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We formulate dissipative magnetohydrodynamic equations for finite-temperature superfluid and
superconducting charged relativistic mixtures, taking into account the effects of particle diffusion and
possible presence of Feynman-Onsager and/or Abrikosov vortices in the system. The equations depend on
a number of phenomenological transport coefficients, which describe, in particular, relative motions of
different particle species and their interaction with vortices. We demonstrate how to relate these transport
coefficients to the mutual friction parameters and momentum transfer rates arising in the microscopic
theory. The resulting equations can be used to study, in a unified and coherent way, a very wide range of
phenomena associated with dynamical processes in neutron stars, e.g., the magnetothermal evolution,
stellar oscillations and damping, as well as development and suppression of various hydrodynamic
instabilities in neutron stars.
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I. INTRODUCTION

Consider a dense mixture composed of several particle
species, some of which may be charged. Assume also that
some components of the mixture are in a superfluid and/or
superconducting state at finite temperature. In what fol-
lows, we are interested in describing the behavior of such
system in the hydrodynamic regime, i.e., assuming that the
typical particle mean-free path and collision time are much
smaller than, respectively, the typical length scale and
timescale of the evolution of the system.
Assume further that (i) the mixture is relativistic and can

be in a strong gravitational field; (ii) the mixture is
magnetized and rotating, so that there are Feynman-
Onsager and Abrikosov vortices in the system (below
we assume that the charged superconducting particles form
a type-II superconductor); (iii) normal (nonsuperfluid and
nonsuperconducting) particles of different species do not
move with exactly the same velocities, in other words, we
allow for the diffusion of normal particles with respect to
each other. Then, the question is, what are the equations
describing dynamics in such a system?
Before answering this question (which is the subject of the

present study) let us explain why it is important for us to
formulate such equations. The reason is that mixtures with
the properties just described can be found in the inner layers
(cores) of neutron stars (NSs). An NS core consists, in the
simplest case, of neutrons (n), protons (p), and electrons (e)
with an admixture of muons (μ). This matter is extremely
compact and degenerate—its density is several times

greater than the density of matter in atomic nuclei,
ρ0 ¼ 2.8 × 1014 g cm−3. Magnetic fields in NSs may reach
enormous values≳1015 G[1,2],while the gravitational field
is so strong that the NS radius (∼10 km) is only a few times
larger than the Schwarzschild radius [3]. Furthermore,
according to microscopic calculations [4–7], as well as
observations of cooling, glitching, and rapidly rotating NSs
[8–12], baryons (in particular, neutrons and protons) in NS
interiors are expected to become superfluid or supercon-
ducting at temperatures T ≲ 108 − 1010 K. This means
that, if an NS is rotating and magnetized, the topological
defects—neutron (Feynman-Onsager) vortices and proton
(Abrikosov) flux tubes—may be present (and coexist) in the
system [13,14].1 The equations presented in this paper are
designed precisely to describe various dynamical phenom-
ena in NSs, such as NS oscillations, cooling, and magnetic
field evolution.
Our paper is, of course, not the first one in a series of

works that have studied the dynamics of such systems. The
smooth-averaged nonrelativistic hydrodynamics describing
superfluid liquid helium II with vortices was formulated by
Hall and Vinen [17,18] and, independently, by Bekarevich
and Khalatnikov [19]. It has been extended in subsequent
studies (e.g., [20–30]) to account for charged mixtures and
relativistic effects. Recently, Ref. [26] (hereafter GD16)
derived the relativistic magnetohydrodynamics (MHD),
which describes superfluid and superconducting mixtures
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1Here we assume that protons form a type-II superconductor,
which is likely true for the outer part of the NS core but, probably,
not the case for the inner part [15,16].
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at finite temperatures and allows for the presence of
Feynman-Onsager and Abrikosov vortices, as well as the
electromagnetic field. It focuses mainly on the nondissi-
pative equations and ignores particle diffusion, viscosity,
and other dissipative effects (except for the mutual friction
dissipation, which is taken into account). This work was
further extended by Rau and Wasserman [29] who obtained
an equivalent formulation of relativistic MHD starting from
Carter’s variational principle [31] and also included heat
conduction and viscosity into the corresponding equations.
All these works ignore particle diffusion, i.e., relative

motions of different particle species (or Bogoliubov ther-
mal excitations, if superfluid and superconducting species
are considered) with respect to each other. This is an
unfortunate omission, since it is well known that diffusion
plays a crucial role in the secular evolution of the magnetic
field in nonsuperfluid and nonsuperconducting NSs
[32–38] and, moreover, can be very efficient [39,40] in
damping of NS oscillations and suppressing various insta-
bilities in their interiors. As shown recently [41], diffusion
also has a major effect on the evolution of the magnetic
field in superconducting NSs. The reason is easy to
understand. If protons form a type-II superconductor, the
magnetic field in the NS core is locked to quantized proton
flux tubes and its evolution is determined by the flux tube
motion. To study this motion, one has to calculate the
balance of forces acting on vortices, which (except for
the buoyancy and tension forces [18,19,42,43]) depend on
the relative velocities between vortices and different par-
ticle species that scatter on it. Because interaction (in
particular, friction) of particles with vortices is very strong
due to the huge amount of vortices in the system [41,44],
even small mismatch in the velocities of different particle
species significantly affects the force balance on vortices
and, hence, the magnetic field evolution.
Up until now the MHD equations, describing relativistic

charged mixtures and systematically incorporating the
diffusion effects, have been studied in the very limited
number of works and only neglecting the superconductivity
and superfluidity effects. In particular, the most advanced
MHD versions, suitable for NS modeling, were formulated
in the series of papers by Andersson et al. [45–48] and in
Ref. [49] (hereafter DGS20). In the present work we fill this
gap by combining the results of GD16 and DGS20, with the
aim to formulate the ready-to-use dissipative relativistic
MHD for superfluid or superconducting mixtures, account-
ing for both vortices and diffusion effects. We follow the
same approach [19,50] as in those papers. Namely, we
build a first-order dissipative hydrodynamics, starting from
the conservation laws and then deriving the general form of
dissipative terms, which (i) are linear in thermodynamic
fluxes, (ii) ensure non-negative entropy production rate,
and (iii) satisfy the Onsager relations. The first-order MHD
formulated in this paper is strictly valid in the hydro-
dynamic regime, i.e., as long as the typical length scale and

timescale in the problem are much larger than the particle
mean-free path and collision time, respectively. Although
we did not test our MHD, it has been argued in the literature
(e.g., [51,52]) that a generic first-order theory may have
theoretical issues with acausality and stability due to
unphysical high-frequency and short-wavelength modes,
which lie outside the applicability domain of the hydro-
dynamic regime. One way to overcome these issues is to
use more complicated formulations, such as the first-order
theories with a specially chosen reference frame [53],
second-order theories [54–56], or hydrodynamics based
on Carter’s variational principle [31,45,48].2 The other (less
elegant, but more pragmatic) option, which applies to those
who work in the deep hydrodynamic regime, is simply to
discard the unphysical modes in the solution, or filter
them out, when it comes to numerical implementation.
Moreover, for many practical applications, where the MHD
formulated in this work can be used (e.g., modeling the NS
magnetothermal evolution or oscillations and related physi-
cal instabilities), the macroscopic particle velocities appear
to be nonrelativistic. Then the relativistic equations (see,
e.g., Sec. Vof DGS20 and the Appendix A) have a similar
structure to the nonrelativistic ones; the main difference is
the relativistic equation of state and, if one allows for the
effects of general relativity, the metric coefficients. In this
case additional degrees of freedom (which arise in the
relativistic treatment and do not have Newtonian counter-
parts) are absent, and thus the hydrodynamics remains
stable [57]. Bearing in mind the above comments, we leave
detailed discussion of theoretical acausality and instability
issues beyond the scope of the present work.
The paper is organized as follows. In Sec. II we

formulate general hydrodynamics equations for charged
superfluid or superconducting relativistic mixtures in the
presence of vortices and the electromagnetic field, account-
ing for a number of dissipative effects: mutual friction,
diffusion, viscosity, and chemical reactions. In Sec. III, we
derive the entropy generation equation and in Sec. IV we
use it together with the Onsager relations to derive the
general form of dissipative corrections for particle currents,
as well as mutual friction forces acting on vortices. In
Sec. V we apply these general formulas to a number of
interesting limiting cases, which are suitable for NS
applications. Section VI provides a full set of hydrody-
namic equations in the “MHD approximation” adopted in
GD16, which is applicable for typical NS conditions and
allows one to study a long-term magnetothermal evolution
in superconducting NSs. Finally, we sum up in Sec. VII.
The paper also contains two Appendixes. Appendix A
presents a nonrelativistic limit of MHD equations from

2Note that in the hydrodynamic regime the higher-order
corrections are typically small. This is clearly illustrated in
Sec. VIII of DGS20, where it is shown that such corrections
to the standard (acausal) heat equation can be safely ignored.
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Sec. VI. In Appendix B we show how to express the
phenomenological transport coefficients appearing in our
equations through the mutual friction parameters and
momentum transfer rates calculated from the microscopic
theory.
Unless otherwise stated, in what follows the speed of

light c and the Boltzmann constant kB are set to unity,
c ¼ kB ¼ 1.

II. GENERAL EQUATIONS

In this section, we present dissipative equations, de-
scribing dynamics of charged finite-temperature super-
fluid relativistic mixtures in the presence of vortices in
the hydrodynamic regime (see the introduction). For defi-
niteness, and bearing in mind NS applications, we consider
a mixture composed of superfluid neutrons, supercon-
ducting protons, normal electrons, and normal muons.3

Both neutron (Feynman-Onsager) vortices and proton
(Abrikosov) flux tubes can be present in the system.
Generalization of these equations to more complex compo-
sitions (e.g., including hyperons) is straightforward.
The dynamical equations proposed here are very similar

to those formulated in GD16 assuming type-II proton
superconductivity but contain a number of extra terms:
(i) the four-forceGν in the right-hand side of Eq. (8); (ii) the
particle production rate ΔΓi in the right-hand side of
Eq. (1); (iii) the dissipative correction ΔjμðiÞ to the particle

current density (4); (iv) the dissipative correction Δτμν to
the energy-momentum tensor (9); and (v) the superfluid
dissipative correction ϰi to the chemical potential μi in the
definitions (6) and (22). Note that the first four corrections
are included in the nonsuperfluid dissipative MHD of
DGS20, but for superfluid or superconducting mixtures
their actual form may differ.

A. Continuity equations

The four-current density jμðiÞ of particle species i satisfies
the continuity equation

∂μj
μ
ðiÞ ¼ ΔΓi; ð1Þ

where ∂μ ≡ ∂=∂xμ is the four-gradient and ΔΓi is the
corresponding production rate (source of particles i). Here
and below, unless otherwise stated, Latin indices i; k;…
refer to particle species (neutrons n, protons p, electrons e,
and muons μ), whereas Greek letters μ; ν… ¼ 0, 1, 2, 3
denote the space-time indices, and summation over
repeated indices is assumed.

In the simplest case of nonsuperfluid matter in the
absence of diffusion, the particle current density is
jμðiÞ ¼ niuμ, where uμ is the (common for all particle

species) normal four-velocity, normalized by the condition

uμuμ ¼ −1; ð2Þ

and ni is the particle number density measured in the
comoving frame uμ ¼ ð1; 0; 0; 0Þ, such that

uμj
μ
ðiÞ ¼ −ni: ð3Þ

When accounting for superfluidity and diffusive cur-
rents, jμðiÞ can generally be presented as a sum of three
terms:

jμðiÞ ¼ niuμ þ Yikw
μ
ðkÞ þ ΔjμðiÞ; ð4Þ

where the four-vector wμ
ðkÞ describes the superfluid degrees

of freedom [58] and satisfies the condition [25,58,59]

uμw
μ
ðiÞ ¼ 0: ð5Þ

This vector is related to the wave-function phase Φi of the
Cooper condensate by the formula

wμ
ðiÞ ¼ ∂μϕi − ðμi þ ϰiÞuμ − eiAμ; ð6Þ

where ∂μϕi ¼ ðℏ=2Þ∂μΦi [58], ℏ is the Planck constant, μi
is the relativistic chemical potential for particle species i, Aμ

is the electromagnetic potential, and ϰi is the viscous
dissipative correction to the chemical potential [25,59].
Further, Yik in Eq. (4) is the symmetric entrainment

matrix [58,60–63], which is a relativistic analog of the
nonrelativistic superfluid mass-density matrix [64–67]; and
ΔjμðiÞ is the dissipative correction due to nonsuperfluid

diffusive currents (see DGS20 for a similar definition of
ΔjμðiÞ in normal matter).
Throughout the paper, all the thermodynamic quantities

are defined (measured) in the comoving frame. This means
that the relation (3) holds also in the general case (when
dissipation effects are allowed for), which imposes an
additional constraint on ΔjμðiÞ:

uμΔj
μ
ðiÞ ¼ 0: ð7Þ

B. Energy-momentum conservation

The relativistic energy-momentum conservation law
takes the form

∂μTμν ¼ Gν; ð8Þ

3We do not assume that all neutrons and protons are neces-
sarily in the Cooper-pair condensate. In other words, we allow for
the possible presence of normal neutron and proton component in
the mixture.
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where Gν is the radiation four-force density, which
describes exchange of energy and momentum between
matter and radiation,4 and the energy-momentum tensor
Tμν is given by

Tμν ¼ ðPþ εÞuμuν þ Pgμν

þ Yikðwμ
ðiÞw

ν
ðkÞ þ μiw

μ
ðkÞu

ν þ μkwν
ðiÞu

μÞ
þ ΔTμν

ðEMþvortexÞ þ Δτμν; ð9Þ

where P is the pressure defined by Eq. (35) below, ε is the
energy density, and gμν ¼ diagð−1; 1; 1; 1Þ is the space-
time metric.5 The energy-momentum tensor (9) is a sum of
the energy-momentum tensor of a vortex-free uncharged
superfluid hydrodynamics (the first three terms) plus
electromagnetic and vortex contributions ΔTμν

ðEMþvortexÞ
given by Eq. (37) below and dissipative correction Δτμν.
Note that all these terms except for the last one are the same
as in GD16.
In the comoving frame the energy density is given by the

component T00 of the energy-momentum tensor, T00 ¼ ε,
which implies

uμuνTμν ¼ ε: ð10Þ

This relation, in view of the expressions (5), (9), (37)–(39),
(47), and (48), imposes the following constraint on the
dissipative correction Δτμν:

uμuνΔτμν ¼ 0: ð11Þ

Note, however, that the four-velocity uμ itself is not
uniquely defined in the system with dissipation (see,
e.g., a thorough discussion of a similar issue in
Ref. [50] and in DGS20). We specify uμ by requiring
the total momentum of the normal fluid component to be
zero in the comoving frame. This leads to an additional
condition for Δτμν:

uνΔτμν ¼ 0: ð12Þ

The condition (12) coincides with the similar condition
defining the so-called Landau-Lifshitz (or transverse) frame
of nonsuperfluid relativistic hydrodynamics [50].

