
Dynamical phase transitions in models of collective neutrino oscillations

Alessandro Roggero
InQubator for Quantum Simulation (IQuS), Department of Physics, University of Washington,

Seattle, Washington, D.C. 98195, USA

(Received 25 March 2021; accepted 8 November 2021; published 14 December 2021)

Collective neutrino oscillations can potentially play an important role in transporting lepton flavor in
astrophysical scenarios where the neutrino density is large, typical examples are the early universe and
supernova explosions. It has been argued in the past that simple models of the neutrino Hamiltonian
designed to describe forward scattering can support substantial flavor evolution on very short timescales
t ≈ logðNÞ=ðGFρνÞ, with N the number of neutrinos, GF the Fermi constant and ρν the neutrino density.

This finding is in tension with results for similar but exactly solvable models for which t ≈
ffiffiffiffi
N

p
=ðGFρνÞ

instead. In this work we provide a coherent explanation of this tension in terms of dynamical phase
transitions (DPT) and study the possible impact that a DPT could have in more realistic models of neutrino
oscillations and their mean-field approximation.

DOI: 10.1103/PhysRevD.104.123023

When considering astrophysical settings with large
neutrino densities, neutrino-neutrino scattering processes
can play an important role in shaping the flavor evolution
and can lead to collective oscillations in a neutrino cloud
[1,2]. This mechanism has been found to play an important
role in extreme environments like the early universe [3–5]
or core-collapse supernovae and binary neutron-star merg-
ers [6–12]. In the latter situations for example, fast neutrino
flavor oscillations can lead to important consequences for
the revival of the shock wave and nucleosynthesis in the
ejected material [13–15].
In this work we study simple models of neutrino-

neutrino interactions in the forward-scattering limit, when
only flavor can be exchanged among neutrinos. For
simplicity we also assume that only two flavor of neutrinos
mix: νe corresponding to the electron flavor and νx, a
combination of μ and τ flavors [16]. In this model,
neutrinos are mapped into SUð2Þ flavor isospins evolving
at low densities under the vacuum Hamiltonian [18]

Hvac ¼
XN
k¼1

ωk

2
B⃗k · σ⃗k; ð1Þ

with σ⃗i ¼ ðσxi ; σyi ; σzi Þ the vector of Pauli matrices acting on
spin i. The one-body coefficients ωk are connected to the
squared mass gap Δm ¼ m2

2 −m2
1 by ωk ¼ Δm=ð2EkÞ, with

Ek the neutrino energy. The neutrino mass hierarchy is
reflected in the sign of the gap: for normal hierarchy we
consider Δm > 0, while for inverted hierarchy we take
Δm < 0 [18,19]. The orientation of the “magnetic field”
vector B⃗k ¼ ðsinð2θÞ; 0;− cosð2θÞÞ is related to the mixing
angle θ. Importantly, the collective oscillations discussed in
this work are not related to the presence of off-diagonal
components in the Hvac Hamiltonian and in order to avoid
confusion we will use a global SUð2Þ rotation to move to
the mass basis j↓i ¼ jν2i and j ↑i ¼ jν1i with a diagonal
vacuum Hamiltonian.
With the addition of the forward-scattering weak inter-

action among neutrinos, the full Hamiltonian reads [18]

HFS ¼ −
XN
k¼1

ωk

2
σzk þ

μ

2N

XN
i<j

J ijσ⃗i · σ⃗j; ð2Þ

where the interaction strength is given by μ ¼ ffiffiffi
2

p
GFρν,

with GF the Fermi constant and ρν the neutrino number
density. The geometry of the problem is encoded in the
coefficients of the two-body coupling matrix J ij as

J ij ¼
�
1 −

p⃗i · p⃗j

jp⃗ijjp⃗jj
�

¼ ð1 − cosðθijÞÞ; ð3Þ

with p⃗k the momentum associated with the kth neutrino.
The present setup describes then an anisotropic but homo-
geneous finite system, in the sense that the density is
constant in space but flavor evolution depends on the
momentum direction, composed of N neutrinos described
by plane waves in a spatial quantization volume given by
V ¼ N=ρν. In the more realistic inhomogeneous case the
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spin indices will be associated to a momentum and also
spatial location and the interaction term will need to be
modified accordingly. This extension, which is needed to
connect predictions for neutrino flavor evolution to a more
realistic supernova environment, will be the subject of
future work. The model with infinite range interactions
described in Eq. (2) is then only an approximation and a
more realistic description would take also into account the
finite hydrodynamic length scales appropriate for the
astrophysical setting under study. The models discussed
in this work are further simplifications of the Hamiltonian
in Eq (2) and as such we do not expect the results presented
here to be directly applicable to predict the flavor evolution
in a realistic setting. They share however many features
with more realistic descriptions and their simplicity allows
a more detailed analysis of their behavior with controllable
approximations. Direct comparisons of the results pre-
sented here with those obtained in more realistic models
will be critical to understand the applicability of the
employed approximations in the physical settings where
collective neutrino oscillations are expected to arise. In this
work the focus will be on the role played by many-body
correlations.
We also note that alternative descriptions of the many-

body neutrino state as a collection of wave packets of finite
size, instead of plane waves with infinite extent, could lead
to a possibly very different characterization of the entan-
glement dynamics in the system. This is mostly caused by
the fact that entanglement observables are not invariant
under a change of basis, which the use of wave packets
essentially entails. It will be interesting in future work to
explore the role played by changes of basis like these in
shaping the entanglement evolution in interacting neutrino
systems.
In the low density limit μ ≪ ωk, the neutrinos oscillate

independently with their own frequency ωk. The presence
of the forward-scattering interaction can allow collective
effects to develop when μ ≳ ωk giving rise to interesting
phenomena like synchronization [4,8,20,21], bipolar
oscillations [22–24] and spectral splits/swaps [25–28].
Importantly, all of the above results can be described using
the Hamiltonian model in Eq. (2), with the only exception
of Refs. [25,27] where the coupling constant μ becomes
time-dependent. Due to the computational complexity of
solving directly for the dynamics generated by the
Hamiltonian HFS for large systems, much of the current
understanding of collective oscillation phenomenology is
derived within mean-field approaches (see [19] for a
review) which, owing to the infinite range of the inter-
action in Eq. (2), are expected to become increasingly
correct as we approach the thermodynamic limit N ≫ 1.
This is true in general for static properties like the ground
state energy (see e.g., [29]) but the role played by beyond
mean-field effects in out-of-equilibrium settings is not
clear.

