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We investigate the f-mode oscillation of the dark matter admixed hyperon star within the relativistic
Cowling approximation. The macroscopic properties are calculated with the relativistic mean-field
equation of states by assuming that the dark matter particles are inside the star. The f-mode oscillation
frequencies (only for l ¼ 2) are calculated with four different neutron star equation of states. We also check
the effects of hyperons/dark matter and hyperons with dark matter equation of states on the f-mode
oscillations varying with different astrophysical quantities such as mass (M), radius (R), compactness
(M=R), surface red-shift (Zs), average density (ρ̄), and dimensionless tidal deformability (Λ) of the neutron
star. Significant changes have been seen in the f-mode frequencies with and without hyperons/dark matter
or hyperonsþ dark matter. Substantial correlations are observed between canonical frequencies and
Λ (f1.4 − Λ1.4) and maximum frequencies and canonical Λ (fmax − Λ1.4).
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I. INTRODUCTION

The gravitational waves (GWs) coming from the coa-
lescence of binary neutron star (BNS) merger events
decipher enough information that they provide strong
constraints on the equation of state (EOS) and the internal
composition of the neutron star (NS) [1–11]. The detected
GWs, including the electromagnetic counterparts open
multimessenger astronomy which helps us to study the
properties of compact objects in a different way. Until now,
only two BNS mergers were detected; GW170817 [1] and
GW190425 [12]. In the future, terrestrial detectors such
as LIGO/Virgo/KAGRA may detect more BNS merger
events, which can constrain the properties of the compact
stars more tightly. In addition to this, the latest massive
pulsar observation, PSR J0640þ 6620 [13], and the
simultaneous observation of mass-radius (M − R) by
Neutron star Interior Composition Explorer (NICER) put
a limit on the M − R profile of the NS [14,15].
Furthermore, the GWs coming from the oscillation of the

compact objects is another way to explore the stars’ micro
and macroscopic properties. This is because the oscillation
frequency mainly depends on the internal structure of the
star. In Refs. [16,17], they claimed that one could predict
the M and R of the NS with the observation of such
frequency as an inverse problem. The formalism used to
describe the GWs from the oscillation of the NS has been
well established [16–18]. NS oscillates with different
quasinormal modes, mainly classified according to the

restoring force that brings the system to equilibrium
positions. Such modes are f-mode, p-mode, w-mode,
etc., which provide us with various information about
the internal structure and EOSs of the NS. Sotani et al.
[19] claimed that one could find the signature of hadron-
quark phase transitions with the observation of f- and
g-mode frequencies. In Ref. [20], they found that if a
compact object emits GWs in the range 0 kHz–1 kHz, it
should be elucidated as hybrid stars, and if the range of the
frequency is more than 7 kHz, it should be interpreted as
strange stars. Similar type work by Igancio et al. [21],
proposed that, if the frequencies of g-modes are in the limit
between 1 kHz and 1.5 kHz, it should be interpreted as
evidence of sharp hadron-quark phase transitions. Hence,
we conclude that there is still uncertainty on different mode
frequencies because the calculations are model dependent.
Thus, for the first time, we calculate the f-mode frequency
of the dark matter (DM) admixed NS, including hyperons.
Different observations such as Galaxy rotation curves,

velocity dispersions, galaxy clusters, gravitational lensing,
cosmic microwave background, etc., give sufficient hints
about the presence of DM in the Galaxies.1 If the DM
exists, then it must be accreted inside compact objects like
NS. The accretion process may be different from one
astrophysical object to other, but the amount of accreted
DM particles depend on the nature and age of the compact
objects [22]. In this case, we take weakly interacting
massive particles (WIMPs) as a DM candidate, which
are already accreted inside the NS [23–28]. After accretion,
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the DM particles interact with baryons which are discussed
in Sec. II A 2. With the addition of DM, the EOS of the NS
becomes softer and M, R, and dimensionless tidal deform-
ability (Λ) decrease [25–29]. Different phenomena such as
the cooling rate become faster for DM admixed NS [30]. If
the self-gravitating DM particle has a mass greater than the
Chandrasekhar limit, it forms a mini black hole and
destroys the NS [22].
It is well known that hyperons appear in the NS interior

at densities around 2 − 3ρ0. The presence of the hyperons
makes the EOS softer, and as a consequence, the maximum
mass is substantially reduced to be incompatible with
observation. In addition to DM, we also include hyperons
inside the NS. Hyperons appear at the higher-density region
or core of the NS. The study of hyperons appearances
inside the NS is not a brand-new idea; it is fast and
was introduced by Cameron et al. [31]. According to
Ambartsumyan and Saakyan [32], the core of a massive NS
consists of an inner hyperon core and an outer nucleon
shell. A detailed discussion on hyperons productions and
interactions with mesons and their coupling parameters
has been studied in Refs. [33–49]. Although different
approaches have been tried to solve the issues such as
(i) potential depths for each hyperon, (ii) coupling between
hyperons-mesons, and (iii) hyperon puzzles, these are still
open problems. This is because only some hypernuclei
have been discovered in the terrestrial laboratory [50–53].
An increased number of hypernuclei will help us to
constrain the coupling parameters by fitting the potential
depth. In this study, the hyperons-scalar mesons coupling
constants are calculated by fitting with hyperon potential
depth, while for hyperons-vector mesons, the SU(6)
method is used as mentioned in Refs. [45,54,55].
Another efficient approach to fix the hyperons-mesons
coupling parameters is the SU(3) group theory method as
given in Refs. [45,46,56,57]. The coupling constants for
both scalar and vector mesons are constrained using the
SU(3) method. One can calculate nuclear matter (NM) and
NS properties by using both SU(3) and SU(6) methods and
compare these methods as is done in Refs. [45,46]. We
calculate the EOS for DM admixed hyperon star, which is
the main ingredient to find the M, R, Λ, and f-mode
frequency.
We assume the DM particles interact with the baryon

octet by the Higgs exchange. In our previous studies
[25–28], we calculated the NS properties by considering
that the DM only interacts with nucleons via the Higgs
exchange. Hence, the total Lagrangian is the addition of NS
and DM. In addition to this, we include the hyperons part
with the NS Lagrangian (see Sec. II A 1). Until now,
hyperon-meson and hyperon-DM coupling constants are
uncertain. In Ref. [58], they tried to solve the hyperon

