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Magnetic field induced neutrino chiral transport near equilibrium
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Based on the recently formulated chiral radiation transport theory for left-handed neutrinos, we study
the chiral transport of neutrinos near thermal equilibrium in core-collapse supernovae. We first compute the
near-equilibrium solution of the chiral radiation transport equation under the relaxation time approxima-
tion, where the relaxation time is directly derived from the effective field theory of the weak interaction. By
using such a solution, we systematically derive analytic expressions for the nonequilibrium corrections of
the neutrino energy-momentum tensor and neutrino number current induced by magnetic fields via the
neutrino absorption on nucleons. In particular, we find the nonequilibrium neutrino energy current
proportional to the magnetic field. We also discuss its phenomenological consequences such as the possible

relation to pulsar kicks.
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I. INTRODUCTION

One of the most important properties of neutrinos in the
Standard Model of particle physics is the left-handedness.
Although neutrinos are expected to play important roles in
the explosion dynamics of core-collapse supernovae, this
property has been neglected in the conventional neutrino
radiation transport theory [1-5] applied so far; for recent
reviews on the theoretical aspects of core-collapse super-
novae, see, e.g., Refs. [6—11]. It is thus important to study the
effects of chirality of neutrinos on the dynamics of the core-
collapse supernova as pointed out in Ref. [12].

Recently, starting from the underlying quantum field
theory, the authors of this paper have systematically con-
structed the neutrino radiation transport theory incorporating
the effects of chirality. It is dubbed as the chiral radiation
transport theory [13]. Unlike the conventional neutrino
radiation hydrodynamics, this theory explicitly breaks the
spherical symmetry and axisymmetry of the system by the
quantum effects related to the chirality. Moreover, novel
transport phenomena that have been missed in the conven-
tional theory emerge, which may qualitatively change the
time evolution of the system. The construction of such a
theory was made possible thanks to the recent developments
of the kinetic theory for chiral fermions, called chiral kinetic
theory, in high-energy physics [14-29].
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In this paper, based on this chiral radiation transport
theory for neutrinos, we study the chiral transport of
neutrinos near thermal equilibrium in core-collapse super-
novae. We first compute the near-equilibrium solution of
the chiral radiation transport equation under the relaxation
time approximation, where the relaxation time is directly
derived from the effective field theory of the weak
interaction. By using this solution, we then analytically
derive the nonequilibrium corrections of the neutrino
energy-momentum tensor and current induced by mag-
netic fields through the neutrino absorption on nucleons.
In particular, we find the nonequilibrium neutrino energy
current and neutrino number current proportional to the
magnetic field; see Eqs. (73) and (74). Although the
asymmetric neutrino emission induced by the strong
magnetic field was also discussed in previous works in
relation to the possible origin of the pulsar kicks [30-39],
this work is the first, to the best of our knowledge, to
derive the explicit form of the magnetic field induced
energy-momentum tensor of neutrinos by systematically
taking into account the effects of chirality of leptons. This
work, together with our previous work [13], also explicitly
bridges the gap between the microscopic theory of the
weak interaction for neutrinos and the neutrino radiation
hydrodynamics.

The paper is organized as follows: In Sec. II, we review
the chiral radiation transport theory for neutrinos. In
Sec. II1, using the relaxation time derived from the effective
theory of the weak interaction, we compute the near-
equilibrium solution of the chiral radiation transport theory.
In Sec. IV, we derive generic expressions for the neutrino
energy-momentum tensor and current near equilibrium. In
Sec. V, we compute the nonequilibrium corrections on the
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neutrino energy-momentum tensor and current induced by
the magnetic field. Section VII is devoted to discussions
and outlook.

Throughout this work, we assume massless neutrinos.
We use the Minkowski metric 77, = diag{+,—,—, —}. We
define the Levi-Civita tensor e =&/, /=g where
& denotes the permutation symbol and g represents the
determinant of the spacetime metric with the convention
é%123 = —&,,,3 = 1. For a given vector V¥, the unit vector is
denoted by V* = V#/|V| with V being the spatial compo-
nent of V¥. We absorb the electric charge e into
the definition of the gauge field A,. We also introduce
the notations Ay,B,) = (A,B, +A,B,)/2 and A|,B,=
(A,B,—A,B,)/2. After Sec. II, we take h = ¢ = kg =
1 except where the 7 expansion is shown.

II. CHIRAL RADIATION TRANSPORT THEORY
FOR NEUTRINOS

In this section, we review the chiral radiation transport
theory for neutrinos developed in Ref. [13] that will be
applied in the following sections. The general relativistic
form of the chiral transfer equation with collisions for left-
handed neutrinos is given by'

0,0, helD STy 0 RSty Rt} £

W) )
== )T =L g gy (1)

S _ v v s
o = (¢ = th”S’;(n))Zy. (2)

Here, 0, and d,,, denote the spacetime and four-momentum

derivatives, respectively, ff;&) = fgl’g (x, ) is the distribu-
tion function of the left-handed neutrino which generically
depends on the frame vector n* (see below), D, = Vﬂ —
Fﬁ,,q”(?ql is the horizontal lift of V, defined such that
D,q" =0 with Fﬁb the Christoffel symbol, V, is the
covariant derivative V,V, =49,V, —Fﬁyvi for a vector
Vo, Sg l('n) = P q,ng/(2q - n) is the spin tensor for spin
1/2 fermions with n* the frame vector satisfying n*> = 1,
R:, = 28[ﬂl"i]p + 21 14, is the Riemann tensor, and =
are the lesser and greater self-energies. The emission and
absorption rates are given by R, =1~/¢° and
Ry = I /q°, respectively. The terms related to the spin
tensor Sf; ?n) in Egs. (1) and (2) that have been missed in the
conventional neutrino transport theory explicitly break the
spherical symmetry and axisymmetry of the system.

'In this chiral radiation transport theory, neutrinos are treated
as approximately massless and all quantum effects associated
with the small but finite neutrino mass are neglected.

