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The energy spectra of primary and secondary cosmic rays (CRs) generally harden at several hundreds of
GeV, a finding which can be naturally interpreted by means of propagation effects. We adopt a spatially
dependent CR propagation model to fit the spectral hardening, where a slow-diffusion disk (SDD) is
assumed near the galactic plane. We aim to constrain the propagation parameters with a Bayesian parameter
estimation based on a Markov chain Monte Carlo sampling algorithm. The latest precise measurements of
carbon spectrum and B/C ratio are adopted in the Bayesian analysis. The 10Be=9Be and Be/B ratios are also
included to break parameter degeneracies. The fitting result shows that all the parameters are well
constrained. Especially, the thickness of the SDD is limited to 0.4–0.5 kpc above and below the galactic
plane, which could be the best constraint for the slow-diffusion region among similar works. The p̄=p ratio
and the amplitude of CR anisotropy predicted by the SDD model are consistent with the observations,
while the predicted high-energy electron and positron fluxes are slightly and significantly lower than the
observations, respectively, indicating the necessity of extra sources.
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I. INTRODUCTION

The galactic cosmic-ray (CR) propagation can be
described by means of the diffusion process due to the
random scattering by magnetohydrodynamics (MHD)
waves in the interstellar medium (ISM). Thus, the proper-
ties of the magnetic field turbulence in the ISM determine
the CR diffusion. The turbulence in the galactic disk is
generated mainly by stellar feedback (such as the super-
nova explosions), while in the outer halo the matter is
significantly rarefied and the turbulence is driven by the
CRs themselves [1]. As the turbulence origin and ISM
properties are both different in the galactic disk and halo,
the CR diffusion in the Galaxy is very likely to be spatially
dependent [2,3].
The spatially dependent diffusion is also supported by

observations. The TeV gamma-ray halos around some
middle-aged pulsars indicate that the diffusion coefficients
around these pulsars are more than 2 orders of magnitude
smaller than the average in the Galaxy [4,5]. If the slow-
diffusion zone is common in the ISM around galactic
pulsars, the average diffusion coefficient in the galactic disk
would be significantly suppressed [6]. The spatial mag-
netic-energy spectrum in the Galaxy also implies that the

magnetic field turbulence in the galactic disk is much
stronger than in the halo [7], which means that the diffusion
coefficient in the galactic disk could be significantly
smaller. Besides, the local CR anisotropy predicted by
the standard model [8] is much larger than that observed by
multiple experiments [9], while the assumption of a slower
CR diffusion in the galactic disk could provide an explan-
ation for it [10].
The spatially dependent diffusion could account for the

well-known spectral hardening of CRs [11,12]. Recent
experiments such as PAMELA [13], AMS-02 [14–16],
ATIC-2 [17], CALET [18,19], DAMPE [20,21], and
CREAM [22] have all discovered the spectral hardening
at several hundreds of GeV for most primary and secondary
CR nuclei, which cannot be explained using the simplest
CR injection and propagation models. Under the spatially
dependent diffusion, the energy exponent of the diffusion
coefficient can also be spatially dependent, which may
explain the spectral hardening. Other possible approaches
to interpreting the spectral hardening include the CR
injection reflecting nonlinear or time-dependent diffu-
sive-shock acceleration [23], the nonlinear effects in CR
propagation [24], and local anomalies due to nearby
sources [25] or different transport in the Local Bubble [26].
We expect to use a spatially dependent diffusion model

to explain anomalies such as the spectral hardening
problem without introducing nearby sources or spectral
breaks in the injection spectra. Our model consists of a
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slow-diffusion disk near the galactic plane and a fast-
diffusion halo more extended in vertical. Variations on
diffusion properties can lead to twice spectral hardening for
the secondary nuclei relative to the primaries, which is
consistent with the AMS-02 observations (see Fig. 84
in [27]). We adopt the Bayesian analysis based on aMarkov
chain Monte Carlo (MCMC) sampling algorithm to con-
strain the model parameters, which is meaningful for
depicting the CR diffusion pattern in the Galaxy. We also
notice that the proton and helium spectra both have a
“knee” around 10 TV, as recently found by NUCLEON
[28] and DAMPE [20,21]. We suppose that other mech-
anisms give this feature and focus on the spectra below this
energy.
This paper is organized as follows. In Sec. II, we

introduce our CR propagation model, the datasets used
for analysis, and the method of parameter inference. In
Sec. III, we present our fitting results in terms of the
parameter posterior probability distributions and the best-fit
values. We discuss the parameter constraints by comparing
the best-fit spectra and the observations. In Sec. IV, we
adopt our spatially dependent propagation model and the
fitting results to predict the p̄=p ratio, the electron and
positron spectra, and the anisotropy amplitude of the CR
nuclei and test to see whether they are consistent with these
observations. Section V is the conclusion.

II. CALCULATIONS

A. CR propagation model

The propagation equation of galactic CRs is generally
expressed by

∂ψ
∂t ¼qðx;pÞþ∇ ·ðDxx∇ψ −VcψÞþ

∂
∂p

�
p2Dpp

∂
∂p

�
ψ

p2

��

−
∂
∂p

�
_pψ −

p
3
ð∇ ·VcÞψ

�
−
ψ

τf
−
ψ

τr
; ð1Þ

where ψ is the density of CR particles per unit momentum,
qðx; pÞ is the source term, Dxx is the spatial diffusion
coefficient, Vc is the convection velocity, Dpp is the
momentum spacediffusion coefficient, _p≡ dp=dt describes
ionization and Coulomb losses, τf are the timescales for
collisions off gas nuclei, and τr are the timescales for
radioactive decay.
Supernova remnants (SNRs) are believed to be the main

sources of galactic CRs, where charged particles are
accelerated by shock waves. As suggested by shock
acceleration theory, the injection spectrum of primary
CRs is assumed to be a power law as q ∝ R−ν, where R
is the rigidity of CRs. A low-energy break Rbr is needed for
all the nuclei to fit the observed low-energy spectral bumps.
The spectral indices below and above the break are denoted
by ν0 and ν1, respectively.

