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Dissipative superfluid relativistic magnetohydrodynamics of a
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We formulate dissipative magnetohydrodynamic equations for finite-temperature superfluid and
superconducting charged relativistic mixtures, taking into account the effects of particle diffusion and
possible presence of Feynman-Onsager and/or Abrikosov vortices in the system. The equations depend on
a number of phenomenological transport coefficients, which describe, in particular, relative motions of
different particle species and their interaction with vortices. We demonstrate how to relate these transport
coefficients to the mutual friction parameters and momentum transfer rates arising in the microscopic
theory. The resulting equations can be used to study, in a unified and coherent way, a very wide range of
phenomena associated with dynamical processes in neutron stars, e.g., the magnetothermal evolution,
stellar oscillations and damping, as well as development and suppression of various hydrodynamic

instabilities in neutron stars.
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I. INTRODUCTION

Consider a dense mixture composed of several particle
species, some of which may be charged. Assume also that
some components of the mixture are in a superfluid and/or
superconducting state at finite temperature. In what fol-
lows, we are interested in describing the behavior of such
system in the hydrodynamic regime, i.e., assuming that the
typical particle mean-free path and collision time are much
smaller than, respectively, the typical length scale and
timescale of the evolution of the system.

Assume further that (i) the mixture is relativistic and can
be in a strong gravitational field; (ii) the mixture is
magnetized and rotating, so that there are Feynman-
Onsager and Abrikosov vortices in the system (below
we assume that the charged superconducting particles form
a type-II superconductor); (iii) normal (nonsuperfluid and
nonsuperconducting) particles of different species do not
move with exactly the same velocities, in other words, we
allow for the diffusion of normal particles with respect to
each other. Then, the question is, what are the equations
describing dynamics in such a system?

Before answering this question (which is the subject of the
present study) let us explain why it is important for us to
formulate such equations. The reason is that mixtures with
the properties just described can be found in the inner layers
(cores) of neutron stars (NSs). An NS core consists, in the
simplest case, of neutrons (n), protons (p), and electrons (e)
with an admixture of muons (u). This matter is extremely
compact and degenerate—its density is several times
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greater than the density of matter in atomic nuclei,
po = 2.8 x 10" gcm™3. Magnetic fields in NSs may reach
enormous values =105 G[1,2], while the gravitational field
is so strong that the NS radius (~10 km) is only a few times
larger than the Schwarzschild radius [3]. Furthermore,
according to microscopic calculations [4-7], as well as
observations of cooling, glitching, and rapidly rotating NSs
[8—12], baryons (in particular, neutrons and protons) in NS
interiors are expected to become superfluid or supercon-
ducting at temperatures T < 108 — 10'° K. This means
that, if an NS is rotating and magnetized, the topological
defects—neutron (Feynman-Onsager) vortices and proton
(Abrikosov) flux tubes—may be present (and coexist) in the
system [13,14]." The equations presented in this paper are
designed precisely to describe various dynamical phenom-
ena in NSs, such as NS oscillations, cooling, and magnetic
field evolution.

Our paper is, of course, not the first one in a series of
works that have studied the dynamics of such systems. The
smooth-averaged nonrelativistic hydrodynamics describing
superfluid liquid helium II with vortices was formulated by
Hall and Vinen [17,18] and, independently, by Bekarevich
and Khalatnikov [19]. It has been extended in subsequent
studies (e.g., [20-30]) to account for charged mixtures and
relativistic effects. Recently, Ref. [26] (hereafter GD16)
derived the relativistic magnetohydrodynamics (MHD),
which describes superfluid and superconducting mixtures

'Here we assume that protons form a type-II superconductor,
which is likely true for the outer part of the NS core but, probably,
not the case for the inner part [15,16].

© 2021 American Physical Society


https://orcid.org/0000-0003-4334-6151
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.123008&domain=pdf&date_stamp=2021-12-02
https://doi.org/10.1103/PhysRevD.104.123008
https://doi.org/10.1103/PhysRevD.104.123008
https://doi.org/10.1103/PhysRevD.104.123008
https://doi.org/10.1103/PhysRevD.104.123008

V.A. DOMMES and M. E. GUSAKOV

PHYS. REV. D 104, 123008 (2021)

at finite temperatures and allows for the presence of
Feynman-Onsager and Abrikosov vortices, as well as the
electromagnetic field. It focuses mainly on the nondissi-
pative equations and ignores particle diffusion, viscosity,
and other dissipative effects (except for the mutual friction
dissipation, which is taken into account). This work was
further extended by Rau and Wasserman [29] who obtained
an equivalent formulation of relativistic MHD starting from
Carter’s variational principle [31] and also included heat
conduction and viscosity into the corresponding equations.

All these works ignore particle diffusion, i.e., relative
motions of different particle species (or Bogoliubov ther-
mal excitations, if superfluid and superconducting species
are considered) with respect to each other. This is an
unfortunate omission, since it is well known that diffusion
plays a crucial role in the secular evolution of the magnetic
field in nonsuperfluid and nonsuperconducting NSs
[32-38] and, moreover, can be very efficient [39,40] in
damping of NS oscillations and suppressing various insta-
bilities in their interiors. As shown recently [41], diffusion
also has a major effect on the evolution of the magnetic
field in superconducting NSs. The reason is easy to
understand. If protons form a type-II superconductor, the
magnetic field in the NS core is locked to quantized proton
flux tubes and its evolution is determined by the flux tube
motion. To study this motion, one has to calculate the
balance of forces acting on vortices, which (except for
the buoyancy and tension forces [18,19,42,43]) depend on
the relative velocities between vortices and different par-
ticle species that scatter on it. Because interaction (in
particular, friction) of particles with vortices is very strong
due to the huge amount of vortices in the system [41,44],
even small mismatch in the velocities of different particle
species significantly affects the force balance on vortices
and, hence, the magnetic field evolution.

Up until now the MHD equations, describing relativistic
charged mixtures and systematically incorporating the
diffusion effects, have been studied in the very limited
number of works and only neglecting the superconductivity
and superfluidity effects. In particular, the most advanced
MHD versions, suitable for NS modeling, were formulated
in the series of papers by Andersson et al. [45-48] and in
Ref. [49] (hereafter DGS20). In the present work we fill this
gap by combining the results of GD16 and DGS20, with the
aim to formulate the ready-to-use dissipative relativistic
MHD for superfluid or superconducting mixtures, account-
ing for both vortices and diffusion effects. We follow the
same approach [19,50] as in those papers. Namely, we
build a first-order dissipative hydrodynamics, starting from
the conservation laws and then deriving the general form of
dissipative terms, which (i) are linear in thermodynamic
fluxes, (ii) ensure non-negative entropy production rate,
and (iii) satisfy the Onsager relations. The first-order MHD
formulated in this paper is strictly valid in the hydro-
dynamic regime, i.e., as long as the typical length scale and

timescale in the problem are much larger than the particle
mean-free path and collision time, respectively. Although
we did not test our MHD, it has been argued in the literature
(e.g., [51,52]) that a generic first-order theory may have
theoretical issues with acausality and stability due to
unphysical high-frequency and short-wavelength modes,
which lie outside the applicability domain of the hydro-
dynamic regime. One way to overcome these issues is to
use more complicated formulations, such as the first-order
theories with a specially chosen reference frame [53],
second-order theories [54-56], or hydrodynamics based
on Carter’s variational principle [31,45,48].2 The other (less
elegant, but more pragmatic) option, which applies to those
who work in the deep hydrodynamic regime, is simply to
discard the unphysical modes in the solution, or filter
them out, when it comes to numerical implementation.
Moreover, for many practical applications, where the MHD
formulated in this work can be used (e.g., modeling the NS
magnetothermal evolution or oscillations and related physi-
cal instabilities), the macroscopic particle velocities appear
to be nonrelativistic. Then the relativistic equations (see,
e.g., Sec. Vof DGS20 and the Appendix A) have a similar
structure to the nonrelativistic ones; the main difference is
the relativistic equation of state and, if one allows for the
effects of general relativity, the metric coefficients. In this
case additional degrees of freedom (which arise in the
relativistic treatment and do not have Newtonian counter-
parts) are absent, and thus the hydrodynamics remains
stable [57]. Bearing in mind the above comments, we leave
detailed discussion of theoretical acausality and instability
issues beyond the scope of the present work.

The paper is organized as follows. In Sec. I we
formulate general hydrodynamics equations for charged
superfluid or superconducting relativistic mixtures in the
presence of vortices and the electromagnetic field, account-
ing for a number of dissipative effects: mutual friction,
diffusion, viscosity, and chemical reactions. In Sec. III, we
derive the entropy generation equation and in Sec. IV we
use it together with the Onsager relations to derive the
general form of dissipative corrections for particle currents,
as well as mutual friction forces acting on vortices. In
Sec. V we apply these general formulas to a number of
interesting limiting cases, which are suitable for NS
applications. Section VI provides a full set of hydrody-
namic equations in the “MHD approximation” adopted in
GD16, which is applicable for typical NS conditions and
allows one to study a long-term magnetothermal evolution
in superconducting NSs. Finally, we sum up in Sec. VIIL
The paper also contains two Appendixes. Appendix A
presents a nonrelativistic limit of MHD equations from

*Note that in the hydrodynamic regime the higher-order
corrections are typically small. This is clearly illustrated in
Sec. VIII of DGS20, where it is shown that such corrections
to the standard (acausal) heat equation can be safely ignored.
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Sec. VI. In Appendix B we show how to express the
phenomenological transport coefficients appearing in our
equations through the mutual friction parameters and
momentum transfer rates calculated from the microscopic
theory.

Unless otherwise stated, in what follows the speed of
light ¢ and the Boltzmann constant kg are set to unity,
Cc = kB =1.

II. GENERAL EQUATIONS

In this section, we present dissipative equations, de-
scribing dynamics of charged finite-temperature super-
fluid relativistic mixtures in the presence of vortices in
the hydrodynamic regime (see the introduction). For defi-
niteness, and bearing in mind NS applications, we consider
a mixture composed of superfluid neutrons, supercon-
ducting protons, normal electrons, and normal muons.’
Both neutron (Feynman-Onsager) vortices and proton
(Abrikosov) flux tubes can be present in the system.
Generalization of these equations to more complex compo-
sitions (e.g., including hyperons) is straightforward.

The dynamical equations proposed here are very similar
to those formulated in GD16 assuming type-II proton
superconductivity but contain a number of extra terms:
(1) the four-force G* in the right-hand side of Eq. (8); (ii) the
particle production rate AI'; in the right-hand side of
Eq. (1); (iii) the dissipative correction A j’(‘i) to the particle
current density (4); (iv) the dissipative correction A7*¥ to
the energy-momentum tensor (9); and (v) the superfluid
dissipative correction x; to the chemical potential y; in the
definitions (6) and (22). Note that the first four corrections
are included in the nonsuperfluid dissipative MHD of
DGS20, but for superfluid or superconducting mixtures
their actual form may differ.

A. Continuity equations

The four-current density j’<‘l.) of particle species i satisfies
the continuity equation
= AT

u
uii

i (1)
where 0, = 0/0x* is the four-gradient and AI; is the
corresponding production rate (source of particles 7). Here
and below, unless otherwise stated, Latin indices i,k, ...
refer to particle species (neutrons 7, protons p, electrons e,
and muons p), whereas Greek letters yu,v... =0, 1, 2, 3
denote the space-time indices, and summation over
repeated indices is assumed.

*We do not assume that all neutrons and protons are neces-
sarily in the Cooper-pair condensate. In other words, we allow for
the possible presence of normal neutron and proton component in
the mixture.

In the simplest case of nonsuperfluid matter in the
absence of diffusion, the particle current density is

j’(‘i) = n;u¥, where u* is the (common for all particle

species) normal four-velocity, normalized by the condition

uut = —1, (2)
and n; is the particle number density measured in the
comoving frame u* = (1,0,0,0), such that

uﬂj’(‘i) = —n,. (3)

When accounting for superfluidity and diffusive cur-
rents, j’(‘[) can generally be presented as a sum of three
terms:

]l(l,) = n,-u” + Yikwl(lk) + A]IZ,)’ (4)

where the four-vector w’(‘ % describes the superfluid degrees
of freedom [58] and satisfies the condition [25,58,59]

uﬂw‘(‘i) =0. (5)

This vector is related to the wave-function phase ®; of the
Cooper condensate by the formula

wiiy = 0"y = (ui + 3 )ut — e;A", (6)

where OF¢p; = (h/2)0'®; [38], f is the Planck constant, y;
is the relativistic chemical potential for particle species i, A
is the electromagnetic potential, and x; is the viscous
dissipative correction to the chemical potential [25,59].

Further, Y;; in Eq. (4) is the symmetric entrainment
matrix [58,60-63], which is a relativistic analog of the
nonrelativistic superfluid mass-density matrix [64—67]; and
A j’<‘i> is the dissipative correction due to nonsuperfluid
diffusive currents (see DGS20 for a similar definition of
A j’<‘i> in normal matter).

Throughout the paper, all the thermodynamic quantities
are defined (measured) in the comoving frame. This means
that the relation (3) holds also in the general case (when
dissipation effects are allowed for), which imposes an

additional constraint on A j’(’i):

N (7)

B. Energy-momentum conservation

The relativistic energy-momentum conservation law
takes the form

0,1 = G, (8)

123008-3
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where GY is the radiation four-force density, which
describes exchange of energy and momentum between
matter and radiation,® and the energy-momentum tensor
TH is given by

T" = (P + e)u'u” + Pg™
+ YWy Wiy + Wiy u + pew(yu)

+ AT’(HI;MJrvonex) + A7, (9)
where P is the pressure defined by Eq. (35) below, ¢ is the
energy density, and g,, = diag(—1,1,1,1) is the space-
time metric.” The energy-momentum tensor (9) is a sum of
the energy-momentum tensor of a vortex-free uncharged
superfluid hydrodynamics (the first three terms) plus

electromagnetic and vortex contributions AT’(’EM tvortex)

given by Eq. (37) below and dissipative correction AzH”.
Note that all these terms except for the last one are the same
as in GDI16.

In the comoving frame the energy density is given by the
component 7% of the energy-momentum tensor, 7% = &,
which implies

u,u,T" = e. (10)

This relation, in view of the expressions (5), (9), (37)—(39),
(47), and (48), imposes the following constraint on the
dissipative correction AzH”:

u,u, At = 0. (11)

Note, however, that the four-velocity u* itself is not
uniquely defined in the system with dissipation (see,
e.g., a thorough discussion of a similar issue in
Ref. [50] and in DGS20). We specify u* by requiring
the total momentum of the normal fluid component to be
zero in the comoving frame. This leads to an additional
condition for Az*:

u, A" = 0. (12)

The condition (12) coincides with the similar condition
defining the so-called Landau-Lifshitz (or transverse) frame
of nonsuperfluid relativistic hydrodynamics [50].