Note that the dependence of the spin tensor SZ?H) on the

frame vector n* emerges as a choice of the spin basis, and
consequently, f(q”()n) and Fin) also depend on n* [19,20].
However, the physical quantities do not depend on the choice
of n* at the end. Below we will always choose the frame
vector n# = & = (1,0) in the inertial frame, then we have
V,n, =0, DMS?:> = 0,and R}, = 0, and all the corrections
due to the chirality of neutrinos appear in the collision term as
rs=(¢- thZ”Dﬂ)Ef. Accordingly, we will not hereafter
highlight the frame dependence of the quantities, such as

f (q”<>n>. In this case, the chiral radiation transport equation reads

1

Ofd =%

(1= s = 1317, (3)

where [J; is given by [5]
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Here, we adopt the spherical coordinate system (7,8, ¢)
for the position and (E;, 6;, ¢;) for the momentum of the
neutrino and the subscripts “i”” stand for the quantities in
the inertial frame. We also defined y; = cos 6;. Note that
[J; may also be written in a more generic form via the
horizontal lift, [J; = ¢ - D/E;.

For the collision term, we will focus on the neutrino
absorption on nucleons § (¢) + n(k)==e.(q’) + p(k’). We
are interested in the length scale much larger than the mean
free path in the matter sector composed of electrons and
nucleons. In this case, ignoring the viscous corrections and
the gradients of the temperature and chemical potentials,

=<
we may decompose 17 as

r

VA

~TO5 Ll % (g 0) + AT (q-B),  (5)

where O stands for a quantity O in local thermal equilibrium,
w* = Pu,0,u4/2 is the vorticity, and B* = ", F 5/2
is the magnetic field defined in the fluid rest frame with u/*
being the fluid four velocity and F,; the field strength of
the U(1) electromagnetic gauge field. The expression for
the classical term f20)§ was derived in Ref. [40], while the
expressions for the quantum corrections F”’* and F{"'* were
derived in Ref. [13] based on the Fermi theory of the weak
interaction under the nonrelativistic approximation for nucle-
ons with the mass M,, ¥ M|, ¥ M and the “quasi-isoenergetic”
approximation that allows for the energy transfer up to
O(1/M). Their explicit expressions are
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" et ARG 0 <1 3M62) 1= P ™
F0)> 2 3220 (1 — FOV[ 24 @)
q ~ 27Th4c4 (gV + 3gA)GF(q I/l) (1 fO,q) <E1 +ﬂf0,q) 1— eﬁ(ﬂp_ﬂn) )
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g ~W(9%1 +393)Gi(q - u)*fo, <E_ﬂ(l _fO,q)) 1= s’ (8)
I
where Gy is the Fermi constant and gy = 1 and g, =~ 1.27 VT — Y T (13)
are the nucleon vector and axial charges, respectively. We pfmat = AT ()

also introduced the Fermi-Dirac distributions

w_ o
foy= eflau—u) 4 | (i =n.p.e), )

where = 1/(kgT) with T being temperature and

u; chemical potentials for and n

[ &’k _ £(n/p)

Qrny 0.k
Although g - u = E; = g - £ for the on-shell fermions, we

rigorously distinguish between ¢ - u and E; in the expres-

i =n,p,e, nfp =

are neutron/proton densities.

sions of I" q§ above. This difference will become important in
computing the neutrino energy-momentum tensor T’(‘:) and
neutrino current J’{yg below since V,(q - u) # V,E; = 0.

For a given f,’, the energy-momentum tensor and

current of neutrinos are given by [13]

i = [ 4@ @ s - heqSY D). (10)
q

= / 478(¢7) (g"1%) — heSDFY), (1)
q

where D, f¥ =D, fY —c,[fY] with C,[fY] =2
(1- f;”)) -3 fff) and we introduced the notation (with

setting \/—¢g = 1 in flat spacetime)

=3 i

¢ hJ (2n)
The energy-momentum transfer from neutrino radiation to
matter is dictated by the energy-momentum conservation law

(12)

where Ty, is the energy-momentum tensor of the matter sector
composed of electrons, neutrons, and protons. In the presence
of the electromagnetic fields, the energy-momentum conser-
vation law is modified to

vﬂTI;rlyat = FW(J(p)M - J(e)ﬂ) - vﬂTﬂV

w14

: : noo_ qH
where J ), is the electric current of protons and J © = J Re) T
Jf( o is the electric current of electrons including the con-
tributions from both right- and left-handed electrons.

In addition, we also have the lepton current conservation,
anomaly relation for the axial current, electric current

conservation, and baryon current conservation, which are
given by

VY, =0, (15)
Vb -V = _p.p (16)
HY5(e) Ho(v) T 2m2h? ’
wo_ o
V=V, =0, (17)
n o
V4V, =0, (18)

respectively, where J’5‘<e) = J’l‘{@ - J’ﬁ(e) is the axial current
of electrons, J’(‘n> is the current of neutrons, and E¥* = FFu,,

is the electric field defined in the fluid rest frame. When the
matter sector is in equilibrium, its state is characterized by
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w', T, puy, py, the electron (vector) chemical potential pu, =
(uer + Her)/2 and  electron chiral chemical poten-
tial pes = (per — :"ﬂzL)/z'2

So far, the governing equations are generic and are
applicable even when the neutrino sector is far away from
equilibrium. In the following, we will consider the case
where the neutrino sector is near equilibrium (which is
the case near the core of the supernova), and then its
evolution is further characterized by the neutrino chemi-
cal potential p,. Here, for simplicity, we assume that the
matter sector and neutrino sector have the same temper-
ature and fluid velocity. In this case, the time evolution of
the system, when ignoring the evolution of the dynamical
electromagnetic fields, is governed by Eqs. (13) and (15)—
(18). In total, one has nine variables and eight
conservative equations. To form a closure for the equa-
tions and variables, we have to incorporate the f equi-
librium condition, p. + p, = p, + py. In the presence of
dynamical electromagnetic fields, we need to solve
Egs. (14) and (15)—(18) coupled to Maxwell’s equation
simultaneously.

III. NEAR-EQUILIBRIUM SOLUTION FOR THE
CHIRAL TRANSPORT EQUATION

Based on the chiral radiation transport equation above,
let us solve for the near-equilibrium distribution function of
neutrinos. In the following, we take 7 = ¢ = kg = 1 except
where the 7 expansion is shown.