The scattering of CR particles on randomly moving
MHD waves leads to stochastic acceleration, which is
described in the transport equation as diffusion in momen-
tum space Dpp. Alfvén velocity Va is introduced as a
characteristic velocity of weak propagation in a magnetic
field that is related to the spatial coefficient Dxx:

DxxDpp ¼ 4p2V2
a

3δð4 − δÞð4 − δ2Þω : ð2Þ

We introduce a slow-diffusion disk (SDD) model, where
the diffusion coefficient near the galactic plane is sup-
pressed. As shown in Fig. 1, the SDD model defines the
diffusion coefficient Dxx as

DxxðR; zÞ ¼ aD0β
η
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where β ¼ v=c is the particle velocity divided by the speed
of light and the low-energy random-walk process is shaped
by the factor βη. Here η ≠ 1 is introduced to improve the
calculated B/C ratio at low rigidity to fit the observations.
The scale factors a and b define the spatial variation of the
diffusion coefficient. The scale factor a changes the
normalization at the reference rigidity R0 ¼ 4 GV, while
b changes the slope index. The parameter h describes the
thickness of this region, and N describes the smoothness of
the variation.
We define the dimensionless rigidity parameter ρ≡

R=R0 such that the diffusion coefficient in the innermost

FIG. 1. The diffusion coefficient D changes with rigidity R
and spatial vertical position z where we assume N ¼ 8 and
h ¼ 0.5 kpc.
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disk (z ≃ 0, also regarded as local coefficient) can be
expressed as Di ¼ ξD0ρ

ξδδ. The change of slope index
from the halo to the disk can be defined as Δ≡ δð1 − ξδÞ.
According to a similar spatially dependent propagation
model given by Ref. [29], the effective height of the
slow-diffusion (SD) region can be defined as ΛðρÞ≡
hþ ðL − hÞξρ−Δ, where L is the overall size of the galactic
diffusion halo. We can see that the effective height tends to
h at high energies.
We assume N ¼ ∞ in the main text, which means that

the diffusion has a two-zone feature. We discuss the effect
of N in Appendix B 2. For the two-zone diffusion scenario,
the local CR fluxes and ratios can be expressed approxi-
mately using the following forms given by Ref. [29]:

ψprið0Þ ∝ ρ−ν
ΛðρÞ
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¼ ρ−ν−δ
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where ψprið0Þ is primary flux, ψ secð0Þ=ψprið0Þ is the
secondary-to-primary flux ratio, and ψuð0Þ=ψ sð0Þ is the
unstable-to-stable flux ratio. It can be seen in Eq. (4) that
the primary CR spectra can be described by the super-
position of a hard component and a soft component. When
the particle rigidity gets larger, the hard component
becomes dominant and the spectral index changes from
(νþ δ) to ðνþ δξδÞ. This feature also appears in secondary/
primary ratios such as B/C. An unstable/stable ratio such as
10Be=9Be has a different form related to the decay lifetime
τr and can help to break the degeneracy between ΛðρÞ and
Di. The Be/B ratio is quite complex and shows similar
features as Eq. (5) at high energies and Eq. (6) at low
energies. This is discussed in detail in Appendix A.
In Appendix B 1, we prove that ξδ is required by the

fitting procedure to be very small (see Table III), which
means that the SDD model prefers an energy-independent
Di in the disk. Thus, we fix ξδ ¼ 0 in the main text to
simplify the fitting procedure. In this case, the diffusion
coefficient in the disk at low energies could be larger than
that in the outer halo, which may not be reasonable
considering the origin of the ISM turbulence. Thus, we
further add a constraint that the former must always be
smaller than or equal to the latter; thus, the scale factors ξδ
and ξ are supposed to be equal to 1 below GeV energy.
To solve the propagation equation, we adopt the numeri-

cal GALPROP v561 [30,31]. The information regarding the

interstellar medium (gas, radiation, and magnetic fields) is
considered in GALPROP, which makes the calculated results
more realistic. We revise the differencing scheme in the
solver by adopting the finite volume method, which is
necessary for the spatially dependent diffusion coefficient
[32]. We introduce the modified code in Appendix C.
For the resolution of the GALPROP calculation, we set a

spatial grid of dr ¼ 1 kpc and dz ¼ 0.1 kpc and an energy
grid of Ekin_factor ¼ 1.2 while giving consideration to
both accuracy and speed. The size of the initial time step
(start_timestep) is set to be 1.0e8, which is smaller than the
default. We have checked to ensure that this does not affect
the results. Other parameters are kept as the defaults of
GALPROP v56.
Solar modulation significantly changes the CR spectra

below ∼20 GeV. To account for the solar modulation
effect, we adopt a simple force-field approximation [33],
where the strength is described by the solar modulation
potential ϕ. According to Table I, all the AMS-02 and
ACE-CRIS (except 10Be=9Be [34]) measurements used in
this paper were taken during the same period (May 2011–
May 2016); hence, we use a uniform ϕ to modulate carbon,
B/C, and Be/B. For 10Be=9Be ACE-CRIS data [34] taken
during from August 27, 1997, through April 9, 1999, we
use ϕ − ð0.1 GVÞ as an approximation. The 0.1 GV differ-
ence between the two periods is indicated by the long-term
observations of the neutron monitor devices [35].
If we use the default values of the cross section given by

GALPROP, there is a conflict between the old statistics
of 10Be=9Be [34,37] and the newly measured Be/B by
AMS-02 [16], as the former predicts a thin diffusion halo
(∼3 kpc), while the latter predicts a thicker one (∼6 kpc)
[40–42]. Since the current uncertainties of the cross section
are quite large (∼10%–30%) [41,43,44], a modification of
normalization in the entire energy range XS and the low-
energy slope XSδ of the beryllium production cross section
[43,45] can be introduced to reconcile the conflict:

σ ¼ σdefault · XS ·

(�
Ekin=n

Ethresh
kin=n

�
XSδ ; Ekin=n < Ethresh

kin=n

1; otherwise
: ð7Þ

As the cross-section models predict a break at around
5 GeV=n energy and a flat behavior above it, we
choose Ethresh

kin=n ¼ 5 GeV=n.
In summary, the group of free parameters is

θ ¼ fD0; δ; L; Va; η; ξ; h; Ac; ν0; ν1; Rbr;ϕ; XS; XSδg;

where D0, δ, η, ξ, and h are the parameters describing
the diffusion coefficient; L is the half-width of the
total diffusive halo; Va is the Alfvén velocity; Ac is the
abundance of carbon when one fixes the abundance of
the proton to 1.06 × 106; ν0, ν1, and Rbr are the first and
second indices and the break rigidity of the overall injection

1The current version is available at https://galprop.stanford
.edu/.
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parameters, respectively; ϕ is the modulation potential for
the AMS-02 measurements; and XS and XSδ are the
modification parameters of the beryllium production cross
section.

B. Datasets

According to Refs. [46–48], the data group of H-He
and heavy nucleons (Z > 2) have different constraints on
propagation and injection parameters. We use only the
heavy nuclei data to give a self-consistent constraint on the
propagation model. We assume that all the heavy nuclei
share the same injection parameters (ν0; ν1; Rbr) and use the
carbon flux, 10Be=9Be ratio, B/C ratio, and Be/B ratio to
constrain the parameters. The final two ratios are mainly
decided by the ðC─N─OÞ → ðBe─BÞ series.
Besides the precise measurements of carbon flux, B/C,

and Be/B ratios from AMS-02 [15,16], other data are also
included for better parameter constraints, which are listed
in Table I. For the carbon flux, we use the CALET [19],
NUCLEON [28], and CREAM-II [38] measurements to
cover the multi-TeV energy region and the ACE-CRIS
measurements [36] to cover the MeV energy region. The
low-energy B/C ratio is constrained by the ACE-CRIS data
[36]. The data of 10Be=9Be ratio are taken from ACE-CRIS
[34] and ISOMAX [37].
CRs have fully unimpeded access to Voyager 1 that is

free of solar modulation and local interstellar modulation
[49,50]. Thus, the Voyager 1 data can be regarded as
ϕ ¼ 0 GV. We adopt the carbon, boron, and beryllium
fluxes of Voyager 1 [39] to break the entanglement between
ϕ and the other parameters. Electron, positron, and

antiproton fluxes are modulated differently, as further
discussed in Secs. IV B and IVA.

C. Bayesian inference and MCMC

From the Bayes theorem, the posterior probability
distribution of the model parameters is

PðθjDÞ ¼ PðDjθÞPðθÞ
PðDÞ ; ð8Þ

where D denotes the data used, PðDjθÞ ¼ LðθÞ is the
likelihood function, and PðθÞ is the prior distribution. The
quantity PðDÞ in the denominator of Eq. (8) is the Bayesian
evidence, which is a normalizing constant that is indepen-
dent of the model parameters θ and can be neglected in
parameter inference.
MCMC methods are widely used in Bayesian inference

and are powerful to sample the high-dimensional parameter
space for CR propagation models [46,51–53]. We use the
public code CosmoMC2 as a generic Monte Carlo (MC)
sampler to explore parameter space [54,55], which uses the
Metropolis-Hastings algorithm to generate samples from
the posterior distribution. It also provides tools for analyz-
ing the posterior distribution and making confidence
contour plots [56]. We use 50 threads of computing
resources for the simulation. By default, CosmoMC uses
a vanilla Metropolis algorithm which is faster with a good
covariance matrix. So we first perform a test run with only
the main parameters, which takes about two weeks of real

TABLE I. Data used in this analysis.

Experiment Energy range Data points Reference

B/C
AMS-02 (5/2011–5/2016) 2–2100 GV 67 [16]
ACE-CRIS (5/2011–5/2016) 0.07–0.17 GeV=n 6 [36]
Be/B
AMS-02 (5/2011–5/2016) 2–2100 GV 67 [16]
10Be=9Be
ISOMAX (8/4/1998 to 8/5/1998) 0.5–1.6 GeV=n 2 [37]
ACE-CRIS (8/27/1997–4/9/1999) 0.08–0.14 GeV=n 3 [34]
C
NUCLEON (7/2015–6/2017) 250–17000 GeV=n 10 [28]
CREAM-II (12/2005–1/2006) 85–7500 GeV=n 9 [38]
CALET (10/2015–10/2019) ×1.27a 10–1700 GeV=n 22 [19]
AMS-02 (5/2011–5/2016) 0.4–1200 GeV=n 68 [15]
ACE-CRIS (5/2011–5/2016) 0.06–0.2 GeV=n 7 [36]
Voyager 1-HET (2012–2015) 0.02–0.13 GeV=n 8 [39]
B
Voyager 1-HET (2012–2015) 0.02–0.11 GeV=n 8 [39]
Be
Voyager 1-HET (2012–2015) 0.06–0.1 GeV=n 2 [39]

aA multiplication of 1.27 is described in [19] to achieve alignment with AMS-02.

2See https://cosmologist.info/cosmomc/.
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computing time. The covariance matrix can be extracted
from the chain files by using GetDist.3 Then, in the case
of our SDD model with full parameters, the convergence
requires approximately 2 × 104 GALPROP calls with a
covariance matrix, which takes nearly one week of real
computing time.