*For isotropic emission G* = —Qu*, where Q is the total
emissivity (e.g., it can be the neutrino emissivity due to beta
processes in the NS core).

In this paper, we assume that the metric is flat. Our results can
easily be generalized to an arbitrary metric, provided that all
relevant length scales are much smaller than the characteristic
gravitational length scale. In this case, one has to replace all
ordinary derivatives with their covariant counterparts and, in
addition, replace the Levi-Civita tensor e**° with 54 =
(_ det g{lﬂ)—]/2€/u//16.

C. Maxwell equations

The electromagnetic field is described by the Maxwell
equations in the medium:

divD = 47npgiee, (13)
OB
E=-2", 14
cur o (14)
divB = 0, (15)
oD

curlH = 4rnJ e + (16)

o’
where E is the electric field, B is the magnetic induction, D
is the electric displacement, H is the magnetic field, py.. is
the free charge density, and Jy,. is the current density of
free charges. Note that, generally, D # E and H # B, since
there are bound charges and bound currents in the system,
associated with superfluid or superconducting vortices and
their motion (for details see GD16); in the absence of
vortices (and neglecting very weak magnetization and
polarizability of NS matter [68]) D = E and H = B.

The explicitly covariant form of Maxwell equa-
tions (13)—(16) is [69,70]

(9MFM—|—(:)DFW —|—6,1F,w :O, (17)

0,G" = 4rll .

(18)

where the antisymmetric electromagnetic tensors F* =
OFAY — QP A* and G* are composed of components of the
vectors E, B, D, and H,

. . (19)

H
G = . (20
-H; 0 H,

-D; H, -H, 0

and J;(tfree)

charges,

= (Ptree> Jiiee) 18 the four-current density of free

JM Eeij!(t) :einiu”+eiYikw’(k) +€iAle), (21)

(free) i i

where e; is the electric charge for particle species i.
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D. Vorticity tensor

Following GD16, we introduce the vorticity tensor

V’(‘l”) = 0 [wi,) + (i +3;)u” + ;A"
— Wiy + (i +x)u' +eA, (22)

which is a relativistic generalization of the three-vector
m;curlV; + (e;/c)B (see Appendix A). In a system with-
out topological defects (i.e., vortices), the superfluid phase
®; is a smooth function of coordinates satisfying the
condition MP'®; — *H®; =0, which, in view of
Eq. (6), translates into

V- (23)

However, in the presence of vortices, the condition
MO*D; — J"O*®; =0 is violated at the vortex lines.
Consequently, the (smooth-averaged) vorticity tensor V’(‘l”)

differs from zero. One can demonstrate that this tensor V’('g

is related to the number of vortices N'y; piercing the closed
contour by the relation [25]6

1

5/ df}wV(i)m/ = ﬂhNVi- (24)

Equation (23) then should be replaced by a more general
superfluid equation (59) introduced in Sec. IV below.

E. Thermodynamic relations

The dynamic equations listed above should be supple-
mented by the second law of thermodynamics,

Y
de = pidn; + TdS + de(w‘("i>w(k)a) +degqs (25)

where 7' is the temperature, S is the entropy per unit
volume, and the electromagnetic or vortex contribution to
the energy density de,qq reads [see Eq. (79) in GD16]

1 1
deygq = EEudD” + EHﬂdBﬂ + Vl(lEi)dW(Ei)ﬂ

+ W(Mi)de/(JMiy (26)

Here we introduced the auxiliary vortex-related vectors
W’('Ei) and W?’Mi), in full analogy with the electromagnetic
vectors D* and H*, respectively. Equation (26) should be

considered as a definition of the vectors D¥, H, W’(‘Ei), and

®This relation is satisfied for Fermi superfluids (e.g., neutrons
or protons); for Bose superfluids there should be 277N y; in the
right-hand side of the equation. Note that the factor 1/2 was
inadvertently omitted in the corresponding equation (42) in
Ref. [25].

W’(‘Mw [or, equivalently, the tensors G* and W’(‘i”); see the
identities (27)—(34) below]. When a microscopic model for
the system energy density is specified (see, e.g.,
Appendix G in GD16 and Sec. VIA), one can express
these vectors through the vectors E¥, B, V(g;),, and V(i
(or, equivalently, through the tensors F** and V’(S)- The

four-vectors entering Eq. (26) are related to the correspond-
ing tensors as

EV = u,F*, (27)
D' = u,G", (28)
U — ! uvop
Bt = 56 MDFa/}, (29)
Y =L emany, G 30)
= ) € u, aps (
Vigy = wVi, (31)
1
Viwiy = 5P uViiyap, (32)
Wigiy = u, Wiy, (33)
1
Wiy =5 €tV i)ap, (34)

where the Levi-Civita tensor ¢#** is defined such that
€"123 = 1. In the comoving frame, u* = (1,0,0,0), the
four-vectors E#, D*, B¥ and H* are related to, respectively,
the ordinary three-vectors E, D, B, and H as E* = (0, E),
D* = (0,D), B* = (0,B), and H* = (0,H).

The total pressure P is defined (see, e.g., GD16) as a
partial derivative of the full system energy €V with respect
to the volume V at constant total number of particles n;V,
total entropy SV, as well as at fixed quantities w‘(" W(K)a> DH,

B*, W’(’Ei), and W’('Mi):

P=- = —€ +/1,-ni + TS, (35)

Using Egs. (25), (26), and (35), one arrives at the following
Gibbs-Duhem relation:

Yik a 1 a
dP = n,dpt,- + SdT - Td(W(I)W(k)a) - EEadD

1
- EHadB - V!(lEi)dW(Ei)p - W(Ml)ﬂdvl(lM,) (36)
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F. Electromagnetic and vortex contribution to 7%

The electromagnetic and vortex contribution to 7H,

represented by the term AT’(‘éM vortex) in Eq. (9), has been

derived in GD16 and takes the form

AT" T O,

(EM-vortex) ® T T+ Tivey T Tivwy> (37)

(V™)

where the electromagnetic contributions ’T’Z’é) and 7 ’&) are
given by [see Egs. (66) and (67) in GD16]

v 1 v a v

T = 4, (LD E, = D'EY), (38)
v 1 o v v o va

Ty = e (tGrotF, + wtGME, + G E,).  (39)

Here and hereafter 1* = ¢** + u*u”, and the notation
I and LA is introduced for arbitrary antisymmetric
tensor A*V:

0 = Ut Xy + u X = —u g X1+ wu X
0 X()] X02 X03

Xy, 0 0 0

= , (40)
~Xp 0 0 0
Xy 0 0 0
L = ey X g = LI LB,
0 0 0 0
_ 0 X12 X13 ’ (41)

0
0 -5 Ay 0

where the matrix expressions are written in the comoving
frame, and the “electric” and “magnetic” four-vectors &’ ’(‘E>

and X", respectively, are defined as [cf. Eqs. (31)—(34)]

M)
Xy = u, X, (42)
1
Xy = 5 P u, X . (43)

Note that the following relations are satisfied:

=l 4 Loyw, (44)
Ll =0, (45)
u, X" =0, (46)

and |A* and A" can be expressed in terms of, respec-

tively, electric and magnetic four-vectors X’(‘Ei> and X’(‘Mi>

[see the first equalities in Egs. (40) and (41)]. Similarly, the

vortex contributions 7" ’(‘CE) and Ty, to the energy-

momentum tensor can be presented as [see Eqgs. (88)
and (89) in GD16]

T’f\y/E) = J-WW((JEI‘)WEi)a - W’(lEi)VI(/Ei)’ (47)

Tl = Wi Viya + Wi Viene
+ M”J‘Wl(/gV(Ei)a. (48)

To sum up, the dissipative equations governing dynamics
of superfluid and superconducting mixture consist of the
continuity equations (1) [with j’(‘l.) given by Eq. (4)], the
energy-momentum conservation law (8) [with T#* given by
Egs. (9) and (37)], Maxwell equations (17) and (18), and
the superfluid equation [Eq. (23) or Eq. (59) below]. These
equations are supplemented by the thermodynamic rela-
tions (25), (35), and (36), as well as by the definition (12) of
the comoving frame.

III. ENTROPY GENERATION EQUATION

The equations of Sec. II contain the entropy generation
equation, which is crucial for determining the general form
of dissipative corrections (see Sec. IV). One can derive this
equation by considering the expression u,d,T" — u,G",
which vanishes in view of Eq. (8). Using Eqgs. (1), (4), (5),
(9), (25), and (35), as well as the identities u,0,u” = 0 and
0,9 = 0, we arrive at the following entropy generation
equation [cf. Eq. (33) in Ref. [59], Eq. (58) in GD16, and
Eq. (25) in DGS20]:

1 v
aﬂ (Suﬂ) = ? uuyikw(k)y [Vl(ll) - aﬂ(}{iul/) + au(%iuy)]

Hi ) Hi u
+ Ta”A‘]I(JI) - ? AF, - 78ﬂ€add

"o (AT Arw) — 2 49
+ ? M( (EM+-vortex) + A7 ) - ?7 ( )

V=V — e P
= O+ ()] — D+ (i) (50)
and we defined Q = u,G*. Now, let us make use of

Eqgs. (26) and (37) and substitute expressions for de,yq

and AT’(‘EM vortex)” Using Eq. (85) of GD16, we present the

term —ut0,€,4q as

1 o v o
—uﬂaﬂgadd = I,{”Fﬂyaa (E GH > +u V(l‘>ﬂyaawl(li)

- u’/aﬂ ATI(];M+vonex) : (5 1 )
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Then, employing Maxwell equations (18) together with
the relation uﬂayw’(‘i) = —w‘(‘i)a,/uﬂ [which follows from

Eq. (5)] and substituting Egs. (21), (37), (50), and (51)
into Eq. (49), we obtain

YW
n; v . ik (k)
0S = TH V(i)ﬂvW?i) - A]I;i)d(i)ﬂ - %'V, (T)

— A7), <”—> _Hiap 2 (52)
T) T T

where we introduced the entropy four-current

Hi\ . Aj u, v
SH = Sut — ?A]/(ll) - 7 Yile(lk) - TAT” s (53)

the four-vector W?’l.),

1
Wiy = n. YWy + L0 Wi, (54)

i

the displacement vector (see DGS20)

Hi e,k
diu ="V, <7> - (55)

and the orthogonal part of the four-gradient
v, =1,0". (56)

Note that d(;, and W’(‘i) can be defined up to an arbitrary

term proportional to u#, which does not affect the entropy
generation equation (52) due to the condition (7) and
antisymmetry of VZU) respectively. For further convenience,

we define these vectors in a way that ensures that they are
both orthogonal to ut

If u* is specified by the condition (12), Egs. (52) and (53)
reduce to®

2

Y, w
_ K - iK™ (k)
Oy St = T f(i)ﬂW7i) - AJ?i)d(i)ﬂ - ”iLvﬂ< T )

1y ‘
_A»L-ﬂl’—”u”_&Ar‘i_g’ (57)
T T T

_ _Higw
s = sw =LA

X
- ?Yisz‘k). (58)

'GD16 uses a slightly different ~definition for W/, :
Wiy = (1/n)[Yuwly + 0 V] If one prefers to use that
definition, then one should replace W’(‘i> with LW, [which
is equivalent to Eq. (54) due to the condition (5)] everywhere in
the paper.

8As in DGS20, we make use of the condition (12) and replace
A9, (u,/T) with A" (*V,u,)/T in the right-hand side of
Eq. (57).

Here we introduced the four-vector f’(‘i) as
uuvl(liy) = /’linifl(li)v (59)

where no summation over repeated index i is assumed.
Note that f’(‘i> is orthogonal to u*, since the vorticity tensor

V’(‘l”) is antisymmetric:

uﬂf’(’i) =0. (60)

Equation (59) can be regarded as a superfluid equation
[25,26], which replaces the potentiality condition V’(‘l’; =0
of a vortex-free system.

The right-hand side of Eq. (57) describes entropy
generation and must be non-negative (except for the
arbitrary last term) for all possible fluid configurations.
It includes vortex-mediated mutual friction between normal
and superfluid components (first term) [14], diffusion
(second term), viscosity (third and fourth terms), chemical
reactions (such as Urca processes; fifth term) and radiation
(sixth term).

Note, in passing, that different formulations of the first-
order hydrodynamics (i.e., different forms of dissipative
corrections) are possible even if u* is specified unambig-
uously [53]. This is due to the fact that various derivatives
entering the dissipative corrections are not all independent
but can be expressed (up to higher-order terms) through one
another using the zero-order (nondissipative) hydrody-
namic equations. For example, one can relate u”d,u” to
LVHP via the momentum conservation law +V, T = (.
We follow here the approach of Ref. [50], so that in our
formulation the right-hand side of Eq. (57) (and, conse-
quently, the dissipative corrections) in the comoving frame
contains only spatial derivatives and does not contain the
terms like u?0,u* or u’0,T.

IV. DIFFUSIVE CURRENTS AND MUTUAL
FRICTION FORCES

The entropy generation equation (57) allows one to find
the general form of the unknown dissipative corrections,’
namely, f’(‘l.>, A j’(i), x;, AT, and ATI'; (here and below we
ignore the last term, —Q/T, which can be arbitrary).
Following Landau and Lifshitz [50] and DGS20, we
express the dissipative corrections as linear combinations
of thermodynamic forces W’(‘i), (i lVﬂ(Yikw’(’k)/T),

J-Vﬂuw and ,u,-]o and require that the right-hand side of

Note that some of these corrections may, in fact, contain
nondissipative terms, but, for brevity, we call them “dissipative.”
Actually, y; should enter these expressions only in particular
combinations that represent chemical potential imbalances for a
given reaction (e.g., i, — pt, — ft,, for the direct or modified Urca
processes [71]); see DGS20 for more details.
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Eq. (57) would be a positively defined quadratic form, so
that the entropy would not decrease for all possible fluid
configurations. The coefficients arising in these linear
combinations can be scalars, vectors, or tensors, that can
only depend on the system properties in the absence of
dissipation; they are collectively called transport coeffi-
cients. We require, in addition, that these coefficients must
satisfy the Onsager relations.

