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In order to solve the Tolman-Oppenheimer-Volkoff equations for neutron stars, one routinely uses the
equations of state which are computed in the Minkowski spacetime. Using a first-principle approach, it is
shown that the equations of state which are computed within the curved spacetime of the neutron stars
include the effect of gravitational time dilation. It arises due to the radially varying interior metric over the
length scale of the star and consequently it leads to a much higher mass limit. As an example, for a given set
of parameters in a σ − ω model of nuclear matter, the maximum mass limit is shown to increase from
1.61 M⊙ to 2.24 M⊙ due to the inclusion of gravitational time dilation.
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I. INTRODUCTION

A key lesson of Einstein’s general relativity is that a
curved spacetime can be described locally by the
Minkowski metric i.e., a curved spacetime is locally flat.
This argument is then often used to deploy the equation
of states which are computed in the Minkowski spacetime,
for solving the Tolman-Oppenheimer-Volkoff (TOV) equa-
tions in the study of neutron stars. Here we refer such an
equation of state (EOS) as a flat EOS. It may be noted that
the TOV equations follow from Einstein’s equation for a
spherically symmetric interior geometry in the general
relativity.
However, such an approach overlooks the fact that two

locally inertial frames which are located at different radial
positions within the star, are not identical as these frames
are subject to the gravitational time dilation. In other
words, while the spacetime metric of these two frames are
locally flat, the corresponding clock rates are not the same
as they have different lapse functions. This aspect directly
impacts the respective matter field dynamics. After all, as
famously stated by Wheeler, in general relativity not only
matter tells spacetime how to curve but also spacetime tells
matter how to move.
Recently, by employing a first-principle approach, we

gave a derivation of the equation of state for an ensemble of
noninteracting degenerate neutrons in the interior curved
spacetime of a spherical star [1]. We refer such an equation
of state as a curved EOS. For regular stars the effect of
gravitational time dilation on their matter field dynamics is
negligible. However, for the compact stars, such as the

neutron stars, the effect of gravitational time dilation is
significant. In particular, we have shown in the Ref. [1] that
for a neutron star containing non-interacting ideal degen-
erate neutrons, the maximum mass limit increases from
0.71 M⊙ to 0.83 M⊙. Clearly, the usage of flat EOS leads
one to underestimate the maximum mass limit.
Nevertheless, the consideration of noninteracting

degenerate neutron matter alone is not sufficient to
describe the matter contents of the astrophysical neutron
stars whose maximum mass limits have now been
observed to be more than 2 M⊙ [2–4]. In order to explain
the observed mass-radius relation of the neutron stars,
various kinds of nuclear matter EOS have been studied in
the literature [5–11]. These models are inspired by differ-
ent particle physics models and generally include different
types of interactions between the possible nucleons for
describing the nuclear matter contained within the astro-
physical neutron stars. Among them, a widely used model
is known as the so-called σ − ω model [12–14] that
includes interacting baryons, leptons, mesons, and often
a set of hyperons [15–20].
In order to perform a first-principle derivation of the

equation of states using interior curved spacetime of the
neutron stars, here we consider a simplified σ − ω model
containing the neutron, the proton and the electron as the
fermions and a scalar meson σ and a self-interacting vector
meson ω. Subsequently, we show that the EOS which is
derived in the curved spacetime, incorporates the effect of
gravitational time dilation. The EOS reduces exactly to its
flat spacetime counterpart when the effect of time dilation is
turned off. By considering different sets of parameters, we
show that the maximum mass limits of the neutron stars
always increase due to the inclusion of general relativistic
time dilation.
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This article is organized as follows. In Sec. II, we briefly
review the form of the spherically symmetric interior metric
of the stars. In Sec. III, we study the σ − ω model in detail.
In particular, by computing the grand canonical partition
function, we derive the equation of state corresponding to
the σ − ω model by using the interior curved spacetime.
In Sec. IV, by employing numerical methods, we study the
properties of the curved EOS and then compare it with the
corresponding flat EOS. Subsequently, we solve the TOV
equations numerically to obtain the mass-radius relations of
the neutron stars. In Sec. V, we discuss about the general
transformations that are required to obtain the curved EOS
starting from the corresponding flat EOS. We conclude the
article with the discussions in Sec. VI.

II. INTERIOR METRIC OF SPHERICAL STARS

The invariant distance element inside a spherically
symmetric star can be expressed as

ds2 ¼ −e2ΦðrÞdt2 þ e2νðrÞdr2 þ r2ðdθ2 þ sin2θdϕ2Þ; ð1Þ

where we have used the so-called natural units i.e., the
speed of light c and Plank’s constant ℏ are set to unity.
In general relativity, the metric functions ΦðrÞ and νðrÞ are
governed by Einstein’s equation and the conservation
equation of the stress-energy tensor. These equations,
known as the TOV equations, are given by

dΦ
dr

¼ GðMþ 4πr3PÞ
rðr − 2GMÞ ;

dP
dr

¼ −ðρþ PÞ dΦ
dr

; ð2Þ

where dM ¼ 4πr2ρdr, P is the pressure and ρ is the
energy density. Additionally, the equation for the metric
function νðrÞ can be partially solved to obtain a relation
e−2νðrÞ ¼ ð1 − 2GM=rÞ.