We first consider the case of equilibrium state for
neutrinos where the collision term vanishes,

(1-FEs =75 (19)

We decompose the neutrino distribution function as
7= f((fl)] + hf (1”3] where 7f (1”3] denotes the quantum
correction on the classical distribution function in equilib-
rium, f((f;. It then follows that

> (D)
Ij—q ~ L= foq
ooy

(v)
hfiy } (20)

1—
[ FO =)

From Egs. (5)—(8) on the other hand, we have

2When the finite electron mass m, is taken into account, it
attenuates y.s by the chirality flipping process [41]. However, the
following discussion and our main results will not be affected
even when p.s = 0, and the effects of the electron mass on our
results can be treated as a perturbation in terms of m./u < 1.

f; = 510)> SI(;))> I:E]w)<
= = 1—|—h(q-a))<_ —— )
1"; FEIO)< [ 1—‘EIO)> F£10)<
m(B)>  (B)<
r r
w0
FS]O)> l_‘((]0)<

(1 —f((f,),)(l — ePlm=my))
f‘ge;(l — e/}(ﬂp_ﬂn>)

Bq- o 3q-u\~!
s e

up to O(h). Comparing the right-hand sides of Egs. (19)
and (21) order by order in 7, we obtain

1 _f(()v()i (1 —f(()e;)(l — eﬁ(ﬂn—ﬂp))

S /3 ES
f(()l,/; f(()i),(l — ePlip=m))
W w\Pq- @ 3g-u\~!
fl,q__fO,q(]_fO,q) un<1_ M >
pq-o 3g-u\~! W)
=G (1) el (23)

We accordingly obtain the equilibrium distribution function
for neutrinos,

) 1
= 24
fq g1 (24)
where
q- - q-u
h~p(q-u— Y i 2
Plg-u—p,)+ ﬁzq-quO(M)’ (25)

with y, the neutrino chemical potential that satisfies the
equilibrium condition . + p, = u, + p,. For consistency,
we here drop the g - u/M correction since the O(1/M)
corrections on FE;">§ are already neglected based on the
nonrelativistic approximation above. After dropping this

term, f(qy) above agrees with the equilibrium distribution
function in Refs. [19,21].

When neutrinos are not in complete equilibrium but are
close to equilibrium, we may rewrite the collision term in
the relaxation time approximation,

()
1 v v of
g 0= 15 === 26)

where 6f ,(1”) = f,(;“) - ]_C,(f) is the fluctuation of the distribu-
tion function and 7 = E;/(I°; + I';) denotes a momentum-
dependent relaxation time which describes how long the

system returns to the equilibrium state. From Eqs. (19) and
(5), we find
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CEQ=F) Ty (qw) TV (q-B)
TR0 1= =(0)> =(0)> :
Iy r r

(27)

Solving Eq. (3), the perturbative solution of 6f5]”) is
given by

q-D -

of m=fy) = =7y, (28)

By decomposing the relaxation time as 7 = 79 + az(!)
via the & expansion, we have more explicit expressions

T(O) _ Ei(l _f(()y;) _ KEi(l _f(()U;)

- . (29)
0 e
Y (g w1 - f5)
e(@)> (B)>
Ei |, v w Ty (q-o0)+Tq " (q-B)
() = ~Zos [fl’q +(1=fo,) =R
q q
2 ) -B
__o| (= € _ ry)\ 4 q
! [(Ei+ﬂ(f°'q fo’q)> 2g-u 2M(g-u?)’
(30)
with
k=—— " gp=_lp ' (31)

G (g3 +3ga)on’ 1=l
Here, we used Eq. (23) with dropping the O(1/M) terms.
Note that the relaxation time is directly derived from the
Fermi theory, which is the low-energy effective field theory
of the weak interaction.

Some remarks are in order here. First, one may attempt to
include the magnetic moments of nucleons neglected in
Ref. [13]. Naively, we may take into account the effects of
the nucleon magnetic moment by consistently replacing y;
by u; — s;4;|B|/(2M) for i = n,p, where 4;/(2M) is the
magnetic moment and s; = £1 denotes the spin up or

down. This amounts to the replacement of f& by

Siﬂi|B|
l1-h—— 2
2MT>’ (32)

O~ ! o £0)
fk ~ ePIM—u;+hi;|B|/(2M)] 1 NfO,k(

for M — p; > T and |B| < MT. In such a case, one obtains
an extra contribution from the magnetic field to the

relaxation time, 7 = 7% + A7) + 767, where

Spdn = Sphp
eﬁ(/‘p_ﬂn) -1 ’

B| SpAoity, — S AR
5700 — (0) | p/p/lp — SnAnlln
4 ! ZMTSX: n, —ny, +

pSn

(33)

In this approximation, however, the nucleon wave functions
do not include the magnetic field corrections. Hence, a

more systematic inclusion of the magnetic field corrections
in the nucleon Wigner functions (in addition to the
distribution functions) would be necessary.’ For this
reason, we do not consider the magnetic moment contri-
butions from nucleons in the present paper.

Second, one may also consider the elastic neutrino-
nucleon scattering v (q) + N(k)==1f (¢') + N(k'). Never-
theless, an analytic form for the collision term in the
relaxation time approximation linear to & fé” cannot be
derived by simply adopting the isoenergetic approximation.
In light of Ref. [13], the collision term reads

(1- fslu))rl(]el)< B ff;”)l“(qel>>

NN v v
— / 5(a2) g TN (Y = f) ey + O, (34)
p

where the O(h) terms are dropped here. (The detailed
(NN
DA
mation can be found there.) When neutrinos are near
equilibrium, one finds £\, — £ ~ 8f%, — 5f%) given
p-u=|p|?/(2M) < q - u, where p is the momentum trans-
fer. To obtain a nonvanishing collision term analytically, a
further assumption for the hierarchy between the neutrino
momentum |¢| and the momentum transfer |p| has to be
imposed. Moreover, it is necessary to consistently incorporate
O(|p|/M) corrections and the recoil momenta on nucleons,
which are already neglected in the isoenergetic approxima-
tion. Therefore, we also do not include the elastic neutrino-
nucleon scattering in the present work for consistency.