III. FITTING RESULTS

A. Posterior distributions of parameters

We first give an expectation about the disentanglement of
the important parameters. As mentioned in Sec. II A, the
degeneracy between ΛðρÞ and Di can be broken by fitting
the data of the B/C, 10Be=9Be, and Be/B ratios. Moreover,
we have assumed that the diffusion coefficient in the SD
must be smaller or equal to that in the halo, which means
that the scale factors ξδ and ξ are equal to 1 at low energies
(below ∼1 GeV). According to Eqs. (5) and (6), the B/C
ratio at low energies can be approximated by

ψ secð0Þ
ψprið0Þ

∝
L

D0ρ
δ ; ð9Þ

while the 10Be=9Be ratio at low energies can be approxi-
mated by

ψuð0Þ
ψ sð0Þ

∝
ffiffiffiffiffiffiffiffiffiffi
D0ρ

δ
p

L
: ð10Þ

Thus, the degeneracy between D0 and L can be broken
by the low-energy data combining Eqs. (9) and (10).
According to the definitions of Di and Λ, the two
parameters ξ and h can be successively determined as long
as D0 and L are well constrained.
Figure 2 is the triangle plot of the fitting results, which

shows the 1D marginalized posterior probability density
functions of the parameters and 2D contour plots of 68%
and 95% credible regions for all the combinations. The
injection parameters are omitted here for simplicity. As we
previously expected, all the parameters have well-behaved
distributions. Weak anticorrelations in δ − Va, δ − η, and
δ −D0 can also be seen, and they are consistent with the
standard models (see, e.g., Fig. 3 in Ref. [46]).
The results are summarized in Table II, where we list

the prior ranges, best-fit values, and posterior 95% ranges
for all the parameters. The total halo height and SDD
thickness are well constrained to L ¼ 4.743þ0.882

−0.420 kpc,
h ¼ 0.468þ0.047

−0.062 kpc, respectively. The halo height L is

FIG. 2. The 1D and 2D distributions of the transport parameters.

3See https://getdist.readthedocs.io.
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consistent with the earlier findings using standard models:
Ref. [42] got L ∈ ½3.7; 6� kpc, Ref. [52] found L ¼
4� 1 kpc in a pure diffusion/reacceleration model, and
Ref. [57] got L ¼ 5.4� 1.4 kpc. However, our results are
different from another spatially dependent diffusion mode
discussed in Ref. [11]. Guo et al. obtained a significantly
thicker SDD (h ∼ 0.87 kpc) and larger uncertainty for the
halo height, which could be due to the lack of current
precise measurements.4

The constrained SDD thickness h is 1 order of magnitude
smaller than the halo height L and a bit thicker than the
galactic disk (∼0.2 kpc) where the CR sources concentrate,
which may be explained by the convection of turbulent
energy.
The best-fit slope index of diffusion in the halo δ ¼

0.583 is significantly larger than the Kolmogorov type
(1=3) and a bit larger than the Iroshnikov-Kraichnan type
(1=2). The normalization scale factor ξ is around 1, which
means that the diffusion coefficient in the disk is close to
that in the halo at the reference rigidity of 4 GV.
The constrained modulation potential ϕ ≃ 0.782 GV is

in agreement with those found by Yuan [36]. The two
parameters modifying the production cross section of
beryllium, XS and XSδ, are within the experimental
uncertainties of σnorm ≃ 0.2 and σslope ≃ 0.15 given in
Ref. [42].
We note that the best-fit value χ2min of the SDD model is

167.55, which seems to be too good of a fit relative to the

degrees of freedom of 265. The reason for this may be that
we have added the systematic errors of these measurements
in quadrature with the statistical errors to get the total errors
but have not taken into account the correlation among
systematic uncertainties in the calculation. Covariance
matrices may be needed to properly take into account
those data uncertainties [58].

B. Nucleon fluxes and ratios

The energy spectrum of carbon nuclei is shown in Fig. 3.
A clear spectral hardening can be seen, as predicted from
Eq. (4). At lower energies, the spectrum fits well with the
ACE-CRIS measurement, and the local interstellar spec-
trum also fits well with the Voyager 1 data, which means
that the solar modulation potential is reasonable. We have
drawn a 95% range band derived from the uncertainties of
parameters to show that the spectrum is strictly constrained.
Equation (5) predicts features of secondary/primary

ratios similar to that of the primary spectrum. We can
see in Fig. 4 that our calculation for the B/C ratio fits well
with AMS-02 measurement in the entire energy range.
The calculation also shows a smooth hardening above
100 GeV=n, which could be confirmed with more precise
measurements at higher energies in the future. At lower
energies, the B/C ratio calculated using the SDD model
is slightly higher than the ACE-CRIS measurement.

TABLE II. The prior range, best-fit values and posterior 95%
range of all parameters in the SDD model.

Parameter Prior range
Best-fit
values

Posterior 95%
range

D0ð1028 cm2 s−1Þ [0, 10.0] 3.379 [2.986, 4.023]
δ [0.2, 1.0] 0.583 [0.557, 0.608]
L (kpc) [1.0, 20.0] 4.743 [4.323, 5.625]
Va (km=s) [0, 50] 19.718 [17.130, 21.706]
η ½−3; 2� −1.299 ½−1.518;−1.099�
ξ [0, 4.5] 1.153 [0.965, 1.277]
h (kpc) [0, 2.0] 0.468 [0.406, 0.515]
Acð103Þa [3.1, 3.65] 3.337 [3.316, 3.377]
ν0 [0.4, 2.0] 1.266 [1.076, 1.549]
ν1 [2.2, 2.5] 2.373 [2.364, 2.381]
Rbr (GV) [0, 5] 1.749 [1.430, 2.214]
ϕ (GV) [0.5, 1.0] 0.782 [0.763, 0.793]
XS [0.7, 1.1] 0.973 [0.968, 0.986]
XSδ ½−0.2; 0.2� 0.0513 [0.0418, 0.0689]
χ2min=nd:o:f: � � � 167.55=265 � � �

aThe abundance of proton Ap is 1.06 × 106, and the
normalization of the proton flux at 100 GeV is
4.204 × 10−9 cm−2 s−1 sr−1 MeV−1.