III. σ −ω MODEL OF NUCLEAR MATTER

In the framework of quantum hadrodynamics (QHD)
[21,22], the σ − ω model is a well-known model which is
often used to describe the nuclear matter contained within
the neutron stars. In order to study the effect of gravitational
time dilation on the properties of the equation of states,
here we consider a simplified σ − ω model containing two
baryons, namely the neutron and the proton, a lepton
namely the electron, a massive scalar meson σ and a self-
interacting vectormeson ω. The corresponding action in an
arbitrary curved spacetime with a metric gμν can be
expressed as

S ¼
Z

d4x
ffiffiffiffiffiffi
−g

p
L ¼

Z
d4x

ffiffiffiffiffiffi
−g

p ½LD þ LM�; ð3Þ

where g is the metric determinant. The Lagrangian density
for the Dirac fermions is

LD ¼ −
X

I¼n;p;e

ψ̄ IðieμaγaDμ þmIÞψ I; ð4Þ

where eμa are the tetrad components and Dμ is the
covariant derivative of the spinor fields [1]. The indices
n, p and e refer to the neutron, the proton and the electron
respectively. Here Dirac matrices γa satisfy fγa; γbg ¼
−2ηabI with ηab being the Minkowski metric. The total
Lagrangian density for the mesons σ and ω can be
expressed as LM ¼ Lσ þ Lσi þ Lω þ Lωi, where the
Lagrangian density for the free σ meson is

Lσ ¼ −
1

2
gμν∂μσ∂νσ −

1

2
m2

σσ
2; ð5Þ

and its interaction with the baryons is described by

Lσi ¼
X
I¼n;p

gσσψ̄ Iψ I; ð6Þ

with gσ being the dimensionless coupling constant.
Similarly, the Lagrangian density for the free vector meson
ω is given by

Lω ¼ −gμρgνλð∇½μων�Þð∇½ρωλ�Þ −
1

2
m2

ωgμνωμων; ð7Þ

where ∇½μων� ¼ 1
2
ð∇μων −∇νωμÞ. The self-interaction

of ω meson and its interaction with the baryons are
described by

Lωi ¼
ζg4ω
4!

ðgμνωμωνÞ2 þ
X
I¼n;p

gωωμeμaψ̄ Iγ
aψ I; ð8Þ

where gω is the coupling constant with the baryons and
ζ is the coupling constant controlling its quartic self-
interaction. Both of these coupling constants here are
dimensionless.

A. Reduced action for fermions

Inside a star, the pressure P and the energy density ρ
both vary radially. On the other hand, at a thermodynamical
equilibrium, these quantities are required to be uniform
within the system of interest. In order to reconcile these two
apparently conflicting aspects, one needs to consider a
sufficiently small spatial region around every given point
such that the physical quantities within the small region can
be considered to be spatially uniform. At the same, the
small region must also contain sufficiently large number of
degrees of freedom for achieving the thermal equilibrium.
In other words, around every point inside the star the notion
of a local thermodynamical equilibrium must hold.
We have mentioned earlier that one can always find a

locally flat coordinate system around any given point. Here
we follow the Ref. [1], to construct such a locally flat
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coordinate system which also retains the information about
the corresponding lapse function. Let us consider a small
box around a point which is located at a radial location r0.
In order to achieve a local thermodynamical equilibrium,
the metric functions ΦðrÞ and νðrÞ within the box can be
approximated to be uniform. For a spherical star we can
always rotate the polar axis such that it passes through the
center of the box. It ensures θ to be small for every points
within the box. Subsequently, by defining a new set of
coordinates X ¼ eνðr0Þr sin θ̄ cosϕ, Y ¼ eνðr0Þr sin θ̄ sinϕ,
and Z ¼ eνðr0Þr cos θ̄ along with θ̄ ¼ e−νðr0Þθ, one can
reduce the metric inside the box to be

ds2 ¼ −e2Φðr0Þdt2 þ dX2 þ dY2 þ dZ2: ð9Þ

We note that the metric (9) despite being flat within the box,
is not globally flat as the radial location of the box in the
metric function Φðr0Þ is retained. In other words, for the
purpose of computing the equation of states of the nuclear
matter within the box, Φðr0Þ has a fixed value whereas in
the TOV Eqs. (2) the same metric function can be seen to be
varying radially, as like the pressure Pðr0Þ and the energy
density ρðr0Þ within the box.
By assuming a diagonal form, the tetrad and the inverse

tetrad corresponding to the metric (9), can be written as

eμa¼diagðeΦ;1;1;1Þ; eμa¼diagðe−Φ;1;1;1Þ; ð10Þ

where Φ≡Φðr0Þ. As a consequence, the associated spin-
connections of the spin-covariant derivative Dμ or equiv-
alently Ricci rotation coefficients [23] of the tetrad fields
vanish and the spin-covariant derivative becomes Dμ ¼ ∂μ.
The diagonal ansatz for the tetrad (10) fixes the gauge
freedoms that arise due to the usage tetrad field. In general,
the tetrad field in 4 dimension has 16 components at each
spacetime point in contrast to the metric field which has
only 10 components. The Dirac action describing the free
fermions, then reduces to

