
roughly 1 order of magnitude [129]. On the other hand, for
scalar DM, Boehm and Fayet [130] find that the corre-
sponding bound can be lowered toOðMeVÞ. In fact, one of
the most stringent bounds of WIMP DM lower mass limits
comes from BBN, and it is roughly Oð10MeVÞ [111].
Within this window of parameter space DM can be
produced thermally, via the standard freeze-out mecha-
nism, without violating the unitarity limit, while still
interacting only weakly. The thermal average DM annihi-
lation cross section (hσvi) can be expanded around v≲ 1:

hσvi ≈ aþ bhv2i þOðhv4iÞ: ðD1Þ

Two distinct scenarios are commonly considered in the
literature: the s-wave annihilations, for which b ¼ 0,
so the thermal average cross section is a constant, inde-
pendent of the DM velocity v. Remarkably, if the
thermal average cross section is at the weak scale, i.e.
hσvi ≈ a ∼ 10−26 cm3 s−1, one recovers, via the freeze-out

mechanism, a value of the relic abundance that matches
observations, i.e.ΩX ∼ 0.3. This is commonly known as the
WIMP miracle, and was one of the main reasons WIMP
DM models were theoretically favored in the past decades,
before LHC data and direct detection experiments placed
severe constraints on such models. Alternatively, one can
consider the p-wave annihilation, when a ¼ 0, and the
thermal average cross section depends on the DM thermal
velocity. In this case it us useful to recast Eq. (D1) as
hσvi ¼ bhv2i ¼ b0=x, with x≡mX=TX, the commonly
defined dimensionless decoupling parameter. In order to
match the observed relic abundance the parameter b0 has to
have a value of b0 ∼ 10−24 cm3 s−1 [105].
Outside of the WIMP regime, we have, at the higher

mass end, what is commonly know as the superheavy dark
matter. Reproducing the correct thermal relic abundance via
the freeze-out mechanism would violate unitarity at those
high masses if DM is considered to be a point particle. One
of the most well-known nonthermal production mecha-
nisms for superheavy DM is the gravitational production
during inflation, which leads to what is commonly known
as WIMPZILLAs [131]. Those particles can be their own
antipartners, and therefore annihilate, with a cross section
that is not fixed by the relic abundance. So, in principle,
they could annihilate with cross sections as high as the
unitarity limit:

hσviU:L: ¼
4π

m2
Xv

ð2J þ 1Þ; ðD2Þ

with v≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2TX=mX

p
and J ¼ 0 (s-wave) or J ¼ 1

(p-wave). At the other end of the mass spectrum, for
sub-GeV DM, in this paper we will only consider two such
models: SIMP dark matter [96] and the Co-SIMP model
[97]. In both of those models DM is thermally produced,
and the Lee-Weinberg limit is bypassed by allowing
interactions with a coupling stronger than the weak scale.
As opposed to the usual s/p-wave annihilations, which are
2 → 2 annihilations, those processes are 3 → 2. Namely,
DMþ DMþ DM → DMþ DM (SIMP) or DMþ DMþ
SM → DMþ SM (Co-SIMP).
We discuss next in some detail the first of those two

models: SIMP DM. The DM number changing rate for
this process is controlled by the thermal-averaged cross
section hσSIMPv2i, which, one usually assumes, based on
dimensional grounds to be proportional to some effective,
dimensionless coupling constant controlling the annihila-
tion process,

hσSIMPv2i ∼
α3SIMP

m5
X

: ðD3Þ

Using the standard thermal relic abundance calculation one
can show that if αSIMP ∼ 1 and mX ∼ 0.3 GeV, this model
can produce sub-GeV DM efficiently [132]:
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�
ΩX

0.2

�
∼
�

mX

35 MeV

�
3=2

�
xf:o:
20

�
2
�

1

αSIMP

�
3=2

; ðD4Þ

with xf:o: the value of the decoupling parameter when the
freeze-out condition is met: Γannih ¼ HðTÞ, i.e. when the
annihilation rate per DM particle is equal to the Hubble
rate. Assuming xf:o: ∼ 20 we can combine Eqs. (D3) and
(D4) to obtain the following mass dependence of the
annihilation rate coefficient:

hσSIMPv2i ∼ 2.7 × 104
�
1 GeV
mX

�
2

GeV−5: ðD5Þ

This rough estimate, which we will use in our calculations,
can be confirmed by fully solving numerically the corre-
sponding Boltzmann equation, as done by [96] (see their
Fig. 2).
We point out here that one could consider 4 → 2 processes

as well, and show that thermal relics withmasses at themX ∼
100 keV scale can be produced thermally if DM interacts
strongly: i.e. hσ4→2v3i ∼ α44→2=m

