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Gravitational lensing time delays offer an avenue to measure the Hubble parameter H0, with some
analyses suggesting a tension with early-type probes of H0. The lensing measurements must mitigate
systematic uncertainties due to the mass modeling of lens galaxies. In particular, a core component in the
lens density profile would form an approximate local mass sheet degeneracy and could bias H0 in the right
direction to solve the lensing tension. We consider ultralight dark matter as a possible mechanism to
generate such galactic cores. We show that cores of roughly the required properties could arise naturally if
an ultralight axion of mass m ∼ 10−25 eV makes up a fraction of order 10% of the total cosmological dark
matter density. A relic abundance of this order of magnitude could come from vacuum misalignment.
Stellar kinematics measurements of well-resolved massive galaxies (including the Milky Way) may offer a
way to test the scenario. Kinematics analyses aiming to test the core hypothesis in massive elliptical lens
galaxies should not, in general, adopt the perfect mass sheet limit, as ignoring the finite extent of an actual
physical core could lead to significant systematic errors.
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I. INTRODUCTION

Measurements of the image and time delay of gravita-
tionally lensed quasar-host galaxies constrain the expan-
sion rate of the Universe, parameterized via the Hubble
constantH0 [1–3]. In a work that summarized the efforts of
several groups, the TDCOSMO team1 used these data to
derive H0 ¼ 74.0þ1.7

−1.8 km=s=Mpc (TDCOSMO-I [4]).
This result is in tension with measurements based on the
cosmic microwave background (CMB) [5], which find
H0 ¼ 67.36� 0.54 km=s=Mpc, and with large scale struc-
ture (LSS) galaxy clustering that is consistent with the
CMB [6–9]. We refer to the apparent discrepancy between
the lensing [4] and the CMB/LSS [5–9] measurements as
the lensing H0 tension.
The lensing H0 measurement of Ref. [4] is independent

of the well-known cepheid-calibrated supernova-Ia (SNIa)
measurements by the SH0ES Collaboration, which find
H0 ¼ 73.2� 1.3 km=s=Mpc [10]. The lensing result [4] is
in excellent agreement with the SNIa/cepheids result [10],
and both are “late Universe” probes of H0, that is, they
involve only low-redshift (z ∼ 1) dynamics, in contrast to
the CMB/LSS measurements, which can be considered
“early Universe” probes because they hinge crucially on
high-redshift (z ∼ 103) dynamics such as the baryonic
perturbations sound horizon. Discrepancy between early
and late determinations ofH0 could indicate a long-awaited

breakdown of the ΛCDM effective description of cosmol-
ogy [11,12]. After all, we understand no more than 5% of
the energy budget of the Universe. It is tantalizing to think
that a clue to the nature of the remaining 95% may come
from the H0 tension.
Needless to say, all of the methods to determine H0

require a careful account of systematic uncertainties. A
main concern in the SNIa analyses is the calibration of local
distance ladder anchors. The TRGB-calibrated SNIa analy-
sis of Ref. [13], for example, finds a value of H0 that is
consistent to ∼1σ with the CMB result, despite a nominal
precision that is comparable to the SNIa/cepheids method.
(See, however, [14]. And of course, there are concerns of
systematic issues in the CMB analysis, too [12].)
Lensing measurements of H0 are detached from the

distance ladder. However, modeling degeneracies couple
the inferred value of H0 to the assumed density profile of
the lens galaxy [15–25]. Reference [26] pointed out that a
core component in the lens galaxy density profile could
comprise an approximate internal mass sheet degeneracy
(MSD), shifting the inferred value of H0 without affecting
the image reconstruction and without conflict with esti-
mates of cosmological external convergence. Subsequently,
TDCOSMO-IV [27] added an effective “internal MSD”
degree of freedom to their halo model fit; as a result, the
error budget on H0 increased to the level expected from
stellar kinematics, around 10% [24,25]. Interestingly,
including galaxies from the Sloan Lens ACS (SLACS)
survey [28] in the kinematics analysis, and making the
additional assumption that SLACS and TDCOSMO gal-
axies share a self-similar structure, shifted the central value
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of the lensing H0 to the CMB value while providing some
positive evidence for an internal MSD component in the
data. The status of the lensing H0 measurements is
illustrated in Fig. 1.
In what follows, we use the term “core MSD” instead of

“internal MSD”, to highlight the fact that a natural
interpretation of the added degree of freedom in the halo
model corresponds to a physical core feature in the density
profile [26].
We should emphasize that the hint [27] for a core MSD

could eventually go away after further scrutiny of uncer-
tainties in conventional halo models [29]. Nevertheless,
even setting aside the results of [27], it is interesting to
examine the possibility of an actual core driving the lensing
H0 tension. The question then is, what is the core made of?
If the core is not traced by the light profile of the lens, then
it is natural to speculate that it could come from dark matter,
perhaps providing a clue to dark matter properties.
We consider the possibility that such cores come from

ultralight dark matter (ULDM). ULDM has been studied
extensively in recent years, and we do not give a thorough
coverage of the literature here; see references to and from
[30,31]. ULDM is known to develop a cored density profile
(“soliton”) due to gravitational dynamical relaxation. The
phenomenon has been identified in numerical simulations
by different groups [32–42] and is consistent with analytic
considerations, which show that the soliton is an energy-
minimiser at fixed mass, and thus, an attractor solution of
the equations of motion [43].
Figure 2 illustrates our idea. It shows the different

density components of a would-be lens galaxy, chosen
to resemble TDCOSMO system DESJ0408 [44]. The main
component of the dark matter in the system is not
considered to be ULDM; it follows an Navarro-Frenk-
White (NFW [45]) profile with mass parameter M200 ≈
1.9 × 1013 M⊙ and radius parameter Rs ≈ 87 kpc (concen-
tration parameter c ≈ 6.4, and virial radius Rv ≈ 550 kpc).

The stars follow a Hernquist [46] profile with mass M� ≈
1012 M⊙ and radius R� ≈ 8.7 kpc. In addition to these
components, we add a subdominant contribution from an
ULDM soliton core with a total mass of M ¼ 1.4 × 1012

M⊙ at a particle mass m ¼ 2 × 10−25 eV. The ULDM
parameters (M and m) are chosen such that the core
component extends sufficiently far beyond the projected
Einstein radius RE to keep imaging errors undetectable for
typical current lensing reconstruction measurement
uncertainties.
We would like to emphasize that the main component of

the dark matter in our model is not ULDM but must take
some other form. In the example of Fig. 2, ULDM
comprises only ∼10% of the total dark matter mass in
the system, with the remaining 90% following a cold dark
matter (CDM) NFW profile. In our model, the NFW
component and the soliton core coexist as a compound
profile: we are not proposing to eliminate the commonly
adopted CDM density cusp (ρ ∼ 1=r) of the inner halo with
a core; we are merely proposing to augment this cusp with a
modest ULDM perturbation. We shall see that the ∼1:10
ratio of ULDM to non-ULDM mass is enough to address
the H0 lensing tension. At the same time, it is consistent
with—and approximately saturates—the mass ratio that is
allowed by independent cosmological and astrophysical
constraints on ULDM.
From a theoretical perspective, ULDM is a compelling

possibility. If the spectrum of particles contains an ultra-
light boson, like the axions of some string-inspired models
[47,48], then the phenomenon of vacuum misalignment2

generically predicts that such a boson would behave as dark

H0 [km/s/Mpc]

SNIa/Cepheids 
SH0ES 2020

CMB  
Planck 2018

TDCOSMO I  
(Millon 2019)

TDCOSMO IV  
(Birrer 2020)

LSS/BBN 
Ivanov et al 2019

TDCOSMO IV  
(Birrer 2020)

65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80

FIG. 1. Status of the lensing H0 measurements. The “internal
MSD” degree of freedom, added in moving from TDCOSMO-I
[4] to TDCOSMO-IV [27], relaxed the lensing constraint on H0.
But what is the physical explanation of the internal MSD
component?
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FIG. 2. ULDM soliton core as a solution of the lensing H0

tension. Green dash-dotted and red dotted lines show the density
profiles of a cold dark matter NFW and a stellar component,
respectively. The blue dashed line shows a soliton with m ¼
2 × 10−25 eV and M ≈ 1.4 × 1012 M⊙, producing a shift
δH0=H0 ≈ 0.1. The halo parameters resemble TDCOSMO sys-
tem DESJ0408 [44].