SD ¼ −
Z

d4x
X
I

ψ̄ I½iγ0∂0 þ eΦðiγk∂k þmIÞ�ψ I; ð11Þ

where the index k runs over 1,2,3. The conserved charge,
corresponding to the 4-current jμI of the Ith fermion, then
becomes QI ¼

R
d3x

ffiffiffiffiffiffi−gp
j0I ¼

R
d3xψ̄ Iγ

0ψ I .
The reduced action (11) within the box can be viewed as

a modified spinor action written in the Minkowski space-
time with metric diagð−1; 1; 1; 1Þ. It contains the informa-
tion about the global metric function Φ, unlike the spinor
action which is written in a globally flat spacetime and
routinely used in the literature. We employ this modified
spinor action for subsequent analysis.

B. RMF approximation for mesons

In QHD, the coupling strengths of interactions are not
necessarily weak. In other words, a potential perturbation
series will diverge unless an appropriate resummation
method [24,25] is applied but application of such a method
is often not feasible. Further, any approximation method
that one employs is required to be accurate for both lower
and higher baryon number densities. In this context, such
aims are usually achieved by using the so-called relativistic
mean field (RMF) approximation [26,27].
In the RMF approximation, one replaces the meson field

operators by their vacuum expectation values which are
then treated as the classical fields. On the other hand, the
vacuum expectation values of the kinetic terms and the
spatial components hω̂ii≡ h0jω̂ij0i vanish as these expect-
ation values within the box should be both uniform and
stationary to ensure local thermodynamical equilibrium.
In summary, for the meson fields, the RMF approximation
leads to

ω̂μ → hω̂μi ¼ hω̂0iδμ0 ¼ hω̂0ig0μ; σ̂ → hσ̂i: ð12Þ

In principle, the coupling constants gσ and gω can have
different values for different baryons. However, for sim-
plicity here we assume that these coupling constants have
same values for both neutrons and protons. The Euler-
Lagrange equation for the σ meson then becomes

σ̄ ≡mσhσ̂i ¼ ḡσ
X
I¼n;p

nSI ; where ḡσ ¼
�
gσ
mσ

�
; ð13Þ

and nSI ¼ hψ̄ Iψ Ii is the pseudo-scalar number density of the
baryon. Similarly, by using the RMF approximation, the
Euler-Lagrange equation for the temporal component of
the ω meson, leads to

ω̄þ ζḡ4ω
6

ω̄3 ¼ ḡω
X
I¼n;p

nI; where ḡω ¼
�
gω
mω

�
; ð14Þ

where ω̄ ¼ mωhω̂0ieΦ and nI ¼ hψ̄ Iγ
0ψ Ii ¼ hψ†

Iψ Ii is the
respective baryon number density. The Eq. (14) can be
solved exactly in terms of the total baryon number density
N ≡P

I¼n;p nI as

ω̄ ¼ w2
2 − 2ζ

ζḡ2ωw2

; ð15Þ

where w2 ¼ ðw1 þ ζ2w0Þ1=3 with w1 ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ζ3ð8þ ζw2

0Þ
p

and
w0 ¼ 3ḡ3ωN. From the Eqs. (13), (14) we note that the
vacuum expectation values of the meson fields are dynami-
cally determined through the number density nI and
pseudoscalar number density nSI .

HIGHER MASS LIMITS OF NEUTRON STARS FROM THE … PHYS. REV. D 104, 123005 (2021)

123005-3



Now by using the locally flat coordinates ðt; X; Y; ZÞ
inside the box, together with the RMF approximation, the
action for meson fields can be reduced to

SM ¼
Z

d4x

�
Lσω þ

X
I¼n;p

ψ̄ IeΦðḡσσ̄ − γ0ḡωω̄Þψ I

�
; ð16Þ

where

Lσω ¼ eΦ
�
−
σ̄2

2
þ ω̄2

2
þ ζḡ4ω

24
ω̄4

�
: ð17Þ

As earlier, the reduced action (16) can be viewed as a
modified action written in the Minkowski spacetime.
However it carries the information about the global metric
function Φ. We use this modified action of mesons for
subsequent analysis.