8
X, with α4→2 ∼ 1.

For the Co-SIMP model, the 3 → 2 process of interest is
DMþ DMþ SM → DMþ SM. In order to produce ΩX ∼
0.3 the thermal-averaged annihilation factor must be [97]

hσCoSIMPv2i ∼ 1012
�
MeV
mX

�
3
�
0.12
ΩXh2

�
2

GeV−5: ðD6Þ

Next, we proceed to calculate the equilibration timescale
between the capture and annihilation/evaporation proc-
esses, and compare it to the lifetime of the star, for each
of the DM models described above. As discussed in
Appendix A, the number of DM particles inside a star
will reach a constant equilibrium value whenever it is at a
time larger than teq ≡ τeq=κ. The usual equilibration time-
scale between capture and annihilation is defined by
τeq ≡ 1=

ffiffiffiffiffiffiffiffiffiffiffiffiffi
CtotCA

p
, with Ctot being the total capture rate,

and CA the NX independent annihilation coefficient defined
in terms of the total annihilation rate ΓA as ΓA ¼ CAN

j
X,

with j being the number of DM particles entering the
annihilation process. Evaporation leads to a shortening
of the equilibration timescale by a factor of κ≡ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ E2τ2eq=4

q
. Imposing equilibration in a time less than

a fraction of the typical lifetime of the Pop III star, which, in
view of their high masses, becomes independent ofM⋆, and
with a value approximately equal to 106 yr. The annihi-
lation coefficient CA for 2 → 2 (s/p-wave) annihilations
takes the following form:

C2→2
A ¼

R
dVn2Xhσvi
ðR dVnXÞ2

; ðD7Þ

whereas for the SIMP model we have

CSIMP
A ¼

R
dVn3XhσSIMPv2i
ðR dVnXÞ3

; ðD8Þ

CCo-SIMP
A ¼

R
dVn2XnSMhσCo-SIMPv2i

ðR dVnXÞ2
; ðD9Þ

with nSM the number density of the relevant SM particles
entering the process. For us this will be the same as the
number density of protons inside the star, since we
approximate the star as being made of fully ionized H.
In general, both the SIMP and the Co-SIMP DM can be

realized in nature, simultaneously. However, for our pur-
poses, the DM heating due to Co-SIMP DM annihilations
inside the star is many orders of magnitude higher than the
heating due to SIMP DM annihilations. This can be traced
to the much lower nX when compared to nSM, inside the
star. Therefore, inside the star it is the Co-SIMP DM that
has the dominant effect. Conversely, outside the star nSM
becomes much lower than the ambient nX. So, if those two
models coexist (SIMP/Co-SIMP), then, outside the star we
need to take into account the effects of DM annihilations on
the DM densities, i.e. the annihilation plateau. We do this
analysis in Appendix E.
In Fig. 14 we plot the upper bound on hσvi obtained by

requiring teq ≲ 104 yr. Note that for the case considered in
that figure, mX ≳ 10 GeV, DM evaporation can be safely
neglected, so teq ≈ τeq. The fact that the upper bound is
always below the thermal relic hσvi demonstrates that for
WIMPs equilibrium is attained well within the lifetime of
the star. For superheavy DM particles that annihilate, the

w

w
w

u

l

t

t

FIG. 14. Lower bounds on hσvi for 2 → 2 annihilations, such
that the capture and annihilation processes equilibrate inside the
star in teq ∼ 104 yr, corresponding to about 1% of the typical
lifetime of the Pop III stars considered here. The grayed-out
region at the bottom is excluded, since the equilibrium is attained
in more than 104 yr. Note that this excluded region is almost the
same for Pop III stars with M⋆ in the 100 M⊙–1000 M⊙ range.
Additionally, we compare those lower bounds with the unitarity
limit, and with the hσvi required by the freeze-out mechanism for
thermal relics, in the WIMP mass window.
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same conclusion holds, as can be seen from comparing the
unitarity limit to our lower bounds on hσvi. In Fig. 15 we
plot the equilibration timescale normalized to the lifetime
of the star for Co-SIMP DM. For the entire mass range
considered we took σ at the deepest edge of our excluded
regions for each star. In order to estimate the number density
of the relevant SM particles, we assumed we used the n ¼ 3

polytrope approximation: nSM ∼ θ3ðξÞ. Note that the equili-
bration timescale decreases rapidly with mX. More impor-
tantly, at the highest mX considered here for the Co-SIMP
DM model, equilibrium is still attained well within the
lifetime of the star. We can see the same effect, for the entire
swath of parameter space excluded by Pop III stars for
Co-SIMP DM-proton cross section, in Fig. 16.
To sum up, in this appendix we investigated our

assumption of equilibration between capture and annihi-
lations/evaporation is reached within a small fraction of the
lifetime of the star. We find that this is certainly the case
for two of the thermal DM models considered: WIMPs and
Co-SIMP DM. If we allow for the possibility of SIMP
interactions as well, we find that their annihilations inside
the SM-rich environment of a star are negligible when
compared with Co-SIMP DM. Therefore, equilibrium is
reached mostly due to efficient Co-SIMP annihilations (at
lower σ), and aided by the effects of evaporation (at higher
σ). Regarding nonthermal DM we considered superheavy
dark matter model, such as WIMPZILLAs. We find that an
equilibrium can be attained well within the lifetime of the
star if WIMPZILLAs self-annihilate. Moreover, we find the
lower bound on hσvi for such models, for which equilib-
rium is reached within 1% of the lifetime of the star.
In the next section we investigate the role of DM

annihilations in the environment surrounding the star,

and check the robustness of our results when including
this effects on the ambient DM density.