structure of TI'™Y) obtained from the isoenergetic approxi-

IV. NEUTRINO ENERGY-MOMENTUM TENSOR
AND CURRENT

Given the near-equilibrium solution for f 5]”), We are now
able to evaluate T’(‘:) and J’(’D) according to Egs. (10) and

(11). For neutrinos near local thermal equilibrium, we
decompose

MY A v no__ M M
T(y) = T(y> + 5T<U), JM = J@) + 5J(U), (35)
where
™ = / 4r8(*) (¢ q' Ty — hgs'D, 1), (36)
q
ST = / an8(q) (q"q*5fy) — hg' S’ D,sfy)).  (37)
q

’In previous works, e.g., in Ref. [37], the nucleon magnetic
moment is included in nucleon response functions. However, the
scattering matrix element of polarized nucleons in vacuum is simply
used, and the effects of the medium and the magnetic field on the
scattering matrix element are not fully taken into account.
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and

/ 475(¢%) (T - nSD, Y)Y, (38)

Note that C,| Y « u, up to O(A°) with the matter sector

in equilibrium, for which we have nSYC,[f%] = 0.

Hence, #nS,C [ Y]=o0(m?) and it is neglected
above. .
an P s HY T
— / 475(q quq hS’ngpﬁf,(;)). (39) Given f,’, we may rewrite T(D) and J(D> as [20]
q
|
= [ 4w )a g = pla - u= g )1 = 16| ) (40)
b= [ ams(a) o = Sptara- =g ) - 1) 1) (@)
q

which lead to

= €U’ — p) A + ) (' u + o*ut),  (42)

jﬂ

) = Nt + hoye o, (43)

where A" =y — u#u’. When u, > T, we find

272 2
v T Iy,
=3 = — T,
W =PRI T T T
3 2
o T
é:w(v) R = <67T + 6 ) ’ (44)
3 2 2 2
w T wy T
N<y) ~ 677,'2 + 6 s G(u(t/) ~ — (47[2 + E) (45)

In this case, the contribution of antineutrinos is suppressed
and the transport coefficients &,y and o, agree with
those in the chiral fluid including the contributions of both
fermions and antifermions [19,42-45]. In particular, ]’(‘D) x

o* above is known as the chiral vortical effect [42,46-49]
and Eq. (44) correctly reproduces its transport coefficient.
Although the isoenergetic approximation breaks down at
u, > T [40], we assume sufficiently large u, such that the
antineutrino distribution function is comparatively negli-
gible yet the isoenergetic approximation is still valid.

On the other hand, inserting Eq. (28) into Egs. (36) and
(38), the nonequilibrium corrections for the neutrino
energy-momentum tensor and current become

3 4n8(q°)
5T = - / L) [ gt (0 4 palV)
q i

~ hg'$4”D,7)q - DFY, (46)

475(q?
W = _/ i )[qﬂ(f‘o’ + hrll)
q

E;
~ 18D, V]q- DY (47)

As D, is defined such that D,q" =0, it follows that

D,F(q-u)=V,F(q-u) for an arbitrary function

F(q - u). Accordingly, we may replace D, by V, when
or fi/) in Egs. (46) and (47).

We now make a further decomposition, 5T’(‘Z> =

5T§S;“ Y+ héTE;;” ¥ where

it acts on (¥

0)puv 4ro 612 v v
ST = - / #q"q 2Oq-Vfi), (48)
q i
v 4ré (12 v v
o1y = - [ k(g g s
q i

— 8D, (q- VD)) + g (gD
— S (V,20))g - VL] (49)

correspond to the explicit classical and quantum fluctua-
tions, respectively. However, as will be discussed later,

from the % corrections encoded in hydrodynamic equations

(0)uv

of motion, 5T(U> can also yield quantum corrections

comparable to 6T8§” Y

81, =8I0 + hsJ())", where

Similarly, we decompose as

475(q?)

0= - [ g v, (50)
q i
476(q? v
sl = / EE ) [ O(g'q-DfY) - S4'D,(q- V)
q i

+ (g = S (V,20))g - VL. (51)
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V. NONEQUILIBRIUM CORRECTIONS FROM
MAGNETIC FIELDS

In this section, we derive the explicit forms of non-
equilibrium corrections on the neutrino energy-momentum
tensor and current. Using

V£ = —f0 (1= fO) @V, (Buy) -V, 5,),

v) v)
v f (1 - f s ) c W
Dpf(I; == 0,61261 U 0a [(qlvp(ﬁwl) _ﬂqq " qlvpuﬁ)

(1= 2f)q - (g, ()~ vpm] ,

3 V u
V/,T(O) = T(0>|: qq 4 +f0q( ﬂv (ﬂl/t ) /),uz/)
— £ @V, () - V) -V, In an} R

where ji; = pu; for i = v, e, p,n, we can evaluate 5T€’y”) and
5]’(2) explicitly. [Note again that the difference between ¢ -
u and E; is essential here since V,(q-u)# V,E; =0.]
Nonetheless, the full 6T’(‘D”) and 5]’(‘U) are rather complicated,
and here we will focus on the contributions due to magnetic
fields in which z(!) is involved.

In principle, the leading-order corrections 5TES))” “ and
oJ ES;“ may also incorporate magnetic field corrections

through the hydrodynamic equations of motion that deter-
mine the temporal derivatives on thermodynamic param-
eters up to O(#). Nevertheless, as will be shown in Sec. VI,
the possible contributions are proportional to B - V | T and

(0 /47r5(q 70 q-B I
Ton =", 2M(g-u)?! 01
x (1= fe )@ q0, = q- Vi), (54)
where ©,,, = V,fu;,. We can decompose ©,,; and g - Vi,
as
0 = wPuTl + 2ulPTIH + TP, (55)
where
= u,u,;0" = Dp, (57)
1
II* = wA*®,, = 3 (BDu* + V4 p), (58)
I = A" AY@ 5 = n* + A0, (59)
with 7 = pV ¥t — A0, 0= pV 1 /3, D =u -V the

temporal derivative in the fluid rest frame, and v/, = Ay,
for an arbitrary vector v*.

