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We calculate the complete T matrices of the elastic nucleon-nucleon scattering up to third order in
SU(3) heavy baryon chiral perturbation theory. The phase shifts with orbital angular momentum L ≥ 2

and the mixing angles with J ≥ 2 are evaluated by using low-energy constants that are extracted
from the meson-baryon analysis. It turns out that our prediction is consistent with the empirical phase shifts
and mixing angles data and also the results from SU(2) heavy baryon chiral perturbation theory. The errors
from the low-energy constants are analyzed in detail. Our calculation provides reliable evidence that the
nucleon-nucleon interaction calculated in SU(3) heavy baryon chiral perturbation theory leads to
reasonable predictions.
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I. INTRODUCTION

The nucleon-nucleon interaction is one of the funda-
mental problems in nuclear physics and nuclear astrophys-
ics. As the fundamental theory of strong interaction,
quantum chromodynamics (QCD) becomes nonperturba-
tive at low energies; thus, it is very difficult to use
perturbative methods to derive the nucleon-nucleon inter-
action. In order to solve this problem, an effective field
theory (EFT) was proposed by Weinberg in a seminal paper
[1]. The EFT is formulated in terms of the most general
Lagrangian consistent with the general symmetry princi-
ples, particularly the chiral symmetry of QCD. At low
energy, the degrees of freedom are hadrons, i.e., pions,
kaons, eta-mesons, and baryons, rather than quarks and
gluons, while heavy mesons and baryon resonances are
integrated out. The corresponding field theoretical formal-
ism is called chiral perturbation theory (ChPT) [2]. ChPT is
an efficient framework to calculate, e.g., the amplitudes of
the nucleon-nucleon scattering below the chiral symmetry
breaking scale Λχ ∼ 1 GeV in a model-independent way.
Nevertheless, a power-counting problem in baryon ChPT
occurs because of the nonvanishing baryon mass M0 in the
chiral limit. The heavy baryon chiral perturbation theory
(HBχPT) has been proposed and developed to solve the
power-counting problem [3,4]. The chiral expressions in
HBχPT proceed simultaneously in terms of p=Λχ and
p=M0, where p denotes the meson momentum (or mass) or
the small residual momentum of a baryon in a low-energy
process. The infrared regularization of the covariant baryon

ChPT [5] and the extended-on-mass-shell scheme [6,7] for
baryon ChPT are two popular relativistic approaches and
have led to substantial progress in many aspects as
documented in Refs. [8–13] However, the expressions
from the loop diagrams become rather complicated
[14–16]. On the other hand, HBχPT is a well-established
and versatile tool for the study of low-energy hadronic
process, e.g., the nuclear force in SU(2) HBχPT.
Since the derivation of the nuclear force from chiral

effective field theory was proposed by Weinberg in the
1990s [17,18], many researchers became interested in the
field [19–29]. Even the full relativistic amplitudes have
been derived in chiral effective field theory [30–35].
However, these amplitudes for nuclear force only involved
pions and nucleons in the SU(2) case. For processes
involving kaons or hyperons, e.g., the nucleon-hyperon
interaction, the hyperon-hyperon interaction, etc., the
situation becomes more complicated because of the
consequences of three-flavor chiral dynamics. The hyperon-
nucleon interaction has been calculated up to next-to-
leading order in Refs. [36,37]. Nevertheless, good
convergence cannot be achieved at this order in ChPT,
and the higher-order contributions should be considered,
but this will involve many more low-energy constants. In
previous works [38–41], we have investigated the meson-
baryon scattering in SU(3) HBχPT by fitting to partial-wave
phase shifts of the pion-nucleon and kaon-nucleon scatter-
ing. In particular, the separated low-energy constantsbi from
the second-order Lagrangian were obtained by fitting the
phase shifts of pion-nucleon scattering at fourth order in
SU(3) HBχPT. Meanwhile, there is a large amount of data
for nucleon-nucleon scattering. As an attempt to study
baryon-baryon interaction at higher order, we study the
nucleon-nucleon scattering at next-to-next-to-leading order
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in SU(3) HBχPT in this paper. The peripheral partial waves
(L ≥ 2 and J ≥ 2) are considered. As for the lower partial
waves, they are dominated by the dynamics at the short-
range part of the nuclear force. Moreover, the contact terms
which consist of four-nucleon fields and nomeson fields are
used to parametrize the short-distance dynamics. Thus, the
lower partial waves are almost the same as in the SU(2) case
and are not involved in this paper. Our study provides
reliable evidence that the nucleon-nucleon interaction cal-
culated in SU(3) HBχPT leads to reasonable predictions.
The present paper is organized as follows. In Sec. II, we