puzzle using DM. They considered different DMmasses by
changing the DM interaction strength parameter and con-
strained the whole parameter space with recently observed
NS mass. Although they have parametrized the DM mass
and interaction strength, they didn’t give any satisfactory
answers to hyperon-meson coupling.We hope future direct/
indirect DM detection experiments such as DAMA,
CDMS, GEDEON, LUX, PANDA, and XENON may
constrain the baryon-Higgs form factor. In this case, to
solve the f-mode frequency for the DM admixed hyperon
star, we take the values of the DM-Higgs coupling, and the
baryon-Higgs form factors are the same compared to our
previous calculations [25–28].
In the present study, we calculate the f-mode oscillation

of the DM admixed hyperon star with different macro-
scopic observables by employing the relativistic Cowling
approximation. The calculations are done for the l ¼ 2 case
(quadrupole). In the future, we may extend our calculations
to find different mode frequencies such as p, g, and
w-modes with higher values of l in the full general relativity
(GR) method as done in Refs. [16,18,59]. The paper is
organized as follows: The formalism for the calculations of
EOSs and M − R with the addition of DMþ hyperons are
given in Sec. II. Section II A corresponds to relativistic
mean-field (RMF) formalism. Section II B is devoted to the
M − R profile, and the f-mode formalism is given in
Sec. II C. In Sec. III, we consistently present our numerical
results. Finally, the summary and conclusions are enumer-
ated in Sec. IV.

II. FORMALISM

A. Calculation of EOSs of the NS

1. Interaction between baryons-mesons
and mesons-mesons

In this section we adopt the RMF model to calculate the
NS properties. In the RMF model, the nucleons interact
with each other by exchanging different mesons such as
isoscalar-scalar (σ), isoscalar-vector (ω), isovector-vector
(ρ), isovector-scalar (δ) [60–63], and the hyperons-hyperons
interaction is mediated by the two additional strange mesons,
strange scalar (σ�) and strange vector (ϕ) [48,64,65]. Hence,
the Lagrangian of the system includes the interaction from
mesons-nucleons, mesons-hyperons and their self- and
cross-couplings. The extended RMF (E-RMF) model
include the possible significant interactions between mesons
up to the fourth order [25–28,66–69]. We also add the
leptons (e− and μ−) contribution to the E-RMF Lagrangian
because they are required to maintain both the β-equilibrium
and charge neutrality conditions which provide stability to
the NS. Therefore, the E-RMF Lagrangian of the NS system
is given as [26,27,48,68]
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and

Ll ¼
X
l

ψ̄ lðiγμ∂μ −mlÞψ l: ð3Þ

The mB represent the masses of the baryons.mσ ,mω,mρ,mδ,mσ� , and mϕ are the masses and gσB , gωB
, gρB , gδB , gσ�B , and gϕB

are the coupling constants for the σ, ω, ρ, δ, σ�, and ϕ mesons respectively. κ3 (or κ4) and ζ0 are the self-interacting coupling
constants of the σ and ω mesons respectively. η1, η2, ηρ, and Λω are the cross-coupling constants as indicated in the

Lagrangian. The quantities Fμν, R⃗μν, andΦμν are the field-strength tensors for the ω, ρ, and ϕ mesons respectively, defined as
Fμν ¼ ∂μων − ∂νωμ, R⃗μν ¼ ∂μρ⃗ν − ∂νρ⃗μ, and Φμν ¼ ∂μϕν − ∂νϕμ. The τ⃗B is the isospin operator, which carries the isospin
component of the baryons. ml represent the masses of leptons. Y represents different hyperons such as Λ, Σþ;−;0, and Ξþ;−.
The equations of motion correspond to different mesons are calculated in the Refs. [48,67,68] within the mean-field

approximations. By applying the stress-tensor technique, the energy density and pressure of the system can be calculated
as [48,67,68]
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where γB and γl are the spin-degeneracy factor for baryons and leptons, respectively. kFB
and kFl

are the baryons and leptons
Fermi momentum, respectively. m�

B is the effective masses of the baryons, which is written by

m�
B ¼ mB − gσBσ0 − gδBτBδ0 − gσ�Bσ

�: ð6Þ

The last term in Eq. (6) doesn’t contribute to the m�
B. This is because the value of gσ�B and gϕB

is zero for the nucleons.
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Coupling constants for nucleons-mesons and mesons-
mesons.—To calculate the EOS for the NM and NS
systems, one must know the coupling constants. Many
RMF parameter sets have been developed, including
different types of interaction between nucleons-mesons
and mesons-mesons (both self and cross). Therefore, to
study how the coupling parameters affect both NM and NS
properties, we take four different types of parameter sets
such as NL3 [70], IOPB-I [67], FSUGarnet [71], and G3
[66]. We tabulate the masses of different mesons and
coupling constants in Table I for these parameter sets.
The NM properties corresponding to the four parameter
sets are also reported in Table 3 of the Ref. [67]. From
Table 3 of Ref. [67] we notice that all three parameter sets
reproduce the NM properties very well except NL3. For
example, the value of incompressibility, K ¼ 271.38 MeV,
is higher than other sets. This is because NL3 is a stiff EOS
as compared to G3, which is a softer EOS.
By spanning soft to stiff EOSs, one can have a better

knowledge of the DM impacts on the NS properties.
Although the incompressibility of NL3 is quite high as
compared to other considered sets, the predicted properties
of the finite nuclei by NL3 are as good as the other sets.
In case of G3, it is one of the latest E-RMF parameter sets,
which includes almost all significant possible interaction
terms between mesons and nucleons (either self or cross)
[66]. Also, G3 predicts a NS mass around 2 M⊙, and it
satisfies NICER data as well. By these forces, we calculate
the f-mode oscillations of the NS. The EOSs for these sets
are shown in Fig. 1 to get a clear picture of their variation
with energy density.