In the completely isotropic (in the comoving frame)
matter, the transport coefficients depend only on the
equilibrium scalar thermodynamic quantities, as well as
on " and g" (or L* = ¢ + u'u"). In the presence of
preferred directions (e.g., vortex lines or magnetic field),
the coefficients, generally, depend also on the correspond-
ing vectors and the angles between them. These vectors
include superfluid vectors w’(‘i), electromagnetic vectors E¥,
D*, B*, and H*, and vortex-related vectors V” ) V’(‘Mi>
W( and W . However, the situation is cons1derably
51mp11ﬁed in the MHD approximation described in
Sec. VI A (see also GD16). This approximation is mainly
based on the fact that the magnetic induction B is much
larger than the fields E, D, and H in the comoving frame
and is locked to superconducting proton flux tubes. In this
limit the only preferred directions'' are defined by the
neutron vortex lines V” > proton vortex lines V » Lo,

equivalently, the magnetlc 1nduct10n B#; see Eq. (104)], and
the superfluid neutron current Y,,kw’(tk).l2 Below, following

Refs. [50,72,73], we neglect small terms that explicitly
depend on w’(’k) (or, equivalently, on Ynkw’(‘k>) in the

expressions for the transport coefficients. These terms
are usually ignored in the literature [50,72,73] when
deriving the dissipative hydrodynamic equations for super-
fluid helium 4. In the context of neutron stars, the same
approximation has been adopted and discussed in Ref. [59].
As a result, we are left with only two preferred directions,

specified by the neutron vortices V', (M) and magnetic field

or proton flux tubes B* [or V” M) it which determine
anisotropy of transport coefficients.

"That these preferred directions are the only ones that should
be taken into account in the MHD approximation is independ-
ently justified by the results of Appendix B, where it is shown that
the more microscopic approach leads to exactly the same
dissipative corrections as those obtained in this section. Gen-
erally, any additional preferred direction can be ignored as long as
one can neglect the corresponding force in the force balance
equations for particles or vortices. For example, in the non-
superfluid MHD in the limit B — O an anisotropic correction to
the diffusion coefficients D¢, is of the order ~(e,n;B)/(cJ,,) ~
(Lorentz force)/(eu friction force); see DGS20. Correspond-
ingly, the magnetic field does not provide a preferred direction
in this limit.

In the thermodynamic equilibrium, the superconducting
proton current Y pkw" vanishes in the MHD approximation

due to the screening COHdlthH [see Eq. (129) with Aj* Ty = =0].

and f”

can only depend on the thermodynamic forces W’(‘i) and d’(’i)

Under the above assumptions, the vectors A/ Ji

[and are independent of the forces v u (YikW,(lk) /T), J_vﬂ u,,
and ;1"
Mi”,z " v "
== Sty = =AW = Bicdgows (61)
Ajigy = =Ci Wi — Diy/d g (62)

where no summation over i in the left-hand side of Eq. (61)
is implied. The transport coefficient A% describes the
mutual friction effects [14], as well as (possible) interaction
between neutron vortices and proton flux tubes.'* The
coefficient D/ is responsible for the diffusion, thermodif-
fusion and thermal conductivity effects (see DGS20).
Finally, the cross-coefficients 3%, and C!; describe the
impact of diffusive currents on the mutual friction forces on
vortices, and vice versa.

In the present work, we are mainly interested in studying
the joint effects of diffusion and vortices (represented by
the vectors A j’(‘i) and f’(‘i>) on the structure of superfluid

MHD. To study these effects, it is sufficient to consider
only the first two terms in Eq. (57), since they do not
interfere with the other terms in this equation and constitute
a positively defined quadratic form themselves [see
Egs. (61) and (62)]. Thus, in what follows, we shall
ignore viscosity (x; = A7"¥ = 0) and chemical reactions
(AI'; = 0): the related dissipative corrections can be studied
separately and, in fact, have already been analyzed in the
past (see, e.g., Refs. [29,48,59], and DGS20). With this
simplification, the entropy generation equation (57)
becomes

= Ajiyda)

0) (63)

e

/’tl 1 1
0 <Su/‘_—AJ<>> T f(i)”W(l.)

BSee Appendix B of DGS20, where it is demonstrated, for a
similar problem, that A j’(‘i) cannot depend on the tensor lVﬂuU
The same consideration also applies to f’(‘l.) and can be readily
generalized to an arbltrary number of preferred axial vectors
(such as V” and/or W M >) in the system. In turn, it is also easy
to verify that Aj T and f cannot depend on the scalar
thermodynamic forces, such as W, (Y Wk / T). This depend-
ence may only lead to additional terms o u” 04 ,»kw?k)/T) in

Egs. (61) and (62), but these terms must vanish to satisfy the
condmons (7) and (60).

“Note that the vortex—flux tube interaction should be ac-
counted for in the expressions for W [which enter the
definition (54) for W’(' )] In Sec. VIA we employ a simple model
which ignores this effect [see Eq. (105)]; however, such a
simplification does not affect the general expression (72) for
the coefficient A%;.
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The coefficients A%, B, %, and D’/ in Egs. (61) and
(62) depend on the vectors V” and B" as well as on the
scalar thermodynamic quantltles and on u* and 1*¥. Below
we provide expressions for these coefficients for the system
with two preferred directions and demonstrate how these
expressions can be simplified in the case of only one
preferred direction.

A. General case: Two preferred directions

Let us introduce the following quantities:

B#
bt = , (64)
B.B"
J_F/,w
b = ) (65)
B,B"
Vll
W' = Mn) (66)
V(M")‘IV(MH)
Lvﬂ’/
) (Mn) (67)
V(Mn)av(Mn)

In the comoving frame b* = (0,b), " = (0,®), where b
and @ are the unit vectors in the direction of the magnetic
field and neutron vortices, respectively.

The Onsager principle leads to conditions'

A (b.w) = AL (-b. ~w). (68)
D (b.0) = D (~b. ~0). (69)
O (b.w) = B (~b. ~w). (70)

From the constraints u,, f’(‘i) = 0 [Eq. (60)] and u,Aj, =0

(@)
[Eq. (7)] it also follows that

u, Ay = u, By, = u,Clif =

Wik WCix = u, Dy, =0. (71)
Relations (68)—(71) imply that all transport coefficients are
purely spatial in the comoving frame and may depend on u*
only through the tensor _L#.

Let us start with the transport coefficient A%, . Generally,
it can be presented as a sum of nine linearly independent

“The minus sign in Eq. (70) appears because d(;), and
W 1), have different parity under time reversal t — —¢ [74].

tensors,'® which we choose in the following form that
allows us to separate symmetric (the first six terms) and
antisymmetric (the last three terms) parts of the tensor:

AL = AL L 4 AB0apar -+ Al
+ A28 (0 b* 4+ 0" b*) + A% (0 0ub"* + 0 0, b")

+ Af’k“’b(b”a)ab”“ + b w,b")

+ A27 (0B — 0’ b") + A% + AL b, (72)

where the scalar coefficients Aj;, A%?, etc., may depend on
the equilibrium quantities and the angle between b and w.
To clarify the meaning of different terms in Eq. (72), it is
instructive to write out the expression for the vector
Af Wy, in the comoving frame. The zeroth component
of this four-vector vanishes, while its spatial part reads

A Wk+ 0 (wW,;)+Ab(bW),)
i [w(bwk)‘f'b(wwk)]
‘”“"’{w([wXb]Wk) [ xb](@Wy)}
+ A {b([@ x b W) +[w xb] (bW, ) }
+Aik_ [@(BW,) =b(@W,)] + A% W, x @] + A5 [W, xb],
(73)

where W, is the spatial part of the four-vector W/ .:

(k)"
Wl(lk> — (O, Wk)

Plugging Eq. (72) into the Onsager relation (68), we get

A=A A=A, A=A,
Amb A;:zh’ A;_z])(wb — _ Az)iwb, A/?léub — _ AI/:;"bv
A= Agt AR A A=A (4)

As one can check by substituting Eqgs. (61), (72), and (74)
into the entropy generation equation (63), the coefficients
Apob - Abob - A9 “and A% are nondissipative and do not
contrlbute to the entropy generation.

"“To make this point clearer, let us work in the comoving
frame, choosing x axis along the direction @ and z axis along

[@ x b]. Then, introducing unit vectors y* = ‘if L

P waa”]|
(0,0,1,0) and z¥ = —y,0"* =(0,0,0,1), one can generally
decompose A k” into the sum of nine linearly independent tensors:

A = Aot o’ + Aoty + ARatzd + Al yrar + AZ2yHy”
+ AZyrzr + At + ARy + AR,

where the scalar coefficients A}, A!Z... may depend on the angle
between @ and b. One can directly check that the nine tensors
entering Eq. (72) are indeed linearly independent and they can be
expressed as linear combinations of @@, "y, w'z*, etc.
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The same consideration also applies to the transport
coefficients By, C%;, and D’;. The result is
By = Byl + Byrat e’ + BiPb'b*
+ Bob (b + 0 b*) + Bo (0 wab** + 0’ 0 b**)
+ B (b wab*® + b, b'*)
(0" — 0’ b*) + B + BYb*, (75)

Ch = CHlm + Cor ' ” + CHP b b
+C (@D + *b*) + CoP (@' 0o b + 0w, b
+ CI (D w0 b + DY, b')
+ Co7P (@b” — b)) + Cha* + Ch b, (76)
D = Dy 1" + Dy w” + Dyt b*b*
+ DY (@b + 0" b) + Do (@ 0, b** + o w, b")
+ DI (B @ b + b w )
+ DYt (@b — @' b) + Do + DY, (77)

The Onsager principle for B and C (70) implies

1l _ _Rrl ww __ _ ROW bb __ _ 1Rbb
C'ik - Bki’ Cik - Bki ’ Cik - Bki ’
wb __ _ Rwb wwb __ Rowb bwb __ Rbwb
Cik - Bki’ C Bkt ’ Cik _Bki ’
w—-b _ Ro-b o 0] b __ b
C:k Bkl ’ Cik - _Bki’ Cik - _Bki' (78)

Note that the coefficients Bz, B4, BYY, B4, and B4~ are
nond1331pat1ve in contrast to the analogous coefficients
-b
'Alk’ tk ’ ‘Azk ’ 'Azk ’ and .A?;( 'D
The Onsager principle for D’} (69) leads to

L _ Ll 0O __ THOD bb __ Tybb
i i’ ik — TTki> ik ki >
DL=DL  Dw=D DI =D
wb __ Twb wab _ wwb bwb __ bwb
Dik - Dki ’ ik T _Dki ’ Dik - _Dki ’
Dyt =-Dyt, Dy =Dy Dy=Dj.  (19)

The coefficients D4, D’*?, D%, and DY, are nondissi-
pative, similarly to A%®?, A%P A% and A%.

In this section we have derived the general expressions
for the transport coefficients A%, (72), B (75), Ct (76),
and DY (77), which describe mutual friction (61) and
diffusion (62) effects, for the system with two preferred
directions. These coefficients have similar tensor structure
and can be presented as a sum of six symmetric and three
antisymmetric tensor terms, which are purely spatial in the
comoving frame, and describe anisotropy of mutual friction
and diffusion effects in such a system. The Onsager
principle (68)—(70) reduces the number of independent
coefficients, imposing additional constraints on 4% and
D} and allowing one to express the coefficients C,

1

through 5% . Note also that the transport coefficients

(and, consequently, the quantities f’(’i) and A j’(‘i)) have both
dissipative and nondissipative contributions; i.e., not all the

terms in the expressions for f'(‘i> and A j’(’i) lead to entropy

generation in Eq. (63).

B. One preferred direction

Now let us assume that there is only one preferred
direction in the system, b* = w*; i.e., either proton and
neutron vortices are aligned with each other, or there is only
one sort of vortices in the system. In this case, the
expressions (72) and (75)—(77) acquire the same form as
the diffusion coefficients from DGS20:

A = Al wrar + AL — wre’) + Ao, (80)
BY = Blwtae® + BL(1" — w'o?) + Bllo™,  (81)
v =clo'a? + CL(1" — 0'a?) + Clarv,  (82)
DYy = Dy + DL - w'e’) + Do,  (83)

where A}, = A} + Age + A +2A¢,;h,A,k = A3 + AL,
and analogous definitions apply to B, BH, Cl,, Cﬁ, Dl
and DIH . The Onsager relations (74), (78), and (79) then
imply

Alk - 'Akt’ 'A Akl’ "4 'Akz’ (84)

Clk_ Bkz’ Czk_ Zgkt’ Ctk_ Bkz’ (85)

Dy=Dy  Dyp=Di  Di=Df  (86)
The coefficients A%, DI, Blk, Bz, CH, and Ci are
nondissipative.

C. Summary

To sum up, in this section we found a general form of the
four-vectors f’(’i) (61), which encode all the information
about the forces acting on neutron and proton vortices, and
the diffusive currents A j* i (62), which describe diffusion,

thermodiffusion and thermal conductivity effects. These
vectors are expressed as linear combinations of the vectors
W (), and d(y),. The transport coefficients A%, By, Ci,
and D in these relations depend on the directions of
neutron vortices and the magnetic field; they are given by
Egs. (72) and (75)—(77), which reduce to Egs. (80)—(83) in
the case of single preferred direction. The transport
coefficients satisfy the Onsager relations (68)—(70), which
imply Egs. (74), (78), and (79) for a system with two
preferred directions, and Eqgs. (84)—(86) for a system with a
single preferred direction.

123008-10



DISSIPATIVE SUPERFLUID RELATIVISTIC ...

PHYS. REV. D 104, 123008 (2021)

We emphasize the presence of cross-coefficients B/, and
Cly, describing the interplay of diffusion and mutual
friction effects: the diffusive forces d), affect particle
velocities (or currents A j’(‘i)), which, in turn, influence the

vortex motion via the mutual friction mechanism (and
vice versa).

V. DIFFUSION AND MUTUAL FRICTION
IN NS MATTER: SPECIAL CASES

Let us apply the general formulas from the previous
section to a number of interesting limiting cases, in which
these formulas can be substantially simplified.

A. Isotropic matter: Neutrons are superfluid,
protons are superconducting, no vortices

In the absence of vortices and any preferred direction the
four-vectors f”l. vanish in view of Egs. (23) and (59).
Therefore, due to Egs. (61) and (70), Ay =B =
Ciy =0. As in normal (nonsuperfluid and nonsupercon-
ducting) MHD (see DGS20), the generalized diffusion
coefficient 7%, in the isotropic matter is then simply
given by

Dy = Dy = Da L, (87)

and the entropy generation equation (63) reduces to

Hi, .
6,, <Sl/t” - TA][(Li)> = Dikd(i)yd(k)ﬂ' (88)

The generalized diffusion coefficients D;;, in superfluid
matter can be expressed through the momentum transfer
rates of microscopic theory similarly to how it is done in
DGS20 for normal matter [75].