summarize the Lagrangians involved in the evaluation of
the third-order contributions. In Sec. III, we present some
explicit expressions for the T matrices of the elastic
nucleon-nucleon scattering at order p3. In Sec. IV, we
outline how to calculate the phase shifts and mixing angles
from the T matrices. Section V contains the presentation
and discussion of our results. A short summary is given in
the last section.

II. CHIRAL LAGRANGIAN

In order to calculate the peripheral nucleon-nucleon
scattering amplitudes up to order Oðp3Þ in heavy baryon
SU(3) chiral perturbation theory, the corresponding effec-
tive Lagrangian can be written as

Leff ¼ Lð2Þ
ϕϕ þ Lð1Þ

ϕB þ Lð2Þ
ϕB; ð1Þ

where the superscript indicates the number of derivatives or
small external momenta or meson mass. The traceless
Hermitian 3 × 3 matrices ϕ and B include the pseudoscalar
Goldstone boson fields (π, K, K̄, η) and the octet-baryon
fields (N, Λ, Σ, Ξ), respectively. The lowest-order SU(3)
chiral Lagrangians for meson-meson interaction take the
form [42]

Lð2Þ
ϕϕ ¼ f2

4
trðuμuμ þ χþÞ; ð2Þ

where f is the pseudoscalar decay constant in the chiral
limit. The axial vector quantity uμ ¼ ifξ†; ∂μξg contains
odd number meson fields. The quantity χþ ¼ ξ†χξ† þ ξχξ

with χ ¼ diagðm2
π; m2

π; 2m2
K −m2

πÞ introduces explicit chi-
ral symmetry breaking terms. The SU(3) matrix U ¼ ξ2 ¼
expðiϕ=fÞ collects the pseudoscalar Goldstone boson
fields. Note that the so-called sigma parametrization was
chosen in SU(2) HBχPT [43,44]. The lowest-order chiral
meson-baryon heavy baryon Lagrangian [45] is

Lð1Þ
ϕB ¼ trðiB̄½v ·D;B�Þ þDtrðB̄Sμfuμ; BgÞ

þ FtrðB̄Sμ½uμ; B�Þ; ð3Þ

where Dμ denotes the chiral covariant derivative

½Dμ; B� ¼ ∂μBþ ½Γμ; B�; ð4Þ

and Sμ is the covariant spin operator

Sμ ¼
i
2
γ5σμνvν; S · v ¼ 0; ð5Þ

fSμ;Sνg¼
1

2
ðvμvν−gμνÞ; ½Sμ;Sν� ¼ iϵμνσρvσSρ; ð6Þ

where ϵμνσρ is the complete antisymmetric tensor with
ϵ0123 ¼ 1. The chiral connection Γμ ¼ ½ξ†; ∂μξ�=2 contains
even number meson fields. The axial vector coupling
constants D and F can be determined from semileptonic
hyperon decays [46].
Beyond the leading order, the complete heavy baryon

Lagrangian splits into two parts,

LðiÞ
ϕB ¼ Lði;rcÞ

ϕB þ Lði;ctÞ
ϕB ði ≥ 2Þ; ð7Þ

where Lði;rcÞ
ϕB denotes 1=M0 expansions with fixed coef-

ficients and stems from the original relativistic Lagrangian.
Here, M0 stands for the (average) octet mass in the chiral

limit. The remaining heavy baryon Lagrangian Lði;ctÞ
ϕB is

proportional to the low-energy constants (LECs).
The heavy baryon Lagrangian Lð2;ctÞ