Coupling constants for hyperons-mesons.—At present, we
do not know exactly how the hyperons interact with each
other as compared to the nucleons-nucleons interaction
[72], because of the limitation of the hypernuclei data.
Therefore, fixing the couplings between hyperons-mesons
is quite difficult. In general, the SU(6) symmetry group is
used to fix the couplings between hyperons and vector
mesons, while the couplings with scalar mesons are fixed
through the hyperon potential depth [33,46,48,49]. The
potential depth of the Λ-hyperon (UΛ) is known to be
−28 MeV [34,36,37,39,54,73] but the Σ and Ξ potentials
(UΣ, UΞ) provide a large uncertainty and not even the signs

of the potentials are well defined [37,74]. But some
hypernuclear experiments show that the UΣ and UΞ
potential depth close to þ30 MeV and −18 MeV respec-
tively [40–44].
The hyperon potential depth is defined as [75]

UY ¼ −gσNxσYσ0 þ gωN
xωY

ω0; ð7Þ

where xσY and xωY
is defined as gσY =gσN and gωY

=gωN
,

respectively. For symmetric NM the quantities gσY =gσN and
gωY

=gωN
are given in Refs. [48,75]

gσNσ0 ¼ M −M� ¼ M

�
1 −

M�

M

�
;

gωN
ω0 ¼

�
gωN

mω

�
2

ρ0; ð8Þ

Rewriting Eq. (7) by inserting Eq. (8), we get

UY ¼ M

�
M�

M
− 1

�
xσY þ

�
gωN

mω

�
2

ρ0xωY
: ð9Þ

In this case, we choose the values of UΛ ¼ −28 MeV,
UΣ ¼ þ30 MeV, and UΞ ¼ −18 MeV. To get the
desired potential one has to choose the values of xσY
and xωY

for a fixed parameter set. For example, in the
NL3 case, we fix xσΛ ¼ 0.8, and the value of xωΛ

is
found to be 0.8982. Similarly for the IOPB-I set, we
fix xσΛ ¼ 0.8 which gives xωΛ

¼ 0.8338. For Σ and
Ξ-hyperons the values are xσΣ ¼ 0.7, xωΣ

¼ 0.8932,
xσΞ ¼ 0.8, and xωΞ

¼ 0.8639 for the IOPB-I set.
Hence, one can get different combinations to fit the
potential depth. The hyperon interactions with ρ-mesons
are fitted according to the SU(6) symmetry method
[37,74] and their couplings with hyperons are given
as: xρΛ ¼ 0.0, xρΣ ¼ 2.0, and xρΞ ¼ 1.0.
The coupling constants for hyperons and σ�-mesons are

xσ�Λ ¼ 0.69, xσ�Σ ¼ 0.69, and xσ�Ξ ¼ 1.25. Similarly, for
hyperons and ϕ-mesons the coupling constants are

xϕΛ ¼ −
ffiffi
2

p
3
gωN

, xϕΣ ¼ −
ffiffi
2

p
3
gωN

, and xϕΞ ¼ − 2
ffiffi
2

p
3
gωN

respectively for Λ, Σ, and Ξ-hyperons [48]. In this
calculation, we neglect the σ� and ϕ mesons-nucleons
interaction for numerical simplicity.

TABLE I. The ratio of masses of different mesons with nucleon mass (M ¼ 939 MeV), nucleons-mesons coupling constants, self and
cross-couplings between mesons are tabulated for considered parameter sets NL3 [70], IOPB-I [67], FSUGarnet [71], and G3 [66]. All
coupling constants are dimensionless.

Model mσ
M

mω
M

mρ

M
mδ
M

gσN
4π

gωN
4π

gρN
4π

gδN
4π

κ3 κ4 ζ0 η1 η2 ηρ Λω

NL3 0.541 0.833 0.812 0.000 0.813 1.024 0.712 0.000 1.465 −5.688 0.000 0.000 0.000 0.000 0.000
IOPB-I 0.533 0.833 0.812 0.000 0.827 1.062 0.885 0.000 1.496 −2.932 3.103 0.000 0.000 0.000 0.024
FSUGarnet 0.529 0.833 0.812 0.000 0.837 1.091 1.105 0.000 1.368 −1.397 4.410 0.000 0.000 0.000 0.043
G3 0.559 0.832 0.820 1.043 0.782 0.923 0.962 0.160 2.606 þ1.694 1.010 0.424 0.114 0.645 0.038
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2. Interaction between baryons-dark matter

When NS evolves in the Universe, the DM particles are
accreted inside it due to its huge gravitational potential
and immense baryonic density. In this work, we assume
that the DM particles are already inside the NS. With this
assumption, we model the interaction Lagrangian for DM
and baryons. In this case, the neutralino is the DM particle
having a mass of 200 GeV as considered in our earlier
works [25,26].
The DM particles interact with baryons by exchanging

standard model (SM) Higgs. The interacting Lagrangian is
given in the form [23–29]

LDM ¼ χ̄½iγμ∂μ −Mχ þ yh�χ þ 1

2
∂μh∂μh

−
1

2
M2

hh
2 þ

X
B

fB
mB

v
ψ̄BhψB; ð10Þ

ψB and χ are the baryons and DM wave functions
respectively. The parameter y is the DM-Higgs coupling,
fB is the baryons-Higgs form factor, and v is the vacuum
expectation value of Higgs field. The values of y and v
are 0.07 and 246 GeV, respectively, taken from the
Refs. [25,26]. The value of fBð¼ 0.35Þ for all the baryons
is taken to be same because we don’t know the form factor
for hyperons except for nucleons with Higgs.
We calculate the spin-independent scattering cross

section of the nucleons with DM using the relation [76]

σSI ¼
y2f2M2

4π

μr
v2M2

h

; ð11Þ

where μr is the reduced mass. The calculated cross sections
forMχ ¼ 200 GeV is found to be 9.70 × 10−46 cm2, which
is very consistent with XENON-1T [77], PandaX-II [78],
PandaX-4T [79], and LUX [80] within 90% confidence
level. The LHC had also given a limit on the WIMP-
nucleon scattering cross section in the range from 10−40 to
10−50 cm2 [81]. For hyperons cases, we find the σSI are
1.37, 1.56, 1.91 × 10−45 cm2 for Λ, Σ, and Ξ respectively.
Thus our model also satisfies the LHC limit. Therefore, in
the present calculations, we constrained the value of y from
both the direct detection experiments and the LHC results.
The nucleon-Higgs form factor (f) has been calculated in

Ref. [81] using the implication of both lattice QCD [82] and
MILC results [83] whose value is 0.33þ0.30

−0.07 [84]. The given
value of f (¼ 0.35) in this calculation lies in the region.
Thus, we also constrain the values of f with the avail-
able data.
The Euler-Lagrange equation of motion for DM particles