In this work we are interested in understanding the out-
of-equilibrium dynamics of the spin model for large but
finite systems in order to understand the rate of conver-
gence to the mean field result. Early work by Friedland and
Lunardini [30] studied the Hamiltonian in Eq. (2) in the
limit where the vacuum term is negligible (high density)
and assuming the geometry is isotropic. In this limit, the
Hamiltonian is proportional to the total angular momentum
operator and therefore easily diagonalizable. The exact
solution shows that substantial flavor evolution occurs only
for the timescales τL ≈ μ−1

ffiffiffiffi
N

p
associated with incoherent

scattering. The result is fully consistent with Ref. [31]
which argued, using a short-time approximation, that no
entanglement is generated in the many-body evolution of
the system and that the mean-field picture of incoherent
scattering is correct.
The original study in Ref. [30] was motivated by earlier

work by Bell, Rawlinson and Sawyer [32] which presented
numerical evidence from a similar model, where however
SUð2Þ invariance was explicitly broken, supporting a very
different result: neutrino flavor evolution occurring on
much shorter timescales τS ¼ μ−1, independently of system
size. Despite the infinite range of the pair interaction in
HFS, one can expect the time for information to propagate
throughout the whole system to be lower bounded by the
information signaling time scaling as τsi ∝ logðNÞ instead
(see eg. [33]). Later work by Sawyer [34] provided addi-
tional numerical evidence, with larger system sizes, sug-
gesting indeed the presence of collective flavor oscillations
on a fast timescale τF ≈ μ−1 logðNÞ. We will call “fast
oscillations” flavor changes occurring on timescales set by
τF and “slow oscillations” those happening on timescales
set by τL. Note that this is consistent with a companion
paper [35] but not with the standard use of these terms in
the neutrino oscillations literature.
In the present work, we propose an explanation for the

emergence of these different timescales, in apparently very
similar models for the neutrino forward scattering problem,
as a consequence of the presence of a dynamic phase
transition (DPT) [36,37] in the spin system. The models
considered in [32,34], and described in more detail in Sec. I
below, give rise to fast oscillations with times scaling as τF
by introducing however an unphysical perturbation that
breaks the SUð2Þ invariance of the neutrino Hamiltonian in
Eq. (2). As shown recently in a companion paper [35], the
presence of the vacuum HamiltonianHvac can also produce
fast oscillations with times scaling as τF. In Sec. II we
provide additional details about these results and establish a
stronger connection with the underlying DPT. Finally, we
provide a summary and conclude in Sec. III.

I. HIGH DENSITY LIMIT

It is reasonable to expect that collective effects would be
enhanced in the high density limit where μ ≫ 1 and the
neutrino-neutrino coupling is strong. In the next two
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sections we will study neutrino systems in the limit where
μ ≫ jωkj and neglect the vacuum one-body part from the
full Hamiltonian. This contribution will be reintroduced
and shown to play an important role in Sec. II below.

A. Single angle approximation

We start our discussion with the model obtained using a
very common simplification: the single angle approxima-
tion. This amounts to neglect the spatial information
encoded in the coupling matrix J ij from Eq. (3) and
replace it with its average value. Here and in the following
we will take, without loss of generality, the coupling to be
J ij ¼ 1. The final Hamiltonian, after neglecting the one-
body vacuum term, can then be written as

Hsa ¼
μ

2N

X
i<j

σ⃗i · σ⃗j ¼
μ

N
J2 −

3

4
μ; ð4Þ

where we introduced the total flavor spin J⃗ ¼ 1
2

P
i σ⃗i.

This model is similar to the Lipkin-Meshov-Glick (LMG)
model [38] which, together with its variants, has been
explored extensively in the past [39–43]. The Hamiltonian
Hsa is diagonal in the angular momentum basis jj; mi with
j ∈ 0;…; N=2 and eigenvalues given by

Esaðj; mÞ ¼ μ

N
jðjþ 1Þ − 3

4
μ: ð5Þ

The ground state is the singlet j0; 0i and the gap to excited
states with total spin less than Nη=2 vanishes in the
thermodynamic limit for any η < 1. Owing to the high
degree of symmetry of this model, analytical solutions can
be found for the evolution of any observable quantity as a
function of time. In particular, a useful observable consid-
ered also in Refs. [30,32,35] is the flavor persistence pðtÞ,
defined as the probability of measuring one of the neutrinos
in the same flavor state it had at the beginning of time
evolution. Throughout this work we will consider an initial
product state defined as

jΨ0i ¼
�
⊗
N=2

n¼1
j↓i

�
⊗

�
⊗
N=2

m¼1
j ↑i

�
: ð6Þ

In this case the flavor persistence can be expressed
explicitly as the following expectation value

pðtÞ ¼ 1

2
hΨðtÞjð1 − σz1ÞjΨðtÞi: ð7Þ

where jΨðtÞi ¼ expð−itHÞjΨ0i is the time evolved state
and, without loss of generality, we have considered the first
neutrino which started in the heavy flavor state j↓i at time
t ¼ 0. Here and in the following, we will denote the two
sets of spins initialized with opposite polarizations in jΨ0i

as A and B, with corresponding total spin operators J⃗A ¼
ðXA; YA; ZAÞ and J⃗B respectively.
In order to expose the role of dynamical phase transitions

in the collective oscillation phenomenon, we want to
describe the full time evolution of the initial state jΨ0i
under the Hamiltonian in Eq. (4) as a quantum quench [44].
In this setup one starts with an initial Hamiltonian H0

sa, of
which jΨ0i is a ground state of, and suddenly changes to
the final Hamiltonian Hsa given above. With our choice of
initial state jΨ0i, the initial Hamiltonian we consider in this
case can be chosen as

H0
sa ¼

ν

4N

X
i∈A

X
i∈B

σziσ
z
j ¼

ν

N
ZAZB; ð8Þ

where we have indicated withA and B the set of indices for
the spins of the A and B group. The Hamiltonian H0

sa has
two degenerate ground states, jΨ0i and its spin-reversed

partner jΨ1i ¼ ð⊗
N=2

n¼1
j ↑iÞ ⊗ ð ⊗

N=2

m¼1
j↓iÞ. At this point it is

important to note that the quantum quench setup described
here is not meant to describe an actual physical process
occurring in a realistic neutrino system but, instead, as a
convenient computational tool that allows us to explicitly
encode information about the initial state of the evolution in
the analysis of the many-body dynamics.
The full Hamiltonian used for our quantum quench can

then be express compactly as follows

HðtÞ ¼ μðtÞ
N

J2 þ νðtÞ
N

ZAZB; ð9Þ

with ðμð0Þ;νð0ÞÞ¼ ð0;1Þ and ðμðtÞ;νðtÞÞ¼ ð1;0Þ ∀ t > 0.
The system described by the full Hamiltonian HðtÞ under-
goes a quantum phase transition between a gapped phase
for νðtÞ ≫ μðtÞ to a gapless phase for νðtÞ ≪ μðtÞ (for a
review of quantum phase transitions see e.g., [45]).
Contrary to the gapless Hamiltonian Hsa, the full
Hamiltonian HðtÞ in Eq. (9) is not diagonal in the coupled
angular momentum basis jJ;Mi. Using a mean-field
calculation, which is exact in the thermodynamic limit,
we find for μ > 0 a critical point at ν ¼ 0 in the thermo-
dynamic limit (see Appendix for more details). The quench
dynamics under consideration here will therefore terminate
at the quantum critical point.
In order to define and characterize in general a dynamical

phase transition (see [37] for a review) one usually starts by
introducing the Loschmidt echo as