By symmetry, we expect the following constitutive
relations:

B -V | u, which are different from the forms of the viscous 5T$>)§D = Seguiu’ — Spy, Ay — Spp B'B*
corrections originating from z{!) that we are interested in 1w o)
here. For the magnetic field induced corrections involving +21)'B + 2ulV, (60)
7 we find
(Dp _ m v
5T(1>W = — / Mqﬂq%(m if(”) 6J(”)B = ONpu* + Uplé By, (61)
(v)B g Ei ZM(L] . u)z 0.9 o
O poa ) where A%’ = A" + BBY, h,-B=0, and oju, =0.
X (1= fo,)(@"4"®p = q- Vi), (53) " The explicit forms of these transport coefficients read
|
U fg/))z VJ_ ﬂv
Seg = 56pp. = 5pB / eq B+ <ﬂDuﬂ +V - a ), (62)
T LT 6M -5y 4]
up 3 f(”)(l _f(”))Z \VARy
]’l’i _ _K'AB d q 0.9 0.9 (ﬁDM + VL ,ﬁ _ J.p/"u) (63)
M@ gla-ggy VTl
(v _
foq ~ foq) [AW( D,u) 2 ]
Dp—-0-—"L)—-—n"|B, (64)
l / € v
M P lali-rgy) L3 gl /15
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(

2 _
\Y%

Ny = o / 0 Jia( =3 )) B (ﬁpuﬂ +V.,B- |“‘|” ) (65)

g1 - £i) q

v)\2 _
fo,, fq) [Aﬂ”( D,u) 2 }
’ — | Dp—O0——) ——n"|. (66)
o / ()
oM fo.q 3 lq| 15
|

The details of the derivation are shown in the Appendix B. When we further assume that g, — fi, = ji. — ji, > 1 and

Here, all the temporal derivatives D on the thermodynamic
parameters should be replaced by spatial gradients via
hydrodynamic equations shown in Sec. VL

Note that SN in Eq. (65) logarithmically diverges, but
this may be regularized by the screening mass of the
neutrino in medium. By utilizing hydrodynamic equations
shown in Eq. (102), one may replace Du* by V| T and V/| i
for fi = (fie. fiy. fin. f1,) and drop the terms coupled to
Dp, = O(h) as higher order corrections in the 7 expansion.
For simplicity, we assume V/ T and V/ i are suppressed
and omit deg, 6pp, h', and 6N p. The remaining terms are
then given by

"o KII " SGA/U/ 7
4 15M< 3 (67)
I 5
= X2 (w2 gam ), 68
B AR (68)
where
/ g o1 =fily
=
27)° Jql(1 - £5)
T2 Telv — ehe - B
2|:1+eﬁu+(1—|-6”° ””)IH(I—FC"”) s (69)
) V)2 . .
/ Bq foq(1=Ffoq)® Tef(2+ef +ef) (710)
2 = —
o) lgp(1-ri) 4wy

Note that the results in Egs. (67) and (68) are independent
of the nuclear equation of state.

Although the isoenergetic approximation may break
down, it would be useful to extrapolate these results to
the regime fi, > 1 and jz, > 1 to obtain more compact
forms, which will be used for an order of estimate in
Sec. VII. In this regime, we find

T? . o
I ) [, (1 4 efe™) 4+ 1 — efe™], (71)
v/

I~ (1 + o), (72)

T
47

u' =~ (1,v) with |v| < 1, the explicit expressions for 5T§l§g

and 6J Ei;; can be simplified as

(1)0i (1)io !
oT g =0T \p ~—

()B B = " 72aMGE(R + 343

e2B(un—ny) v .
S VB, (T3
x — (V-v)u, (73)

i 1 2ﬂ(ﬂn_ﬂp> .
518))3 R = < (V-v)B'.  (74)

727TMG]2:(Q%/ + 39?%) n, —n,

Note that 7% B and J' « B’ are prohibited in usual
parity-invariant matter by parity symmetry. However, these
chiral transport become possible in the present case due to
the parity-violating nature of the weak interaction.

VI. HYDRODYNAMIC EQUATIONS OF MOTION

In this section, we present an explicit derivation of the
hydrodynamic equations of motion for the system com-
posed of nucleons, electrons, and neutrinos. For simplicity,
here we consider the hydrodynamic equations in the
Lorentz covariant form, which can reduce to a nonrelativ-
istic expression with appropriate change of variables. It is
also sufficient to focus on the dissipationless terms for our
purpose and we will ignore the dissipative terms, such as
the viscosity and conductivity.

The energy-momentum tensor, vector, and axial currents
for electrons in local thermal equilibrium read [42—45]

T =Trie) T TLie) = W'u €(e) = P(o) A"
+hég o) (B U + B u ) + A o) (@ u” + 0’ u?), (75)
It =Ire L) = N + oo B +hoye @, (76)
T5e) = Tree) = i) = Nse)" + hops(e) B
+ ham(e)a)/‘. (77)

Here, we have
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Hes (3pe + p
$Ble) = o2 Eole) = ?eS <”75 + TZ) (78)

3uzs +
N = 3 <7ﬂe5 He + T2>

n?
3
NS(e) — lﬁ (M + T2> (79)
3 n?
o Hes He
OBle) T 52 OB5(e) T 52"
HeH petuzs [ T?
Owple) = ;265 ’ Ows(e) — 62” e +—= 6’ (80)
and, for a relativistic ideal gas of electrons,
_ _ by 2,2 4
€e) = 3p(e) - 4—71_2 (/"e + 6ﬂe,ue5 + ﬂe5>
T° Tn?
) T (81)

The vector and axial currents proportional to B* in Egs. (76)
and (77) are called chiral magnetic effect [50-53] and chiral
separation effect [54,55], respectively.