(χ) and Higgs bosons (h) can be derived from the
Lagrangian in Eq. (10) as

ðiγμ∂μ −Mχ þ yhÞχ ¼ 0;

∂μ∂μhþM2
hh ¼ yχ̄χ þ

X
B

fBmB

v
ψBψB; ð12Þ

respectively. Applying the RMF approximation, we get
[24]

h0 ¼
yhχ̄χi þP

Bf
mB
v hψBψBi

M2
h

;

ðiγμ∂μ −M⋆
χ Þχ ¼ 0; ð13Þ

where M⋆
χ is the dark matter effective mass and can be

given as

M⋆
χ ¼ Mχ − yh0: ð14Þ

The dark matter scalar density (ρDMs ) is

ρDMs ¼ hχ̄χi ¼ γ

2π2

Z
kDMf

0

dk
M⋆

χffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M⋆2

χ þ k2
q ; ð15Þ

where kDMf is the Fermi momentum for dark matter. γ is the
spin degeneracy factor which has value of 2 for the neutron
and proton, individually.
Assuming the average number density of nucleons (nb) is

103 times larger than the average dark matter density (nDM)
implies that the ratio of the dark matter and the neutron star
mass to be ∼ 1

6
[23]. The nuclear saturation density

n0 ∼ 0.16 fm−3, therefore, the DM number density becomes
nDM ∼ 10−3n0 ∼ 0.16 × 10−3 fm−3. Using the nDM, the kDMf
is obtained from the equation kDMf ¼ ð3π2nDMÞ1=3. Hence
the value of kDMf is ∼0.033 GeV. Therefore, in our case, we
vary the DM momenta from 0 to 0.06 GeV. For the
IOPB-Iþ DM3

2 case, the predicted mass and radius is
consistent with Cromartie et al. [13] and NICER [14,15,85]
data respectively (see Fig. 2). Hence, we take IOPB-I EOS
with DM momentum 0.03 GeV in this calculation.
The energy density (EDM) and pressure (PDM) for NS

with DM can be obtained by solving Eq. (10)

EDM ¼ 1

π2

Z
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0

k2dk
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM⋆

χ Þ2
q

þ 1

2
M2

hh
2
0; ð16Þ

and

PDM ¼ 1

3π2

Z
kDMf

0

k4dkffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þ ðM⋆

χ Þ2
q −

1

2
M2

hh
2
0; ð17Þ

2DM3 means DM Fermi momentum kDMf ¼ 0.03 GeV.
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whereMh is the mass of the Higgs equal to 125 GeVand h0
is the Higgs field calculated by applying the mean-field
approximation [24]. The contribution of the Higgs field in
both energy density and pressure is minimal.
Therefore, the total energy density (E) and pressure (P)

for the DM admixed hyperonic NS are as follows:

E ¼ ENS þ EDM; and P ¼ PNS þ PDM: ð18Þ

In Fig. 1 we plot P with E for four considered parameter
sets. It is clear from the figure that the NL3 is the stiffest
EOS as compared to others, while G3 is the softer EOS.
On the right side of the plot, we show the EOS for
the IOPB-I parameter set for nucleons (IOPB-I), nucleons
with DM (IOPB-Iþ DM3), nucleons with hyperons
(IOPB-Iþ Y), and nucleons with both hyperons and DM
(IOPB-Iþ Yþ DM3). The EOS becomes softer with the
addition of DM/hyperons or DMþ hyperons, but the
softness is more for DMþ hyperons (dashed cyan line)
than others, which is clearly visible in the figure.
In the presence of hyperons/DM particles, the EOS of the

neutron star becomes softer. This is because every system
would like to minimize its energy. As the density increases,
the Fermi momenta or the Fermi energy increases. Because
the nucleons are fermions they need to be placed in a higher
orbit with increasing density. Also, it is well known that the
density is proportional to the cube of the Fermi momenta.
At sufficiently high density, the energy of the nucleon
increases; this is the rest mass energy plus the kinetic

energy or E ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2f þM2

q
. When this energy exceeds the

mass of the hyperons/kaons/DM, the nucleons decay to
these particles. In other words, it is economical energy wise
for the system to have the hyperons/kaons/DM in the

lower-energy states rather than nucleons at higher Fermi
energy and at higher density, though the hyperons are
heavier than the nucleons. In other words, the nucleons are
replaced by hyperons/kaons/DM depending on the sys-
tem’s density. As a result, a fraction of the gravitational
mass is converted to kinetic energy and decreases the
gravitational mass. With these EOSs, we calculate the
M − R profiles and the f-mode frequencies of the NS.

B. NS macroscopic properties

The metric for a spherically symmetric and nonrotating
relativistic NS is expressed as

ds2 ¼ −e2ΦðrÞdt2 þ e2ΛðrÞdr2 þ r2dθ2 þ r2sin2θdϕ2;

ð19Þ
where ΦðrÞ and ΛðrÞ are the metric functions. The
spherical symmetric solutions are given by Tolman-
Oppenheimer-Volkoff coupled equations [88,89] as
follows:

dmðrÞ
dr

¼ 4πr2EðrÞ;
dPðrÞ
dr

¼ −½PðrÞ þ EðrÞ� dΦ
dr

;

dΦðrÞ
dr

¼ mðrÞ þ 4πr3PðrÞ
r½r − 2mðrÞ� ; ð20Þ

wheremðrÞ represents the enclosing mass at some radius r.
The hydrostatic equations are solved for a given central
density which gives the mass and radius of the NS.
We plot theM − R relations for the EOSs on the left side

of Fig. 2. We observe that the NL3 EOS predicts the
maximum mass of around 2.77 M⊙ and radius ∼14 km.
Since it is a stiffer EOS compared to others, its maximum
mass is more than the other three sets. We put the maximum
mass constraints measured from the different pulsars such
as PSR J0740þ 6620 [13], and PSR J0348þ 0432 [86].
Except for NL3, the other three EOSs can support the
maximum NS mass 2.0 M⊙, which are compatible with
the precise measured NS masses by Cromartie et al.
(2.14þ0.10

−0.09 M⊙ with 68.3% credibility interval) [13] and
Antoniadis et al. (2.01� 0.04 M⊙) [86]. The simultaneous
measurement of mass and radius by the NICER give
the M ¼ 1.44þ0.15