2See [49–51] for the original version of this mechanism,
discovered in the context of the QCD axion [52–54].
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matter if the particle mass satisfies m≳H0 ≈ 10−33 eV. If
the boson χ is an axion with a decay constant f, vacuum
misalignment predicts [31]

Ωχ ≈ 0.3

�
m

10−21 eV

�1
2

�
f

1017 GeV

�
2

; ð1Þ

where Ωχ ¼ ρχ=ρcrit is the ratio of the ULDM relic density
to the critical density of the Universe and Ωχ ≈ 0.3 would
saturate the total dark matter contribution Ωm inferred from
cosmological data. This puts ULDM with m ≈ 10−21 eV in
the right order of magnitude to make up all of the dark
matter if f is around the grand unification or string scale.
As we shall see, the interesting mass range for our

current analysis is actually m ∼ 10−25 eV, give or take an
Oð1Þ factor. Cosmological and astrophysical observations
imply that such ULDM can only comprise a fraction of the
total dark matter. We thus define the cosmological ULDM
fraction,

αχ ¼
Ωχ

Ωm
; ð2Þ

we will be led to consider αχ < 1. In this case, as already
noted above, the remaining dark matter must take some
other form (e.g., higher-m axions).
Rotation curves of low-surface-brightness galaxies are

inconsistent with αχ ¼ 1 for m≲ 10−21 eV [55], but these
constraints have not been evaluated for αχ < 1. Recently,
Ref. [56] reported constraints that combine galaxy cluster-
ing data [57] with Planck15 CMB data [58] (see [59] for an
earlier analysis of the CMB data). The constraint on αχ
depends on the value ofm; for example, form ¼ 10−25 eV,
the 2σ C.L. combined limit is αχ ≲ 0.34, while for m ¼
10−26 eV the limit tightens to αχ ≲ 0.035. Additional
constraints come from the Ly-α forest line absorption
power spectrum [60], which can be roughly summarized
by αχ ≲ 0.16 at 2σ C.L. for m < 10−22 eV. The constraint
becomes weaker towards larger m and disappears for
m≳ 10−20 eV. We note that the Ly-α bound of [60] was
not explicitly computed and must be extrapolated to the low
values of m where we will use it; keeping that in mind, and
noting in addition that systematic uncertainties associated
with the heating and ionisation history of the intergalactic
medium could affect the Ly-α analyses to some extent, we
allow ourselves to explore αχ as large as 0.2.
Equation (1) tells us that ULDM at m ≈ 10−25 eV could

easily make up Oð10%Þ of the total dark matter, in the
vanilla misalignment scenario with f ≈ 3 × 1017 GeV.
The rest of the paper is arranged as follows. In Sec. II, we

recap the core-MSD setup of [26], explaining the con-
nection between imaging errors and the possible range of
the shift in the inferred value of H0. In Sec. III, we show
how an ULDM soliton produces a core-MSD profile. Using

a simplified prescription to estimate imaging constraints,
we explore the ULDM parameter space. In Sec. IV, we
study stellar kinematics. We find that the perfect MSD
limit, adopted in the kinematics analysis of TDCOSMO-IV
[27], needs to be revised if one wishes to explore a realistic
physical core-MSD model.
Our analysis suggests that ULDM could solve the

lensing H0 tension, provided it condenses into sufficiently
massive solitons in the lens galaxies. In Sec. V, we consider
the theoretical consistency of this scenario. We show that
ULDM solitons of roughly the right mass could indeed
form naturally by dynamical relaxation. Because dynamical
relaxation becomes inefficient if the cosmological ULDM
fraction αχ is small, sufficiently fast soliton condensation
requires that the ULDM abundance be as large as obser-
vational constraints allow it to be, αχ ∼ 0.2. Cosmological
constraints thus put some pressure on the model. Section VI
contains brief additional discussion of stellar kinematics
and dynamics in well-resolved galaxies, like our own
Milky Way. We summarize in Sec. VII.
Appendix A contains technical details of the distortion of

the soliton under a power-law background density profile.
Appendix B contains analyses of mock data, with refer-
ences to our implementation of the ULDM model in the
lensing software package lenstronomy https://github
.com/sibirrer/lenstronomy [61]. Appendix C contains some
details of the kinematics analysis.

II. THE CORE-MSD MODEL

Consider a lensing reconstruction model κ0ðθÞ for the
convergence of the lens. A core-MSD model can be
constructed from κ0ðθÞ by adding a core component
κcðθÞ while rescaling the original model,

κðθÞ ¼ κcðθÞ þ ð1 − κcðθEÞÞκ0ðθÞ: ð3Þ

Here, θE is defined by α0ðθEÞ ¼ θE, where α0ðθÞ is the
deflection angle due to κ0ðθÞ. At the same time, the source
plane coordinates are rescaled as β ¼ ð1 − κcðθEÞÞβ0.
On angular scales θ ≫ θE, it is assumed that κcðθÞ → 0
such that the core-MSD effect commutes with external
convergence.
Equation (3) is an approximate MSD if κcðθÞ is nearly

constant up to jθj that is sufficiently larger than jθEj. To be
quantitative, we can define the correction δE via

αðθEÞ ¼ θEð1þ δEÞ; ð4Þ

where αðθÞ is the deflection angle of the full model. δE
quantifies the relative imaging error in the vicinity of
θ ≈ θE, the angular range where lensing analyses have
the most constraining power. For simplicity, in this esti-
mate, we assume the system to be spherically symmetric, so
that αðθÞ ¼ 2θ

R
1
0 dzzκðzθÞ. Using Eq. (3), we then have

GRAVITATIONAL LENSING H0 TENSION FROM … PHYS. REV. D 104, 123011 (2021)

123011-3

https://github.com/sibirrer/lenstronomy
https://github.com/sibirrer/lenstronomy


δE ¼ 2

Z
1

0

dzzðκcðzθEÞ − κcðθEÞÞ

¼ αcðθEÞ
θE

− κcðθEÞ: ð5Þ

The first line in Eq. (5) shows that constant κcðθÞ within
θ < θE produces an MSD, and the second is convenient for
quantifying corrections when κcðθÞ is not exactly constant.
While this estimate was given for a spherical lens, it gives
a good approximation of the imaging error also for the
nonsymmetric systems arising in realistic analyses, as we
will verify using mock data.
Consider the possibility that a lens galaxy harbors a core

component, leading to a true convergence profile resem-
bling Eq. (3) with κcðθEÞ > 0. In this case, both the null
model κ0ðθÞ and the core-MSD model κðθÞ would give a
good description of the imaging data. However, the true
value of H0 would differ from the inferred value in the null
model by

H0;inferred −H0;true

H0;true
≡ δH0

H0

≈ κcðθEÞ: ð6Þ

Table I shows the values of δH0=H0 required to bring the
different systems to accord with the CMB result. We see
that κcðθEÞ ≈ 0.1, with some variation between systems
[62–66], could solve the lensing H0 tension.

