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The two leading hypotheses for the Galactic Center excess (GCE) in the Fermi data are an unresolved
population of faint millisecond pulsars (MSPs) and dark-matter (DM) annihilation. The dichotomy
between these explanations is typically reflected by modeling them as two separate emission components.
However, point sources (PSs) such as MSPs become statistically degenerate with smooth Poisson emission
in the ultrafaint limit (formally where each source is expected to contribute much less than one photon on
average), leading to an ambiguity that can render questions such as whether the emission is PS-like or
Poissonian in nature ill defined. We present a conceptually new approach that describes the PS and Poisson
emission in a unified manner and only afterwards derives constraints on the Poissonian component from the
so obtained results. For the implementation of this approach, we leverage deep learning techniques,
centered around a neural network-based method for histogram regression that expresses uncertainties in
terms of quantiles. We demonstrate that our method is robust against a number of systematics that have
plagued previous approaches, in particular DM/PS misattribution. In the Fermi data, we find a faint GCE
described by a median source-count distribution (SCD) peaked at a flux of ∼4 × 10−11 counts cm−2 s−1

(corresponding to ∼3–4 expected counts per PS), which would require N ∼Oð104Þ sources to explain the
entire excess (median value N ¼ 29,300 across the sky). Although faint, this SCD allows us to derive the
constraint ηP ≤ 66% for the Poissonian fraction of the GCE flux ηP at 95% confidence, suggesting that a
substantial amount of the GCE flux is due to PSs.
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I. INTRODUCTION

There is strong evidence for the existence of dark matter
(DM) in the Universe (see e.g., Ref. [1] for a review),
perhaps most notably thanks to the precise CMB measure-
ments of the Planck satellite [2]. Yet, the very nature of DM
remains subject to speculation given the lack of a con-
vincing detection. A promising avenue, which comple-
ments collider searches and direct detection efforts, is
indirect detection: the search for standard model particles
resulting from the decay or annihilation of DM. An
unexplained excess of γ-ray emission from the Galactic
Center region in the data of the Fermi space telescope,
peaked at ∼1–3 GeV, has attracted much interest as it
seems to be generally consistent with a signal originating

from annihilating DM (for a recent review, see Murgia [3]).
This so-called Galactic Center excess (GCE) extends ∼10°
outwards from the Galactic Center and broadly follows the
spatial profile expected for pair annihilation in a general-
ized Navarro-Frenk-White (NFW) halo [4,5]. Possible DM
explanations of the GCE have been extensively investigated
[6–17], but other studies suggest an astrophysical origin
such as a faint population of millisecond pulsars (MSPs)
too dim to be individually resolved [7,9,12,18–21], young
pulsars [22], or cosmic-ray emission [23–25]. Further,
it has been argued that the spatial distribution of the
excess follows the morphology of the stellar bulge more
closely than the expected distribution of DM annihilation
[16,26–30], although a recent study in Refs. [31,32] found
that with a different modeling of the background a shape
more consistent with DM was preferred.
Most methods for the analysis of photon-count maps rely

on template fitting, where the γ-ray sky is modeled as a
linear combination of emission from different physical
sources, each of which is associated with a spatial template.
In addition, leading methods such as the non-Poissonian
template fit (NPTF; [33,34]), 1pPDF [35], or the compound
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Poisson generator (CPG) [36] harness the statistical
differences between smooth (Poissonian) emission, which
would arise from DM annihilation, and pointlike (non-
Poissonian) flux as in the case of emission from a
population of astrophysical point sources (PSs).
In 2016, Lee et al. [33] (see also Ref. [37]) found strong

evidence for a PS-like GCE using NPTF, and Bartels et al.
[38] came to the same conclusion based on the application
of a wavelet technique. However, reanalyses were pre-
sented more recently, which sound a note of caution on the
interpretation of the 2016 results as definitive evidence
against DM: Ref. [39] showed that while the excess is still
present when masking the bright sources of the updated
Fermi 4FGL source catalog [40], the stacked power of the
remaining bright PSs detected by the wavelet method in the
Fermi map is not enough to account for the entire excess,
suggesting that the bulk of bright sources previously
thought to explain the GCE forms part of the 4FGL
catalog. As for the NPTF-based analysis, Ref. [41] found
that artificially injected DM flux was not correctly recov-
ered from the Fermi map, potentially hinting at a spurious
preference for PSs due to mismodeling. This behavior was
shown to be remedied by using an improved model of the
diffuse foregrounds or harmonic marginalization [42].
Yet, the worry that mismodeling might bias the analysis

results remains: in Refs. [43,44], it was demonstrated that a
mismatch between a spatial template and the true spatial
distribution of the associated sources can produce an
artificial preference for PSs with NPTF, even in the absence
of any PS emission, as a PS model can more easily
accommodate the observed larger variance caused by the
mismodeling than a Poissonian model. Interestingly, when
allowing for different normalizations for the GCE templates
in the northern and southern hemisphere, Ref. [43] reported
that within a region of interest (ROI) of 10°, the preference
for PS emission vanishes, and NPTF favors a smooth
asymmetric GCE. Thus, it is currently unclear to what
extent the deficiencies in the modeling—particularly of the
diffuse Galactic foregrounds, which account for the major-
ity of photon counts in the Fermi map and constitute the
largest source of uncertainty—bias the analysis results.
To counter this, different ways of endowing the spatial
templates with additional degrees of freedom have been
proposed, such as by using penalized likelihoods [45],
expanding the diffuse template in a series of spherical
harmonics [42], or Gaussian processes [46].
An orthogonal approach to the problem is the develop-

ment of new analysis methods, which might behave
differently in the presence of shortcomings in the modeling.
Recently, convolutional neural networks (CNNs) were used
for the estimation of the DM vs PS flux components of the
GCE in the Fermi map [47], and we showed in List et al.
[48] (henceforth Paper I) that CNNs are able to learn the
essential physics of template fitting, namely the accurate
estimation of the flux fractions for all the templates.

Nevertheless, unlike existing template fitting methods,
where the image likelihood is computed treating each
pixel as statistically independent, CNNs base their
judgment on properties of small patches in the photon-
count maps. This leads to important differences in the case
of mismodeling—for example, CNNs seem to be fairly
robust against a modest north-south asymmetry of the GCE
flux (see Paper I; Fig. S8). We will later discuss this aspect
in detail.
In Paper I, we considered the task of estimating the

flux fractions from γ-ray photon-count maps, treating
(Poissonian) GCE DM and (non-Poissonian) GCE PS
as two separate templates (albeit spatially identical, but
associated with different photon-count statistics), as is
also done in analyses using NPTF and CPG. However,
an exact mathematical degeneracy between Poisson flux
and PSs arises in the limit of infinitely faint PSs, resulting
in an ambiguity in attempts to distinguish between the two
templates. For illustration, consider the scenario of N PSs
with the same flux f̄, giving a total flux of Ftot ¼ Nf̄. In the
hypothetical limit of infinitely many PSs N → ∞ emitting
an infinitely small flux f̄ → 0, where the limit is formed in
such a way that the total flux Ftot remains constant, the PS
emission becomes exactly degenerate with smooth Poisson
emission. Thus, in this limit, a template fitting method such
as a neural network (NN) should recognize that, assuming
no preference for Poissonian/PS emission imposed by prior
knowledge, any split of the flux into a Poissonian and a PS
fraction is equally likely. Yet, this basic fact has not been
accounted for in GCE analyses thus far. Indeed, the choice
of priors adopted in existing NPTF analyses introduces a
bias for either the Poissonian or the PS component, as
recently demonstrated in Ref. [36]. The authors of that
paper show that this issue can be overcome by reparame-
trizing the priors in a natural coordinate system. Although
perfect degeneracy between the two flux regimes is only
reached in the ultrafaint limit of infinitely many PSs, a
partial degeneracy can be seen in practice already for finite
numbers of faint PSs, causing misattribution between
Poissonian and PS-like flux, as has been shown to occur
in NPTF analyses even when the templates perfectly
describe the data (see Ref. [49], Figs. 4 and 5), while
being further exacerbated in the presence of mismodeling
(see Sec. V in that paper). We also studied this phenomenon
in Sec. S4 of Paper I for our NN-based method, where we
analyzed the NN errors in the predicted flux fractions as a
function of the PS brightness: as expected, the misattribu-
tion between bright PSs and Poisson emission is very small,
but then gradually increases as the PSs become dimmer,
and culminates in complete confusion as the source-count
distribution (SCD) approaches a flux corresponding to
roughly 1 expected photon per PS. While the NN that
we used in Paper I yields estimates of the uncertainties
inherent in the data (“aleatoric”) such as due to this very
degeneracy, in addition to model-related (“epistemic”)
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uncertainties (and can even be trained to predict correla-
tions in the uncertainties between multiple templates, see
Sec. S7F in Paper I), the estimated distribution of the flux
fraction for a PS template does not reveal any information
about the SCD of the underlying PS population, for which
reason it is not possible to judge how likely it is that PS and
smooth emission might be confused.
Therefore, we present a more expressive deep learning-

based approach in this paper: for training our NN, we
assume the GCE to be entirely composed of PSs, where we
make sure that our priors for the SCD allow for maps with
PSs that are nearly as faint as Poisson emission. In addition
to the flux fraction of each template, we estimate the SCDs
of the GCE and disk PS populations using a two-stage
approach. To this aim, we first develop a histogram-based
framework that makes use of a novel loss function, the
Earth Mover’s Pinball Loss, which allows us to derive an
estimate for the SCD and uncertainties on that estimate in a
nonparametric way (in that we will derive the SCD without
any assumption as to its functional form).1 Second, we
address the problem of constraining the Poissonian fraction
ηP of the GCE flux. While ultrafaint PSs are degenerate
with Poisson emission, brighter PSs are not, and so to the
extent the estimated SCD has support away from the
ultrafaint regime, we can establish a limit on the fraction
of the flux that is purely Poissonian. With this in mind, we
determine a constraint on ηP in a separate step. When
evaluated on maps with a genuinely Poissonian GCE, our
NN produces a faint SCD, reflecting the faint PS/Poisson
degeneracy. By quantifying exactly how faint the SCDs
estimated by our NN are for Poissonian emission with
the help of another NN, we obtain constraints on ηP
that become tighter as the brightness of the GCE PSs
increases.
For the GCE in the Fermi map, our NN favors a faint

SCD that would requireOð104Þ PSs to explain 100% of the
GCE emission. Whilst our less sophisticated framework
presented in Paper I attributed the entire GCE flux to the
smooth GCE template, the SCD of the GCE PSs that we
identify in the present work is faint enough for the above-
mentioned confusion between PSs and Poissonian flux to
explain this discrepancy.

II. OUTLINE AND SUMMARY OF RESULTS

Before we begin, let us outline in detail how the
remainder of this work will be structured.
In Sec. III, we briefly introduce CNNs, one of the

fundamental tools our analysis makes use of, and then
compare them to traditional likelihood-based analysis

methods for γ-ray maps. We particularly discuss how
mismodeling on large angular scales leads to differ-
ences in the results between our macroscale CNN-based
approach, which considers patches of the sky, and micro-
scale likelihood-based methods, which consider each pixel
individually. A schematic example of this difference is
shown in Fig. 2.
We introduce our two-stage approach for the NN-aided

analysis of the γ-ray sky in Sec. IV, the details of which are
illustrated in the upper panel of Fig. 1. We train a NN fω to
estimate the flux fraction of each template. For templates
where we expect both a PS and Poisson contribution
(such as the GCE), we only estimate the combined flux
of both at this stage, with no attempt to distinguish whether
the flux is more consistent with PSs or Poisson emission.
Afterwards, the NN gϖ learns to recover the SCDs of the
disk and the GCE populations, using the residuals of the
maps after removing the best-fit emission of the other
templates as judged by fω as a second input channel.
Importantly, for the training of both NNs, we only include a
PS-like GCE; however, our priors on the SCDs generated
ensure that the training dataset contains maps with a
PS-like GCE faint enough to be indistinguishable from
Poissonian flux.
As a first test, in Sec. V we consider the characteriza-

tion of a single isotropic PS population in isolation. We
demonstrate that we can recover the injected SCD (within
uncertainties) even below fluxes where a PS would be
expected to generate only a single photon, with examples
shown in Fig. 3. Further, in Fig. 5 we show that genuine
Poisson emission is reconstructed in the SCD well below
the flux associated with one photon.
We then turn toward the scenario of interest in Sec. VI,

the real Fermi map, where we include flux templates for all
the sources that are expected to (potentially) contribute
to the γ-ray sky; moreover, we account for the nonun-
iformity of the Fermi exposure, and mask the known bright
sources in the 3FGL catalog [50]. Before considering the
actual data, we validate our method on simulated Fermi
mock maps, showing in Figs. 6 and 7 that we can accurately
reconstruct the injected flux fractions and SCDs, respec-
tively, for each template. In Fig. 8, we present the
main results of our paper, namely our findings for the
Fermi data. We infer a faint SCD for the GCE peaked
at ∼4 × 10−11 counts cm−2 s−1 (yielding ∼3–4 expected
counts per PS). Unlike in previous analyses, the SCD is
used to account for both the Poissonian and PS flux, and a
purely Poissonian GCE is expected to peak below fluxes
corresponding to one expected count per PS.
In Sec. VII, we introduce a method for constraining the

fraction of the flux that is consistent with purely Poissonian
emission, ηP. To do so, we take the SCD predicted by gϖ as
an input for another NN hν, as illustrated in the bottom
panel of Fig. 1. We show that in a toy example where the
exact likelihood can be calculated, our approach provides

1Although our SCD estimation is nonparametric, it should be
expected that the prior functional forms used for the SCDs in the
training data will be reproduced by the NN when evaluated on
unseen data. For instance, a NN trained on unimodal SCDs will
not be able to recover multimodal SCDs.
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constraints on ηP that are not much weaker than the
frequentist constraints computed from the analytic like-
lihood, allowing us to exclude substantial Poissonian
contributions in maps from PSs that on average emit less
than one detected count each (see Fig. 9). Afterwards, we
apply this approach to the Fermimap and derive constraints
on the Poissonian GCE component as a function of
confidence level and SCD. While the faint nature of the
SCD identified in our analysis prevents us from excluding a
Poisson-dominated GCE at high confidence, we obtain a
95%-confidence constraint on the Poissonian GCE flux
fraction of ηP ≤ 66% for our median SCD, suggesting the
GCE cannot be entirely explained by Poissonian emission
as predicted by DM annihilation, see Fig. 12.
Lastly, we test the robustness of our findings in Sec. VIII

against potential systematics. We show in Fig. 13 that for
simulated Fermi-like maps with a purely Poissonian GCE,
we indeed obtain SCD estimates fainter than for the real
Fermi GCE. Then, we consider different sources of mis-
modeling in Fig. 14, showing for example the robustness of
our results against a north-south asymmetry of the GCE
that was found to cause a spurious PS preference with the
NPTF in Ref. [43], in addition to finding that diffuse
mismodeling could be absorbed in the GCE SCD, but is

likely to do so at the lower fluxes characteristic of Poisson
emission. Notably, in our unified approach for the GCE,
increasing mismodeling can be expected to gradually shift
the SCD estimate instead of suddenly changing the PS vs
Poisson preference. Finally, we demonstrate in Fig. 15 that
both Poissonian and PS-like GCE flux injected into the
Fermi map are accurately recovered.

III. DEEP LEARNING FOR γ-RAY MAPS

We start this section with a brief introduction to CNNs
[51]. In particular, we describe several particularities in the
DeepSphere framework [52,53], upon which we base
our NN architecture, thereby avoiding the need for pro-
jecting the input maps to 2D images. Having introduced
CNNs, we then contrast CNN-based inference with tradi-
tional template fitting methods, focusing on the effect of
large-scale mismodeling.

A. Convolutional neural networks

Like most NNs, CNNs belong to the class of supervised
learning methods. Thus, labeled training data XL ¼ ðxlÞLl¼1

is required, i.e., the true label YL ¼ ðylÞLl¼1 for each of the
L training samples must be available. Then, the task of the

FIG. 1. A schematic depiction of the three NNs used in this work. In the upper panel we outline our two-step procedure for estimating
the flux fractions of all emission components in the inner Galaxy (Step 1), followed by the SCDs for the GCE and disk (Step 2). These
two steps are performed by sequential NNs fω and gϖ . When applying this procedure to the Fermi data, we obtain the results shown in
Fig. 8, finding a SCD for the GCE that is peaked just above a flux corresponding to a single photon. In the lower panel, we depict how
we use a third NN hν to estimate the fraction of the GCE flux consistent with Poisson emission, ηP, given the SCD determined by gϖ.
When hν is applied to the Fermimap, we obtain the results in Fig. 12, and in particular find that the NN estimates that at 95% confidence,
the GCE can be no more than ∼66% Poisson emission. In all cases, on the left we show the inputs taken by each NN, and on the right the
relevant outputs, with the types of GCE emission used for the training in each case shown below. Much more detail on each of these
steps is provided in the text.
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NN is to learn a mapping fω∶ΩX → ΩY , x ↦ ỹ ¼ fωðxÞ
from the input domain ΩX to the target domain ΩY ,
which approximates the true relation between inputs and
outputs. Here and in what follows, we use a tilde to indicate
estimated (and therefore approximate) quantities. Provided
that the training set XL ⊂ ΩX is a sufficiently large
“representative” (discrete) subset of ΩX, one expects the
NN output to be a good approximation of the (possibly
unknown) true label y ∈ ΩY , that is ỹ ≈ y, even for samples
x ∈ ΩXnXL that the NN has not been trained on. The
mapping fω is defined by a series of operations (known as
the NN layers) that successively map each input x to an
output ỹ. Some of these layers have trainable parameters,
known as the weights of the NN, which we gather in the
vectorω. In order to assess the fidelity of the NN prediction
with respect to the truth, one defines a loss function
L∶ðỹ; yÞ ↦ Lðỹ; yÞ ∈ R, which represents the optimiza-
tion objective. Typical loss functions for regression prob-
lems are the mean absolute error (l1) or the mean squared
error (l2). The NN “training” simply refers to the iterative
minimization of the mean loss over the training set using a
variant of a batch gradient descent method, which adjusts
the weights ω after each iteration step. Each batch consists
of a fixed number of samples that are simultaneously shown
to the NN (as the entire training data XL and labels YL do
not usually fit in the memory, and a smaller batch size can
improve the generalization from the training to testing
dataset [54]).
Whilst the above concepts apply to many types of NNs,

the distinctive operation of a CNN is the convolution,
which enables the extraction of salient spatial features
from the data. Following Paper I, we base our NN on the
DeepSphere graph-CNN architecture [52,53], which is
particularly suitable for astrophysical and cosmological
applications: in DeepSphere, the sphere is described
by an edge-weighted, undirected graph, which leverages
the HEALPix equal-area tessellation of the sphere [55].
Specifically, the center of each HEALPix pixel defines a
vertex of the graph, and neighboring pixels are connected
with an edge, leading to 7–8 edges incident to each vertex.
The edge weights determine how the influence between
pixels decays with increasing distance. In this work, we use
the new scheme for the edge weights proposed in Ref. [53].
The trainable parameters of the convolutional layers are
given by filters (or kernels) that detect specific patterns in
the data, such as gradients or edges. These filters have a
(user-defined) size, which determines the field of view or,
in other words, the neighborhood of each pixel that affects
the output of the convolution. For standard CNNs that
operate on Euclidean domains, the convolution is per-
formed by sliding the filters over the input image. In the
context of graphs, the convolution can be defined in Fourier
space using the graph Laplacian (see Ref. [52] for addi-
tional details). To emphasize, for all filter sizes greater than
1, the convolution is inherently an interpixel operation.
In DeepSphere, the filters are restricted to be radially

symmetric, which can be used to build NN architectures
that are rotationally invariant (or more generally equivar-
iant) on the sphere, which is useful for all-sky applications
where the location on the sky should not matter, but which
is not needed for our task at hand. However, we did not
notice any detrimental effect of this specific form of the
filters as compared to a standard 2D CNN applied to
projected photon-count maps, for which reason we decided
to use DeepSphere as it does not require projecting the
maps to flat images. Since DeepSphere supports partial
maps, the input to our NN is only the relevant ROI, rather
than the entire sphere. Besides the convolution operation,
our CNN consists of maximum pooling layers, each of
which reduces the spatial resolution by computing the
maximum over blocks of four adjacent pixels (exploiting
the hierarchy of the HEALPix tessellation, where each
pixel contains four pixels at the next finer resolution level),
activation functions, which introduce nonlinearity and
enable the CNN to learn complex mappings, and batch
normalization [56] or instance normalization [57], which
have been shown to speed up the training process. The
detailed NN architecture for each scenario is specified in
Appendix H.