−0.14 M⊙ (M ¼ 1.34þ0.15
−0.16 M⊙) and R ¼

13.02þ1.24
−1.06 km (R ¼ 12.71þ1.14

−1.19 km) respectively from the
analysis of PSR J0030þ 0451 by Miller et al. (Riley et al.)
[14,15]. (We called it old NICER data.) We put the old
NICER data with two green boxes from the two different
analyses [14,15]. The predicted radius by all the EOSs are
compatible with old NICER data as shown in Fig. 2. On the
left side of Fig. 2, we noticed that IOPB-I and IOPB-Iþ
DM3 could be able to produce the maximum mass
constraints. The maximum mass and radius corresponding

FIG. 1. Left: EOSs for different RMF parameter sets. Right:
EOSs are for IOPB-I with yellow line (only nucleons), IOP-B-Iþ
DM3 with blue dashed line (nucleonsþ DM3), IOPB-Iþ Y with
purple dashed line (nucleonsþ hyperons), IOPB-Iþ Yþ DM
with dashed cyan line (nucleonsþ hyperonsþ DM3).
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to IOPB-I EOS are 2.15 M⊙ and 11.75 km, respectively.
The maximum masses and radii are (2.05 M⊙, 11.02 km),
(1.70 M⊙, 11.39 km), and (1.61 M⊙, 10.40 km) for
IOPB-Iþ DM3, IOPB-Iþ Y, and IOPB-Iþ Yþ DM3,
respectively. These EOSs satisfy the old NICER data.
Recently, Miller et al. put another radius constraint on both
for the canonical (R1.4 ¼ 12.45� 0.65 km) and maximum
NS (R2.08 ¼ 12.35� 0.75 km) from the NICER and X-ray
Multi-Mirror Newton data are termed as new NICER data
[85]. We depicted the new NICER data as a horizontal blue
line in Fig. 2. All the considered EOSs satisfy the new
NICER data except NL3 and IOPB-Iþ Y sets.
Recently, the PREX-2 experiment has given the

updated neutron skin thickness of 208Pb as Rskin ¼
0.284� 0.071 fm, within an 1% error [90]. Based on this
data, Reed et al. inferred the symmetry energy and slope
parameter as J ¼ 38.1� 4.7 MeV and L ¼ 106� 37 MeV,
respectively, with the help of limited relativistic mean-field
forces (using PREX-2 data) [87]. These values of J andL are
large when compared to the old PREX data (PREX-1). The
latest J and L can be reproduced mostly from the stiff
equation of state. That means the PREX-2 result allows a
stiff equation of state. Reed et al. also predicted the radius for
canonical NS as 13.25 km < R1.4 < 14.26 km. In this case,
only NL3 satisfies the Reed et al. data as shown in Fig. 2.
Recently, Miller et al. also gave newNICER constraints both
for canonical and maximummass NS from the x-ray study of
PSR J0030þ 0451 [85]. The improved radius estimate for a
canonical star is 11.8 km < R1.4 < 13.1 km. This new
NICER constraint allows a narrow radius range as compared

to old NICER data (11.52 km < R1.4 < 14.26 km). From
the radii constraint, we find that the new NICER data allows
a narrow radius range contrary to a large range of PREX-2
and the old NICER data, leaving us an inconclusive
determination of the NS radius.

C. Calculation of f -mode oscillation of the NS

NS oscillates when it is disturbed by an external/internal
event. Hence, it emits gravitational waves with different
modes of frequencies. The most important modes are
fundamental mode (f), first and second pressure modes
(p), and the first gravitational mode (g) [16,21,65]. Almost
all the energy of the NS is emitted as GW radiation with
these modes. To study different modes of oscillations, one
has to solve perturbed fluid equations in the vicinity of GR.
Throne and Campollataro [91] first calculated the nonradial
oscillation of NS in the framework of general relativity.
Lindblom and Detweiler gave the first integrated numerical
solution of the NS [18]. To solve the nonradial oscillations,
one can also use the Cowling approximation, which is
simpler than the Lindblom and Detweiler method. In
Cowling approximations, the metric perturbations are
neglected [92]. The obtained frequencies within the
Cowling approximations differ by 10–30% as compared
to the fully-linearized equations of GR.
In this work, we want to calculate the nonradial

oscillations of the NS using the Cowling approximations
for a DM admixed hyperon star. To find the different
oscillation mode frequencies, one has to solve the follow-
ing coupled differential equations [19–21,65]

dWðrÞ
dr

¼ dE
dP

�
ω2r2eΛðrÞ−2ΦðrÞVðrÞ þ dΦðrÞ

dr
WðrÞ

�
;

− lðlþ 1ÞeΛðrÞVðrÞ
dVðrÞ
dr

¼ 2
dΦðrÞ
dr

VðrÞ − 1

r2
eΛðrÞWðrÞ: ð21Þ

The functions VðrÞ and WðrÞ along with frequency ω,
characterize the Lagrange displacement vector (η) associ-
ated with the perturbed fluid,

η ¼ 1

r2

�
e−ΛðrÞWðrÞ;−VðrÞ∂θ;−

VðrÞ
sin2θ

∂ϕ

�
Ylm; ð22Þ

where Ylm is the spherical harmonic which is function of θ
and ϕ. The solution of Eq. (21) with the fixed background
metric Eq. (19) near the origin will behave as

WðrÞ ¼ Brlþ1; VðrÞ ¼ −
B
l
rl; ð23Þ

where B is an arbitrary constant. At the surface of the star,
the perturbation pressure must vanish which provides
another boundary condition as follows:

FIG. 2. Left: M–R relations for four different RMF parameter
sets. Right: M–R relations for IOPB-I, IOPB-Iþ DM3,
IOPB-Iþ Y, and IOPB-Iþ Yþ DM3. The red and blue band
represents the masses of the massive pulsars observed by
Cromartie et al. [13] and Antoniadis et al. [86]. The old NICER
results are shown with two green boxes from two different
analyses [14,15]. The new NICER result is shown for a canonical
radius (blue horizontal line) given by Miller et al. [85]. The Reed
et al. radius range is also shown with a dark red line for the
canonical star [87].
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ω2eΛðRÞ−2ΦðRÞVðRÞ þ 1

R2

dΦðrÞ
dr

				
r¼R

WðRÞ ¼ 0: ð24Þ

After solving Eq. (21) with two boundary conditions
[Eqs. (23) and (24)], one can get the eigenfrequencies of
the NS. In this work, we solve the oscillation equations
[Eq. (21)] by using the shooting method with some initial
guess for ω2. The equations are integrated from the center
to the surface and try to match the surface boundary
conditions. After each integration, the initial guess of ω2

is corrected through the secant method to get the desired
precision which improves the initial guess.