B. Magnetized npep matter with superfluid
neutrons and normal protons, no vortices

Now let us consider magnetized npep matter with
superfluid neutrons in the absence of vortices. Then the
only preferred direction is that of the magnetic field, b*.
The four-vector f’(‘i) vanishes in view of Egs. (23) and (59),

but W’(‘i), generally, differs from zero. Therefore, due to

Egs. (61) and (85), A7} = By’ = Cjy’ = 0. Asaresult, Aji;,
has exactly the same form as in the nonsuperfluid mag-
netized matter (cf. DGS20):

Ajiy = ~Dl b b¥d gy, — D (L* — b*b¥)d ),

— Dibdy,, (89)

where i,k =n, p, e, u. The entropy generation equa-
tion (63) reduces to

Hi\ . Al v
2P (S”” - ?Afl(li)> = Dy b'b*diyud iy

+ D (L = b0")d i (90)

C. Unmagnetized npeu matter with superfluid
neutron vortices

In this example, we discuss the unmagnetized npeu
matter, allowing for the presence of superfluid neutron
vortices and diffusion. Protons can be either normal or
superconducting. The dynamic equations for such a system
allow us to simultaneously study the combined effect of
particle diffusion [40] and mutual friction dissipation [76]
on damping of NS oscillations and development of various
instabilities in NSs.

Since in real NSs the typical areal density of neutron
vortices is small [24] (the intervortex spacing is much larger
than the particle mean-free path), they have a negligible
effect on the diffusion coefficients D'}, which remain
approximately isotropic. Because of the same reason, the
difference between the velocities of normal particle species
(e.g., electrons and muons or electrons and neutron
Bogoliubov thermal excitations) is small in comparison
to the difference between any of these velocities and the
neutron vortex velocity Vi ,. Consequently, when calculat-
ing the force acting on neutron vortices from a particle
species i [see Eq. (B2), where a similar force on proton
vortices is presented], one can replace V;— V|, with
Vorm — Vin, Where V.. is the average velocity of normal
(nonsuperfluid) component (A3). This approximation
allows one to neglect the cross-coefficients B and
¢, that is, to decouple the diffusion and mutual friction
mechanisms. As a result, with the help of Egs. (80) and
(87), Egs. (61) and (62) reduce to

2
_M—Tnnf ) = —Am@ O Wy, = A (LY = o')W,
- -AanwMDW(n)w (91)
oo
Fimy =9 (92)
Afly = =Dyd!y. (93)

Here the coefficients A%, Al,, and AY, describe the
mutual friction effect. In order to relate them to the

"In principle, these coefficients can be calculated in exactly
the same way as it is done for superfluid and superconducting
npep matter with proton flux tubes in Appendix B (see also
Sec. V D). Note, however, that the typical areal density of proton
flux tubes in NSs is comparable to particle mean-free path [44];
hence, the cross-coefficients /8 and Cf; for this problem are not
small and should be accounted for.
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commonly used mutual friction parameters a,,, 3,, and 7,
[25,26,72], one has to compare Eq. (91) with the analogous
equation (98) in GD16, which reads, in our notation,

fl(‘n) = anV(Mn)w”yW(n)v + (ﬂn
+ ynv(Mn)J-ﬂyW(n)w (94)

—7n ) V(Mn) a)ﬂawya W(n)zz

where V() is defined by Eq. (32). Using the identity

oo, = 1" — *w’, we find
oo Halty Lt
Ann = 3—TV(Mn)an’ Ann AT Mn ﬁm
A ﬂn VlV
nn — (Mn) Vno (95)

where we, for practical convenience, restored the speed of
light c. We should stress that, generally, diffusion affects
the coefficients A% (see Sec. VD and Appendix B), and
they cannot be always expressed only through the mutual
friction parameters «;, 3;, and y; of nondiffusive superfluid
hydrodynamics.

It is also worth noting that, if we allow for the presence of
the magnetic field (assuming that protons are nonsuper-
conducting and thus f* | = 0) but neglect its effect on the
neutron vortices, then expression (91) for f’(‘n) will remain

the same, while the expression for A j’('i) should be replaced

with Eq. (89) to account for anisotropy of diffusion in the
magnetic field.

D. Magnetized npey matter with superfluid neutrons
(no vortices) and type-II proton superconductivity

This limit is interesting if we want to study magneto-
thermal evolution in slowly rotating superconducting neu-
tron stars with type-II proton superconductivity. It is
expected that in this problem neutron vortices do not play
a major role [77] and can be neglected in the first
approximation. At the same time, the combined effect of
diffusion (i.e., relative motions of different particle species)
and mutual friction dissipation related to the presence of
proton vortices (flux tubes) appears to be crucial for this
problem [41] and should be accounted for. Note that, for
instance, electron—flux tube interaction is comparable to
(and even stronger than) the electron-muon interaction (see,
e.g., Ref. [41] and Appendix B). Thus, in contrast to the
previous case, here we cannot decouple diffusion and
mutual friction effects.

Since we ignore neutron vortices, we are left with only
one preferred direction, b. The full system of dynamic
equations in this situation is provided in Sec. VI, and here
we only present the expressions for f’(‘i) and A j’(’i>. In the

absence of neutron vortices f” vanishes, as do the

C’,:’;l = O Thus the general form
is (i,k=mn, p, e, p)

coefficients A%, = Bl =
of the vectors f” and Aj Ji

Fiy =0, (96)

//lpl’l% v nv i
T f(p) = =AWy = Bpkd(k)w (97)
Afiy = =Ci, Wiy = Didiwyu (98)

or, using Egs. (80), (81)—(83), and (85) (with w* replaced
by b* and with @** replaced by b*¥),

ﬂ]’”%’ H v 1 v v
L = — Ay bW, — A, (L = D)W,

— AH bW, )D—B‘ (Db,
— B (L = b6 )d gy, — B b d o, (99)

Ajlly = —=Cl,b*b* W), — Ch (L9 — b bW

v I v
- Cg,b" W — Dybtb¥d gy,

— Dy (Lw — b*b*)d 1, — ng/‘”d(w. (100)
The phenomenological coefficients in Egs. (99) and (100)
can be expressed through microscopic quantities (mutual
friction parameters and momentum transfer rates), as
shown in Appendix B in the simple case of vanishing
entrainment and 7 = 0. The cross terms in Eq. (100)

containing the coefficients B” =l T

ip® ip®
Blf,’i =-CcH 5 lead to 1nterference between the diffusion and
mutual friction effects.
Note, in passing, that if the neutron vortices are present
but do not affect the diffusive currents (see Sec. V C) and
do not interact with proton vortices, then the expressions

for f” (99) and A ) (100) will remain the same, whereas
f" ) w111 be given by Eq. (91).

VI. FULL SYSTEM OF EQUATIONS IN THE
MHD APPROXIMATION FOR npep MIXTURE
WITH PROTON VORTICES

In this section we formulate the full system of MHD
equations for magnetized npeyp matter, accounting for
neutron superfluidity as well as type-II proton supercon-
ductivity and adopting the “MHD approximation” from
GD16. The resulting set of equations, presented in
Sec. VIB, is suitable for, e.g., studying the combined
quasistationary evolution of the magnetic field and temper-
ature in slowly rotating superconducting NSs. For practical
convenience, below in this section we do not set ¢ = 1.

A. “Magnetohydrodynamic” approximation

First, let us briefly summarize the main consequences of
the “MHD approximation” formulated in Sec. VIII of
GD16, which allows us to substantially simplify the general
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equations of Sec. II. This approximation is mainly based on
the fact that, under typical NS conditions (and assuming
type-II proton superconductivity), the magnetic induction B
is much larger than the fields E, D, and H defined in the
comoving frame. For actual calculations, one also has to
specify a microscopic model that allows one to express the
four-vectors D*, H, W’(’Ei) and W’(‘Mi) through E*, B, V’(‘Ei>
and V’(‘Mi). For definiteness, below we use the simple model
of noninteracting vortices from Appendix G2 of GD16;
note, however, that the MHD approximation can be
formulated for other microscopic models in a similar way.
As discussed in Ref. [24] and GD16, the magnetic field
H is related to the magnetic induction B as'®
H=B-By,—-By,, (101)
where By, is the magnetic induction associated with
neutron (i = n) or proton (i = p) vortices. In other words,
H coincides with the London field generated by NS
rotation, |H|~2 x 1072[Q/(100 s7')] G < |B| ~ 10'? G,
where Q is the NS spin frequency. This field, as well as
an,lg is neglected in comparison to By, in the MHD
approximation: all the magnetic induction is assumed to be
locked to proton vortices, B ~ By,,.
Similarly, the fields D and E are related as
D:E_EVn_EVp' (102)
Here the electric field Evy; is generated by vortex motion,
Ey; = —(1/¢)Vy; X By;, where V| is the vortex velocity,
which is assumed to be nonrelativistic; the electric induc-
tion D is of the order of small gradients of thermodynamic
functions, |D| ~ |Vu;|/e,. Both E and D are much smaller
than B.
Since the vectors D and H are small, it follows from the
second pair of Maxwell equations (18) that the total free

electric current density J’(‘fre o) should also be exceptionally

small, much smaller than the individual contributions to
J’(’ﬂee) from each particle species. This observation enables

us to make further simplification by discarding Maxwell
equations (18) but instead requiring that the free electric

current density J%. . should vanish [this approximation is

(free)
well known in the literature and is further discussed by us
around Eqgs. (128) and (129)]:

3Some authors (e.g., [29,78,79]) use a different definition for
H, identifying it with the critical field H,;; we find that definition
less convenient since H defined that way does not satisfy the
Maxwell equation (16). Note, however, that both approaches are,
in principle, possible and the resulting equations are completely
equivalent [29].

By is proportional to the number of vortices per unit area
Nv;; for typical NS conditions Ny, is less than Ny, by more than
10 orders of magnitude and thus |By,| < |By,|.

Jﬂ ) :e,-niu”—i-eiYikwfk)-l—eiAj/(l) :0

(free i

(103)

Now let us turn to the vortex-related vectors V’(‘Ei), V’(‘Mi>,

W’(‘Ei), and W’(Mi) [or, equivalently, to the corresponding
tensors ”V’(‘i”), lV’(‘l.”), ”W’{S, and lVV’(‘I.”); see Egs. (40) and
(41)]. The number of proton vortices is typically larger by
more than 10 orders of magnitude than the number of
neutron vortices (see, e.g., Ref. [24]). Consequently, the

u : . u
four-vector V<Mn> can be neglected in comparison to V(Mp)

in the expressions for de,y, (26) and AT?IEM vorer) 37

since the lengths of these vectors are proportional to the
number of vortices, as follows from Eq. (24). Note also that
in the comoving frame |V (g;)| ~ (Vii/¢)[V(mi; thus, V’(Ei)
can be neglected in comparison to V’<‘Mi), and, similarly,

W’(‘Ei) can be neglected in comparison to W’(‘Mi).

Under the above assumptions, the four-vector
17’(’Mp) = %e””“/"ul,ﬂ(maﬁ, which reduces to (0, m,curlV,)
in the nonrelativistic limit, can be neglected in comparison
to (e,/c)B". Thus, the four-vector Vi, = = WM T
(e,/c)B" [see Egs. (43) and (50)] reduces to

e

Vﬂ 14 Bﬂ,

) =~ (104)

which physically means that the magnetic induction is
produced by proton vortices.

For a simple microscopic model of noninteracting
vortices, the four-vectors W?Ml.) are related to VQ‘MI.) as

[see Egs. (124) and (G9)—(G11) in GD16]

A H
e Evi Yowy
(M) zh V(M,)

(105)

where Vv = /V(M,->,,V?’Mi), Ey; is the vortex energy per
unit length specified below, and no summation over i is
assumed. W’<’Mp) can also be rewritten in terms of the
critical magnetic field H; [80]:

c B

Wh, =

In this formula B = (B,B*)"/?, and H,, is expressed
through Evp as

47[EV]7

cl = = s

¢p0

where ¢ »0 = (whc/e,) is the magnetic flux associated with

(107)

the proton vortex. The energy Ey; per unit length for
neutron and proton vortices is given by [see Egs. (E17) and
(E18) in GD16]
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. Y Y Y2 b,
By, m Zp2cr mior — ey ( ) (108)
4 Y, 3
2 6[’
By, ~ —h Y, . (109)
"\,

In Egs. (108) and (109) ¢&; is the coherence length for
particle species i, 6, is the London penetration depth for
protons, and b,, is some “external” radius of the order of the
typical intervortex spacing [25,72]. Note that Eq. (109) (see
also Ref. [81] for a nonrelativistic expression) is only
applicable to a strong type-II superconductor, i.e., in the
limit 5, > ¢&,,.

We remind the reader that the expressions (105) for
W’('Ml.> are valid only for a simple model of noninteracting

vortices. If one accounts, e.g., for vortex—flux tube inter-
action, then both these vectors will depend on V’(JMP) and

Vi)
Using the approximations discussed above, one can also
simplify the thermodynamic relations. First, all the thermo-
dynamic quantities (e.g., the energy density &) can be

expressed as functions of the variables n;, S, w‘(‘i)w<k)ﬂ
and B:

simultaneously.

e =¢(n;, S, W’Zi)w(k)M,B). (110)

Second, only the term W<Mp) ”dV’(’Mp) can be retained in the

expression (26) for de,qq. Thus, in view of the relations
(104) and (106), the second law of thermodynamics (25)
becomes

Y, 1
de = pydn; +TdS +—2d(wi wy) +—HadB,  (111)
2 @) Az

and the Gibbs-Duhem relation (36), consequently, takes the
form

1

Yie 10 o

Similarly, only the last term (and only for proton vortices,

i = p) survives in the expression for AT’(‘EM vortex) 37
A T/Z];M+vortex T/;{/’M)
_IYAMO Iy vIyp\Ha
= Wi Ve T4 VG Ve
+ u}lJ_WI(/Z)V(Ep)a‘ (113)

Noting that V’(‘Em = /41,1ftpf’(lp)/c3 [see Eq. (59)], and also

using the relations (104) and (106), one can transform
Eq. (113) to

v H a v
AT/(lEMJr\/Onex)_ Ar b,u b a
a Hl va U pa
+E2 T Fioat b f ) (114)

dre,c
or, equivalently, to

s
A T(EM+v0rlex)

_H,B
 Arx

n,H
ﬂ:ﬂep C;l (uﬂez/a/iy uaf(p)ﬂby + uveﬂ(l/3]’ uaf(p)ﬂby) .
p

(1w — bbY)

(115)

Repeating the derivation of the entropy generation
equation (52) with de given by Eq. (111) and

AT’(‘EM Lvorex) Ziven by Eq. (113), one can find that the

four-vectors W’(‘ ) and W”  [see Eq. (54)] in the MHD limit
should be defined as

1
1 c
Ho v A
W(p) - np CYPkM/(lk) + 47T€p 1o (HCIbya) . (1 17)

B. MHD equations

Now, working in the MHD approximation described
above, let us formulate the dynamic equations for super-
conducting NSs with npeu cores. We assume that protons
form a type-II superconductor, and neutrons are superfluid.
However, we ignore the effects of NS rotation and hence
assume that there are no neutron vortices in the system,
V’(‘Z) = 0. Note that neutron vortices can be included

separately (see Remark 3). As for the dissipative effects,
we consider only diffusion and mutual friction, thus
ignoring chemical reactions as well as viscosity (i.e., we
set Q = Al'; = A" = x; =0). The latter effects can
easily be incorporated separately if needed.