APPENDIX E: DM MINIHALOS

The first stars in the Universe are believed to have been
formed in DMminihalos of massMhalo¼105M⊙–10

6M⊙,
at typical redshifts of z ¼ 10–50 [69]. The DM profiles
formed at these redshifts hosting Pop III stars have
been studied extensively, particularly within the context
of DM’s effect on the stellar formation [103,121].
These works have also discussed the effects of baryonic
infall to the halo’s core on its density profile. The process
of adiabatic contraction has been used to approximate
this through calculations involving the conservation of
adiabatic invariants, assuming an adiabatic process
[133,134]. Recent work has also demonstrated that mas-
sive Pop III star formation can persist up to redshifts of
z ∼ 6 in extreme cases [135]. This supports the recent
claim of detection of a Pop III stellar complex at z ∼ 7
by [94].
In this section we will mainly utilize the methods in

[103,134] to calculate the density profiles of DM mini-
halos at redshifts of z ∼ 7 and z ∼ 10–50 to find the DM
density at the edge of the baryonic core, ρX. This
parameter is necessary for accurately calculating the
DM capture rates in Pop III stars and thus calculating
constraints on the DM-nucleon scattering cross section.
We also calculate the DM dispersion velocity, v̄, for these
different halos.

FIG. 15. Ratio between equilibration timescale (teq ≡ τeq=κ)
and the lifetime of the star (T⋆ ∼ 106 yr), as a function of mX for
Co-SIMP DM. Each band corresponds to ambient DM densities
1013 GeV cm−3 ≲ ρX ≲ 1016 GeV cm−3. The three different
bands correspond to the three different values of M⋆ labeled
in the legend.

FIG. 16. Ratio between equilibration timescale (teq ≡ τeq=κ)
and the lifetime of the star (T⋆ ∼ 106 yr), as a function of mX for
Co-SIMP DM. At each point within the region we exclude in
view Co-SIMP DM we calculate the corresponding ratio, and
color code it according to the color bar on the right. Note that
throughout this region teq ≪ T⋆, i.e. equilibrium between capture
and annihilations/evaporation is attained in a timescale that is
much shorter than the lifetime of the star for the entire parameter
space considered.
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We start by describing the initial DM halo profile before
contraction using the standard NFW profile [102]6:

ρhalo ¼
ρ0

r
rs
ð1þ r

rs
Þ2 ; ðE1Þ

where ρhalo is the DM density at a point r from the center, rs
is the scale radius, and ρ0 is a normalization called the
central density [39,41]. The virial radius rvir is related to
the virial mass of the halo (Mhalo) in the following way:

Mhalo
4π
3
r3vir

¼ 200ρcritðzÞ; ðE2Þ

where ρcrit is the critical density of the Universe at redshift z.
The central density is calculated as a function of the halo’s
concentration parameter, c≡ rvir

rs
, and the redshift, z, via the

following equation:

ρ0 ¼ ρcritðzÞ
200

3

c3

ln ð1þ cÞ − c=ðcþ 1Þ : ðE3Þ

From the virial theorem, we can calculate the dispersion
velocity of DM, v̄:

hv̄2i ¼ W̄
Mhalo

; ðE4Þ

where

W ¼ −4πG
Z

ρhaloMhaloðrÞrdr ðE5Þ

is the gravitational potential of the DM halo. The typical
Pop III star-forming at z ∼ 10–50, in halos of mass
Mhalo ¼ 105 M⊙–10

6 M⊙, with concentration parameters
c ¼ 1–10, will have dispersion velocities of v̄ ¼
1–15 km=s, corroborated by [39,41]. For the case of a
Pop III star forming at z ∼ 7, Mebane et al. [135] showed a
minimum halo mass for formation of Mhalo ∼ 108 M⊙.
Assuming concentration parameters in the range c ¼
1–10 as well, the dispersion velocities in the range v̄ ¼
22–55 km=s.
Under the assumption of adiabaticity for the collapse of a

protostellar cloud, we can assume adiabatic invariants are
well conserved and use this fact to calculate the effect of
baryonic infall on the DM profiles, following [103]. We
utilize the Blumenthal method [134], where conservation of
angular momentum is assumed as the halo is compressed,
to solve for the final mass profile given by the following

equation: MfðrfÞrf ¼ MiðriÞri. This equation essentially
says that a particle at an initial radius ri is pulled into a final
radius rf, where MðrÞ is the total enclosed mass at r.
Note that [103] has shown that, within factors of a few,
this method reproduces results from the more elaborate
Young [133] and Gnedin [136] methods, which allow for
noncircular DM orbits.
It is worth mentioning that most numerical N-body