III. RESULTS

In this section, we calculate the f-mode oscillation
frequencies as functions of M, compactness (C), average
density (ρ̄), surface red-shift (Zs), and Λ using the RMF
EOSs for DM admixed hyperon star. The EOSs correspond
to nucleons, and nucleonsþ DM3þ Y are given in
Sec. II A. The formalism for the calculation of the f-mode
oscillation frequencies is given in Sec. II C.

A. Calculation of f -mode frequency as functions
of different observables

The f-mode frequencies (only for l ¼ 2) with different
RMF EOSs are shown in Fig. 3. In addition to this, the
f-mode frequencies for IOPBþ DM3, IOPBþ Y, and
IOPB-Iþ Yþ DM are also shown in the middle panel
of the figure. To see the parametric dependence of either
DM/Y or DMþ Y, we repeat the calculations with
FSUGarnet as shown in the lower panel of Fig. 3.
The f-mode frequency corresponding to maximum mass

(fmax) for the four EOSs are shown in the upper panel of
Fig. 3. The fmax are 2.16, 2.32, 2.38, and 2.55 kHz for NL3,

IOPB-I, FSUGarnet, and G3, respectively. The fmax is
maximum for G3 and minimum for NL3, and are in-
between for IOPB-I, and FSUGarnet sets. This is because
G3 is softer, and NL3 is the stiffest EOS in our calculations.
In the middle panel of Fig. 3, we observe that there is a
negligible change of f-mode frequencies up to 1.3 M⊙ for
the IOPB-I case. There is no change in the f-mode
frequencies up to 1 M⊙ for FSUGarnet as shown in the
lower panel of Fig. 3. The change in the f-mode frequen-
cies is seen mainly at the core part. This is due to the
presence of hyperons and DM particles at the dense region
of the NS, which generally occurs in the central region. It is
well known that the EOS is model dependent, mostly at the
core region. Also, the appearance of hyperons/DM is not
possible in the lower-density region. The change in f-mode
frequency due to a hyperon/DM particle needs a minimum
mass of the neutron star, which is seen in Ref. [93].
Therefore, the change in the f-mode frequency varies with
force.
The f-mode frequencies differ considerably with force

parametrizations. The values of fmax are 2.32, 2.57, 2.58,
and 2.85 kHz for IOPB-I, IOPB-Iþ DM3, IOPB-Iþ Y,
and IOPB-Iþ Yþ DM3, respectively. The EOSs are softer
with the addition of either DM3/hyperons or DM3+hyperons
compared to the original IOPB-I EOS. Therefore, the fmax
value is more for IOPB-Iþ Yþ DM3 as compared to the
others. We tabulated the value of fmax and f1.4 for four
different RMF forces with different NS observables in
Table III. The mass variation of frequency changes within
interval 1.75–2.55 kHz for l ¼ 2, which is almost consistent
with Pradhan et al. [65] for the considered parameter sets.
For hyperons/DM3 and hyperons+DM3 cases, the frequency
range within the interval 1.8 kHz–2.85 kHz. This range is a
little higher as compared with the no hyperons/DM case.
The compactness of a star is defined as (C ¼ M=R),

where M and R are the mass and radius of the star [75,94].
Like C, another significant quantity is surface red-shift Zs
is defined as [75]

Zs ¼
1ffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2M
R

q − 1 ¼ 1ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2C

p − 1: ð25Þ

If we find the value of Zs, one can constrain the mass and
radius of the star. Until now, only one value of Zs ¼ 0.35 is
reported in Ref. [95] from the analysis of stacked bursts in
the low-mass x-ray binary EXO 0748-676, which is also
discarded by the subsequent observation [96].
We calculate C and Zs, which are shown in Figs. 4 and 5

with f-mode frequencies. We observed that the variation of
f-mode frequencies both for C and Zs looks almost
identical. This is because the Zs is a function of stellar
compactness. The numerical values of C and Zs corre-
sponding to both canonical and maximum mass NS are
given in Table III. In our case, we find the range ofCmax and
Zsmax

are 0.22–0.31 and 0.33–0.62 respectively for the

FIG. 3. Upper: f-mode frequencies as a function of mass for
four different RMF parameter sets. Middle: f-mode frequencies
for the IOPB-I set with DM3/hyperons and hyperonsþ DM3.
Lower: Same as middle one but for FSUGarnet.
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considered EOSs. The values of Cmax and Zsmax
decrease as

compared to only nucleonic EOSs.

The average density of a star is defined as ρ̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
M̄=R̄3

q
,

where M̄ ¼ M
1.4 M⊙

and R̄ ¼ R
10 km. We plot the f-mode

frequencies with the variation of ρ̄. On top of that, we
plot some empirical fit relations (see Table II) from
previous calculations [17,65,97] including our fitting
results.

B. Fitting formula

The relation between f-mode frequency as a function of
average density was first calculated by Andersson and
Kokkotas (AC) [16]. They got an empirical relation by
using some polytropic EOSs as follows:

fðkHzÞ ≈ 0.17þ 2.30

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
M

1.4 M⊙

��
10 km
R

�
3

s
: ð26Þ

This empirical relation is again modified by their
subsequent paper using some realistic EOSs [17], and is
given as

fðkHzÞ ≈ 0.78þ 1.635

ffiffiffiffiffiffi
M̄

R̄3

s
: ð27Þ

Later, these empirical relations were modified by Benhar,
Ferrari, and Gualtieri (BFG) [97] by using hybrid EOSs.
Recently, Pradhan and Chatterjee (PC) [65] wrote an
empirical relation using hyperonic EOSs. We tabulate
the coefficients of the empirical relations from different
analyses in Table II. We also find fitting relations (i) for
only nucleon EOSs (N) and (ii) for nucleon EOSs with

FIG. 4. Upper: f-mode frequencies as a function of
compactness are shown for four different RMF parameter sets.
Lower: f-mode frequencies for IOPB-I set with DM3/hyperons
and hyperonsþ DM3.