The full set of equations allows one to find seven
unknown functions B¥, u* n,, ne, n,, and § (all
other unknown quantities can <be expressed algebralcally
through these functions) and includes the following.

(1) Continuity equations for neutrons, electrons, and

muons describing evolution of n,, n,, and n,,

respectively:

80,] ) = 0,(n,u” —|—Y,1kw()—|—AJ‘(l))—O, (118)
8(,j‘(”e> = O,(nu* + Aj?’e)) =0, (119)
80,]"(’”) = Oy(n,u” + Aj?‘m) =0. (120)
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(2) Total energy (4 = 0) and momentum (u = 1, 2, 3)
conservation laws (8) describing evolution of the
energy density e and four-velocity u*:

a,T" = (121)
where
T = (P + e)u'u® + Pg"
+ Vi Wiy Wiy + W u” + pew(y i)
AT e (122)
and AT’(‘EM Lvortex) 18 specified by Eq. (114). Instead

of the energy conservation law, it is convenient to
use the entropy generation equation (63):

Hi, .
d,8" =0, (Su” - —A]I;i)>
 ppn .
_ M ”f = Ay (123)

(3) The four-vector w’(‘n) satisfies the superfluid equation
for neutrons, which, in the absence of vortices, reads

[0 (Wl + matt”) =

ool

Vin 0" (Wi, + Hntt")]

(124)

(4) Magnetic induction evolves according to Maxwell
equation (17),

0,F,; +0,F), +0,F,, =0, (125)

which, in terms of the vectors E and B, reads

curlE = ——

— 12
cot’ (126)

divB = 0. (127)
The set of equations (118)—(127) contains also unknown

quantities n,, w” ,E, f ,and A j<‘p) which are expressed

algebralcally through the seven functions defined above.
First, the quantities n,, and w"p can be found from the

"
condition J (free

straints (5) and (7), leads to the well-known (and often
employed in the literature) quasineutrality (128) and
screening (129) conditions [24,26,82]:

)= =0 (103), which, in view of the con-

(128)

n, =n,+n,,

YWy + AL = Aft = Afl =0

) W) (129)

Next, the quantities f” (99) and Aj i) (100) have the

following form [note that we restored the factor ¢? in the
left-hand side of Eq. (130)]:

Byl Ll == Abp b B W (= Ay (L = )W,
—A’ipb"”W(mv
— Bl oo d gy, — Bl (L = bb")d gy,
— B bdy, (130)
H v v v
Aflfy = =Cl, bWy, — CL (L4 = BB )W,
- Cgvb"”Wmv
— Dl b d gy, — D (L™ — BB )d e,
— DHpdy,, (131)
where d;), and W, are given by Egs. (55) and (117),

respectively. The transport coefficients A,,p, A, A

Bl BL. BY. Cl . Ch. cll D). Dy, and DY should be
expressed through microscopic mutual friction parameters
and momentum transfer rates. We discuss these relations in
Appendix B.

Finally, the electric field E# can be expressed algebrai-

cally from the superfluid proton equation (59):

u Ve, =—u A+ ppu ]—8”[w’('p>+/4,,u”}}+%pE”
,u n
= pzpf’(lp)' (132)

Note that the right-hand sides of Egs. (130) and (131)
implicitly contain A j’(‘i) and E**°; therefore one has to solve

Egs. (130)—(132) simultaneously in order to obtain closed-
form expressions for f’(‘m, A j’(‘i), and E*.

The nonrelativistic version of MHD equations from this
section is provided in Appendix A.

Remark 1.—If Ap p= BH = 0, one can define the vortex
velocity v (Lp) satisfying the vorticity transfer equation [25]

/U(LP)I/V;(‘;) =0. (133)

In analogy with GD16 [see Eq. (101) there], one can find
that, up to arbitrary terms parallel to b*,

ZOW’;p) depends on the quantity Y ,w/, [see the definition
(54)], which is expressed through A j’(’i) with the help of the

screening condition (129). In addition, d’(‘k) depends on E¥ [see
the definition (55)].
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A
v =u' -
(Lp)

(Ag’,, o + Bled ) L

npep
1
—B (App

w + Brid i, )b
npep

(134)

Remark 2.—The MHD equations presented in this
section are very similar to those of Sec. VIII in GDI16.
For the reader’s convenience, let us list their main
differences from GDI16.

(1) Particle currents include the dissipative correc-

tions A j
(2) We use a sllghtly different definition of W" (see
footnote 7).

(3) The term kaw’(‘k) in the expression (117) for W’(‘p)

does not vanish due to the presence of diffusive
currents.

@) f” (and thus 11 ) includes additional terms
propomonal to d() (if transport coefficients
B #0).

(5) Neutron vortices are absent: V¥ ”) =0.

Remark 3.—One can easily account for the presence of
neutron vortices, provided that we neglect their effect on
diffusion and ignore vortex—flux tube interaction (see
Sec. V C). Under these assumptions, all equations of this
section remain the same, except for Eq. (124), which
should be replaced with

V”y =*MU{6 [ +ﬂn ] 8D[Wl(ln) +/’tnu”]}

i g (135)

and Eq. (123), which should be replaced with

Hi\ .
aﬂS" = 6” (Su” - TA]’(‘I.)>

2
MP pf Wy + 5 W
h Ajl(li)d(i)w (136)
where f’(‘n) is [see Eq. (91)]
Halth o | L g
S = — A @ @ W (), — Ay (L — 0@ )W (),
— AL W), (137)
and W?n) is given by Eq. (116).

VII. SUMMARY

In the present study we have formulated equations of
dissipative relativistic finite-temperature MHD describing
superfluid and superconducting charged mixtures in the

presence of vortices and electromagnetic field. For the first
time, the corresponding MHD equations systematically and
simultaneously take into account the combined effects of
particle diffusion and mutual friction forces acting on
superfluid or superconducting vortices. It is important to
stress that these two effects interfere with one another:
diffusion affects particle velocities which, in turn, influence
the vortex motion via the mutual friction mechanism (and
vice versa); as a result, the cross-coefficients B, and C; i in
Egs. (61) and (62) differ from zero.

We have obtained the general MHD equations and
derived the entropy generation equation, following the
same phenomenological approach [19,50] as in our pre-
vious papers [25,26,49] (see Secs. II and III). These
equations extend the results of GD16 (which neglects all
the dissipative processes except for the mutual friction
dissipation) by accounting for the diffusion, viscosity,
chemical reactions, and radiation. Then, starting from
the Onsager principle and the condition of non-negative
entropy production rate, we have derived in Sec. IV the
general expressions for the mutual friction forces and
diffusive currents adopting the MHD approximation from
GD16 (see Sec. VI A), that utilizes the fact that in typical
NS conditions the magnetic induction B is much larger than
the fields E, D, and H. Note that, in this approximation,
mutual friction and diffusion (which are the main focus of
our study) appear to be completely decoupled from other
dissipative mechanisms, which can be studied separately.

We have applied the formulated MHD to a number of
special cases, where it can be considerably simplified
(some of these cases are interesting because of their
application to NSs). In particular, simplifications arising
for unmagnetized NSs are discussed in Sec. VC. The
resulting equations allow one to easily study the effect of
diffusion and mutual friction dissipation on damping of
stellar oscillations and various dynamical instabilities in
NSs [40,76]. In turn, Sec. V D provides equations suitable
for studying the quasistationary magnetic field evolution in
superconducting NS cores [41]. The full system of equa-
tions in this limit is presented in Sec. VI and describes
npey matter with type-Il proton superconductivity,
accounting for an interplay of mutual friction and particle
diffusion dissipation.

The MHD equations discussed above contain a number
of phenomenological transport coefficients, that have to be
determined from microphysics. We have shown (see
Appendix B) how to establish a connection between our
formalism and the microscopic approach, by expressing the
phenomenological coefficients arising in our theory
through the microscopic mutual friction parameters D;
and momentum transfer rates J;; in the low-temperature
limit. We emphasize that all these phenomenological
coefficients, generally, depend on both D; and J;;, due to
interference between the diffusion and mutual friction
mechanisms.
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We see two main immediate practical applications of our
results. First, the dissipative MHD equations, presented
in this work, allow one to realistically model long-
term magnetothermal evolution in superconducting NSs,
accounting for the macroscopic particle flows, diffusive
currents, mutual friction, and finite temperatures, as well as
special and general relativistic effects. Second, with the
help of these equations, one can study the combined effect
of diffusion and mutual friction on oscillations and hydro-
dynamic instabilities in NSs: these effects are extremely
efficient dissipative agents in superfluid and superconduct-
ing NS cores [40,76].

The presented magnetohydrodynamics can be general-
ized in a number of ways. First, one can easily consider a
more complex particle composition (e.g., including hyper-
ons) within the presented framework. Another straightfor-
ward step is to consider viscosity and chemical reactions in
the presence of two preferred directions in the system
(specified by the two types of vortices) and to derive
general form of the corresponding dissipative corrections
following the same procedure as in Sec. IV. Further, an
important task would be to describe pinning of neutron
vortices to proton flux tubes and the vortex creep. In
principle, our general equations should account for these
effects, but for practical applications one also has to find a
relation between the phenomenological quantities (such as
the vector WYy, or the transport coefficient A7) and the
microscopic parameters describing vortex—flux tube inter-
action [77,83-87]. We expect that all these improvements
will enable further progress toward realistic modeling of the
various dynamical processes in NSs.
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APPENDIX A: NONRELATIVISTIC LIMIT
OF EQUATIONS OF SEC. VI

In this Appendix we present three-dimensional version
of MHD equations of Sec. VI (see analogous equations in
Appendix I of GD16), assuming that all macroscopic
velocities are nonrelativistic (the “low-velocity” limit).
At the same time, we employ a relativistic equation of
state and discuss transition to the fully nonrelativistic limit
separately. To proceed to the latter limit, one has to assume
that not only macroscopic velocities, but also the equation
of state is nonrelativistic. Then one has to replace the
chemical potential u; for particle species i with the particle
rest energy, m;c* [note, however, that in the superfluid
equations for neutrons (A23) and protons (A41), as well as

in Eq. (A36), one should retain the small quantity
B = (u; —m;c*)/m;] and express the entrainment
matrix Y, through the nonrelativistic matrix p; by the
formula [58]
pix = mimc®Y i, (A1)
where no summation over repeated indices is assumed.
In the absence of entrainment p;;, = pg;d;;—i.e., the off-
diagonal elements of the matrix vanish—and diagonal
elements contain superfluid mass densities p,; for particle
species i. In the fully nonrelativistic limit, the pressure P
can be neglected in comparison to the energy density ¢,
which equals the rest energy density:
P < empc?, (A2)
where p = m;n; is the total mass density. The components

of AT’(‘EM +vortex) 4re also much smaller than pc?.

Below, all the three-vectors (shown in boldface) are
defined in the laboratory frame. Note that all scalar
thermodynamic quantities (e.g., particle number density
n;) in this paper are measured in the comoving frame;
however, in the laboratory frame they have the same values
in the low-velocity limit.

1. Nonrelativistic three-velocities

For convenience, let us first introduce some nonrelativ-
istic quantities. The four-velocity u* is expressed through
the normal (nonsuperfluid) velocity V.., of nonrelativistic
hydrodynamics by the formula

ut = (u(),u) — < 1 ) Vnoml ’> ~ <I7Vn0rm>.
\/1 —_ Vﬁ%rm c\/l — Vlz;%rm c

C

(A3)

In what follows, we retain only leading-order terms in
Viom/c and V;/c in all equations.

The four-vector w/ is related to the nonrelativistic
superfluid velocity V; by [25,58]

w’(‘i) = micV’(‘si) — uut, (A4)

where V’(‘Sl.) = (V?S,»),Vsi) and V(()si)

Egs. (5) and (A4):

can be found from

o _  Hi uV
0 0 -

) mycu u

(AS)
In the low-velocity limit

Vl‘l rm
wi = (W?,->,W(,-)) ~ <0, m;cVg — p; TO> (A6)
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For nonrelativistic particles u; ~ m;c?, and, in the fully
nonrelativistic limit, the vector w;) reduces to
Vnorm)'

Wi = mic(Vg; — (A7)

Being expressed in terms of V’(’Sl.>, the vorticity tensor V’(l”)

(22) reads (recall that, starting from Sec. IV, we ignore

viscosity and set x; = 0)
€i

Vip = mild"Vig = Vgl +—F*. (A8

In the fully nonrelativistic limit it is also convenient to

introduce the nonsuperfluid particle velocities V;, in order

to express the spatial part of the particle current

j’(’i) = ( j?l.) .Ji), as a sum of nonsuperfluid and superfluid

currents (with velocities V; and V;, respectively):

. 1 ‘i 1 pik‘sk
L= n.__E . __|__E L\ Al
Ji ( i ] pzk) c P& c ( 9)

Lok

Note that no summation over index i is assumed in
Egs. (A9)—(All), and only linear terms in velocities are
taken into account. Comparing Eq. (A9) with definitions
(4), (A3), and (A6), one can express 4j; through V; as

. 1 Vi B Vnorm
aj; = (”i - Ezk:pik> . (A10)
For nonsuperfluid particles Eq. (A10) reduces to
V- Vn rm
Aji:nig. (A11)
c

Using the above definitions, below we present the low-
velocity version of equations of Sec. VI and also discuss
how they will be modified in the fully nonrelativistic limit.
The full set of equations contains dynamic equations for
seven unknown functions B, V o, W,,» 1, s ny, and S,
supplemented by algebraic relations allowing one to find all
other quantities.