C. Partition function

We follow the approach of thermal quantum field theory
[28,29] to derive the equation of state for the σ − ω
model (3). The corresponding grand canonical partition
function can be written as

Z ¼ Tr½e−βðĤ−
P

I
μI n̂IÞ�; ð18Þ

where μI is the chemical potential of the Ith constituent
fermion with n̂I being its number operator. Further, Ĥ is the
Hamiltonian operator of the system and β ¼ 1=ðkBTÞ with
kB and T being the Boltzmann constant and the temperature
respectively. In the functional integral approach using
the coherent states of fermions [29,30], the partition
function (18) becomes

Z ¼
Z Y

I

Dψ̄ IDψ Ie−S
β
; ð19Þ

where the Euclidean action is defined as Sβ ¼R β
0 dτ

R
d3xðLE −

P
I μIψ̄ Iγ

0ψ IÞ and the Euclidean
Lagrangian density is obtained through the Wick rotation
LE ¼ −Lðt → −iτÞ. In the expression (19), the standard
Minkowskian measure is used for spinor field, as here we
have employed an effective action (11) approach. However,
in a general approach for an arbitrary curved spacetime one
may need to include appropriate factor of metric density in
the path integral measure [31]. Here we have chosen the
convention of the Wick rotation as in the Refs. [29,30],
unlike the one used in the Ref. [1]. However, this choice
does not change any result for non-interacting degenerate
neutrons as considered in [1]. We note that in an arbitrary
curved spacetime with time-dependent metric, the Wick
rotation as used here cannot be always applied [32].
However, the interior spacetime of the neutron stars as
studied here, is spherically symmetric hence static.

Therefore, the said problem of Wick rotation does not
affect the spacetime as studied here. By using the reduced
actions (11), (16) one can split the partition function (19) as

lnZ ¼ βVLσω þ
X
I

lnZψ I
; ð20Þ

where V is the volume of the box. The partition function

involving Ith spinor can be expressed as Zψ I
¼R

Dψ̄ IDψ Ie
−SβψI where

Sβψ I ¼
Z

β

0

dτ
Z

d3xψ̄ I½−γ0ð∂τ þ μ�I Þ þ eΦðiγk∂k þm�
I Þ�ψ I:

ð21Þ

In the Eq. (21), the effective chemical potential is

μ�I ¼ μI − ḡωω̄eΦðδpI þ δnI Þ; ð22Þ

whereas the effective mass is given by

m�
I ¼ mI − ḡσσ̄ðδpI þ δnI Þ: ð23Þ

We note that for an electron μ�e ¼ μe and m�
e ¼ me, given it

has no coupling with the mesons. In order to evaluate the
partition function (20), it is convenient to define the Fourier
transformation of the spinor fields as

ψ Iðτ;xÞ ¼
1ffiffiffiffi
V

p
X
l;k

e−iðωlτþk·xÞψ̃ Iðl; kÞ; ð24Þ

where ωl ¼ ð2lþ 1Þπβ−1, with integers l, are the
Matsubara frequencies for fermions arising due to the
antiperiodic boundary condition ψ Iðτþβ;xÞ¼−ψ Iðτ;xÞ
corresponding to the equilibrium temperature T. In the
Fourier domain, the Euclidean action then becomes

Sβψ I ¼
X
l;k

¯̃ψ Iðl; kÞβ½=pþ m̄I�ψ̃ Iðl; kÞ; ð25Þ

where =p ¼ γ0ðiωl − μ�I Þ þ γkðkkeΦÞ and m̄I ¼ m�
I e

Φ.
A degenerate nuclear matter is characterized by the con-
ditions βμI ≫ 1. Using these conditions, together with the
results of integration over the Grassmann variables, one can
evaluate the partition function for the Ith spinor as [1]

lnZψ I
¼ βVe−3Φ

24π2
½2μ�Iμ3Im − 3m̄2

I μ̄
2
Im�; ð26Þ

where we have defined μIm ≡ ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ�2I − m̄2

I

p
and μ̄2Im≡

μ�IμIm − m̄2
I asinhðμIm=m̄IÞ. In the expression (26), we have

neglected the finite-temperature correction terms, as these
corrections terms are very small for the system under
consideration.
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D. Pressure and energy density

The number density of Ith spinor can be computed
using the expression nI ¼ ðβVÞ−1ð∂ lnZ=∂μIÞ whereas its
pseudo-scalar number density can be computed as eΦnSI ¼
−ðβVÞ−1ð∂ lnZ=∂mIÞ. The evaluation of these partial
derivatives by using the Eqs. (20), (26), leads to

nI ¼
e−3Φ

3π2
μ3Im; nSI ¼

e−3Φ

2π2
m̄Iμ̄

2
Im; ð27Þ

where we have used the relations ð∂μ̄2Im=∂μ�I Þ ¼ 2μIm,
ð∂μIm=∂μ�I Þ ¼ ðμ�I =μImÞ, ð∂μIm=∂m̄IÞ ¼ −ðm̄I=μImÞ, and
ð∂μ̄2Im=∂m̄IÞ ¼ −2m̄I asinhðμ�I =m̄IÞ. For a grand canonical
ensemble, total pressure P ¼ ðβVÞ−1 lnZ, becomes