FIG. 5. Same as Fig. 4, but for f as a function of Zs.

FIG. 6. Upper: f-mode frequency as a function of average
density for four parameter sets. The dashed line with different
colors are the fitted relations taken from different analyses
including ours. Lower: The same relations but for nucleonic
EOSs along with DM3/Y and DM3þ Y.

TABLE II. Empirical relations, fðkHzÞ ¼ aþ b
ffiffiffiffi
M̄
R̄3

q
between

f-mode frequency and average density from different works for
l ¼ 2 mode, where a and b are fitting coefficients.

Different works a(kHz) b(kHz)

Our fit (N) 1.185 1.246
Our fit (Nþ Yþ DM) 1.256 1.311
AK fit 0.78 1.635
BFG fit 0.79 1.500
PC fit 1.075 1.412
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DM/Y and Yþ DM (Nþ Yþ DM) which are shown in
Fig. 6. The fitting coefficients a and b for different analyses
are given in Table II for comparison.
If we measure the f-mode frequency of a star, then one

can infer the mass and radius of the NS using the fit
relations, which can be used to constrain the NS EOS [16].
Some work has been investigated to find some universal
relations between the f-mode frequency and compactness,
or average density [16,17,59,97–99]. Thus, the fitting
relations are significant to constrain the NS macroscopic
properties.

C. Universal relations

Different correlations have been seen between different
modes, such as f, p, and g with compactness/average
density. All these relations are quite independent of the
EOSs. In Ref. [19], it was observed that the mass scaled
angular frequency (ωM) as a function of compactness was
found to be universal for the g-mode frequency. The same
type of correlation between ωM as function of compactness
for p- and w-modes have been proposed in Ref. [100], and
for f-modes see Ref. [59]. Thus, we want to check these
universal relations as a function of compactness as shown
in Figs. 7 and 8. We find a universal relation between ωM
and M=R. However, the correlation is a little weaker in the
case of ωR with M=R. The universal relations are given as

ωMðkHz kmÞ ¼ ai

�
M
R

�
− bi; ð28Þ

ωRðkHz kmÞ ¼ cj

�
M
R

�
þ dj; ð29Þ

where ai, bi, cj, and dj are the fitting coefficients in kHz
km. The value of i ¼ 1 is used for nucleon (N) and i ¼ 2
for Nþ Yþ DM3. The coefficients are a1 ¼ 190.447,
b1 ¼ 4.538, and a2 ¼ 190.475, b2 ¼ 2.984, for
ωM ∼M=R. The values of c1 ¼ 182.585, d1 ¼ 127.1,
and c2 ¼ 233.596, d2 ¼ 119.18, for ωR ∼M=R.
The tidal deformability is the most important quantity,

and gives important information about the NS EOSs. The
GW170817 event has put a limit on the tidal deform-
ability of the canonical NS, which is used to constrain the
EOS of neutron-rich matter at 2–3 times the nuclear
saturation densities [1,2]. Due to a strong dependence of
the tidal deformability with the radius (Λ ∼ R5), it can
put stringent constraints on the EOS. Several approaches
[3–11] have been tried to constrain the EOS on the
tidal deformability bound given by the GW170817.
The dimensionless tidal deformability Λ is defined as
[101–103]

Λ ¼ 2

3
k2C−5; ð30Þ

where k2 is the second Love number, which depends on
the internal structure, as well as the mass and the radius
of a star [69,101,102,104].
We calculate the f-mode frequencies as a function of Λ

for different RMF EOSs, including hyperons and DM as
shown Fig. 9. The value ofΛ decreases when one goes from
stiff to soft EOSs and the corresponding f-mode frequen-
cies increase contrary to Λ. The numerical values of Λ1.4
are given in Table III for different EOSs. The GW170817
event puts constraints on Λ1.4 ¼ 190þ390

−120 [2]. In Ref. [59],
they put a limit on the value of the f-mode frequencies for
1.4 M⊙ (which are 1.67 kHz–2.18 kHz) by combining two
constraints; the EOS parameter space allowed by terrestrial
nuclear experiments and the tidal deformability data from
GW170817. Our predicted results of Λ are consistent with
Wen et al. [59], except for the case of IOPB-Iþ Yþ DM3.

FIG. 7. Upper: Angular frequencies (ω ¼ 2πf) scaled by mass
(ωM) are shown for four different RMF parameter sets. Lower:
ωM for only IOPB-I with yellow line, IOPB-Iþ DM3 with blue
dashed line, IOPB-Iþ Y with purple dashed line, IOPB-Iþ Yþ
DM with cyan dashed line.

FIG. 8. Same as Fig. 7, but for ωR with M=R.
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More NSmergers are expected to be measured in the future,
which may constrain the f-mode frequency more tightly.
In Fig. 10, we plot the values of fmax with different DM

Fermi momenta. The f-mode frequencies increase with
increasing kDMf . The range of fmax is 2.3 kHz–2.4 kHz
corresponds to kDMf ¼0.00−0.025GeV; after that it
increases with more proportion beyond kDMf ¼0.03GeV.
The color bar represents the maximum masses (Mmax) of
the NS for different kDMf . The area of Mmax at lower kDMf
(green color) is found to be larger as compared to the higher
kDMf and the area slightly reduces from the lower kDMf to
the higher one. This is because the slight increase of
DM percentage reduces the value Mmax a little bit. When
we increases the DM percentage more than 0.03 GeV,
the maximum mass reduces a lot. For example, for
kDMf ¼ 0.00, 0.01, and 0.02 GeV, the values of Mmax are
2.149, 2.146, and 2.119 M⊙ respectively. If we increase
the DM Fermi momenta kDMf ¼ 0.03, 0.04, 0.05, and

0.06 GeV, the values of Mmax are 2.051, 1.938, 1.788,
and 1.614 M⊙ respectively.
We also find the correlations between f1.4–Λ1.4, and

fmax–Λ1.4 which are shown in Fig. 11. This correlation is
reported first and calculated by Wen et al. [59] by taking
23000 phenomenological EOSs, 11 microscopic EOSs, and
two quark EOSs. Here, in our calculation, we use 23 RMF
EOSs, 14 Skyrme-Hartree-Fock (SHF) forces, and four
density-dependent (DDRMF) sets are given in Ref. [105]
having mass greater than ∼2 M⊙. We get a correlation
between f1.4–Λ1.4 and fmax–Λ1.4 as shown in figure. The
accurately measured tidal deformability of the star from the
GW analysis can be used as a constraint on the f-mode
frequency of a star. We expect that the future GW
observations may provide an answer for this type of
correlation.