C. Maxwell equations

The electromagnetic field is described by the Maxwell
equations in the medium:

divD ¼ 4πρfree; ð13Þ

curlE ¼ −
∂B
∂t ; ð14Þ

divB ¼ 0; ð15Þ

curlH ¼ 4πJfree þ
∂D
∂t ; ð16Þ

where E is the electric field, B is the magnetic induction, D
is the electric displacement, H is the magnetic field, ρfree is
the free charge density, and Jfree is the current density of
free charges. Note that, generally, D ≠ E and H ≠ B, since
there are bound charges and bound currents in the system,
associated with superfluid or superconducting vortices and
their motion (for details see GD16); in the absence of
vortices (and neglecting very weak magnetization and
polarizability of NS matter [68]) D ¼ E and H ¼ B.
The explicitly covariant form of Maxwell equa-

tions (13)–(16) is [69,70]

∂μFνλ þ ∂νFλμ þ ∂λFμν ¼ 0; ð17Þ

∂νGμν ¼ 4πJμðfreeÞ; ð18Þ

where the antisymmetric electromagnetic tensors Fμν ≡
∂μAν − ∂νAμ and Gμν are composed of components of the
vectors E, B, D, and H,

Fμν ¼

0
BBB@

0 E1 E2 E3

−E1 0 B3 −B2

−E2 −B3 0 B1

−E3 B2 −B1 0

1
CCCA; ð19Þ

Gμν ¼

0
BBB@

0 D1 D2 D3

−D1 0 H3 −H2

−D2 −H3 0 H1

−D3 H2 −H1 0

1
CCCA; ð20Þ

and JμðfreeÞ ¼ ðρfree; JfreeÞ is the four-current density of free

charges,

JμðfreeÞ ≡ eij
μ
ðiÞ ¼ einiuμ þ eiYikw

μ
ðkÞ þ eiΔj

μ
ðiÞ; ð21Þ

where ei is the electric charge for particle species i.

4For isotropic emission Gν ¼ −Quν, where Q is the total
emissivity (e.g., it can be the neutrino emissivity due to beta
processes in the NS core).

5In this paper, we assume that the metric is flat. Our results can
easily be generalized to an arbitrary metric, provided that all
relevant length scales are much smaller than the characteristic
gravitational length scale. In this case, one has to replace all
ordinary derivatives with their covariant counterparts and, in
addition, replace the Levi-Civita tensor ϵμνλσ with ημνλσ ≡
ð− det gαβÞ−1=2ϵμνλσ .
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D. Vorticity tensor

Following GD16, we introduce the vorticity tensor

Vμν
ðiÞ ≡ ∂μ½wν

ðiÞ þ ðμi þ ϰiÞuν þ eiAν�
− ∂ν½wμ

ðiÞ þ ðμi þ ϰiÞuμ þ eiAμ�; ð22Þ

which is a relativistic generalization of the three-vector
micurlVsi þ ðei=cÞB (see Appendix A). In a system with-
out topological defects (i.e., vortices), the superfluid phase
Φi is a smooth function of coordinates satisfying the
condition ∂μ∂νΦi − ∂ν∂μΦi ¼ 0, which, in view of
Eq. (6), translates into

Vμν
ðiÞ ¼ 0: ð23Þ

However, in the presence of vortices, the condition
∂μ∂νΦi − ∂ν∂μΦi ¼ 0 is violated at the vortex lines.
Consequently, the (smooth-averaged) vorticity tensor Vμν

ðiÞ
differs from zero. One can demonstrate that this tensor Vμν

ðiÞ
is related to the number of vorticesN Vi piercing the closed
contour by the relation [25]6

1

2

Z
dfμνVðiÞμν ¼ πℏN Vi: ð24Þ

Equation (23) then should be replaced by a more general
superfluid equation (59) introduced in Sec. IV below.

E. Thermodynamic relations

The dynamic equations listed above should be supple-
mented by the second law of thermodynamics,

dε ¼ μidni þ TdSþ Yik

2
dðwα

ðiÞwðkÞαÞ þ dεadd; ð25Þ

where T is the temperature, S is the entropy per unit
volume, and the electromagnetic or vortex contribution to
the energy density dεadd reads [see Eq. (79) in GD16]

dεadd ¼
1

4π
EμdDμ þ 1

4π
HμdBμ þ Vμ

ðEiÞdWðEiÞμ

þWðMiÞμdV
μ
ðMiÞ: ð26Þ

Here we introduced the auxiliary vortex-related vectors
Wμ

ðEiÞ and Wμ
ðMiÞ, in full analogy with the electromagnetic

vectors Dμ and Hμ, respectively. Equation (26) should be
considered as a definition of the vectorsDμ,Hμ,Wμ

ðEiÞ, and

Wμ
ðMiÞ [or, equivalently, the tensors Gμν and Wμν

ðiÞ; see the

identities (27)–(34) below]. When a microscopic model for
the system energy density is specified (see, e.g.,
Appendix G in GD16 and Sec. VI A), one can express
these vectors through the vectors Eμ, Bμ, VðEiÞμ, and VðMiÞμ
(or, equivalently, through the tensors Fμν and Vμν

ðiÞ). The
four-vectors entering Eq. (26) are related to the correspond-
ing tensors as

Eμ ≡ uνFμν; ð27Þ

Dμ ≡ uνGμν; ð28Þ

Bμ ≡ 1

2
ϵμναβuνFαβ; ð29Þ

Hμ ≡ 1

2
ϵμναβuνGαβ; ð30Þ

Vμ
ðEiÞ ≡ uνV

μν
ðiÞ; ð31Þ

Vμ
ðMiÞ ≡

1

2
ϵμναβuνVðiÞαβ; ð32Þ

Wμ
ðEiÞ ≡ uνW

μν
ðiÞ; ð33Þ

Wμ
ðMiÞ ≡

1

2
ϵμναβuνWðiÞαβ; ð34Þ

where the Levi-Civita tensor ϵμναβ is defined such that
ϵ0123 ¼ 1. In the comoving frame, uμ ¼ ð1; 0; 0; 0Þ, the
four-vectors Eμ, Dμ, Bμ and Hμ are related to, respectively,
the ordinary three-vectors E, D, B, and H as Eμ ¼ ð0;EÞ,
Dμ ¼ ð0;DÞ, Bμ ¼ ð0;BÞ, and Hμ ¼ ð0;HÞ.
The total pressure P is defined (see, e.g., GD16) as a

partial derivative of the full system energy εV with respect
to the volume V at constant total number of particles niV,
total entropy SV, as well as at fixed quantities wα

ðiÞwðkÞα,Dμ,

Bμ, Wμ
ðEiÞ, and Wμ

ðMiÞ:

P≡ −
∂ðεVÞ
∂V ¼ −εþ μini þ TS; ð35Þ

Using Eqs. (25), (26), and (35), one arrives at the following
Gibbs-Duhem relation:

dP ¼ nidμi þ SdT −
Yik

2
dðwα

ðiÞwðkÞαÞ −
1

4π
EαdDα

−
1

4π
HαdBα − Vμ

ðEiÞdWðEiÞμ −WðMiÞμdV
μ
ðMiÞ: ð36Þ

6This relation is satisfied for Fermi superfluids (e.g., neutrons
or protons); for Bose superfluids there should be 2πℏN Vi in the
right-hand side of the equation. Note that the factor 1=2 was
inadvertently omitted in the corresponding equation (42) in
Ref. [25].
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F. Electromagnetic and vortex contribution to Tμν

The electromagnetic and vortex contribution to Tμν,
represented by the term ΔTμν

ðEMþvortexÞ in Eq. (9), has been

derived in GD16 and takes the form

ΔTμν
ðEMþvortexÞ ¼ T μν

ðEÞ þ T μν
ðMÞ þ T μν

ðVEÞ þ T μν
ðVMÞ; ð37Þ

where the electromagnetic contributions T μν
ðEÞ and T μν

ðMÞ are
given by [see Eqs. (66) and (67) in GD16]

T μν
ðEÞ ¼

1

4π
ð⊥μνDαEα −DμEνÞ; ð38Þ

T μν
ðMÞ ¼

1

4π
ð⊥Gμα⊥Fν

α þ uν⊥GμαEα þ uμ⊥GναEαÞ: ð39Þ

Here and hereafter ⊥μν ≡ gμν þ uμuν, and the notation
kXμν and ⊥Xμν is introduced for arbitrary antisymmetric
tensor Xμν:

kXμν ¼ −uνXμ
ðEÞ þ uμX ν

ðEÞ ¼ −uνuαXμα þ uμuαX να

¼

0
BBB@

0 X01 X02 X03

−X01 0 0 0

−X02 0 0 0

−X03 0 0 0

1
CCCA; ð40Þ

⊥Xμν ¼ ϵαβμνuβX ðMÞα ¼ ⊥μα⊥νβXαβ

¼

0
BBB@

0 0 0 0

0 0 X12 X13

0 −X12 0 X23

0 −X13 −X23 0

1
CCCA; ð41Þ

where the matrix expressions are written in the comoving
frame, and the “electric” and “magnetic” four-vectors Xμ

ðEÞ
and Xμ

ðMÞ, respectively, are defined as [cf. Eqs. (31)–(34)]

Xμ
ðEÞ ≡ uνXμν; ð42Þ

Xμ
ðMÞ ≡

1

2
ϵμναβuνXαβ: ð43Þ

Note that the following relations are satisfied:

Xμν ¼ kXμν þ ⊥Xμν; ð44Þ

⊥μν
kXμν ¼ 0; ð45Þ

uν⊥Xμν ¼ 0; ð46Þ

and kXμν and ⊥Xμν can be expressed in terms of, respec-
tively, electric and magnetic four-vectors Xμ

ðEiÞ and Xμ
ðMiÞ

[see the first equalities in Eqs. (40) and (41)]. Similarly, the
vortex contributions T μν

ðVEÞ and T μν
ðVMÞ to the energy-

momentum tensor can be presented as [see Eqs. (88)
and (89) in GD16]

T μν
ðVEÞ ¼ ⊥μνWα

ðEiÞVðEiÞα −Wμ
ðEiÞV

ν
ðEiÞ; ð47Þ

T μν
ðVMÞ ¼ ⊥Wμα

ðiÞ
⊥Vν

ðiÞ α þ uν⊥Wμα
ðiÞVðEiÞα

þ uμ⊥Wνα
ðiÞVðEiÞα: ð48Þ

To sum up, the dissipative equations governing dynamics
of superfluid and superconducting mixture consist of the
continuity equations (1) [with jμðiÞ given by Eq. (4)], the
energy-momentum conservation law (8) [with Tμν given by
Eqs. (9) and (37)], Maxwell equations (17) and (18), and
the superfluid equation [Eq. (23) or Eq. (59) below]. These
equations are supplemented by the thermodynamic rela-
tions (25), (35), and (36), as well as by the definition (12) of
the comoving frame.