simulations do not have the required resolution to follow
the DM profiles directly, especially in the inner milliparsec
of the microhalo. However, the numerical results of [69]
support an adiabatically contracted DM density profile, for
a baryon gas density up to ncore ∼ 1013 cm−3, and as far
inward as the resolution limit of the simulation, ∼10−2 pc,
as one can see in Fig. 17.
As evidenced in Fig. 17, the adiabatically enhanced DM

density profiles have a broken power law behavior. This is
due to the sharp decrease of the baryonic density outside
of the baryonic core. As found in [77,90] the value of the
adiabatically contracted DM density at the edge of the
baryonic core can be estimated in terms of the number
density of the protons inside the core:

ρX ≈ 5

�
ncore
cm3

�
0.81

GeVcm−3: ðE6Þ

Moreover, the profile outside of the baryonic core
scales as

FIG. 17. Adiabatically contracted NFW profiles vs numerical
simulation of DM densities during the runaway collapse of a pre–
Pop III star molecular gas cloud. Each profile corresponds to a
different value for the protostellar core density (ncore), labeled in
the legend. The simulation data points are taken from Fig. 2 of
[69], which corresponds to ncore ∼ 1013 cm−3. Resolution limits
the simulation from probing the DM densities to scales smaller
than ∼10−2 pc. Note the excellent agreement with the AC
contracted profile for the same ncore ¼ 1013 cm−3. We addition-
ally plot the predicted DM density at the edge of the baryonic
core from Eq. (E6), at the predicted radius of the core
given by Eq. (E8).

6Our results regarding the adiabatic compression of DM
densities are largely insensitive to the initial profile, as shown
by Freese et al. [103], who demonstrates that even for the most
extreme case of a purely cored profile, there is significant
enhancement of DM densities, and that this enhancement is
largely insensitive to the choice of the initial profile, as seen in
their Figs. 2 and 3. See also Fig. 1 of [90].
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ρXðrÞ ≈ ρXð1 pcÞ
�

r
1 pc

�
−1.8

; ðE7Þ

as found in [77,90], and additionally verified by us in this
work. Remarkably, the numerical simulations of [69] and
the adiabatic contraction formalism predict very similar
values for the DM densities outside of the baryonic core
(see Fig. 17). Moreover, the DM density at 1 pc can be
estimated with ρXð1 pcÞ ∼ 104 GeV cm−3. Note that this is
only mildly sensitive to the concentration parameter or the
redshift where the Pop III star forms, as shown in Fig. 18.
Equating the values of the DM density from Eqs. (E6)
and (E7) one gets the following estimate for the radius of
the baryonic core [77]:

rc ≈ 16.7

�
ncore

1014 cm−3

�
−0.81=1.8

A:U: ðE8Þ

We can now estimate the DM density at the edge
of baryonic core from the simulation of [69], which
corresponds to an ncore ∼ 1013 cm−3, and for which the
numerical resolution limits the computation of DM den-
sities in the inner milliparsec, as seen in Fig. 17. However,
in view of the agreement between simulation data and
the adiabatic contraction (AC) profile, we expect this
trend to continue at least up to the edge of the baryonic
core. This means that in fact the numerical simulations of
[69] support a DM density at the edge of the baryonic core

of ρX ≈ 5 × 1013·0.81 ∼ 1011 GeV cm−3. If adiabatic com-
pression operates up to higher ncore, then this value will be
correspondingly enhanced by ðncore=1013Þ0.81. Specifically,
assuming that AC ceases to operate at ncore ∼ 1016 cm−3,
we estimate ρX at the edge of the core to be
5 × 1013 GeV cm−3, whereas for an ncore ∼ 1019 cm−3

the corresponding DM density is ρX ∼ 1016 GeV cm−3.
As one can see from Fig. 17, DM densities continue to
increase, albeit at a milder rate, at scales smaller than
the baryonic core. Conservatively, we will always
set the ambient DM density to be equal to the DM density
at the edge of the baryonic core, corresponding to the
ncore where AC is assumed to cease to operate. For the latter
assume a value between ncore ∼ 1016−1019 cm−3, leading
to ambient DM densities in the range 1013−1016GeVcm−3,
which are the values we used in this work to place bounds
on the DM-proton interaction cross section. We want to
additionally emphasize that results from other numerical
simulations (see, for example, [117–119]), in addition to
the aforementioned Ref. [69], are in good agreement with
those obtained via the adiabatic contraction formalism,
especially for high redshift halos, such as those where
Pop III stars form, since baryonic feedback effects are not
important in this case.
We summarize our results from contracting the initial

NFW profiles given by Eq. (E1) in Fig. 18 for Pop III star-
forming halos at z ∼ 7 and z ∼ 15. We find that, at both
redshifts, the DM densities at the edge of the baryonic cores