P ¼ Pσω þ
X
I

PI; ð28Þ

where the term involving only meson contributions is

Pσω ¼ eΦ
�
−
σ̄2

2
þ ω̄2

2
þ ζḡ4ω

24
ω̄4

�
: ð29Þ

On the other hand, the pressure contribution involving Ith
spinor is given by

PI ¼
eΦm�4

I

24π2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbInIÞ23 þ 1

q
f2ðbInIÞ − 3ðbInIÞ13g

þ 3 asinhfðbInIÞ13g
�
; ð30Þ

where the constant bI ¼ 3π2=m�3
I . Using the partition

function (20), the energy density ρ within the box can
be computed as ðρ −P

I μInIÞV ¼ −ð∂ lnZ=∂βÞ which
leads to

ρ ¼ ρσω þ
X
I

ρI: ð31Þ

In the Eq. (31), the direct meson contributions are

ρσω ¼ eΦ
�
σ̄2

2
þ ω̄2

2
þ ζḡ4ω

8
ω̄4

�
; ð32Þ

whereas the contribution due to the Ith spinor is

ρI ¼ −PI þ
eΦm�4

I

3π2
ðbInIÞ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbInIÞ23 þ 1

q
: ð33Þ

As one expects, the expressions for pressure P (28) and
energy density ρ (31), which we shall refer to as the curved
EOS, reduce exactly to their flat spacetime counterparts
i.e., the flat EOS, when one sets the metric function Φ ¼ 0.
This imposition is equivalent of setting the lapse function
eΦ ¼ 1 in the entire interior spacetime of the star. Clearly,

the equation of states which are used in solving the TOV
equations but computed in the Minkowski spacetime, fail to
capture the effect of general relativistic time dilation.

E. Number density relations in β-equilibrium

By using the Eq. (27), the effective chemical potentials
can be expressed in terms of the number densities as

e−Φμ�I ¼ m�
I

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbInIÞ23 þ 1

q
; ð34Þ

whereas the expression of the pseudoscalar number density
can be written as

nSI ¼
3

2bI

�
ðbInIÞ13

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbInIÞ23 þ 1

q
− asinhfðbInIÞ13g

�
: ð35Þ

Nevertheless, these number densities, corresponding to the
three fermions, namely n≡ nn, np and ne are not inde-
pendent and are subject to the conditions

np ¼ ne and μn ¼ μp þ μe: ð36Þ

In the Eqs. (36), the first equality follows from the Uð1Þ
charge balance condition, as the electron is the only lepton
here. The second equality follows from the β-equilibrium
reaction n ↔ pþ e which in turn imposes a condition on
the chemical potentials. Therefore, we can independently
choose only one out of these three number densities.

IV. NUMERICAL EVALUATION

The action (3) contains a priori five free parameters mσ,
gσ , mω, gω and ζ that govern the dynamics of the meson
fields σ and ω. However, the equations of motion, as
described by the Eqs. (13), (14), depend only through the
ratios gσ to mσ and gω to mω. Consequently, there are only
three free parameters, namely ḡσ, ḡω and ζ, in the equation
of state (28), (31) of the σ − ω model. For convenience of
numerical evaluation, we define following dimensionless
quantities representing the scaled coupling constants of
mesons as

g̃σ ¼ ḡσmn; g̃ω ¼ ḡωmn; ð37Þ

where mn is the bare mass of a neutron and we set its value
to be 939.57 MeV.
In the literature, there exist several versions of the σ − ω

model having a varied range of parameter values as
summarized in the ref. [33]. In particular, the values
of the coupling constants gσ range between 7.5–10.2, gω
range between 8.7–12.9, and ζ range between 0–0.06.
On the other hand, the values of the masses, mσ range
between 467.0–507.3 MeV and mω range between
761.2–781.3 MeV. These values together then imply that
the range of g̃σ to be 13.9–20.5 whereas the range of g̃ω to

HIGHER MASS LIMITS OF NEUTRON STARS FROM THE … PHYS. REV. D 104, 123005 (2021)

123005-5



be 10.5–15.9. In the literature, apart from the fields that are
considered here, the hyperons, ρ and ϕ mesons are also
included often in the σ − ω model. However, for simplicity,
here we have not included these fields. Besides, integrating
out the hyperon degrees of freedom changes the masses
of mesons which we could change independently in the
numerical evaluation. Second, the ρ and ϕ mesons are
coupled to baryons via Yukawa interaction. So integrating
out these mesons generates an effective four baryon inter-
action which changes the effective masses of the baryons.
In order to keep the focus on the effect of gravitational

time dilation here we treat the EOS corresponding to σ − ω
model to remain valid for the entire range of baryon number
density during the numerical evaluation. In particular, we
do not interpolate to a different equation of state at a low
baryon number density. It also keeps the analysis much
simpler.

A. Particle fractions and effective mass

For the purpose of numerical evaluation we consider
the bare masses of protons and neutrons to be equal i.e.,
mn ¼ mp. Given mn ≫ me, the Eqs. (34), (36) lead to

np ¼ ne ≃
ðbnnÞ2

8bnð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbnnÞ2=3 þ 1

p
Þ3
: ð38Þ

The Eq. (38) should be regarded as a function np¼npðn; σ̄Þ
whereas Eqs. (13), (27) together imply σ̄ ¼ σ̄ðn; npÞ. So to
find the number density of proton, one must solve for both
σ̄ and np simultaneously by using Eqs. (13), (27), (38).
Here we use numerical root finding methods to find the
solution np and σ̄ for a given neutron number density n.
The numerically evaluated particle fractions for neutrons
and protons, as a function of baryon number density
N ¼ nþ np, are plotted in the Fig. 1. It may be noted
that a higher value of g̃σ leads to a higher proton fraction.
In the Fig. 2, the effective mass of the neutron is plotted

for different values of the scaled coupling constant g̃σ.