ϕB can be obtained
from the relativistic effective meson-baryon chiral
Lagrangian [47,48]

Lð2;ctÞ
ϕB ¼ bDtrðB̄fχþ; BgÞ þ bFtrðB̄½χþ; B�Þ þ b0trðB̄BÞtrðχþÞ þ b1trðB̄fuμuμ; BgÞ

þ b2trðB̄½uμuμ; B�Þ þ b3trðB̄BÞtrðuμuμÞ þ b4trðB̄uμÞtrðuμBÞ þ b5trðB̄fv · uv · u; BgÞ
þ b6trðB̄½v · uv · u; B�Þ þ b7trðB̄BÞtrðv · uv · uÞ þ b8trðB̄v · uÞtrðv · uBÞ
þ b9trðB̄f½uμ; uν�; ½Sμ; Sν�BgÞ þ b10trðB̄½½uμ; uν�; ½Sμ; Sν�B�Þ þ b11trðB̄uμÞtrðuν½Sμ; Sν�BÞ: ð8Þ

The first three terms ofLð2;ctÞ
ϕB are proportional to the LECs bD;F;0 and result in explicit symmetry breaking. All LECs bi have

dimension mass−1.
The Lð2;rcÞ

ϕB reads
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Lð2;rcÞ
ϕB ¼ D2 − 3F2

24M0

trðB̄½v · u; ½v · u; B��Þ − D2

12M0

trðB̄BÞtrðv · uv · uÞ − DF
4M0

trðB̄½v · u; fv · u; Bg�Þ − 1

2M0

trðB̄½Dμ; ½Dμ; B��Þ

þ 1

2M0

trðB̄½v ·D; ½v ·D;B��Þ − iD
2M0

trðB̄Sμ½Dμ; fv · u; Bg�Þ − iF
2M0

trðB̄Sμ½Dμ; ½v · u; B��Þ

−
iF
2M0

trðB̄Sμ½v · u; ½Dμ; B��Þ − iD
2M0

trðB̄Sμfv · u; ½Dμ; B�gÞ: ð9Þ

Since we explicitly work out the various 1=M0 expansions,

the last three terms of Lð2;rcÞ
ϕB are not absorbed in the

corresponding LECs bi.

III. T MATRIX FOR THE NUCLEON-NUCLEON
SCATTERING

We are considering only elastic nucleon-nucleon scatter-
ing processes Nðp⃗Þ þ Nð−p⃗Þ → Nðp⃗0Þ þ Nð−p⃗0Þ in the
center-of-mass system (c.m.s.), where �p⃗ and �p⃗0 are the
initial and final nucleon momenta in the c.m.s., respec-
tively. In the center-of-mass frame, the elastic on-shell
momentum-space nucleon-nucleon T matrix has the gen-
eral form

Tðp⃗0;p⃗Þ¼VCþτ1 ·τ2WCþ½VSþτ1 ·τ2WS�σ⃗1 · σ⃗2
þ½VTþτ1 ·τ2WT �σ⃗1 · q⃗σ⃗2 · q⃗
þ½VLSþτ1 ·τ2WLS�½−iS⃗ ·ðq⃗× k⃗Þ�
þ½VσLþτ1 ·τ2WσL�σ⃗1 ·ðq⃗× k⃗Þσ⃗2 ·ðq⃗× k⃗Þ; ð10Þ

where q⃗ ¼ p⃗0 − p⃗ is the momentum transfer, k⃗ ¼
ðp⃗0 þ p⃗Þ=2 is the average momentum, and S⃗ ¼
ðσ⃗1 þ σ⃗2Þ=2 is the total spin, with σ⃗1, σ⃗2 and τ1, τ2 being
the spin and isospin operators of nucleons 1 and 2,
respectively. For the on-shell scattering, the isoscalar Vα

and isovector Wαðα ¼ C; S; T; LS; σLÞ can be expressed
as functions of q ¼ jq⃗j and p ¼ jp⃗0j ¼ jp⃗j only. The
momentum transfer q ¼ 2p sin θ