B. Comparison with traditional methods

In this section, we illustrate in a minimal scenario how
the conceptual differences between CNN-based and like-
lihood-based inference may lead to different results in
the presence of large-scale mismodeling, which can bias
analyses of the Fermi map and hence is a major hindrance
to a conclusive resolution of the GCE. We also briefly
comment on differences and similarities between our
approach and the wavelet technique that was applied to
the Fermi map in Refs. [38,39,58,59].
A challenge for any analysis of the Fermi dataset is the

treatment of cross-pixel correlations. One source of such
correlations is the instrument point-spread function (PSF),
which distributes incident photons among nearby pixels, in
a statistically predictable manner. A second source arises
from the mismodeling that results from using imperfect
models for the spatial distribution of either Poissonian or
PS flux, which is unavoidable given our present imperfect
understanding of the γ-ray sky. If we ignore the effect of
the PSF, then from the perspective of the true underlying
distribution that the data is drawn from, each pixel
represents an independent draw and is therefore uncorre-
lated. However, an analysis of that same data making use of
imperfect models will induce apparent correlations over
distances corresponding to the scale of mismodeling. For
instance, these correlations are clearly noticeable in the
structure observed in residual maps, where the best-fit
model is subtracted from the data. In summary, both the
PSF and template mismodeling imply that the observed
values for the number of counts in nearby pixels are not
independent at the level of the analysis.
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Despite this, even with elaborate methods such as the
recently introduced CPG framework [36] that computes an
individual instrumental and PSF correction for each pixel,
a fully-consistent treatment of the cross-pixel correlation
just from the PSF would involve solving heavy combina-
torics in each likelihood evaluation to account for all
possible combinations of counts being smeared from one
pixel into another, which is computationally infeasible.
Thus, the total image likelihood is ultimately calculated as
the product over the individual pixel likelihoods, treating
the pixels as being statistically independent. In practice,
this often leads to the inferred posterior being narrower than
it should be, as treating correlated pixels as independent
artificially provides more information than is present in the
data [36]. An important consequence of this product
likelihood assumption is that all outputs of existing like-
lihood methods are invariant under a permutation of the
pixel ordering (assuming the template values are also
permuted accordingly).
Unlike CPG or NPTF, deep learning methods often do

not rely on an explicit form of the image likelihood and
therefore do not require such assumptions. In fact, CNNs
draw much of their power from their ability to assess cross-
pixel information such as image granularity. Accordingly,
such methods are not invariant under a permutation of the
pixelated data, and this has important consequences for the
inference in the presence of mismodeling. We emphasize
that although the inherently interpixel nature of CNNs
could account for the correlations induced by the PSF, it
could never fully account for those induced by mismodel-
ing. Nevertheless, as the inference performed by the CNN
is based on regions, rather than by extracting information
from each pixel treated independently, its behavior in the
presence of incorrect flux models can be dramatically
different to likelihood approaches, as we now demonstrate.
For illustration, let us consider a simple toy example,

inspired by the preference of NPTF for a GCE north-south
asymmetry in the Fermi data within a radius of 10° around
the Galactic Center that was identified by Refs. [43,44]. We
neglect the PSF such that interpixel correlations in the map
are entirely caused by the flawed modeling. We consider
purely Poissonian emission whose intensity in the northern
and southern hemisphere differs, but is constant within each
hemisphere. For simplicity, we assume that the exposure is
uniform. Such a map is sketched in Fig. 2 (top), where the
Poissonian scatter is not drawn for simplicity. Now, we
consider the effect of incorrectly modeling the entire sky
with an isotropic Poissonian and PS template. Whilst we
qualitatively discuss and compare the different methods in
this section, we explicitly perform this experiment for an
example map in Appendix A.
For methods that compute the image likelihood as the

product over the pixel likelihoods, this map x1 is indis-
tinguishable from a map x2 in which the pixels are
randomly reshuffled by a permutation x2 ¼ σðx1Þ, and

their likelihoods are identical.2 An example of such a
permutation is provided in the bottom of Fig. 2. The
permuted map exhibits large pixel-to-pixel variation that is
suggestive of a population of sources, and indeed like-
lihood-based methods attribute the majority of the flux in
these scenarios to PSs. However, given the invariance
to permutations, these methods also predict that for x1

the asymmetry arises from PSs that are effectively all in
the northern half of the map. This is reminiscent of the
discussion in Ref. [36], which evokes the analogy of gas
molecules in a box: it would be completely unexpected to

FIG. 2. Schematic of the inference process using likelihood-
based methods (left) and CNNs (right). Map x1 (top) has a strong
north-south asymmetry, expressed by the different colors in the
northern and southern half of the map, where each dot represents
a pixel (with orange pixels brighter than gray). In x2 ¼ σðx1Þ, the
pixels are randomly shuffled by the permutation σ. If the expected
spatial distribution of the counts over the map is assumed to be
homogeneous (and the asymmetry is hence “unmodeled”), the
shuffling leaves the product likelihood unaffected when there is
no accounting of the interpixel correlations (as is the case for the
NPTF and CPG). Thus, the smooth map with a single jump x1 is
indistinguishable from the grainy map x2. For a more formal
derivation of this effect, we refer to Ref. [44]. In contrast, CNNs
assess patches of a fixed size (3 × 3 in this sketch) using filters
that are convolved with the map. We neglect edge effects and
padding here for simplicity. The large-scale mismodeling present
in map x1 does not affect most of the patches, whereas the texture
of map x2 strongly differs from an isotropic Poissonian map.
Therefore, the NN outputs for the two maps will generally not be
the same. As each convolutional layer is followed by a pooling
operation, the size of the patches considered by the CNN
gradually increases with each layer, allowing the CNN to harness
information on different scales.

2If the asymmetry is correctly modeled, and the permutation
that transforms x1 ↦ x2 is only applied to the data but not the
asymmetric background template, then the situations are of
course distinguishable. Nevertheless, note that even in this
situation if we also permute the background model, then again
the two maps will produce identical outputs.
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find all the molecules in just one half of the box; however,
such amicrostate is just as likely as any other configurationof
the molecules. Similarly, if one expects isotropically dis-
tributed sources, the probability of them uniformly covering
one hemisphere is identical to any other possible spatial
distribution. This equivalency between the original and the
shuffled case in terms of the resulting product likelihoods is
depicted on the left-hand side of Fig. 2. In view of the large
pixel-to-pixel variance in the maps caused by the mismodel-
ing, it is not surprising that non-Poissonian PS emission leads
to a higher likelihood than smooth Poisson emission and is
therefore preferred by NPTF (see also Ref. [44] for a
mathematical derivation of such a behavior). Note that while
we consider an abrupt jump in the flux intensity here, an
unmodeled large-scale gradient can be expected to induce a
qualitatively similar behavior. Importantly, we point out that
this equivalence of the two maps in terms of the resulting
likelihoods is not a flaw of the NPTF, but the consequence of
the mismatch between the template and the true data, in
conjunction with the microstate (i.e., pixelwise) assessment
of the maps by the NPTF.
CNNs, on the other hand, operate differently: rather than

computing pixelwise likelihoods, trainable filters (illus-
trated in blue in Fig. 2) of a specified size—3 × 3 in the
sketch—are convolved with image patches. These filters
extract characteristic patterns, based on which the model
parameters θ (or their distribution) can be inferred for each
input map. In practice, multiple convolutional layers are
applied successively, enabling the CNN to distill more
complex features from the data. The results of the con-
volution operations are further processed by nonlinearities
and pooling operations, which is not essential for this
discussion. Coming back to the original and randomly
shuffled maps x1 and x2, respectively, the NN output
(whose exact meaning is left unspecified for the moment)
can be expected to be very different for these two maps: in
map x1, all the patches save those containing the equator
are constant up to Poisson scatter. In contrast, all the
patches in x2 contain some pixels with many and others
with few counts. Thus, the feature maps, i.e., the results of
the convolution between the filters and the images, will
generally not be identical for the two maps. For a realistic
analysis of the GCE, the Galactic plane is typically masked,
such that the north-south transition region would not even
be part of the considered ROI in this specific example.
Resorting to the analogy of molecules again, the CNN-
based inference could be equated with an assessment of the
molecule configuration within each of many small (over-
lapping) sub-boxes (or local macrostates), which together
make up the entire box. Since the majority of these sub-
boxes look exactly as expected in the Poissonian case for
map x1 (although they are not compatible with a single
isotropic template) whereas their counterparts in x2 are
granular, it is comprehensible that the CNN generally finds
map x1 to be more “Poissonian” than map x2 (and in fact
this occurs in practice, see Fig. 16 in Appendix A for an

example). Clearly, neither method can be expected to work
perfectly in this situation, as the true model lies outside the
space of models considered in the analysis. Finally, it is
important to note that this example explicitly considers the
effects of large-scale mismodeling: the presence of small-
scale mismodeling, e.g., due to an overly smooth or grainy
diffuse model on pixel-to-pixel scales, can be expected to
introduce considerable biases with our CNN-based method
(see Sec. VIII B for an assessment of the robustness of our
results with respect to different sources of mismodeling).
At this point, let us also mention probabilistic catalogu-

ing, which rather than estimating the SCD, instead aims to
resolve the location and intensity of each PS individually,
even in crowded fields [60–62]. The permutation invariance
discussed for the NPTF and CPG using the example in
Fig. 2 does not apply to probabilistic cataloguing. More
specifically, each possible number of PSs N of a population
defines a separate metamodel, which itself comprises
parameters for each of the N PSs, leading to a large
number of degrees of freedom of a few timesN (at fixedN).
As N is itself a parameter, a fundamental challenge is to
ensure that transdimensional transitions occur efficiently in
the Markov chain Monte Carlo runs (as changing N varies
the number of total model parameters). Moreover, for
sufficiently crowded fields containing many sources in
each pixel, the exact location and properties of all PSs
may be of less interest than the global properties of the
distribution encoded in the SCD. Hence, we will focus in
this work on methods that describe PS populations globally
in terms of a SCD. For further discussion of this point, we
refer to Collin et al. [36].
As for CNNs, the convolution operation is also the crux

of the wavelet technique [38,58,59], but there are important
differences. (1) For the wavelet technique, the convolution
kernel needs to be manually specified, with theMexican hat
family being a popular choice. On the other hand, CNNs
possess a large number of different filters, arranged in
multiple layers, which are learned by means of a stochastic
gradient descent method. (2) The wavelet technique pro-
duces a signal-to-noise ratio map that reveals the location of
detected bright sources in the map. The statistics of the
identified peaks can then be compared to those expected in
the purely Poissonian case in order to constrain the flux
coming from smooth and PS emission (see Refs. [38,39]).
In contrast, our CNN does not produce an output map, but
rather infers global properties such as template flux
fractions and the SCDs of the PS populations. Another
approach, which we defer to future work, would be the use
of an encoder-decoder NN architecture such as a U-Net
[63], which allows for the inference of local (i.e., pixelwise)
quantities (see e.g., Ref. [64] for a recent application to the
identification of PSs). (3) The wavelet technique does not
attempt to disentangle the photon counts into multiple
components that model different emission processes.
Therefore, fully characterizing the emission typically
requires a template fit (to determine the flux fractions of
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the templates) in addition to the wavelet analysis (to search
for small-scale power), as done in Ref. [39]. CNNs, just like
NPTF and CPG, are able to simultaneously estimate flux
fractions (or template normalizations) and other model
parameters that describe the PS populations. In sum, CNNs
combine certain aspects of both traditional template fitting
methods and the wavelet technique, while providing an
entirely independent way of analyzing photon-count maps,
and the rapid progress in the development of new powerful
deep learning techniques leaves significant room for further
improvement going forward.

IV. A TWO-STEP APPROACH FOR NEURAL
NETWORK-BASED INFERENCE

In Paper I, we included both a PS-like non-Poissonian
component and a smooth Poissonian component of the
GCE by modeling them as two separate templates,
each associated with an individual flux fraction, similar
to NPTF-based analyses. However, this simple approach
neglects the inherent degeneracy between PS and Poisson
emission that arises gradually as the PS brightness tends
to zero.
Therefore, we present an improved version of our NN

in this work, which characterizes the flux associated with
each (potentially) non-Poissonian template by means of a
histogram that expresses the discretized SCD of the PS
population. We introduce a two-step approach for the fully
supervised deep learning-based analysis of γ-ray maps,
where the flux fractions are determined in Step 1, followed
by the estimation of brightness histograms in Step 2.
Importantly, we estimate a single flux fraction for the
Poissonian and the PS-like component associated with a
spatial template, and we will then use the SCD estimate to
distinguish between the two. In what follows, we will
describe the two steps in detail.

A. Step 1: Estimating flux fractions

Since the flux fraction estimation follows the ideas
presented in Paper I, we only summarize the key points
here. Let fω be a NN with trainable parameters ω. The task
of this NN is to predict the vector of flux fractions y ¼
ðytÞTt¼1 ∈ ΔT−1 for T templates given an input map x. Here,
ΔT−1 is the (T − 1)-dimensional standard simplex, namely
the set of all a ¼ ðatÞTt¼1 ∈ RT such that at ≥ 0 for all t ∈
f1;…; Tg and

P
T
t¼1 at ¼ 1. Making the simplifying

assumption that the flux fraction of each template t can
be modeled independently by a Gaussian distribution with
standard deviation σt, the negative maximum log likelihood
for the NN prediction is given by

LðfωðxÞ; yÞ ¼
XT
t¼1

�
1

2σ2t ðxÞ
ðfωðxÞt − ytÞ2 þ

ln σ2t ðxÞ
2

�
;

ð1Þ

where we omit the constant term T=2 lnð2πÞ. We do not
assume the standard deviations σt to be known a priori,
but rather train the NN to predict them in addition to
the mean flux fractions, using the negative maximum log-
likelihood in Eq. (1) as the loss function. Note that the first
and the second term of the loss function penalize too small
and too large values of σt, respectively. Thus, for T tem-
plates, the NN output has dimension 2 × T and contains
fðfωðxÞt; σtðxÞÞgTt¼1, where fωðxÞt ¼ ỹt ≈ yt, and σt
expresses the data-inherent (aleatoric) uncertainties. Since
we found the model-related (epistemic) uncertainties of the
trained NN to be comparatively small in Paper I, we omit
them in this work. We enforce that the estimated flux
fractions sum up to unity by applying a softmax activation
function to the means fωðxÞ after the last NN layer, which
normalizes a vector a ¼ ðatÞTt¼1 ∈ RT as follows:

softmaxðaÞt ¼
expðatÞP
T
s¼1 expðasÞ

: ð2Þ

Weguarantee the positivity of thevariance by estimating the
log variance, lnðσ2t Þ. The important difference as compared
to Paper I is that we now describe the GCE with a single
template instead of treating Poissonian and PS-like GCE
emission as separate templates. This simplifies the task of
the NN as the total number of templates is reduced by one
and, more importantly, the above discussed degeneracy
between smooth and PS emission for one and the same
spatial template is eliminated, and only spatially distinct
(albeit not disjunct) templates remain. A side effect of this
unified approach is that the assumption of Gaussian
uncertainties for the GCE flux fraction becomes more
justifiable: whereas an error distribution of the flux frac-
tions skewed away from zero is natural for templates with a
very small flux fraction (see e.g., Figs. S4 and S6 in Paper I
for this effect occurring for GCEDM and PS, respectively),
the error distribution of the total GCE flux can be well
approximated byGaussians (see the “Total GCE” column in
the same figures). Of course, the most interesting question
as to the nature of the GCE has been ignored until now, but
we will address this in the second step.

B. Step 2: Estimating source-count distributions

We now present the second part of our approach, which
enables us to characterize the underlying PS populations in
terms of the SCD. As is customary, we model the SCD via a
function dN=dF, which expresses the differential number
of PSs dN that fall within an infinitesimal flux interval
½F;F þ dF�. Note that this function specifies a probability
density function (PDF) PðFÞ via

dN
dF

¼ NPðFÞ; ð3Þ
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where N is the expected number of sources. For each
individual PS, the probability of observing si counts in a
pixel i depends on (1) the probability for the PS to emit a
certain flux F as described by dN=dF, (2) the probability
distribution for the expected observed counts given a flux
F, which depends on detector effects such as exposure
time, effective area, and the PSF, and (3) the Poisson
probability for the actually observed number of counts
given the expected number of counts. Additionally, the
observed number of PSs itself is a random variable that can
be modeled with a Poisson distribution.
Different avenues could be pursued for estimating the

SCDs of PS populations using NNs. For instance, a
versatile framework for the estimation of arbitrary proba-
bility distributions, which has recently found its way into
cosmology (e.g., Refs. [46,65,66]), is given by normalizing
flows [67–69]. Another interesting approach, rooted in
contrastive learning, considers the task of likelihood-to-
evidence ratio estimation and frames it as a classification
problem [70]. In that framework, the trained NN outputs an
approximation of the (marginalized) likelihood of each
model parameter. For these approaches, the SCD function
dN=dF could be parametrized, e.g., as a multiply broken
power law in log space as usually done for NPTF analyses,
with model parameters θ.
In this work, we opt for a different approach and use

a binned source-count function instead. Thus, arbitrary
shapes of dN=dF can be accounted for, and no explicit
parametrization of dN=dF is needed. A binned dN=dF has
also been considered for the analysis of the GCE in the
context of NPTF by Fig. S14 of Ref. [33]. Whilst obtaining
posterior distributions with the above-mentioned methods
typically requires sampling points and propagating them
through the NN, we represent the distribution of possi-
ble SCD histograms in terms of their quantiles, as will
be explained further below. Specifically, we estimate the
quantity

F
dN

d log10 F
∝ F2

dN
dF

;

implying that the histogram values are proportional to
flux F when using log-spaced flux bins (or relative flux
after normalizing the histograms as described below).3

Therefore, integrating this quantity over log-spaced flux
bins yields the total flux of the PS population,4

Ftot ¼
Z

F
dN
dF

ðFÞdF ¼
Z

F
dN

d log10 F
ðFÞd log10 F: ð4Þ

Instead of regressing a flux-based quantity, one could also
consider the prediction of count-based histograms, e.g., by
binning the counts according to the number of total counts
detected from each PS (see List [71]). Then, the labels
would include the Poisson scatter that arises from drawing
the number of observed counts given the expected number
of counts, which would slightly simplify the task of the NN.
However, since flux is the physical quantity that character-
izes a PS, we choose a flux-based approach in this work,
which leads to labels that are immune to the nonuniformity
of the Fermi exposure map and facilitates the comparison
with conventional methods such as the NPTF.
In what follows, we introduce the notation that we

will need for the definition of the loss function. Let
u ¼ ðujÞMj¼1 ∈ ΔM−1 be the true histogram that discretizes
the normalized FdN=dðlog10 FÞ into M bins, such that
each bin j collects the relative flux F=Ftot from all those
PSs whose individual flux lies within the associated
logarithmic flux range ðΔ log10 FÞj. As above, ΔM−1

denotes the (M − 1)-dimensional standard simplex. For
example, for a population of identical PSs that each emit a
fixed flux f̄, we have uj ¼ 1 in the single bin j for which
log10 f̄ ∈ ðΔ log10 FÞj and um ¼ 0 for m ≠ j. The motiva-
tion for dividing by the total flux of the PS population Ftot
is that Ftot can simply be recovered from the flux fraction
estimated for the template in Step 1, together with the
known total flux in the map. Therefore, it is sufficient for
the histograms to express the relative amount of flux F=Ftot
coming from PSs within each logarithmic flux interval.
We define gϖ to be the NN for the task of the SCD

estimation, with trainable parameters ϖ. Again, a suitable
loss function needs to be specified, now for comparing the
true and estimated SCD histograms. A naive approach
would be to compute the loss in each histogram bin (e.g., l1,
l2, or cross-entropy loss) and to sum over the losses in the
individual bins. However, this would ignore the natural
ordering of the histogram bins: for example, the loss
between a true histogram u ¼ ½1; 0;…; 0� and an approxi-
mation ũ1 ¼ ½0;…; 0; 1� would be the same as between
u and ũ2 ¼ ½0; 1; 0;…; 0�, although a NN that predicts ũ2

is clearly preferable. In order to instill this logic into
our NN, we utilize the loss function for histogram regression
recently introduced inList [71],which incorporates cross-bin

3In comparison, when binning dN=dðlog10 FÞ into log-spaced
bins, the histogram values are proportional to the number of PSs,
which comparatively suppresses the importance of bright PSs.
For example, consider a map containing 2,000 counts, 1,000 of
which come from a single bright PS while the other 1,000
originate from 1,000 faint PSs each responsible for one count.
Assuming uniform exposure, the bars for the fluxes correspond-
ing to one count and 1,000 counts are equal when binning
FdN=dðlog10 FÞ because the PSs in both bins contribute the same
flux to the map. In contrast, binning dN=dðlog10 FÞ causes the
bar for the faint PSs to be 1,000 times larger than that for the
bright PS.

4We remark that whenever we write log10ðFÞ or
log10ðF½counts cm−2 s−1�Þ, this should be interpreted as
log10ððF½counts cm−2 s−1�Þ=ðcounts cm−2 s−1ÞÞ such that the log-
arithm is applied to a nondimensional quantity.
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information and enables the estimation of the entire distri-
bution of possible histograms in terms of their quantiles.

1. The Earth mover’s distance (in 1D)

A natural way of including cross-bin information is to
consider a loss function that acts with respect to the
cumulative rather than the density histograms. In fact, it
can be shown [72] that in the 1D case with equally sized
bins and normalized histograms, the l1 distance applied to
the cumulative histogram is a special case of the Earth
mover’s distance (EMD) [73] in transportation theory: the
EMD measures the amount of work required in order to
transform one probability distribution (or histogram in the
discrete case) into another when using the optimal transport
plan. In statistics, this metric is known as the Wasserstein
metric, Kantorovich-Rubinstein metric, or Mallows dis-
tance. While determining the optimal transport plan is
generally a challenging task, the problem is substantially
simplified in 1D, where the EMD between histograms ũ
and u is simply given by

LEMDðũ;uÞ ¼
1

M

XM
j¼1

jŨj −Ujj; ð5Þ

with Ũj ¼
Pj

m¼1 ũm and similarly for Uj. This implies that
theNN loss grows as it places probabilitymass in bins further
away from the true bin, andLEMDðũ2;uÞ < LEMDðũ1;uÞ in
the example above. In particular, this means that when the
NN estimate is far away from the truth, the gradient of
the EMD does not vanish, unlike for distances such as the
Kullback-Leibler divergence—a fact that in the context of
deep learning has been exploited in other applications, most
prominently in Wasserstein generative adversarial networks
[74]. The (squared) EMD has also been proposed as a loss
function for NN-based ordered classification such as age
estimation with ordinal labels “baby,” “child,” and “adult”
[75]. For these problems, a ground distance needs to be
specified (or learned), which sets the “distance” in the notion
of “work” required to transport probability mass between
classes (e.g., the distance between baby and child might be
different from that between child and adult). However, for
histogram data like in our case, the definition of the bins
induces a natural distance when defining the EMD as in
Eq. (5): this formulation implicitly assumes an underlying
ground distance dij ∝ ji − jj proportional to the absolute
difference between the bin indices i and j. Throughout this
paper,we use flux bins that are uniformly spacedwith respect
to log10ðFÞ; therefore, the work required for transporting
probability mass is proportional to this quantity.

2. Quantile regression with the pinball loss

Rather than regressing a single “average” histogram, we
are interested in the entire distribution of possible histograms
so that we can quantify the uncertainties. Therefore, we

extend the EMD loss function by harnessing ideas from
quantile regression [76,77]. Recall that just as the mean
squared (l2) error is minimized by the mean, the mean
absolute (l1) error is minimized by the median (or more
precisely any median, given that it does not need to be
unique), i.e., for a real-valued random variable Y, themedian
solves c� ¼ argmincEY ½jc − Yj�. While the median is the
0.5 quantile by definition, an analogous result can be
obtained for arbitrary quantiles, where the τth quantile of
Y is defined as

QYðτÞ ¼ F−1
Y ðτÞ ¼ inffy∶FYðyÞ ≥ τg; ð6Þ

with FYðyÞ denoting the cumulative distribution function
(CDF) of Y. Let ỹ be an approximation of the true quantile
functionQYðτÞ. The pinball loss function [76–79] compares
ỹ with observed values y as

Lτ
pinðỹ; yÞ ¼ ðy − ỹÞðτ − I½y < ỹ�Þ

¼
�
τðy − ỹÞ; if y ≥ ỹ;

ðτ − 1Þðy − ỹÞ; if y < ỹ:
ð7Þ

Here, I½C� is the indicator function,which is 1 if the condition
C is true and 0 otherwise. One can then show that the
expected pinball loss function is minimized by the τth
quantile, i.e., QYðτÞ solves c� ¼ argmincEY ½Lτ

pinðc; YÞ�. In
particular, for the median (τ ¼ 0.5), the pinball loss function
is equivalent to the l1 distance (up to the factor of 1=2).