It may be observed that an increase of the parameter g̃σ
leads the effective mass to decrease.

B. Kinematical behavior of curved EOS

For different kinematical values of the metric functionΦ,
pressure of the curved EOS (28) is plotted as a function of
baryon number density N in the Fig. 3. We note that for a
given baryon number density, presence of the metric
function Φ in the curved EOS leads to a reduction of
the pressure, compared to its flat spacetime counterpart
(Φ ¼ 0). Similar behavior is seen also in the expression of
the energy density (31). Consequently, the presence of eΦ

factor in the expressions (28), (31) makes the pressure P of
the curved EOS comparatively stiffer for higher values of
the energy density ρ. This behavior is shown in the Fig. 4
for different kinematical values of the metric function Φ.
We may emphasize that here we have chosen a set of

fixed kinematical values of Φ while plotting the figures
given in Fig. 3 and Fig. 4. However as follows from the
TOV equations (2), the metric function Φ varies dynami-
cally along the radial direction inside the stars.
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C. Numerical method for solving TOV equations

We note from the Eq. (38) that number densities of the
fermions, after solving for σ̄, can be viewed as functions of
neutron number density n as nI ¼ nIðnÞ. Therefore, the
pressure (28) and the energy density (31) can be viewed as
explicit functions of n andΦ, given as Pðn;ΦÞ and ρðn;ΦÞ
respectively. Consequently, we can treat the TOV Eqs. (2)
as a set of first-order differential equations for the triplet
fM;Φ; ng where the neutron number density n satisfies

dn
dr

¼ −
ðρþ Pþ ð∂P=∂ΦÞÞ

ð∂P=∂nÞ
dΦ
dr

: ð39Þ

On the other hand, for the flat EOS, the pressure and the
energy density are independent of Φ. Consequently, Φ can
be eliminated from the set of TOV Eqs. (2) which then
can be viewed as a set of first-order differential equations
for the doublet fM; ng.
For the curved EOS, nevertheless, the triplet fM;Φ; ng

is subject to the boundary conditions e2ΦðRÞ¼ð1−2GM=RÞ,
M ¼ MðRÞ and nðRÞ ¼ 0 i.e., interior metric of a star of
mass M and radius R must match with the Schwarzschild
metric at the surface. In order to evolve the Eq. (39)
numerically, apart from ρ and P, we also need to compute
the terms ð∂P=∂ΦÞ and ð∂P=∂nÞ. In particular, the term
ð∂P=∂nÞ can be expressed as

∂P
∂n ¼

X
I¼n;p;e

∂PI

∂nI
dnI
dn

þ ∂P
∂ω̄

dω̄
dn

þ ∂P
∂σ̄

dσ̄
dn

; ð40Þ

where partial derivatives of P with respect to nI , ω̄ are

∂PI

∂nI ¼
eΦm�

I ðbInIÞ2=3
3

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbInIÞ2=3 þ 1

p ;
∂P
∂ω̄ ¼ eΦ

�
ω̄þ ζ

6
ḡ4ωω̄3

�
;

ð41Þ

respectively and partial derivative of P with respect to σ̄ is

∂P
∂σ̄ ¼ −eΦσ̄ þ 3ḡσ

X
I¼n;p

nI
m�

I

�∂PI

∂nI −
4PI

3nI

�
: ð42Þ

Total derivative of ω̄ (15) with respect to n can be
expressed as

dω̄
dn

¼ ζḡωð2ζ þ w2
2Þ

w1w2

X
I¼n;p

dnI
dn

: ð43Þ

On the other hand, total derivatives of the number densities
nI can be expressed as

dnI
dn

¼ ∂nI
∂n þ ∂nI

∂σ̄
dσ̄
dn

; ð44Þ

where partial derivatives with respect to n are

∂np
∂n ¼∂ne

∂n ¼ðbnnÞ
8

ðbnnÞ2=3þ2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbnnÞ2=3þ1

p
Þ5
;

∂n
∂n¼1; ð45Þ

and partial derivatives with respect to σ̄ are given by

∂np
∂σ̄ ¼∂ne

∂σ̄ ¼ ḡσm�2
n

8π2
ðbnnÞ2

ð
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbnnÞ2=3þ1

p
Þ5
;

∂n
∂σ̄¼0: ð46Þ

We have discussed earlier that one needs to solve for σ̄ for a
given neutron number density n. Once σ̄ is found, the total
derivative of σ̄ can be expressed as

dσ̄
dn

¼ ḡσ

�X
n;p

∂nSI
∂nI

∂nI
∂n

��
1 − ḡσ

X
n;p

�∂nSI
∂σ̄ þ ∂nSI

∂nI
∂nI
∂σ̄

��
−1
;