2. Dynamic equations

(1) In the low-velocity limit the continuity equations for
neutrons (118), electrons (119) and muons (120)
read, respectively,

0

= —l’livl/,{i - SVZT —l—pikvl

(@)

) (Vsk B Vnorm)

0

f;ll‘n + V[1,Viorm + YWy + cAj,] = 0, (A12)
on, .
at + V[nevnorm + CAJG] = 0’ (A13)
on
8—;‘ + V[, Voo + cAj,] = 0. (Al4)

In the fully nonrelativistic limit these equations can
be presented, in terms of the velocities V; and V;
[64], as

Ipn

apl‘ +V[(pn ~Pnn _pnp)vn +pnkvsk] :0’ (AIS)
Pe L ¥(pV) =0, (AlG)
ot
0
% + V(/)ﬂvﬂ> 0, (Al7)

where p; = m;n; and no summation over i is
assumed.

The entropy generation equation (123), which is
convenient to use instead of the energy conservation
law, reduces to

108 Viorm  Hi U,n>
V[ ST ) =L —-Ajd;
c Ot <S c 1 J') c3Tf1’WP sz(z)v

(A18)
and the total momentum conservation equation reads

107
— v, T =0,

o (A19)

where the spatial indices / and m run over [, m = 1,
2, 3, and the energy-momentum tensor T*¥ is
specified by Eq. (122). In the fully nonrelativistic
limit the momentum density 7% /¢ reduces simply to
TOI/C - pvrllorm + Zik pik(Vik - VII’IOI'H’I)’ while 7"
is given by Eq. (A33) below. Then Eq. (A19), with
the help of the Gibbs-Duhem relation (A28), can be
represented as

a |:pvll10rm + ZPik(Vék - Véorm):| + v |:,0V£10rmvnmom1 + Zpik(véi :Ilc - Vlﬁornglorm)
ik ik
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Here the last term in the right-hand side describes buoyancy
and tension forces acting on proton flux tubes. This term
replaces the Lorentz term Jy.. X B of the ordinary MHD,
which vanishes due to the screening of electric current
inside the superconductor (see, e.g., Refs. [24,78]21).
(3) Superfluid equation (124), written for neutrons in
the absence of vortices, in the three-dimensional
form reduces to the two equations

19V,
c ot

curlV,, =0,

+VV% =0, (A21)

(A22)

where V0, is given by Eq. (A5). One can also obtain
a nonrelativistic version of Eq. (A21), assuming that
velocities are small and neutrons are nonrelativistic
(see Ref. [25], Appendix C):

v,
ot

1
_|Vsn - Vnorm|2 =0,

+ (Van)Vsn + v ﬁn - D)

(A23)

where ﬁn = (.un - mncz)/mn'

(4) The “magnetic evolution” equation [the same as
Eq. (I23) in GDI16] is obtained from Maxwell
equation

10B
curlE = ———

A24
c Ot ( )

by substituting E from Eq. (A40) (see below) and
neglecting the terms depending on curlV, in com-
parison to the similar terms depending on e, / (m,,¢)B:

OB u,n
Fr curl( ep,,cpf” +B x Vnmm) =0. (A25)

The above equations describe time evolution of magnetic
field B, velocities V., and V, (or, equivalently, w,), as
well as scalar thermodynamic quantities (1; and S). Note that
the superfluid velocity for protons, V, (orw ), is expressed
from the screening condition (A31) and, thus, does not
provide an additional dynamic degree of freedom; the
diffusive currents Aj; (or velocities V; of nonsuperfluid
components) are also expressed algebraically via Eq. (A35).

3. Algebraic relations

(1) In the low-velocity limit the small quantity w/. Wk
that enters the thermodynamic relations (1 10) (1 12)

2Note that the force F' inag in Eq. (95) of Ref. [24] contains an
additional term, —(p,,)/(4x)V'(BOH./9p); in our formulation
this term is included in Vy; due to renormalization of the
chemical potential—see Eq. (G25) in GD16.
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reduces to ww(;) [see Eq. (A6)]. As a result, any
thermodynamlc quantlty (e.g., the energy density €)
should be expressed as functions of the variables n;,
S, WiV k) and B:

&£ = E‘(I’li,S,W<,-)W(k),B), (A26)

whereas the second law of thermodynamics and the
Gibbs-Duhem relation read, respectively,

Yic 1
de = pidn; +TdS + Td(w(l)w“‘)) + EHcldB,

(A27)

dP = n;du; + SdT Y“‘d( ) L y.ap
= n;ap; > WiyW (k) G TerdB:
(A28)
In the fully nonrelativistic limit the term

%d(wmw(k)) reduces, in view of Egs. (Al) and
(A7), to

(Vsi - Vnorm)(Vsk -
2

VHOITII)

Y;
de<w(i)w(k)> = pud

(A29)

Proton number density n, and superfluid proton
velocity Vi, can be found from the quasineutrality
(128) and screening (129) conditions:

n,=n,+n,, (A30)
Jp Je .]/4 - kawk + (A.Ip A-]ﬂ)
~ 0. (A31)

For nonrelativistic matter the screening condition

(A31), written in terms of V; and V ,, takes the form

Pok (v =V ) 0,V =,V —

n,V,=0.
m, H

u (A32)
The energy-momentum tensor 7, employed in
Eq. (A19), is specified by Egs. (122) and (115).
In the fully nonrelativistic limit its spatial part 7"
(I, m = 1, 2, 3), with the help of relations (A1)—(A3)
and (A7), reduces to [cf. Ref. [64] and Eq. (I22) in
GD16]

T = </) - Zp ik) Vllmrm Vglorm
ik

H,
+szkvsz bk+P61m 47[ < 5lm

Ble
B .

(A33)
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(4) 4j; and f, are expressed through d; and W, [see
Egs. (130) and (131)]:

_Hpn
. pfp PP W= AppW 1 = AW, x b
- B” i) = Bdi
B L di x b, (A34)
Aji = —Cl, W, = CLW, | —CH[W,, xb]
—Dldy — Dhd, —Dld xb],  (A35)
where
dkH E(dkb)b, ko_ Edk—(dkb)b,
W, =Wyb)b, W, =W,—(W,bb, (A36)
B
b=— A37
B ’ ( )
AN Viorm
dk_V<T) . [E+ . xB}, (A38)
Cka
W, = ., W) + e, curl(H.b).  (A39)

(5) The electric field E is expressed from the superfluid
equation (132) for protons:

V.
Pt evV, +curlVy, x Viom

ot
Hplp

1%
= - 2,,+ <E+ “°”“><B> (A40)
mp

mp,c

which, in the nonrelativistic limit, takes the form
[cf. GD16, Eq. (I7)]

ov.
T:" +(V,,V)V,, +V {ﬂp

= —curlVy, X (Viom

e |4
—n,,fp—l—m—p(E—{—%XB),

P

1
- z |Vsp - Vnorm|2:|
- Vsp)

(A41)

where ji, = (u, —m,c?)/m,.

Note that the right-hand sides of Eqs. (A34) and
(A35) implicitly contain Aj; and E (see footnote 20);
therefore, one has to solve Egs. (A34), (A35), and
(A41) simultaneously in order to obtain closed-form

expressions for f o Aj;, and E.
Remark 1.—If neutrons and protons are completely
superfluid, then Aj, and Aj, (which describe dissipative

corrections to the nonsuperfluid currents) vanish together
with the corresponding transport coefficients.

Remark 2.—The magnetic evolution equatlon (A25) can
be further simplified if transport coefficients A,I, pand B,
Eq. (A34) are small. Then f/, can be presented as

e
fp = [B X (VLp Vnorm)]7 (A42)
HpTtp
where
T H g
VLp = Viorm — ﬁ (-Appr + Bpkdk)
2T 1 |
- (A, W, + Bidy) x b (A43)

pp

is the nonrelativistic velocity of proton vortices [spatial part
of the four-vector ”’(le) multiplied by c; see Eq. (134)].

Equation (A25) can then be rewritten in the form
[cf. GD16, Eq. (124)]

%—I;’ +curl(B x V) =0,
which simply states that the magnetic field is transferred by
the vortices.

Remark 3.—One can easily account for the presence of
neutron vortices, provided that we neglected their effect on
diffusion and ignore vortex—flux tube interaction (see
Sec. V C). Under these assumptions, all equations of this
section remain the same, except for Eqs. (A21)-(A23),
which should be replaced with

(A44)

aV /'trl nn

L+ VYV, +eurlVy, X Vo = ———5f,. (A45)
ot m,c
and Eq. (A18), which should be replaced with
108 \ %4 Wi
Ly gnom T AG
cor < c J’)
/'t /’ln H *
=5 ; 7o Wo 757 faWa = Aid ), (A46)
where W, is given by [see Eq. (116)]
1
Wn = n—n CYnkW(k) (A47)
and f, is [see Eq. (91)]
/’tn nfn n|| AnanJ_ A{I-In[WnJ_ XG)], (A48)
_ _ _ Yo
WnH = (an)w W,=W,— (an)wv 0=
Viun)
(A49)
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In the nonrelativistic limit Eq. (A45) reduces to [cf. GD16,
Eq. (I7)]

av,, 1
7 + (Vsnv)vsn +V Hn — E ’Vsn - Vnorm|2
= _Curlvsn X (Vnorm - Vsn) - nnfn' (ASO)

APPENDIX B: PHENOMENOLOGICAL
TRANSPORT COEFFICIENTS IN THE
LOW-TEMPERATURE LIMIT

Here we establish a connection between our transport
coefficients and the mutual friction parameters and momen-
tum transfer rates of microscopic theory. To this aim, we
analyze the equation of motion for individual proton
vortices, as well as the Euler-like equations for nonsuper-
fluid particles in the npeu matter.”? We present an
algorithm that allows us to find microscopic expressions
for Aj; and V7 ,, compare them with the phenomenological
equations (A35) and (A43), and, finally, obtain the expres-
sions for the phenomenological transport coefficients A%/,
BY. CY. and D,

As in Appendix A, we work in the MHD limit, ignore
neutron vortices, and assume that all macroscopic velocities
are nonrelativistic. For the sake of simplicity, we further
make some additional assumptions. Namely, we adopt the
low-temperature limit (7" — 0), ignore all the terms depend-
ing on VT, and assume that protons and neutrons are
completely superfluid (no Bogoliubov thermal excitations),
so that only electrons and muons can scatter off the vortex
cores. In addition, we also neglect entrainment between
superfluid neutrons and protons, i.e., set ¥,, = 0.

The proton vortex velocity Vi, enters the equation
describing the balance of forces acting on a proton vortex.
Neglecting small vortex mass, the latter equation takes the
form [44]

> Fiiy+Fe =0, (B1)
i=e.pu
where
Fiy=-Dibx[bx (V- VLp)H
+ Di[b x (Vi = V)] (B2)

is the velocity-dependent force per unit length acting on a
vortex from particle species i, V; = ¢j;/n; is the velocity of
particle species i, and coefficients D; and D, are calculated
from microphysics (see Ref. [44] and references therein). In
the absence of diffusion the phenomenological mutual

*These Euler-like equations follow from the transport
equations written for each particle species; see, e.g.,
Refs. [32,40,49,88].

friction parameters a,, f,, and y, employed in GDI16
can be expressed through D; and D) as, respectively,

hn, (D, + D!
Bty — APt D) gy
c (D, +D,)* + (D, + Dy,)
fin (D, + D
Py ThmDet D))y
c (D, + D,,) + (D, + Du)
vy, =0. (B5)

To obtain these relations, one has to solve Eq. (B1) with
V.=V, = Vium and compare the result with Egs. (101)
and (I25) of GD16.

The first and the second term in Eq. (B2) describe the
(dissipative) drag force and the (nondissipative) transverse
force, respectively. F,, is the velocity-independent force
per unit length; it is the sum of buoyancy and tension
forces [43]:

hc
cht = —E [b X Curl(Hclb)].

(B6)

Using Eqgs. (A31) and (A39) and noting that Aj,, = 0 (since
all protons are superconducting), one can present F,,, as

Foy = —hn,, {b x <W,, _ niAje . niAjﬂﬂ. (B7)

p p

The velocities V, and V, can be found from the Euler
equations [41] (i =e, y and no summation over i is
assumed)

n [%r(v,-V)} <%V>

Hin;
> V¢—;Jik<vi—vk>—Nv,,FHv, (B8)

=-n;Vp;—

where ¢ is the gravitational potential, J; = Jy; is the
momentum transfer rate per unit volume between particle
species i and k, and Ny, = B/c}ﬁpo = e,B/(nhc) is the
number of proton vortices per unit area. The Lorentz force
is contained in the last term in the right-hand side of
Eq. (B8), since we assume that all the electromagnetic field
is generated by proton vortices. Note that, e.g., in the
similar equations of Ref. [41] the vector F,; from this
reference includes only the drag force [the second term in
Eq. (B2)], whereas the Lorentz force [the first term in
Eq. (B2)] is written out separately.

Since in the hydrodynamic regime the velocities V; are
close to one another, one can simplify the left-hand side of
Eq. (B8) by replacing V; with the average mass velocity of
nonsuperfluid particles U = (u,n,V, + pu,n,V,)/(uen. +
,u”n,,) [88,89], which, in the low-temperature limit,
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coincides with V., introduced in Eq. (A3). Below we
work in the comoving frame, specified by the condition
Viorm = 0 or, in terms of V, and V,
peneVe +pn,V, = 0. (B9)
The left-hand side of Eq. (BS8) in this frame reduces to

(u;n;/c*)OU/0t. Then, subtracting Euler equations (B8)
(divided by u;n;) for electrons and muons, we obtain

Vi, V o
“He | <ﬂ+>16,,(vg -v,)

(4) replace V; with cAj;/n; (note that we work in the
comoving frame, V ., = 0).
Then, solving the system of equations (B1), (B9), and
(B10) and comparing the results with Egs. (A35) and
(A43), one can determine the coefficients A, B’;s{, Cf; ,
and D, and directly check that the Onsager relations (74),
(78), and (79) are satisfied.