LðtÞ ¼ jhΦj exp ð−itHfÞjΦij2; ð10Þ

with jΦi the initial (pure) state at t ¼ 0 and Hf the final
Hamiltonian of the quench. The quantity LðtÞ is a fidelity
measure [46] that quantifies the probability for the system
to return to its initial state. A DPT is then characterized by
nonanalyticities in the rate function
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λðtÞ ¼ −
1

N
log ½LðtÞ�; ð11Þ

where N is the total number of particles in the system and
λðtÞ an intensive “free energy” [36,47]. The rate λðtÞ plays
here the role of a nonequilibrium equivalent of the
thermodynamic free-energy. Notably, other definitions of
DPT are possible, for instance using time averaged order
parameters [48–50] and there are known cases where the
two definitions of criticality are incompatible [51]. In the
rest of this work we consider only DPT characterized using
the Loschmidt echo and leave for future work a more
detailed connection to dynamical order parameters. At this
point it important to note that the concept of dynamical
phase transitions and the role played by the Loschmidt echo
in detecting them is not necessarily connected to beyond
mean-field effects. In fact, the study of the Loschmidt echo
can provide a valuable tool to analyze the behavior of
mean-field models on their own (see, e.g., [51]). The
models considered in this work are special in that the
mean-field approximation does not predict any evolution
and in this sense a nontrivial evolution of LðtÞ is directly
linked to many-body effects. It will be interesting to extend
this analysis in the future to models that display dynamical
flavor evolution also when correlations are neglected as in
the mean-field.
Due to the degeneracy in the ground-space of the initial

Hamiltonian H0
sa, the Loschmidt echo in Eq. (10) needs to

be generalized. As shown in Refs. [50,52] a consistent
generalization can be found by considering the total
probability PðtÞ of returning to the ground-space

PðtÞ ¼ L0ðtÞ þ L1ðtÞ; ð12Þ

where we introduced the two Loschmidt echoes

LkðtÞ ¼ jhΨkj exp ð−itHsaÞjΨ0ij2; ð13Þ

associated with both ground states. In the thermodynamic
limit N ≫ 1 only one of the two contribution will dominate
resulting in the asymptotic scaling [52]

PðtÞ → e−NλmðtÞ λmðtÞ ¼ min ½λ0ðtÞ; λ1ðtÞ�; ð14Þ

up to exponentially small corrections. The rate functions
λ0ðtÞ and λ1ðtÞ correspond to the definition in Eq. (11) but
applied to L0ðtÞ and L1ðtÞ separately. A DPT can then
occur whenever L0ðtÞ and L1ðtÞ intersect at some finite
value t� for the evolution time [52]. According to the
quantum quench protocol using the time-dependent
Hamiltonian in Eq. (9), our initial state is quenched up
to the critical point and this could lead to a finite value of
the crossing time t� for any finite N.
In order to test this scenario, we will perform numerical

simulations using a matrix product state (MPS) represen-
tation for the many-body wave-function as introduced for

neutrino dynamics in the companion paper Ref. [35].
The appealing property of this class of algorithms is that
their computational cost scales with the amount of entan-
glement generated by the real-time dynamics and can then
be used efficiently when quantum correlations are suffi-
ciently weak, as in all cases explored in this work. The
implementation of the time evolution operator UðtÞ ¼
expð−itHÞ follows the swap network scheme employed
also in past quantum simulations [53]. Additional details on
this computational scheme can be found in the companion
paper Ref. [35].
The results in the main panel of Fig. 1 show the two

Loschmidt echoes L0ðtÞ and L1ðtÞ for system of different
size. In marked difference with the nearest neighbor case
studied in Ref. [52], the crossing time t� shows a rapid
evolution with system size on timescales proportional to
τL ¼ μ−1

ffiffiffiffi
N

p
. From the results of our simulations we

extract a value of t�=τL ¼ 1.34ð2Þ for the crossing time.
The divergence of τL with the system size N indicates that
this is not technically a DPT, in the sense that the crossing
of Loschmidt echoes is a finite-size effect that will vanish in
the thermodynamic limit.
The results of our simulation for the flavor persistence

pðtÞ, defined explicitly in Eq. (7), are shown in Fig. 2. We
recover the result reported in Ref. [30]: the minimum of the
persistence is achieved at times tP ∝ τL. This is clearly
indicated by the inset (b) of Fig. 2 which shows the
persistence as a function of the rescaled time t0 ¼ t=

ffiffiffiffi
N

p
.

The dependence on system size is minimal.
The right hand panels show more in detail the system

size dependence of tP, in panel (c), and of the value
pminðNÞ of the persistence at its minimum, in panel (d). The
latter is plotted as a function of 1=N to emphasize the power
law scaling of pminðNÞ ¼ pmin − c=N (the solid green
curve in panel (d)). The result of these fit for the minimum

FIG. 1. Time evolution of the Loschmidt echoes L0ðtÞ and
L1ðtÞ for different systems sizes N. The inset shows the crossing
time as a function of system size.
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time is tP=τL ¼ 2.10ð5Þ while pmin ¼ 0.357ð2Þ in the
infinite system size limit. The first two data points in
panel (d) of Fig. 2 correspond toN ¼ 8 andN ¼ 10 and we
see that one needs to reach N ¼ 16 before deviations from
the 1=N behavior are apparent.
All of these timescales quickly diverge for large system

sizesN ≫ 1 and the mean-field solution, which predicts for
this models no time evolution at all, becomes eventually
exact in the thermodynamic limit.
In order to quantify quantum correlations in the evolved

state, we compute the half-chain entanglement entropy
(see, e.g., [54]) defined as