ð47Þ

where partial derivatives of nSI with respect to n and σ̄ can
be expressed as

∂nSI
∂nI ¼

1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbInIÞ2=3 þ 1

p ; ð48Þ

and

∂nSI
∂σ̄ ¼ −

ḡσm�2
I

π2

�
ðbInSI Þ −

ðbInIÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðbInIÞ2=3 þ 1

p
�
: ð49Þ

The Eqs. (45), (46), (48), (49) completely determine the
value of dσ̄=dn for a given value n and σ̄.
In summary, the TOV Eqs. (2) here can be viewed as a

well-defined boundary value problem. In order to satisfy
the boundary condition numerically, we begin with a given
central neutron number density, say nc and a trial value of
Φ at the center. Subsequently, we evolve the TOVequations
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toward the surface by computing the meson field values
σ̄ and ω̄ at each step. This leads to an evolved value of Φ at
the surface which is then compared with an independently
calculated value of Φ at the surface by using the boundary
condition, say, Φs ¼ 1

2
lnð1 − 2GM=RÞ. In the next step,

Φ at the center is numerically computed starting from the
valueΦs by evolving backward from n ¼ 0 at the surface to
n ¼ nc at the center by using the equation

dΦ
dn

¼ −
ð∂P=∂nÞ

ðρþ Pþ ð∂P=∂ΦÞÞ ; ð50Þ

which follows from Eq. (39). These steps are iterated in
order to achieve the convergence between the evolved and
the computed values of the metric function Φ at the center
within the desired numerical precision. The said iteration
method converges rapidly except for the situations where
the massM of the neutron star changes without appreciable
change of the radius R. For these situations, one needs to
employ an appropriate root finding method.

D. Mass-radius relations

In the Fig. 5, we compare the mass-radius relations
arising from both the curved EOS and the flat EOS for the
σ − ω model and an ensemble of ideal non-interacting
degenerate neutrons. It can be seen that irrespective of how
the nuclear matters are described, the usage of the curved
EOS, rather than the flat EOS, leads to a significantly
higher mass limit. In the Fig. 6, we plot the dependency of
neutron star mass M on the central baryon number density
for both the curved EOS and the flat EOS.
We have mentioned earlier that the equation of state

corresponding to the σ − ω model, contains three indepen-
dent parameters, namely g̃σ, g̃ω, and ζ. The parameter g̃σ
changes the nature of the turning point of the mass-radius
curve. An increase in the value of g̃σ changes the position of

the turning point toward a smaller radius. Moreover, as the
value of g̃σ increases, the radius of the neutron star with a
given mass decreases and the maximum mass of the
neutron star increases. The dependency of mass-radius
relations on the parameter g̃σ is shown in the Fig. 7.
The parameter g̃ω also changes the nature of the turning

point of mass-radius curve. An increase in the value of g̃ω
changes position of the turning point toward a larger radius
and after a certain value of g̃ω, the turning point disappears
altogether. As the value of g̃ω increases, radius of the neutron
star with a given mass increases. Moreover, as the value of
g̃ω increases, the maximum mass of neutron star decreases.
This behavior is shown in the Fig. 8. On the other hand, the
parameter ζ changes the maximum mass and the corre-
sponding radius without much alteration in the nature of
mass-radius curve. An increase in the value of ζ causes the
maximum mass limit of the neutron stars to decrease.
Moreover, as the value of ζ increases, the radius of neutron
star for a given mass decreases. This aspect is shown in
the Fig. 9.
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Clearly, in all these mass-radius relations, a significant
enhancement of the maximum mass limits can be seen
when one uses the curved EOS rather than the flat EOS.
A quantitative comparison of the computed mass limits
and the corresponding radii of the neutron stars are given
in the Table I. As an example, it can be seen that the flat
EOS with the parameter values g̃σ ¼ 15.30, g̃ω ¼ 14.90,
and ζ ¼ 0.06 leads the maximum mass limit to be around
1.61 M⊙ with radius of 9.50 km. On the other hand, the
curved EOS with the same set of parameters leads the
maximummass limit to be around 2.24 M⊙ with a radius of
around 12.33 km. Thus incorporation of the effect of
gravitational time dilation enhances the maximum mass
limit here by almost 39.1%. The corresponding increase in
radius of the star is around 29.8%. These enhancements
of mass limits are controlled quantitatively by the ratio
ðGM=RÞ of the star and follow from the equation of state
(28), (31) as ρcurvedðrþ ΔrÞ > ρflatðrþ ΔrÞ even if
ρcurvedðrÞ ¼ ρflatðrÞ and ð∂ρcurved∂n

dn
drÞjr ¼ ð∂ρflat∂n

dn
drÞjr given

ðdΦ=drÞ > 0 for Δr > 0 [1].