The full energy-momentum tensor in local thermal
equilibrium is thus given by

Thn = T + Ty = ulu¥ep — peA™ + hép e

) (B*u” + B*u*)
+ 1) (0 u” + 0" u),

(82)

where  €; =€) +€) + €p) + €m)s
Pp) + Pn)» ga)( éw + éa) (v) , and

d’q 1 1
‘0= 2/ (2r)3 Eq <e/)’(Eq—ﬂ;) +1 + eP(Eqtmi) 4 1> ’

Pt = Pe) + p(v)+

(83)

d’q |qf? 1 !
p<i>_2/(2ﬂ)33E P& ”L>+1+eﬂ(E"+”")+1 &

with E, = lg|* + M? for i = p,n. The nonequilibrium
corrections, such as 5T’(’:), are responsible for higher-order
gradient terms in hydrodynamic equations and are hence
dropped. To be more precise, the inclusion of 5T’(’5) in
hydrodynamic equations will contribute to the terms at
O(V?) for classical transport and those at O(V3) for
quantum transport, respectively, which are irrelevant in the

present context. The same argument is applied to drop
5T’(‘:), 8J#, and 6J5 as mnonequilibrium corrections in

Egs. (75), (76), and (77). The nucleon currents are given by

Iy = N,

d’q 1 ! 85
(2r)3 \efEam) 4 1 T PEAm) 4 1) (85)

fori = p,n. When y; > T, the antiparticle contributions are
suppressed, and thus, N (i) =n

From the lepton current conservation, anomaly relation
for the axial current, electric current conservation, and
baryon current conservation in Egs. (15)—(18), we have

N =2

+hV( BW+0U00:O, (86)

D(Ns() = N)) + (Ns@e) = N,))V - u + 1V, (6ps(c) B

E-B
+ Cus(e) @' = Ou)@) = —h——- (87)
D(N )+(N —N@)Vu
— hV,(6pe)B" + 04)@") =0, (88)
D(N(p) + N(n)) + (N(p) + N(n))V -u =0, (89)
where  64,1) = 04() + 0u(). In addition, the energy-
momentum conservation in Eq. (14) gives
D[(e; + py)u] + (er + pr)u'V - u — u*Dp; — V| pg
h[D(fa)(f)a)ﬂ) + vb(&w(f)wbuﬂ) + zju)(f)wﬂv ! M]
+ h(@" — B*, o) = Epe))
= Fﬂy[(N(p) - N(e))uu - hJB(e)By - ham(e)wv}' (90)

Here and below, “(&* — B*, &, ) — &p(e))” denotes the
terms obtained by such replacement for the corresponding
terms involving o with the coefficient £,t). This equation
can be decomposed into the longitudinal and transverse
parts with respect to u* as

De; + (€f + pf)V U+ fl[dfw(f)uyDa)" + Vﬂ(sz(f)a)”)]
+ h(0” = B, &) = Ep(e))

= fl(GB(C>E -B+ Ga)(e)E . 0)), (91)
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(er + p)Dut = V'] pg + hlw! DE,yp)
+&omy@ - Vi + &'V - u+ &) (D — ' u, Do)
+h(@" — B, &) = Epe))

= E*(N(p) = N(o)) + 160 Pw, B . (92)

More explicitly, we find

(N(e)r+N)r)DT+N )z, Dlie + N o, D,
+ (N(e) —|—N(,,))V 7 —l—flvﬂ(GB(e)B” +6w(f)a)”)

0. (93)

(Ns(e).r = Nw).r)DT + Nse) s Dites — Ny 5, Dit,
+ (NS(e) - N(U))V s u+ hVﬂ(oBS(e)B" + 6w5(e>a)”
— Gy @) =0, (94)

(N(p).7 =N(e).r)DT +N ) 5, Dity =N ¢ . Dt
+<N(p)—N(e))v-u—flvﬂ(63<e)B"+aw(e)a)"):0, (95)

(Np).r+ Ny r)DT + (N ) g, + N (w) 2, Dty

+]v(n),ﬁnl)(lae_ﬂeS_,’11/)+(1V(p)4»]\,(n))v'u:0’ (96)
and

er DT + (ef,p(e) + €1, ) Dfie) = €5 5, Dites + (€5, + €5, ) Dty
+ (€1, —€x,) ity + (er+ pp)V-u+ [V, (&) @)
- fw(f)wﬂD””] +h(w - B, o) — fB(e))
—h(oge)E-B+0,)E-0)=0, (97)

(er+ pe) Dut =V pg— E*(N ) = N ¢)) + h[@" (S o). 7 DT
+ &), Dy + &) is Dhtes) + o) (@ - Vi + @'V - u)
+&u(r) (Do — utu, Da* )] + A(a — B, &,(1) = Epe))

— 16 4e) P, Baug =0, (98)

where F;r=0rF; and F;; =0, F; correspond to
the partial derivative with respect to T and j; for an
arbitrary function F;(T,ji;) and we have implemented
Hn = He + Hp —,uy.4 Here one may further replace the
combinations Dao* — u*u, D@’ and DB* — u*u,DB* by

*For generality, we here used y,, = e + pt, — p, and took into
account the contributions of y.s. When chirality flipping occurs
sufficiently rapidly, we may simply set u.5 = O in these equa-
tions.

other terms via the Bianchi identities.” Note that N S(e).T =

OBe) = Ou(e) = EB(e) = Swe) = 0 when ji.5 = 0.
Up to O(#°), it is easy to show that

pr=-TP0g o), (99)
€rr
VL/
D =L o(n)
€ + Pt
VTS pe VY
_ PerVAT + 2 ppea ViR +0(h), (100)
€ + Py

for ji = (fie, iy, fin fi,), and Dji; vanish at O(h°). Here we
further assumed the local charge neutrality N,y = N(,). In
fact, the conservation of electric current in Eq. (87) is
satisfied by the local charge neutrality when p.s = 0. When
tes 7 0, on the other hand, a local electric charge fluc-
tuation can be induced at O(#). For relativistic ideal gases,
one can find e; = 3py, prr = 4p¢/T, prz = N)T, and
Py, = Nu)T, which yields

_TV-u

DT = 3 + O(h), (101)
VT T vy
b ==t (N(e) + BPng, ) Vi Fe
+ ﬁ(ppﬁp + pn,ﬁn)viﬁp + (N<y) - ﬁpn7ﬁn)VZﬁy]
4ot (102)

These hydrodynamic equations up to O(R") were

employed to obtain the explicit expressions of 5T’(’;’> B

and 6]’(1/)3 in Sec. V.