2
¼ p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð1 − zÞp

in the
center-of-mass system with z ¼ cosðθÞ, the cosine of
the angle θ between p⃗ and p⃗0. Our notation and conventions
follow Ref. [49], which is commonly used in nuclear
physics.
In order to get a more compact representation of the

amplitudes, the four combinations of the axial vector
coupling constants D and F are introduced,

gA ¼ Dþ F;

gη ¼ D − 3F;

gα ¼ ðDþ 3FÞ2 þ 9ðD − FÞ2;
gβ ¼ ðDþ 3FÞ2 − 3ðD − FÞ2; ð11Þ

where gA is the usual axial vector coupling constants in the
SU(2) case, and gη is related to the η-meson coupling
constants.
In the following, we present the analytical results for the

nucleon-nucleonTmatrix up to third order. These amplitudes
are divided into twopartswhere the contributions are from the
contact terms and the meson exchange. The local contact
terms are not considered in this paper, since they do not
contribute to the phase shifts with L ≥ 2 and mixing angles
with J ≥ 2. We will now derive the meson-exchange con-
tributions to the nucleon-nucleon interaction order by order.
The leading-order (LO, ν ¼ 0) amplitudes resulting from the
first row one-meson-exchange diagram in Fig. 1 read

VðLOÞ
T ¼−

g2η
12f2ηðq2þm2

ηÞ
; WðLOÞ

T ¼−
g2A

4f2πðq2þm2
πÞ
;

ð12Þ
with the physical values of the meson-nucleon coupling
constant, meson mass, and decay constants. Our results are
consistent with the amplitudes calculated in the SU(2) case
[50], except that the contributions from η-meson exchange
are included. The contributions from vertex and propagator
corrections to one-meson exchange are not considered since
they only contribute to mass and coupling constant renorm-
alization. As usual, the counting power ν is given by

ν ¼ 2lþ
X
i

�
di þ

ni
2
− 2

�
; ð13Þ

where l denotes the number of loops in the diagram, di the
number of derivatives or meson-mass insertions, and ni the
number of nucleon fields involved in vertex i. The sum runs
over all vertices i in the diagram under consideration.
At next-to-leading-order (NLO, ν ¼ 2), the leading two-

meson-exchange diagrams appear; see the second row of
Fig. 1. All diagrams can be calculated in a straightforward
manner by using the heavy baryon formalism except for the
planar box diagram, since the diagram involves the iterated
one-meson-exchange contribution. Note that we include
only the noniterative part of this diagram which is obtained
by subtracting the iterated one-meson-exchange contribu-
tion. After a tedious calculation, the amplitudes from
irreducible two-meson exchange at this order read
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VðNLOÞ
C ¼ −

1

165888π2f4Kð4m2
K þ q2Þ

�
ð4m2

K þ q2Þ½48ð162þ 9gα þ 2g2αÞm2
K þ ð90þ gαÞð18þ 5gαÞq2�

þ 6½64ð2g2α − 18gα − 81Þm2
K þ 16ð7g2α − 63gα − 162Þm2

Kq
2 þ ð23g2α − 180gα − 324Þq4�LðmK;mKÞ

þ 6ð4m2
K þ q2Þ½18ð5g2α − 36gα − 108Þm2

K þ ð23g2α − 180gα − 324Þq2� lnmK

λ

�
; ð14Þ

FIG. 1. LO, NLO, and NNLO contributions to the NN interaction. Solid lines represent baryons and dashed lines mesons. Small dots

denote vertices from the leading-order Lagrangian Lð1Þ
ϕB. Large solid dots are vertices proportional to the LECs bi from the second-order

Lagrangian Lð2Þ
ϕB. Symbols with an open circle are relativistic 1=M0 corrections which are also part of Lð2Þ

ϕB. Only a few representative
examples of 1=M0 corrections are shown.
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WðNLOÞ
C ¼ 1