FIG. 18. Adiabatically contracted NFW DM profiles for redshifts z ∼ 7 and z ∼ 15. The solid lines represent the profiles for c ¼ 10,
while the dotted lines are those for c ¼ 1. The different colors of the lines represent varying the densities of the core baryonic gas cloud
collapsing at the center of the DM halo, on its way to becoming a proto–Pop III star (ncore ∼ 1022 cm−3). Despite the different redshifts,
the DM profiles are very similar and demonstrate that the effect of the concentration parameter is mostly insignificant in the ranges
discussed. Both cases show a significant enhancement and lead to DM densities at the edge of the core as high as ρX ¼ 1016 GeV cm−3,
assuming adiabatic contraction operates until the formation of a protostellar core.
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are greatly enhanced by the process of adiabatic contrac-
tion, largely irrespective of the concentration parameter.
It is also evident that there is little variation in the densities
at the edge of the baryonic core when considering the
different redshifts. As discussed in Sec. IV, these enhanced
DM densities allow for competitive constraints on the
DM-nucleon scattering cross section.
In contrast to the enhancement of the ambient DM

density due to adiabatic contraction, we also consider the
effect of DM annihilation on the density profile, which
reduces the ambient density over time. We start by
considering what effect this may have on the initial DM
profile, i.e. before star formation. To estimate this, we first
take an initial NFW profile that evolves from annihilations
as baryons fall inward and collapse to form a protostellar
core. In doing so, we assume that the collapse is rapid
enough that the DM profile does not respond gravitation-
ally, but rather only through annihilations. For a more
conservative result, we also start with an initial AC profile
with a baryon core density made artificially high. This is
not physically realistic, as the DM profile would, in reality,
take time to become enhanced, but we consider it to show
that even for initially higher density profiles, the effects of
annihilation are not relevant at the distances that the star
would capture dark matter.
For DM annihilating via a 2 → 2 process, the differential

equation governing the rate at which DM particles are
annihilated out of the halo is given by

dNX

dt
¼ −Γ2→2

ann ¼ −
Z

dVn2Xhσvi: ðE9Þ

Solving for the DM density at a given time and position
gives

ρ2→2
X ðr; tÞ ¼ ρ0ðrÞρ2→2

AP ðtÞ
ρ0ðrÞ þ ρ2→2

AP ðtÞ ; ðE10Þ

where ρ0ðrÞ ¼ ρ0ð0; rÞ is the initial DM density, and ρ2→2
AP ,

the so-called annihilation plateau, is given by ρ2→2
AP ðtÞ ¼

mX
hσvit. Since the 2 → 2 process considered does not require

baryonic matter for annihilation, there is no functional
dependence on the baryon content, and so it is straightfor-
ward to calculate the radius at which the annihilation
plateau begins to be relevant as a function of time. This
radius can be found by finding where the initial profile
ρ0ðrÞ equals the annihilation plateau density ρ2→2

AP ðtÞ. Doing
so for an initial NFW profile gives the following scaling
relation:

rAP ≈ 2 × 10−9 pc

�
rs

190 pc

��
ρ0

30 GeVcm−3

�

×

� hσvi
10−26 cm3 s−1

��
t

106 yr

��
1 GeV
mX

�
: ðE11Þ

Since DM particles are generally captured outside the
10 A.U. region (≈5 × 10−5 pc), it is safe to say that the
initial NFW profile will not be affected at the distance
scales relevant for capture during the time it takes for star
formation (t ∼ 106 yr). For the SIMP model, an equivalent
analysis can be done, except with the following differential
equation governing the rate of particle loss in the halo:

dNX

dt
¼ −Γ3→2

ann ¼ −
Z

dVn3Xhσv2i: ðE12Þ

Solving for the ambient DM density gives

ρ3→2
X ðr; tÞ ¼ ρ0ðrÞρ3→2

AP ðtÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ0ðrÞ2 þ ðρ3→2

AP ðtÞÞ2
p ; ðE13Þ

where ρ3→2
AP ¼ mXffiffiffiffiffiffiffiffiffiffiffi

2hσv2it
p . Similar to the 2 → 2 process, one

can estimate the radius where the annihilation plateau
begins to be relevant by solving ρ3→2

AP ðtÞ ¼ ρ0ðrÞ. Doing
so for a NFWand SIMP annihilation leads to the following
scaling relation:

rAP ≈ 7 × 10−9 pc

�
rs

190 pc

��
ρ0

30 GeVcm−3

��
t

106 yr

�
1=2

×

�
10−4 GeV

mX

�
2

: ðE14Þ

Again, we find that the profile is not affected at timescales
and distance scales relevant for captured DM, and so the
initial profile can be well approximated by a NFW profile
for both the SIMP and WIMP models.
For the Co-SIMP model, a more detailed calculation is

required since a standard model particle is required for
annihilation in this process. Therefore, to find how much
DM is annihilated away when baryons began falling into
the DM halo, we must know the baryonic profile at each
point in time. The baryon profile can be well approximated
by the following function [103]:

nBðrÞ ¼
ncore

1þ ðr=rcÞ2.3
; ðE15Þ

where ncore is the baryonic core density and rc the core
radius [rc ultimately depends on ncore via Eq. (E8)]. This
function was obtained from fitting the data in the simu-
lations of [69]. The core densities at different times can be
found in [69], and the core radii is then given exactly by
Eq. (E8). Since the core densities from the simulations in
[69] are given at discrete times, to approximate the profile
at any given time, we have fitted between data points a
power function of the form, ncoreðtÞ ¼ αtβ, where α and β
are found from fitting a line in logarithmic space. The result
of fitting this data can be seen in Fig. 19, where we have
extrapolated to the time at which the core density is
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high enough that a proto–Pop III star is formed, i.e.
ncore ∼ 1022 cm−3. Annihilations past this point will still
occur, but will be subdominant in the region of capture.
This is because after the runaway collapse of baryons into a
small, dense core, most of the baryons outside the core will
be in an accretion disk within ∼10 A.U. of the core, as
shown by simulations [69]. This is much farther inward
from where most DM will be captured, and so this effect
will cease to be relevant for the Co-SIMP model past
this point.
Equipped with the baryon profile as a function of time,

we are able to estimate how much DM is annihilated away
during the baryon cloud collapse. However, to do this, we
make the assumption that the initial halo changes only due
to annihilations and not through adiabatic contraction. In
order to verify our claim that annihilations will not affect
the initial profile, we will examine two extreme cases for
the profile before baryon collapse: an initial profile that
is NFW and one that is artificially enhanced by adiabatic
contraction. The AC profile is used to show that even
steeper profiles are not significantly altered at the distance
scales relevant to capture. To solve for the DM density at a
given time and radius, we point to the following equation:

dNX

dt
¼ −Γ3→2

ann ¼ −
Z

dVn2XnBhσv2i; ðE16Þ

which has the following solution for the DM density:

ρXðr; tÞ ¼
ρ0ðrÞmX

mX þ ρ0ðrÞhσv2i
R
t
0 nBðr; t0Þdt0

; ðE17Þ

with ρ0ðrÞ being the initial DM profile. One can then solve
this numerically using the broken power law function used
to fit the baryon core density as a function of time. The
results of this when taking ρ0ðrÞ to be a NFW profile is
shown in Fig. 20. Here we see that the annihilation of DM
and baryons during collapse does affect the initial NFW
profile, but only at radii much smaller than the edge of the
accretion disk, which is at ∼10 A.U. (∼5 × 10−5 pc). It is
therefore safe to make the assumption that a NFW profile
would not change at the distance scales relevant to capture
from annihilations during collapse. However, as previously
mentioned, this is an underestimate of these effects since, in
actuality, the DM profile would respond to the infall of
baryons through adiabatic contraction by becoming steeper,
which would naturally lead to larger annihilation rates.
Thus, to be the most conservative, we have also taken the
initial profile ρ0ðrÞ to be an AC profile with a baryon core
density of ncore ∼ 1022 cm−3, which is approximately the
core density for the formation of a proto–Pop III star. We
would like to strongly emphasize here that we are not
suggesting that this would be the physically motivated
initial profile, and thus the resulting profiles do not
represent the distribution of dark matter at star formation.
However, the high density nature of such a profile provides
the most conservative estimate for the effects of annihila-
tion on the DM profile at star formation, and is thus useful
to demonstrate that even for a nonphysical, steep profile,
these effects can be ignored. A complete treatment of this

FIG. 19. Core density of baryon profile ncore as a function
of time based on a power law fit of simulation data from [69].
Here, the points represent data from [69], while the black line is
a broken power law fit. Here we have defined t ¼ 0 to be the
time at which the core density reaches ncore ∼ 106 cm−3, and
have extrapolated past the last point in the simulation data
(ncore ∼ 1013 cm−3, t ∼ 334, 700 yr) by continuing with the same
power law behavior fitted between the final two points. In reality,
one would expect a larger power for the final region, making this
estimate slightly conservative. We have extrapolated up to the
point at which a proto–Pop III star forms, ncore ∼ 1022 cm−3. Due
to the rapid contraction of the baryons for t≳ 300, 000 yr, we
conservatively estimate this to be at time t ∼ 335, 600 yr, only
900 yr after reaching ncore ∼ 1013 cm−3.