III. CORE MSD WITH AN ULDM SOLITON

An ULDM soliton could produce the κc term in Eq. (3).
We now derive some results that are useful for the lensing
analysis; for a detailed discussion and more references
concerning ULDM solitons, we refer the reader to [55].
The ULDM soliton field is described by a function χðrÞ,

where we define the rescaled coordinate r ¼ mx. The mass
density associated with χ is given by

ρ ¼ m2

4πG
χ2; ð7Þ

where G is Newton’s constant. The field χ and the
Newtonian gravitational potential sourced by it, Φ, satisfy
the Schrodinger-Poisson equations (SPE) [55],

∂2
rðrχÞ ¼ 2rðΦþΦext − γ̃Þχ; ð8Þ

∂2
rðrΦÞ ¼ rχ2: ð9Þ

We include a background gravitational potential Φext,
coming from stars and from other (non-ULDM) contribu-
tions to the DM. Indeed, in the problem at hand the soliton
contributes just a small part to the mass density of the
lens near the Einstein radius, so we anticipate typically
jΦextj > jΦj. The variable γ̃ is an eigenvalue that character-
izes the solution. We are interested in the lowest-energy
solution, where χ starts off constant at r → 0 and decays to
zero with no nodes. We solve the SPE numerically.
The solution is fixed by a single parameter that we can

take to be the value of χ at r ¼ 0. We thus define the
solution χλðrÞ via

χλðr ¼ 0Þ ¼ λ2; ð10Þ

with a real parameter λ. It is convenient to use the scaling
relation [55],

χλðr;ΦextðrÞÞ ¼ λ2χ1ðλr; λ−2Φextðλ−1rÞÞ; ð11Þ

meaning that in numerical investigations, it is always
enough to compute χ1. For clarity, in Eq. (11), we explicitly
note how the external potential enters the solution.
It is convenient to introduce an approximation with

which properties of the soliton can be derived analytically.
We choose

χ1ðrÞ ≈
1

ð1þ a2r2Þb ; ð12Þ

where the coefficients a and b are fitted numerically to the
exact solution. For a self-gravitating soliton (the limit
Φext → 0), we obtain a ≈ 0.23 and b ≈ 3.9. When

TABLE I. Lens systems from [4]. Values for H0 (in km=s=Mpc) are from the PL fit (Fig. 6 in [4]). The reference
“true” H0 used to define δH0=H0 is taken from the CMB result H0 ¼ 67.36� 0.54 km=s=Mpc [5]. θE is in arcsec.
σP is in km/s. On the last column we show twice the maximum relative error of the velocity anisotropy, useful for
comparison with δH0=H0 (see discussion in Sec. IV).

δH0=H0 γ θE δE zl zs σP 2jδσPj=σP
RXJ1131 0.13þ0.05

−0.06 1.98 1.6 0.006 0.295 0.654 320� 20 0.125
PG1115 0.23þ0.11

−0.10 2.18 1.1 0.02 0.311 1.722 280� 25 0.178
HE0435 0.06þ0.07

−0.07 1.87 1.2 0.025 0.4546 1.693 220� 15 0.136
DESJ0408 0.11þ0.04

−0.04 2 1.9 0.01 0.597 2.375 230� 27 0.235
WFI2033 0.08þ0.05

−0.04 1.95 0.9 0.016 0.6575 1.662 250� 19 0.152
J1206 −0.01þ0.08

−0.07 1.95 1.2 0.025 0.745 1.789 290� 30 0.207
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Φext ≠ 0, the coefficients a and b depend on λ and Φext via
the combination λ−2Φextðλ−1rÞ.
With the approximation of Eq. (12), the soliton mass is

Mλ ¼
λ

Gm

Z
drr2χ21ðrÞ ≈

λ

Gm

ffiffiffi
π

p
a3

Γð2b − 3
2
Þ

4Γð2bÞ : ð13Þ

The convergence, deflection angle, and lensing potential
are

κλðθÞ ≈
λ3m

4πGΣc

ffiffiffi
π

p
a

Γð2b − 1
2
Þ

Γð2bÞ
1

ð1þ θ2

θ2c
Þ2b−1

2

; ð14Þ

αλðθÞ ≈ κλð0Þ
2θ2c

ð4b − 3Þθ
�
1 −

�
1þ θ2

θ2c

�3
2
−2b�

; ð15Þ

ψλðθÞ ≈ κλð0Þ
θ2

2 3F 2

��
1; 1; 2b −

1

2

�
; f2; 2g;− θ2

θ2c

�
; ð16Þ

where we defined the core angle,

θc ¼
1

λamDl
: ð17Þ

The critical density entering the convergence computation is
Σ−1
c ¼ 4πGDlDls=Ds, whereDl;s;ls are the angular diameter

distances to the lens, source, and between the lens and the
source. pF q½a⃗; b⃗; z� is the generalized hypergeometric func-
tion.3 In the MSD limit, θc ≫ θ, one can verify that
κλðθÞ ≈ κλð0Þ, αλðθÞ ≈ κλð0Þθ, and ψλ ≈ κλð0Þθ2=2.
Adopting the soliton as our core-MSD component, we

set κcðθÞ≡ κλðθÞ in Eq. (3). From Eqs. (5) and (6), we get

δH0

H0

≈
κλð0Þ

ð1þ θ2E
θ2c
Þ2b−

1
2

ð18Þ

and

δE ≈
ð1þ θ2E

θ2c
Þ2b−

1
2 − ð2b − 1

2
Þ θ2E
θ2c
− 1

ð2b − 3
2
Þ θ2E
θ2c

δH0

H0

: ð19Þ

For θE ≪ θc, we have δE ≈ ðb − 1
4
Þ θ2E
θ2c

δH0

H0
. This shows how

imaging uncertainties, roughly summarized by δE, con-
strain the shift δH0=H0 at given soliton core angle θc.
In Appendix A, we calculate how the soliton profile is

distorted in the presence of a power-law (PL) background.
We find that Eq. (12) is still a good approximation,
sufficient for our needs; the effect of the background

density is to modify the numerical values of the coefficients
a and b.
Before proceeding to observational constraints, we com-

ment on the parameter space of the model. As noted in the
beginning of this section, at a fixed value of the ULDM
particle mass m, the soliton is a single-parameter function.
While the scaling parameter λ from Eq. (10) is convenient
for analytical expressions, in making contact with obser-
vations, we prefer to use the total soliton mass M,
substituting λ → λðM;mÞ using Eq. (13). (The detailed
matching, but not the basic procedure, is slightly modified
with a background potential as explained in Appendix A.)
All other properties of the core (the convergence, for
example) then depend only onm andM. The full parameter
space is therefore covered when we analyze our results in
terms of m and M.