FIG. 3. Carbon spectrum calculated with the best-fit parameters
(green solid line) and the 2σ confidence interval (green band),
compared with the experimental data, including AMS-02 [15],
ACE-CRIS [36], Voyager 1 [39], CALET [19](multiplied by
1.27), CREAM-II [38], and NUCLEON [28]. The local inter-
stellar spectrum of carbon are indicated with a green dotted line.
Top panel: wide-range comparison between the model and the
experimental data. Bottom panel: details around 200 GeV=n,
where the hardening appears.

4We also notice that they calculated χ2 by using fewer data on
nucleons (above 45 GeV=n) and the B/C ratio (above 2 GeV=n),
which could result in a loose constraint.
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We suppose that a modification of the boron cross section
or/and solar modulation may explain this difference.
From Fig. 5, the uncertainties reported from ACE-CRIS

and ISOMAX are so large that they cannot give strong
constraints on halo height L, while more precise experi-
ments on 10Be=9Be in the future may be required, as well as
additional information from Be/B ratio.
In Fig. 6, we see that our calculation fits well with the

AMS-02 measurement. As analyzed in Appendix A, the

Be/B ratio experiences a transition from the decay-
dominated low-energy region to the diffusion-dominated
high-energy region, which is unique in constraining trans-
port parameters. According to Refs. [42,44], the most
important region for constraining halo height5 should be
10–100 GV, where the Be/B ratio has the strongest
dependency on it. At energies below 10 GV, the degeneracy
with the modification of the cross section and other factors
would complicate the fitting. We also find that the
modification of slope XSδ on the cross section is needed;
otherwise, it is hard to reproduce the feature below 10 GV.

IV. PREDICTIONS

AMS-02 has provided observations on antimatter par-
ticles like antiprotons and positrons, which are crucial for
predicting dark matter (DM) particles [60,61]. The anti-
proton-to-proton ratio [62] and the positron fraction [63]
predicted using the standard models are significantly lower
than the AMS-02 measurements at high energies. The
excesses could be explained by introducing DM, while we
first need to get a proper assessment of antiparticle back-
ground. The spatially dependent propagation model may
generate higher antiparticle fluxes the standard model [11].
Besides, the CR anisotropy predicted using the standard

propagation models is significantly higher than the obser-
vations. As the anisotropy is proportional to the local
diffusion coefficient, our SDD model can effectively
suppress the CR anisotropy.

A. Antiprotons

To predict the antiproton flux or p̄=p ratio for the SDD
model, we keep all the parameters in Table II fixed to the
best-fit values and change the injection parameters of
proton and helium to fit the latest measurements of
AMS-02 [27]. We use the default nuclear scaling routine
given by GALPROP to get the hadronic cross sections and
calculate antiproton flux.
The production mechanism of secondary nucleons like

beryllium is different from that of antiprotons. The nuclear
fragmentation keeps the energy per nucleon of secondary
particles the same as that of primary particles, while the
antiproton spectrum is the convolution of the interstellar
spectra and the differential cross section [64], leading
to lower energies than with the primary particles
(Ep̄;max ∼

ffiffiffiffiffiffiffiffiffiffiffi
Ep=2

p
). Thus, the hardening energy of beryl-

lium and antiproton should be around ∼200 and ∼10 GV,
respectively.
The result in Fig. 7 shows that the SDD model can give a

good explanation to the measured p̄=p ratio without
introducing an extra source for antiproton, such as the
dark matter annihilation. The predicted hardening above
10 GV by the propagation effect can explain the antiproton

FIG. 6. Be/B ratio calculated with the best-fit parameters (green
line) and the 2σ confidence interval (green band) compared with
the experimental data AMS-02 [16].

FIG. 4. B/C ratio calculated with the best-fit parameters (green
line) and the 2σ confidence interval, compared with the exper-
imental data: AMS-02 [59] and ACE-CRIS [36].

FIG. 5. 10Be=9Be ratio calculated with the best-fit parameters
(green line) and the 2σ confidence interval (green band) com-
pared with the experimental data: ISOMAX [37] and
ACE-CRIS [34].

5To be exact, effective height Λ in the SDD model.
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excess. Furthermore, the injection and cross-section uncer-
tainties may further improve the fitting result [62]. Here we
use a smaller modulation potential (ϕp̄ ¼ 0.44 GV) to
modulate the low-energy region of antiproton flux, as
the charge of the antiproton is the opposite of the proton
and should be effected differently by solar activities [65].

B. Electrons and positrons

The AMS-02 Collaboration showed [60,66] that the
electron and positron spectra could both be well described
by the sum of the two components. Here we use the SDD
model to test whether the extra components could have
originated from spatially dependent diffusion.
To calculate electron and positron fluxes in the SDD

model, we reuse the fitted proton and helium fluxes from
Sec. IVA and choose the Pshirkov-axisymmetric model
[67] in GALPROP to describe the galactic magnetic field,
which plays a crucial role in lepton energy losses. It has
been shown [68,69] that SNRs could contribute primary
electrons, while a few secondary electrons and positrons
can be produced from the decay of charged pions and kaons
created in collisions of cosmic-ray particles with gas.
Besides, electron-positron pairs can also be produced by
pulsar wind nebulae (PWNe) or DM annihilation/decay. To
subtract the possible contributions from PWNe, dark
matter, and secondary electrons, we calculate the primary
electrons by using a subtracted form ðΦe− −ΦeþÞ between
electron and positron fluxes to fit the injection of electron
[70], where we use very recent AMS-02 data [27]. Since the
charge of the electron is the opposite of the proton and
eþe− have smaller masses than that of the proton, we
consider a different ϕ to describe how they are affected by
solar modulation.
In Fig. 8, we can see that the primary electron spectrum

fits the data well below 100 GeV=n. As predicted from
Eq. (4), a hard component at high energies will also give
rise to electron spectral hardening, but the energy losses in
the high-energy region are even stronger and steepen the
electron spectrum very rapidly, meaning the result failed to

reproduce the AMS-02 measurement above 100 GeV=n.
Extra components above 100 GeV=n may be needed and
may be located within relatively short distances, as elec-
trons have a much shorter lifetime with strong energy
losses. Young and nearby SNRs may produce a much
harder component that gives rise to the excess [71,72].
We also find that a solar modulation potential larger than

1 GV is required for positrons to fit the data, which was also
noted by Orlando [73]. The positron spectrum predicted
using the SDD model is harder than that from standard
models since we have introduced a hard component similar
to the antiproton spectrum analyzed in Sec. IVA, but the
overall flux is still significantly lower than the AMS-02
measurement. The missing flux may come from some extra
contribution of positrons sources, including nearby pulsars
(or PWNe) or DM particles.