3. Earth mover’s pinball loss

We now combine the idea of the pinball loss in Eq. (7)
with the EMD in Eq. (5). This yields the loss func-
tion presented in Ref. [71] that allows us to estimate
arbitrary quantiles of the cumulative histogram in each
bin j ∈ f1;…;Mg, given by

Lτ
EMPLðũ;uÞ ¼

1

M

XM
j¼1

½ðŨj −UjÞðτ − I½Ũj < Uj�Þ�; ð8Þ

where EMPL stands for Earth mover’s pinball loss. Thus,
for each map x and quantile level τ ∈ ð0; 1Þ, a NN gϖ

trained using the EMPL provides an estimate of the τth
quantile of the cumulative histogram in each bin, condi-
tional on the input x:

gϖðx; τÞ ¼ Q̃ϖðx; τÞ ≈QUðτjxÞ; ð9Þ

where QUðτjxÞ ¼ ðQU1
ðτjxÞ;…; QUM

ðτjxÞÞ ∈ ½0; 1�M is
the vector that gathers the quantiles of the true cumulative
histogram U ¼ ðUjÞMj¼1 in all bins.
We simultaneously train our NN for arbitrary quantile

levels τ ∈ ð0; 1Þ by randomly drawing an individual value
τ ∼Uð½0; 1�Þ for each training map, which greatly reduces
quantile crossing for scalar quantile regression as compared
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to training separate NNs for different quantile levels, as
shown in Ref. [80]. Since all the operations involved are
(almost everywhere) differentiable with respect to the NN
weights ϖ, the weights can be optimized iteratively by
following the negative gradient −∂Lτ

EMPL=∂ϖ. In practice,
we use a slightly smoothed version of the EMPL (see
Appendix H). To ensure the monotonicity and the nor-
malization of the histograms, i.e., Ũjþ1 ≥ Ũj and ŨM ¼ 1

for each fixed quantile level τ, we proceed as follows: first,
we estimate the density histogram ũ. In terms of ũ, the
normalization condition becomes

P
M
j¼1 ũj ¼ 1, which we

enforce using a “normalized softplus” activation function
after the last layer (used in another context in Ref. [81]),
given by

softplusðaÞj ¼
ln ð1þ expðajÞÞP

M
m¼1 ln ð1þ expðamÞÞ

: ð10Þ

Note the similarity to the softmax activation function in
Eq. (2) that we use for the normalization of the flux
fractions. Indeed, both functions map RM to the standard
simplex ΔM−1, and their limit behavior as aj → −∞ is
identical; however, the activation function in Eq. (10)
grows linearly for aj → ∞ rather than exponentially, which
resulted in a more stable training and slightly improved
accuracy in our experiments. The cumulative histogram is
obtained as the cumulative sum over the normalized density
histogram (i.e., the softplus output), which is then used
for the computation of the EMPL in Eq. (8). The monot-
onicity of the quantiles within each bin with respect to the
quantile level τ is not strictly guaranteed, but it is strongly
encouraged by the definition of the EMPL in Eq. (8). We
verified that quantile crossing by more than physically
negligible relative fluxes ≪ 1% rarely ever occurs in
practice once the NN is trained. For a detailed description
of the EMPL loss function and applications to other
problems, we refer the interested reader to Ref. [71].

C. The combined framework

To obtain the flux fractions as well as the SCDs of the
PS populations, we combine the above two steps. In the
first step, we train the NN fω to estimate the flux fractions
using the maximum likelihood loss function in Eq. (1).
Once trained, we freeze the weights ω and turn toward the
estimation of the SCD in the second step. For the training of
the second NN, gϖ, we exploit the predictions of the first
part and use a two-channel input, with the raw photon-
count map x in the first channel and the residual xω

res after
removing the estimated flux of the templates that we
assume to be purely Poissonian (all but GCE and disk)
as determined by fω in the second channel. Thus, for
perfectly correct flux fractions fω, the residual map xω

res
would only contain photon counts from the (potentially)
non-Poissonian templates plus Poisson scatter from the

other templates. In our experiments, this additional residual
channel led to a modest improvement in the NN accuracy.
We train gϖ for the same number of batch iterations as fω

using the EMPL [Eq. (8)] and then freeze the weights ϖ,
yielding a trained “double NN” that produces estimates of
flux fractions as well as the SCDs of the PS templates.

V. PROOF-OF-CONCEPT EXAMPLE:
ISOTROPIC POINT-SOURCE POPULATION

As a first test case for our SCD estimation method, we
consider a simple scenario, where only a single isotropi-
cally distributed PS population is present (and Step 1 is
therefore unnecessary). In this proof-of-concept example,
we take the exposure to be 1 cm2 s throughout our circular
ROI, which is delimited by an outer radius of 25° around
the Galactic Center. Thus, the notions of flux F and counts
S, which are related via F ¼ S=E with the exposure E in
each pixel, are interchangeable in this example. We use a
HEALPix resolution parameter of nside ¼ 256, corre-
sponding to a pixel size of 13:70, and apply the Fermi
instrument PSF at 2 GeV, modeled as the linear combina-
tion of two King functions.5 Despite the fact that the
standard deviation of the Fermi PSF at this energy level
is roughly twice the pixel size, training our NN with
nnside ¼ 256 maps led to an improvement in accuracy over
nnside ¼ 128 in our experiments, indicating that the NN is
able to leverage information below the PSF scale.
We generate 1.5 × 106 maps and use 1.25 × 106 of them

for training our CNN, while keeping the rest for testing.
Throughout this work, when generating Monte Carlo
(MC) data, we model dN=dF as a skew normal distribution
with respect to log10 F, with randomly drawn parameters
for location, scale, and skewness (see Appendix G). In this
example, our priors for the SCD result in the expected
number of counts per PS to fall in the range [0.1, 55]
for the majority of PSs (∼95%). We take the total expected
flux in the map to be uniformly distributed over
[1, 100,000]. For the discretization of the SCD, we take
M ¼ 22 bins, uniformly spaced in terms of log10 F from
log10ðF=ðcounts cm−2 s−1ÞÞ ¼ −1.5 to 2. The detailed NN
architecture is provided in Appendix H. We train our
CNN for 25,000 batch iterations at a batch size of 256
on a single GPU on the supercomputer Gadi located in
Canberra, which is part of the National Computational
Infrastructure (NCI). We use an Adam optimizer [82] with
learning rate 5 × 10−4, which exponentially decays at a rate
of −1.5 × 10−4 after each batch iteration.
Figure 3 shows the predictions of our CNN for nine

randomly selected maps from the test dataset that span a
wide range of PS brightness, from a very faint PS

5For details of the Fermi PSF, see https://fermi.gsfc.nasa.gov/
ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/
IRF_PSF.html.
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https://fermi.gsfc.nasa.gov/ssc/data/analysis/documentation/Cicerone/Cicerone_LAT_IRFs/IRF_PSF.html


population (top left) to a population with some very bright
PSs (bottom right). We evaluate our CNN for quantile
levels τ from 5% to 95% in steps of 5%, represented by the
colored regions (from red to blue). The true cumulative
FdN=dðlog10 FÞ histograms are given by the light blue

bars. The CNN has learned to recover the SCD of the
underlying PS population, and the predicted histograms
agree well with their true counterparts. Regressing the
entire distribution of possible histograms, expressed in
terms of quantiles, allows us to draw conclusions about the

FIG. 3. NN predictions for nine randomly selected maps from the test dataset for the isotropic proof-of-concept example: true
cumulative FdN=dðlog10 FÞ (light blue) and predicted quantiles (colored regions, 5%–95% in steps of 5%), sorted by the brightness of
the PS population from very faint (top left) to very bright (bottom right). Specifically, the sorting criterion is the index where the true
cumulative histogram UðxÞ surpasses 0.95. The corresponding photon-count maps (i.e., the NN inputs x) are shown in the inset plots,
together with the total number of counts in the map. The color map is normalized for each map, from 0 to the maximum number of
counts over all pixels. The flux range covers roughly 3 orders of magnitudes, with the faintest (brightest) PSs emitting on average ∼0.1
(100) counts. The flux associated with one expected count is indicated by the dashed orange line for orientation. From these results we
see that the NN is able to accurately recover the true histogram in a wide variety of scenarios.
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uncertainties in the NN prediction. The quantile ranges at
the low flux end of faint SCDs are generally large. For the
first map, for instance, which contains PSs with ≪ 1 count
expected from each, the NN is uncertain about the exact
brightness of the faintest PSs. Also, rather uniform PS
populations with a steeply increasing CDF tend to produce
higher uncertainties in the relevant bins than heterogeneous
populations whose CDFs rise more gently over multiple
flux magnitudes.
We now quantify the calibration (or reliability) of our

CNN on a more representative set of maps by means of a
calibration plot. Specifically, we test how often the true
value for the cumulative histogram in a given bin falls
within the predicted quantiles—ideally, we would expect
that 90% of true values would fall within our predicted 5%–
95% range. In detail, for every confidence level α ∈ ½0; 1�,
we define the bin-averaged coverage probability as

pcovðαÞ ¼
�

1

jBεðxÞj
X

j∈BεðxÞI½UjðxÞ ∈ R̃ϖ
j ðx; αÞ�

�
x
;

ð11Þ
where h·ix denotes the average over samples and

R̃ϖ
j ðx;αÞ ¼

�
Q̃ϖ

�
x;

1 − α

2

�
; Q̃ϖ

�
x;

1þ α

2

��
ð12Þ

is the predicted α-interquantile range (IQR) symmetrically
around the median. In the average over the bins, we exclude
the bins in which the cumulative histogram is outside
½ε; 1 − ε� and only consider the subset

BεðxÞ ¼ fj ∈ f1;…;MgjUjðxÞ ∈ ½ε; 1 − ε�g: ð13Þ
This is to prevent bias arising from the bins where all the
quantiles are very close to 0 or 1, and numerical inaccur-
acies far below the physically relevant magnitudes deter-
mine whether or not the true value lies within the estimated
quantile range. We choose ε ¼ 10−5, but have confirmed
that the results are not sensitive to the exact cutoff ε. In
other words, we compute the coverage probability as the
fraction of bins for which the true cumulative histogram
value Uj falls within the predicted α-IQR, averaged over a
large number of maps. For perfectly calibrated quantiles,
the coverage probability would be given by the identity
pcovðαÞ ¼ α. Note that this notion of calibration thus
assesses the average reliability of the NN when evaluated
on maps from the test dataset whose model parameters are
randomly drawn from our priors.
Figure 4 (top left) shows the coverage probability

pcovðαÞ as a function of the confidence level α, evaluated
on 1,024 maps from the test dataset. For all confidence
levels α ≤ 0.65, the deviation from perfect calibration is
less than a percent, i.e., jpcovðαÞ − αj < 0.01. For larger α,
the coverage lies slightly below the identity line, which
means that our CNN on average underestimates the

uncertainties; however, the deviations are small. The largest
deviation among the considered confidence levels occurs at
pcovð0.95Þ ¼ 0.918, implying there are 8.2% outliers out-
side the 95% confidence interval, while 5% are expected.
Whilst calibration is critical in order to avoid systematic

biases, it is not sufficient to guarantee the usefulness of
the estimates: for example, a NN that entirely ignores its
input and always predicts the same true quantiles of the
marginalized distribution yields calibrated but quite useless
predictions (e.g., Ref. [83], Fig. 4). An additional desid-
eratum is therefore sharpness of the uncertainties: for each
uncertainty level α ∈ ½0; 1�, we define the α sharpness as
the average size of the predicted α-IQR, averaged over
many maps and (relevant) bins:

FIG. 4. Quantification of the uncertainty estimates of the NN
gϖ , for the isotropic proof-of-concept example considered in
Sec. V (left) and the realistic scenario from Sec. VI (right). The
upper panels show the average calibration of the uncertainties: for
each confidence level α ∈ ½0; 1�, the coverage pcovðαÞ is com-
puted as the fraction of samples and bins for which the truth lies
within the symmetric α-interquantile range (IQR) around the
median (see main text). Perfect calibration implies pcovðαÞ ¼ α,
which is indicated by a solid line. In all the cases we consider, the
uncertainties are well calibrated, which means that the uncer-
tainties are approximately consistent with the errors in an average
sense. The lower panels show how the size of the 95% IQR is
distributed. Here, it becomes apparent that the realistic scenario is
much more difficult than the isotropic example, reflected by large
uncertainties occurring more frequently. The dashed vertical lines
are located at the mean size of 95% IQR (average over maps and
bins), which we define as the 95% sharpness S0.95 [see Eq. (14)].
Very small and very large uncertainties are more common for the
disk template than for the GCE in the realistic scenario.
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Sα ¼
�

1

jBεðxÞj
X

j∈BεðxÞjR̃
ϖ
j ðx; αÞj

�
x
: ð14Þ

Smaller values of Sα indicate lower average uncertainties,
as this corresponds to quantiles tightly grouped around
the median prediction. In Fig. 4 (bottom left), we plot the
distribution of jR̃ϖ

j ðx; 0.95Þj (the size of the predicted 95%
IQR) over 1,024 test maps and the relevant bins j ∈ BεðxÞ.
A value of 1 in this distribution means that at 95% con-
fidence, the value of the cumulative histogram in the
respective bin cannot be confined to any proper subinterval
of [0, 1] by the NN. The dashed line indicates the mean of
this distribution that defines the sharpness according to
Eq. (14), which for this isotropic proof-of-concept example
is given by S0.95 ¼ 0.18. The distribution of jR̃ϖ

j ðx; 0.95Þj
is heavily right skewed, and small uncertainties expressed
by 95% IQRs≲ 0.1 occur frequently. The right-hand side
in both rows of this figure quantifies the performance in a
realistic scenario—i.e., more representative of the actual
Fermi data—that will be discussed in the following section.
Finally, we report the mean EMD between the median

prediction and the true histogram over the 1,024 test maps
[see Eq. (5)], given by LEMD ¼ 0.32. This can be inter-
preted as the average amount of work required for trans-
porting the median histogram to the truth in units of “bins”
× “probability mass” (note that the total probability mass
equals one because the histograms are normalized). For
example, the EMD between the histograms u ¼ ½1; 0;…; 0�
and ũ2 ¼ ½0; 1; 0;…; 0� mentioned at the end of Sec. IV B
is 1 as the entire probability mass needs to be moved by one
bin, namely from the second to the first. Converting from
bins to flux, one finds that the mean EMD corresponds to a
multiplicative factor of 1.14 in flux space.
Now, let us discuss how purely Poissonian emission is

accommodated within our analysis framework. As already
mentioned in the Introduction, a central theme in this work
is to describe Poissonian and PS-like emission associated
with the same spatial template in a unified manner. (Note
that we only apply this approach to emission components
that are potentially PS-like; for purely Poissonian templates
such as the diffuse foregrounds, we simply estimate the
flux fraction as described in Sec. IVA.) Strictly speaking,
annihilating DM can just as well be viewed as a huge
collection of extremely faint PSs, where each PS corre-
sponds to the location where a pair of DM particles
annihilate. Clearly, modeling the resulting emission as
Poissonian is justified, however, as the number of DM
particles expected in each pixel is gargantuan for weakly
interacting massive particles (WIMP)-like candidates. But
even faint astrophysical PSs may strongly resemble Poisson
emission: consider a population with an expected number
of N PSs, each of which produces S̄ counts on average,
such that the expected number of total counts is μ ¼ NS̄.
The variance of the counts for this population is given by
σ2NP ¼ NS̄ð1þ S̄Þ ¼ μð1þ S̄Þ, compared with σ2P ¼ μ for

Poisson emission with the same expected number of counts.
Thus, σ2NP ¼ ð1þ S̄Þσ2P, implying σ2NP > σ2P with σ

2
NP → σ2P

as S̄ → 0. Hence, for the faintest populations considered in
this example with ∼0.1 expected counts per PS, the variance
exceeds that of Poisson emission only by ∼10%.6 We can
therefore expect our NN to locate theFdN=dðlog10 FÞ at the
very low flux endwhen applied to purely Poissonianmaps—
even though truly Poissonian maps were never shown to the
NN during the training.
Figure 5 reveals that this is indeed the case: we plot the

median prediction (same quantiles as in Fig. 3) over 1,024
random Poissonian realizations with expected counts uni-
formly drawn from [1, 100,000] as for the PS maps. For
τ ¼ 0.05, 0.5, and 0.95, the error bars indicate the 68%
scatter over the samples. Compared to the prediction for the
faintest PSmap in Fig. 3 (top left), the estimated SCD for the
Poissonian maps is even fainter, and the presence of PSs that
emitmore than≈10−0.5 ¼ 0.3 expected counts is excluded at
high confidence (see also Sec. VII, where we consider how
the Poissonian flux fraction can be constrained based on the
estimated SCD histogram). Thus, it is justifiable to train our
NN only with PS flux for the templates whose emission
might be either smooth or PS-like—provided that the dataset
contains faint PS populations deep in the (partially)

FIG. 5. NN prediction for the isotropic example when evaluated
on purely Poissonian maps. The colored regions show the median
of the different quantiles (5%–95%) computed over 1,024
randomly generated maps. For the 5%, 50%, and 95% quantiles,
the error bars indicate the 68% scatter over the maps. Whilst the
NN has only seen (non-Poissonian) PS maps during its training,
the variance of faint PSs only very slightly exceeds that of
genuinely Poissonian emission and, hence, the extrapolation
effort required of the NN is small. As expected, the NN places
the Poissonian flux far below the one-photon line.

6This argument ignores the PSF, which makes PS maps even
smoother.
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degenerate regime.Altogether, this experiment demonstrates
that our CNN is able to accurately recover the underlying PS
distribution as described by the SCD FdN=dðlog10 FÞ, and
Poisson emission is placed at the low flux end far below the
one-photon line.

VI. APPLICATION TO THE FERMI MAP

Now, we turn toward the realistic scenario, where we
model all the components of the emission present in the
inner Galaxy region of the Fermi map. First, we describe
the dataset that we use in this work and detail our modeling.
Then, we briefly summarize the generation of training data
and the NN training. Afterwards, we evaluate our CNN on
simulated maps and finally present and discuss our results
for the real Fermi dataset.

A. Fermi data

To construct our data, we begin with all photons
collected by Fermi in the PASS 8 dataset between
4 August 2008 and 19 June 2019, which corresponds to
almost 11 years of data. To minimize background con-
tamination from charged cosmic rays, we use events in the
UltracleanVeto class. Further, to reduce the diffuse
background to PS searches, we keep only the top quartile of
γ rays as graded by the quality of reconstruction of their
incident direction.7 Finally, to ensure we only consider data
that was collected during good time intervals, when the
instrument was operating in science configuration, and that
is uncontaminated by emission from the Earth’s limb, we
apply the conventional quality cuts DATA_QUAL==1,
LAT_CONFIG==1, and zenith angle < 90°, respectively.
After applying these criteria, we are left with a list of

photons labeled by two angles corresponding to their
reconstructed origin on the celestial sphere, and their
reconstructed energy. We remove the energy information
by combining the data into a single bin of events between
2 and 20 GeV, in order to capture the region where the
GCE is expected to peak over backgrounds. As for the
isotropic example in Sec. V, we bin the resulting list of
photons into HEALPix-discretized input maps at a reso-
lution of nside ¼ 256. In our experiments, we did not achieve
substantial improvements by increasing the resolution to
nside ¼ 512. However, it might be possible to exploit the
additional information contained in higher resolution maps
byusingmore complexNNarchitectures (see e.g., Ref. [84]).
We leave an in-depth study in this direction to future work.
We consider a circular ROI of radius of 25° around the
Galactic Center, and then mask the inner jbj ≤ 2° around the
Galactic plane as well as the pixels that are within the 95%

containment radius at 2 GeV (≈0.47° for these quality cuts)
of any source in the 3FGL catalog.8

B. Flux templates

In line with previous analyses (e.g., Refs. [33,41–44]),
we include templates modeling the following physical
processes: (1) Galactic diffuse foregrounds from decay
of neutral pions (π0) together with bremsstrahlung (BS),
both of which originate from the interaction of cosmic rays
with the interstellar gas, for cosmic-ray protons and
electrons, respectively, (2) Galactic diffuse foregrounds
from photons of the interstellar radiation field, which are
upscattered by cosmic-ray electrons to γ-ray energies via
the inverse Compton (IC) effect, (3) extragalactic emission,
described by a spatially uniform template, (4) the Fermi
bubbles [85], a large-scale structure in the γ rays stretching
to the north and south of the Galactic plane, (5) emission
from PSs associated with the Galactic disk, which we
model with a doubly exponential disk with scale height
zs ¼ 0.3 kpc and scale radius Rs ¼ 5 kpc, and (6) a
template for the GCE, given by the line-of-sight integral
of a squared generalized NFW profile [86] with slope
parameter γ ¼ 1.2. Further, we assume that templates 1–4
are purely Poissonian; i.e., isotropic PSs are not included as
their impact has been found to be very small [42], nor do
we consider hypothetical PSs associated with the Fermi
bubbles as evoked in a proof-of-concept example in Leane
and Slatyer [41]. Templates 5 and 6 are hence the only
PS-like templates used in our analysis. For the diffuse
Galactic foreground emission, we choose Model O,
which was introduced in Buschmann et al. [42] (building
on Refs. [16,28]), and provides a much better fit at low
energies as compared to the official Fermi model p6v11
(see e.g., Fig. 17 in Ref. [42]). As we include more data
than considered in Ref. [42] and Paper I, we refit the
components used to construct Model O to our maps, using
the same procedure described in the former work.