Since the resulting expressions are very lengthy, we do
not provide them for the most general case. Instead, we
write them out in the limit J,, < Ny,D; < |Ny,Djl,
which is realistic for typical NS conditions (see, e.g.,
Fig. 1 in Ref. [41]). We also set D; = —zhn;, as argued

He M ne  pun
‘ | g o | o in Refs. [24,44]. Then the transport coefficients have, up to
———Ny,Foy +—Ny,F,y =0. (B10)  the first order in J,,/|Nvy,Di| = (cJ,,)/(e,n;B) and
Helle Hulty D;/|D}| = D,/(nhn;), the following form*:
The set of linear algebraic equations (B1), (B9), and A” —0 (B11)
(B10) allows one to find the quantities Vi ,, Aj,, and 4j,. bp ’
To express them thr'ougih W.p, d, andd,, one has to make . ¢,B(D,+D,)
the following substitutions in these equations: A,y = BT (B12)
(1) substitute F;_, and F. from Eqs. (B2) and (B7); e
(2) replace Vu; with 7d; + ¢,E [see Eq. (A36); recall " e,n,B
that we ignore the terms depending on VT7; App = — 2T (B13)
(3) replace E with (—1/c)Vy, x B [this condition
follows from the assumption that the electric field Bl — 0, (B14)
is generated only by the vortex motion; see Eq. (G15) Pk
in GD16]; |
gL _ PultunyDe = peneD,)[nD, (ueng + 2ugneny, + pang) + n, Do (ugng + 2nen, + ping)]
g ﬂzhzcnenu(ne + nﬂ)(ﬂgne + /4;24”#)2
+ﬂﬂJeﬂ(ﬂene +uﬂnﬂ)2§uﬂnﬂD; —/A;HeD,,) ~0, (B15)
nhe,Bn,n,(u;n, + un,)
|
2,2 2.2
He n n ﬂeﬂﬂT(/’teneDﬂ + /’[ﬂnﬂDE)
By, = —=*Bs,. B16 DL =D} = -
PH Hy pe ( ) ep pe ﬂhepB(,ngne +Mﬁnﬂ)2
(41D, — D) ety T o (uene + mum,)?
Bge:ﬂﬂ He ezy ﬂﬂzﬂ e , BII;I":_&B}I}!W (B17) E%Bz(,u%ne Jr'uin#)z
whe(ugne +pgn,,) Hy 5 5 5
ety T (peneD, + pum,D.) (B20)
2 2.2
Cl‘P = 0’ Clj;’ = _Bj;i’ C{;[? = _Bgi’ (Blg) ”hePB(#ene + ﬂynﬂ)
n2n2T " - foptnen, T
D” :DH I ﬂe”ﬂeﬂ Bl De :De: s (BZ])
o He CJeﬂ (luene + /’lﬂnﬂ)z ’ ( 9) ! ! ePB(M%ne + ﬂzn/‘)
Dﬂ,ﬁl,H _ _@Dﬂ;}.ﬂ’ ,DL\;‘J_,H _ _&Dﬂ’fﬂ' (B22)
He Hy

2Note that the expression (B11) for Blﬁ, is of the second order
in the small parameter (D;/D!); we write it down to emphasize
that, generally, it does not vanish. We also point out that we retain
the (small) second term o J,, in the intermediate equality in
(B20), because only this term survives in the expression for Diﬂ
in the nonsuperfluid MHD of DGS20.

A number of comments regarding these equations are
listed below.
(1) The coefficients AL', » and Byn- vanish since there is no
force acting along the vortex line in Eq. (B1).
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(2) A%, and A3, do not depend, in the leading order, on
the electron-muon momentum transfer rate J,,;
these coefficients are proportional to, respectively,
the mutual friction parameters a, and f, of non-
diffusive hydrodynamics [26] [cf. Eq. (95)]. Note,
however, that generally all coefficients, except for
D‘,‘k depend on both J,, and D;.

(3) The cross-coefficient B;’i, which describes force
acting on a vortex due to gradients of chemical
potentials Vy;, differs from zero. This interference of
diffusion and mutual friction has the following
physical meaning: diffusion affects particle veloc-
ities V; which, in turn, affect the vortex motion via
the mutual friction mechanism (and vice versa).

(4) The dissipative cross-coefficient Blfi, generally,
differs from zero but vanishes in the first order in
Jeﬂ/|NVpD;| = (CJeM)/(epniB) and Dt/lD” =
D;/(zhn;) and, thus, can be neglected.

(5) The expression for Dll”, which describes diffusion of
electrons and muons along the vortex lines, has
exactly the same form as in the nonsuperfluid matter
(see DGS20), since the only force acting along the
vortex line is the electron-muon friction.

(6) In contrast, the dominant first term in Delﬂ depends
on the mutual friction parameters D, and D,,. This
means that, for electrons and muons moving across

the vortex array, the momentum exchange between
particles is mediated mainly by vortices [via the
friction force; see the first term in Eq. (B2)], instead
of direct electron-muon interaction [the term
Jeu(V, =V,) in the Euler equation (B10)].

(7) The (nondissipative) coefficient Dgl has, in the
leading order, the same form as for nonsuperfluid
matter. This is not surprising, since this coefficient
describes the Lorentz force acting on electrons
and muons.

Remark 1.—If we consider another limit and neglect the
friction force between flux tubes and electrons or muons,
ie., set D, = D, = 0 (without assuming that J,, is small),
then diffusion and mutual friction are completely

decoupled, B, = C' = 0. In addition, Al and A, also

vanish, Aﬁ,, = Ay, =0, so that the force on a vortex is
described only by nondissipative coefficient Aﬁp =
—e,n,B/(c*T). In turn, the generalized diffusion coeffi-

cients D, D, and D# in this approximation take
exactly the same form as in the nonsuperfluid matter
(see DGS20).

In conclusion, we note that the presented scheme for
calculating the phenomenological transport coefficients can
readily be generalized to arbitrary temperatures and particle
compositions.

[1] V.M. Kaspi and A. M. Beloborodov, Magnetars, Annu. Rev.
Astron. Astrophys. 55, 261 (2017).

[2] A.M. Beloborodov and X. Li,
Astrophys. J. 833, 261 (2016).

[3] P. Haensel, A.Y. Potekhin, and D. G. Yakovlev, Neutron
Stars 1: Equation of State and Structure, Astrophysics and
Space Science Library Vol. 326 (Springer, New York,
2007).

[4] A. Sedrakian and J.W. Clark, Superfluidity in nuclear
systems and neutron stars, Eur. Phys. J. A 55, 167
(2019).

[5] D. Ding, A. Rios, H. Dussan, W. H. Dickhoff, S. J. Witte, A.
Carbone, and A. Polls, Pairing in high-density neutron
matter including short- and long-range correlations, Phys.
Rev. C 94, 025802 (2016).

[6] A. Gezerlis, C.J. Pethick, and A. Schwenk, Pairing and
superfluidity of nucleons in neutron stars, arXiv:1406.6109.

[7] U. Lombardo and H.-J. Schulze, in Physics of Neutron Star
Interiors, Lecture Notes in Physics Vol. 578, edited by D.
Blaschke, N. K. Glendenning, and A. Sedrakian (Springer-
Verlag, Berlin, 2001), p. 30.

[8]1 D.G. Yakovlev and C.J. Pethick, Neutron star cooling,
Annu. Rev. Astron. Astrophys. 42, 169 (2004).

[9] D. Page, J. M. Lattimer, M. Prakash, and A. W. Steiner,
Stellar superfluids, arXiv:1302.6626.

Magnetar heating,

[10] E.M. Kantor, M.E. Gusakov, and V.A. Dommes,
Constraining Neutron Superfluidity with R-Mode Physics,
Phys. Rev. Lett. 125, 151101 (2020).

[11] P.S. Shternin, D. D. Ofengeim, W. C. G. Ho, C. O. Heinke,
M.J.P. Wijngaarden, and D.J. Patnaude, Model-
independent constraints on superfluidity from the cooling
neutron star in Cassiopeia A, Mon. Not. R. Astron. Soc.
506, 709 (2021).

[12] B. Haskell and A. Melatos, Models of pulsar glitches, Int. J.
Mod. Phys. D 24, 1530008 (2015).

[13] J. Sauls, Superfluidity in the interiors of neutron stars, in
Timing Neutron Stars, NATO Advanced Study Institute
(ASI) Series C Vol. 262, edited by H. Ogelman and E. P. J.
van den Heuvel (Springer, Berlin, 1989), p. 457.

[14] B. Haskell and A. Sedrakian, Superfluidity and super-
conductivity in neutron stars, in Astrophysics and Space
Science Library edited by L. Rezzolla, P. Pizzochero,
D.I. Jones, N. Rea, and I. Vidafia (Springer, Cham,
2018), Vol. 457, p. 401, https://doi.org/10.1007/978-3-
319-97616-7.

[15] A. Sedrakian, Type-I superconductivity and neutron star
precession, Phys. Rev. D 71, 083003 (2005).

[16] T.S. Wood, V. Graber, and W. G. Newton, Superconducting
phases in a two-component microscale model of neutron
star cores, arXiv:2011.02873.

123008-23


https://doi.org/10.1146/annurev-astro-081915-023329
https://doi.org/10.1146/annurev-astro-081915-023329
https://doi.org/10.3847/1538-4357/833/2/261
https://doi.org/10.1140/epja/i2019-12863-6
https://doi.org/10.1140/epja/i2019-12863-6
https://doi.org/10.1103/PhysRevC.94.025802
https://doi.org/10.1103/PhysRevC.94.025802
https://arXiv.org/abs/1406.6109
https://doi.org/10.1146/annurev.astro.42.053102.134013
https://arXiv.org/abs/1302.6626
https://doi.org/10.1103/PhysRevLett.125.151101
https://doi.org/10.1093/mnras/stab1695
https://doi.org/10.1093/mnras/stab1695
https://doi.org/10.1142/S0218271815300086
https://doi.org/10.1142/S0218271815300086
https://doi.org/10.1007/978-3-319-97616-7
https://doi.org/10.1007/978-3-319-97616-7
https://doi.org/10.1103/PhysRevD.71.083003
https://arXiv.org/abs/2011.02873

V.A. DOMMES and M. E. GUSAKOV

PHYS. REV. D 104, 123008 (2021)

[17] H. E. Hall and W. F. Vinen, The rotation of liquid helium II.
II. The theory of mutual friction in uniformly rotating
helium II, Proc. R. Soc. A 238, 215 (1956).

[18] H.E. Hall, The rotation of liquid helium II, Adv. Phys. 9, 89
(1960).

[19] I. Bekarevich and I. Khalatnikov, Phenomenological deri-
vation of the equations of vortex motion in He II, Sov. J.
Exp. Theor. Phys. 13, 643 (1961).

[20] G. A. Vardanyan and D.M. Sedrakyan, Magnetohydrody-
namics of superfluid solutions, Sov. J. Exp. Theor. Phys. 54,
919 (1981).

[21] G. Mendell and L. Lindblom, The coupling of charged
superfluid mixtures to the electromagnetic field, Ann. Phys.
(N.Y.) 205, 110 (1991).

[22] A.D. Sedrakian and D.M. Sedrakian, Superfluid core
rotation in pulsars. I. Vortex cluster dynamics, Astrophys.
J. 447, 305 (1995).

[23] B. Carter and D. Langlois, Relativistic models for super-
conducting-superfluid mixtures, Nucl. Phys. 531B, 478
(1998).

[24] K. Glampedakis, N. Andersson, and L. Samuelsson,
Magnetohydrodynamics of superfluid and superconducting
neutron star cores, Mon. Not. R. Astron. Soc. 410, 805
(2011).

[25] M. E. Gusakov, Relativistic formulation of the Hall-Vinen-
Bekarevich-Khalatnikov superfluid hydrodynamics, Phys.
Rev. D 93, 064033 (2016).

[26] M. E. Gusakov and V. A. Dommes, Relativistic dynamics of
superfluid-superconducting mixtures in the presence of
topological defects and an electromagnetic field with
application to neutron stars, Phys. Rev. D 94, 083006
(2016).

[27] N. Andersson, S. Wells, and J. A. Vickers, Quantised
vortices and mutual friction in relativistic superfluids,
Classical Quantum Gravity 33, 245010 (2016).

[28] L. Gavassino and M. Antonelli, Thermodynamics of un-
charged relativistic multifluids, Classical Quantum Gravity
37, 025014 (2020).

[29] P.B. Rau and I. Wasserman, Relativistic, finite temperature
multifluid hydrodynamics in a neutron star from a varia-
tional principle, Phys. Rev. D 102, 063011 (2020).

[30] N. Andersson and G. L. Comer, Relativistic fluid dynamics:
Physics for many different scales, Living Rev. Relativity 24,
3 (2021).

[31] B. Carter, Convective variational approach to relativistic
thermodynamics of dissipative fluids, Proc. R. Soc. A 433,
45 (1991).

[32] P. Goldreich and A. Reisenegger, Magnetic field decay in
isolated neutron stars, Astrophys. J. 395, 250 (1992).

[33] D. A. Shalybkov and V. A. Urpin, Ambipolar diffusion and
anisotropy of resistivity in neutron star cores, Mon. Not. R.
Astron. Soc. 273, 643 (1995).

[34] F. Castillo, A. Reisenegger, and J. A. Valdivia, Magnetic
field evolution and equilibrium configurations in neutron
star cores: the effect of ambipolar diffusion, Mon. Not. R.
Astron. Soc. 471, 507 (2017).

[35] A.Passamonti, T. Akgiin, J. A. Pons, and J. A. Miralles, The
relevance of ambipolar diffusion for neutron star evolution,
Mon. Not. R. Astron. Soc. 465, 3416 (2017).

[36] M. E. Gusakov, E. M. Kantor, and D. D. Ofengeim, Evolu-
tion of the magnetic field in neutron stars, Phys. Rev. D 96,
103012 (2017).

[37] D.D. Ofengeim and M. E. Gusakov, Fast magnetic field
evolution in neutron stars: The key role of magnetically
induced fluid motions in the core, Phys. Rev. D 98, 043007
(2018).

[38] F. Castillo, A. Reisenegger, and J. A. Valdivia, Two-fluid
simulations of the magnetic field evolution in neutron star
cores in the weak-coupling regime, Mon. Not. R. Astron.
Soc. 498, 3000 (2020).

[39] K. Kraav and M. Gusakov, Diffusion as a damping
mechanism for neutron-star oscillations, J. Phys. Conf.
Ser. 1697, 012023 (2020).