III. ENTROPY GENERATION EQUATION

The equations of Sec. II contain the entropy generation
equation, which is crucial for determining the general form
of dissipative corrections (see Sec. IV). One can derive this
equation by considering the expression uν∂μTμν − uνGν,
which vanishes in view of Eq. (8). Using Eqs. (1), (4), (5),
(9), (25), and (35), as well as the identities uν∂μuν ¼ 0 and
∂μgμν ¼ 0, we arrive at the following entropy generation
equation [cf. Eq. (33) in Ref. [59], Eq. (58) in GD16, and
Eq. (25) in DGS20]:

∂μðSuμÞ ¼
1

T
uνYikwðkÞμ½Ṽμν

ðiÞ − ∂μðϰiuνÞ þ ∂νðϰiuμÞ�

þ μi
T
∂μΔj

μ
ðiÞ −

μi
T
ΔΓi −

uμ

T
∂μεadd

þ uν
T
∂μðΔTμν

ðEMþvortexÞ þ ΔτμνÞ −Q
T
; ð49Þ

where

Ṽμν
ðiÞ≡Vμν

ðiÞ−eiFμν

¼ ∂μ½wν
ðiÞ þðμiþϰiÞuν�−∂ν½wμ

ðiÞ þðμiþϰiÞuμ� ð50Þ

and we defined Q≡ uνGν. Now, let us make use of
Eqs. (26) and (37) and substitute expressions for dεadd
and ΔTμν

ðEMþvortexÞ. Using Eq. (85) of GD16, we present the

term −uμ∂μεadd as

−uμ∂μεadd ¼ uνFμν∂α

�
1

4π
Gμα

�
þ uνVðiÞμν∂αW

μα
ðiÞ

− uν∂μΔT
μν
ðEMþvortexÞ: ð51Þ
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Then, employing Maxwell equations (18) together with
the relation uμ∂νw

μ
ðiÞ ¼ −wμ

ðiÞ∂νuμ [which follows from

Eq. (5)] and substituting Eqs. (21), (37), (50), and (51)
into Eq. (49), we obtain

∂μSμ ¼
ni
T
uνVðiÞμνW

μ
ðiÞ − ΔjμðiÞdðiÞμ − ϰi

⊥∇μ

�Yikw
μ
ðkÞ

T

�

− Δτμν∂μ

�
uν
T

�
−
μi
T
ΔΓi −

Q
T
; ð52Þ

where we introduced the entropy four-current

Sμ ¼ Suμ −
μi
T
ΔjμðiÞ −

ϰi
T
Yikw

μ
ðkÞ −

uν
T
Δτμν; ð53Þ

the four-vector Wμ
ðiÞ,

Wμ
ðiÞ ≡

1

ni
½Yikw

μ
ðkÞ þ⊥μν∂αWναðiÞ�; ð54Þ

the displacement vector (see DGS20)

dðiÞμ ≡ ⊥∇μ

�
μi
T

�
−
eiEμ

T
; ð55Þ

and the orthogonal part of the four-gradient

⊥∇μ ≡⊥μν∂ν: ð56Þ

Note that dðiÞμ and Wμ
ðiÞ can be defined up to an arbitrary

term proportional to uμ, which does not affect the entropy
generation equation (52) due to the condition (7) and
antisymmetry of Vμν

ðiÞ, respectively. For further convenience,
we define these vectors in a way that ensures that they are
both orthogonal to uμ.7

If uμ is specified by the condition (12), Eqs. (52) and (53)
reduce to8

∂μSμ ¼
μin2i
T

fðiÞμW
μ
ðiÞ − ΔjμðiÞdðiÞμ − ϰi

⊥∇μ

�Yikw
μ
ðkÞ

T

�

− Δτμν
⊥∇μuν
T

−
μi
T
ΔΓi −

Q
T
; ð57Þ

Sμ ¼ Suμ −
μi
T
ΔjμðiÞ −

ϰi
T
Yikw

μ
ðkÞ: ð58Þ

Here we introduced the four-vector fμðiÞ as

uνV
μν
ðiÞ ¼ μinif

μ
ðiÞ; ð59Þ

where no summation over repeated index i is assumed.
Note that fμðiÞ is orthogonal to uμ, since the vorticity tensor

Vμν
ðiÞ is antisymmetric:

uμf
μ
ðiÞ ¼ 0: ð60Þ

Equation (59) can be regarded as a superfluid equation
[25,26], which replaces the potentiality condition Vμν

ðiÞ ¼ 0

of a vortex-free system.
The right-hand side of Eq. (57) describes entropy

generation and must be non-negative (except for the
arbitrary last term) for all possible fluid configurations.
It includes vortex-mediated mutual friction between normal
and superfluid components (first term) [14], diffusion
(second term), viscosity (third and fourth terms), chemical
reactions (such as Urca processes; fifth term) and radiation
(sixth term).
Note, in passing, that different formulations of the first-

order hydrodynamics (i.e., different forms of dissipative
corrections) are possible even if uμ is specified unambig-
uously [53]. This is due to the fact that various derivatives
entering the dissipative corrections are not all independent
but can be expressed (up to higher-order terms) through one
another using the zero-order (nondissipative) hydrody-
namic equations. For example, one can relate uν∂νuμ to
⊥∇μP via the momentum conservation law ⊥∇νTμν ¼ 0.
We follow here the approach of Ref. [50], so that in our
formulation the right-hand side of Eq. (57) (and, conse-
quently, the dissipative corrections) in the comoving frame
contains only spatial derivatives and does not contain the
terms like uν∂νuμ or uν∂νT.

IV. DIFFUSIVE CURRENTS AND MUTUAL
FRICTION FORCES

The entropy generation equation (57) allows one to find
the general form of the unknown dissipative corrections,9

namely, fμðiÞ, Δj
μ
ðiÞ, ϰi, Δτ

μν, and ΔΓi (here and below we
ignore the last term, −Q=T, which can be arbitrary).
Following Landau and Lifshitz [50] and DGS20, we
express the dissipative corrections as linear combinations
of thermodynamic forces Wμ

ðiÞ, dðiÞμ, ⊥∇μðYikw
μ
ðkÞ=TÞ,

⊥∇μuν, and μi
10 and require that the right-hand side of7GD16 uses a slightly different definition for Wμ

ðiÞ:
Wμ

ðiÞ ≡ ð1=niÞ½Yikw
μ
ðkÞ þ ∂αW

μα
ðiÞ�. If one prefers to use that

definition, then one should replace Wμ
ðiÞ with ⊥μνWνðiÞ [which

is equivalent to Eq. (54) due to the condition (5)] everywhere in
the paper.

8As in DGS20, we make use of the condition (12) and replace
Δτμν∂μðuν=TÞ with Δτμνð⊥∇μuνÞ=T in the right-hand side of
Eq. (57).

9Note that some of these corrections may, in fact, contain
nondissipative terms, but, for brevity, we call them “dissipative.”

10Actually, μi should enter these expressions only in particular
combinations that represent chemical potential imbalances for a
given reaction (e.g., μn − μp − μe for the direct or modified Urca
processes [71]); see DGS20 for more details.
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Eq. (57) would be a positively defined quadratic form, so
that the entropy would not decrease for all possible fluid
configurations. The coefficients arising in these linear
combinations can be scalars, vectors, or tensors, that can
only depend on the system properties in the absence of
dissipation; they are collectively called transport coeffi-
cients. We require, in addition, that these coefficients must
satisfy the Onsager relations.
In the completely isotropic (in the comoving frame)

matter, the transport coefficients depend only on the
equilibrium scalar thermodynamic quantities, as well as
on uμ and gμν (or ⊥μν ≡ gμν þ uμuν). In the presence of
preferred directions (e.g., vortex lines or magnetic field),
the coefficients, generally, depend also on the correspond-
ing vectors and the angles between them. These vectors
include superfluid vectors wμ

ðiÞ, electromagnetic vectors Eμ,

Dμ, Bμ, and Hμ, and vortex-related vectors Vμ
ðEiÞ, V

μ
ðMiÞ,

Wμ
ðEiÞ, and Wμ

ðMiÞ. However, the situation is considerably

simplified in the MHD approximation described in
Sec. VI A (see also GD16). This approximation is mainly
based on the fact that the magnetic induction B is much
larger than the fields E, D, and H in the comoving frame
and is locked to superconducting proton flux tubes. In this
limit the only preferred directions11 are defined by the
neutron vortex lines Vμ

ðMnÞ, proton vortex lines Vμ
ðMpÞ [or,

equivalently, the magnetic induction Bμ; see Eq. (104)], and
the superfluid neutron current Ynkw

μ
ðkÞ.

12 Below, following

Refs. [50,72,73], we neglect small terms that explicitly
depend on wμ

ðkÞ (or, equivalently, on Ynkw
μ
ðkÞ) in the

expressions for the transport coefficients. These terms
are usually ignored in the literature [50,72,73] when
deriving the dissipative hydrodynamic equations for super-
fluid helium 4. In the context of neutron stars, the same
approximation has been adopted and discussed in Ref. [59].
As a result, we are left with only two preferred directions,
specified by the neutron vortices Vμ

ðMnÞ and magnetic field

or proton flux tubes Bμ [or Vμ
ðMpÞ], which determine

anisotropy of transport coefficients.

Under the above assumptions, the vectors ΔjμðiÞ and fμðiÞ
can only depend on the thermodynamic forcesWμ

ðiÞ and d
μ
ðiÞ

[and are independent of the forces ⊥∇μðYikw
μ
ðkÞ=TÞ, ⊥∇μuν,

and μi]
13:

−
μin2i
T

fμðiÞ ¼ −Aμν
ikWðkÞν − Bμν

ik dðkÞν; ð61Þ

ΔjμðiÞ ¼ −Cμνik WðkÞν −Dμν
ik dðkÞν; ð62Þ

where no summation over i in the left-hand side of Eq. (61)
is implied. The transport coefficient Aμν

ik describes the
mutual friction effects [14], as well as (possible) interaction
between neutron vortices and proton flux tubes.14 The
coefficient Dμν

ik is responsible for the diffusion, thermodif-
fusion and thermal conductivity effects (see DGS20).
Finally, the cross-coefficients Bμν

ik and Cμνik describe the
impact of diffusive currents on the mutual friction forces on
vortices, and vice versa.
In the present work, we are mainly interested in studying

the joint effects of diffusion and vortices (represented by
the vectors ΔjμðiÞ and fμðiÞ) on the structure of superfluid

MHD. To study these effects, it is sufficient to consider
only the first two terms in Eq. (57), since they do not
interfere with the other terms in this equation and constitute
a positively defined quadratic form themselves [see
Eqs. (61) and (62)]. Thus, in what follows, we shall
ignore viscosity (ϰi ¼ Δτμν ¼ 0) and chemical reactions
(ΔΓi ¼ 0): the related dissipative corrections can be studied
separately and, in fact, have already been analyzed in the
past (see, e.g., Refs. [29,48,59], and DGS20). With this
simplification, the entropy generation equation (57)
becomes

∂μ

�
Suμ −

μi
T
ΔjμðiÞ

�
¼ μin2i

T
fðiÞμW

μ
ðiÞ − ΔjμðiÞdðiÞμ: ð63Þ

11That these preferred directions are the only ones that should
be taken into account in the MHD approximation is independ-
ently justified by the results of Appendix B, where it is shown that
the more microscopic approach leads to exactly the same
dissipative corrections as those obtained in this section. Gen-
erally, any additional preferred direction can be ignored as long as
one can neglect the corresponding force in the force balance
equations for particles or vortices. For example, in the non-
superfluid MHD in the limit B → 0 an anisotropic correction to
the diffusion coefficients Dμν

eμ is of the order ∼ðepniBÞ=ðcJeμÞ ∼
ðLorentz forceÞ=ðeμ friction forceÞ; see DGS20. Correspond-
ingly, the magnetic field does not provide a preferred direction
in this limit.

12In the thermodynamic equilibrium, the superconducting
proton current Ypkw

μ
ðkÞ vanishes in the MHD approximation

due to the screening condition [see Eq. (129) with ΔjμðiÞ ¼ 0].

13See Appendix B of DGS20, where it is demonstrated, for a
similar problem, that ΔjμðiÞ cannot depend on the tensor ⊥∇μuν.
The same consideration also applies to fμðiÞ and can be readily
generalized to an arbitrary number of preferred axial vectors
(such as Vμ

ðMnÞ and/or V
μ
ðMpÞ) in the system. In turn, it is also easy

to verify that ΔjμðiÞ and fμðiÞ cannot depend on the scalar
thermodynamic forces, such as ⊥∇νðYikwν

ðkÞ=TÞ. This depend-
ence may only lead to additional terms ∝ uμ⊥∇νðYikwν

ðkÞ=TÞ in
Eqs. (61) and (62), but these terms must vanish to satisfy the
conditions (7) and (60).

14Note that the vortex–flux tube interaction should be ac-
counted for in the expressions for Wμ

ðMiÞ [which enter the
definition (54) for Wμ

ðiÞ]. In Sec. VI Awe employ a simple model
which ignores this effect [see Eq. (105)]; however, such a
simplification does not affect the general expression (72) for
the coefficient Aμν

ik .
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The coefficients Aμν
ik , B

μν
ik , C

μν
ik , and Dμν

ik in Eqs. (61) and
(62) depend on the vectors Vμ

ðMnÞ and Bμ, as well as on the

scalar thermodynamic quantities and on uμ and ⊥μν. Below
we provide expressions for these coefficients for the system
with two preferred directions and demonstrate how these
expressions can be simplified in the case of only one
preferred direction.

A. General case: Two preferred directions

Let us introduce the following quantities:

bμ ≡ Bμffiffiffiffiffiffiffiffiffiffiffi
BαBα

p ; ð64Þ

bμν ≡
⊥Fμνffiffiffiffiffiffiffiffiffiffiffi
BαBα

p ; ð65Þ

ωμ ≡ Vμ
ðMnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

VðMnÞαVα
ðMnÞ

q ; ð66Þ

ωμν ≡
⊥Vμν

ðMnÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðMnÞαVα

ðMnÞ
q : ð67Þ

In the comoving frame bμ ¼ ð0; bÞ, ωμ ¼ ð0;ωÞ, where b
and ω are the unit vectors in the direction of the magnetic
field and neutron vortices, respectively.
The Onsager principle leads to conditions15

Aμν
ik ðb;ωÞ ¼ Aνμ

ki ð−b;−ωÞ; ð68Þ

Dμν
ik ðb;ωÞ ¼ Dνμ

ki ð−b;−ωÞ; ð69Þ

Cμνik ðb;ωÞ ¼ −Bνμ
ki ð−b;−ωÞ: ð70Þ

From the constraints uμf
μ
ðiÞ ¼ 0 [Eq. (60)] and uμΔj

μ
ðiÞ ¼ 0

[Eq. (7)] it also follows that

uμA
μν
ik ¼ uμB

μν
ik ¼ uμC

μν
ik ¼ uμD

μν
ik ¼ 0: ð71Þ

Relations (68)–(71) imply that all transport coefficients are
purely spatial in the comoving frame and may depend on uμ

only through the tensor ⊥μν.
Let us start with the transport coefficient Aμν

ik . Generally,
it can be presented as a sum of nine linearly independent

tensors,16 which we choose in the following form that
allows us to separate symmetric (the first six terms) and
antisymmetric (the last three terms) parts of the tensor:

Aμν
ik ¼A⊥

ik⊥μν þAωω
ik ωμων þAbb

ik b
μbν

þAωb
ik ðωμbν þωνbμÞ þAωωb

ik ðωμωαbνα þωνωαbμαÞ
þAbωb

ik ðbμωαbνα þ bνωαbμαÞ
þAω−b

ik ðωμbν −ωνbμÞ þAω
ikω

μν þAb
ikb

μν; ð72Þ

where the scalar coefficientsA⊥
ik,A

ωω
ik , etc., may depend on

the equilibrium quantities and the angle between b and ω.
To clarify the meaning of different terms in Eq. (72), it is
instructive to write out the expression for the vector
Aμν

ik WðkÞν in the comoving frame. The zeroth component
of this four-vector vanishes, while its spatial part reads

A⊥
ikWkþAωω

ik ωðωWkÞþAbb
ik bðbWkÞ

þAωb
ik ½ωðbWkÞþbðωWkÞ�

þAωωb
ik fωð½ω×b�WkÞþ½ω×b�ðωWkÞg

þAbωb
ik fbð½ω×b�WkÞþ½ω×b�ðbWkÞg

þAω−b
ik ½ωðbWkÞ−bðωWkÞ�þAω

ik½Wk×ω�þAb
ik½Wk×b�;

ð73Þ

where Wk is the spatial part of the four-vector Wμ
ðkÞ:

Wμ
ðkÞ ¼ ð0;WkÞ.
Plugging Eq. (72) into the Onsager relation (68), we get

A⊥
ik ¼ A⊥

ki; Aωω
ik ¼ Aωω

ki ; Abb
ik ¼ Abb

ki ;

Aωb
ik ¼ Aωb

ki ; Aωωb
ik ¼ −Aωωb

ki ; Abωb
ik ¼ −Abωb

ki ;

Aω−b
ik ¼ −Aω−b

ki ; Aω
ik ¼ Aω

ki; Ab
ik ¼ Ab

ki: ð74Þ

As one can check by substituting Eqs. (61), (72), and (74)
into the entropy generation equation (63), the coefficients
Aωωb

ik , Abωb
ik , Aω

ik, and Ab
ik are nondissipative and do not

contribute to the entropy generation.