C. Anisotropy

In the diffusion approximation, the anisotropy is domi-
nated by the radial streaming of the CR fluxes, and its
amplitude Â is computed as

Â ¼ 3Dj∇ψ j
vψ

∝
Di

ΛðρÞ ðlocalÞ: ð11Þ

We note that the anisotropy amplitude has an anticorrela-
tion with the B/C ratio [Eq. (5)]. As the B/C ratio gets
harder at higher energies, the anisotropy amplitude gets
softer, and its index would change from δ to nearly 0, which
is different than standard models that assume an unchanged
slope index.
In Fig. 9, we have drawn the anisotropy amplitude

together with the uncertainties given by the fitting pro-
cedure in Sec. III, which is consistent with the current
observations (see Ref. [9] and references therein). The gray
dotted line is the anisotropy calculated with the standard
propagation model, which is obviously higher than the
observations. Besides, Tomassetti [29] pointed out that the
anisotropy may be reduced in all energies if one accounts
for a proper radial dependence for the diffusion coefficient.

FIG. 7. p̄=p ratio predicted by the best-fit parameters obtained
in Sec. III (green line) and the 2σ confidence interval (green band)
compared with the experimental data of AMS-02 [27].

FIG. 8. Positron and primary electron spectra predicted by the
best-fit parameters obtained in Sec. III (green line) and the 2σ
confidence interval (green band) compared with the experimental
data of AMS-02 [27].
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The fine structures such as a sudden decrease of the
anisotropy amplitude around 105 GeV are hard to explain
with the SDD model. There are other possibilities for
further explaining these features, for example, the presence
of nearby sources of CRs [74].

V. SUMMARY

According to the assumption of different diffusion
environments in the disk and the halo, we assume a
SDD model for galactic CR propagation, which has two
different diffusion regions. In the inner region, the diffusion
is slow and the slope index equals zero, while in the outer
region the diffusion coefficient is similar to the standard
models. The SDD model has the advantage of naturally
producing the observed high-energy spectral hardening of
both the primary and secondary CR spectra without
assuming a high-energy spectral break in the injection
spectra or introducing nearby sources. By fitting the latest
precise measurement of CR spectra and ratios, the param-
eters of the SDD model can be constrained in turn.
We perform a full Bayesian analysis based on a MCMC

sampling algorithm to get the posterior parameter distri-
butions. We use the carbon data as the primary CR
spectrum, B/C ratio as the primary-to-secondary ratio,
and 10Be=9Be ratio as the unstable-to-stable ratio. The
Be/B ratio is also adopted, the low-energy part of which can
make up for the 10Be=9Be data (which is not precise
enough) and help to break parameter degeneracies.
The fitting result shows that all the parameters are well

constrained. Our main finding is the well-constrained
thickness of the SD region, h ¼ 0.468þ0.047

−0.062 kpc at
95% confidence, which could be the first precise estimation
on this parameter. The fitted size of this region is a bit larger
than the typical height of the galactic disk, implying the
convection of turbulent energy in the direction vertical to
the galactic plane. Other propagation parameters are con-
sistent with those obtained in standard models, such as the
height and diffusion coefficient of the outer diffusive halo.

Based on the fitting result, we also predict the p̄=p ratio,
e−eþ fluxes, and the amplitude of CR anisotropy. We find
that the p̄=p ratio fits well with the AMS-02 data, and no
extra component is needed at high energies. The primary
e− flux above 100 GeV is lower than the observation, which
is likely due to the spectral fluctuation from nearby SNRs.
The predicted positron flux is significantly lower than the
AMS-02 data in a wide energy range, so primary positron
sources are required, such as pulsars or DM. The anisotropy
amplitude predicted by the SDD model fits the experi-
mental data well in general, which is a remarkable
advantage over standard models.
Other indirect observations such as CR-induced diffuse

γ-ray emission [75] and molecular cloud emission [76]
could be used to study the spatial variation of the diffusion
coefficient in the Galaxy. The most prominent difference
between the SDD and the standard model is the vertical
distribution of CRs, as the former predicts a more
rapid decrease of the CR density within the SD region.
The CR vertical distribution can be traced by the γ-ray
emission of intermediate-velocity clouds located at
various distances away from the galactic plane [76].
More precise measurements of the clouds in the future
may give a crucial test to the spatially dependent propa-
gation model.
Besides, MHD simulations with more physical consid-

erations can eventually tell whether our phenomenological
assumption is reasonable. Recently, a full MHD simulation
of galaxy formation indicates that the CR spectral shape
should be dependent on the location in the Galaxy [77],
which could support the picture of spatially dependent
diffusion.
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APPENDIX A: THE Be/B GRAMMAGE

To analyze how the Be/B ratio is related to transport
parameters, we first apply resolution on boron and beryl-
lium nucleons, respectively, as Be ¼ 10Beþ 9Beþ 7Be and
B ¼ 11Bþ 10B. The collision with gas ðpþ 11BÞ →
ð10Beþ 9Beþ 7BeÞ and decay process 10Be → 10Bþ e−

also make effects, although they are not as important as the
main production ðC─N─O → Be─BÞ.
For a more comprehensive review, refer to [40,78],

following which we can find that stable elements
(10B∶Ia) with a contribution from unstable ones
(10Be∶Ib) has the following form:

Ia
X
¼
X
a0>a

Ia0σa0→a

m
þIbVc

μv

�
Δcoth

VcΔL
2D

−coth
VcL
2D

�
: ðA1Þ

FIG. 9. CR anisotropy amplitude predicted with the best-fit
parameters obtained in Sec. III (black line) and 2σ confidence
interval (green band) compared with the experimental data given
in Ref. [9]. An example of standard propagation model calcu-
lations (gray dotted line) are shown for reference [36].
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With diffuse-dominated grammage X ¼ μvL=2D, decay-
dominated grammage Xd ¼ μvτ=

ffiffiffiffiffiffiffiffiffi
4Dτ

p
, and Δ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 4D=V2
cτ

p
, when unstable isotopes decay on a time-

scale shorter than 4D=V2
c (usually below 100 GV),

VcΔ →
ffiffiffiffiffiffiffiffiffiffiffi
4D=τ

p
, Vc → 0 (since we assumed little or no

galactic wind here), the second term on the right side of

TABLE III. The best-fit values and posterior 95% range of all parameters in the SDD model.

Parameter h ¼ 0.3 kpc h ¼ 0.5 kpc h ¼ 0.8 kpc h ¼ 1.0 kpc

D0ð1028cm2 s−1Þ 4.648 [3.222, 5.353] 4.451 [3.845, 4.792] 4.076 [3.573, 5.274] 3.823 [3.376, 5.289]
δ 0.683 [0.631, 0.707] 0.700 [0.662, 0.729] 0.708 [0.663, 0.733] 0.730 [0.701, 0.784]
L (kpc) 11.414 [4.747, 13.703] 10.574 [7.418, 12.144] 9.446 [6.458, 18.076] 9.240 [6.387, 19.176]
Va (km=s) 1.101 [0, 13.409] 2.376 [0, 8.862] 1.251 [0, 12.969] 1.314 [0, 9.701]
ξ 0.2716 [0.1960, 0.4251] 0.6181 [0.4953, 0.7230] 1.3334 [0.9695, 1.5242] 1.760 [0.6905, 1.7528]
ξδ 0.002127 [0, 0.03082] 0.02207 [0, 0.08207] 0.02454 [0, 0.06832] 0.03866 [0.01614, 0.1612]
Acð10−3Þa 3.279 [3.243, 3.319] 3.290 [3.254, 3.321] 3.288 [3.259, 3.335] 3.277 [3.249, 3.325]
ν 2.352 [2.334, 2.368] 2.359 [2.341, 2.376] 2.363 [2.342, 2.379] 2.360 [2.339, 2.380]

Δb 0.651 0.662 0.669 0.673

χ2min=nd:o:f: 47.51=118 47.29=118 46.78=118 47.13=118
aThe abundance of proton Ap is 1.06 × 106, and the normalization of the proton flux at 100 GeV is

4.204 × 10−9 cm−2 s−1 sr−1 MeV−1.
bΔ ¼ δð1 − ξδÞ.

FIG. 10. The 1D and 2D distributions of the transport parameters, different colors represent different values of specified h: 0.3 kpc
(green), 0.5 kpc (gray), 0.8 kpc (red), and 1.0 kpc (blue).
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Eq. (A1) becomes Ib
ffiffiffiffiffiffiffiffiffiffiffi
4D=τ

p
=μv, and the third term becomes

2IbD=Lμv. Now we can write all of the isotopes below:

8>>>>>><
>>>>>>:

9Be; 7Be∶ Ia
X ¼ P

a0>a
Ia0σa0→a

m ;

10Be∶ Ia
Xd

¼ P
a0>a

Ia0σa0→a
m ð< 100 GeVÞ;

11B∶ Ia
X þ Iaσa

m ¼ P
a0>a

Ia0σa0→a
m ;

10B∶ Ia
X ¼ P

a0>a
Ia0σa0→a

m þ Ib
Xd

− Ib
X ð< 100 GeVÞ:

ðA2Þ

By combining them, we can further calculate different ratios
as

8>>>>>><
>>>>>>:

9Beþ7Be
11B ∶X ∝ L

2D ;
10Be
11B ∶Xd ∝ τffiffiffiffiffiffi

4Dτ
p ð< 100 GeVÞ;

10Be
10B ∶ 1

X
PIa0 σa0→a

m

Xd

PIa0 σa0→b
m :

þ X
Xd
−1

∝ Xd
X ¼

ffiffiffiffiffi
Dτ

p
L ð< 100 GeVÞ

ðA3Þ

Thus, the total ratio of Be/B should be a mixture of all
ratio forms in Eq. (A3), which shows the B/C-like (L/D)
feature at high energy, 10Be=9Be-like (

ffiffiffiffi
D

p
=L and 1=

ffiffiffiffi
D

p
)

feature at low energy. The important feature for breaking
the degeneracy of D − L is 10Be=9Be-like. As the available
10Be=9Be ratio measurements have large uncertainties, an
introduction of a precise Be/B ratio is preferred. It was
emphasized in [78] that the 10Be → 10Bþ e− channel

contributes up to 10% of the total boron flux and cannot
be neglected, but 10Be fluxes make up only 10% of the total
beryllium at low energy and there are cross-section uncer-
tainties, which results in a complicated problem.

APPENDIX B: INITIAL FITS ABOVE 20 GV

1. Specified h

Before fitting the free parameters using all measurements
according to Sec. II B, we first estimate how the SDD
model fits the spectral hardening at high energy by using
AMS-02 carbon and boron fluxes, together with the Be/B
ratio. All experiment points are taken above 20 GV, where
the influences of low-energy power-law break, solar modu-
lation, cross-section uncertainties, and the nonrelativity
effect should be the lowest.
To make the fitting much simpler, we fix ϕ ¼ 0.8 GV,

η ¼ −0.5, taken from Yuan’s paper [36] as a reference of
standard models. We fix N ¼ 8 to give a rapid smoothness
from halo to disk, and choose the disk thickness among
specified values h ¼ f0.3; 0.5; 0.8; 1.0g kpc, as we have
predicted a strong degeneracy of h=ξ from Eq. (4). Thus,

FIG. 11. Nucleon spectra calculated with the best-fit parameters
above 20 GV compared with the experimental data AMS-02
[15,16]. Different colors represent different values of specified h.
Top panel: carbon. Bottom panel: boron and beryllium.