We would like to note here that for another chosen set of
parameters, the flat EOS corresponding to the σ − ω model
leads to a maximum mass limit of around 2 M⊙. On the
other hand, the corresponding curved EOS with the same
set of parameters leads the maximum mass limit of neutron
stars to be around 2.85 M⊙. These two mass-radius curves
are plotted in the Fig. 10.

V. UNIVERSAL EFFECT OF GRAVITATIONAL
TIME DILATION

We have seen that the usage of flat EOS fails to capture
the effect of gravitational time dilation. This aspect can be
understood in a rather simple way. While solving the TOV
Eqs. (2), one evolves from the center to the surface of the
star. In this process, the metric function Φ changes
considerably. Consequently, the clock speed in a locally
flat spacetime near the center of the star differs from the
clock speed of a locally flat spacetime near the surface
of the star, given these two frames have different lapse
functions, eΦðr¼0Þ and eΦðr¼RÞ respectively. An equation of
state which is computed in a globally flat spacetime fails to
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TABLE I. The maximum mass limits and the corresponding
radii of neutron stars for both curved EOS and flat EOS of the
σ − ω model for different parameter sets.

g̃σ g̃ω ζ

M (M⊙) R (km)

flat curved flat curved

15.30 14.90 0.060 1.61 2.24 9.50 12.33
15.30 15.20 0.060 1.60 2.23 9.59 12.40
15.30 14.90 0.050 1.66 2.32 9.84 12.79
15.50 14.90 0.060 1.63 2.27 9.45 12.30
14.50 14.70 0.060 1.56 2.16 9.63 12.35
15.90 14.90 0.020 2.00 2.85 11.24 14.87
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capture this varying nature of the lapse function or the
resultant varying clock speed. On the other hand, the
curved EOS, as studied here, incorporates the gravitational
time dilation through the presence of metric function Φ in
the expressions of pressure and energy density (28), (31).
Nevertheless, it is shown in [1] that it is possible to

obtain the equation of state for a spherically symmetric
curved spacetime starting from its flat spacetime counter-
part without going through a first-principle derivation. In
particular, to obtain the partition function in a spherically
symmetric spacetime, one needs to use the following
transformations [1]

β → βeΦ; μI → μIe−Φ: ð51Þ

The transformation rules (51)can be understood as follows.
By re-defining the time coordinate t → t̃ ¼ eΦt, one can
transform the metric (9) within the box to be the standard
Minkowski metric. Consequently, at thermal equilibrium,
the anti-periodic boundary condition for the spinor fields,
as employed in the Eq. (24), then leads to the trans-
formation rules (51). The universality of the transforma-
tions (51) can be checked from the general expression of
the partition function in the Minkowski spacetime which
can always be written as

lnZflat½β; fμIg; fλig� ¼ β−3VfðfβμIg; fβdiλigÞ; ð52Þ

where fλig is a set of parameters of an interacting matter
field theory, having canonical mass dimensions fdig. For
example, in the σ − ω model that we have studied here,
the canonical mass dimensions of the coupling constants
fgσ; gω; ζg are zerowhereas the canonical mass dimensions
of ω and σ fields are one. The general form (52) follows
from the fact that lnZ is a dimensionless, extensive
quantity in statistical physics. Therefore, by following
the transformation rules (51), we can obtain the partition
function in a spherically symmetric curved spacetime as

lnZ½β; fμIg; fλig� ¼ e−3Φ lnZflat½β; fμIg; fediΦλig�: ð53Þ

The Eq. (53) can be used to obtain the partition function of
the σ − ω model (20) starting from its flat spacetime

counterpart. It also shows that the different choices of
frames for intermediate computation eventually lead to the
same equation of state for the curved spacetime.

VI. DISCUSSIONS

In summary, by employing a first-principle approach,
we have derived the equation of state for a degenerate
nuclear matter which is described by a simplified σ − ω
model. Importantly, in this derivation the nuclear matter is
assumed to reside within the spherically symmetric interior
curved spacetime of the neutron star, rather than in the
Minkowski spacetime as routinely used in the literature.
The equation of state which is computed in the curved
spacetime, includes the effect of gravitational time dilation.
Furthermore, we have shown that the incorporation of
gravitational time dilation significantly increases the maxi-
mum mass limits of neutron stars. As an example, the
σ − ω model with a chosen set of parameters, leads the
maximum mass limit to be around 1.61 M⊙ when one uses
the equation of state computed in the Minkowski space-
time. In contrast, with the same set of parameters, the
equation of state computed in the curved spacetime, leads
the maximum mass limit to be around 2.24 M⊙, a signifi-
cant increase of ∼39.1%.
Recent observations of several neutron stars having

masses more than 2 M⊙, have pushed many existing
models of nuclear matters within the neutron stars, to be
ruled out [34,35]. However, as we have shown here that a
proper incorporation of gravitational time dilation into the
corresponding equation of states would enhance the maxi-
mum mass limits of such models.
Finally, we would like to emphasize here that the

existence of the gravitational time dilation is a universal
feature of the curved spacetime. Therefore, the effect of
gravitational time dilation as studied here, should be
included any model of nuclear matter within the neutron
stars.
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