SN=2ðtÞ ¼ −Tr½ρBðtÞ log2 ðρBðtÞÞ�; ð15Þ

with ρB ¼ TrA½ρðtÞ� the reduced density matrix obtained
by tracing the full density matrix of the neutrino system at
time t, denoted as ρðtÞ, over the first N=2 spins belonging
to the A group defined above.
We see from the results in Fig. 3 that, after an initial

growth, the entropy SN=2ðtÞ reaches a peak and then
plateaus at a value Smax ≈ log2ðN=2Þ with oscillations
around the average. The maximum value Smax for the
entanglement entropy is reminiscent to the one in ground
states of one dimensional spin systems at a quantum critical
point [55,56] and reflects the absence of a gap in the
Hamiltonian Hsa in Eq. (4). The qualitative behavior of
SN=2ðtÞ is remarkably close to the one observed with a
similar model (but different initial conditions) in Ref. [57]
where the entanglement entropy was observed to peak and

then plateau when the system was quenched at the critical
point of a DPT. The observed timescale to reach the peak,
also connected to the Eherenfest time tEhr [57], was found
there to scale as tEhr ≈ logðNÞ similarly to the fast scale τF
while away from the quantum critical point tEhr ≈

ffiffiffiffi
N

p
like

τL. These similarities for the moment are only suggestive
and a more in depth exploration of the relationship between
the Ehrenfest time and the timescale to reach the peak in
entropy will be addressed in future work.
From our simulation we find that in our case, despite

being at the critical point, the entropy grows more slowly
and reaches the peak on the slow timescale tent ≈

ffiffiffiffi
N

p
. The

inset of Fig. 3 shows the best fit with either
ffiffiffiffi
N

p
(green solid

line) or logðNÞ scaling (red dashed curve) for system sizes
up to N ¼ 128. The chi-squared values for the curve with
τL scaling is χ2 ≈ 1 while the corresponding value for the
curve with logarithmic scaling is χ2 > 4. Simulations with
large systems would be required to better understand finite
size corrections.
A separate test of whether the entanglement time

tent scales algebraically (case α) or logarithmically (case
β) in system size can be obtained by estimating the time to
reach SN=2 ¼ log2ðN=2Þ in the two cases: for case α we
take tENTðNÞ ¼ aαNbα while for case β we use
tENTðNÞ ¼ aβlog2ðN=bβÞ. These relations can be inverted
to obtain two estimates of the “effective system size” NðtÞ
which would reach the maximum entropy Smax at some

arbitrary time t: for our two cases we obtain NðtÞ ¼
ðt=aαÞ

1
bα for case α while NðtÞ ¼ bβ expðt=aβÞ for case

β. We can now use these relations to model the scaling with
time of the maximum of the entropy SMðtÞ ¼ log2ðNðtÞ=2Þ
in the two regimes:
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FIG. 2. The main panel (a) shows the time evolution
of the flavor persistence pðtÞ for different system sizes
N ¼ ½16; 32; 48; 64; 96�. The inset (b) shows the persistence
pðtÞ plotted versus the rescaled time t0 ¼ t=

ffiffiffiffi
N

p
. The data in

panel(c) shows the evolution with system size of the time tP to
reach the minimum of pðtÞ while in panel (d) we report the value
of the persistence at the minimum as a function of 1=N. The
continuous curves in panels (c) and (d) correspond to the fit
described in the text.

0 5 10 15 20 25 30 35 40

Time after quench t [μ−1]

0

1

2

3

4

5

H
al

f 
ch

ai
n 

E
nt

an
gl

em
en

t E
nt

ro
py

 S
N

/2

N = 16
N = 32
N = 64

0 50 100 150

System size N
0

4

8

12

16

t en
t  [

μ−1
]

S
α

M
(t)

tent=3.92 log(N)+const.

tent=1.12√N+const.

FIG. 3. Time evolution of the half-chain entropy. Horizontal
dashed lines correspond to the value log2ðN=2Þ and the (purple)
dotted line is the fit from Eq. (16). The inset shows the evolution
of the time to reach maximum entropy with system size: the green
solid curve is the best fit with

ffiffiffiffi
N

p
scaling (χ2 ¼ 0.98) while the

red dashed line corresponds to the best logarithmic fit (χ2 ¼ 4.6).
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SMðtÞ ¼ log2

�
NðtÞ
2

�
¼

�
Alog2ðt=BÞ caseα

CtþD caseβ
: ð16Þ

In terms of the original parameters we have A ¼ 1=bα,
B ¼ aα2bα , C ¼ 1=aβ and D ¼ log2ðbβ=2Þ. For the single
angle setup considered in this section we found a good fit to
data only for the model from “case α” (shown as purple
dotted line in Fig. 3) with optimal parameters A ¼ 2.14ð4Þ
and B ¼ 2 respectively.
We note that this slow increase of the entanglement

entropy with system size and with time is at the hearth of
the classical simulatability of the neutrino model in the
single-angle approximation with matrix product states: the
maximum bond dimension needed only scales linearly with
N to obtain converged results. The MPS scheme employed
here, and in the accompanying paper [35], is however not
optimal for long range interactions and further progress
could be made using more sophisticated simulation tech-
niques like the time dependent variational principle [58] as
well as different tensor network [59,60] or neural network
states [61].

B. Fast oscillations with SUð2Þ breaking
The first calculations showing a many-body “coherent

speedup” of flavor oscillations at the shorter time-scale
τS ¼ μ−1 were obtained in Refs. [32,34] using a neutrino
Hamiltonian that explicitly breaks the global SUð2Þ flavor
invariance of the Hamiltonian HFS in Eq. (2). This con-
struction was motivated in Ref. [32] by the expectation that
coherent effects would be produced predominantly by the
off diagonal interactions while the diagonal contribution
would be noninfluential. As we will see in this section,
these expectations do not capture the full complexity of the
problem and the diagonal contribution will indeed play an
important role. The diagonal symmetry-breaking term used
in both cases can be expressed as

HSB ¼ ðΔ − 1Þ μ

2N

XN
i<j

J ijσ
z
iσ

z
j: ð17Þ

The control parameter here is Δ and for Δ ¼ 1 the original
SUð2Þ invariant interaction is recovered. As we will see
below the geometry of the problem encoded in the angular
factors J ij will play now an important role.
In this section we will consider a very simple situation:

two neutrino beams, one with N=2 neutrinos starting in the
j↓i state and one with N=2 neutrinos starting in j ↑i. These
correspond to the sets A and B defined above. Neutrinos
belonging to the same group interact with the same strength
J AA ¼ J BB while neutrinos belonging to different beams
interact with a coupling J AB. Using the total flavor spin
operators J⃗A and J⃗B introduced above, we can write the full
Hamiltonian used in this quench as

Htb ¼
μJ AA

N
½J2A þ J2B þ ðΔ − 1ÞðZ2

A þ Z2
BÞ�

þ 2μJ AB

N
½J⃗A · J⃗B þ ðΔ − 1ÞZAZB�; ð18Þ

plus an inconsequential constant factor that we ignore.
The limit in which the beams are very collimated corre-
sponds to the choice J AA ¼ 0, and the weak interactions
are relevant only across beams. For the rest of this section
we will measure energies in units of ðμJ ABÞ and use
directly the dimensionless parameter Γ ¼ J AA=J AB.
The quench dynamics we will consider in this section

starts in the limit Δ → ∞ with Γ → 0 which corresponds to
the starting Hamiltonian H0

sa considered above, with jΨ0i
and jΨ1i as its two degenerate ground states.
The equilibrium phase diagram of the two beam