[40] K. Y. Kraav, M. E. Gusakov, and E. M. Kantor, Diffusion as
a leading dissipative mechanism in superconducting neutron
stars, Mon. Not. R. Astron. Soc. 506, L74 (2021).

[41] M.E. Gusakov, E.M. Kantor, and D.D. Ofengeim,
Magnetic field evolution time-scales in superconducting
neutron stars, Mon. Not. R. Astron. Soc. 499, 4561
(2020).

[42] A.G. Muslimov and A.I. Tsygan, Vortex lines in neutron
star superfluids and decay of pulsar magnetic fields,
Astrophys. Space Sci. 115, 43 (1985).

[43] V. A. Dommes and M. E. Gusakov, Vortex buoyancy in
superfluid and superconducting neutron stars, Mon. Not. R.
Astron. Soc. 467, L115 (2017).

[44] M.E. Gusakov, Force on proton vortices in superfluid
neutron stars, Mon. Not. R. Astron. Soc. 485, 4936 (2019).

[45] N. Andersson, Resistive relativistic magnetohydrodynamics
from a charged multifluids perspective, Phys. Rev. D 86,
043002 (2012).

[46] N. Andersson, G.L. Comer, and I. Hawke, A variational
approach to resistive relativistic plasmas, Classical Quantum
Gravity 34, 125001 (2017).

[47] N. Andersson, I. Hawke, K. Dionysopoulou, and G.L.
Comer, Beyond ideal magnetohydrodynamics: From fibra-
tion to 3+ 1 foliation, Classical Quantum Gravity 34,
125003 (2017).

[48] N. Andersson, K. Dionysopoulou, I. Hawke, and G.L.
Comer, Beyond ideal magnetohydrodynamics: Resistive,
reactive and relativistic plasmas, Classical Quantum Gravity
34, 125002 (2017).

[49] V.A. Dommes, M.E. Gusakov, and P.S. Shternin,
Dissipative relativistic magnetohydrodynamics of a multi-
component mixture and its application to neutron stars,
Phys. Rev. D 101, 103020 (2020).

[50] L. Landau and E. Lifshitz, Fluid Mechanics (Pergamon
Press, Oxford, 1987).

[51] W. A. Hiscock and L. Lindblom, Stability and causality in
dissipative relativistic fluids, Ann. Phys. (N.Y.) 151, 466
(1983).

[52] W. A. Hiscock and L. Lindblom, Generic instabilities in
first-order dissipative relativistic fluid theories, Phys. Rev. D
31, 725 (1989).

[53] P. Kovtun, First-order relativistic hydrodynamics is stable,
J. High Energy Phys. 10 (2019) 034.

[54] W. Israel, Nonstationary irreversible thermodynamics: A
causal relativistic theory, Ann. Phys. (N.Y.) 100, 310 (1976).

123008-24


https://doi.org/10.1080/00018736000101169
https://doi.org/10.1080/00018736000101169
https://doi.org/10.1016/0003-4916(91)90239-5
https://doi.org/10.1016/0003-4916(91)90239-5
https://doi.org/10.1086/175876
https://doi.org/10.1086/175876
https://doi.org/10.1016/S0550-3213(98)00430-1
https://doi.org/10.1016/S0550-3213(98)00430-1
https://doi.org/10.1111/j.1365-2966.2010.17484.x
https://doi.org/10.1111/j.1365-2966.2010.17484.x
https://doi.org/10.1103/PhysRevD.93.064033
https://doi.org/10.1103/PhysRevD.93.064033
https://doi.org/10.1103/PhysRevD.94.083006
https://doi.org/10.1103/PhysRevD.94.083006
https://doi.org/10.1088/0264-9381/33/24/245010
https://doi.org/10.1088/1361-6382/ab5f23
https://doi.org/10.1088/1361-6382/ab5f23
https://doi.org/10.1103/PhysRevD.102.063011
https://doi.org/10.1007/s41114-021-00031-6
https://doi.org/10.1007/s41114-021-00031-6
https://doi.org/10.1098/rspa.1991.0034
https://doi.org/10.1098/rspa.1991.0034
https://doi.org/10.1086/171646
https://doi.org/10.1093/mnras/273.3.643
https://doi.org/10.1093/mnras/273.3.643
https://doi.org/10.1093/mnras/stx1604
https://doi.org/10.1093/mnras/stx1604
https://doi.org/10.1093/mnras/stw2936
https://doi.org/10.1103/PhysRevD.96.103012
https://doi.org/10.1103/PhysRevD.96.103012
https://doi.org/10.1103/PhysRevD.98.043007
https://doi.org/10.1103/PhysRevD.98.043007
https://doi.org/10.1093/mnras/staa2543
https://doi.org/10.1093/mnras/staa2543
https://doi.org/10.1088/1742-6596/1697/1/012023
https://doi.org/10.1088/1742-6596/1697/1/012023
https://doi.org/10.1093/mnrasl/slab078
https://doi.org/10.1093/mnras/staa3160
https://doi.org/10.1093/mnras/staa3160
https://doi.org/10.1007/BF00653825
https://doi.org/10.1093/mnrasl/slx011
https://doi.org/10.1093/mnrasl/slx011
https://doi.org/10.1093/mnras/stz657
https://doi.org/10.1103/PhysRevD.86.043002
https://doi.org/10.1103/PhysRevD.86.043002
https://doi.org/10.1088/1361-6382/aa6b37
https://doi.org/10.1088/1361-6382/aa6b37
https://doi.org/10.1088/1361-6382/aa6b39
https://doi.org/10.1088/1361-6382/aa6b39
https://doi.org/10.1088/1361-6382/aa6b3a
https://doi.org/10.1088/1361-6382/aa6b3a
https://doi.org/10.1103/PhysRevD.101.103020
https://doi.org/10.1016/0003-4916(83)90288-9
https://doi.org/10.1016/0003-4916(83)90288-9
https://doi.org/10.1103/PhysRevD.31.725
https://doi.org/10.1103/PhysRevD.31.725
https://doi.org/10.1007/JHEP10(2019)034
https://doi.org/10.1016/0003-4916(76)90064-6

DISSIPATIVE SUPERFLUID RELATIVISTIC ...

PHYS. REV. D 104, 123008 (2021)

[55] W. Israel and J. M. Stewart, Transient relativistic thermo-
dynamics and kinetic theory, Ann. Phys. (N.Y.) 118, 341
(1979).

[56] L. S. Liu, I. Miiller, and T. Ruggeri, Relativistic thermody-
namics of gases, Ann. Phys. (N.Y.) 169, 191 (1986).

[57] L. Gavassino, M. Antonelli, and B. Haskell, When the
entropy has no maximum: A new perspective on the
instability of the first-order theories of dissipation, Phys.
Rev. D 102, 043018 (2020).

[58] M. E. Gusakov and N. Andersson, Temperature-dependent
pulsations of superfluid neutron stars, Mon. Not. R. Astron.
Soc. 372, 1776 (2006).

[59] M. E. Gusakov, Bulk viscosity of superfluid neutron stars,
Phys. Rev. D 76, 083001 (2007).

[60] M. E. Gusakov, E. M. Kantor, and P. Haensel, Relativistic
entrainment matrix of a superfluid nucleon-hyperon mix-
ture: The zero temperature limit, Phys. Rev. C 79, 055806
(2009).

[61] M. E. Gusakov, E. M. Kantor, and P. Haensel, Relativistic
entrainment matrix of a superfluid nucleon-hyperon mix-
ture. II. Effect of finite temperatures, Phys. Rev. C 80,
015803 (2009).

[62] M. E. Gusakov, Transport equations and linear response of
superfluid Fermi mixtures in neutron stars, Phys. Rev. C 81,
025804 (2010).

[63] M. E. Gusakov, P. Haensel, and E. M. Kantor, Physics input
for modelling superfluid neutron stars with hyperon cores,
Mon. Not. R. Astron. Soc. 439, 318 (2014).

[64] A.F. Andreev and E.P. Bashkin, Three-velocity hydro-
dynamics of superfluid solutions, Sov. J. Exp. Theor. Phys.
42, 164 (1976).

[65] M. E. Gusakov and P. Haensel, The entrainment matrix of a
superfluid neutron proton mixture at a finite temperature,
Nucl. Phys. A761, 333 (2005).

[66] L.B. Leinson, The entrainment matrix of a superfluid
nucleon mixture at finite temperatures, Mon. Not. R. Astron.
Soc. 479, 3778 (2018).

[67] V. Allard and N. Chamel, Entrainment effects in neutron-
proton mixtures within the nuclear energy-density func-
tional theory. II. Finite temperatures and arbitrary currents,
Phys. Rev. C 103, 025804 (2021).

[68] A. Broderick, M. Prakash, and J. M. Lattimer, The equation
of state of neutron star matter in strong magnetic fields,
Astrophys. J. 537, 351 (2000).

[69] L.D. Landau and E. M. Lifshitz, Electrodynamics of Con-
tinuous Media (Pergamon Press, Oxford, 1960).

[70] I. Toptygin, Electromagnetic Phenomena in Matter:
Statistical and Quantum Approaches (Wiley-VCH,
New York, 2015).

[71] D.G. Yakovlev, A.D. Kaminker, O.Y. Gnedin, and P.
Haensel, Neutrino emission from neutron stars, Phys.
Rep. 354, 1 (2001).

[72] 1. M. Khalatnikov, An Introduction to the Theory of Super-
Sfluidity (Westview, New York, 2000).

[73] S. Putterman, Superfluid Hydrodynamics, North-Holland
Series in Low Temperature Physics (North-Holland,
Amsterdam, 1974).

[74] L.D. Landau and E.M. Lifshitz, Course of Theoretical
Physics - Pergamon International Library of Science,
Technology, Engineering and Social Studies, Oxford:
Pergamon Press, and Reading: Addison-Wesley, —c1969,
2nd rev. - enlarg.ed. (1969).

[75] O. A. Goglichidze and M. E. Gusakov (to be published).

[76] B. Haskell, R-modes in neutron stars: Theory and obser-
vations, Int. J. Mod. Phys. E 24, 1541007 (2015).

[77] E. Giigercinoglu and M. A. Alpar, Microscopic vortex
velocity in the inner crust and outer core of neutron stars,
Mon. Not. R. Astron. Soc. 462, 1453 (2016).

[78] 1. Easson and C.J. Pethick, Stress tensor of cosmic and
laboratory type-II superconductors, Phys. Rev. D 16, 275
(1977).

[79] T. Akgiin and 1. Wasserman, Toroidal magnetic fields in
type II superconducting neutron stars, Mon. Not. R. Astron.
Soc. 383, 1551 (2008).

[80] L.D. Landau and E. M. Lifshitz, Statistical Physics. Pt.2
(Pergamon, Oxford, 1980).

[81] G. Mendell, Superfluid hydrodynamics in rotating neutron
stars. I - Nondissipative equations. II - Dissipative effects,
Astrophys. J. 380, 515 (1991).

[82] P.B. Jones, Neutron superfluid spin-down and magnetic
field decay in pulsars., Mon. Not. R. Astron. Soc. 253, 279
(1991).

[83] M. A. Alpar, S. A. Langer, and J. A. Sauls, Rapid postglitch
spin-up of the superfluid core in pulsars, Astrophys. J. 282,
533 (1984).

[84] T. Sidery and M. A. Alpar, The effect of quantized magnetic
flux lines on the dynamics of superfluid neutron star cores,
Mon. Not. R. Astron. Soc. 400, 1859 (2009).

[85] B. Link, Thermally activated post-glitch response of the
neutron star inner crust and core. I. Theory, Astrophys. J.
789, 141 (2014).

[86] M. A. Alpar, Flux-vortex pinning and neutron star evolu-
tion, J. Astrophys. Astron. 38, 44 (2017).

[87] A. Sourie and N. Chamel, Force on a neutron quantized
vortex pinned to proton fluxoids in the superfluid core of
cold neutron stars, Mon. Not. R. Astron. Soc. 493, 382
(2020).

[88] D. G. Iakovlev and D. A. Shalybkov, Electrical conductivity
of neutron star cores in the presence of a magnetic field - L.
General solution for a multicomponent Fermi liquid - II. - A
free particle model of npeSigma/-/-matter, Astrophys. Space
Sci. 176, 171 (1991).

[89] S.I. Braginskii, Transport processes in a plasma, Rev.
Plasma Phys. 1, 205 (1965).

123008-25


https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(79)90130-1
https://doi.org/10.1016/0003-4916(86)90164-8
https://doi.org/10.1103/PhysRevD.102.043018
https://doi.org/10.1103/PhysRevD.102.043018
https://doi.org/10.1111/j.1365-2966.2006.10982.x
https://doi.org/10.1111/j.1365-2966.2006.10982.x
https://doi.org/10.1103/PhysRevD.76.083001
https://doi.org/10.1103/PhysRevC.79.055806
https://doi.org/10.1103/PhysRevC.79.055806
https://doi.org/10.1103/PhysRevC.80.015803
https://doi.org/10.1103/PhysRevC.80.015803
https://doi.org/10.1103/PhysRevC.81.025804
https://doi.org/10.1103/PhysRevC.81.025804
https://doi.org/10.1093/mnras/stt2438
https://doi.org/10.1016/j.nuclphysa.2005.07.005
https://doi.org/10.1093/mnras/sty1592
https://doi.org/10.1093/mnras/sty1592
https://doi.org/10.1103/PhysRevC.103.025804
https://doi.org/10.1086/309010
https://doi.org/10.1016/S0370-1573(00)00131-9
https://doi.org/10.1016/S0370-1573(00)00131-9
https://doi.org/10.1142/S0218301315410074
https://doi.org/10.1093/mnras/stw1758
https://doi.org/10.1103/PhysRevD.16.275
https://doi.org/10.1103/PhysRevD.16.275
https://doi.org/10.1111/j.1365-2966.2007.12660.x
https://doi.org/10.1111/j.1365-2966.2007.12660.x
https://doi.org/10.1086/170609
https://doi.org/10.1093/mnras/253.2.279
https://doi.org/10.1093/mnras/253.2.279
https://doi.org/10.1086/162232
https://doi.org/10.1086/162232
https://doi.org/10.1111/j.1365-2966.2009.15575.x
https://doi.org/10.1088/0004-637X/789/2/141
https://doi.org/10.1088/0004-637X/789/2/141
https://doi.org/10.1007/s12036-017-9473-6
https://doi.org/10.1093/mnras/staa253
https://doi.org/10.1093/mnras/staa253
https://doi.org/10.1007/BF00646697
https://doi.org/10.1007/BF00646697