C. Data generation and neural network training

For training and testing our NN, we generate 1.5 × 106

maps in total, 105 of which we set aside for testing while
using the remaining 1.4 × 106 maps for training fω and gϖ.
For the four Poissonian templates, the counts in each map
are drawn from a Poissonian distribution with pixel means
given by the product of the template normalization A and
the respective spatial template. Whilst we chose wide priors
in the main body of Paper I to present CNNs as a general
template fitting method for γ-ray maps, our priors for the
template normalizations cover a much tighter range around

7We remark that the recent works [43,44] considered the three
best-graded quartiles, rather than only the top one. Whilst this
leads to 3 times more photon counts, it also increases the radius of
the PSF. We leave a comparative study of different data selection
criteria to future work.

8In more detail, to construct the PS mask we start with an
nside ¼ 2,048 map, and mask any pixel with center within 95%
containment radius of a source. This map is then downgraded to
nside ¼ 256, and if more than half of the parent pixels were
masked, we mask the pixel in the lower resolution map.
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the expected values for the Fermimap in this work, so as to
maximize the performance in this region of the parameter
space. The exact prior ranges are tabulated in Appendix G.
For the PS templates, we take the SCD functions dN=dF to
be skew normal distributions, whose parameters for loca-
tion, scale, and skewness are randomly drawn. For each
map, the PSs are distributed across the map in accordance
with the spatial template, a Poisson draw is performed for
each PS to determine the number of counts, and the Fermi
PSF correction is applied. In order to allow formore complex
SCDs and, more importantly, to include maps with both a
bright and a very faint GCE population that together model a
mixed PSþ (nearly) Poissonian GCE, we generate twice as
many template maps for the GCE (3 × 106) and add them
pairwise such that each combined count map contains two
individual GCE populations. For the disk PSs, we assume a
single population. Our more flexible modeling for the SCD
of the GCE could lead to comparably more robust results for
theGCE than those for the disk—justifiably given theGCE is
our primary concern—however, further improvement of the
disk modeling would be an interesting future direction. The
labels for each map are given by the flux fractions of each

template for fω and by the discretized (relative) FdN=
dðlog10 FÞ for gϖ, where the bin edges range from log10ðF=
ðcounts cm−2 s−1ÞÞ ¼ −12.5 to−7 in steps of0.275, resulting
in 22 equally spaced flux bins with respect to log10ðFÞ.
We train our NN using the two-step procedure outlined

in Sec. IV for the two NN parts fω and gϖ, both times
minimizing the respective loss function for 30,000 batch
iterations at batch size 256. For both steps, we use an Adam
optimizer with the same hyperparameters as in the isotropic
example, resetting the learning rate to its original value
before starting the training of gϖ.

D. Results for simulated data

First, we discuss the flux fraction estimation using the
NN fω (Step 1). We evaluate our trained NN on 256
randomly selected maps from the test dataset. The true vs
estimated flux fractions for these maps are plotted in Fig. 6
(in %), zoomed into the relevant range for each template.
For orientation, the dark (light) gray bands delimit errors of
�1% (2%). Compared to the NN errors for the realistic
scenario in Paper I, the NN errors are generally smaller,

FIG. 6. True vs estimated flux fractions produced by the NN fω (in %), for 256 randomly selected MCmaps from the test dataset. Note
that we zoom into the relevant flux region that arises from our flux priors for each template, for which reason the axes for the different
templates have individual scales. The dark (light) gray stripes are included for orientation, and depict errors of �1% (2%). The inset
values state the mean and maximum error over the maps for each template. For all the templates, the mean error lies below one percent.
More accurate predictions generally come with smaller uncertainty estimates (compare e.g., the Fermi bubbles to the disk).
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which can be explained by a combination of (1) the fact that
GCE DM and PS are modeled by a joint template, (2) more
training data, (3) the higher data resolution (nside ¼ 256
instead of 128), (4) narrower prior ranges (except for
Fig. S26 in Paper I, where we also used narrow priors
around the Fermi values), and (5) we consider a fixed ROI
radius of 25° in this work instead of varying between
15°–25°. On the other hand, the SCD of the GCE PSs is
more complex now as the GCE PS counts are the sum of
two individual template maps. For all the templates, our NN
recovers the flux fractions on average well within percent
accuracy. In particular, for the GCE template, the mean
error is< 0.5%. Large errors are generally accompanied by
large uncertainties, suggesting that the NN recognizes
which maps and templates are difficult to predict. The
flux fraction predictions are least accurate for the diffuse
IC and disk PS templates: both templates have smooth
emission that is correlated with the disk of the Milky Way,
for which reason there might be confusion between faint
disk PSs (which, recall, are indistinguishable from Poisson
emission) and diffuse IC emission. In Fig. S20 in Paper I,
where we considered a full uncertainty covariance matrix,
this is reflected by a large negative correlation between the
flux fractions of these two templates (Pearson correlation
coefficient r ¼ −0.3).
Now, we consider the SCD prediction with the NN

component gϖ (Step 2). Figure 7 shows the true cumulative
SCDs (GCE and disk) for eight randomly selected maps
from our test dataset, together with the NN estimates. As
compared to the isotropic proof-of-concept example, the
SCD estimation becomes considerably more difficult now
as GCE PSs and disk PSs each only make up ∼0%–15% of
the counts in the map. Nonetheless, the NN has learned to
provide accurate uncertainty regions for the SCDs of both
templates that trace the true histograms. As the flux fraction
of a PS template (given in the lower right corner)
approaches zero, the uncertainties for the associated
SCD diverge, indicating that the NN becomes aware that
tight constraints on the SCD can no longer be derived in
this situation. The GCE histograms typically have more
complex shapes than those for the disk due to the two
distinct GCE populations present in each map, which is
generally well reproduced by the NN (see, e.g., the varying
slopes of the histograms for maps 1 and 7).
As in the isotropic example, we analyze the calibration

and the sharpness of the uncertainty estimates based on
1,024 randomly selected test maps, as shown in Fig. 4 on
the right-hand side. Also for the realistic scenario, the
uncertainties are very well calibrated for both PS templates.
Rather than causing overconfident or underconfident pre-
dictions that would be reflected by large deviations from
the identity line in the calibration plot, the increased
difficulty of the problem affects the sharpness of the
uncertainties: the sharpness with respect to the 95% IQR
increases from S0.95 ¼ 0.18 in the isotropic case to 0.36
and 0.41 for GCE and disk PSs, respectively. Interestingly,

the distribution of jR̃ϖ
j ðx; 0.95Þj for the disk PS template is

bimodal and peaks at zero and one, whereas it decreases
roughly monotonically for the GCE PS template. This
difference in behavior between the PS models can be traced
to the fact that each map contains two GCE PS template
maps, but only one for the disk. Accordingly, the disk SCD
will be unimodal, whereas for the GCE the PSs will
typically be associated with a wider distribution in flux
(see Fig. 7). The bimodal distribution of jR̃ϖ

j ðx; 0.95Þj for
the disk is then associated with the lowest flux bins: if the
disk PSs are bright, then the NN can be confident there are
no low flux sources (as it was trained on a unimodal SCD),
whereas if the disk sources are dim, then determining the
exact peak of the distribution is challenging, resulting in
large uncertainties. Note that another consequence of the
different treatment of the two PS templates in the gen-
eration of the maps is that the distribution of the total flux
of the PS templates over the maps follows a triangular
distribution for the GCE, but a uniform distribution for the
disk. However, we confirmed this difference is not a sig-
nificant driver in the different shapes of the jR̃ϖ

j ðx; 0.95Þj
distribution between the two models: when restricting the
testing dataset to maps in which the respective template has
a flux fraction ≥ 5%, the distribution of the 95%-IQR size
for the disk PS template remains bimodal, although the
height of the peak at one is reduced, as the disk SCD can
be determined more accurately in maps where disk PSs
contribute more total flux.
We emphasize that even in the case of large uncertainties

within one or multiple bins, it can be possible to obtain tight
constraints on the SCD: for example, if all the quantiles of
the predicted cumulative histogram are identically zero
in bins ≤ j − 1 and 1 in bins ≥ jþ 1 (assuming the NN
estimate is correct, all these bins are excluded from the set
Bε and are hence not considered in our computation of the
sharpness), but span the entire possible range [0, 1] in bin j,
we have jR̃ϖ

j ðx; 0.95Þj ¼ 1; however, we know that the
SCD can be nonzero only in bins j and jþ 1.
The mean EMD between the predicted median and the

true SCD histogram is now LEMD ¼ 0.90 and 0.99 for GCE
and disk. We remark that these values are affected by maps
where the flux fraction of the respective template is very
small and the median SCD lies several bins away from the
truth—which the NN accounts for by producing uncer-
tainties that span multiple orders of magnitudes in terms of
flux (e.g., for the disk PSs in maps 1 and 8 in Fig. 7).
Therefore, we also quote the median EMD, which is more
representative of a typical map, given by LEMD ¼ 0.71 and
0.56 for GCE and disk, respectively, yielding multiplicative
factors of 1.58 and 1.42 in terms of flux.

E. Results for the Fermi map

Having confirmed that our method produces reliable
estimates for both the flux fractions and the SCDs for
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simulated Fermi-like photon-count maps, we now evaluate
our NNs on the real Fermi map (again, we refer to Sec. VI
A for the specific dataset considered in this work).

In Fig. 8, we present our results for the Fermi map
(shown in the upper left corner within our ROI). The NN fω

assigns ð7.9� 0.5Þ% of the flux to the GCE template.

FIG. 7. Predictions of the NN gϖ for eight randomly selected MC maps from the test dataset for the realistic scenario: true cumulative
FdN=dðlog10 FÞ (light blue) and predicted quantiles (colored regions, 5%–95% in steps of 5%), sorted by the brightness of the GCE PS
population (top), from very faint to very bright. The disk PS histogram (true and predicted) for each of the maps is plotted below. The
percentages in the lower right corners state the flux fraction of the respective template (GCE / disk). For some of the maps, the two
distinct GCE populations can be clearly identified in the histograms. The NN has learned to distill the two PS populations from
the smooth background emission and to recover the underlying SCDs, although sharp kinks are sometimes slightly smoothed out. The
histograms for the disk PSs reveal the correlation between larger flux fractions and sharper uncertainty estimates (e.g., compare the
uncertainties for maps 1 and 2 with 2.4% and 12.1% disk PS flux, respectively).
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Generally, the flux fraction estimates are similar to our
findings in Paper I (note that work used ∼8 years of Fermi
data, whereas here we use ∼11 years) and consistent with
those of theNPTF implementationNPTFit in the sameROI
(see Appendix B). Based on the estimated flux fractions for
the purely Poissonian templates (all but GCE and disk), the
best-fit Poisson model is determined, and the residual count
map is provided as an input to the NN gϖ alongside the
original Fermi map for the SCD estimation in Step 2. The
GCE is visible near the Galactic Center in the residual map.
The resulting SCD estimates for the GCE and the disk are
plotted in the lower left corner, where the different colors
again correspond to quantile levels from τ ¼ 0.05 to 0.95 in

steps of 0.05. We show the cumulative histograms on the left
and the density histograms on the right, where the solid black
lines mark the median predictions. The NN places 72% of
the GCE flux in the three bins corresponding to a flux
of F = (0.8–5.0Þ × 10−11 counts cm−2 s−1 (or equivalently
S̄ ¼ 0.7–4.5 expected counts) for the median pre-
diction, and less than 1% (≈13% for a quantile level of
τ ¼ 0.05) is assigned to PSs brighter than F ¼ 9.4 ×
10−11 counts cm−2 s−1 (or S̄ ≥ 8.4 expected counts).
Below the one-photon line, there is substantial uncertainty
and for τ ≳ 0.9 (i.e., with an expected probability of∼10%),
more than half of the GCE flux is attributed to PSs that on
average even contribute less than∼1 count to theFermimap.

FIG. 8. Results for the Fermi map. The flux fraction estimates of fω in Step 1 are shown in the upper right panel. Our NN identifies
ð7.9� 0.5Þ%GCE emission within our ROI (25° around the Galactic Center, jbj ≤ 2° and 3FGL sources masked). The resulting Poisson
model, which accounts for all the templates except for GCE and disk PS, as well as the residual after subtracting the model from the
Fermi map are depicted on the lower right, where we use identical colormap limits for the counts in the Fermi map and the Poisson
model. This residual map, together with the original Fermi map, form the input for gϖ, which predicts the (normalized) SCD function
FdN=dðlog10 FÞ in Step 2 (lower left). We plot the cumulative histograms and the corresponding density histograms for the GCE and
the disk PSs, where the colors illustrate the estimated 5%–95% quantiles in steps of 5% (from red to blue). In the density histogram
axes, the black lines show the median predictions. The gray vertical bars mark the location of the 3FGL threshold at
F ≈ ð4 − 5Þ × 10−10 counts cm−2 s−1, above which PSs can be expected to be individually resolved. The upper x axis indicates the
expected number of counts S̄ associated with the logarithm of the flux F on the lower x axis. The predicted GCEmedian histogram peaks
at S̄ ≈ 3–4 counts and ranges below the one-photon line, with substantial uncertainty at the lower end. Nearly the entire GCE flux is
attributed to PSs emitting less than ten counts. A much brighter SCD is preferred by the NN for the disk PSs, which is roughly delineated
by the one-photon line and the 3FGL threshold at the faint and bright end, respectively.
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Qualitatively, the SCD predicted by our NN provides no
indication of two distinct GCE components present in the
Fermi map such as e.g., a Poissonian and a PS component.
We now put our SCD estimate for the GCE into the

context of previous NPTF-based studies: as pointed out
in Ref. [44], most NPTF analyses identify a rather steep
SCD for the GCE population, implying that most of
the GCE flux would originate from sources close to the
break Fb of the broken power law that commonly describes
the SCD in NPTF analyses. For a more extensive dis-
cussion of SCDs found in NPTF analyses of the GCE than
the one presented here, we refer to Sec. VII A 1 of
Ref. [44]. Using the Fermi diffuse model p6v11, the
first analysis of the GCE with NPTF conducted by Lee
et al. [33] reported a value of Fb ¼ 1.76þ0.44

−0.35ð1.62þ0.45
−0.32Þ ×

10−10 counts cm−2 s−1 for their analysis with unmasked
(masked) 3FGL sources, and Ref. [41] found Fb ¼
1.94þ0.34

−0.30 × 10−10counts cm−2 s−1 in their masked analysis
within a 30° radius. (Note that the first of these analyses
used a different energy range than considered in the
present work, although the difference due to this should
be smaller than the other uncertainties on inferring proper-
ties of the SCD.) An unmasked analysis by Ref. [41] with
Model A identified a lower value of Fb ¼ 1.07þ0.20

−0.16 ×
10−10 counts cm−2 s−1 (which is still twice as large
as the peak of the GCE SCD preferred by our NN
with Model O). Reference [44] obtained Fb ¼ 7.9þ1.5

−1.3 ×
10−11 counts cm−2 s−1 in their baseline analysis with a
narrow prior range of [2.05, 5] for the negative slope
of the SCD above the break (n1), which prevents a
sharp cutoff. Replacing p6v11 by Model A in their
analysis further reduced the value to Fb ¼ 4.9×
10−11 counts cm−2 s−1, whereas other variations in their
analysis (such as taking a 30° radius ROI instead of their
default choice of 10°) gave rise to larger values of
Fb ∼ 1 × 10−10 counts cm−2 s−1. Model O was used in
an analysis by Ref. [42], however, in that work the
SCDs were subject to a sharp cutoff at lower fluxes as a
partial attempt to mitigate Poisson and PS confusion, which
makes any comparison to their results less meaningful.
More generally, an important difference between the

SCD derived in the present work and those that have been
obtained previously is that our SCD describes the full
emission of the GCE. The results from earlier works were
derived only for the PS contribution—a separate model
was included for the Poissonian contributions. Given the
previously discussed inherent ambiguity between PS and
diffuse contributions, results obtained through these
different methods cannot be compared unambiguously.
Accordingly, as a cross-check, we also perform a fit of
the Fermi map with NPTFit in our ROI, taking the same
templates as in our NN training and omitting a Poissonian
GCE “DM” template, such that faint GCE flux is expected
to affect the lower end of the predicted GCE SCD, similarly
to our NN-based approach. As in previous studies (e.g.,

Refs. [33,43,44]), we model the SCD in NPTFit with a
singly broken power law. Our priors allow steep negative
slopes up to n1 ¼ 30 for the GCE and disk SCDs above
the flux break (see Appendix B for additional details).
Intriguingly, we find a best-fit estimate for the flux break of
Fb¼5.0×10−11 countscm−2 s−1 (S̄¼4.5 expected counts),
which is similar to the peak of the SCD favored by our NN
(although NPTFit prefers a much narrower shape). On the
other hand, when repeating the same NPTFit analysis
with p6v11 in place of Model O, we obtain a much
brighter SCD for the GCE with best-fit flux break Fb ¼
1.5 × 10−10 counts cm−2 s−1 (S̄ ¼ 13.5 expected counts),
consistent with previous p6v11-based studies. Thus,
modeling the Galactic foregrounds with the Model O
instead of p6v11 appears to shift the preferred GCE
SCD to considerably fainter fluxes with NPTFit.
Importantly, the faint peaks of the GCE SCDs obtained
in our Model O-based analyses with the NN and NPTFit
are much more similar than the peaks arising from different
NPTFit analyses that use different diffuse templates. We
reiterate that Model O has been found to give a consid-
erably better fit to the Fermi map than p6v11 [42].
It has already been noted in earlier studies that the choice

of the diffuse template may bias the inferred SCD and even
affect the preference for a Poissonian vs PS-like GCE:
within 10°, Ref. [43] found that model p6v11 leads to an
overwhelmingly large Bayes factor of 4 × 1015 in favor of a
PS-like GCE, whereas the purely Galprop-based [87]
Model F yields a Bayes factor of only 1, indicating no
preference for PS-like emission (and allowing separate
template normalizations A for the two hemispheres weak-
ens the evidence to a Bayes factor< 10 even with p6v11).
We study the impact of different sources of mismodeling on
the predictions of fω and gϖ in Sec. VIII B.
Whilst we will address the question as to what con-

straints on the Poissonian GCE flux can be derived based
on the estimated SCD in Sec. VII, let us already comment
on the results we obtained in Paper I treating GCE PS (non-
Poissonian) and GCE DM (Poissonian) as two separate
templates: there, our NN found ð8.6� 1.7Þ% and ð0.3�
1.2Þ% flux of GCE DM and PSs, respectively. As we
showed in Fig. S4 in the SupplementaryMaterial of Paper I,
confusion between DM and (very) dim PSs is common
even when PSs make up the entire GCE (see Ref. [49] for
an assessment of DM/PS misattribution with NPTFit). In
light of the SCD predicted by gϖ assigning the bulk of the
GCE flux to PSs with < 5 expected counts, the preference
of our simpler NN in Paper I for a Poissonian GCE would
still be comprehensible even if the GCE were fully
explained by PSs that follow this SCD without any
Poissonian contribution.
For the disk PSs, gϖ prefers a brighter SCD framed by

the one-photon line and the 3FGL threshold on either side,
which peaks at a flux of F ¼ 1.1 × 10−10 counts cm−2 s−1

(S̄ ∼ 10 expected counts). In view of the 3FGL mask
excluding the known bright sources from our ROI, it is
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reassuring that the brightest PSs that our NN identifies lie
just at the 3FGL threshold. A fainter SCD for the GCE PSs
in comparison with the disk could possibly be attributed to
the differing star formation histories in the Galactic bulge
and the Galactic disk, causing the GCE PSs to be older and
hence dimmer than their disk counterparts (e.g., Ref. [88]).
The faint nature of the median (τ ¼ 0.5) SCD for

the GCE as estimated by our NN would imply that a
large number of PSs is required to explain the GCE
flux, assuming there is no Poisson contribution e.g., from
annihilating DM: in our masked ROI, integrating the
median estimate for dN=dðlog10 FÞ over the logarithmic
flux dðlog10 FÞ yields an expected number of N ∼ 10,100
GCE PSs, which translates to N ∼ 29,300 PSs in the entire
sky when multiplying with

R
sky TGCEdA=

R
ROI TGCEdA,

where TGCE denotes the generalized NFW-squared tem-
plate for the GCE. For the quantile levels τ ¼ 0.05 and
0.95, we obtain 10,300 and 189,500 GCE PSs in the sky,
respectively. Our cross-check with NPTFit yields
N ∼ 3,900 PSs in our ROI (N ∼ 11,200 in the entire
sky) using Model O (but only N ∼ 600 in our ROI or
1,800 in the sky with p6v11).
We emphasize that our NN analysis, as is the case for

NPTF, is agnostic as to the physical origin of the GCE
emission and does not take the energy spectrum of the
photons into account. Although our results can therefore
not directly be compared to the findings of MSP population
studies, it is still interesting to discuss whether our
estimates could be accommodated by an unresolved pop-
ulation of MSPs in the Galactic Center region. As early as
2005, before Fermi launched, Ref. [89] suggested that γ-ray
observations of the Galactic Center by EGRET, which
measured a spectrum with a break at several GeV, were
consistent with thousands of unresolved MSPs in the
region. More recent studies that make use of the Fermi
data have refined these findings. Reference [90] estimated
that 34,200 MSPs and 20,000–50,200 MSPs at 68% con-
fidence can explain the GCE, respectively, while Ref. [91]
obtained the somewhat lower estimate of 10,000–
20,000 MSPs. Reference [92] suggested a similar number
of MSPs (specifically 17,900–82,200 MSPs at 95%
confidence, see their Fig. 9), and that a less luminous
population was expected in the bulge as compared to the
disk (see their Fig. 6)—although those authors did model
the GCE as a boxy and a nuclear bulge rather than a NFW-
squared template. Our NN results agree with the conclusion
of Ref. [93] that if MSPs make up the GCE, they must be
fainter than the Galactic disk population, although they
found that 2,000–13,750 bulge MSPs suffice. Recently,
Ref. [94] showed that MSPs formed by accretion-induced
collapse (rather than through “recycling” of old neutron
stars, e.g., Ref. [95]) could explain both the GCE and
the microwave haze from the inner Galaxy. The SCD
derived in that work (using the same ROI as herein) peaks
at a flux of F ¼ 6 × 10−12 counts cm−2 s−1, even below the

one-photon line, and corresponds to a population without
any MSPs brighter than F ≥ 10−10 counts cm−2 s−1 (see
their Fig. 5). In view of the uncertainties in our SCD
estimate at the low flux end, such a population could be
compatible with the results of our NN-based analysis. In
contrast, earlier works located a sizable amount of the GCE
flux just below the Fermi detection threshold, implying that
∼1,000 MSPs [11] or several hundred PSs within a ROI of
10° around the Galactic Center [33] would be enough to
explain the GCE. All these estimates must be interpreted
with caution, however, as the exact numbers depend on the
cutoff of the SCD at the low flux end. To account for the
possibility that PSs make up only a fraction of the GCE
flux, we integrate downwards over the flux bins until 50%
of the GCE flux is reached, starting at the bright flux end
of our median estimate for the SCD. We find that a
population of ∼2,000 PSs in our ROI (6,300 PSs in the
sky) brighter than F ¼ 1.4 × 10−11 counts cm−2 s−1 (cor-
responding to S̄ ¼ 1.3 expected counts per PS) could
explain half of the excess emission.