Hamiltonian Htb is now much richer than with the single
angle approximation (see Fig. 4). Using a mean-field
approach (see Appendix for details) we can identify 4
distinct phases depending on the value of the SUð2Þ
breaking parameter Δ and on the ratio Γ of the two
body couplings which specifies the relative orientations
of the beams.
For collimated beams with Γ < 1 we find two gapped

phases, one with antiferromagnetic order in the z direction
at large positive values of Δ (denoted by AFM) and one
with ferromagnetic order along the z direction for suffi-
ciently negative values of Δ (denoted by FM). These two
phase are separated by a gapless phase, indicated by XY in
Fig. 4, where antiferromagnetic order is preserved in the
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FIG. 4. Equilibrium phase diagram for the two beam model (see
Appendix for a derivation) together with the two quantum
quenches considered in the main text: FL denotes the single
angle model from Ref. [30], BRS indicates the SUð2Þ broken
model from Ref. [32]. In both cases the system starts with jΨ0i in
the AFM phase (purple square). The dashed lines indicate the set
of points in parameter space where the dynamics is equivalent to
that of the single angle SUð2Þ invariant point (denoted by a solid
circle).
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xy − plane but is lost in the z direction. The only ordered
phase present for Γ ≥ 1 is the FM phase for Δ < 0 while a
disordered gapless phase emerges for positive values of Δ
(denoted by DIS in Fig. 4).
The results within the single angle approximation

described in the previous section (and in Ref. [30])
correspond to the trajectory indicated by the FL arrow
in Fig. 4 and ending at the full dot (which indicates the
single angle point). The dashed lines emanating from that
point indicate parameter values for which, due to con-
servation laws, the dynamics is indistinguishable from the
one obtained with the FL quench. Note that this holds also
for quenches that are apparently crossing a phase boundary.
This is in agreement with previous studies showing that a
DPT can fail to appear even in quenches that crossed a
phase boundary (see, e.g., [50,62,63]).
Here we study in some detail the quench used in the

original paper by Bell et al. in Ref. [32] (denoted by the
BRS arrow in Fig. 4) and comment on the qualitative
differences with the single angle case explored in the
previous section. Further exploration of the interplay
between the equilibrium phase boundaries displayed in
Fig. 10 and the presence of a DPT would be very
interesting. However, since in order to describe neutrino
interactions we are not allowed to break the SUð2Þ
invariance explicitly, we cover here only the simpler case
needed to explain the findings of Refs. [32,34] and proceed
in the next section to consider instead the SUð2Þ-invariant
problem considered already in Ref. [35] which shows
similar features.
We start by looking at both the time evolution of the

flavor persistence pðtÞ and the crossing time of the two
Loschmidt echoes from Eq. (13). The main panel of Fig. 5
shows the flavor persistence pðtÞ for various system sizes
(solid lines) together with the equivalent result in the single
angle approximation from the previous section (dotted
lines). It is clear that flavor evolution happens much faster
in the BRS quench, with sustained oscillations for long
times. The frequency of these oscillations, as measured by
the time tP to reach the first minimum, follows the fast
timescale τF ¼ μ−1 logðNÞ as μtP ¼ 2.04ð5Þ logðNÞ þ
1.6ð1Þ (see panel (b) of Fig. 5). This is in agreement with
the expectations from results presented in Refs. [32,34] and
much faster than in the single angle approximation [shown
as the green dashed line in Fig. 5(b)] we studied above and
in Ref. [30].
The Loschmidt echoes L0ðtÞ and L1ðtÞ are also found to

cross at shorter timescales than those found in Sec. I A. The
results for the crossing time t� as a function of the system
size N are presented in panel (c) of Fig. 5 and again follow
the fast timescale with t�=τF ¼ 1.56ð4Þ.
The stark difference with the single angle case can also

be observed in the evolution of the half-chain entanglement
entropy SN=2 defined in Eq. (15). The main panel of Fig. 6
shows the entanglement entropy for different system sizes

N ¼ 8, 16, 24, 32, 48, 64, 96, 128 (solid lines in the main
panel). The behavior in this case is qualitatively different
from the results shown in Fig. 3 for the single angle
approximation: the entanglement entropy itself oscillates in
time, reaching values as high as Smax (dashed lines in
Fig. 6) multiple times. In the results shown in Fig. 6 we see
two distinct peaks whose times scale with the fast timescale
τF as t1ent=τF ¼ 1.3ð1Þ and t2ent=τF ¼ 3.9ð1Þ respectively
(these fits are shown in the inset of Fig. 6 as continuous
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lines). To corroborate these findings we also show in the
main panel the “case β” fit from Eq. (16) which very
accurately matches the evolution of the entropy maximum.
The results shown in this section were obtained using

Γ ¼ 0 as in the original model from Ref. [32] but we
confirmed the presence of the same logarithmic timescale
also for larger values up to Γ ≈ 0.7 as observed also in
previous work as reported in Ref. [34]. The original model
from Ref. [32] also used a more complex angular distri-
bution than the two beam geometry employed here and in
Ref. [34], unfortunately, due to the explicit N dependence
of the angular distribution used there, it was not possible to
obtain a smooth extrapolation in system size as we have
donewith the other models in this work. We have found in a
few selected cases at fixedN that, with our initial state jΨ0i,
more complex angular dependence actually slows down the
dynamics as compared to the two beam geometry. This
effect is likely due to frustration of some of the interaction
terms and in future work we plan to assess more quanti-
tatively the role of multiangle effects by using model
geometries that have a well-defined scaling with sys-
tem size.

II. INTERMEDIATE DENSITY REGIME

The fast flavor oscillations observed in the models of the
previous section are unfortunately not directly relevant to
neutrino physics since the correct Hamiltonian is SUð2Þ
flavor invariant also in the general case. The previous
result, however, points to the fact that oscillations at the
timescale τF can appear when one crosses a quantum
critical point and we have a DPT in the quantum quench.
By tuning appropriately the one body part of the forward-
scattering Hamiltonian in Eq. (2) we can orchestrate this to
happen also in a physically relevant scenario closely related
to the model used in describing bipolar collective oscil-
lations (see, e.g., [23,64]).
In this section we will consider the same model we

introduced in the companion paper [35] where the system is
still decomposed in the two beams A and B but now with
two different energies

HID ¼ −
ωA

2

X
i∈A

σzi −
ωB

2

X
i∈B

σzi þ
μ

2N

X
i<j

σ⃗i · σ⃗j; ð19Þ

where we have also used the single angle approximation for
the coupling matrix J ij in the interaction. The Hamiltonian
commutes with the z component of the total flavor spin
Jz ¼ ZA þ ZB and, given our initial state jΨ0i, its expect-
ation vale remains zero at all times. Using spin operators for
the neutrinos in the two beams and denoting the spin
difference along the z axis as Dz ¼ ZB − ZA, we can write
the full Hamiltonian as (cf. [35])

HID ¼ μ

N
J2 þ δωDz ð20Þ

where we introduced δω ¼ ðωA − ωBÞ=2 for the energy
difference between the two beams and dropped an irrel-
evant constant. The equilibrium phase diagram depends on
the sign of the two body interaction μ:

(i) for a ferromagnetic coupling μ < 0, there is a second
order transition at δω ¼ �jμj between two gapped
polarized phases with order parameter hDzi ¼∓N=2 (and finite energy gap to excited states)
and a broken phase with ferromagnetic order in
the xy plane hosting gapless excitations [41].