15The minus sign in Eq. (70) appears because dðkÞν and
WðkÞν have different parity under time reversal t → −t [74].

16To make this point clearer, let us work in the comoving
frame, choosing x axis along the direction ω and z axis along
½ω × b�. Then, introducing unit vectors yμ ≡ bμ−bαωαω

μ

kbν−bαωαω
νk ¼

ð0; 0; 1; 0Þ and zμ ≡ −yαωμα ¼ ð0; 0; 0; 1Þ, one can generally
decomposeAμν

ik into the sum of nine linearly independent tensors:

Aμν
ik ¼ A11

ikω
μων þA12

ikω
μyν þA13

ikω
μzν þA21

ik y
μων þA22

ik y
μyν

þA23
ik y

μzν þA31
ik z

μων þA32
ik z

μyν þA33
ik z

μzν;

where the scalar coefficientsA11
ik ;A

12
ik…may depend on the angle

between ω and b. One can directly check that the nine tensors
entering Eq. (72) are indeed linearly independent and they can be
expressed as linear combinations of ωμων, ωμyν, ωμzν, etc.
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The same consideration also applies to the transport
coefficients Bμν

ik , C
μν
ik , and Dμν

ik . The result is

Bμν
ik ¼ B⊥

ik⊥μν þ Bωω
ik ωμων þ Bbb

ik b
μbν

þ Bωb
ik ðωμbν þ ωνbμÞ þ Bωωb

ik ðωμωαbνα þ ωνωαbμαÞ
þ Bbωb

ik ðbμωαbνα þ bνωαbμαÞ
þ Bω−b

ik ðωμbν − ωνbμÞ þ Bω
ikω

μν þ Bb
ikb

μν; ð75Þ

Cμνik ¼ C⊥ik⊥μν þ Cωωik ωμων þ Cbbik b
μbν

þ Cωbik ðωμbν þ ωνbμÞ þ Cωωbik ðωμωαbνα þ ωνωαbμαÞ
þ Cbωbik ðbμωαbνα þ bνωαbμαÞ
þ Cω−bik ðωμbν − ωνbμÞ þ Cωikω

μν þ Cbikb
μν; ð76Þ

Dμν
ik ¼ D⊥

ik⊥μν þDωω
ik ωμων þDbb

ik b
μbν

þDωb
ik ðωμbν þωνbμÞ þDωωb

ik ðωμωαbνα þωνωαbμαÞ
þDbωb

ik ðbμωαbνα þ bνωαbμαÞ
þDω−b

ik ðωμbν −ωνbμÞ þDω
ikω

μν þDb
ikb

μν: ð77Þ

The Onsager principle for Bμν
ik and Cμνik (70) implies

C⊥ik ¼ −B⊥
ki; Cωωik ¼ −Bωω

ki ; Cbbik ¼ −Bbb
ki ;

Cωbik ¼ −Bωb
ki ; Cωωbik ¼ Bωωb

ki ; Cbωbik ¼ Bbωb
ki ;

Cω−bik ¼ Bω−b
ki ; Cωik ¼ −Bω

ki; Cbik ¼ −Bb
ki: ð78Þ

Note that the coefficients B⊥
ik, B

ωω
ik , Bbb

ik , B
ωb
ik , and Bω−b

ik are
nondissipative, in contrast to the analogous coefficients
A⊥

ik, A
ωω
ik , Abb

ik , A
ωb
ik , and Aω−b

ik .
The Onsager principle for Dμν

ik (69) leads to

D⊥
ik ¼ D⊥

ki; Dωω
ik ¼ Dωω

ki ; Dbb
ik ¼ Dbb

ki ;

Dωb
ik ¼ Dωb

ki ; Dωωb
ik ¼ −Dωωb

ki ; Dbωb
ik ¼ −Dbωb

ki ;

Dω−b
ik ¼ −Dω−b

ki ; Dω
ik ¼ Dω

ki; Db
ik ¼ Db

ki: ð79Þ

The coefficients Dωωb
ik , Dbωb

ik , Dω
ik, and Db

ik are nondissi-
pative, similarly to Aωωb

ik , Abωb
ik , Aω

ik, and Ab
ik.

In this section we have derived the general expressions
for the transport coefficients Aμν

ik (72), Bμν
ik (75), Cμνik (76),

and Dμν
ik (77), which describe mutual friction (61) and

diffusion (62) effects, for the system with two preferred
directions. These coefficients have similar tensor structure
and can be presented as a sum of six symmetric and three
antisymmetric tensor terms, which are purely spatial in the
comoving frame, and describe anisotropy of mutual friction
and diffusion effects in such a system. The Onsager
principle (68)–(70) reduces the number of independent
coefficients, imposing additional constraints on Aμν

ik and
Dμν

ik and allowing one to express the coefficients Cμνik
through Bμν

ik . Note also that the transport coefficients

(and, consequently, the quantities fμðiÞ and ΔjμðiÞ) have both
dissipative and nondissipative contributions; i.e., not all the
terms in the expressions for fμðiÞ and ΔjμðiÞ lead to entropy

generation in Eq. (63).

B. One preferred direction

Now let us assume that there is only one preferred
direction in the system, bμ ¼ ωμ; i.e., either proton and
neutron vortices are aligned with each other, or there is only
one sort of vortices in the system. In this case, the
expressions (72) and (75)–(77) acquire the same form as
the diffusion coefficients from DGS20:

Aμν
ik ¼ Ak

ikω
μων þA⊥

ikð⊥μν − ωμωνÞ þAH
ikω

μν; ð80Þ

Bμν
ik ¼ Bk

ikω
μων þ B⊥

ikð⊥μν − ωμωνÞ þ BH
ikω

μν; ð81Þ

Cμνik ¼ Ckikω
μων þ C⊥ikð⊥μν − ωμωνÞ þ CHikω

μν; ð82Þ

Dμν
ik ¼ Dk

ikω
μων þD⊥

ikð⊥μν − ωμωνÞ þDH
ikω

μν; ð83Þ

whereAk
ik ≡A⊥

ik þAωω
ik þAbb

ik þ 2Aωb
ik ,A

H
ik ≡Aω

ik þAb
ik,

and analogous definitions apply to Bk
ik, B

H
ik, C

k
ik, C

H
ik, D

k
ik,

and DH
ik. The Onsager relations (74), (78), and (79) then

imply

Ak
ik ¼ Ak

ki; A⊥
ik ¼ A⊥

ki; AH
ik ¼ AH

ki; ð84Þ

Ckik ¼ −Bk
ki; C⊥ik ¼ −B⊥

ki; CHik ¼ −BH
ki; ð85Þ

Dk
ik ¼ Dk

ki; D⊥
ik ¼ D⊥

ki; DH
ik ¼ DH

ki: ð86Þ

The coefficients AH
ki, DH

ki, Bk
ik, B⊥

ik, Ckik, and C⊥ik are
nondissipative.

C. Summary

To sum up, in this section we found a general form of the
four-vectors fμðiÞ (61), which encode all the information
about the forces acting on neutron and proton vortices, and
the diffusive currents ΔjμðiÞ (62), which describe diffusion,

thermodiffusion and thermal conductivity effects. These
vectors are expressed as linear combinations of the vectors
WðkÞν and dðkÞν. The transport coefficients Aμν

ik , B
μν
ik , C

μν
ik ,

and Dμν
ik in these relations depend on the directions of

neutron vortices and the magnetic field; they are given by
Eqs. (72) and (75)–(77), which reduce to Eqs. (80)–(83) in
the case of single preferred direction. The transport
coefficients satisfy the Onsager relations (68)–(70), which
imply Eqs. (74), (78), and (79) for a system with two
preferred directions, and Eqs. (84)–(86) for a system with a
single preferred direction.
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We emphasize the presence of cross-coefficients Bμν
ik and

Cμνik , describing the interplay of diffusion and mutual
friction effects: the diffusive forces dðkÞν affect particle
velocities (or currents ΔjμðiÞ), which, in turn, influence the

vortex motion via the mutual friction mechanism (and
vice versa).

V. DIFFUSION AND MUTUAL FRICTION
IN NS MATTER: SPECIAL CASES

Let us apply the general formulas from the previous
section to a number of interesting limiting cases, in which
these formulas can be substantially simplified.

A. Isotropic matter: Neutrons are superfluid,
protons are superconducting, no vortices

In the absence of vortices and any preferred direction the
four-vectors fμðiÞ vanish in view of Eqs. (23) and (59).
Therefore, due to Eqs. (61) and (70), Aμν

ik ¼ Bμν
ik ¼

Cμνik ¼ 0. As in normal (nonsuperfluid and nonsupercon-
ducting) MHD (see DGS20), the generalized diffusion
coefficient Dμν

ik in the isotropic matter is then simply
given by

Dμν
ik ¼ Dμν

ki ¼ Dik⊥μν; ð87Þ

and the entropy generation equation (63) reduces to

∂μ

�
Suμ −

μi
T
ΔjμðiÞ

�
¼ DikdðiÞμdðkÞμ: ð88Þ

The generalized diffusion coefficients Dik in superfluid
matter can be expressed through the momentum transfer
rates of microscopic theory similarly to how it is done in
DGS20 for normal matter [75].

B. Magnetized npeμ matter with superfluid
neutrons and normal protons, no vortices

Now let us consider magnetized npeμ matter with
superfluid neutrons in the absence of vortices. Then the
only preferred direction is that of the magnetic field, bμ.
The four-vector fμðiÞ vanishes in view of Eqs. (23) and (59),

but Wμ
ðiÞ, generally, differs from zero. Therefore, due to

Eqs. (61) and (85),Aμν
ik ¼ Bμν

ik ¼ Cμνik ¼ 0. As a result, ΔjμðiÞ
has exactly the same form as in the nonsuperfluid mag-
netized matter (cf. DGS20):

ΔjμðiÞ ¼ −Dk
ikb

μbνdðkÞν −D⊥
ikð⊥μν − bμbνÞdðkÞν

−DH
ikb

μνdðkÞν; ð89Þ

where i; k ¼ n, p, e, μ. The entropy generation equa-
tion (63) reduces to

∂μ

�
Suμ −

μi
T
ΔjμðiÞ

�
¼ Dk

ikb
μbνdðiÞμdðkÞν

þD⊥
ikð⊥μν − bμbνÞdðiÞμdðkÞν: ð90Þ

C. Unmagnetized npeμ matter with superfluid
neutron vortices

In this example, we discuss the unmagnetized npeμ
matter, allowing for the presence of superfluid neutron
vortices and diffusion. Protons can be either normal or
superconducting. The dynamic equations for such a system
allow us to simultaneously study the combined effect of
particle diffusion [40] and mutual friction dissipation [76]
on damping of NS oscillations and development of various
instabilities in NSs.
Since in real NSs the typical areal density of neutron

vortices is small [24] (the intervortex spacing is much larger
than the particle mean-free path), they have a negligible
effect on the diffusion coefficients Dμν

ik , which remain
approximately isotropic. Because of the same reason, the
difference between the velocities of normal particle species
(e.g., electrons and muons or electrons and neutron
Bogoliubov thermal excitations) is small in comparison
to the difference between any of these velocities and the
neutron vortex velocity VLn. Consequently, when calculat-
ing the force acting on neutron vortices from a particle
species i [see Eq. (B2), where a similar force on proton
vortices is presented], one can replace Vi − VLn with
Vnorm − VLn, where Vnorm is the average velocity of normal
(nonsuperfluid) component (A3). This approximation
allows one to neglect the cross-coefficients Bμν

ik and
Cμνik ,

17 that is, to decouple the diffusion and mutual friction
mechanisms. As a result, with the help of Eqs. (80) and
(87), Eqs. (61) and (62) reduce to

−
μnn2n
T

fμðnÞ ¼ −Ak
nnωμωνWðnÞν −A⊥

nnð⊥μν − ωμωνÞWðnÞν

−AH
nnω

μνWðnÞν; ð91Þ
fμðpÞ ¼ 0; ð92Þ
ΔjμðiÞ ¼ −Dikd

μ
ðkÞ: ð93Þ

Here the coefficients A⊥
nn, Ak

nn, and AH
nn describe the

mutual friction effect. In order to relate them to the

17In principle, these coefficients can be calculated in exactly
the same way as it is done for superfluid and superconducting
npeμ matter with proton flux tubes in Appendix B (see also
Sec. V D). Note, however, that the typical areal density of proton
flux tubes in NSs is comparable to particle mean-free path [44];
hence, the cross-coefficients Bμν

ik and Cμνik for this problem are not
small and should be accounted for.
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commonly used mutual friction parameters αn, βn, and γn
[25,26,72], one has to compare Eq. (91) with the analogous
equation (98) in GD16, which reads, in our notation,

fμðnÞ ¼ αnVðMnÞωμνWðnÞν þ ðβn − γnÞVðMnÞωμαων
αWðnÞν

þ γnVðMnÞ⊥μνWðnÞν; ð94Þ

where VðMnÞ is defined by Eq. (32). Using the identity
ωμαων

α ≡⊥μν − ωμων, we find

AH
nn ¼

μnn2n
c3T

VðMnÞαn; A⊥
nn ¼

μnn2n
c3T

VðMnÞβn;

Ak
nn ¼ μnn2n

c3T
VðMnÞγn; ð95Þ

where we, for practical convenience, restored the speed of
light c. We should stress that, generally, diffusion affects
the coefficients Aμν

ik (see Sec. V D and Appendix B), and
they cannot be always expressed only through the mutual
friction parameters αi, βi, and γi of nondiffusive superfluid
hydrodynamics.
It is also worth noting that, if we allow for the presence of

the magnetic field (assuming that protons are nonsuper-
conducting and thus fμðpÞ ¼ 0) but neglect its effect on the
neutron vortices, then expression (91) for fμðnÞ will remain

the same, while the expression for ΔjμðiÞ should be replaced
with Eq. (89) to account for anisotropy of diffusion in the
magnetic field.