FIG. 20. Time evolution of an initial NFW DM profile due to
DM annihilations in the Co-SIMP model during the collapse
of baryons up to the formation of a stellar protocore when
ncore ∼ 1022 cm−3. This supports the fact that the initial profile
can be taken as a NFW as it is unchanged in the regions relevant
to capture, ≳10 A.U.
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question would require coupling the time dependence of
adiabatic contraction to Eq. (E16).
In Fig. 21 we plot the result of Eq. (E17) with an initial

AC profile with ncore ∼ 1022 cm−3. Again, it is clear that
annihilations during collapse do affect the initial profile,
however, this is limited to the region r≲ 10−7 pc, which is
still inward of the distance relevant for capture, r∼
5 × 10−5 pc. Thus, even for the most extreme case of a
steep AC profile, the DM densities in the regions relevant
for capture are unaffected. An intriguing feature of the
profile at t ¼ 335, 600 yr is the peak in the density at
r ∼ 10−7 pc, before it falls and flattens as it moves inward.
This can be explained by examining the behavior of the
denominator of Eq. (E17). When mX ≫ ρ0ðrÞhσv2i×R
t
0 nBðr; t0Þdt0, i.e. when the annihilation term is subdomi-
nant, the profile is simply described by the initial profile,
which is the case for the larger radii (r≳ 10−7) in Fig. 21.
However, as annihilation becomes more relevant, which
depends not only on time, but on the radius (since the
baryon distribution is considered), the initial profile
actually vanishes from the equation and the profile is
described by ρXðr; tÞ ≈ mx

hσv2i
R

t

0
nBðr;t0Þdt0

. Thus, inward of a

given radii at a specific time, the profile scales like
ρXðrÞ ∼ nBðrÞ−1. Now, the baryon profile is described by
Eq. (E15), which scales like nBðrÞ ∼ 1=rwhen r ≫ rc, and
like nBðrÞ ∼ r0 when r ≪ rc. Thus, when t ¼ 335, 400 yr,
for example, inward of r ∼ 10−7 pc the profile completely
flattens as the annihilation term becomes dominant and
the baryon profile in this region is flat. However, for the
t ¼ 335, 600 yr case, rc has actually shifted farther inward
since rc ∼ n−0.81=1.8core and ncore depends on time via Fig. 19.

Thus, there is a small region r ∼ 10−8 − 10−7 pc where the
nBðrÞ ∼ 1=r relation is captured, but inverted, since
ρXðr; tÞ ∼ 1=nBðrÞ there. As shown in Fig. 21, going
further inward, the profile flattens again as r ≪ rc and
so nBðrÞ ∼ r0.
After star formation, DM particles in the region outside

of the star will self-annihilate, thus reducing the density of
DM in the capturing region. The differential equation
governing the number of DM particles in the region outside
the star for 2 → 2 processes is given by Eq. (E9) and has a
solution shown in Eq. (E10). For 3 → 2 processes, namely
the SIMP and Co-SIMP models, it can be shown that SIMP
annihilation, which requires three DM particles, is far more
efficient than Co-SIMP annihilation in the region outside
the star due to the low baryonic density. Thus, the
equivalent differential equation for the 3 → 2 models
effectively reduces to that of SIMP annihilation, given in
Eq. (E12) with the solution in Eq. (E13). An important
feature of Eqs. (E10) and (E13) is that in the limit of ρAP ≫
ρ0 (ρ0 ≫ ρAP), the DM density simply becomes ρX ≃ ρ0
(ρX ≃ ρAPÞ. In words, this means that, at a given position
and time, the density is defined by the lower of the two.
This fact is portrayed in Fig. 22 for 2 → 2 s-wave
annihilations. Note that at t ¼ 0, ρAP → ∞, and thus the
profile is unaffected by ambient DM annihilations.
However, as time increases and more DM particles in
the region around the star begin annihilating, the profile
begins flattening around the higher densities (toward the
profile’s center), creating the annihilation plateau. This
effect has implications for the DM capture rate, and thus the
strength of our constraints on the DM scattering cross

h

FIG. 21. Time evolution of an initial AC DM profile
(ncore ∼ 1022 cm−3) due to DM annihilations in the Co-SIMP
model during the collapse of baryons up to the formation of a
stellar protocore when ncore ∼ 1022 cm−3. This represents an
extreme case where the initial profile is made much steeper than
it would be to show that even in the most conservative case, the
densities in the region where capture is relevant, r ∼ 5 × 10−5 pc,
is unaffected during the collapse of the baryons.

FIG. 22. Time-evolved AC DM profiles under the influence of
2 → 2 s-wave annihilations for a 10 GeV WIMP. The initial AC
profile (t ¼ 0) is represented by the gray dash-dotted line, while
the varying colors represent the same profile at a later time, t. The
annihilations of DM particles in the region surrounding the star
(≲10 A.U.) lead to a flattening of the DM profile in the inner
region known as the annihilation plateau. This effect becomes
more pronounced over time as more particles annihilate and leads
to lower ambient DM densities.
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section (see Sec. IV), as lower ambient densities cause the
capture rate to drop. However, the suppression of the
ambient density due to this process is within our uncer-
tainty of the ambient DM density for 2 → 2 and SIMP
annihilations. To see this, first note that the more pro-
nounced effects of the annihilation plateau occur for lower
DM masses (ρAP ∼mX), larger times (ρAP ∼ 1=t), and an
efficient annihilation cross section. For 2 → 2
s-wave annihilation, Fig. 22 shows that, for the largest
time considered (t ∼ T⋆ ¼ 106 yr) and the smallest mass in
this regime (mX ¼ 10 GeV), the annihilation plateau
reduces the ambient density to ρX ∼ 1013 GeV cm−3, which
is the lower limit we take for the ambient DM density.
A similar analysis of the SIMP annihilation plateau shows a
minimum density of ρX ∼ 1012 GeVcm−3, which, while
below our lower limit, is still within the uncertainty for the
ambient DM density. Thus, while the annihilation plateau is
an important process that must be factored into the
constraints placed by this method, it does not reduce
constraining in a drastic manner. We do, however, always
include the effects of the DM annihilations on ρX on all of
our σ −mX bounds.
An intriguing question that arises when considering