VII. CONSTRAINING THE POISSON
FLUX FRACTION

The results in the previous section, in particular those
shown in Fig. 8, represent our detailed findings for the
nature of the GCE. Nevertheless, arguably the most
important question related to the excess is whether the
emission is consistent with DM annihilation, and a specific
SCD does not immediately answer this question. Of course,
in Sec. V, we showed that gϖ can be expected to produce an
FdN=dðlog10 FÞ peaked below the one-photon line for a
Poissonian input (see Fig. 5), and given that this is what we
expect for DM, these results would appear to weigh against
a purely DM origin for the excess. In this section we will
firm up this intuition and, in particular, introduce a
summary statistic that can be used to shed light on the
PS vs Poissonian nature of the excess.
In doing so, we must account for the inherent degeneracy

between Poisson and PS flux that has plagued previous
results. If the GCE is truly Poissonian in nature, then we
cannot exclude a PS origin. There will always remain an
indistinguishable scenario where the flux arises from a
large population of dim astrophysical sources, each of
which produces far fewer than a single photon on average.
In such an event, the PS hypothesis might be resolved
by future measurements that push the one-photon line to
smaller fluxes, but the existing Fermi data could not resolve
the PS vs DM debate. The inverse, however, is not true. If
the GCE in fact has a PS origin, then as the sources become
brighter, the dataset becomes less consistent with Poisson
emission. In detail, it is possible to set an upper limit on the
Poissonian fraction of the flux associated with a given
template, which we denote by ηP. Using this exact logic, we
will set a limit on ηP for the GCE template emission. Doing
so, we will find that for the analysis choices made in the
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present work, the GCE is consistent with an Oð1Þ fraction
arising from genuine non-Poissonian PS emission.
We can obtain a simple estimate of ηP using the SCD

determined by gϖ directly, and this is the first approach we
will consider. However, we will find this approach is not
sufficiently sensitive to obtain nontrivial constraints from
the Fermi map, and as such we will introduce an additional
NN which will improve the sharpness. The Poisson flux
fraction ηP can also be determined using conventional
likelihood based techniques (as we will outline below, with
a detailed description provided in Appendix E), and we will
validate our NN approach by benchmarking it against a
frequentist computation of ηP in a simple test scenario.
Then, we will turn toward the realistic scenario. First, we
will verify that the constraints we obtain for simulated
(approximately) Fermi-like maps are well calibrated, mean-
ing that, for example, our 95%-confidence constraint on ηP
lies above the true value for ∼95% of the maps. Then, we
proceed to constrain the Poissonian component of the GCE
in the Fermi data.

A. A simple estimate of ηP from the SCD

Let us recall the intuitive interpretation of the histogram
labels: the relative cumulative histogram U ¼ ðUjÞMj¼1

expresses the fraction of flux coming from PSs at most
as bright as the value of log10 F associated with bin
j ∈ f1;…;Mg. The fact that both ðUjÞMj¼1 and ηP express
flux fractions suggests that a simple estimator for the
Poissonian flux fraction ηP of a template can be directly
obtained from the median estimate of ðUjÞMj¼1 provided
by gϖ. Since the PS/Poisson degeneracy decreases with
increasing PS brightness, we can cut off the high-flux end
of the SCD beyond a particular flux where we can be
certain (at confidence level α ∈ ½0; 1�) that the entire flux
located to the right of the cutoff is PS-like, and take the
remaining flux fraction to the left of the cutoff (given by the
cumulative histogram evaluated at the cutoff) as an estimate
of ηP. For a given value of α, we define the cutoff such that
the retained flux to the left is indeed greater than the true
Poissonian flux fraction ηP for ð100 × αÞ% of the maps. In
other words, the defining condition for the cutoff values is
that the resulting constraints on ηP are well calibrated (with
respect to the calibration dataset).
In what follows, we will formulate this idea more

precisely. Specifically, we determine a flux ϕ�ðαÞ as a
function of α ∈ ½0; 1� such that interpolating the median
relative cumulative FdN=dðlog10 FÞ, i.e., Q̃ϖðx; 0.5Þ,
to this flux value can be expected to exceed ηP with a
probability of α. Formally, this can be written as the
following optimization problem: find ϕ� ¼ ϕ�ðαÞ such
that for all confidence levels α ∈ ½0; 1�,

hI½ηPðxÞ ≤ Q̃ϖðx; 0.5Þjϕ�ðαÞ�ix ¼ α; ð15Þ

where ηPðxÞ is the true Poissonian flux fraction of the
template under consideration for map x, and we write
Q̃ϖðx; 0.5Þjϕ�ðαÞ for the piecewise linear interpolation of the
predicted median cumulative histogram to the value of
log10 F ¼ ϕ�ðαÞ. The sample average h·ix is taken over a
sufficiently large calibration dataset X cal. Importantly, we
emphasize that the definition of X cal implicitly encodes the
priors with respect to which the calibration property in
Eq. (15) shall be satisfied: for example, if the set X cal
contains disproportionately many maps with a very large
Poisson flux (i.e., ηP ≈ 1), the calibration property requires
large values of Q̃ϖðx; 0.5Þjϕ�ðαÞ in order for the inequality
to hold true for ð100 × αÞ% of the maps in X cal, giving rise
to large values of ϕ�ðαÞ in comparison with a calibration set
X cal that contains mainly PS-dominated maps. Throughout
this section, we choose a noninformative prior for the
Poissonian fraction ηP, implying that we generate the
calibration dataset X cal in such a way that ηP is uniformly
distributed in [0, 1].
The simple estimator for the Poissonian flux fraction

in Eq. (15) yields well-calibrated constraints by construc-
tion in that the true Poissonian flux fraction ηP can be
expected to fall ð100 × αÞ% of the times below the estimate
Q̃ϖðx; 0.5Þjϕ�ðαÞ when drawing maps x from the distribu-
tion represented by the set X cal that the estimator was
calibrated on. However, as this estimator merely evaluates
the estimated median histogram at a fixed value for each α
without taking into account the shape of the histogram, the
resulting constraints are quite weak: in fact, this estimator
yields the trivial constraint η̃P ¼ 100% at α ¼ 95% con-
fidence for the Poissonian GCE contribution in the Fermi
map when applied to the median GCE SCD predicted by
our NN. The results of a benchmark test for this simple
estimator are provided in Appendix F.

B. Evaluating η̃P with an additional NN

In order to obtain a more powerful estimator, we replace
Q̃ϖðx; 0.5Þjϕ�ðαÞ by a function Φ̃, which takes the entire
median histogram and the confidence level α as inputs, i.e.,
Φ̃ ¼ Φ̃ðq̃ϖðx; 0.5Þ; αÞ. Here, q̃ϖ stands for the estimated
(relative) density histogram, which is related to the cumu-
lative histogram by Q̃ϖ

j ¼ Pj
m¼1 q̃

ϖ
m. This leads to the

following modified optimization problem: find Φ̃ such that
for all α ∈ ½0; 1�

hI½ηPðxÞ ≤ Φ̃ðq̃ϖðx; 0.5Þ; αÞ�ix ¼ α: ð16Þ

Note that Eq. (16) again requires the estimator Φ̃ to be
well calibrated, but does not enforce it to be sharp;
for example, the simple estimator in Eq. (15) given by
Φ̃ðq̃ϖðx; 0.5Þ; αÞ ¼ Q̃ϖðx; 0.5Þjϕ�ðαÞ is a valid solution to
Eq. (16). Naturally, we are interested in finding a function
Φ̃ able to provide constraints on the Poissonian flux that are
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as tight as possible. Rather than making an explicit ansatz
for Φ̃∶ðq̃ϖðx; 0.5Þ; αÞ ↦ η̃Pðx; αÞ ¼ Φ̃ðq̃ϖðx; 0.5Þ; αÞ, we
again resort to machine learning: we take Φ̃ to be a NN hν

with weights ν and train it using the pinball loss function
[see Eq. (7)], where the confidence level α plays the role of
the quantile level τ in this case. Now, the calibration dataset
X cal is given by the dataset used for the training of hν. Thus,
the priors used for the training data generation implicitly set
the priors with respect to which the calibration property in
Eq. (16) will be encouraged during the NN training.
In our experiments presented below, we take hν to be a

standard fully connected NN with two hidden layers
consisting of 256 neurons each, which are followed by
ReLU activation functions. For the output layer that yields
the estimate of the Poissonian flux fraction η̃P, we take a
sigmoid activation function to enforce η̃P ∈ ð0; 1Þ. The
training of hν consists of 200 epochs, each batch contains
2,048 histograms, and we use an Adam optimizer [82] with
initial learning rate 10−3 that exponentially decays to 10−4

by the end of the training. Just like we did for τ when
training the NN gϖ, we randomly draw an individual
confidence level α ∼Uð½0; 1�Þ for each histogram.
We expect the introduction of hν will improve the

sharpness of our estimator. However, before applying this
method directly to the Fermi map, we first benchmark its
prediction against a frequentist limit obtained with an
analytic likelihood function in a simple scenario where
the likelihood approach can be reliably calculated.

C. Benchmarking the NN estimator hν

in an isotropic example without a PSF

To validate our method for constraining the Poissonian
flux fraction ηP based on the SCD histogram predicted
by gϖ using a second NN hν, we directly compare our
results to those obtained by determining a frequentist one-
sided 95% upper limit on ηP using an analytic likelihood
approach. In particular, for a direct comparison we will
quote the value of the NN-based estimate η̃P determined
by hν at α ¼ 95%. To obtain frequentist limits for a given
map x, we consider the test statistic in terms of the
logarithmic profile likelihoods:

TSðηPÞ ¼ −2½ln ðpðxjηP; θ̂ðηPÞÞÞ − ln ðpðxjη̂P; θ̂ðη̂PÞÞÞ�;
ð17Þ

where η̂P is the maximum likelihood estimate for the
Poissonian flux fraction and θ̂ðηPÞ denotes the remaining
parameters describing the PS population that maximize the
likelihood for a given Poisson flux fraction ηP (namely the
expected number of PSs and the total number of expected
counts, see Appendix E for more details). From Wilks’
theorem [96], it follows that this test statistic is asymp-
totically χ2 distributed with 1 degree of freedom. Hence, we
will report the frequentist one-sided upper α-confidence
limit as the value ηPðαÞ where the test statistic takes the

value TS ¼ F−1
χ2
1

ð2α − 1Þ for α > 0.5 and ηPðαÞ > η̂P

(where F−1
χ2
1

denotes the quantile function of the χ21
distribution), e.g., TS ¼ 2.71 for α ¼ 95% confidence.
The comparison is performed on a particularly simple

example: we revisit the scenario of a single isotropically
distributed PS population considered in Sec. V. However,
we now consider the case without an instrumental PSF
that would introduce correlations between the pixels. As
explained in Ref. [36], existing methods to analytically
compute the PS likelihood (in particular, the NPTF and
CPG) rely on an approximate description of pixel-to-pixel
correlations induced by the PSF (see Ref. [36] and also
the discussion in Sec. III), and so by assuming the direction
of the incident photons is reconstructed exactly we can
compute the true image likelihood exactly (and in fact in
this limit the NPTF and CPG likelihoods reduce to the
same form).
For the training of the NN gϖ (which predicts the SCD

given a photon-count map), we take each count map to be
the sum of two individual maps stemming from two
different isotropically distributed PS populations, as we
did for the GCE flux in the realistic scenario in Sec. VI.
This is because we intend to subsequently evaluate the
trained NN gϖ on mixed PS þ Poisson maps to generate
training data for the NN hν whose task will then be
to constrain the Poissonian flux component in the under-
lying map based on the SCD predicted by gϖ, as described
in Sec. VII B. Note that we do not include genuinely
Poissonian emission already in the training data for gϖ

because there is no “correct SCD” for Poissonian flux that
we could use as a label for the training of gϖ. To ensure that
the training dataset for gϖ includes maps so faint that they
cannot be distinguished from Poisson emission at high
confidence, not even with the analytic likelihood, we
extend our prior range for the location parameter of the
skew normal distributed SCDs in log10ðFÞ-space from
½−1; 1.5� to ½−2; 1.5� (where counts cm−2 s−1 is the refer-
ence unit); see Appendix G for further details. We take a
uniform exposure of 1 cm2 s again, implying that flux and
counts have the same numerical values. We repeat the NN
training of gϖ described in Sec. V for this case. In the next
step, we generate 102,400 maps with 50,000 expected
counts each, which will be used for creating the training
and testing datasets for hν. The counts in each map are the
sum of a Poissonian and a non-Poissonian PS template
map, where the Poissonian flux fraction ηP ∼Uð½0; 1�Þ is
randomly drawn between 0 and 1. Then, we evaluate the
trained NN gϖ on these maps and use 4=5 of the predicted
SCD histograms as the training data for hν, keeping the
other 1=5 as an independent testing dataset. In the training
of hν, the true label is given by the Poisson flux fraction ηP.
We emphasize that for maps that contain flux from faint
PSs, a fraction of the PS flux is indistinguishable from
Poissonian flux (importantly, however, this flux is not
accounted for by ηP). Since faint flux in training maps can

NEURAL NETS FOR THE GCE’S SCD PHYS. REV. D 104, 123022 (2021)

123022-23



be genuinely Poissonian, come from faint PSs, or consist of
a mixture of both, hν will not be able to derive tight
constraints on ηP in maps with a large faint flux component
because overconfident predictions during the training are
penalized by the pinball loss, which compares the α
quantiles η̃Pðx; αÞ estimated by hν with the label ηPðxÞ.
To ensure the physical degeneracy in these scenarios is
reproduced in the prediction of hν, it is crucial that the
training dataset contains maps with faint flux that is entirely
Poissonian, which prevents hν from speculating on a PS-
like flux component whenever the SCD estimate produced
by gϖ is so faint that it does not allow hν to rule out a
Poissonian origin.
To systematically assess the constraining power for

varying PS brightness, we evaluate the trained NN hν on
estimated SCD histograms corresponding to maps whose
counts are composed of a Poissonian contribution and a
PS-like non-Poissonian contribution from a single homo-
geneous population of PSs with identical flux. As in
the maps underlying the histograms used for the training
of hν, the total flux in all these mixed PS þ Poisson maps
corresponds to 50,000 expected counts, resulting in
1.36 = 50,000/36,868 expected counts in each pixel of
our ROI with radius 25°.
Figure 9 shows the 95%-confidence constraints esti-

mated by hν as a function of the expected counts per PS.
The different colors indicate the true Poissonian flux
fraction ηP, from 0% (red) to 100% (green) in steps of
20%. The constraints with the likelihood-based approach
are given by the faint lines in the background. Interestingly,
a substantial fraction of the PS flux can be distinguished
from Poisson emission even for populations of PSs emitting
on average < 1 count each. At the one-photon line, the
fraction of flux that the NN hν cannot attribute to PSs at
95% confidence is < 20% for ηP ¼ 0. Although the
constraints with the frequentist likelihood function based
approach are sharper than their NN-based counterparts for
small values of ηP, the difference in constraining power
is rather modest, and our NN is able to provide tight
constraints. We remark that while the likelihood-based
constraints are directly inferred from the counts in each of
the 36,868 pixels, hν relies on only M ¼ 22 histogram
values as an input, which act as a “summary statistic.”
The behavior of the constraints η̃P produced by hν for

bright populations with a large number of expected counts
per PS reflects the necessity to comply with the calibration
property in Eq. (16): as the true Poissonian flux fraction ηP
is uniformly distributed over the training dataset X cal, ∼5%
of the maps in X cal have ηP ≥ 0.95. A trivial estimator η̃P
that completely ignores the input could therefore output the
constant constraint η̃Pðx; 0.95Þ ¼ 0.95 and would be right
for ∼95% of the histograms belonging to the maps in X cal,
just as required by Eq. (16). However, a more powerful
estimator will realize that the conditional probability of
ηP ≥ 0.95 given a very faint (bright) SCD estimate as an
input is greater (less) than 5%. The specific choice of the
priors for the SCDs modulates the risk that the NN hν can

take by estimating a value η̃Pðx; 0.95Þ slightly below 1 for
very faint histograms [e.g., η̃Pðx; 0.95Þ ¼ 0.986 for ηP ¼ 1
in Fig. 9] while still being correct∼95% of the times. Indeed,
we confirmed that when using the lower limit −1 instead of
−2 for the prior range of the SCD location parameter when
generating X cal, which on average gives rise to brighter PS
populations, the estimates η̃Pðx; 0.95Þ produced by hν for
ηP ¼ 1 increase to 0.998 owing to the higher probability for a
very faint histogram to belong to a purely Poissonian map. A
similar argument applies for ηP < 1: the estimates η̃P
converge to those values that allow hν to underestimate
the true Poissonian fraction ηP roughly 5% of the time for
α ¼ 0.95. This causes the NN to not exclude a small fraction
η̃Pðx; 0.95Þ ≈ 3% of Poissonian flux being hidden in 100%
PS maps, even for relatively bright PS populations.

D. Constraining a Poissonian GCE

Now, we apply our validated approach for constraining
the Poissonian flux fraction ηP to the GCE template in the

FIG. 9. Constraints on the Poissonian flux fraction ηP for a
single isotropically distributed PS population without a PSF. We
consider seven SCDs, given by Dirac delta distributions such that
all the PSs of the population have the same expected number of
counts per PS as indicated on the x axis. We apply our method to
maps with ηP ranging from 0% (bottom, red) to 100% (top, green)
in steps of 20%. The bright lines show the constraints from hν at
95% confidence, while the faint lines in the background corre-
spond to the 95% frequentist limits based on the analytic
likelihood (LLH). The error bars indicate the 68% scatter over
64 realizations for each combination of SCD and ηP. For PS
populations as faint as 0.25 expected counts per PS, the NN (the
likelihood-based approach) can rule out more than half (a third)
of the flux being Poissonian at 95% confidence in the absence of
Poissonian emission (ηP ¼ 0). The NN constraints are not much
weaker than their likelihood-based counterparts, particularly
for ηP > 0.
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realistic scenario from Sec. VI where all the templates
are present, jbj ≤ 2° and known 3FGL sources are
masked, and we take the nonuniform Fermi exposure
as well as the Fermi PSF into account. (Again, we
emphasize that when we include the PSF, existing
likelihood-based approaches no longer fully describe
the statistics of the map correctly.) We proceed similarly
to the isotropic case in the previous section; however,
the constraints provided by hν are expected to be
considerably weaker now in view of the increased
difficulty of the problem. More specifically, the uncer-
tainties in the SCD estimates are larger now (compare
Figs. 3 and 7, and also the sharpness plots in Fig. 4), for
which reason the true SCD might deviate more from the
estimated median histogram q̃ϖðx; 0.5Þ, which serves as
the input for the NN hν. Hence, hν needs to produce
weaker constraints in order to achieve calibration.

1. Training hν

Next, we outline how the additional NN hν is trained.
First, let us emphasize that we do not retrain the NN gϖ

that generates the SCDs used for training the estimator
hν. Rather, we will evaluate gϖ (which, recall, has only
been trained on maps with a PS-like GCE composed of
two template maps as described in Sec. VI) on a dataset
of maps with a mixed PS þ (genuinely) Poissonian
GCE. We will then take the SCD estimates produced by
gϖ for these maps as the training dataset for hν, with the
correct labels in the training of hν given by the
Poissonian GCE flux fractions ηP of the maps under-
lying the input SCDs.
In detail, we generate 102,400 maps. We fix the

expected flux fraction of each template to be the best-fit
prediction of NN fω, and we use the median SCD as
estimated by the NN gϖ for the disk PSs for all the
maps (see Fig. 8). This is because we expect the
uncertainty in the predicted Fermi GCE SCD to out-
weigh the scatter in the GCE histogram predictions
arising from small variations in the expected fluxes of
the non-GCE templates. For the GCE itself, we allow
for a wide range of possible compositions: we adopt a
uniform prior for the fraction of the Poissonian GCE
contribution ηP in ½0%; 100%�, and we draw the SCD
parameters for the complementary GCE PS flux from
our original priors that we already used to generate the
1.5 × 106 training and testing maps for NNs fω and gϖ,
only adjusting the total expected flux in such a way that
the expected total GCE flux (PSþ Poisson) matches the
best-fit estimate of fω. Thus, the GCE PSs in each of
the 102,400 maps may range from nearly as faint as
Poisson emission to above the 3FGL threshold, and they
constitute 0%–100% of the GCE flux with uniform
probability. Since the GCE counts in each of the
training maps for fω and gϖ are the sum of two
independent GCE PS template maps, these NNs have

been trained on maps that contain two PS populations,
one of which is virtually as faint as genuinely
Poissonian emission, implying that this mixed
Poissonian þ PS-like GCE case does not require the
NNs to extrapolate to an unknown region in the
input space.
We then evaluate gϖ for each of these maps x to

obtain the estimated median histograms q̃ϖðx; 0.5Þ.
We randomly put aside 1=5 of the GCE histogram
predictions for the 102,400 maps for validation and take
the remaining 4=5 to be the training data for hν. We use the
same NN architecture, hyperparameters, and training
procedure for hν as in the isotropic example without a
PSF in Sec. VII C.