As briefly mentioned in Sec. V, however, the magnetic
field can also be involved through the temporal derivatives
D on the thermodynamic parameters when incorporating #
corrections. Therefore, we need to work out the leading-
order corrections in 7 expansion as well, which are shown

From the decomposition Oty = €uapu’a” + 1 (u,Du, —
u,Du,) and the Bianchi identity ¢**/9,0,u, =0, we can
derive [21]

1
Dot — u'u,Dw* = —*0 - u + w - Ou — Ee"”"ﬂu/ﬁDDua.

Similarly, from the decomposition F,, = Mm/ju“B/j —u,k, +
u,E, and the Bianchi identity ¢*9,F,, = 0, we have

DB* — u!u,DB* = —B"0 - u + B - Ou*
— P (ugd,E, + u,E,Dug).
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in Appendix A. For simplicity, we here set ys. = 0. In this
case, the magnetic field is only involved in Eq. (93) for the
hydrodynamic equations when taking E* = @* = 0. For
such a correction, one finds

17}
hvu(aBS(e)Bﬂ> = FB# (vlyﬂe - ﬂeD”ﬂ)' (103)
Here, we used the relation
V-B+2E -+ B"Du, =0, (104)

which follows from the Bianchi identity V”F ' = ( and the
decomposition F* = e#of u.Ep — u'B” +u’B*. By fur-
ther substituting the expression of Du* from Eq. (102), we
conclude that Eq. (103) only contains B-V T and B-V ju

terms, and thus, 5T’(‘y”)  and 5]’(‘U)  are not affected when

assuming V , T =V u=E'= o' =0.

VII. DISCUSSIONS AND OUTLOOK

Let us now consider the possible phenomenological
implications of the results above. Here, we will focus
especially on the neutrino momentum density T’('S) p In
Eq. (73). We can estimate the kick velocity of the core due
to this contribution as

oT Z(S) B

Ukick ™~ ,
pcore

(105)

where we assumed the homogeneous core mass density e
and constant 6T€8) 5 there for an order of estimate. Taking
n, —n, ~ 0.1 fm=3, u, — pp ~ 100 MeV, p, ~ 100 MeV,
T ~ 10 MeV, typical length scale for the variation of the
hydrodynamic variables, L ~ 10 km, |v| ~ 0.01, and p o ~
M(n, + n,) with n, +n, ~0.1 fm™, we obtain

B
Vkick S (m

> km/s. (106)

(The reason why this should be regarded as the upper bound
will be described shortly.) In order to account for the
observed pulsar velocity vy ~ 10> km/s (see, e.g.,
Refs. [56-59]) solely from this contribution, the required
magnetic field at the core is of order 10'5-16 G.° However,
this estimate should be taken with care because it depends
sensitively on the choice of the parameters.

®For the previous works that attempt to explain the pulsar kick
by an asymmetric neutrino emission induced by strong magnetic
fields, see Refs. [30-39]. Note that our work is the first to derive
T?lf)  explicitly and systematically. The parametric dependence of
Ve here are also different from the previous results although the
final order of estimate itself is comparable to Ref. [30] among
others.

From Eq. (73), one might think that for a given magnetic
field, vy becomes arbitrarily large if (u, — u,) /T becomes
sufficiently large. In fact, this is not the case because for a
sufficiently large (u, —p,)/T, the mean free path £
would become larger than the typical length scale of the
system, as can been seen from Eq. (31), where x increases
when (u, —p,)/T increases. Then the assumption that
neutrinos are near equilibrium would break down. This
means that the kick velocity is bounded from above for a
given magnetic field because of the hydrodynamic approxi-
mation.” On the other hand, the chiral radiation transport
theory itself is applicable to neutrinos even far away from
equilibrium, in which case such a limitation is not present. It
is thus necessary to investigate the fully nonequilibrium
contribution of this mechanism to provide a more realistic
estimate.

Although we have highlighted the neutrino chiral trans-
port induced by the magnetic field near equilibrium in this
paper, there are also other neutrino chiral transport induced
by the vorticity and gradients of temperature and chemical
potential. One expects that these chiral effects would further
modify the nonlinear hydrodynamic evolution of the super-
nova, such as the turbulent behavior. For example, chiral/
helical transport phenomena lead to the tendency toward the
inverse energy cascade even in three dimensions, as ana-
lytically and numerically shown in Refs. [60,61] (see also
Refs. [62,63] in the context of the early Universe).

We also note that neutrino chiral transport far away from
equilibrium is not captured by the relaxation time approxi-
mation adopted in the present paper. In fact, even though the
net momentum flux is generated for near-equilibrium
neutrinos by magnetic fields, it is not guaranteed that these
neutrinos can escape from the protoneutron star. This
neutrino momentum flux could be canceled by the back
reaction of the matter sector, and then there could be no
significant emission asymmetry. The emission asymmetry
might rather be caused by neutrinos outside the neutrino
sphere, where the near-equilibrium approximation is not
applicable. In order to see the consequences of fully non-
equilibrium chiral effects, it would be eventually important
to perform numerical simulations of the chiral radiation
transport theory for neutrinos in the future.

i0
(v)B

. f 1 /,{3 .
TzO ~ mip v pi
(v)B ( L /M

Then the near-equilibrium condition of neutrinos (L 2 &pp,)
leads to the upper bound of ;. as

3
1B B
o< ~|—— ki .
Ukick ~ Mpcore (1013 G) m/s

"Parametrically, 7%, = may be expressed as

(107)

(108)

for u, ~ 100 MeV.
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APPENDIX A: LEADING-ORDER CORRECTIONS

The leading-order corrections of the energy-momentum
tensor and current of neutrinos read

0 4”‘3(‘12) v v v
R R )

x (¢"q"0,, - q- Vi), (A1)
0 47T6(q2) v v
sI0N = - /q e 7O f (1= f))
X (¢"q"®, —q-Vi,). (A2)

By symmetry, we expect the following constitutive rela-
tions:

ST = seOuru? — spO A 4+ 2ug?) 4 4

)

(A3)