A. Constraints on ULDM from TDCOSMO systems

We are ready for a rough assessment of the lensing H0

tension in the ULDMmodel. In Fig. 3, we explore δH0=H0

and δE as function of the ULDM particle mass m (x axis)
and soliton mass M (y axis). The different panels corre-
spond to the different systems in Table I. The information in
the plot is as follows.
We begin with results that include the effect of a

background (non-ULDM) external potential, modeled as
a pure PL, using the results in Appendix A. For simplicity,
the same PL index γ ¼ 2 is used for all systems, but the
value of θE and δE for each system is as in Table I. In the
pale red shaded region, δE exceeds its corresponding value
from Table I. This region is disfavored by the imaging data.
Along the blue dashed line, δH0=H0 matches the value
required to solve the H0 tension. The solid blue lines
delimit the uncertainty on δH0=H0 for each system. (Other
curves in Fig. 3 correspond to theoretical constraints and
are explained in Sec. V.)
We also show how the imaging constraints change if the

external PL density is not included in the soliton compu-
tation. The result is shown by the dark red shaded region.
The imaging constraint is generally weaker when the PL
effect is not included, compared to when it is (i.e., the dark
shaded region is contained inside the pale region), because
the background potential causes the soliton to contract
inwards at fixed m and M, decreasing θc and leading to
stronger violation of the MSD.
The fact that the PL background analysis provides

stronger imaging constraints, compared with the self-
gravity case, illustrates the sensitivity of the analysis to
the detailed mass profile of the lens. However, the soliton
contraction is mostly driven by the cuspy PL mass
distribution at small r ≪ RE, where the lensing observables
are not well constrained. In fact, the observed stellar surface
brightness of the lenses display cores rather than cusps on
distances r ≪ RE, where the stellar density dominates over
the DM. As a result, physically motivated composite

3A rapidly converging expression is 3F 2½f1; 1; 2b − 1
2
g;

f2; 2g; z� ¼ 2
zð3−4bÞ ðlogð1 − zÞ −P∞

n¼1

Γð5
2
−2bþnÞ

Γð5
2
−2bÞ

zn
ðz−1Þnnn!Þ.
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stellar þ DM halo models, adjusted to fit the stellar light
profile, predict a contraction effect on the soliton that is less
significant than in the PL background. The imaging
constraint in these more realistic background models are
closer to the self-gravitating soliton result.
In Fig. 2, we show a soliton solution of the lensing H0

tension, using a composite stellar þ DMmodel that mimics
the properties of the system DESJ0408. The solution has
m ¼ 2 × 10−25 eV and M ≈ 1.4 × 1012 M⊙, marked in
Fig. 3 by a circle (bottom-left panel). This solution has
δH0=H0 ≈ 0.1, and we have verified that it is compatible
with the requirement jδEj < 0.01, valid for this system. The
fact that this solution would seem to be excluded in the PL
background analysis is due to the exaggerated soliton
contraction in the PL case.

We can use the self-gravitating soliton case to understand
the imaging constraints parametrically. In this limit, a ≈
0.23 and b ≈ 3.9 can be used in Eqs. (13)–(19), and the H0

shift is

δH0

H0

≈ 2.9
λ3m

4πGΣc
: ð20Þ

On the other hand, in the same self-gravity limit, we have
δE ≈ 3.6ðθE=θcÞ2δH0=H0. Demanding δE ≲ 0.01, as in
typical systems, and setting δH0=H0 ≈ 0.1, we should
impose θc ≳ 6θE, or

λm≲ 0.7
DlθE

: ð21Þ

FIG. 3. ULDM soliton as a solution of the lensing H0 tension. Panels correspond to different systems in Table I. The dark red shaded
region shows where δE exceeds its limits from Table I, computed neglecting the effect of an external mass distribution on the soliton. The
pale shaded region shows the same constraint, including the effect of an external PL potential. Along the blue dashed line, δH0=H0

matches the value from Table I, with solid lines delimiting the uncertainty; this result also includes the PL background. (In J1206 and
HE0435 the central value and/or lower limit of δH0=H0 are compatible with zero.) The relaxation estimate of Eq. (35) (see Sec. V) is
shown by green, pink, and purple bands for αχ ¼ 0.2, 0.1, 0.05, respectively, using σ0 ¼ σP. The band width is defined by the
uncertainty in σP. We truncate each constant-αχ band at smallm according to the cosmological constraints from Ref. [56]. The saturation
estimate [ðK=MÞλ < 1.5ðA=2Þ] is shown by thick dashed grey line. The circle in the panel of DESJ0408 marks the set-up of Fig. 2.
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Combining Eqs. (20) and (21), we obtain,

self-gravity approximation∶

m≲10−24 eV

�
Dls

Ds

�1
2

�
100

θE

�3
2

�
1Gpc
Dl

��
0.1

δH0=H0

�1
2

: ð22Þ

Again, the presence of an external potential (PL or
composite) contracts the soliton inward to some extent
at fixed M and m, shifting the upper limit of Eq. (22) to
somewhat lower m.
Our discussion of the imaging constraints was simplistic,

in that we used the rough Einstein angle criterion δE to
constrain the possible shift to H0. In comparison, the
likelihood function in real lensing analyses contains
detailed extended source information as well as multiple
modelling parameters, experimental seeing limitations, etc.
In Appendix B, we present a numerical study of a mock
system, including most of these complications, using
lenstronomy. This numerical study serves two pur-
poses. First, we introduce an implementation of the ULDM
module in lenstronomy. In future work, we plan to use
this tool to test the ULDM model including the full lensing
likelihood. Second, this exercise allows us to test the
accuracy of the simple δE criterion. We find that the naive
δE criterion is slightly conservative compared with a full
analysis: for example, at fixed δH0=H0 ≈ 0.1, we find that a
full numerical analysis yields a constraint on θc (and
therefore, equivalently, on m at fixed M) that is about a
factor of 2 weaker than the constraint we would obtain
using the naive δE criterion.

IV. STELLAR KINEMATICS

Stellar kinematics measurements break the MSD and are
the limiting observational factor to a core-MSD shift ofH0.
The basic observable is the luminosity-weighted velocity
dispersion along the line of sight, σlos, given by [67]

σ2losðθÞ ¼
2G
IðθÞ

Z
∞

1

dy
y
K

�
y;
θa
θ

�
lðyDlθÞMðyDlθÞ: ð23Þ

Here, lðrÞ is the stellar luminosity density, IðθÞ is the
surface brightness,MðrÞ is the total enclosed mass, and the
function Kðu; uaÞ encodes the velocity anisotropy profile
with the Osipkov-Merritt [68,69] anisotropy radius ra ¼
Dlθa [67]. For analytical estimates, we note that the
isotropic velocity limit gives Kðu;∞Þ ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 1=u2

p
.

The core-MSD model enters Eq. (23) via the mass
profile, MðrÞ ¼ McðrÞ þ ð1 − κcÞM0ðrÞ, where M0ðrÞ
comes from the null model and McðrÞ from the core.
The dispersion of the full model is related to that of the null
model, σ2los;0, via

σ2los
σ2los;0

¼ 1 − κcð1 − δcÞ; ð24Þ

δc ¼
1

κc

σ2c
σ2los;0

; ð25Þ

where σ2c is the velocity dispersion due to the core itself. In
general, all of σ2los;0; σ

2
c ; σ2los, and δc depend on the meas-

urement point θ. In Eq. (24), the term δc parametrizes the
deviation from the perfect MSD limit. It becomes small for
θc ≫ θ, but may be quantitatively relevant once we con-
sider a finite soliton core, and once kinematics data probing
θ not much smaller than θc is used.
To see this, consider an isothermal PL profile for the null

model, for whichM0ðrÞ ¼ 2σ2vr=G where σ2v is the physical
velocity dispersion. In convenient angular variables, we can
trade σ2v for θE, noting thatM0ðθÞ ¼ 2ΣcD2

l θEθ.We also take
the isotropic limit of K and consider the Hernquist profile
for the luminosity density, lðrÞ ¼ l0r4�=½2πrðrþ r�Þ3�. The
parameter r� is related to the commonly used effective radius
re via re ≈ 1.8r� [46]. With these simplifications, and using
Eq. (12) for the soliton profile (with b ≈ 3.9), we obtain