(ii) for an antiferromagnetic coupling μ > 0, the tran-
sition between the same gapped polarized phases
above is of first order and at δω ¼ 0 instead [39].

A schematic representation of these phase diagrams is
shown in the top panel of Fig. 7.
On the other hand, the Loschmidt echo Eq. (10) char-

acterizing a DPT is invariant upon inversion of the full
Hamiltonian HID → −HID and we can therefore expect the
dynamical phase diagram to display features of both cases
above and depend instead only on the relative sign of the
two couplings constants μ and δω.
This is indeed the case as shown in the results presented

in Ref. [35] which we briefly summarize here. Using
energy conservation together with the known initial state
jΨ0i whose energy expectation value reads

E0 ¼ hΨ0jHIDjΨ0i ¼
μ

2
þ δω

N
2
; ð21Þ

we can express the instantaneous value of the total angular
momentum as a function of the difference in spin polari-
zation along the z axis Dz as follows

FIG. 7. Top panel shows the equilibrium phase diagrams of the
Hamiltonian in Eq. (20) discussed in the main text: the top one for
ferromagnetic coupling (μ < 0) and the bottom for the anti-
ferromagnetic case (μ > 0). The bottom panel shows a schematic
representation of the dynamical phase diagram discussed in the
main text.
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hJ2ðtÞi ¼ N
2

�
1þ 2

δω
μ

�
N
2
− hDzðtÞi

��
; ð22Þ

with initial conditions hJ2ð0Þi ¼ hDzð0Þi ¼ N=2. As was
show in the accompanying paper [35], this relation between
the total angular momentum and the flavor asymmetry in
the two beams is sufficient to characterize qualitatively the
entire out-of-equilibrium dynamics. For completeness we
provide a more complete derivation of those results with
more details in the following.
In the case where the energy asymmetry δω=μ < 0 is

negative, the total spin, which starts already at a relatively
small value, can only decrease further during time evolu-
tion. Since the operator J2 is positive semi-definite this
introduces a constraint on the fluctuations that Dz can
experience, in particular

hDzðtÞijδω=μ<0 ≥
N
2
−
���� μ

2δω

����; ð23Þ

and the change in polarization per spin vanishes in the
thermodynamic limit. This suggests that for δω=μ < 0 the
system experiences negligible flavor evolution and is
always close to the initial state, this was called the frozen
phase in Ref. [35]. In the opposite limit δω=μ > 0 instead,
the fluctuations become parametrically small at low den-
sities (corresponding to δω=μ ≫ 1) but remain finite also in
the N ≫ 1 limit

hDzðtÞijδω=μ>0 ≥
N
2

�
1 −

μ

2δω

�
: ð24Þ

This inequality provides a nontrivial bound on the spin, or
flavor, fluctuations only for large δω > μ=4. A nonrigorous
estimate for the transition can be obtained by considering
the minimum value of δω=μ for which the first order
fluctuations preserve the sign of the order parameter.
This can be obtained by ensuring

hDzðtÞi −
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Var½Dz�ðtÞ

p
> 0; ð25Þ

with Var½Dz�ðtÞ ¼ hD2
zðtÞi − hDzðtÞi2 the variance of Dz.

Using the fact that hJzi ¼ hJ2zi ¼ 0 for our initial state, we
can find the following upper bound on the variance

Var½Dz�ðtÞ ¼ 2ðhZ2
Ai þ hZ2

Bi − hZAi2 − hZBi2Þ
¼ 2ðhZ2

Ai þ hZ2
BiÞ − hDzðtÞi2

≤
N2

4
− hDzðtÞi2: ð26Þ

We therefore expect the system to be in the polarized phase
and experience little flavor evolution when

hDzðtÞi >
N

2
ffiffiffi
2

p ⇒
δω
μ

>
1

2 −
ffiffiffi
2

p ≈ 1.7; ð27Þ

and possibly at somewhat smaller values due to the bound
Eq. (26) being not tight.
Finally, in the regime 0 < δω=μ ≤ 1=4 the total spin J2,

and correspondingly the flavor difference Dz, can experi-
ence strong fluctuations bounded by

N
2
≤ hJ2ðtÞi

����
0≤δω=μ≤1=4

≤
N
2

�
1þ 2

δω
μ
N

�
: ð28Þ

As expected from this qualitative discussion, the
dynamical phase diagram delineated above corresponds
to a combination of the equilibrium phase diagrams of both
the ferromagnetic and anti-ferromagnetic cases, with the
exception that the transition at large δω=μ appears shifted to
larger values than δω=μ ¼ 1. A schematic representation of
the expected dynamical phase diagram for this model is
shown in the bottom panel of Fig. 7.
As shown also in Ref. [35], the presence of these

different dynamical phases is directly visible in the time
evolution of the half-chain entanglement entropy for differ-
ent values of the one body energy asymmetry δω=μ. In the
frozen phases for either δω=μ < 0 or δω=μ⪆1 the entan-
glement entropy remains small with a maximum value
independent of system size. For negative energy asymmetry
δω=μ the entropy experiences fast oscillations which bring
SN=2 back to zero periodically. This is shown in the top
panel of Fig. 8 showing the evolution of the half-chain
entropy for a system of N ¼ 96 neutrino amplitudes across

FIG. 8. Half-chain entanglement entropy for a system with
N ¼ 96 neutrino amplitudes as a function of time for six values of
the energy asymmetry parameter δω=μ (from top to bottom):
−0.5, 0.0, 0.125, 0.25, 0.5, 1.0.
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the different dynamical phases. In the gapless region 0 <
δω=μ ≲ 1 the entanglement entropy shows strong fluctua-
tions as a function of time, with maximum values close to
Smax ¼ log2ðN=2Þ and monotonically decreasing for
increasing one-body energy asymmetry (see also Fig. 3
of Ref. [35]). The special case δω=μ ¼ 0 matches the
behavior presented in Fig. 3 above, with a peak at tent ∝
μ−1

ffiffiffiffi
N

p
and small fluctuations at late times. The scaling of

timescales in the half-chain entropy for the unstable region
0 < δω=μ ≲ 1 shows a logarithmic behavior as expected
from the presence of a DPT into a gapless phase, similarly
to what we have found for the SUð2Þ-broken model in
Sec. I B.
In order to establish a closer connection to dynamical