2. Validation on simulated data

Figure 10 shows a calibration plot, where the coverage
is computed as the sample average on the left-hand side
in Eq. (16) over the 20,480 test samples. For small
confidence levels < 0.4, the coverage lies slightly below
the identity line, but the NN estimator hν ¼ Φ̃ is gen-
erally well calibrated, and the deviation from perfect
calibration as defined in Eq. (16) is small. For example,
the coverage at confidence level α ¼ 0.95 is given by
pcovð0.95Þ ¼ 0.957. Because of the previously discussed
degeneracy between faint PSs and Poisson emission, we
expect hν to provide tight constraints on the Poisson flux
only for sufficiently bright PSs, as already seen in the
isotropic example above.
In Fig. 11, we illustrate this behavior by considering four

selected samples from our test dataset. The white circles
trace the true cumulative FdN=dðlog10 FÞ of the GCE PS

FIG. 10. Calibration plot for the estimated Poissonian GCE flux
fraction η̃Pðx; αÞ ¼ Φ̃ðq̃ϖðx; 0.5Þ; αÞ produced by the NN hν in
the realistic scenario. The coverage on the y axis is computed as
the fraction of samples for which the estimate for a given
confidence level α lies above the true value ηPðxÞ, i.e., by the
left-hand side of Eq. (16), where the sample average h·ix is taken
over the 20,480 histograms in the testing dataset.
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component, which characterizes the brightness of the GCE
PSs contained in the respective map. The colored regions
show the predicted quantiles provided by gω for each map
which, in addition to the GCE PSs, contains a Poissonian
GCE component. The estimated median distribution is the
input for the NN hν. The true Poissonian flux contribution
to the GCE ηP is marked by horizontal dotted lines and
stated above or below the lines. For Poissonian GCE flux
fractions ηP ≈ 0, the estimated SCD quantiles provided by
gϖ coincide with the true SCD of the GCE PS component
as expected (top panels). In the boxes on the right-hand
side, we report the α ¼ 50%, 70%, and 95% constraints
produced by hν. The GCE in map 1 is dominated by
relatively bright PSs, and the Poissonian flux only accounts
for ηP ¼ 8.8% of the GCE. In this case, hν is able to

constrain ηP to be less than 17.2% at 95% confidence. In
contrast, the PSs in map 2, which constitute 96.1% of the
GCE emission in the map, are not much brighter than
Poissonian flux. Consequently, hν cannot exclude that the
GCE in the underlying map is almost entirely Poissonian.
Maps 3 and 4 are dominated by Poissonian emission, with a
small and moderate contribution of bright and faint PSs,
respectively. This leads to a much narrower distribution of
η̃P for map 3 [η̃P ¼ 92.0% (97.1%) at 50% (95%) con-
fidence], whereas the constraints derived for map 4 are very
similar to those for the faint PS-dominated map 2, reflect-
ing the faint PS vs Poisson degeneracy.
We remark that the case of two or more different

GCE PS populations is not considered here (which
would require training the NN gϖ on maps with ≥ 3
PS populations because Poissonian flux is treated as a
very faint PS population). This choice will impact the high
confidence in the results for map 3 that the flux can be
attributed to Poisson emission (η̃P is clustered near the
true value). As the NN has not seen situations with more
than two PS emission components, once it identifies the
bright PS population, it can say confidently the remaining
flux should be Poissonian. While this behavior will lead to
more conservative constraints on ηP in situations where,
for example, the true distribution is a combination of
Poisson emission and two separate PS populations, one
dim and one bright, stronger constraints could be estab-
lished in principle.

3. Application to the Fermi map

We now apply our approach for constraining ηP to the
Fermi data. Recall that we have only used a single
histogram for each map as the input to hν during the
training, namely the median prediction q̃ϖðx; 0.5Þ; how-
ever, gϖ provides an estimate of the GCE SCD in the Fermi
map for any quantile level τ ∈ ð0; 1Þ. As such, we can
evaluate hν individually for SCD histograms corresponding
to different quantile levels in order to derive constraints on
ηP as a function τ.9

Figure 12 shows the estimated Poisson flux fraction η̃P
as a function of the quantile level τ and the confidence level
α. The column τ ¼ 0.5 (surrounded by a box and also
shown in detail on the right-hand side) is for the median
histogram, and lower (higher) quantile levels correspond to
brighter (fainter) SCDs. The density FdN=dðlog10 FÞ
histogram for each quantile level τ (that is, the input to
hν) is illustrated in the panel above for orientation, and the
color for each τ is the same as in the GCE panel in Fig. 8.
For our median SCD, we obtain a constraint of η̃P ¼ 65.6%

FIG. 11. Constraints on the Poissonian flux fraction ηP for four
simulated maps with a mixed PSþ Poisson GCE from the testing
dataset for hν in the realistic scenario. The true Poissonian GCE
flux fraction ηP in each map is indicated by the horizontal dashed
line, and its value is reported above or below. The white circles
follow the normalized cumulative FdN=dðlog10FÞ that describes
the GCE PS emission in each map. The colored regions show the
estimated 5%–95% quantiles produced by gϖ, which agree with
the true SCD of the GCE PSs for small ηP and move to lower
fluxes as ηP increases. Maps 1 and 2 are PS dominated, whereas
the majority of the flux in maps 3 and 4 is Poissonian. The PS
populations in maps 1 and 3 are relatively bright, while the PSs
in maps 2 and 4 are faint and emit ≲1 count per PS on average.
Consequently, our NN hν provides tight constraints η̃P only for
maps 1 and 3, given by the three percentages on the right-hand
side of each panel for confidence levels α ¼ 50%, 70%, and 95%
(top to bottom). In contrast, the constraints for maps 2 and 4 are
very similar, despite the big difference in the Poissonian GCE
flux fraction ηP, and do not permit excluding a fully Poissonian
GCE for either of the two.

9We also considered training hν simultaneously on histograms
for multiple quantile levels τ, but this led to very similar
constraints on ηP for the Fermi map in our experiments (less
than 2% difference for all confidence levels α as compared to only
using the median prediction).
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(39.4%) at α ¼ 95% (70%) confidence. At the bright end,
hν excludes a > 50% Poissonian component of the GCE at
95% confidence for τ ≥ 0.25, whereas for fainter GCE
SCDs considered plausible by gϖ, the 95% constraint
increases to η̃P ¼ 83% for τ ¼ 0.8. For even higher
quantile levels, the cumulative SCD histograms are fainter
than 99% of the histograms shown to hν during its training.
For this reason we consider the arising constraints unre-
liable, and therefore exclude this region from the plot.
Specifically, we exclude values of τ for which the cumu-
lative histogram for the GCE in the Fermi map exceeds the
99%-quantile value computed over the training maps by
more than 0.1% in at least one bin, which is only the case
for τ ≥ 0.85 in the lowest three bins. The reason that the
training dataset for hν does not contain histograms with
flux in the lowest few bins is that the uncertainties far
below the one-photon line are large, and the median
histograms (τ ¼ 0.5), which is what we used for training
hν, only start increasing at somewhat larger fluxes. For
fluxes F ≳ 10−12 counts cm−2 s−1, the cumulative histo-
gram for the Fermi map falls well within the range of
the training data even for τ ¼ 0.95 (for example, compare
the values of the τ ¼ 0.95 estimate for the Fermi map

in Fig. 8 with the τ ¼ 0.5 estimate for simulated maps with
a purely Poissonian GCE in Fig. 13, which will be
discussed below).
To summarize this section, the GCE identified by our

NN-based framework in the Fermi map in Sec. VI is faint
enough that we cannot conclusively attribute the emission
to either a population of unresolved PSs such as MSPs or
alternatively to Poissonian emission as expected for DM
annihilation. This is in disagreement with earlier NPTF-
based analyses that found the GCE PS population to lie just
below the 3FGL threshold [33], which would have allowed
the method for constraining ηP we introduced in this
section to exclude a large contribution from a Poisson-
dominated GCE at high confidence. Instead, the SCD we
infer allows us to exclude a GCE that comprises of more
than two-thirds Poisson emission (at 95% confidence, for
the median SCD estimate), still implying the excess cannot
be entirely due to DM. We stress that the novel method we
have developed herein, in addition to making use of a state-
of-the-art (albeit imperfect) diffuse model, further passes
the tests that previously called into question the PS
interpretation of NPTF analyses, such as the recovery of
artificially injected GCE flux from the Fermi map and

FIG. 12. Constraints on the Poissonian fraction ηP of the GCE flux in the Fermi map as estimated by the NN hν. The constraints are
shown as a function of the quantile level τ for the SCD estimate from gϖ (columns) and confidence level α for the constraint (rows). The
column for the median SCD histogram (τ ¼ 0.5) is surrounded by a box, and the corresponding constraints are shown in detail in the
panel on the right. For orientation, the SCD estimate associated with each quantile level τ is highlighted in the panel above
the constraints, with the SCDs for the other quantile levels plotted faintly in the background (see Fig. 8 for a more explanatory plot of the
Fermi SCD estimates). For the median SCD estimate, we obtain the constraint η̃P ¼ 65.6% at α ¼ 95% confidence. For quantile levels
τ ≥ 0.85, the histogram estimates lie outside the input space used for training hν, which is why we exclude this region from the plot (see
main text).
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robustness against an unmodeled asymmetry in the GCE.
We will demonstrate both of these points in the next
section.

VIII. ROBUSTNESS OF OUR FINDINGS

Whereas the statistical uncertainties of the flux fractions
in analyses of the inner Galaxy are at the percent level—
both with the NPTF and with our NN-based framework—it
is the systematic uncertainties in the modeling that have
thus far precluded a definitive resolution of the GCE origin.
For instance, the Bayes factor for a PS-like GCE can vary
by as much as 15 orders of magnitude depending on the
diffuse foreground model used for the analysis (see
Ref. [43], Table 1).
In this section, we perform three experiments to assess

the robustness of our findings. First, we compare our SCD
estimate for the GCE in the Fermi map and the resulting
constraint on ηP to the NN predictions for simulated maps
whose GCE is entirely Poissonian, but which otherwise
correspond to our best-fit parameters for the Fermi map.
Then, we carry out a mismodeling experiment where we
apply our NN to simulated maps generated using alternate
templates for the diffuse foregrounds, disk PSs, Fermi
bubbles, and the GCE itself. Lastly, we consider the
recovery of artificially injected GCE flux from the real

Fermi data. The inability of the NPTF to correctly recover
synthetic Poissonian GCE flux in this diagnostic test
reported by Ref. [41] called into question the NPTF-based
evidence for a PS interpretation of the GCE by Ref. [33]
(however, Ref. [42] demonstrated that this issue is resolved
when using the improved diffuse Model O instead of
p6v11). While we showed in Paper I that our NN was
generally able to accurately determine the flux fractions of
different templates, we found that the probability of GCE
PS flux being confused with Poissonian GCE flux
increased as the PSs became fainter, and faint GCE PS
flux injected into the Fermi map was frequently misat-
tributed to the Poissonian template (see Figs. S4 and S30 in
Paper I). Here, we demonstrate that our unified approach
for the GCE (that attempts to disentangle the PS-like from
the Poissonian component only at a later stage of the
analysis) is able to accurately recover both Poissonian and
PS-like GCE flux from the Fermi map.

A. Comparison with simulated best-fit maps

As a first robustness check, we compare our predicted
SCD for the GCE in the Fermi data with simulated best-fit
maps. We generate 1,024 realizations corresponding to
the best-fit flux fractions and median SCDs (for disk and
GCE PSs) predicted by fω and gϖ for the Fermi map.

FIG. 13. Left: predicted median (τ ¼ 0.5) cumulative SCD for the GCE in simulated MC maps and in the real Fermi map (black
crosses). The colored regions show the 68% scatter over 1,024 MC realizations around the median (horizontal lines). The blue bands
correspond to MC maps generated with all parameters set to the best-fit values determined from the Fermi data, in particular with a PS-
like GCE whose SCD is given by the Fermimedian prediction of gϖ shown in Fig. 8. For the maps represented by the orange regions, we
use the same best-fit parameters for all the non-GCE templates, but we replace the PS-like GCE by an entirely Poissonian GCE of the
same total flux. In the Poissonian case, the sample median of the flux fraction located in flux bins at the one-photon line or below is 95%,
but only 44% for a PS-like GCE. Right: constraints on the Poisson flux fraction ηP derived from the median SCDs as a function of the
confidence level α. For the MC maps with a Poissonian GCE, the constraints reach ∼100% at α ¼ 95% confidence, while the sample
median of the 95%-confidence constraint for the Fermimock MC maps with a PS-like GCE is 74.8%. The median CDF estimate for the
real Fermi data is slightly brighter than the sample median of the MC maps, and the resulting constraints are therefore slightly stronger,
but both SCD and constraints fall within the 68% scatter over the MC realizations.
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Additionally, we simulate 1,024 maps with the same best-
fit parameters, but with an entirely Poissonian GCE for
comparison. Throughout this experiment, we only consider
the median estimates for the SCD, i.e., τ ¼ 0.5. The left
panel in Fig. 13 shows that for a 100% Poissonian GCE in
simulated maps, the median cumulative SCD reaches
values close to one near the one-photon line. In contrast,
for the simulated maps with a PS-like GCE that follows the
median SCD for the real data, the median SCD over the
realizations locates roughly half the GCE in flux bins to
the right of the one-photon line. The median SCD in the
real Fermi data mostly lies somewhat below the sample
median of the simulated best-fit maps, but falls within the
68% scatter. The constraints on the Poisson flux fraction ηP
provided by hν are plotted in the right panel, as a function
of the confidence level α. As the median SCD for the real
Fermi data is slightly brighter than the sample median of
the simulated maps, the resulting constraints are slightly
sharper, but well within the scatter over the simulated maps.
For 97.4% of the simulated maps with a Poissonian GCE,
the 95%-confidence constraint on ηP exceeds 95%, in
comparison to the constraint η̃P ¼ 65.6% for the real Fermi
map, corroborating the preference for a PS-like GCE
component over a purely Poissonian GCE.

B. Mismodeling experiments for simulated maps

Since discrepancies between the templates and the true
morphology of the γ-ray sources could bias the flux
fractions and SCDs, or even lead to a spurious preference
for a Poissonian or PS-like GCE in analyses of the Fermi
photon-count map, we study the sensitivity of our NN
predictions to different sources of mismodeling in this
section. We generate 256 Fermi best-fit maps that corre-
spond to the median flux fractions and SCDs estimated by
fω and gϖ, respectively, using the same templates as for the
NN training (just as in the experiment in Sec. VIII A).
These maps set the baseline for this example. The predicted
flux fractions and SCDs [relative FdN=dðlog10 FÞ density]
are shown in the top row of Fig. 14, together with the
correct labels (dashed lines). The cumulative SCDs, which
is what the NN gϖ is trained to optimize, as well as the
resulting constraints on ηP obtained from hν are provided in
Figs. 18 and 19 in Appendix C, respectively. In this case,
where the templates perfectly match the data, the flux
fractions are accurately recovered, and the estimated
median SCDs are similar to the true histograms.
Now, we consider different mismodeling scenarios by

applying our NNs to maps in which a particular flux
component was generated using a different template to that
on which it was trained. We use 256 realizations for each
scenario and take the same Fermi best-fit flux fractions and
SCDs as in the case without mismodeling. Thus, the results
of this experiment display the bias arising from altering the
“truth” (here represented by simulated Fermi best-fit maps)
while keeping our modeling fixed. The advantage of

varying the truth rather than the templates used for the
modeling is that it does not require retraining the NN for
each scenario, which would be computationally expensive.
We consider the following cases, with the results shown

in Fig. 14:
(1) Default: This represents the baseline case without

any mismodeling. If our templates are a good model
of the γ-ray sky in our ROI, the NN predictions
should be close to the true values for the Fermi map.
However, note that even if our templates were a very
poor description of the reality, the NN estimates for
the simulated maps considered here should be
similar to those for the real Fermi map, simply
because the simulated maps use the templates that
the NNs were trained on, and the Fermi best-fit
parameters are the correct label. This is indeed the
case: fω correctly identifies the underlying flux
fractions, and the median SCDs predicted by gϖ

are similar to the truth. So, regardless of how well
our templates describe the real Fermi data, the
simulated best-fit maps and the Fermi map cause
our NNs to produce (approximately) the same
output.

(2) Thick disk: For this case, we replace the thin disk
template (scale height zs ¼ 0.3 kpc) by a thick disk
template (zs ¼ 1.0 kpc). As a result, both the GCE
and disk SCDs shift to slightly higher fluxes, while
some of the disk PS flux is absorbed by the
remaining templates, mostly the diffuse IC. Thus,
if the thick disk were a better model for the real sky,
but we use the thin disk template for the NN training,
our NNs would be expected to underestimate the
disk PS flux and to somewhat overestimate the PS
brightness.

(3) Bubbles�: We use an alternate template for the Fermi
bubbles (where the star indicates the template is
modified), which touches the Galactic plane in the
southern hemisphere (see the template delineated by
the green lines in Fig. S1 of Paper I). The GCE
template partially absorbs the unmodeled flux from
the Fermi bubbles, and the GCE SCD accordingly
becomes slightly fainter.

(4) Model A: Now, we turn to diffuse mismodeling.
First, we replace the two template components of
Model O (pion decay þ bremsstrahlung and IC) by
their counterparts in Model A. Among the models
we consider, Model A seems to be most similar to
Model O in that the effect on the SCDs is quite
modest. The flux fractions of the diffuse π0 þ BS
template and the GCE are overestimated, whereas
the diffuse IC flux is underestimated.

(5) Model F: When replacing Model O by Model F, the
NN fω misinterprets a fraction of the diffuse flux to
be disk and GCE flux. This also causes gϖ to predict
fainter SCDs than the truth. Note that since we
predict (and plot) the relative SCDs, the probability
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FIG. 14. Robustness of the NNs fω and gϖ against mismodeling. The upper row shows the NN predictions (flux fractions and SCDs)
for simulated Fermi best-fit maps (median over 256 realizations) generated using the same templates as for the NN training. For the
SCDs, we compute the median over the realizations for each quantile level τ of the cumulative histogram and plot the associated density
histograms, where the colors again stand for quantile levels τ ¼ 0.05–0.95 (from red to blue). Each of the subsequent rows corresponds
to a different mismodeling scenario, where one (or two in the case of diffuse mismodeling) template is replaced by an alternate template
that describes the same physical process, as detailed in the text. Dashed lines mark the true flux fractions and SCDs. Whereas the NN
predictions appear quite robust to varying the shape of the GCE, the Fermi bubbles, and the disk, large deviations between the true and
modeled diffuse model may lead to biases in the flux fractions and the SCDs (see the columns for p6v11 and, to a somewhat lesser
extent, Model F).
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mass under the histograms now corresponds to a
larger total flux of the PS-like templates (1.3× for
the GCE and 2.2× for the disk). Since the NN
mistakes a fraction of the diffuse flux for faint PSs,
the SCDs start at a lower flux, well below the one-
photon line for the GCE template. The SCD cutoffs
at the upper flux end are similar to the correct values,
but the reduced density reflects the smaller relative
amount of bright PSs preferred by the NN due to the
overestimated total PS flux.

(6) p6v11: The template p6v11 provides a joint model
for the diffuse flux from pion decay, bremsstrahlung,
and IC scattering. Since it is the last official Fermi
model that does not include the Fermi bubbles and
other large-scale structures such as Loop 1, it is a
popular choice for analyses of the inner Galaxy in
which the Fermi bubbles are modeled individually.
However, it has been pointed out in previous studies
that the hard IC component of p6v11 may cause
oversubtraction in the data [4,15,42]. When we
applied a NN trained using Model O to simulated
maps with diffuse flux described by p6v11 in Paper
I, the flux ratio between the pions þ bremsstrahlung
and IC components was estimated to be ∼1.4 (see
Fig. S7 in Paper I). However, both our NN and
NPTFit favor a ratio close to 2 (see Fig. 13) and
hence a much smaller relative contribution of diffuse
IC flux for the Fermi map in our ROI, indicating a
strong mismatch between p6v11 and the preferred
diffuse flux composition. Evaluating fω and gϖ on
simulated maps with p6v11 flux (taken to be the
sum of the best-fit Fermi values for pion decay þ
bremsstrahlung and IC as determined by our NN
trained on Model O) therefore causes the NN
predictions to strongly deviate from the truth: the
total diffuse flux is underestimated by 14%, and the
faint disk PS flux is substantially overestimated.
The bias that arises for the GCE SCD is very similar
to the case of Model F, and the mismatch with
respect to the truth is exacerbated for the disk SCD,
owing to the large fraction of diffuse flux that is
misattributed to disk PSs.

(7) γNFW ¼ 1.0: Here, we consider the robustness of
our NN predictions against variations in the GCE
morphology. We evaluate our NNs on maps with a
GCE that follows an NFW-squared radial profile
with γ ¼ 1.0 instead of γ ¼ 1.2. A small fraction of
the GCE flux is absorbed by the other templates,
which is unsurprising in view of γ ¼ 1.0 modeling a
less cuspy halo. The effect on the SCDs seems to
be minor.

(8) Asym. GCE: Another test for the sensitivity with
respect to the GCE morphology is to evaluate our
NNs on maps with an asymmetric GCE template.
This experiment is inspired by the findings of
Refs. [43,44] that identified a preference for a

smooth asymmetric GCE in the Fermi map with
NPTFit in a ROI of radius 10° when allowing the
templates to float separately in the northern and
southern hemisphere. We generate mock maps with
an asymmetric GCE template defined as Tasym ¼
2Tnorth þ Tsouth (where Tnorth is the restriction of our
default GCE template to the northern hemisphere,
set to zero in the southern hemisphere, and con-
versely for Tsouth), yielding a north-to-south flux
ratio of 2 for the GCE as found by the authors of
Ref. [43] (using the diffuse model p6v11; see their
Fig. 1), while we leave the total GCE flux un-
changed. Interestingly, the prediction for the GCE
flux fraction is barely affected and the SCD for the
GCE moves only very slightly to the right. Instead,
the diffuse template modeling pion decay and
bremsstrahlung, which is brighter in the northern
hemisphere, absorbs some flux to account for the
asymmetry. Also, the NN detects less faint disk PS
emission, causing the disk flux fraction to decrease
and the disk SCD to move to slightly brighter fluxes.