δcðθÞ ¼
πθ2

3θEθc
f

�
θc
θ
;
θ�
θ

�

≈ 0.31

�
1000

θc

��
100

θE

��
θ

0.500

�
2 fðθcθ ; θ�θ Þ
fð20; 0.5Þ ; ð26Þ

where

fðyc;y�Þ¼
2Γð2bÞffiffi
π

p
Γð2b−1

2
Þ
R
∞
1 dy

ffiffiffiffiffiffiffiffi
y2−1

p
ðyþy�Þ3 2F1ð32 ;2b;52 ;−y2

y2c
Þ

R∞
1 dy

ffiffiffiffiffiffiffiffi
y2−1

p
y2ðyþy�Þ3

: ð27Þ

TDCOSMO-IV [27], in considering the effect of an
“internal MSD,” have assumed in practice the perfect MSD
limit δc ¼ 0 in their kinematics analysis of TDCOSMO and
SLACS systems. The approximation was tested using a
mock system with4 θe ¼ 0.200 and several core radii.5

However, the parametric breaking of the MSD, captured
by Eq. (26), was not explored for different values of θe or
the baseline θE and system redshifts (equivalently σv). As
Eq. (26) suggests a strong dependence on the kinematics
observation point, θ, it is important to check to what extent
the MSD limit is expected to hold across different systems.
For TDCOSMO systems [4,27], the kinematics con-

straints were based on a single effective measurement

4We thank S. Birrer for clarifications about this point.
5The core toy model in [27] was different from our soliton

core. The kinematics effect is approximately matched between
the two models for θðtoyÞc ≈ 0.5θðsolitonÞc . We give some more details
on this comparison in Appendix C.
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centred on θ ¼ 0 and averaged over an aperture A,
weighted by the surface brightness IðθÞ. To be more
precise, the observationally accessible dispersion σP is
given by [19,70]

ðσPÞ2 ¼
R
A d2θ½IðθÞσ2losðθÞ � P�R

A d2θ½IðθÞ � P� ; ð28Þ

where P is the seeing. It is natural to define

ðσPÞ2
ðσP0Þ2

¼ 1 − κcð1 − ΔcÞ; ð29Þ

Δc ¼
R
A dθθIðθÞσ2los;0ðθÞδcðθÞ � PR

A dθθIðθÞσ2los;0ðθÞ � P
: ð30Þ

From this expression and the previously quoted results, the
correction termΔc can be evaluated numerically. It depends
on θc, θ� (equivalently, θe), the aperture A, and the seeing
P. The main point to explore is how Δc reacts to different
values of θe and θc.
In Fig. 4, we plot Δc vs θe for different values of θc. The

null model is defined with θE ¼ 100. The aperture is defined
to be a circular region of radius 100 (a simplification of the
aperture in [27]). For simplicity, we neglect the seeing,
setting the FWHM of P to zero.
TDCOSMO systems typically have θE ∼ 100, and from

the imaging analysis, we know that θc ≳ 5θE or so. Some
TDCOSMO systems have θe ∼ θE ∼ 100 (Fig. 16 in [27]);
for such systems, Δc can exceed 30%. SLACS systems
have even larger values of θe, some reaching θe ∼ 2.5θE,
and Fig. 4 shows that the MSD limit may be violated at the
Oð1Þ level. The effect should be even more important for
SLACS systems with resolved kinematics (see Figs. 15
[27]). This is manifest, to some extent, in Fig. B3 in [27]. In

Appendix C, we estimate Δc in more detail for resolved
SLACS systems.
The calculation in Fig. 4 does not include the effect of a

finite PSF, velocity anisotropy, lens ellipticity, etc. In
Appendix C, we repeat a similar calculation using a full
mock system that includes all of these effects. The result of
a full computation is compatible with that in Fig. 4
numerically to 50% or so.
If a real physical core component is behind the lensing

H0 tension, then the kinematics constraints must be
considered with care, because the MSD limit could
introduce large systematic errors. In general, the breaking
of the MSD manifests in a smaller deviation of σP from
the null model: instead of δσP=σP ¼ −0.5κc, we have
δσP=σP ¼ −0.5κcð1 − ΔcÞ, with Δc > 0. This calls into
question the kinematics analysis of some TDCOSMO
systems and certainly of resolved SLACS systems in [27].
Finally, while we think that the kinematics data needs to

be reconsidered, this is unlikely to change the conclusion
that a core-MSD solution for the lensing H0 tension is
consistent with the data. Even if we conservatively take the
MSD limit, Table I shows that the TDCOSMO systems
driving the tension satisfy 2jδσP=σPj≳ δH0=H0 for all but
PG1115, and there the inequality holds to 0.5σ or so.

V. THEORETICAL PERSPECTIVE

To explain the lensing H0 tension, the ULDM soliton
mass in the lens galaxy must be large enough. How much
ULDM is needed, and how does this requirement compare
to the soliton predicted by numerical and analytic
considerations?
Numerical simulations have shown that the soliton grows

by accreting ULDM from the surrounding halo via gravi-
tational dynamical relaxation, with a characteristic time-
scale,

τg ≈
ffiffiffi
2

p
b

12π3
m3σ6

G2ρ2χΛ
: ð31Þ

Here, ρχ is the density of ULDM, σ is the velocity
dispersion, Λ is the Coulomb logarithm, and the numerical
factor b ≈ 0.7 was calibrated in numerical simulations [39]
(for recent analyses, see also [40–42]). Below, we will
set

ffiffiffi
2

p
b ≈ 1.

A first estimate of the maximal mass of an ULDM
soliton that could form in a galaxy can be obtained by
calculating the ULDM mass contained inside the galacto-
centric radius Rg within which τgðRgÞ < tgal, where tgal is
the age of the galaxy. Near this radial boundary, we expect
that ρχ ≈ αχρ ¼ αχρ0=ð1 − αχÞ, where ρ is the total DM
density (ULDM+non-ULDM) and ρ0 is the background
density in non-ULDM DM [αχ is the cosmological ULDM
fraction defined in Eq. (2)]. We can thus estimate Rg from
solving

c 5 c 10 c 20

0.0 0.5 1.0 1.5 2.0 e0.0

0.1

0.2

0.3

0.4

0.5

0.6
c

FIG. 4. The finite-core correction Δc, modifying the MSD limit
in the kinematics analysis [see Eqs. (29)–(30) and text]. Here, we
neglect the seeing, the aperture is defined to be a circular region
of radius 100, and the null model has θE ¼ 100.
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tgal ≈
1

12π3
m3σ6ðRgÞ

G2Λα2χρ2ðRgÞ
: ð32Þ

A rough upper bound on the mass of a soliton is then

M < αχMhaloðRgÞ: ð33Þ

For an isothermal power-law halo with ρ ∝ R−2 and
constant σ ≈ σ0, we have σ20 ≈ c0GMðR0Þ=R0≈
c04πGρðR0ÞR2

0, where we expect6 c0 ≈ 1=2. With this,
we have

R4
g ≈ 12π3

G2Λα2χρ2ðR0ÞR4
0

m3σ60
tgal

≈
3π

4

Λα2χ
c20m

3σ20
tgal: ð34Þ

On the other hand,MðRgÞ ≈ σ20Rg=ðc0GÞ, so using Eq. (33)
the soliton upper bound reads