phase transitions as defined in the previous sections, we
now consider the evolution of the Loschmidt echo LðtÞ for
different values of the asymmetry parameter δω in all three
dynamical phases. Contrary to the situation in Secs. I A
and I B, the initial Hamiltonian we consider here (namely
HID with δω < 0 and μ ¼ 0) has a unique ground state.
For all quenches with δω ≠ 0 considered in this section, we
have always found L1ðtÞ ≈ 0 for large system sizes and a
DPT will not appear as a crossing of echoes as before, but
instead as sharp peaks in the Loschmidt rate λðtÞ defined in
Eq. (11) above.
This is illustrated in of Fig. 9 where the Loschmidt

rate λðtÞ is shown for different values of δω in a system of
N ¼ 96 neutrino amplitudes. The purely two-body case at
δω ¼ 0 has a DPT generated by crossing Loschmidt echoes
at t ¼ t� (shown as a dot in Fig. 9), followed by additional
sharp features at later times. For negative values of δω, in
the frozen phase, the rate λðtÞ remains smooth at all times,

while for positive δω sharp features start to appear at even
shorter times than the t� crossing time and a DPT can occur
in the system. Obtaining an estimate for the critical time
where a DPT might occur in this case is complicated by its
expected evolution with system size, in parallel to the case
δω ¼ 0 considered in Sec. I A above. This has prevented a
reliable extraction of a unique critical time t� in the unstable
region 0 < δω=μ≲ 1 using results up to N ¼ 128 and a
single value for the time step of the evolution (here we used
0.05μ−1 as in Ref. [35]). This observation highlights the
usefulness of entanglement measures such as the half-chain
entropy as a more robust indicator of the presence of
qualitative changes in the dynamical phase of a many-body
quantum system. Future explorations employing either
semiclassical approaches, like those used for instance in
[51], or specialized simulations exploiting more directly
symmetries of the system, are expected to be able to clarify
the role of fidelity measures as the Loschmidt echo in
characterizing the different dynamical phases found in
models of neutrino flavor evolution.

III. SUMMARY AND CONCLUSIONS

The presence of collective oscillations in the dynamical
evolution leading to neutrino flavor transport has long been
recognized as an important effect in describing the dynam-
ics of astrophysical environments like supernovae and the
early universe [1,2,4,6]. Early explorations by Sawyer and
coworkers [32,34,65] suggested that quantum correla-
tions, in the many-body spin system corresponding to a
neutrino cloud, could lead to a coherent speed-up of
collective oscillations, with possibly important conse-
quences for the dynamics of these environments. This
idea, which invites caution on the interpretation of results
for the neutrino flavor evolution obtained using mean-
field approximations (which neglect quantum entangle-
ment), has been challenged in the past by presenting
counterexamples in solvable models where the qualitative
prediction of the mean-field are matched by the exact
solution [30,66]. The absence of entanglement in the
neutrino dynamics more generally has also been argued as
a justification for the mean-field approach to the problem
[31]. This debate has recently reemerged thanks to works
like Ref. [67] and Ref. [68] which showed that entangle-
ment is indeed produced when solving exactly the many-
body neutrino problem encoded in the forward scattering
Hamiltonian of Eq. (2) and its time-dependent general-
izations. The explored systems were however too small
(N ¼ Oð10Þ) to draw general conclusions applicable to
the large collections of neutrino amplitudes needed for
realistic simulations.
Exploiting the expectation that the entanglement entropy

is unlikely to grow too large in these many-body systems,
due to the infinite range of interactions in the spin model of
Eq. (2), the present work extends the idea presented in the
companion paper Ref. [35] to use a matrix product state
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(MPS) representation in order to efficiently describe the
neutrino wave-function as it evolves from an initial product
state. As explained in more detail in Ref. [35], this
approach is ideal for low levels of bipartite entanglement
in the system and allows to easily simulate systems with
≈100 neutrino amplitudes with modest computational
resources. This simulation strategy is used here with two
main goals, the first one was to validate the early small
scale simulations by Sawyer et al. [32,34] which, correctly,
predicted flavor evolution to occur (in their model) at a fast
timescale τF ≈ μ−1 logðNÞ. This shows that indeed many-
particle neutrino interactions cause a novel coherent effect
not captured by the mean-field approximation. A similar
effect is also found in the more familiar bipolar oscillations
described in detail in Ref. [35] and Sec. II of the present
work. The second goal was to explain the presence of this
fast timescale as being generated by an underlying dynami-
cal phase transition. This observation explains the absence
of the effect in the exactly solvable models discussed in
Refs. [30,66] and provides a more direct link between the
presence of coherently-enhanced flavor oscillations and
non-negligible levels of entanglement in the many-body
state generated by the dynamics. The conditions required
for the DPT to arise, such as crossing of a critical line, could
possibly also be used more generally to predict the presence
of collective flavor oscillations and are complementary to
those obtained from linear stability analysis of the mean-
field equation of motion. Note that using the results
presented here we are not able to distinguish between an
actual phase transition (giving nonanalytic behavior for
N → ∞) to a more simple crossover (where gradients are
large but finite). A more detailed investigation of this
aspect, the role played by approximate zeros of the
Loschmidt echo and their possible implications for flavor
evolution will be the subject of future work.
The work presented here and in the accompanying paper

Ref. [35] opens the way to accurate many-body simulation
of the full quantum dynamics of neutrino flavor transport
with controllable errors. The use of entanglement-efficient
methods, like the MPS representation used here, will allow
for the first time a more direct comparison with popular
approximation methods working in the mean field for large
system sizes. This will be critical to allow for the inclusion
of rich energy/angle distributions and avoid the limitations
of special symmetric points like the model studied in
Ref. [30] and covered in Sec. I A of the present work.
Possible failures of this program would be associated to
situations where the entanglement entropy grows substan-
tially with system size. The identification of the parameter
regimes where this happens would shed light on potentially
interesting candidates to study using quantum computing
devices as recently explored in Ref. [53]. Finally, a better
understanding of the dynamical phase diagram of neutrino
models, as the one described in Eq. (2) and its generali-
zation to the full 3 flavor case, would help identify the

conditions (beyond linear stability analysis) required for
collective oscillations to appear in complex environments
like supernovae explosions by an appropriate analysis of
simulation results. Work is ongoing to extend the results
presented in this work to more realistic conditions in order
to better assess the impact of entanglement in astrophysical
settings with large neutrino densities.
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APPENDIX: DETAILS ON EQUILIBRIUM
PHASE DIAGRAMS

1. Phase diagram for single angle model

In the quantum quench relevant for the single angle case
studied in Sec. I A the full Hamiltonian reads