In summary, the NN predictions are quite robust against
modest deviations in the shape of the disk, the Fermi
bubbles, and the GCE, whereas strong diffuse mismodeling
biases the estimated flux fractions and SCDs. With regard
to the diffuse model, let us mention that the predicted SCD
for the GCE shifts toward fainter fluxes when evaluating
our Model O-trained NNs on maps with diffuse flux
described by Model A, Model F, or p6v11. Thus, if the
diffuse flux in the Fermi map deviated from Model O
toward any of the alternate diffuse models considered in
this work, our NN prediction would be expected to
overestimate the GCE flux at the faint end of the SCD,
implying that in reality the flux fraction of the GCE would
be somewhat smaller and the SCD brighter than our
predictions, further increasing the tension with a 100%
DM explanation. The preference for a larger GCE flux
when using Model O as compared to p6v11 has already
been pointed out in Fig. 3 of Ref. [42] and in Paper I (see
Table S1). Our findings in Fig. 14 also highlight that biases
arising from mismodeling in inner Galaxy analyses depend
on a complex interplay between the different flux compo-
nents: for example, diffuse mismodeling does in fact not
always lead to a spurious preference for PSs, but can also
produce an overly faint SCD estimate, caused by the
misattribution of diffuse flux to the GCE template. This
can be contrasted with studies using NPTFit that have
found diffuse mismodeling generates an artificial prefer-
ence for brighter PSs, in particular see Fig. 6 of Ref. [49].
The discussion in Sec. III about the different ways the two
methods behave in the presence of mismodeling (shown for
a simpler form of mismodeling in Fig. 2) suggests that this
conceptual difference could also explain the different
behavior observed for more complex mismodeling in a
realistic setting such as considered here. Our CNN, which
performs a macroscale assessment of the maps, appears to
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perceive the (Poissonian) diffuse flux misattributed to the
GCE and disk as being fairly smooth in nature despite the
mismodeling, causing the SCDs to rise at the low flux end.
On the other hand, the NPTF as a microscale method is
unaware of the spatial structure of the mismodeling and
interprets the increased variance as an indication for PS-like
emission. The difference between the SCDs inferred by
NPTF and our NN approach could be a useful diagnostic
for the presence of mismodeling. This point merits further
exploration, although we do not pursue that here.

C. Recovering artificially injected GCE flux
from the Fermi map

First considered in Ref. [41], the recovery of synthetic
GCE flux injected into the Fermi map is a powerful test for
confirming that the results for the GCE are physical, rather
than a spurious artifact resulting from oversubtraction of a
GCE component or cross talk between the GCE and non-
GCE templates. In their analysis with the diffuse model
p6v11, the authors of that work reported that even when
injecting a Poissonian GCE above the Fermi GCE level,
NPTF incorrectly attributed the synthetic Poissonian GCE
flux to the GCE PS template. Also, they demonstrated that
the NPTF preferred an (unphysical) negative normalization
for the Poissonian GCE template when allowed by the
priors. More recently, Ref. [42] showed that replacing
p6v11 by Model O, or alternatively applying a spherical-
harmonic marginalization procedure, leads to correctly
recovered flux fractions with the NPTF.
In Paper I (Sec. S10, see in particular Fig. S30), we

considered the injection of both Poissonian and PS-like
GCE flux into the Fermi map, for different template
choices. While we found Poissonian GCE flux to be
recovered by our NN roughly as expected, (moderately)
dim synthetic PS emission was frequently misattributed to
the Poissonian template. In this section, we demonstrate
that our novel unified approach for the Poissonian and PS
GCE components enables the accurate recovery of injected
GCE flux from the Fermi map, be it Poissonian or PS-like.
Importantly, the NN fω now only needs to identify injected
GCE flux as such, without distinguishing between Poisson/
PS flux, and the NN gϖ assesses the brightness of the
injected GCE flux while still not making a statement as to
whether the injected flux is genuinely Poissonian or PS-like
(rather, we address this question separately as explained
in Sec. VII). We consider the injection of Poissonian
GCE emission, as well as GCE PSs described by a
Dirac delta dN=dF at fluxes F ¼ 0.11, 0.35, 1.1, 3.5,
and 11 × 10−11 counts cm−2 s−1, corresponding to 0.10,
0.32, 1.0, 3.2, and 10 expected counts per PS. Thus, the
injected PSs span a flux range from far below the one-
photon line to the brightest GCE PSs identified by our NN
in the Fermi map.
Figure 15 shows the injected vs estimated GCE flux

fraction (postinjection) for these six cases. The NN fω

accurately recovers the synthetic GCE flux in each case.
For total GCE flux fractions (originalþ injected) close to
or above the maximum GCE flux fraction contained in the
training maps (as determined by our priors on the template
normalizations and SCD parameters), the GCE flux frac-
tions are slightly underestimated. Note that since the GCE
counts in the training maps are composed of two GCE
template maps, there are few training maps with very small
(large) GCE flux fractions ∼0% (∼15%), as both GCE
template maps need to have a very small (large) flux for this
to occur (see also Fig. 6 for a typical sample of flux
fractions for each template). However, this is not a flaw in
our methodology, but rather the result of our narrow priors
around the expected Fermi values used for the generation of
the training maps, which does not permit the analysis of
maps whose composition deviates considerably from the
real Fermi data without retraining our NNs.
In Appendix D, we show how the SCD predictions

are affected by the injected GCE flux, depending on its
Poissonian/PS-like nature. Also, we discuss how the

FIG. 15. Injected vs estimated GCE flux fractions (postinjec-
tion) when artificially injecting GCE flux into the real Fermi data.
The first data point at 0% injected flux corresponds to the GCE
identified by our NN fω in the original Fermi map. We inject PS
flux described by a Dirac delta dN=dF located at five different
fluxes (see the associated “counts per PS” in the legend), as well
as Poissonian emission. The error bars show the 68% scatter
around the median over 64 MC realizations in each case. The
dashed diagonal line indicates the expected estimates given by the
sum of the original GCE flux fraction and the artificially injected
flux. For clarity, the six different cases are slightly offset
horizontally around each injected flux fraction such that correct
estimates lie on the horizontal lines. As long as the total
(original þ injected) GCE flux remains well within our prior
limits, fω accurately recovers the injected GCE flux irrespective
of its nature (Poissonian/faint PSs/moderately bright PSs).
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constraints on the Poisson flux fraction ηP derived by hν

from the SCDs vary as a function of the injected GCE flux
in each case. In short, we find that injected flux from
sources brighter (fainter) than the peak of our median
SCD at F ¼ ð3 − 4Þ × 10−11 counts cm−2 s−1 shifts the
SCD predictions to higher (lower) fluxes. In particular,
we identify F ∼ 3.5 × 10−11 counts cm−2 s−1 as the “char-
acteristic” brightness of the GCE in the Fermi map as
judged by our NNs, which leaves the constraints on ηP
approximately unaffected.

IX. CONCLUSIONS

In this paper, we have presented a two-step framework
for a NN-based analysis of the γ-ray photon counts from the
inner Galaxy. In the first step, we utilize a trained NN fω as
a template fitting tool, which yields the flux fraction of each
spatial template and the associated uncertainty. Then, we
introduced a second NN gϖ to predict the SCDs of the
(potentially) PS-like templates by means of the Earth
mover’s pinball loss that expresses the distribution over
possible histograms in terms of quantiles. At this second
stage, we harness the estimated flux fractions from fω to
compute a residual map, which is fed to gϖ as an additional
input channel. After validating our framework for a single
isotropically distributed PS population and for Fermi mock
maps, we presented our findings for the real Fermi map.
Our NN identifies a GCE in the data, which accounts for
ð7.9� 0.5Þ% of the flux in our ROI. As to the SCD, we find
a faint GCE that would require Oð104Þ PSs to explain the
entire GCE flux (and at least Oð103Þ PSs to explain the
brightest half of it), given that our NN gϖ assigns almost all
of the flux to PSs that emit < 10 counts each. Our median
estimate of in total 29,300 GCE PSs is broadly consistent
with population studies of MSPs in the Galactic Center, for
instance the 17,900–82,200 predicted at 95% confidence
by Ref. [92]. Nonetheless, our results do stand in contrast
with the earlier analyses (e.g., Ref. [33] which used NPTF)
that suggested many of the GCE PSs lie just below the
Fermi detection threshold, which would require only
several hundred PSs to explain the GCE within a radius
of 10° around the Galactic Center (the region where the
presence of an excess has been firmly established, e.g.,
Ref. [5]). Uncertainties in the diffuse model play a key role
here: using Model O rather than p6v11 as in Ref. [33], we
find a population of sources fainter than ten expected
counts per PS with NPTFit as well, albeit described by a
much narrower SCD that locates nearly no flux below the
one-photon line (see Appendix B). Whilst NPTF analyses
may underestimate the power at the faint end of the SCD,
especially in the presence of an instrument PSF and diffuse
foregrounds (Sec. III of [49]), and steeply peaked SCDs
have been found to also occur as artifacts of mismodeling
(Sec. VII B of [44]), we note that the wider SCD that our
NN gϖ prefers for the GCE is subject to systematic modeling
uncertainties as well (see Sec. VIII B). Also, for faint PS flux

that follows a narrow dN=dF, the uncertainty regions in the
SCD predicted by gϖ may extend to neighboring bins,
possibly overestimating the width of the SCD (see also
Appendix D).
Finally, we have introduced a NN-based approach for

constraining the Poissonian GCE component based on the
estimated SCD histogram. We have shown that for an
isotropic PS population in the absence of a PSF, our NN
estimator hν yields tight constraints on the Poissonian flux
fraction ηP. For example, for a population with only 0.6
expected counts per PS, our approach allows distinguishing
∼80% of the flux from Poissonian emission at 95% con-
fidence, in comparison to ∼91% of the flux using the
analytic likelihood, which can be exactly computed in this
simple case without a PSF. When applying our approach to
the real Fermi map, the preference of gϖ for a faint SCD
prevents the NN hν from excluding a Poisson-dominated
GCE at high confidence; still, for the median SCD, we
obtain the constraint η̃P ¼ 66% at 95% confidence, sug-
gesting that anOð1Þ fraction of the GCE is due to pointlike
structure, which may be astrophysical sources.
As pointed out in much of the recent work on the

GCE (e.g., Refs. [41–44,49]), the results of any GCE
analysis must be interpreted with caution due to potential
biases caused by mismodeling. Although modeling
uncertainties—most importantly of the Galactic
foregrounds—and, as shown in this work, the inherent
degeneracy between faint PSs and Poisson emission,
currently do not permit us to give a definitive answer as
to whether flux from DM annihilation is present in the
Fermi map, we have demonstrated that our approach is
robust against various sources of mismodeling such as a
north-south asymmetry of the GCE, and is able to accu-
rately recover artificial Poissonian and PS-like GCE flux
from the Fermi map. Let us highlight again that while
mismodeling may erroneously “flip the switch” between
DM and PSs in existing approaches that include a separate
model for the two components, our unified approach
entirely abandons the concept of such a switch in view
of the Poissonian vs faint PS degeneracy and instead
naturally includes Poissonian emission at the low flux
end of the SCD where the discriminatory power of our NN
is exhausted, implying that increasing mismodeling causes
an incremental shift of the prediction rather than a sudden
change in the DM vs PS preference. Whilst the recently
developed Model O, which we have used herein, provides a
much better fit to the Fermi data than diffuse models used
in earlier analyses such as p6v11, it does not describe the
data at the level of Poisson noise at energies≲4 GeV either
(Ref. [42], Fig. 17). Thus, further progress with regard to
the diffuse template has the potential to considerably
reduce systematic uncertainties. Moreover, next generation
radio telescopes (first and foremost the Square Kilometre
Array) are expected to detect many currently unresolved
MSPs belonging to the putative population in the Galactic
bulge [97,98]. Another interesting approach at radio
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frequencies is the search for synchrotron radiation arising
from DM annihilation, which can provide stringent con-
straints on WIMP mass and annihilation cross section, as
recently derived in Ref. [99]. At the same time, the
development and improvement of analysis methods for
γ-ray maps continue: as elaborated in Sec. III, different
methods exhibit different behavior in the presence of
mismodeling. As such, a more complete and robust picture
of the γ-ray emission from the inner Galaxy can be obtained
by bundling multiple approaches, with discrepancies
between the results providing valuable clues to possible
shortcomings in the modeling.
With this work, we build on our deep learning-based

framework in Paper I, further showing (1) that NNs are able
to recover the SCD of PS populations from photon-count
maps and (2) how the SCD estimates can be exploited to
constrain the Poissonian flux fraction ηP using a separate
NN. Regarding extensions of our work, one potential
avenue is to incorporate information about the energy of
the photon counts into our framework. Furthermore, equip-
ping the templates with additional degrees of freedom
enables a more flexible modeling and, in turn, more robust
results. In this spirit, Ref. [46] showed that machine
learning techniques such as Gaussian processes and nor-
malizing flows yield promising results. Whilst we do not
model any DM substructure in this work in line with
previous NPTF-based analyses, it would be interesting to
study the effect of DM subhalos, which can cause devia-
tions of DM annihilation from Poisson emission, making
the signal appear more PS-like (see e.g., Refs. [100,101]).
Finally, deep learning-based analyses have a great potential
for shedding light on other regions of the sky, e.g., the γ-ray
excess recently identified in M31 [102], for which
DM annihilation has also been proposed as a possible
explanation [103].

X. APPENDICES

The following sections contain further details and cross-
checks of our results. First, we carry out the exercise of
applying both a CNN and NPTFit to a map with a strong
unmodeled large-scale asymmetry and to a pixel-shuffled
version thereof, as qualitatively discussed in Sec. III. Next,
we compare the results of our NN-based framework for the
Fermi map with those of NPTFit when making the same
modeling choices (apart from the SCD parametrization).
Also, we show the cumulative SCDs for the mismodeling
experiment in Sec. VIII B, as well as the constraints on ηP
arising from those estimates. For the recovery of GCE flux
artificially injected into the Fermi map (see Sec. VIII C),
we present and discuss the results of gϖ and hν, which
predict the SCDs and constraints on the Poisson flux
fraction ηP, respectively. Then, we provide the analytic
likelihood in the case of a homogeneous isotropic PS
population considered in Sec. VII C, and we compare the
simple estimator for the Poisson flux fraction presented in

Sec. VII A with the NN estimator hν (see Sec. VII B).
Finally, we list our priors for the generation of training data
and tabulate our NN architectures.
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APPENDIX A: UNMODELED NORTH-SOUTH
ASYMMETRY: AN EXAMPLE

In this Appendix, we apply both our NN and NPTFit,
the latter of which relies on the product likelihood over the
pixels, to a Poissonian map x1 with an unmodeled north-
south asymmetry as discussed in the motivational example
in Sec. III, and compare the NN prediction for map x1 to
that for a randomly shuffled version x2. We take the
exposure to be constant and do not include a PSF in this
example. Figure 16 shows the two maps x1 and x2, where
x2 ¼ σðx1Þ with a random permutation σ. For illustration
purposes, we consider a strong north-south asymmetry in
the map x1, which is taken as a circular region of radius 25°
with an expected number of counts of 10 and 1 in the
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northern and southern hemisphere, respectively. We also
plot the signal-to-noise ratio (SNR) after projecting the
maps to Cartesian images and convolving them with a
Mexican hat (or Ricker) wavelet kernel K with scale
σ ¼ 1°, depicted in the upper right corner. Note that since
we consider a small number of counts in this motivational
example, the assumption of Gaussianity for the counts is
clearly not justified, for which reason the SNR should not
be interpreted as the significance for a source at a given
location here. Rather, the purpose of the wavelet plot is to
provide an intuition for the different outcomes expected for
x1 and x2 with the wavelet method. We restrict ourselves to
the central region so as to avoid boundary effects.
For this illustrative example, we choose a resolution of

nside ¼ 128 and simply train our NN to predict a maximum
likelihood estimate for the flux fraction of the Poissonian
and PS-like components using an l2 loss function. During
the NN training, maps with PS and Poissonian counts
corresponding to a uniform spatial template are shown to
the NN, implying that the asymmetry is unmodeled when
evaluating the trained NN on map x1. For NPTFit, we
assume an isotropic template for the entire map and fit five
free parameters, namely one Poissonian template normali-
zation AP and four parameters describing the broken power-
law SCD of the PS-like component (template normalization

ANP, negative power-law slopes n1 and n2, and the location
of the break Sb).
The right-hand side of Fig. 16 shows the resulting

posterior flux fractions predicted by NPTFit and the
NN estimates for maps x1 and x2. For NPTFit, the
posteriors coincide as anticipated, assigning > 80% of
the flux to PS-like emission. On the other hand, the NN
draws different conclusions for the two maps: for the
Poissonian map x1 with a jump across the equator, the
NN prefers a mixture between Poissonian (∼60%) and
PS-like (∼40%) emission. In contrast, the highly granular
map x2 causes the NN to assign almost the entire flux to
PS-like emission. This simple example illustrates the
importance of combining different methods when drawing
conclusions about the GCE in the Fermi data: each method
exhibits a different behavior when mismodeling is at play,
as is clearly the case in every GCE analysis to a certain
extent, given that models never perfectly describe the
reality. We emphasize that we do not attempt to address
the intricacies related to the Poisson vs faint PS degeneracy
discussed in the main body or potential biases arising from
the default prior parametrization with NPTFit (see the
discussion in Ref. [36]) in this experiment, and the results
of both methods can be expected to vary depending on the
priors and the exact extent of the asymmetry. The key

FIG. 16. A realization of the large-scale mismodeling scenario with an unmodeled north-south asymmetry discussed in Fig. 2. The
counts in x1 are drawn from a Poissonian distribution in each pixel with mean 10 (1) in the northern (southern) hemisphere. The map x2

is a random permutation of the pixels in map x1. When modeling the map using a spatially constant template, these two maps are
indistinguishable for methods that rely on a product likelihood such as NPTF. Therefore, the resulting posteriors for the Poissonian (P)
and PS-like flux are identical and attribute the bulk of the flux to PS emission owing to the large pixel-to-pixel variance that arises from
the mismodeling. In contrast, the NN finds ∼60% Poissonian/40% PS flux in x1, and close to 100% PS flux in x2. We also plot the
signal-to-noise ratio (SNR) map resulting from convolving the maps with a Mexican hat wavelet kernel K [see Eq. (2) in [38]], which is
dominated by the jump across the equator in map x1, but otherwise contains higher peaks and deeper troughs for map x2.
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takeaway from this experiment, however, is simply that
CNNs respond differently to mismodeling than methods
relying on a per-pixel likelihood such as the NPTF.

APPENDIX B: COMPARISON WITH NPTFit

We present a brief comparison of our NN results for the
Fermimap to those of NPTFit. To ensure comparability of
the results, we use the same ROI for NPTFit (a 25° radius
circle around the Galactic Center, with jbj ≤ 2° and 3FGL
sources masked). Also, we use the same templates as for the
NN in particular, we do not include a Poissonian GCE
template for the fit such that one would expect a Poissonian
GCE in the data to be absorbed by the PS-like GCE
template with a very dim SCD function dN=dF. We use a
resolution parameter of nside ¼ 128 for NPTFit (instead of
nside ¼ 256 for the NN), to ensure a pixel size larger than
the standard deviation of the appropriate Fermi instrument
PSF (see e.g., Ref. [36]). We parametrize dN=dF as a
singly broken power law for the disk and the GCE
templates, giving rise to four free parameters for each
PS-like template (template normalization A, break in terms
of counts Sb, negative power-law coefficients n1 and n2; see
e.g., Ref. [34] for details). The only free parameter of
the Poissonianmodels is their template normalizationA. The
prior ranges used for our fit are tabulated in Table I. The
templates are normalized to sum up to unity within a ROI
radius of 30° around the Galactic Center, which anchors the
template normalizations A.
Figure 17 compares the results between our NN and

NPTFit for the posterior flux fractions as well as for the
relative FdN=dðlog10 FÞ SCDs. NPTFit computes the
posteriors of the model parameters listed in Table I using
the nested sampler MultiNest [119,120], which can then
be converted to posteriors for the flux fractions and the
SCDs. Both the location and the width of the flux fraction
posteriors predicted by the NN and NPTFit are very
similar. The biggest discrepancy occurs for the disk PS and
diffuse IC templates. Both of these templates are bright
close to the Galactic plane, for which reason some cross

TABLE I. Prior ranges used for NPTFit (uniform distribution
for all the parameters).

Template Parameter Prior range

Diffuse π0 þ BS log10 A [0, 2]
Diffuse IC log10 A [0, 2]
Isotropic log10 A ½−3; 2�
Fermi bubbles log10 A ½−3; 2�
GCE log10 A ½−6; 1�
Disk log10 A ½−6; 2�
GCE and disk n1 [2.05, 30]

n2 ½−5; 1.95�
Sb [0.05, 60]

FIG. 17. Comparison of our NN results with NPTFit, for the
same ROI. Since a Poissonian GCE is described as the limit of
ultrafaint PSs in our NN framework (rather than modeling it as a
separate component), we do not include a GCE DM template for
NPTFit either for the sake of consistency. For NPTFit, we
show the median estimates for the SCDs. For most of the
templates, the flux fraction posteriors of the NN and NPTFit
are in excellent agreement. The NN prefers slightly less disk PS
flux and more diffuse IC emission, which is likely a consequence
of the spatial degeneracy between these two templates close to the
Galactic plane that can be expected to hamper the distinction
between faint disk PSs and diffuse IC flux. This could also
explain why the NPTFit estimate for the disk SCD is somewhat
fainter than its NN counterpart. However, also for these two
templates, the uncertainties for the flux fractions produced by the
two methods are consistent. The most striking difference is the
GCE SCD: NPTFit places almost no flux below the one-photon
line and favors a narrower distribution than the NN.
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talk between faint disk PSs and the diffuse IC template can
be expected (see also Sec. VI D). Still, the difference in the
medians only amounts to 1.4% and 0.9% for disk PSs and
diffuse IC, respectively, and the estimated uncertainty
regions are consistent. The SCD predicted by NPTFit
for the disk PSs is somewhat fainter than the NN estimate;
however, the differences are modest (particularly when
judged by the cumulative distribution, which is the funda-
mental object on which the NN is trained). For the GCE, we
obtain a different picture: both methods roughly agree
about the brightest GCE PSs having 5–10 expected counts,
but NPTFit favors a much steeper distribution that places
almost all the GCE flux above the one-photon line. In this
context, we remark that Ref. [49] found in their analysis
that median SCDs recovered by NPTFit might be biased
toward higher fluxes at the very faint flux end (albeit still
within the 95% region), which is exacerbated when the PS
flux is concealed by diffuse emission and by the presence of
a PSF (see Fig. 2 in said reference), as is of course the case
for the real Fermi map. Also, Ref. [44] demonstrated that
steep SCDs can arise in NPTFit analyses as artifacts from
mismodeling, using a north-south asymmetry of the GCE as
an example. However, with regard to the interpretation of our
results reported herein,wenote that template deficiencies can
be expected to bias the recovered SCD to either direction also
with our NN approach, as shown in Sec. VIII B.
Repeating the NPTFit analysis with an additional

Poissonian GCE DM template does not appreciably
change the GCE SCD: since the NPTFit prefers a PS-like
GCE for our choice of priors and ROI, the GCE flux is
almost entirely absorbed by the GCE PS template. In fact
the Bayes factor in favor of adding the PS component to a
purely DM model is ≈8 × 103, although note that this
preference can be impacted by the choice of priors [36].
With both a PS and a DM template for the GCE, we obtain a
flux break of Fb ¼ 4.8 × 10−11 counts cm−2 s−1 as com-
pared to Fb ¼ 5.0 × 10−11 counts cm−2 s−1 when omitting
the GCE DM template. Also with a GCE DM tem-
plate, NPTFit identifies a much brighter GCE PS popu-
lation when replacing Model O by p6v11, yielding a
value of Fb ¼ 1.4 × 10−10 counts cm−2 s−1, similar to the
flux break without a GCE DM template Fb ¼ 1.5 ×
10−10 counts cm−2 s−1 (see Sec. VI E).