M <

�
α2χ
m

�
3=4 1

G

�
σ0
c0

�
3=2

�
3π

4
Λtgal

�
1=4

: ð35Þ

In Fig. 3, we show how the estimate of Eq. (35) compare
with the imaging and H0 constraints. The upper bound is
shown by the green, pink, and purple bands, corresponding
to αχ ¼ 0.2, 0.1, and 0.05, respectively. The upper and
lower limits of each of the bands are obtained by setting
σ0 ¼ σP in Eq. (35) and using the upper and lower
uncertainty estimates for σP from Table I. The age of each
lens galaxy [tgal in Eq. (35)] is taken as the FRW time
between z ¼ 20 and the lens redshift zl.
We truncate each constant-αχ band at small m according

to the cosmological constraints from Ref. [56]. We also
adhere, roughly, to the limit of [60] by restricting to
αχ ≤ 0.2. Inspecting the result, it is clear that the cosmo-
logical constraints on αχ play an important role in the
scenario. While the imaging constraints eliminate m≳
10−24 eV or so, the combination of the dynamical relax-
ation consideration with the cosmological bounds [56,60]
disfavors m≲ 10−25. This defines the interesting parameter
space of the model to a rather narrow window.
Apart from the dynamical relaxation upper bound,

another consideration comes from the saturation of the
growth of the soliton: while Eq. (35) estimates the maximal
amount of ULDM mass that is available for condensation
into a soliton, it is possible that only a fraction of this total
available mass would actually condense. The soliton
growth slows from M ∝ ðt=τgÞ1=2 to M ∝ ðt=τgÞ1=8 when

the specific kinetic energy of the soliton [kinetic energy per
unit mass, (K=M)] becomes comparable to the specific
kinetic energy in the surrounding halo. Both the M ∝ t1=2

growth phase and its saturation into M ∝ t1=8 were
observed in numerical simulations [40–42], and are con-
sistent with the soliton–host halo relation originally dis-
covered in [33,34], and then shown to be equivalent to
(K=M) equilibration in [55,72]. The reason for this satu-
ration is that once the (K=M) threshold is crossed, the
velocity dispersion at the outskirts of the soliton, and thus,
the dynamical time scale τg, becomes dominated by the
gravitational potential of the soliton itself. This causes τg to
depend on M with larger M corresponding to larger τg,
leading to self-regulation of the growth rate.
With the parametrization of Eq. (12) we can compute the

soliton specific kinetic energy,

�
K
M

�
λ

¼ λ2
R
drr2ð∂rχ1Þ2
2
R
drr2χ21

≈ λ2
3a2b2Γð2bÞΓð2b − 1

2
Þ

Γð2bþ 2ÞΓð2b − 3
2
Þ : ð36Þ

In the limit of low-mass soliton, where the background
gravitational potential completely dominates the structure of
χ, ðK=MÞλ is independent of the parameter λ because the
ULDM profile simply reflects the wave function of an
ULDM particle bound in the external potential. Indeed,
using the PL external potential in this limit gives ðK=MÞλ≈
A=2, consistent with the virial theorem.7We can estimate the
self-regulation threshold by letting the soliton mass grow
until ðK=MÞλ starts to exceed the background-dominated
result.
In Fig. 5, we illustrate the growth saturation limit,

computed for the system RXJ1131 from Table I. On the

0.5 1 2 5

(K /M )

A /2
1 1010

5 1010
1 1011

5 1011
1 1012

5 1012
1 1013

m25M [M ]

FIG. 5. Illustration of the soliton growth threshold, discussed in
Sec. V [see text below Eq. (36)].

6See [71], Chap. 4.3. We keep track of the constant c0 here
because in a realistic scenario it could vary by Oð1Þ, contributing
to the uncertainty in the relaxation estimate.

7To be precise, the large-A=λ2 limit of Eq. (36) gives
ðK=MÞλ → 0.454A. The small mismatch from 1=2 can be
expected given that Eq. (12) is merely an approximation for
the soliton.
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x axis, we plot ðK=MÞλ normalized to its asymptotic small-
M value. On the y axis, we plot the product Mλm25, where
m25 corresponds to the ULDM particle mass via
m25 ¼ m=ð10−25 eVÞ. As noted above, at small Mλ, the
value of ðK=MÞλ becomes independent of Mλ (or equiv-
alently, of λ). As Mλ increases, the soliton self-gravity
begins to dominate ðK=MÞλ. In Fig. 5, we mark by a red dot
the value of Mλ at which ðK=MÞλ exceeds the small-M
result by 50%. From Eq. (13), we know that in the self-
gravitation limit the parameter λ fixes the combination
Mλm; thus, the saturation limit also fixes the combination
Mλm. This is the reason why we use the productMλm25 for
the y axis in Fig. 5.
With some arbitrariness, we will estimate the growth

saturation limit (roughly) by imposing, for each halo,
ðK=MÞλ < 1.5ðA=2Þ, similar to the illustration in Fig. 5.
The result of this calculation is shown by the thick dashed
grey lines in Fig. 3.
For all of the systems of Table I, the growth saturation

limit is weaker than or comparable to the dynamical
relaxation timescale constraint obtained with ULDM frac-
tion αχ ¼ 0.2. This suggests that for the range of m plotted
in Fig. 3, ULDM solitons are still growing in the lens
galaxies, and the limiting factor for the soliton mass may be
the total ULDM mass available within the dynamically
relaxed region of the halo.

VI. ADDITIONAL DISCUSSION

A. Looking for a large-core soliton in near-by galaxies?

Stellar kinematics in well-resolved galaxies—including,
e.g., the Milky Way (MW) itself—may provide additional
constraints on ULDM. To our knowledge, the parametric
region we consider here with m ∼ 10−25 eV and ULDM
fraction αχ ∼ 0.1 has not been systematically studied yet.
As noted in [26], it would be interesting to modify analyses,
such as [73], to explicitly model and search for core
features in massive elliptical galaxies.
In a MW-like galaxy, the radius of the core would fall in

the dozens of kpc range (comparable to the core radius for
the massive elliptical lens galaxies in the cosmography
analysis). Inwards of the core radius, ULDM would only
make a small perturbation to the total mass budget
of the galaxy, and its presence may be difficult to detect.
Near the core radius, however, ULDM may become
observationally relevant. Figure 6 illustrates how a
soliton satisfying the soliton-halo relation [33,34] at m ¼
10−24.5 eV looks like in comparison to the observed
kinematic mass budget of the MW. Clearly, a dedicated
analysis of relevant data, notably from the GAIA mission
[74–76] could probe the scenario.
As an aside, we note that Refs. [77–81] argued that cored

density profiles for dark matter in dwarf and spiral galaxies
provide more consistent fits for the inner region of rotation
curves than do cusp NFW-like profiles. This suggestion is

not without debate,8 but it certainly motivates an open-
minded approach to the possible morphology of dark
matter halos. Either way, the relation to our scenario is
not obvious, for several reasons. First, in our proposal,
ULDM makes only a minor contribution to the total dark
matter mass budget in the inner region of the lens galaxies;
the profiles we have been studying here are not core
profiles per se, but rather compound profiles where a
dominant NFW-like dark matter cusp is augmented by a
sub-dominant ULDM core (see Fig. 2). Second, the
systems explored in [77–81] were spirals and dwarf
galaxies, whereas our study directly pertains to massive
ellipticals. Lensing analyses for massive ellipticals have so
far mostly assumed a CDM-like cusp, motivated by CDM
numerical simulations and by observational studies such as
Ref. [73]. A full reevaluation of the lensing analyses in
terms of possible constraints on cored profiles could be
very interesting but is outside the scope of the current work.
Lastly, the scale radius of the cores advocated in [77–81] is
comparable to the optical radius, about an order of
magnitude smaller than the radius of the core component
we envision in this paper.

B. Fluctuations and dynamical heating

Reference [84] estimated the dynamical heating due to
ULDM fluctuations on MW disk stars (see also [85,86]).
For the case αχ ¼ 1, where all of DM is ULDM, they quote
a bound m≳ 10−22 eV by considering the vertical velocity
dispersion of thick disk stars. Formally, in an infinite
system, the rate of dynamical heating scales as m−3α2χ ,
so a model with αχ ∼ 0.1 and m ∼ 10−25 eV could naively
be thought to violate the bound. However, the MW is finite,
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FIG. 6. ULDM atm ¼ 10−24.5 eV in the Milky Way—based on
a collection of data referenced in [55].