D. Magnetized npeμ matter with superfluid neutrons
(no vortices) and type-II proton superconductivity

This limit is interesting if we want to study magneto-
thermal evolution in slowly rotating superconducting neu-
tron stars with type-II proton superconductivity. It is
expected that in this problem neutron vortices do not play
a major role [77] and can be neglected in the first
approximation. At the same time, the combined effect of
diffusion (i.e., relative motions of different particle species)
and mutual friction dissipation related to the presence of
proton vortices (flux tubes) appears to be crucial for this
problem [41] and should be accounted for. Note that, for
instance, electron–flux tube interaction is comparable to
(and even stronger than) the electron-muon interaction (see,
e.g., Ref. [41] and Appendix B). Thus, in contrast to the
previous case, here we cannot decouple diffusion and
mutual friction effects.
Since we ignore neutron vortices, we are left with only

one preferred direction, b. The full system of dynamic
equations in this situation is provided in Sec. VI, and here
we only present the expressions for fμðiÞ and ΔjμðiÞ. In the

absence of neutron vortices fμðnÞ vanishes, as do the

coefficients Aμν
nk ¼ Bμν

nk ¼ Cμνkn ¼ 0. Thus, the general form
of the vectors fμðiÞ and ΔjμðiÞ is (i; k ¼ n, p, e, μ)

fμðnÞ ¼ 0; ð96Þ

−
μpn2p
T

fμðpÞ ¼ −Aμν
ppWðpÞν − Bμν

pkdðkÞν; ð97Þ

ΔjμðiÞ ¼ −CμνipWðpÞν −Dμν
ik dðkÞν; ð98Þ

or, using Eqs. (80), (81)–(83), and (85) (with ωμ replaced
by bμ and with ωμν replaced by bμν),

−
μpn2p
T

fμðpÞ ¼−Ak
ppbμbνWðpÞν−A⊥

ppð⊥μν−bμbνÞWðpÞν

−AH
ppbμνWðpÞν−Bk

pkb
μbνdðkÞν

−B⊥
pkð⊥μν−bμbνÞdðkÞν−BH

pkb
μνdðkÞν; ð99Þ

ΔjμðiÞ ¼ −CkipbμbνWðpÞν − C⊥ipð⊥μν − bμbνÞWðpÞν

− CHipb
μνWðpÞν −Dk

ikb
μbνdðkÞν

−D⊥
ikð⊥μν − bμbνÞdðkÞν −DH

ikb
μνdðkÞν: ð100Þ

The phenomenological coefficients in Eqs. (99) and (100)
can be expressed through microscopic quantities (mutual
friction parameters and momentum transfer rates), as
shown in Appendix B in the simple case of vanishing
entrainment and T ¼ 0. The cross terms in Eq. (100),

containing the coefficients Bk
pi ¼ −Ckip, B⊥

pi ¼ −C⊥ip, and
BH
pi ¼ −CHip, lead to interference between the diffusion and

mutual friction effects.
Note, in passing, that if the neutron vortices are present

but do not affect the diffusive currents (see Sec. V C) and
do not interact with proton vortices, then the expressions
for fμðpÞ (99) and Δj

μ
ðiÞ (100) will remain the same, whereas

fμðnÞ will be given by Eq. (91).

VI. FULL SYSTEM OF EQUATIONS IN THE
MHD APPROXIMATION FOR npeμ MIXTURE

WITH PROTON VORTICES

In this section we formulate the full system of MHD
equations for magnetized npeμ matter, accounting for
neutron superfluidity as well as type-II proton supercon-
ductivity and adopting the “MHD approximation” from
GD16. The resulting set of equations, presented in
Sec. VI B, is suitable for, e.g., studying the combined
quasistationary evolution of the magnetic field and temper-
ature in slowly rotating superconducting NSs. For practical
convenience, below in this section we do not set c ¼ 1.

A. “Magnetohydrodynamic” approximation

First, let us briefly summarize the main consequences of
the “MHD approximation” formulated in Sec. VIII of
GD16, which allows us to substantially simplify the general

V. A. DOMMES and M. E. GUSAKOV PHYS. REV. D 104, 123008 (2021)

123008-12



equations of Sec. II. This approximation is mainly based on
the fact that, under typical NS conditions (and assuming
type-II proton superconductivity), the magnetic inductionB
is much larger than the fields E, D, and H defined in the
comoving frame. For actual calculations, one also has to
specify a microscopic model that allows one to express the
four-vectorsDμ,Hμ,Wμ

ðEiÞ andW
μ
ðMiÞ through E

μ, Bμ, Vμ
ðEiÞ

and Vμ
ðMiÞ. For definiteness, below we use the simple model

of noninteracting vortices from Appendix G2 of GD16;
note, however, that the MHD approximation can be
formulated for other microscopic models in a similar way.
As discussed in Ref. [24] and GD16, the magnetic field

H is related to the magnetic induction B as18

H ¼ B − BVn − BVp; ð101Þ

where BVi is the magnetic induction associated with
neutron (i ¼ n) or proton (i ¼ p) vortices. In other words,
H coincides with the London field generated by NS
rotation, jHj ∼ 2 × 10−2½Ω=ð100 s−1Þ� G ≪ jBj ∼ 1012 G,
where Ω is the NS spin frequency. This field, as well as
BVn,

19 is neglected in comparison to BVp in the MHD
approximation: all the magnetic induction is assumed to be
locked to proton vortices, B ≈ BVp.
Similarly, the fields D and E are related as

D ¼ E − EVn − EVp: ð102Þ

Here the electric field EVi is generated by vortex motion,
EVi ¼ −ð1=cÞVLi × BVi, where VLi is the vortex velocity,
which is assumed to be nonrelativistic; the electric induc-
tion D is of the order of small gradients of thermodynamic
functions, jDj ∼ j∇μij=ep. Both E and D are much smaller
than B.
Since the vectors D and H are small, it follows from the

second pair of Maxwell equations (18) that the total free
electric current density JμðfreeÞ should also be exceptionally

small, much smaller than the individual contributions to
JμðfreeÞ from each particle species. This observation enables

us to make further simplification by discarding Maxwell
equations (18) but instead requiring that the free electric
current density JμðfreeÞ should vanish [this approximation is

well known in the literature and is further discussed by us
around Eqs. (128) and (129)]:

JμðfreeÞ ¼ einiuμ þ eiYikw
μ
ðkÞ þ eiΔj

μ
ðiÞ ¼ 0: ð103Þ

Now let us turn to the vortex-related vectors Vμ
ðEiÞ, V

μ
ðMiÞ,

Wμ
ðEiÞ, and Wμ

ðMiÞ [or, equivalently, to the corresponding

tensors kVμν
ðiÞ,

⊥Vμν
ðiÞ,

kWμν
ðiÞ, and

⊥Wμν
ðiÞ; see Eqs. (40) and

(41)]. The number of proton vortices is typically larger by
more than 10 orders of magnitude than the number of
neutron vortices (see, e.g., Ref. [24]). Consequently, the
four-vector Vμ

ðMnÞ can be neglected in comparison to Vμ
ðMpÞ

in the expressions for dεadd (26) and ΔTμν
ðEMþvortexÞ (37),

since the lengths of these vectors are proportional to the
number of vortices, as follows from Eq. (24). Note also that
in the comoving frame jVðEiÞj ∼ ðVLi=cÞjVðMiÞj; thus, Vμ

ðEiÞ
can be neglected in comparison to Vμ

ðMiÞ, and, similarly,

Wμ
ðEiÞ can be neglected in comparison to Wμ

ðMiÞ.
Under the above assumptions, the four-vector

Ṽμ
ðMpÞ ≡ 1

2
ϵμναβuνṼðiÞαβ, which reduces to ð0; mpcurlVspÞ

in the nonrelativistic limit, can be neglected in comparison
to ðep=cÞBμ. Thus, the four-vector Vμ

ðMpÞ ¼ Ṽμ
ðMpÞ þ

ðep=cÞBμ [see Eqs. (43) and (50)] reduces to

Vμ
ðMpÞ ¼

ep
c
Bμ; ð104Þ

which physically means that the magnetic induction is
produced by proton vortices.
For a simple microscopic model of noninteracting

vortices, the four-vectors Wμ
ðMiÞ are related to Vμ

ðMiÞ as

[see Eqs. (124) and (G9)–(G11) in GD16]

Wμ
ðMiÞ ¼

ÊVi

πℏ

Vμ
ðMiÞ

VðMiÞ
; ð105Þ

where VðMiÞ ≡
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
VðMiÞαVα

ðMiÞ
q

, ÊVi is the vortex energy per

unit length specified below, and no summation over i is
assumed. Wμ

ðMpÞ can also be rewritten in terms of the

critical magnetic field Hc1 [80]:

Wμ
ðMpÞ ¼

c
4πep

Hc1
Bμ

B
: ð106Þ

In this formula B≡ ðBμBμÞ1=2, and Hc1 is expressed
through ÊVp as

Hc1 ¼
4πÊVp

ϕ̂p0

; ð107Þ

where ϕ̂p0 ¼ ðπℏc=epÞ is the magnetic flux associated with
the proton vortex. The energy ÊVi per unit length for
neutron and proton vortices is given by [see Eqs. (E17) and
(E18) in GD16]

18Some authors (e.g., [29,78,79]) use a different definition for
H, identifying it with the critical fieldHc1; we find that definition
less convenient since H defined that way does not satisfy the
Maxwell equation (16). Note, however, that both approaches are,
in principle, possible and the resulting equations are completely
equivalent [29].

19BVi is proportional to the number of vortices per unit area
NVi; for typical NS conditions NVn is less than NVp by more than
10 orders of magnitude and thus jBVnj ≪ jBVpj.
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ÊVn ≈
π

4
ℏ2c2

YnnYpp − Y2
np

Ypp
ln

�
bn
ξn

�
; ð108Þ

ÊVp ≈
π

4
ℏ2c2Ypp ln

�
δp
ξp

�
: ð109Þ

In Eqs. (108) and (109) ξi is the coherence length for
particle species i, δp is the London penetration depth for
protons, and bn is some “external” radius of the order of the
typical intervortex spacing [25,72]. Note that Eq. (109) (see
also Ref. [81] for a nonrelativistic expression) is only
applicable to a strong type-II superconductor, i.e., in the
limit δp ≫ ξp.
We remind the reader that the expressions (105) for

Wμ
ðMiÞ are valid only for a simple model of noninteracting

vortices. If one accounts, e.g., for vortex–flux tube inter-
action, then both these vectors will depend on Vμ

ðMpÞ and
Vμ
ðMnÞ simultaneously.