H ¼ μ

N
J2 þ ν

N
ZAZB; ðA1Þ

with μ, ν positive constants. As discussed in the main text,
in the limit ν ¼ 0 the system is gapless and the ground state
has zero total angular momentum and zero energy. In the
limit μ ¼ 0 instead, the system has two degenerate ground
states which, in the angular momentum basis jsA;mAi ⊗
jsB;mBi of the two set of spins with total angular momenta
S⃗A and S⃗B, we can write as

jGS0i ¼
����N4 ;−

N
4

�
⊗
����N4 ;

N
4

�

jGS1i ¼
����N4 ;

N
4

�
⊗
����N4 ;−

N
4

�
: ðA2Þ

In these configurations the system has an anti-ferromagnetic
order across beams characterized by hZAZBi ¼ −N2=16. In
the gapless phase the order parameter is zero. The expect-
ation value of the full Hamiltonian in either of the anti-
ferromagnetic states reads

hGSkjHjGSki ¼
μ

2
− ν

N
16

; ðA3Þ

and becomes negative for a sufficiently large antiferromag-
netic coupling ν > 8μ=N. In the thermodynamic limit we
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expect the critical point to be at ν ¼ 0 for any μ > 0. As we
will see in a more general case below, if we allow ν to
become negative other phases emerge.

2. Phase diagram of the two-beam model

In this section we provide more details on the calculation
of the mean-field phase diagram presented in Fig. 4 of the
main text. This corresponds to the ground-state phase
diagram of the following Hamiltonian [cf. Eq. (18)]

H ¼ Γ
N
½J2A þ J2B þ ðΔ − 1ÞðZA

2 þ ZB
2Þ�

þ 2

N
½J⃗A · J⃗B þ ðΔ − 1ÞZAZB�; ðA4Þ

with a positive coupling constant Γ ¼ J AA=J AB.
The order parameters of interest here are the following

expectation values on the two beams

MXY
AB ¼ 1

N
hXAXBi þ hYAYBi

MZ
AB ¼ 1

N
hZAZBi

MV
AB ¼ 1

N
hJ⃗A · J⃗Bi ¼ MXY

AB þMZ
AB ðA5Þ

We start the discussion of the equilibrium phase diagram
by considering first some special cases:

(i) at the SUð2Þ symmetric point, corresponding to
Δ ¼ 1, we have the following Hamiltonian

HΔ¼1 ¼
1

N
J2 þ Γ − 1

N
ðJ2A þ J2BÞ: ðA6Þ

For Γ < 1 the system is in an antiferromagnetic
gapless phase characterized by MV

AB ¼ − N
16

and
undefined values for MXY

AB and MZ
AB. For Γ> 1 we

have instead a disordered gapless phase character-
ized by a vanishing order parametersMV

AB ¼ MXY
AB ¼

MZ
AB ¼ 0. At the single angle point Γ ¼ 1, the three

order parameters are undefined. Note that, when the
initial state is jΨ0i from Eq. (6), the resulting
evolution is the same for any value of Γ since S2A
and S2B are conserved quantities.

(ii) at the single angle point Γ ¼ 1 we have instead

HΓ¼1 ¼
1

N
J2 þ 1

N
ðΔ − 1ÞZtot

2

¼ 1

N
ðX2

tot þ Y2
totÞ þ

1

N
ΔZtot

2; ðA7Þ

with Ztot ¼ ZA þ ZB the total spin in the z direction
(and similarly for Xtot and Y tot). The ground state of
this model for Δ < 0 is a (gapped) ferromagnet with
MZ

AB ¼ N
16
, for Δ ≥ 0 the ground states are the singlet

states with zero total spin and with undefined order

parameters. Given our initial state jΨ0i, and the fact
that ½Ztot; HΓ¼1� ¼ 0, the time evolution is exactly
equivalent to the single angle case studied above for
any value of Δ.

(iii) for collimated beams with Γ ¼ 0 we have simply

H ¼ 2

N
½J⃗A · J⃗B þ ðΔ − 1ÞZAZB�: ðA8Þ

For Δ > 1 the ground states are jΨ0i and the spin
reversed partner jΨ1i introduced in Sec. I A of the
main text. The system has antiferromagnetic order
with MZ

AB ¼ − N
16

and there is a finite energy gap to
excited states. For − 1 < Δ < 1 the system is gap-
less with MZ

AB ¼ 0, in fact we have a continuum of
zero-energy modes polarized in the XY plane with
MXY

AB ¼ − N
16
. Finally, for Δ < −1 the system is a

ferromagnet along the Z direction with MZ
AB ¼ N

16

and MXY
AB ¼ 0.

In order to get the rest of the phase diagram we will
compare energies of the different phases in the mean field
limit. Let us first rewrite the Hamiltonian as

H ¼ Γ
N
½J2A þ J2B� þ

Γ
N
ðΔ − 1Þ½ZA

2 þ ZB
2�

þ 2

N
½XAXB þ YAYB� þ

2Δ
N

ZAZB: ðA9Þ

The mean field states we will consider here are

jΦFMi ¼ ⊗
N

i¼1
j ↑i

jΦAFMi ¼
�
⊗
N=2

i¼1
j ↑i

�
⊗

�
⊗
N=2

i¼1
j↓i

�

jΦXYi ¼
�
⊗
N=2

i¼1
jþi

�
⊗

�
⊗
N=2

i¼1
j−i

�
ðA10Þ

together with the disordered state jΦDISi with zero total
spin in beam A and B. In the expression above we use the
notation j�i to indicate the eigenstates of the Pauli X
operator with positive and negative eigenvalue respectively.
The corresponding expectation values for the energy in the
full Hamiltonian Eq. (A4) are

EFM ¼ Γ
2
þ N

8
ΔðΓþ 1Þ;

EAFM ¼ Γ
2
þ N

8
ΔðΓ − 1Þ;

EXY ¼ Γ
2
þ N

8
ðΓ − 1Þ;

EDIS ¼ 0: ðA11Þ

The resulting phase diagram is depicted in Fig. 10.
Along the critical lines separating the different phases we
have the following
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(i) boundaries between AFM andDIS and between XY
and DIS (dashed black curve in Fig. 10): all the
order parameters are undefined due to the degen-
eracy of the spectrum for states with different values
of the total spin in the two beams but zero total
angular momentum.

(ii) boundary between AFM and XY (dotted black curve
in Fig. 10): the direction-independent magnetization
takes the smallest value MV

AB ¼ − N
16
while the other

two order parameters are undefined thanks to the
SUð2Þ invariance of the system. At the critical point
for Γ ¼ 1 also MV

AB is undefined.
(iii) boundary between DIS and FM (dash dotted black

curve in Fig. 10): similarly to the boundary between
DIS and the other two ordered phases, all the order
parameters can take values in ½−N=16; 0�.

(iv) boundary between FM and XY (solid black curve in
Fig. 10): the direction independent magnetization
can take any value (both positive and negative) while
MXY

AB ∈ ½−N=16; 0� and MZ ∈ ½0; N=16�.
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