Ou _ SN ) +jli’

sl (A4)
where u,{* =u,j/ =0 and wy'" = u, =0. Al

these components can be computed via

0) _ 0) _ (0)uv
0e\") =36p\Y) = uﬂu,ﬁT(b) ,

v v 0 v v 0)pA
1= MﬂA/’éTEu;W)’ K= A5A15T§y))p . (AS)
SNO =w,oI)). =M. (A6)

Their explicit expressions are given by

5¢0) — 35p(0)

3 W p)y2 J—
——K/ dqfO,q(l fO,q) <QPQ’1® _q'vﬂv>

A
22 1-ry) ]

&'y fé”;<1—fé”;>2< Dﬂy)
_ : < (Dp-0-"11), (AT
K/ 2z - P=0=r) A7

v) )2 R
d*q foqa(1—fog) q-Vi
é‘u — —K/ -q -q 511/ <qpq/1® _ l’>
* @2 - 7l
(v) )2 _
d3 1-— AV
—x q,,’ fO,q( .](ng) (ﬁDuD + vliﬁ _ Lﬂy) ,
2x)° 31 - fi5)) lq|
(A8)
v) ®)y2 J—
w d3¢1 qu(l_qu) u" < Q'vﬂv
——x g (280, )
L / o -pp T P g

[ g fo, (1= o) (A DR,
=% | @y [T<DH‘ )

Y 4]
2
—Eﬂ”‘/}, (A9)
3 f(V)(l _f(”))2 b - Vi
5N(0) / d q Jog 0,q <qp,\,1 . q- ﬂu)
3 p.
(27)° |q|(1 - f5)) gl
_ K/ P foo(1= 15, (Dﬂ—@—Dﬁ”>
3 e ’
(27)° Jq|(1 - f5) 4l
(A10)
) v) _
J/i: / d? f(),q(l_f()q 2@/1<A/Mi® . q v/"p)
3 e P
(27 Jql(1-£5) gl

o[ Lo fay(1=Fo,)
(27)" 31g|(1-£§)

’,[ —_—
e 7558

(Al1)

APPENDIX(ll)S: EVALUA?I’)[‘IONS
OF 6T, ;" AND 6], %
In this Appendix, we provide the derivations of
Egs. (62)—(66). Given the decomposition of ®* in

. (D (1)
Eq. (55), one may write 6T<V)’If2 and &J (D)ﬁ as

5 d3q A 0 -B v v
ST\ — _/ 94 <0>q—f§)_;(1 ~ )l

(27)3 2M
x KH—Dﬁ”> +, <2H —vl”’_‘”)
lq| 77
+ HIMEI/J)_&/J{_:| ’ (Bl)
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3 _ _
e __ [ d'q ) _Dp)\ |, Vi, a5 pl
5‘](1/)8 - / (271.)3 fO q( f ) |:<H |q| ) + q, (znp ‘q| + HpﬂqJ_QJ_ (BZ)
All the relevant coefficients of the decompositions in Egs. (60) and (61) can be calculated via

v 1 v Fal A v
Sep = u,,uyéTEiig . Opp, = —=Ap, ST Spy = —B,B 5TEI)”

2 (v) v)B
o= = LB ATy = Ak ST (B3)
L |B| p\=2B/VEE ())B o 1 PPvCt ()B >
and
SNp = u, 57" &vB, = AlsI P (B4)
8= W W 5O = 200w

where we used Ap,, A = 2.
When evaluating the integrals, we also use the following useful relations for an arbitrary function F(|q|):

d’q , &g [ 0,0, (1=2%)
¥ o Flq|) = B - A , B5
ot ra = [ 55 S ot (a (B5)
d3q AU Ay AP d3q DU DU D Z(I—Zz) 2 17 DU J 7 v
ot = [ ok b - sy sy o | Fa. @0

where z =—B -4, = B - §. One then finds

d3q EIB v v Dﬂu AP vl Hy PYN
sep == [ Sz —fé,;u - siplal| (=) (2m, - Y )

_ [ dq ]

_/(2][)‘ f()q( f )Bp(2|q|H vJ_[)lul/)
K 3 fqu( f(()lj()i)z ( vJ.ﬂﬁl/)

= —— B*|( D \V - s B7
) R G (87

O, = (233 (=200 L8 i1 gl KH - :') + (2np - VT(}(‘) " nﬂe/m}
3 [ oo L - s ln, - 9.,
= %563 (BS)
e -] (1) o %) e
/ gzr)* f g1 = 15)B lall, =V )
B zéeB’ (BY)
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d’q gyl — B Dp Vi
- 7270 2L f(”> l—f("> gl (m=2F) 1 gz (om, - 222 4,7 o
1 (2][)3 M O,q( 0,q)| | |q| 1 P |q| p2 41971
1 [ dq 2(1-2%) y _
= _5/ (277,’)3 T(O) M f((),;(] _f(()()])A/;?p(2|q|Hp _vl/)/'tv)
- Bg fol(l = F)? A ( S+, p L,)ﬂy)
oM 3 . 1P — ;
M) Q) jgl(1- g 15 4
d3q ~ 04 B (v) (v) AP vaﬁv AP AL
V’i = —/(2”)345_7( >7Mf0,q(1 —fo,q)|Q| | | +‘1/ ZH/)_ q] JFH/»{‘I/MIL
&g o) 2w _ W Dpi (3=52) puts 1ns
— = f(1 = fy BH | II — Y1 — | (1 = Z2)II*B —~ B*B II*’B
e s Fa(1 = 7l |q|) (0 -2mes, + 7 o, )
— (1- )HPB/J}
d3q f ffff,)z A AN
fO,q) q
oN =—/ 7© el — Y [(H— + ¢ (21, - —222 ) + 11,4, &
B (27[)3 Oq( ) |q‘ 1L 14 |q| pA1 1491
&g 0 2 0 ) 2
-/ W’”—fo»q“‘fWB" =
(¥)y2 _
d3q foq —foq) < Vi,
B pDu, + V., —— ) (B11)
6M/ Y lglP(1 - £5) i
v d3q A @ B Dﬁv N VJ_ ﬁv AP AQ
Gl;? Bl/ = _/ (271')3 q/j_T(O) M f( (1 _qu) |:< | | + q[j_ 2Hp - |qﬂ| + Hp/lqtj_qj_
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