Using the approximations discussed above, one can also
simplify the thermodynamic relations. First, all the thermo-
dynamic quantities (e.g., the energy density ε) can be
expressed as functions of the variables ni, S, w

μ
ðiÞwðkÞμ,

and B:

ε ¼ εðni; S; wμ
ðiÞwðkÞμ; BÞ: ð110Þ

Second, only the termWðMpÞμdV
μ
ðMpÞ can be retained in the

expression (26) for dεadd. Thus, in view of the relations
(104) and (106), the second law of thermodynamics (25)
becomes

dε¼ μidniþTdSþYik

2
dðwα

ðiÞwðkÞαÞþ
1

4π
Hc1dB; ð111Þ

and the Gibbs-Duhem relation (36), consequently, takes the
form

dP ¼ nidμi þ SdT −
Yik

2
dðwα

ðiÞwðkÞαÞ −
1

4π
Hc1dB: ð112Þ

Similarly, only the last term (and only for proton vortices,
i ¼ p) survives in the expression for ΔTμν

ðEMþvortexÞ (37):

ΔTμν
ðEMþvortexÞ ¼ T μν

ðVMÞ

¼ ⊥Wμα
ðpÞ

⊥Vν
ðpÞ α þ uν⊥Wμα

ðpÞVðEpÞα

þ uμ⊥Wνα
ðpÞVðEpÞα: ð113Þ

Noting that Vμ
ðEpÞ ¼ μpnpf

μ
ðpÞ=c

3 [see Eq. (59)], and also

using the relations (104) and (106), one can transform
Eq. (113) to

ΔTμν
ðEMþvortexÞ ¼

Hc1B
4π

bμαbνα

þμpnpHc1

4πepc2
ðuμbναfðpÞαþuνbμαfðpÞαÞ ð114Þ

or, equivalently, to

ΔTμν
ðEMþvortexÞ

¼ Hc1B
4π

ð⊥μν − bμbνÞ

þ μpnpHc1

4πepc2
ðuμϵναβγuαfðpÞβbγ þ uνϵμαβγuαfðpÞβbγÞ:

ð115Þ

Repeating the derivation of the entropy generation
equation (52) with dε given by Eq. (111) and
ΔTμν

ðEMþvortexÞ given by Eq. (113), one can find that the

four-vectorsWμ
ðnÞ andW

μ
ðpÞ [see Eq. (54)] in the MHD limit

should be defined as

Wμ
ðnÞ ≡

1

nn
cYnkw

μ
ðkÞ; ð116Þ

Wμ
ðpÞ ¼

1

np

�
cYpkw

μ
ðkÞ þ

c
4πep

⊥μν∂αðHc1bναÞ
�
: ð117Þ

B. MHD equations

Now, working in the MHD approximation described
above, let us formulate the dynamic equations for super-
conducting NSs with npeμ cores. We assume that protons
form a type-II superconductor, and neutrons are superfluid.
However, we ignore the effects of NS rotation and hence
assume that there are no neutron vortices in the system,
Vμν
ðnÞ ¼ 0. Note that neutron vortices can be included

separately (see Remark 3). As for the dissipative effects,
we consider only diffusion and mutual friction, thus
ignoring chemical reactions as well as viscosity (i.e., we
set Q ¼ ΔΓi ¼ Δτμν ¼ ϰi ¼ 0). The latter effects can
easily be incorporated separately if needed.
The full set of equations allows one to find seven

unknown functions Bμ, uμ, wμ
ðnÞ, nn, ne, nμ, and S (all

other unknown quantities can be expressed algebraically
through these functions) and includes the following.
(1) Continuity equations for neutrons, electrons, and

muons describing evolution of nn, ne, and nμ,
respectively:

∂αjαðnÞ ¼ ∂αðnnuα þ Ynkwα
ðkÞ þ ΔjαðnÞÞ ¼ 0; ð118Þ

∂αjαðeÞ ¼ ∂αðneuα þ ΔjαðeÞÞ ¼ 0; ð119Þ

∂αjαðμÞ ¼ ∂αðnμuα þ ΔjαðμÞÞ ¼ 0: ð120Þ
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(2) Total energy (μ ¼ 0) and momentum (μ ¼ 1, 2, 3)
conservation laws (8) describing evolution of the
energy density ε and four-velocity uμ:

∂νTμν ¼ 0; ð121Þ

where

Tμν ¼ ðPþ εÞuμuν þ Pgμν

þ Yikðwμ
ðiÞw

ν
ðkÞ þ μiw

μ
ðkÞu

ν þ μkwν
ðiÞu

μÞ
þ ΔTμν

ðEMþvortexÞ ð122Þ

and ΔTμν
ðEMþvortexÞ is specified by Eq. (114). Instead

of the energy conservation law, it is convenient to
use the entropy generation equation (63):

∂μSμ ¼ ∂μ

�
Suμ −

μi
T
ΔjμðiÞ

�

¼ μpn2p
c3T

fðpÞμW
μ
ðpÞ − ΔjμðiÞdðiÞμ: ð123Þ

(3) The four-vector wμ
ðnÞ satisfies the superfluid equation

for neutrons, which, in the absence of vortices, reads

Vμν
ðnÞ ≡

1

c
½∂μðwν

ðnÞ þ μnuνÞ − ∂νðwμ
ðnÞ þ μnuμÞ�

¼ 0: ð124Þ

(4) Magnetic induction evolves according to Maxwell
equation (17),

∂μFνλ þ ∂νFλμ þ ∂λFμν ¼ 0; ð125Þ

which, in terms of the vectors E and B, reads

curlE ¼ −
1

c
∂B
∂t ; ð126Þ

divB ¼ 0: ð127Þ

The set of equations (118)–(127) contains also unknown
quantities np, w

μ
ðpÞ, E, f

μ
ðpÞ, and Δj

μ
ðpÞ, which are expressed

algebraically through the seven functions defined above.
First, the quantities np and wμ

ðpÞ can be found from the

condition JμðfreeÞ ¼ 0 (103), which, in view of the con-

straints (5) and (7), leads to the well-known (and often
employed in the literature) quasineutrality (128) and
screening (129) conditions [24,26,82]:

np ¼ ne þ nμ; ð128Þ

Ypkw
μ
ðkÞ þ ΔjμðpÞ − ΔjμðeÞ − ΔjμðμÞ ¼ 0: ð129Þ

Next, the quantities fμðpÞ (99) and ΔjμðiÞ (100) have the

following form [note that we restored the factor c3 in the
left-hand side of Eq. (130)]:

−
μpn2p
c3T

fμðpÞ ¼−Ak
ppbμbνWðpÞν−A⊥

ppð⊥μν−bμbνÞWðpÞν

−AH
ppbμνWðpÞν

−Bk
pkb

μbνdðkÞν−B⊥
pkð⊥μν−bμbνÞdðkÞν

−BH
pkb

μνdðkÞν; ð130Þ

ΔjμðiÞ ¼ −CkipbμbνWðpÞν − C⊥ipð⊥μν − bμbνÞWðpÞν

− CHipb
μνWðpÞν

−Dk
ikb

μbνdðkÞν −D⊥
ikð⊥μν − bμbνÞdðkÞν

−DH
ikb

μνdðkÞν; ð131Þ

where dðiÞμ and WðpÞν are given by Eqs. (55) and (117),

respectively. The transport coefficients Ak
pp, A⊥

pp, AH
pp,

Bk
pk, B

⊥
pk, B

H
pk, C

k
ip, C

⊥
ip, C

H
ip, D

k
ik, D

⊥
ik, and DH

ik should be
expressed through microscopic mutual friction parameters
and momentum transfer rates. We discuss these relations in
Appendix B.
Finally, the electric field Eμ can be expressed algebrai-

cally from the superfluid proton equation (59):

uνV
μν
ðpÞ ≡

1

c
uνf∂μ½wν

ðpÞ þ μpuν�− ∂ν½wμ
ðpÞ þ μpuμ�g þ

ep
c
Eμ

¼ μpnp
c3

fμðpÞ: ð132Þ

Note that the right-hand sides of Eqs. (130) and (131)
implicitly contain ΔjμðiÞ and E

μ20; therefore one has to solve

Eqs. (130)–(132) simultaneously in order to obtain closed-
form expressions for fμðpÞ, Δj

μ
ðiÞ, and Eμ.

The nonrelativistic version of MHD equations from this
section is provided in Appendix A.

Remark 1.—IfAk
pp ¼ Bk

pi ¼ 0, one can define the vortex
velocity vμðLpÞ, satisfying the vorticity transfer equation [25]

vðLpÞνV
μν
ðpÞ ¼ 0: ð133Þ

In analogy with GD16 [see Eq. (101) there], one can find
that, up to arbitrary terms parallel to bμ,

20Wμ
ðpÞ depends on the quantity Ypkw

μ
ðkÞ [see the definition

(54)], which is expressed through ΔjμðiÞ with the help of the

screening condition (129). In addition, dμðkÞ depends on Eμ [see

the definition (55)].

DISSIPATIVE SUPERFLUID RELATIVISTIC … PHYS. REV. D 104, 123008 (2021)

123008-15



vμðLpÞ ¼ uμ −
cT

npepB
ðAH

ppWðpÞν þ BH
pkdðkÞνÞ⊥μν

þ cT
npepB

ðA⊥
ppWðpÞν þ B⊥

pkdðkÞνÞbμν: ð134Þ

Remark 2.—The MHD equations presented in this
section are very similar to those of Sec. VIII in GD16.
For the reader’s convenience, let us list their main
differences from GD16.
(1) Particle currents include the dissipative correc-

tions ΔjμðiÞ.
(2) We use a slightly different definition of Wμ

ðpÞ (see
footnote 7).

(3) The term Ypkw
μ
ðkÞ in the expression (117) for Wμ

ðpÞ
does not vanish due to the presence of diffusive
currents.

(4) fμðpÞ (and thus vμðLpÞ) includes additional terms

proportional to dμðkÞ (if transport coefficients

Bμν
ik ≠ 0).

(5) Neutron vortices are absent: Vμν
ðnÞ ¼ 0.

Remark 3.—One can easily account for the presence of
neutron vortices, provided that we neglect their effect on
diffusion and ignore vortex–flux tube interaction (see
Sec. V C). Under these assumptions, all equations of this
section remain the same, except for Eq. (124), which
should be replaced with

uνV
μν
ðnÞ ≡

1

c
uνf∂μ½wν

ðnÞ þ μnuν� − ∂ν½wμ
ðnÞ þ μnuμ�g

¼ μnnn
c3

fμðnÞ; ð135Þ

and Eq. (123), which should be replaced with

∂μSμ ¼ ∂μ

�
Suμ −

μi
T
ΔjμðiÞ

�

¼ μpn2p
c3T

fðpÞμW
μ
ðpÞ þ

μnn2n
c3T

fðnÞμW
μ
ðnÞ

− ΔjμðiÞdðiÞμ; ð136Þ

where fμðnÞ is [see Eq. (91)]

−
μnn2n
c3T

fμðnÞ ¼ −Ak
nnωμωνWðnÞν −A⊥

nnð⊥μν − ωμωνÞWðnÞν

−AH
nnω

μνWðnÞν ð137Þ

and Wμ
ðnÞ is given by Eq. (116).

VII. SUMMARY

In the present study we have formulated equations of
dissipative relativistic finite-temperature MHD describing
superfluid and superconducting charged mixtures in the

presence of vortices and electromagnetic field. For the first
time, the corresponding MHD equations systematically and
simultaneously take into account the combined effects of
particle diffusion and mutual friction forces acting on
superfluid or superconducting vortices. It is important to
stress that these two effects interfere with one another:
diffusion affects particle velocities which, in turn, influence
the vortex motion via the mutual friction mechanism (and
vice versa); as a result, the cross-coefficients Bμν

ik and Cμνik in
Eqs. (61) and (62) differ from zero.
We have obtained the general MHD equations and

derived the entropy generation equation, following the
same phenomenological approach [19,50] as in our pre-
vious papers [25,26,49] (see Secs. II and III). These
equations extend the results of GD16 (which neglects all
the dissipative processes except for the mutual friction
dissipation) by accounting for the diffusion, viscosity,
chemical reactions, and radiation. Then, starting from
the Onsager principle and the condition of non-negative
entropy production rate, we have derived in Sec. IV the
general expressions for the mutual friction forces and
diffusive currents adopting the MHD approximation from
GD16 (see Sec. VI A), that utilizes the fact that in typical
NS conditions the magnetic inductionB is much larger than
the fields E, D, and H. Note that, in this approximation,
mutual friction and diffusion (which are the main focus of
our study) appear to be completely decoupled from other
dissipative mechanisms, which can be studied separately.
We have applied the formulated MHD to a number of

special cases, where it can be considerably simplified
(some of these cases are interesting because of their
application to NSs). In particular, simplifications arising
for unmagnetized NSs are discussed in Sec. V C. The
resulting equations allow one to easily study the effect of
diffusion and mutual friction dissipation on damping of
stellar oscillations and various dynamical instabilities in
NSs [40,76]. In turn, Sec. V D provides equations suitable
for studying the quasistationary magnetic field evolution in
superconducting NS cores [41]. The full system of equa-
tions in this limit is presented in Sec. VI and describes
npeμ matter with type-II proton superconductivity,
accounting for an interplay of mutual friction and particle
diffusion dissipation.
The MHD equations discussed above contain a number

of phenomenological transport coefficients, that have to be
determined from microphysics. We have shown (see
Appendix B) how to establish a connection between our
formalism and the microscopic approach, by expressing the
phenomenological coefficients arising in our theory
through the microscopic mutual friction parameters Di
and momentum transfer rates Jik in the low-temperature
limit. We emphasize that all these phenomenological
coefficients, generally, depend on both Di and Jik due to
interference between the diffusion and mutual friction
mechanisms.
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We see two main immediate practical applications of our
results. First, the dissipative MHD equations, presented
in this work, allow one to realistically model long-
term magnetothermal evolution in superconducting NSs,
accounting for the macroscopic particle flows, diffusive
currents, mutual friction, and finite temperatures, as well as
special and general relativistic effects. Second, with the
help of these equations, one can study the combined effect
of diffusion and mutual friction on oscillations and hydro-
dynamic instabilities in NSs: these effects are extremely
efficient dissipative agents in superfluid and superconduct-
ing NS cores [40,76].
The presented magnetohydrodynamics can be general-

ized in a number of ways. First, one can easily consider a
more complex particle composition (e.g., including hyper-
ons) within the presented framework. Another straightfor-
ward step is to consider viscosity and chemical reactions in
the presence of two preferred directions in the system
(specified by the two types of vortices) and to derive
general form of the corresponding dissipative corrections
following the same procedure as in Sec. IV. Further, an
important task would be to describe pinning of neutron
vortices to proton flux tubes and the vortex creep. In
principle, our general equations should account for these
effects, but for practical applications one also has to find a
relation between the phenomenological quantities (such as
the vector Wμ

ðMiÞ or the transport coefficient Aμν
ik ) and the

microscopic parameters describing vortex–flux tube inter-
action [77,83–87]. We expect that all these improvements
will enable further progress toward realistic modeling of the
various dynamical processes in NSs.
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APPENDIX A: NONRELATIVISTIC LIMIT
OF EQUATIONS OF SEC. VI

In this Appendix we present three-dimensional version
of MHD equations of Sec. VI (see analogous equations in
Appendix I of GD16), assuming that all macroscopic
velocities are nonrelativistic (the “low-velocity” limit).
At the same time, we employ a relativistic equation of
state and discuss transition to the fully nonrelativistic limit
separately. To proceed to the latter limit, one has to assume
that not only macroscopic velocities, but also the equation
of state is nonrelativistic. Then one has to replace the
chemical potential μi for particle species i with the particle
rest energy, mic2 [note, however, that in the superfluid
equations for neutrons (A23) and protons (A41), as well as

in Eq. (A36), one should retain the small quantity
μ̆i ≡ ðμi −mic2Þ=mi] and express the entrainment
matrix Yik through the nonrelativistic matrix ρik by the
formula [58]

ρik ¼ mimkc2Yik; ðA1Þ

where no summation over repeated indices is assumed.
In the absence of entrainment ρik ¼ ρsiδik—i.e., the off-
diagonal elements of the matrix vanish—and diagonal
elements contain superfluid mass densities ρsi for particle
species i. In the fully nonrelativistic limit, the pressure P
can be neglected in comparison to the energy density ε,
which equals the rest energy density:

P ≪ ε ≈ ρc2; ðA2Þ

where ρ≡mini is the total mass density. The components
of ΔTμν

ðEMþvortexÞ are also much smaller than ρc2.