8See, e.g., Ref. [82], analyzing kinematics in dwarf spheroidal
galaxies without clear evidence for a core and Ref. [83] for an
NFW-based fit of GAIA kinematics data in the MW.
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and in ourmodel, ULDM in the central few dozens of kpc (or
even ∼100 kpc) is actually expected to be condensed in the
coherent soliton (see Fig. 6). In this region, the stochastic
heating analysis of [84–86] is not valid. Instead of stochastic
fluctuations, dynamical heating may still be transmitted to
some extent to stars via core quasinormal mode fluctuations
[32,38]. This analysis, for stellar orbits at the outskirts of
the galactic disk, is yet to be done. (A related study [87]
considered soliton fluctuations heating a star cluster in a
dwarf galaxy. These are very different regions in ULDM
parameter space and system size.)

VII. SUMMARY

The possibility of a real tension between early- and late-
type determinations of H0 is exciting, and could signal a
breakdown of ΛCDM [12]. After all, the ΛCDM model is
merely an effective theory. Gravitational lensing analyses,
notably led by the TDCOSMO team, provide an important
way to measure the local H0. Accepting certain minimal
assumptions about lens galaxy structure, the lensing analy-
ses seem to reinforce the tension [4].
We follow up on the suggestion of Ref. [26], that a core

component in the density profile of lens galaxies would
behave as an approximate internal mass sheet degeneracy
(MSD) and could bring the lensing H0 measurement down
to the CMB value, solving the lensing part of the H0

tension. A preliminary test of this proposition on the data
was reported in TDCOSMO-IV [27], finding a possible
positive hint in the data. However, while [27] took an
important step towards mitigating possible systematics
related to the core-MSD proposal, they did not address
the question of the physical origin of a core component.
We explored ultralight dark matter (ULDM) as a con-

crete, well-motivated model that could naturally produce
the required cores. If ULDM exists, then it is known to
produce cores (“solitons”) in the center of galaxies, due to
gravitational dynamical relaxation. We studied the lensing
imprint of these cores and demonstrated that they could
indeed address the lensing H0 tension, if the ULDM
particle mass is in the ballpark of m ∼ 10−25 eV.
Cosmological constraints [59,60] imply that such light
ULDM can only comprise ≲20% of the total dark matter.
This puts pressure on our scenario, because it limits the rate
at which dynamical relaxation can operate and form the
solitons. However, for ULDM abundance near this limit,
the predicted cores are very close to the level required for
H0: clarifying this issue further would require numerical
simulations that account for the background halo potential
(tools of this type are already operational [33–42], but have
so far been used to explore different parametric regions
of ULDM).
From a theoretical perspective, the required ULDM

abundance could be realized via simple vacuum misalign-
ment for an axionlike particle with a decay constant around
the grand unification or string scale.

Our study shows that strong galaxy lensing, combined
with other cosmological probes like the CMB, could be
sensitive to the presence of a subdominant component of
dark matter in the form of ultralight fields or axions. It
would be exciting if the lensing H0 tension is the first hint
for such fields, which could be the harbingers of otherwise
inaccessible aspects of the UV theory. A promising path to
test this idea is by dedicated kinematics studies, consider-
ing both massive elliptical galaxies of the type dominating
the lensing analyses as well as near-by systems, including
our own Milky Way.
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APPENDIX A: POWER-LAW BACKGROUND
FITTING FORMULA

Here we consider how an external mass distribution
affects the soliton profile. The background is taken to be a
pure power-law (PL). Lensing analyses have often adopted
this approximation, which leads to results for H0 that are
consistent with more realistic composite DMþ stars halo
models [4]. In a realistic analysis, the halo is axisymmetric
to accommodate quad geodesics, and we include axisym-
metry when we analyse mock data in Appendix B. For
simplicity, however, in modeling the impact of the external
potential on the structure of the soliton, we assume
spherical symmetry. This approximation is justified by
the disk galaxy study of Ref. [72], which showed that the
soliton remains nearly spherical even with significant a-
sphericity of the background.
The spherical PL density profile can be parametrized by

ρ0ðxÞ ¼
Σc

Dlθ̃E

3 − γ

2
ffiffiffi
π

p Γðγ
2
Þ

Γðγ−1
2
Þ

�
x

Dlθ̃E

�
−γ
: ðA1Þ

This profile has two parameters: the PL slope γ and the
normalization, fixed here by θ̃E. [For a lensing model
containing the PL ρ0 alone, the parameter θ̃E would match
the observable Einstein angle θE. This is no longer true
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once we consider composite models as in Eq. (3).] The
values of Dl and Σc are fixed by the system redshift and
cosmology. To simplify matters further we set γ ¼ 2, close
to the slopes inferred for the galaxies in Table I. The
external potential entering Eq. (8) is then given by

ΦextðrÞ ¼ A ln rþ C; ðA2Þ

A ¼ 2GΣcDlθ̃E: ðA3Þ

Note that the factor ΣcDl ¼ Ds=ð4πGDlsÞ is independent of
H0. To gain some physical intuition, note that if we define
MPLð1=mÞ as the mass included in the PL profile up to a
distance equal to the ULDM Compton radius 1=m, then
A ¼ GMPLð1=mÞm. Conveniently, for γ ¼ 2, MPLð1=mÞm
is independent on m. The constant C in Eq. (A2) is
unimportant.
Because Φext breaks the scale invariance of the self-

gravitating soliton, the coefficients a and b in the approxi-
mation of Eq. (12) now depend on the combination A=λ2.
We find that Eq. (12) still provides a good fit for any value
of A=λ2, with the fitting formula,

aðzÞ ¼ 0.23
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 7.5z tanh ð1.5z0.24Þ

q
; ðA4Þ

bðzÞ ¼ 1.69þ 2.23
ð1þ 2.2zÞ2.47 ; ðA5Þ

where z ¼ A=λ2.

APPENDIX B: POWER-LAW BACKGROUND:
MOCK ANALYSIS

Herewe use the gravitational lensmodel software package
lenstronomy https://github.com/sibirrer/lenstronomy
[61] to study the core-MSD soliton model in mock data
analysis. Our main purpose is to check how well the simple
δE imaging error criterion described in Sec. II [see Eqs. (5)
and (19)] captures the observational constraints on themodel.
In addition, the implementation of the soliton core module in
lenstronomy would be useful to test the model directly
against data in forthcoming work.
The mock data is as follows. The truth model has the

convergence of Eq. (3), with κ0 given by an elliptic PL
profile (so as to produce a quad image) and κc ¼ κλ of an
ULDM soliton with m ¼ 10−25 eV and M ¼ 1.4 × 1012

M⊙. The parameters are chosen to produce an effective
κλðθEÞ ≈ 0.1 and θc ≈ 1000. The truth value of H0 is set to
H0 ¼ 67.4 km=s=Mpc, mimicking the CMB result [5]. In
Fig. 7, we show the mock alongside a reconstructed image,
done by running the MCMC using the core-MSD model
with a Gaussian prior on H0 set at its truth value.
To demonstrate the outcome of using an inference model

which does not include a core component (the case of, e.g.,
[4,62–66]), we run the MCMC using a pure (elliptic) PL.
Figure 8 shows the posterior triangle plot obtained for this
model. As expected, the MCMC converges to H0≈
75 km=s=Mpc, in a good fit without detectable imaging
residuals. A lensing analysis that does not utilize the core-
MSD model would converge to this biased result.
In the top panel of Fig. 9, we rerun the MCMC, this

time using the core-MSD model in the inference. [For
convenience in the implementation, we use 1=θc and