FIG. 12. CR anisotropy amplitude predicted by best-fit param-
eters compared with the experimental data given in [9]. Different
colors represent different values of specified h: 0.3 kpc (red),
0.5 kpc (blue), 0.8 kpc (green), and 1.0 kpc (black).

FIG. 13. The diffusion coefficient changes with different
smooth factorsN, where we assume that h ¼ 1 kpc and ξ ¼ 0.05.
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the free parameters are θ ¼ fD0; δ; L; Va; ξ; ξδ; Ac; νg and
consist of six transport parameters and two injection
parameters.
Table III and Fig. 10 show the MCMC result of four

kinds of specified h. We notice that all these χ2min’s have
similar values; thus, the thickness h does not show a strong
preference to any of them. As the half thickness of the inner
disk becomes larger, δ; ξ; ξδ all increase and a strong
anticorrelation is shown between ξ and ξδ. It seems that
the Alfvén velocity Va and slope index scale factor ξδ all
converge to zero. The effect of reacceleration does not
significantly affect the hardening and can be ignored since
we are now focused on the energy region above 20 GV.
Moreover, the diffusion coefficient in the disk prefers an
energy-independent type as ξδ ∼ 0. In Fig. 10 we also find
that the strong degeneracy of D0=L worsens the con-
straining of other parameters.
In Fig. 11 we find that the best-fit values of these

specified h have almost the same results, fitting well with
the AMS-02 measurements, while some dispersion appears
above 104 GV. To estimate the hardening speed of the slow
component ρΔ, we calculate Δ in Table III and find that this
value remains nearly unchanged when h become larger,
proving that Δ should be important in reproducing similar
hardening features.

To estimate more differences among these specified h,
we further predict the anisotropy amplitude in Fig. 12.
As h becomes larger, the amplitude in the entire energy
range grows larger (except 1.0 kpc), and the disk thickness
h ∼ 0.5 kpc fits best with these experiments. Equation (11)
has predicted a simple relation that Â ∼ ξD0=h ¼
f4.207; 5.502; 6.793; 6.728g, which could explain those
features.

2. Specified smooth factor N

We introduced the smooth factor N in Eq. (3a), and it is
used to describe the change of diffusion coefficient from
the innermost disk to the outer halo. In Fig. 13 we show the
spatial dependence of the diffusion coefficient, which
changes more rapidly when the smooth factor N becomes
larger. When N ∼∞, this change becomes a step function
around the thickness �h as Ref. [29] used this kind of
spatially dependent model.
We choose h ¼ 1.0 kpc to give a fixed thickness of slow

region and choose the smooth factor among specified
values N ¼ f2; 4; 8g. Other datasets are referred to in
Appendix B 1. Figure 14 shows the fitting results of three
kinds of specified N. As the smooth factor becomes larger,
ξ; ξδ all get increased and the anticorrelation also appears

FIG. 14. 1D and 2D distributions of the transport parameters. Different colors represent different values of specified N: 2 (gray),
4 (red), and 8 (blue).
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between ξ and ξδ. The serious degeneracy of D0=L still
worsens the constraining of other parameters.
In Fig. 15 we find that the best-fit values of these

specified N have almost the same results, fitting well with
AMS-02 measurements, while a large smooth factor N can
give stronger hardening above 103 GV. The local CRs
travel mainly from disk to halo and diffuse backward to the
Solar System. The real spectra may not simply be the
superposition of two components like Eqs. (4) and (5) but
instead may include more intermediate states. The presence
of intermediate components can be used to explain how the
hardening changes with N.
To estimate more differences of these specified N, we

further predicted the anisotropy amplitude in Fig. 16. As N
becomes larger, the amplitude in the entire energy range
grows larger as well, and the smooth factor N ∼ 4 fits best
with these experiments. Equation (11) has predicted a

simple relation that Â ∼ ξD0=h ¼ f3.216; 5.737; 6.728g,
which could explain the features shown in Fig. 16.

APPENDIX C: MODIFIED
DIFFERENCING SCHEME

For partial differential equations with variable coeffi-
cients, the finite volume method can provide us with well-
behaved differencing schemes. Although GALPROP also
provides an option for the case of a spatially dependent
diffusion coefficient, the differencing scheme (which is the
same as that used by DRAGON [79]) can deal only with the
case where the distribution of the diffusion coefficient is
very smooth. We patch the differencing scheme derived
with the finite volume method on GALPROP. For the GALDEF

option solutionmethod ¼ 4 (the vectorized Crank-Nicolson
method), we modify the file PropelOperatorSplitting.cc.
The differencing scheme of the diffusion operator in the
vertical direction is changed as follows:

a1z½ip� ¼ Tððparticle:Dxx:d2½ir�½iz − 1�:s½ip� þ particle:Dxx:d2½ir�½iz�:s½ip�Þ=2: � powðparticle:dz;−2:Þ � factorÞ;
a3z½ip� ¼ Tððparticle:Dxx:d2½ir�½izþ 1�:s½ip� þ particle:Dxx:d2½ir�½iz�:s½ip�Þ=2: � powðparticle:dz;−2:Þ � factorÞ;
a2z½ip� ¼ Tððparticle:Dxx:d2½ir�½iz − 1�:s½ip� þ 2: � particle:Dxx:d2½ir�½iz�:s½ip� þ particle:Dxx:d2½ir�½izþ 1�:s½ip�Þ=2:

� powðparticle:dz;−2:Þ � factorÞ: ðC1Þ

If solutionmethod ¼ 1 (Crank-Nicolson method) is used, similar modifications can be made in the file propel.cc. Refer to
Ref. [32] for the derivation.
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