Below, all the three-vectors (shown in boldface) are
defined in the laboratory frame. Note that all scalar
thermodynamic quantities (e.g., particle number density
ni) in this paper are measured in the comoving frame;
however, in the laboratory frame they have the same values
in the low-velocity limit.

1. Nonrelativistic three-velocities

For convenience, let us first introduce some nonrelativ-
istic quantities. The four-velocity uμ is expressed through
the normal (nonsuperfluid) velocity Vnorm of nonrelativistic
hydrodynamics by the formula

uμ ≡ ðu0;uÞ ¼
�

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− V2

norm
c2

q ;
Vnorm

c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1− V2

norm
c2

q ;

�
≈
�
1;
Vnorm

c

�
:

ðA3Þ

In what follows, we retain only leading-order terms in
Vnorm=c and Vsi=c in all equations.
The four-vector wμ

ðiÞ is related to the nonrelativistic
superfluid velocity Vsi by [25,58]

wμ
ðiÞ ¼ micV

μ
ðsiÞ − μiuμ; ðA4Þ

where Vμ
ðsiÞ ≡ ðV0

ðsiÞ;VsiÞ and V0
ðsiÞ can be found from

Eqs. (5) and (A4):

V0
ðsiÞ ¼

μi
micu0

þ uVsi

u0
: ðA5Þ

In the low-velocity limit

wμ
ðiÞ ¼ ðw0

ðiÞ;wðiÞÞ ≈
�
0; micVsi − μi

Vnorm

c

�
: ðA6Þ
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For nonrelativistic particles μi ≈mic2, and, in the fully
nonrelativistic limit, the vector wðiÞ reduces to

wðiÞ ¼ micðVsi − VnormÞ: ðA7Þ

Being expressed in terms of Vμ
ðsiÞ, the vorticity tensor V

μν
ðiÞ

(22) reads (recall that, starting from Sec. IV, we ignore
viscosity and set ϰi ¼ 0)

Vμν
ðiÞ ¼ mi½∂μVν

ðsiÞ − ∂νVμ
ðsiÞ� þ

ei
c
Fμν: ðA8Þ

In the fully nonrelativistic limit it is also convenient to
introduce the nonsuperfluid particle velocities Vi, in order
to express the spatial part of the particle current
jμðiÞ ≡ ðj0ðiÞ; jiÞ, as a sum of nonsuperfluid and superfluid

currents (with velocities Vi and Vsi, respectively):

ji ¼
�
ni −

1

mi

X
k

ρik

�
Vi

c
þ 1

mi

X
k

ρikVsk

c
: ðA9Þ

Note that no summation over index i is assumed in
Eqs. (A9)–(A11), and only linear terms in velocities are
taken into account. Comparing Eq. (A9) with definitions
(4), (A3), and (A6), one can express Δji through Vi as

Δji ¼
�
ni −

1

mi

X
k

ρik

�
Vi − Vnorm

c
: ðA10Þ

For nonsuperfluid particles Eq. (A10) reduces to

Δji ¼ ni
ðVi − VnormÞ

c
: ðA11Þ

Using the above definitions, below we present the low-
velocity version of equations of Sec. VI and also discuss
how they will be modified in the fully nonrelativistic limit.
The full set of equations contains dynamic equations for
seven unknown functions B, Vnorm, wn, nn, ne, nμ, and S,
supplemented by algebraic relations allowing one to find all
other quantities.

2. Dynamic equations

(1) In the low-velocity limit the continuity equations for
neutrons (118), electrons (119) and muons (120)
read, respectively,

∂nn
∂t þ ∇½nnVnorm þ cYnkwk þ cΔjn� ¼ 0; ðA12Þ

∂ne
∂t þ ∇½neVnorm þ cΔje� ¼ 0; ðA13Þ

∂nμ
∂t þ ∇½nμVnorm þ cΔjμ� ¼ 0: ðA14Þ

In the fully nonrelativistic limit these equations can
be presented, in terms of the velocities Vi and Vsi
[64], as

∂ρn
∂t þ∇½ðρn−ρnn−ρnpÞVnþρnkVsk� ¼ 0; ðA15Þ

∂ρe
∂t þ ∇ðρeVeÞ ¼ 0; ðA16Þ

∂ρμ
∂t þ ∇ðρμVμÞ ¼ 0; ðA17Þ

where ρi ≡mini and no summation over i is
assumed.

(2) The entropy generation equation (123), which is
convenient to use instead of the energy conservation
law, reduces to

1

c
∂S
∂t þ∇

�
S
Vnorm

c
−
μi
T
Δji

�
¼ μpn2p

c3T
fpWp −ΔjidðiÞ;

ðA18Þ

and the total momentum conservation equation reads

1

c
∂T0l

∂t þ∇mTlm ¼ 0; ðA19Þ

where the spatial indices l and m run over l, m ¼ 1,
2, 3, and the energy-momentum tensor Tμν is
specified by Eq. (122). In the fully nonrelativistic
limit the momentum density T0l=c reduces simply to
T0l=c ¼ ρVl

norm þP
ik ρikðVl

sk − Vl
normÞ, while Tlm

is given by Eq. (A33) below. Then Eq. (A19), with
the help of the Gibbs-Duhem relation (A28), can be
represented as

∂
∂t

�
ρVl

norm þ
X
ik

ρikðVl
sk − Vl

normÞ
�
þ∇m

�
ρVl

normVm
norm þ

X
ik

ρikðVl
siV

m
sk − Vl

normVm
normÞ

�

¼ −ni∇lμi − S∇lT þ ρik∇l

�ðVsi − VnormÞðVsk − VnormÞ
2

�
−

1

4π
½B × curlðHc1bÞ�l: ðA20Þ
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Here the last term in the right-hand side describes buoyancy
and tension forces acting on proton flux tubes. This term
replaces the Lorentz term Jfree × B of the ordinary MHD,
which vanishes due to the screening of electric current
inside the superconductor (see, e.g., Refs. [24,78]21).
(3) Superfluid equation (124), written for neutrons in

the absence of vortices, in the three-dimensional
form reduces to the two equations

1

c
∂Vsn

∂t þ ∇V0
sn ¼ 0; ðA21Þ

curlVsn ¼ 0; ðA22Þ

where V0
sn is given by Eq. (A5). One can also obtain

a nonrelativistic version of Eq. (A21), assuming that
velocities are small and neutrons are nonrelativistic
(see Ref. [25], Appendix C):

∂Vsn

∂t þ ðVsn∇ÞVsn þ∇
�
μ̆n −

1

2
jVsn −Vnormj2

�
¼ 0;

ðA23Þ
where μ̆n ≡ ðμn −mnc2Þ=mn.

(4) The “magnetic evolution” equation [the same as
Eq. (I23) in GD16] is obtained from Maxwell
equation

curlE ¼ −
1

c
∂B
∂t ðA24Þ

by substituting E from Eq. (A40) (see below) and
neglecting the terms depending on curlVsp in com-
parison to the similar terms dependingon ep=ðmpcÞB:

∂B
∂t þ curl

�
μpnp
epc

fp þ B × Vnorm

�
¼ 0: ðA25Þ

The above equations describe time evolution of magnetic
field B, velocities Vnorm and Vsn (or, equivalently, wn), as
well as scalar thermodynamic quantities (ni andS). Note that
the superfluid velocity for protons,Vsp (orwp), is expressed
from the screening condition (A31) and, thus, does not
provide an additional dynamic degree of freedom; the
diffusive currents Δji (or velocities Vi of nonsuperfluid
components) are also expressed algebraically via Eq. (A35).

3. Algebraic relations

(1) In the low-velocity limit the small quantity wμ
ðiÞwðkÞμ

that enters the thermodynamic relations (110)–(112)

reduces to wðiÞwðkÞ [see Eq. (A6)]. As a result, any
thermodynamic quantity (e.g., the energy density ε)
should be expressed as functions of the variables ni,
S, wðiÞwðkÞ, and B:

ε ¼ εðni; S;wðiÞwðkÞ; BÞ; ðA26Þ
whereas the second law of thermodynamics and the
Gibbs-Duhem relation read, respectively,

dε ¼ μidni þ TdSþ Yik

2
dðwðiÞwðkÞÞ þ

1

4π
Hc1dB;

ðA27Þ

dP ¼ nidμi þ SdT −
Yik

2
dðwðiÞwðkÞÞ −

1

4π
Hc1dB:

ðA28Þ

In the fully nonrelativistic limit the term
Yik
2
dðwðiÞwðkÞÞ reduces, in view of Eqs. (A1) and

(A7), to

Yik

2
dðwðiÞwðkÞÞ ¼ ρikd

ðVsi − VnormÞðVsk − VnormÞ
2

:

ðA29Þ
(2) Proton number density np and superfluid proton

velocity Vsp can be found from the quasineutrality
(128) and screening (129) conditions:

np ¼ ne þ nμ; ðA30Þ

jp − je − jμ ¼ Ypkwk þ ðΔjp − Δje − ΔjμÞ
¼ 0: ðA31Þ

For nonrelativistic matter the screening condition
(A31), written in terms of Vi and Vsp, takes the form

ρpk
mp

ðVsk−VpÞþnpVp−neVe−nμVμ ¼ 0: ðA32Þ

(3) The energy-momentum tensor Tμν, employed in
Eq. (A19), is specified by Eqs. (122) and (115).
In the fully nonrelativistic limit its spatial part Tlm

(l,m ¼ 1, 2, 3), with the help of relations (A1)–(A3)
and (A7), reduces to [cf. Ref. [64] and Eq. (I22) in
GD16]

Tlm ¼
�
ρ−

X
ik

ρik

�
Vl
normVm

norm

þ
X
ik

ρikVl
siV

m
skþPδlmþHc1

4π

�
Bδlm−

BlBm

B

�
:

ðA33Þ

21Note that the force Fi
mag in Eq. (95) of Ref. [24] contains an

additional term, −ðρpÞ=ð4πÞ∇iðB∂Hc=∂ρÞ; in our formulation
this term is included in ∇μi due to renormalization of the
chemical potential—see Eq. (G25) in GD16.
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(4) Δji and fp are expressed through dk and Wp [see
Eqs. (130) and (131)]:

−
μpn2p
c3T

fp ¼ −Ak
ppWpk −A⊥

ppWp⊥ −AH
pp½Wp⊥ × b�

−Bk
pkdkk −B⊥

pkdk⊥
−BH

pk½dk⊥ × b�; ðA34Þ

Δji ¼ −CkipWpk − C⊥ipWp⊥ − CHip½Wp⊥ × b�
−Dk

ikdkk −D⊥
ikdk⊥ −DH

ik½dk⊥ × b�; ðA35Þ

where

dkk≡ ðdkbÞb; dk⊥≡dk− ðdkbÞb;
Wpk≡ ðWpbÞb; Wp⊥≡Wp− ðWpbÞb; ðA36Þ

b≡ B
B
; ðA37Þ

dk ¼ ∇
�
μk
T

�
−
ek
T

�
Eþ Vnorm

c
× B

�
; ðA38Þ

Wp ¼ cYpk

np
wðkÞ þ

c
4πepnp

curlðHc1bÞ: ðA39Þ

(5) The electric field E is expressed from the superfluid
equation (132) for protons:

∂Vsp

∂t þ c∇V0
sp þ curlVsp × Vnorm

¼ −
μpnp
mpc2

fp þ
ep
mp

�
Eþ Vnorm

c
× B

�
; ðA40Þ

which, in the nonrelativistic limit, takes the form
[cf. GD16, Eq. (I7)]

∂Vsp

∂t þ ðVsp∇ÞVsp þ ∇
�
μ̆p −

1

2
jVsp − Vnormj2

�

¼ −curlVsp × ðVnorm − VspÞ

− npfp þ
ep
mp

�
Eþ Vnorm

c
× B

�
; ðA41Þ

where μ̆p ≡ ðμp −mpc2Þ=mp.
Note that the right-hand sides of Eqs. (A34) and

(A35) implicitly containΔji and E (see footnote 20);
therefore, one has to solve Eqs. (A34), (A35), and
(A41) simultaneously in order to obtain closed-form
expressions for fp, Δji, and E.

Remark 1.—If neutrons and protons are completely
superfluid, then Δjn and Δjp (which describe dissipative

corrections to the nonsuperfluid currents) vanish together
with the corresponding transport coefficients.
Remark 2.—The magnetic evolution equation (A25) can

be further simplified if transport coefficientsAk
pp and B

k
pi in

Eq. (A34) are small. Then fp can be presented as

fp ¼ epc

μpnp
½B × ðVLp − VnormÞ�; ðA42Þ

where

VLp ¼ Vnorm −
c2T

epnpB
ðAH

ppWp þ BH
pkdkÞ

þ c2T
epnpB

ðA⊥
ppWp þ B⊥

pkdkÞ × b ðA43Þ

is the nonrelativistic velocity of proton vortices [spatial part
of the four-vector vμðLpÞ multiplied by c; see Eq. (134)].