TABLE III. The observables such as Mmax (M⊙), Rmax (km), R1.4 (km), fmax (kHz), f1.4 (kHz), Cmax, C1.4, Zsmax
, Zs1.4 , Λmax, Λ1.4 are

given for NL3, G3, FSUGarnet, IOPB-I, IOPB-Iþ DM3, IOPB-Iþ Y, IOPB-I þ Yþ DM3 both for maximum mass and canonical NS.

Observable NL3 G3 FSUGarnet IOPB-I IOPB-Iþ DM3 IOPB-Iþ Y IOPB-Iþ Yþ DM3

Mmax 2.77 1.99 2.07 2.15 2.05 1.70 1.61
Rmax 13.17 10.79 11.57 11.76 11.04 11.41 10.38
R1.4 14.08 12.11 12.59 12.78 11.76 12.81 11.57
fmax 2.16 2.55 2.38 2.32 2.57 2.58 2.85
f1.4 1.78 2.06 1.94 1.87 2.14 1.92 2.22
Cmax 0.31 0.27 0.26 0.27 0.27 0.22 0.23
C1.4 0.15 0.17 0.16 0.16 0.18 0.16 0.18
Zsmax

0.62 0.48 0.45 0.47 0.49 0.33 0.36
Zs1.4 0.18 0.23 0.22 0.21 0.24 0.21 0.25
Λmax 4.48 12.12 17.67 14.78 14.39 59.58 50.58
Λ1.4 1267.79 461.28 624.81 681.27 471.06 650.55 391.68

FIG. 9. Upper: f-mode frequencies are shown with the
variation of Λ for four different RMF parameter sets. Lower:
f-mode frequencies with Λ for IOPB-I, IOPB-Iþ DM3,
IOPB-Iþ Y, and IOPB-Iþ Yþ DM.

FIG. 10. fmax are shown with different DM momenta for
IOPB-I parameter sets. The color scheme represents the maxi-
mum masses correspond to different kDMf .
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IV. SUMMARY AND CONCLUSIONS

Gravitational waves emitted by both the isolated and
binary neutron stars are the key quantities that give us
enough information about the internal structure and EOSs
of the star. If we detect the frequencies of the oscillated star,
one can infer the mass and radius of the star from the
empirical formula given in the Ref. [16] with 90%
accuracy. Therefore, oscillation frequencies are the most
promising quantity to constrain the EOS of the NS. The
main problem arises in finding a universal empirical
relation due to the lack of knowledge of the internal
structure of the NS. Several attempts have already been
initiated with a little success leaving us an open challenge
of the problem. The oscillation frequencies are in the range
1 kHz–5 kHz for different modes such as f, p, w, etc. This
range of frequencies cannot be detected by our present
terrestrial detectors, such as LIGO/Virgo. We may be
sufficiently advanced to detect that range of frequencies
coming from the stars in the future. Prior to this, we have to
be equipped with enough possible theoretical solutions to
study oscillating stars. Therefore, in this study, we explored
the f-mode frequencies of the DM admixed NS, and we
hope that the results may help the community to explore
more about the oscillation frequencies emitted by stars.
In this study, we calculated f-mode oscillation frequen-

cies for the quadrupole mode within the relativistic
Cowling approximations. To compute f-mode frequencies,
we take RMF EOSs by assuming that the hyperons are
present inside the NS. Four well-known RMF forces—
NL3, G3, IOPB-I, and FSUGarnet—are taken for this
calculation. The f-mode frequencies decrease with mass
for softer EOSs as compared to stiffer ones. We also include
DM as an extra candidate inside the hyperonic star to see
their effects on the f-mode frequency. The coupling
constants for the hyperons-vector mesons are calculated
using the SU(6) method, while hyperons-scalar mesons are
computed by fitting with hyperon potential depth. The
baryons-Higgs form factor is assumed to be the same,
which is consistent with available theoretical data.

The DM-Higgs coupling is constrained with the help of
a direct detection experiment and LHC searches.
The f-mode frequencies, as a function of different astro-

physical observables such as M, R, Λ, C, Zs, etc., are
calculated and compared with other theoretical results. The
numerical values of fmax and f1.4, as functions of different
quantities, are evaluated. The value of fmax increases with the
addition of either DM/hyperons or DMþ hyperons. This is
because the EOSs become softer with the addition ofDMand
hyperons.AsofterEOSpredicts ahigherf-mode frequencyas
compared to a stiffer one. One can get a clear picture about the
variation of fmax with different DM Fermi momenta from
Fig. 10. We fit the f-mode frequencies with the average
density, and the coefficients are in harmony with previous
models.Theangular frequencies scaledbymassand radius are
calculatedwith compactness. It is found that bothωM andωR
follow a linear relationship.
The f-mode frequencies with tidal deformability are

calculatedusing the23RMF,14SHF,and6DDRMFequation
of states. We find the correlations between f1.4–Λ1.4 and
fmax–Λ1.4 are almost consistent with the prediction of Wen
et al. [59]. The correlation is slightly weaker for fmax–Λ1.4 as
compared tof1.4–Λ1.4.Wenetal.havegivena rangeforf1.4 as
1.67kHz–2.18kHz.Our results correspond tof1.4 being in the
range 1.78 kHz–2.22 kHz for the considered EOSs with DM
and hyperons. We hope the discovery of more BNS merger
events will open up tight constraints on the f-mode frequen-
cies in the future. Thus, it is evident that the effects of either
DM/hyperons or DMþ hyperons on the f-mode frequencies
are significant. One can take DM EOSs to calculate the
f-mode frequency in the fullGRmethodasdonebyLindblom
andDetweiler [18], whichmay providemore accurate results.
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FIG. 11. Left: Correlation between f1.4 and Λ1.4 are shown for 41 parameter sets including (RMF, SHF, and DDRMF). The color bar
represents the maximum masses of the corresponding parameter sets. Right: For fmax with Λ1.4.
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