the high DM density in the region surrounding the star
is that of ambient annihilations producing diffuse emis-
sions, which could potentially provide a signal that is
distinct from the star’s luminosity. To determine whether
this effect is negligible relative to the star’s luminosity, one
must calculate the diffuse emissions from DM annihilations
in the halo. This effect is relevant only for the 2 → 2
processes we consider, as SIMP DM produces no SM
particles upon annihilation, and Co-SIMP DM requires a
SM particle for annihilation and, as mentioned previously
in the discussion of the annihilation plateau, the baryonic
density outside the stellar region is too small for any
considerable effects. For 2 → 2 processes, the luminosity
from ambient annihilations within a given volume around
the star is given by

Lamb ¼ mXΓ2→2
ann ¼ mX

Z
dVn2Xhσvi: ðE18Þ

It is straightforward to compute this integral analytically by
taking the outer profile of the halo from Eq. (E7). The final
result is given by

Lamb ¼ 5V⋆
hσviρ20
mX

�
1 −

�
R⋆

rcutoff

�
0.6
�
; ðE19Þ

where ρ0 is the DMdensity at the edge of the core, and rcutoff
is the radius at which the integral is truncated. One can
thus calculate the approximate diffuse luminosity for a
given DM profile out to some point around the star. For
the WIMP regime, the annihilation cross section can be
taken from the standard cross section giving the correct relic

FIG. 23. Ratio of a M⋆ ¼ 100 M⊙–1000 M⊙ star’s nuclear
luminosity (represented by a band of a given color) to the diffuse
emissions due to WIMP annihilations in the region directly
surrounding the star (out to three stellar radii, purple line) and
from the entire halo (out to the virial radius, blue line). The
annihilation cross section is taken from the standard WIMP
miracle cross section. This plot demonstrates that, in the WIMP
regime and for the highest ambient DM density considered, the
star’s nuclear luminosity is always dominant relative to the
diffuse emissions.

FIG. 24. Ratio of a M⋆ ¼ 100 M⊙ star’s nuclear luminosity to
the diffuse emissions due to heavy DM annihilations in the region
directly surrounding the star (out to three stellar radii, purple band)
and from the entire halo (out to the virial radius, blue band). The
annihilation cross section is taken in a range between the bounds
placed in Fig. 14 arising from the equilibrium condition and the
unitarity limit (this is represented by the band of a given color). In
this figure, it is evident that across all annihilation cross sections
allowable for heavy DM that equilibrates in the star, the diffuse
emissions are subdominant relative to the star’s nuclear luminosity.
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abundance. For more massive DM particles, a very
conservative approach would be to take the annihilation
cross section at the unitarity limit. For the study of Pop III
stars considered in this paper, the annihilation cross section
could also be takenby the lower bounds placed in Fig. 14. For
DM to equilibrate in the star, the annihilation cross section
would necessarily have to fall between the unitarity limit and
the lower bounds placed in Fig. 15, which thus provides a
natural range of cross sections to explore this effect.
We estimate the upper bound on the effect of the ambient

annihilations to the star’s total luminosity by considering the
ratio Lnuc=Lamb. For the most conservative approach, where
Lamb is maximized, we consider the highest density we take
in this paper, ρ0 ¼ 1016 GeV cm−3. The results of this
calculation are presented in Figs. 23 and 24, which show
in the respective mass regimes that the diffuse emissions are
always subdominant to the star’s total luminosity.

Although, as Figs. 23 and 24 show, the ratio between
the nuclear luminosity (Lnuc) and the diffuse DM halo
emission from DM annihilations inside the halo (Lamb) is
always greater than 1, and typically much greater than 1,
we point out the intriguing possibility of estimating the
diffuse emission, by removing from the total spectrum the
expected stellar spectra. If the remaining residuals are
statistically significant, one could infer DM annihilations
are the cause, and as such infer properties of the DM
particle, in a very similar fashion to the DM explanation of
center of the Galaxy excess gamma-ray excess in the
FERMI data [13–15]. However, in the latter case, other
more mundane astrophysical sources, such as unresolved
pulsars, could explain the excess [16,17]. This is in contrast
to the situation of a possible excess from DM microhalos
at high redshifts, where pulsars are not expected to be
present.
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