FIG. 7. Mock image and reconstruction. The model used for inference is PLþ ULDM core, with a Gaussian prior of
H0 ¼ 67.4 km=s=Mpc. Code: https://github.com/lucateo/ULDM-Strong-Lensing_H0/blob/main/Notebooks/Mock_analysis_uldm2uldm_
H0_prior.ipynb.
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κλðθEÞ, rather than m andM, as the sampling parameters in
the fit.] The MSD leads to a significant broadening of the
H0 posterior, corresponding to the κλðθEÞ-H0 degeneracy.
A low value of H0 ≈ 60 km=s=Mpc, accompanied by an
M ≈ 1012 M⊙ soliton at m≲ 10−25 eV, produces a com-
parably good fit as the original H0 ≈ 75 km=s=Mpc model
with a vanishing soliton (Fig. 8).
In the bottom panel of Fig. 9, we repeat the exercise, this

time adding an external CMB prior on H0 coincident with
the truth value of the mock. The posterior now converges to
an upper limit of 1=θc ≃ 0.13=ð100Þ at 95% C.L. This,
together with the most probable value for κλðθEÞ, corre-
spond to M ≈ 9 × 1010 M⊙ and m ≈ 2 × 10−25 eV.
To study how well Eq. (19) approximates realistic

imaging constraints on the soliton, in Fig. 10, we show
δE as a function of 1=θc, computed using Eq. (4) for a
specific value of κλðθEÞ. In this calculation, αðθEÞ entering
Eq. (4) is the deviation angle of the full core-MSD model,
computed at a fixed angle corresponding to the peak
posterior value of θE found in the pure PL MCMC run

FIG. 8. Lensing reconstruction and time delay analysis using
mock data. Blue lines mark the truth values. The truth model is PL
backgroundþ ULDM core, with κλðθEÞ ≈ 0.1. The truth value of
H0 used to produce the time delays is H0;true ¼ 67.4 km=s=Mpc.
The model used in the inference is pure PL, without a core. The fit
parameters are the PL slope γ, the Einstein angle θ̃E, and the halo
ellipticity q (not shown in the plot). The PL fit converges on a false
result H0;inferred ≈ 75 km=s=Mpc. Notice that this PL fit will try to
converge to the true Einstein angle of the mock, which can be
derived by solving θE ¼ ð1 − κλðθ̃EÞÞθ̃E þ αcðθEÞ, where θ̃E is the
parameter we used to construct the mock; in green, we show this
θE. Code: https://github.com/lucateo/ULDM-Strong-Lensing_H0/
blob/main/Notebooks/Mock_analysis_uldm2PL.ipynb.

FIG. 9. Lensing analysis for the same mock data as in Fig. 8,
this time adding a core component to the fit. The blue lines
correspond to the true values used for the mock. Top: Model
inference with flat prior on H0. We remark that the mock is
consistent with a no-core solution; hence, the median value
showed for 1=θc is an artifact of the finite range of the prior. The
MSD is manifest by the broadening of the H0 posterior
distribution. Code: https://github.com/lucateo/ULDM-Strong-
Lensing_H0/blob/main/Notebooks/Mock_analysis_uldm2uldm_
No_H0_prior.ipynb. Bottom: Same as in the top panel, this time
adding a CMB prior on H0. As expected, the no-core solution is
now disfavored. Code: https://github.com/lucateo/ULDM-Strong-
Lensing_H0/blob/main/Notebooks/Mock_analysis_uldm2uldm_
H0_prior.ipynb.
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of Fig. 8. In green, we show the value given by Eq. (19).
We see that Eq. (19) leads to a bound on θc which is a factor
of 2 or so stronger (that is, more conservative) than the
MCMC bound.

APPENDIX C: MSD-BREAKING KINEMATICS
CORRECTION

In Fig. 11, we show the MSD-breaking kinematics
correction Δc, computed semianalytically (see Sec. IV) for

model parameters mimicking the nine SLACS systems of
[27] with resolved kinematics data (see Fig. 15 in [27]).
The values of θe and θE for these system are taken from
Table E1 in [27]; from left to right, the systems in the
plot are: SDSSJ1627 − 0053, SDSSJ2303þ 1422,
SDSSJ1250þ 0523, SDSSJ1204þ 0358, SDSSJ0037−
0942, SDSSJ0912 þ 0029, SDSSJ2321 − 0939,
SDSSJ0216 − 0813, SDSSJ1451 − 0239. Circle, triangle,
and diamond markers correspond to the angular bins
ð000; 100Þ; ð100; 200Þ; ð200; 300Þ, respectively. In the left panel,
we use the core toy model of [27]. In the right, we repeat
the exercise for the physical ULDM soliton model. Both
models are defined with θc ¼ 10θe.
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Toy model

1 2 3 4 5 6 7 8 9
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FIG. 11. MSD-breaking kinematics correction Δc, computed semianalytically (see Sec. IV) for model parameters mimicking the nine
SLACS systems with resolved kinematics (see Fig. 15 in [27]). Circle, triangle, and diamond markers correspond to the angular bins
ð000; 100Þ; ð100; 200Þ; ð200; 300Þ, respectively. Left: for the core toy model of [27]. Right: for the ULDM soliton. Both models are defined with
θc ¼ 10θe.

FIG. 12. MSD-breaking kinematics correction Δc, computed
numerically for the mock system including velocity anisotropy,
lens ellipticity, PSF effects, and realistic aperture definitions
https://github.com/lucateo/ULDM-Strong-Lensing_H0/blob/
main/Notebooks/Velocity_dispersion.ipynb. Compare this re-
sult to the semianalytic result in Fig. 4.

FIG. 10. Triangle plot of δE and 1=θc, calculated for a fixed
κλðθ̃EÞ. In green, the δE coming from Eq. (19). Notice that the
maximum δE allowed for our mock is jδEj ≲ 0.0008 (horizontal
red lines). Combining this with Eq. (19) would yield the naive
bound θc ≳ 2500 (blue vertical line, marking the intersection of the
green and red lines). However, the region explored by the MCMC
suggests that the more realistic bound is somewhat weaker,
θc ≳ 1000. Code: https://github.com/lucateo/ULDM-Strong-
Lensing_H0/blob/main/Notebooks/Mock_analysis_uldm2uldm_
H0_prior.ipynb.
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In computing the effect for the core model of [27], we use
the fact that the density profile in this model matches (the
square of) Eq. (12). It follows that Eqs. (26)–(27) are still
valid for this model. The only adjustment needed is to set
b ¼ 3=4 for the toy model (compared to b ≈ 3.9 for a self-
gravitating soliton). The parameter θc has the same role in
both cases. Figure 11 shows that for small apertures, the toy
Δc is roughly half that of a soliton defined at the same θc.
We can calculate Δc numerically, including effects like

velocity anisotropy, lens ellipticity, PSF, and realistic
aperture definitions that were lacking above and in
Sec. IV. Figure 12 shows a full numerical computation
of Δc, calculated directly from the definition Eq. (29)

https://github.com/lucateo/ULDM-Strong-Lensing_H0/
blob/main/Notebooks/Velocity_dispersion.ipynb. The
mock is defined with θE ¼ 1.200, compared to θE ¼ 100 in
Fig. 4. This means that if the PSF, aperture, anisotropy, and
axisymmetry effects were not important, we would expectΔc
computed from the mock in Fig. 12 to be smaller by a factor
≈0.83 compared to Fig. 4. In practice, with all of the above
effects included,Δc in Fig. 12 is slightly larger. The parametric
dependence on θe and the rough size of the effect are well
reproduced. Lastly, we verified that the full numerical pro-
cedure coincides very accurately [to Oð1%Þ] with the ana-
lytical calculationwhen lens ellipticity and velocity anisotropy
are set to zero.
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