APPENDIX C: CUMULATIVE HISTOGRAMS
AND CONSTRAINTS ON ηP FOR THE

MISMODELING EXPERIMENT

In this Appendix, we provide the cumulative SCD
histograms for the seven mismodeling scenarios (in addi-
tion to the case without mismodeling) shown in Fig. 14, as
well as the resulting constraints for ηP. Figure 18 depicts
the median over 256 MC realizations for each scenario, for
the GCE and the disk. The colored regions show 5%–95%
quantiles in steps of 5%. For all considered discrepancies
between the modeled and true morphology of the disk, the

Fermi bubbles, and the GCE that we consider, the uncer-
tainty regions for the SCD remain consistent with the true
SCD, while diffuse mismodeling causes stronger biases
(see the main body for a detailed discussion). This is also
reflected in the constraints for the Poisson flux fraction ηP,
which are shown as a function of the confidence level α in
Fig. 19. When the diffuse emission in the maps is generated
with Model F or p6v11, the 95% confidence constraint
obtained from our Model O-trained analysis pipeline
increases to nearly 100%. In turn, this implies that if the
true diffuse emission in the sky departed from Model O in

FIG. 18. Same as the right two columns in Fig. 14, but for the
cumulative histograms.
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the direction of either of these two models, the GCE in the
Fermi data should be expected to be more PS-like than
what is shown in Fig. 12. As already mentioned in the main
body, this is because in this case a fraction of the diffuse
flux would be misidentified as dim GCE flux, artificially
shifting the SCD to lower fluxes and thus leading to weaker
constraints on ηP. For the other mismodeling cases con-
sidered herein, the 95% confidence constraints move up or
down by roughly 10%, not affecting the conclusion that the
existence of a PS-like GCE component is preferred. To
further increase the robustness of the constraints, a degree
of mismodeling could be incorporated into the NN training,
or flexible background models could be constructed (see
e.g., [46]), which we will consider in future work.

APPENDIX D: SCDs AND CONSTRAINTS ON ηP
FOR THE INJECTION EXPERIMENT

In Sec. VIII C, we showed that our NN fω accurately
recovers artificially injected GCE flux from the Fermi data,
regardless of whether it is Poissonian or PS-like. In this
Appendix, we present the SCD estimates of the NN gϖ and
the resulting constraints on the Poisson flux fraction ηP for
the Fermi data with injected GCE flux provided by the
NN hν.
Figure 20 shows the predicted SCD for the GCE as a

function of the injected GCE flux fraction and the origin of
the GCE emission (Poissonian and five different homo-
geneous PS populations). For injected flux of dim PSs each
responsible for S̄ ≤ 1 expected count, the SCD estimates

move to fainter fluxes as more flux is injected. For S̄ ¼ 3.2
expected counts per PS, which is approximately the peak
of the median SCD for the original Fermi map without
injection, the predictions are largely unaffected by the
injection, and for S̄ ¼ 10, the SCD moves to higher fluxes,
with a peak gradually forming in the corresponding bin.
The estimates for the faintest considered PSs are virtually
indistinguishable from the Poissonian case, consistent with
our unified approach in which Poisson flux is treated as the
ultrafaint limit of PS emission. Recall that there is no
“correct” bin for Poissonian flux (and genuinely Poissonian
GCE flux was not included in the training data for gϖ)—
instead, the predictions for maps with a Poissonian GCE
characterize the PS flux below which gϖ is unable to tell
which of two PS populations is brighter. Whereas the
injection of the brightest considered PSs with S̄ ¼ 10
expected counts per PS (which is still ≳3 times fainter
than the 3FGL threshold) leads to a localized increase of the
SCD in the associated bin, injecting fainter flux does not
give rise to narrower SCDs despite the injecting flux
following a Dirac delta dN=dF. In view of the fact that
a fraction of faint PS flux is indistinguishable from Poisson
flux to the NN, we suspect that the argument of faint flux
affecting several bins partially applies already to faint PS
emission. Furthermore, since this experiment uses the real
Fermimap, rather than simulated MCmaps, some interplay
with non-GCE templates such as the diffuse foregrounds
might also be present. We leave a detailed investigation of
this phenomenon for future work.
In Fig. 21, we plot the constraints on the Poisson flux

fraction of the GCE ηP at confidence level 95% for each
case, as a function of the injected GCE flux. Qualitatively,
the constraints are in line with what one expects based on
the SCD estimates in Fig. 20: for S̄ ¼ 3.2, the median
SCD remains largely unchanged, and, accordingly, so
does the constraint on ηP, while the constraints become
stronger (weaker) when brighter (fainter) flux is injected.
For S̄ ¼ 0.10, the constraints are nearly the same as in the
Poissonian case. As the injected GCE flux increases, the
constraints become somewhat weaker than what one would
obtain from extrapolating the 95%-confidence constraint
for the original Fermi map (η̃P ¼ 65.6%). For example,
adding synthetic Poissonian GCE flux that accounts for 6%
of the total flux in the map (postinjection) to 65.6% of the
GCE flux in the original Fermi map yields a GCE that is
81% Poissonian, while the 95%-confidence constraint of hν

is η̃P ¼ 91%. However, note that the constraining power of
hν varies depending on the true Poisson flux fraction (e.g.,
compare the comparatively stronger constraint for ηP ¼ 0

as compared to ηP ¼ 0.8 for S̄ ¼ 0.25 expected counts per
PS in Fig. 9). Also, the size of the uncertainties for the
constraint is affected by the injected GCE flux: the IQR
between α ¼ 0.05 and 0.95 amounts to a difference in ηP of
63% for the original Fermimap, compared with 90%, 89%,
and 43% when injecting 8% Poissonian GCE flux, faint PS

FIG. 19. Constraints on the Poisson flux fraction of the GCE ηP
as a function of the confidence level α in the various mismodeling
experiments, obtained from hν (median over 256 realizations).
For the corresponding flux fractions and SCDs, see Fig. 14 in the
main body and Fig. 18.
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FIG. 20. SCD estimates of the GCE for the Fermimap with artificially injected GCE flux (median over 64 realizations). The first three
columns show the estimated density histograms for 2%, 4%, and 6% injected GCE flux (columns), as a function of the brightness of the
injected GCE emission (rows). As in Figs. 8 and 14, the different colors belong to different quantile levels τ (red to blue, from 5%–95%),
and the median is drawn as a black line. The light blue dashed lines show the SCD median estimate for the original Fermi map for
comparison, and the location of the dN=dF SCD for the injected PS flux is indicated by arrows. The rightmost column shows the
cumulative median SCD histograms, for injected GCE flux fractions between 0% and 8% in steps of 1%.
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flux with S̄ ¼ 0.1, and bright PS flux with S̄ ¼ 10,
respectively. The growing uncertainties as more faint
GCE flux is injected reflect the Poisson vs faint PS
degeneracy. To conclude this experiment, we emphasize
again that our NN-based framework is able to accurately
identify even small amounts of synthetic GCE flux in the
Fermi data, and the median SCD estimate gradually moves
toward the location of the dN=dF that describes the
injected flux.

APPENDIX E: CONSTRAINING THE POISSON
FLUX USING THE ANALYTIC LIKELIHOOD

Here we provide the analytic likelihood for the example
of an isotropically distributed PS population with Dirac
delta SCD in the absence of a PSF as considered in
Sec. VII C. In this simple setting we can efficiently evaluate
the exact PS likelihood (see Collin et al. [36] for a
discussion of the obstructions that arise in more realistic
scenarios).
In a single pixel and under the above stated assumptions,

we can define the likelihood for a model containing both
Poissonian and PS flux through the following generating
function:

PðtÞ ¼ exp ½μPðt − 1Þ þ NðeS̄ðt−1Þ − 1Þ�: ðE1Þ

Here μP is the mean expected Poissonian counts, whereas
N and S̄ are the expected number of sources per pixel and
the expected counts per source, respectively. Given that the
generating function of a purely Poissonian model is given
by eμPðt−1Þ, we can see that in the limit where each source
contributes far less than one count on average, S̄ ≪ 1, the
expression in Eq. (E1) reduces to the Poisson distribution
with mean μP þ NS̄. This formalizes the notion that a
population of dim sources becomes exactly degenerate with
Poisson emission.
Continuing, from Eq. (E1), the probability to observe k

counts can be determined through successive derivatives of
the generating function,

PðkÞ ¼ 1

k!
dkPðtÞ
dtk

				
t¼0

: ðE2Þ

The product of these probabilities across all pixels then
specifies the exact likelihood for the common set of model
parameters θ ¼ fμP; N; S̄g.
Our goal is to use this likelihood to establish a limit on

the Poissonian flux fraction of the map. In order to do this,
we perform a change of coordinates from fμP; N; S̄g to
fηP; N; STg, where ηP ¼ μP=ðμP þ NS̄Þ is the fraction of
counts that is Poissonian, whilst ST ¼ μP þ NS̄ is the total
number of expected counts per pixel in the map. We can
then obtain frequentist limits on ηP, accounting for N and
ST using the profile likelihood technique, and the results are
shown in Fig. 9.

APPENDIX F: CONSTRAINING THE POISSON
FLUX BASED ON THE SCD

In Sec. VII A, we introduced a simple estimator for the
Poisson flux fraction ηP of a flux component, which
consists in evaluating the predicted (relative) cumulative
median SCD histogram Q̃ϖðx; 0.5Þjϕ�ðαÞ at a value ϕ� ¼
ϕ�ðαÞ such that the resulting value on average exceeds the
true value ηP for ð100 × αÞ% of the maps in the calibration
dataset X cal. As mentioned in the main body, the con-
straining power of this estimator is not sufficient to derive
nontrivial constraints on the Poissonian flux component of
the GCE in the Fermi map. To demonstrate that the NN
estimator hν provides much tighter constraints, we compare
the 95%-confidence constraints of the simple estimator
with those of hν for the benchmark example considered
in Sec. VII C. Figure 22 shows the constraints of the
simple estimator and the NN hν (see Fig. 9 for the same
comparison between the frequentist constraints based on
the analytic likelihood and hν). Unlike hν, the simple
estimator is unable to constrain the Poissonian flux com-
ponent for maps containing counts from PSs below the
one-photon line.

FIG. 21. Constraints on the Poisson flux fraction of the GCE ηP
in the Fermi data with artificially injected GCE flux as a function
of the injected flux fraction, at 95% confidence (median over 64
realizations). These constraints are derived by hν from the SCD
estimates of gϖ (see Fig. 18). The line for PS flux with S̄ ¼ 0.1
expected counts per PS almost coincides with that for Poisson
flux, reflecting the Poisson/faint PS degeneracy. For S̄ ¼ 3.2
expected counts per PS, the constraints remain roughly un-
changed, while the constraints gradually become stronger and
weaker for brighter and dimmer injected emission, respectively.
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APPENDIX G: PRIORS FOR THE TRAINING
DATA GENERATION

We list the priors that we used for training our NNs
fω and gϖ in Table II. For Poissonian templates, the
only free parameter is the template normalization A, which
we draw from a uniform distribution for each map. The
prior ranges for the realistic scenario considered in Sec. VI
are chosen such that the values for the Fermi map are
expected to lie well within the prior cube (see Fig. 6 for
the resulting flux fraction ranges). For the PS-like templates
(GCE and disk), we draw the total expected flux
Ftot ½counts cm−2 s−1� in each map from a uniform distri-
bution and take random skew normal distributions for the
SCD defined with respect to the flux logarithm log10ðFÞ,
whose PDF is given by

fskewðxÞ ¼
2

ω
ψ

�
x − ξ

ω

�
Ψ
�
a

�
x − ξ

ω

��
; ðG1Þ

where ψðxÞ and ΨðxÞ are the standard normal PDF and
CDF, respectively. The parameters ξ, ω, and a define
the location, scale, and skewness of the distribution,
respectively. Note that for the mixed Poisson þ PS maps
used in Sec. VII, Ftot is not randomly drawn, but defined by
the Poissonian flux fraction ηP {which, in turn, is drawn
from a uniform distribution Uð½0; 1�Þ}, together with the

desired total expected Poissonþ PS flux: for the isotropic
example in Sec. VII C, we take the number of expected
Poissonþ PS counts in the map to be 50,000, and for
the realistic case in Sec. VII D, the total expected GCE
counts correspond to the best-fit prediction of fω for the
Fermi map.

APPENDIX H: NEURAL NETWORK DETAILS
AND ARCHITECTURES

In Table III, we list the NN architectures of fω, gϖ for the
realistic scenario with application to the Fermi map
(Sec. VI), and for constraining the Poisson flux component
of the GCE using NN hν (Sec. VII D).
We improved our NN implementation as compared to

Paper I such that the input maps only consist of the pixels
within our ROI, rather than of all the pixels within the
coarse nside ¼ 1 pixel (one out of 12 that together cover the
entire sky) that contains our ROI with zero counts in pixels
not belonging to the ROI. This has two consequences:
(1) the vertices of the DeepSphere graph utilized for the

FIG. 22. A comparison between the simple estimator that
constrains the Poisson flux fraction ηP directly from the SCD
predicted by the NN gϖ (see Sec. VII A) with the constraints
produced by the additional NN hν (see Sec. VII B), at confidence
level α ¼ 0.95. The NN hν provides much stronger constraints on
ηP for faint PS populations. For a comparison of the NN hν to
frequentist constraints derived from the exact likelihood function,
we refer to Fig. 9 in the main body.

TABLE II. Priors used for the training data generation for the
NNs fω and gϖ , for the isotropic proof-of-concept example
(Sec. V) and the realistic scenario (Sec. VI). The unit for the flux
Ftot is counts cm−2 s−1. The significant difference in the total flux
Ftot between the two examples is due to the difference in the
exposure, which we set to 1 cm2 s in the proof-of-concept
example, whereas the Fermi mean exposure is 9.1 × 1010 cm2 s
within our ROI.

Isotropic proof-of-concept example:

Template Parameter Priors

Isotropic ξ Uð½−1; 1.5�Þ (Sec. V)
Uð½−2; 1.5�Þ (Sec. VII C)

ω2 0.1χ2ð1Þ
a N ð0; 3Þ
Ftot Uð½1; 100; 000�Þa

Realistic scenario:

Template Parameter Priors

Diffuse π0 þ BS A Uð½1.75; 3.5�Þ
Diffuse IC A Uð½1; 2.25�Þ
Isotropic A Uð½0; 0.5�Þ
Fermi bubbles A Uð½0; 0.5�Þ
GCE and disk ξ Uð½−12;−9�Þ

ω2 0.25χ2ð1Þ
a N ð0; 3Þ
Ftot Uð½0; 1.4 × 10−7�Þa

aThe GCE counts in the realistic scenario, as well as the
isotropic PS counts in the isotropic proof-of-concept example
without PSF in Sec. VII C, are the sum of two template maps.
Therefore, the total flux of the respective template follows a
symmetric triangular distribution between 0 and 2.8 × 10−7 in the
realistic scenario, and between 0 and 200,000 in the isotropic
proof-of-concept example for constraining the Poisson flux.
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TABLE III. NN architectures of fω, gϖ , and hν for the realistic scenario. Each convolutional block consists of
ConvBlock ¼ MaxPool∘ReLU∘BN∘GC. The following abbreviations are used: MaxPool (maximum pooling),
ReLU (rectified linear unit activation function), BN (batch normalization), GC (graph convolution), and FC (fully
connected layer). We normalize the maps to sum up to unity before feeding them to the NN, and we append the total
number of counts in the map Stot in layer X. The combined NN for Step 1 and Step 2 (fω and gϖ) has 6,240,672
trainable parameters. The quantile level of interest τ for the SCD histogram estimation is appended to the output of
convolutional blocks in layer XI of gϖ. The NN for constraining the Poissonian flux fraction ηP is a simple fully
connected NN with two hidden layers, which takes a histogram and the confidence level α as inputs. The trainable
parameters are split up into matrix weights þ bias vectors. For example, layer II of fω has 5 × 1 × 32 ¼ 160matrix
weights (¼ kernel size × input channels × output channels) and 32 weights that compose the bias vector (¼ output
channels). The output dimensions correspond to the means and log variances for each of the six templates for fω,
SCD histograms for the GCE and the disk with M ¼ 22 bins for gϖ, and a single estimate η̃P for hν.

fω (map → template flux fractions):

Layer Operations Output shape Output nside Trainable parameters

I Input map (normalized) 30,805 × 1 256 � � �
II ConvBlock 8,117 × 32 128 160þ 32
III ConvBlock 2,199 × 64 64 10,240þ 64
IV ConvBlock 598 × 128 32 40,960þ 128
V ConvBlock 164 × 256 16 163,840þ 256
VI ConvBlock 50 × 256 8 327,680þ 256
VII ConvBlock 14 × 256 4 327,680þ 256
VIII ConvBlock 4 × 256 2 327,680þ 256
IX ConvBlock 1 × 256 1 327,680þ 256
X Append log10ðStotÞ 1 × 257 � � �
XI ReLU∘FC 1 × 2,048 526,336 þ 2,048
XII ReLU∘FC 1 × 512 1,048,576þ 512
XIII Reshape∘FC 2 × 6 6,144þ 0
XIV Softmax (means only) 2 × 6 � � �

3,111,040

gϖ (map → SCDhistograms):

Layer Operations Output shape Output nside Trainable parameters

I Input map (normalized) 30,805 × 2 256 � � �
II ConvBlock 8,112 × 32 128 320þ 32
III ConvBlock 2,199 × 64 64 10,240þ 64
IV ConvBlock 598 × 128 32 40,960þ 128
V ConvBlock 164 × 256 16 163,840þ 256
VI ConvBlock 50 × 256 8 327,680þ 256
VII ConvBlock 14 × 256 4 327,680þ 256
VIII ConvBlock 4 × 256 2 327,680þ 256
IX ConvBlock 1 × 256 1 327,680þ 256
X Append log10ðStotÞ 1 × 257 � � �
XI Append τ 1 × 258 � � �
XII ReLU∘FC 1 × 2,048 528,384þ 2,048
XIII ReLU∘FC 1 × 512 1,048,576þ 512
XIV Reshape∘FC 2 × 22 22,528þ 0
XV Normalized softplus 2 × 22 � � �

3,129,632

hν (GCE SCDhistogram → Poissonian flux fraction ηP):

Layer Operations Output shape Trainable parameters

I Input histogram 22 � � �
II Append α 23 � � �
III ReLU∘FC 256 5,888þ 256
IV ReLU∘FC 256 65,536þ 256
V Sigmoid∘FC 1 256þ 1

72,193
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definition of the convolution via the graph Laplacian
operator are given only by the pixels within the ROI at
each hierarchy level, (2) for the maximum pooling
operation, only pixels within the ROI at the current
hierarchy level are taken into account. Consider the rth
pixel pnside=2

r at resolution nside=2, consisting of the four
finer pixels pnside

r;s at resolution nside, for s ¼ f1; 2; 3; 4g. If
any of the pixels pnside

r;s lie within the ROI at resolution
nside, the maximum of the outputs of the graph con-
volutions can be taken over those s. Consequently, the
output of the convolutional blocks in pnside=2

r is defined
and is then further processed by the subsequent convolu-
tional blocks, making pnside=2

r become part of the ROI at
resolution nside=2. Thus, the “holes” in the ROI are
gradually closed as the resolution decreases when propa-
gating the map through the NN. We take the kernel size
of the graph convolutions to be 5.
The output dimension 2 × 6 of fω corresponds to mean

and (log) variance for each of the six templates. The two
input channels for gϖ contain the original map and the
Poissonian residual, computed by removing the expected
contributions of the purely Poissonian templates (that is, all
but disk and GCE) based on the means estimated by fω.
Since we train fω and gϖ consecutively, the residual
estimates are accurate already when the training of gϖ

starts. The quantile level τ of interest, which is drawn
uniformly from [0, 1] during the training and can be chosen
arbitrarily at evaluation time, is concatenated to the output
of the convolutional blocks in Layer XI of gϖ after mapping
it to the interval ½−6; 6� via

τ ↦ 12ðτ − 0.5Þ: ðH1Þ

In our implementation, we replace the EMPL loss function
in Eq. (8) by a smooth variant inspired by Refs. [121,122],
given by

Lτ
βðũ;uÞ ¼

1

M

XM
j¼1

�
τðŨj − UjÞ þ βsoftplus

�
Uj − Ũj

β

��
;

ðH2Þ

where we choose the smoothing parameter β ¼ 0.001. In
the limit β↘0, one finds that Lτ

β → Lτ
EMPL.

The NN architecture of gϖ for the isotropic proof-of-
concept example in Sec. V is very similar, but the input maps
only have a single channel (as there is no residual to
compute), and the output is a single SCD histogram with
dimension 1 × 22, where N ¼ 22 is the number of bins.
Moreover, we found that replacing batch normalization by
instance normalization [57] led to significantly better gen-
eralization from the training to the testing dataset in the
isotropic example—possibly because the noise introduced
by the batch-dependent normalization of the means and
variances for the weights with batch normalization deters the
NN from achieving optimal performance in this simple case.
Therefore, the results presented for the isotropic proof-of-
concept example use instance normalization.
The NN hν that yields constraints on the Poissonian flux

fraction ηP given an SCD histogram as an input is a simple
fully connected NN with two hidden layers. For the
confidence level α that plays the role of τ in the definition
of the pinball loss [Eq. (7)], we use the same mapping as in
Eq. (H1) before appending it to the input histogram, and we
use a slightly smoothed version of the pinball loss similar
to Eq. (H2).
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