Equation (A25) can then be rewritten in the form
[cf. GD16, Eq. (I24)]

∂B
∂t þ curlðB × VLpÞ ¼ 0; ðA44Þ

which simply states that the magnetic field is transferred by
the vortices.
Remark 3.—One can easily account for the presence of

neutron vortices, provided that we neglected their effect on
diffusion and ignore vortex–flux tube interaction (see
Sec. V C). Under these assumptions, all equations of this
section remain the same, except for Eqs. (A21)–(A23),
which should be replaced with

∂Vsn

∂t þ c∇V0
sn þ curlVsn × Vnorm ¼ −

μnnn
mnc2

f n; ðA45Þ

and Eq. (A18), which should be replaced with

1

c
∂S
∂t þ ∇

�
S
Vnorm

c
−
μi
T
Δji

�

¼ μpn2p
c3T

fpWp þ
μnn2n
c3T

f nWn − ΔjidðiÞ; ðA46Þ

where Wn is given by [see Eq. (116)]

Wn ≡ 1

nn
cYnkwðkÞ ðA47Þ

and f n is [see Eq. (91)]

−
μnn2n
c3T

f n¼−Ak
nnWnk−A⊥

nnWn⊥−AH
nn½Wn⊥×ω�; ðA48Þ

Wnk≡ ðWnωÞω; Wn⊥≡Wn− ðWnωÞω; ω≡VðMnÞ
VðMnÞ

:

ðA49Þ
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In the nonrelativistic limit Eq. (A45) reduces to [cf. GD16,
Eq. (I7)]

∂Vsn

∂t þ ðVsn∇ÞVsn þ ∇
�
μ̆n −

1

2
jVsn − Vnormj2

�

¼ −curlVsn × ðVnorm − VsnÞ − nn f n: ðA50Þ

APPENDIX B: PHENOMENOLOGICAL
TRANSPORT COEFFICIENTS IN THE

LOW-TEMPERATURE LIMIT

Here we establish a connection between our transport
coefficients and the mutual friction parameters and momen-
tum transfer rates of microscopic theory. To this aim, we
analyze the equation of motion for individual proton
vortices, as well as the Euler-like equations for nonsuper-
fluid particles in the npeμ matter.22 We present an
algorithm that allows us to find microscopic expressions
for Δji and VLp, compare them with the phenomenological
equations (A35) and (A43), and, finally, obtain the expres-
sions for the phenomenological transport coefficients Aμν

ik ,
Bμν
ik , C

μν
ik , and Dμν

ik .
As in Appendix A, we work in the MHD limit, ignore

neutron vortices, and assume that all macroscopic velocities
are nonrelativistic. For the sake of simplicity, we further
make some additional assumptions. Namely, we adopt the
low-temperature limit (T → 0), ignore all the terms depend-
ing on ∇T, and assume that protons and neutrons are
completely superfluid (no Bogoliubov thermal excitations),
so that only electrons and muons can scatter off the vortex
cores. In addition, we also neglect entrainment between
superfluid neutrons and protons, i.e., set Ynp ¼ 0.
The proton vortex velocity VLp enters the equation

describing the balance of forces acting on a proton vortex.
Neglecting small vortex mass, the latter equation takes the
form [44]

X
i¼e;μ

Fi→V þ Fext ¼ 0; ðB1Þ

where

Fi→V ¼ −Di½b × ½b × ðVi − VLpÞ��
þD0

i½b × ðVi − VLpÞ� ðB2Þ

is the velocity-dependent force per unit length acting on a
vortex from particle species i, Vi ≡ cji=ni is the velocity of
particle species i, and coefficients Di and D0

i are calculated
frommicrophysics (see Ref. [44] and references therein). In
the absence of diffusion the phenomenological mutual

friction parameters αp, βp, and γp employed in GD16
can be expressed through Di and D0

i as, respectively,

μpnp
c2

αp ¼ πℏnpðD0
e þD0

μÞ
ðDe þDμÞ2 þ ðD0

e þD0
μÞ2

; ðB3Þ

μpnp
c2

βp ¼ πℏnpðDe þDμÞ
ðDe þDμÞ2 þ ðD0

e þD0
μÞ2

; ðB4Þ

γp ¼ 0: ðB5Þ

To obtain these relations, one has to solve Eq. (B1) with
Ve ¼ Vμ ¼ Vnorm and compare the result with Eqs. (101)
and (I25) of GD16.
The first and the second term in Eq. (B2) describe the

(dissipative) drag force and the (nondissipative) transverse
force, respectively. Fext is the velocity-independent force
per unit length; it is the sum of buoyancy and tension
forces [43]:

Fext ¼ −
ℏc
4ep

½b × curlðHc1bÞ�: ðB6Þ

Using Eqs. (A31) and (A39) and noting that Δjp ¼ 0 (since
all protons are superconducting), one can present Fext as

Fext ¼ −πℏnp
�
b ×

�
Wp −

c
np

Δje −
c
np

Δjμ
��

: ðB7Þ

The velocities Ve and Vμ can be found from the Euler
equations [41] (i ¼ e, μ and no summation over i is
assumed)

ni

� ∂
∂tþðVi∇Þ

��
μi
c2
Vi

�

¼−ni∇μi−
μini
c2

∇ϕ−
X
k≠i

JikðVi−VkÞ−NVpFi→V; ðB8Þ

where ϕ is the gravitational potential, Jik ¼ Jki is the
momentum transfer rate per unit volume between particle
species i and k, and NVp ¼ B=ϕ̂p0 ¼ epB=ðπℏcÞ is the
number of proton vortices per unit area. The Lorentz force
is contained in the last term in the right-hand side of
Eq. (B8), since we assume that all the electromagnetic field
is generated by proton vortices. Note that, e.g., in the
similar equations of Ref. [41] the vector Fpi from this
reference includes only the drag force [the second term in
Eq. (B2)], whereas the Lorentz force [the first term in
Eq. (B2)] is written out separately.
Since in the hydrodynamic regime the velocities Vi are

close to one another, one can simplify the left-hand side of
Eq. (B8) by replacing Vi with the average mass velocity of
nonsuperfluid particles U ≡ ðμeneVe þ μμnμVμÞ=ðμene þ
μμnμÞ [88,89], which, in the low-temperature limit,

22These Euler-like equations follow from the transport
equations written for each particle species; see, e.g.,
Refs. [32,40,49,88].
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coincides with Vnorm introduced in Eq. (A3). Below we
work in the comoving frame, specified by the condition
Vnorm ¼ 0 or, in terms of Ve and Vμ,

μeneVe þ μμnμVμ ¼ 0: ðB9Þ

The left-hand side of Eq. (B8) in this frame reduces to
ðμini=c2Þ∂U=∂t. Then, subtracting Euler equations (B8)
(divided by μini) for electrons and muons, we obtain

−
∇μe
μe

þ ∇μμ
μμ

−
�

1

μene
þ 1

μμnμ

�
JeμðVe − VμÞ

−
1

μene
NVpFe→V þ 1

μμnμ
NVpFμ→V ¼ 0: ðB10Þ

The set of linear algebraic equations (B1), (B9), and
(B10) allows one to find the quantities VLp, Δje, and Δjμ.
To express them through Wp, de, and dμ, one has to make
the following substitutions in these equations:
(1) substitute Fi→V and Fext from Eqs. (B2) and (B7);
(2) replace ∇μi with Tdi þ eiE [see Eq. (A36); recall

that we ignore the terms depending on ∇T];
(3) replace E with ð−1=cÞVLp × B [this condition

follows from the assumption that the electric field
is generated only by the vortexmotion; see Eq. (G15)
in GD16];

(4) replace Vi with cΔji=ni (note that we work in the
comoving frame, Vnorm ¼ 0).

Then, solving the system of equations (B1), (B9), and
(B10) and comparing the results with Eqs. (A35) and
(A43), one can determine the coefficients Aμν

pp, B
μν
pk, C

μν
ip ,

and Dμν
ik and directly check that the Onsager relations (74),

(78), and (79) are satisfied.
Since the resulting expressions are very lengthy, we do

not provide them for the most general case. Instead, we
write them out in the limit Jeμ ≪ NVpDi ≪ jNVpD0

ij,
which is realistic for typical NS conditions (see, e.g.,
Fig. 1 in Ref. [41]). We also set D0

i ¼ −πℏni, as argued
in Refs. [24,44]. Then the transport coefficients have, up to
the first order in Jeμ=jNVpD0

ij ¼ ðcJeμÞ=ðepniBÞ and
Di=jD0

ij ¼ Di=ðπℏniÞ, the following form23:

Ak
pp ¼ 0; ðB11Þ

A⊥
pp ¼ epBðDe þDμÞ

πℏc2T
; ðB12Þ

AH
pp ¼ −

epnpB

c2T
; ðB13Þ

Bk
pk ¼ 0; ðB14Þ

B⊥
pe ¼

μμðμμnμDe − μeneDμÞ½neDμðμ2en2e þ 2μ2enenμ þ μ2μn2μÞ þ nμDeðμ2en2e þ 2μ2μnenμ þ μ2μn2μÞ�
π2ℏ2cnenμðne þ nμÞðμ2ene þ μ2μnμÞ2

þ μμJeμðμene þ μμnμÞ2ðμμnμDe − μeneDμÞ
πℏepBnenμðμ2ene þ μ2μnμÞ2

≈ 0; ðB15Þ

B⊥
pμ ¼ −

μe
μμ

B⊥
pe; ðB16Þ

BH
pe¼

μμðμeneDμ−μμnμDeÞ
πℏcðμ2eneþμ2μnμÞ

; BH
pμ¼−

μe
μμ

BH
pe; ðB17Þ

Ckip ¼ 0; C⊥ip ¼ −B⊥
pi; CHip ¼ −BH

pi; ðB18Þ

Dk
eμ ¼ Dk

μe ¼ −
μeμμn2en2μT

cJeμðμene þ μμnμÞ2
; ðB19Þ

D⊥
eμ ¼ D⊥

μe ¼ −
μeμμTðμ2en2eDμ þ μ2μn2μDeÞ
πℏepBðμ2ene þ μ2μnμÞ2

−
cμeμμTJeμðμene þ μμnμÞ2

e2pB2ðμ2ene þ μ2μnμÞ2

≈ −
μeμμTðμ2en2eDμ þ μ2μn2μDeÞ
πℏepBðμ2ene þ μ2μnμÞ2

; ðB20Þ

DH
eμ ¼ DH

μe ¼
μeμμnenμT

epBðμ2ene þ μ2μnμÞ
; ðB21Þ

Dk;⊥;H
ee ¼ −

μμ
μe

Dk;⊥;H
eμ ; Dk;⊥;H

μμ ¼ −
μe
μμ

Dk;⊥;H
eμ : ðB22Þ

A number of comments regarding these equations are
listed below.
(1) The coefficientsAk

pp and B
k
pi vanish since there is no

force acting along the vortex line in Eq. (B1).

23Note that the expression (B11) for B⊥
pe is of the second order

in the small parameter ðDi=D0
iÞ; we write it down to emphasize

that, generally, it does not vanish. We also point out that we retain
the (small) second term ∝ Jeμ in the intermediate equality in
(B20), because only this term survives in the expression for D⊥

eμ
in the nonsuperfluid MHD of DGS20.
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(2) AH
pp andA⊥

pp do not depend, in the leading order, on
the electron-muon momentum transfer rate Jeμ;
these coefficients are proportional to, respectively,
the mutual friction parameters αp and βp of non-
diffusive hydrodynamics [26] [cf. Eq. (95)]. Note,
however, that generally all coefficients, except for

Dk
ik, depend on both Jeμ and Di.

(3) The cross-coefficient BH
pi, which describes force

acting on a vortex due to gradients of chemical
potentials ∇μi, differs from zero. This interference of
diffusion and mutual friction has the following
physical meaning: diffusion affects particle veloc-
ities Vi which, in turn, affect the vortex motion via
the mutual friction mechanism (and vice versa).

(4) The dissipative cross-coefficient B⊥
pi, generally,

differs from zero but vanishes in the first order in
Jeμ=jNVpD0

ij ¼ ðcJeμÞ=ðepniBÞ and Di=jD0
ij ¼

Di=ðπℏniÞ and, thus, can be neglected.
(5) The expression forDk

eμ, which describes diffusion of
electrons and muons along the vortex lines, has
exactly the same form as in the nonsuperfluid matter
(see DGS20), since the only force acting along the
vortex line is the electron-muon friction.

(6) In contrast, the dominant first term in D⊥
eμ depends

on the mutual friction parameters De and Dμ. This
means that, for electrons and muons moving across

the vortex array, the momentum exchange between
particles is mediated mainly by vortices [via the
friction force; see the first term in Eq. (B2)], instead
of direct electron-muon interaction [the term
JeμðVe − VμÞ in the Euler equation (B10)].

(7) The (nondissipative) coefficient DH
eμ has, in the

leading order, the same form as for nonsuperfluid
matter. This is not surprising, since this coefficient
describes the Lorentz force acting on electrons
and muons.

Remark 1.—If we consider another limit and neglect the
friction force between flux tubes and electrons or muons,
i.e., set De ¼ Dμ ¼ 0 (without assuming that Jeμ is small),
then diffusion and mutual friction are completely

decoupled, Bμν
pi ¼ Cμν

pi ¼ 0. In addition, Ak
pp and A⊥

pp also

vanish, Ak
pp ¼ A⊥

pp ¼ 0, so that the force on a vortex is
described only by nondissipative coefficient AH

pp ¼
−epnpB=ðc2TÞ. In turn, the generalized diffusion coeffi-

cients Dk
ik, D⊥

ik, and DH
ik in this approximation take

exactly the same form as in the nonsuperfluid matter
(see DGS20).
In conclusion, we note that the presented scheme for

calculating the phenomenological transport coefficients can
readily be generalized to arbitrary temperatures and particle
compositions.
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