2304π2f4πð4m2
π þ q2Þ

�
ð4m2

π þ q2Þ½24ð1þ g2A þ 4g4AÞm2
π þ ð5þ g2AÞð1þ 5g2AÞq2�

þ 6½16ð1þ 4g2A − 8g4AÞm4
π þ 8ð1þ 7g2A − 14g4AÞm2

πq2 þ ð1þ 10g2A − 23g4AÞq4�Lðmπ; mπÞ

þ 6ð4m2
π þ q2Þ½6ð−1 − 6g2A þ 15g4AÞm2

π þ ð−1 − 10g2A þ 23g4AÞq2� ln
mπ

λ

�

−
1

165888π2f4Kð4m2
K þ q2Þ

�
ð4m2

K þ q2Þ½48ð18þ 3gβ þ 2g2βÞm2
K þ ð30þ gβÞð6þ 5gβÞq2�

þ 6½64ð2g2β − 6gβ − 9Þm2
K þ 16ð7g2β − 21gβ − 18Þm2

Kq
2 þ ð23g2β − 60gβ − 36Þq4�LðmK;mKÞ

þ 6ð4m2
K þ q2Þ½18ð5g2β − 12gβ − 12Þm2

K þ ð23g2β − 60gβ − 36Þq2� lnmK

λ

�
; ð15Þ

VðNLOÞ
T ¼ −

1

q2
VS ¼

3g4A
128π2f4π

�
1 − 2Lðmπ; mπÞ − 2 ln

mπ

λ

�
þ g2α
4608π2f4K

�
1 − 2LðmK;mKÞ − 2 ln

mK

λ

�

þ g4η
1152π2f4η

�
1 − 2Lðmη; mηÞ − 2 ln

mη

λ

�
; ð16Þ

WðNLOÞ
T ¼ −

1

q2
WS ¼

g2β
4608π2f4K

�
1 − 2LðmK;mKÞ − 2 ln

mK

λ

�

þ g2Ag
2
η

384π2f2ηf2πq2

�
2q2 þ 2ðm2

η −m2
πÞ ln

mη

mπ
− 2q2½Lðmη; mπÞ þ Lðmπ; mηÞ� − 4q2 ln

ffiffiffiffiffiffiffiffiffiffiffiffimηmπ
p

λ

�
; ð17Þ

where we have defined the functions

Lðm1;m2Þ¼
wðm1;m2Þ

2q
ln
½qwðm1;m2Þþq2�2−ðm2

1−m2
2Þ2

4m1m2q2
;

wðm1;m2Þ¼
1

q

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
½q2þðm1þm2Þ2�½q2þðm1−m2Þ2�

q
:

ð18Þ

At next-to-next-to-leading-order (NNLO, ν ¼ 3), the
resulting amplitudes are either proportional to one of the
low-energy constants bi or they contain a factor 1=M0. The
relativistic 1=M0 corrections arise from vertices and baryon

propagators. In Fig. 1, the diagrams with one vertex
proportional to bi (large solid dot) are shown in the third
row, and the four representative diagrams with a 1=M0

correction (symbols with an open circle) are shown in the
fourth row. The number of 1=M0 correction diagrams is
large, and not all of them are shown. Note that all football
diagrams vanish at this order. Again, all but the planar box
diagram can be calculated in a straightforward manner
using the heavy baryon formalism. Following themethod of
finishing first the l0 integral and then expanding in 1=M0

from Ref. [50], the 1=M0 corrections from the planar box
diagram can be calculated quickly and correctly. Then, the
full third-order amplitudes read
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VðNNLOÞ
C ¼ 3g4A

256πM0f4πð4m2
πþq2Þf5m

5
πþ13m3

πq2þ3mπq4þ3ð8m4
πq2þ6m2

πq4þq6ÞAðmπ;mπÞg

þ 3g2A
16πf4π

f−2ð2b0−2b1−2b2−4b3þbDþbFÞm3
πþðb1þb2þ2b3Þmπq2

−ð2m2
πþq2Þ½2ð2b0−b1−b2−2b3þbDþbFÞm2

π−ðb1þb2þ2b3Þq2�Aðmπ;mπÞg
þ gα
4608πM0f4Kð4m2

Kþq2Þfð−288þ26gαÞm5
Kþ18ð−8þgαÞm3

Kq
2þ3ð−6þgαÞmKq4

þ½2ð−18þgαÞm2
Kþ3ð−6þgαÞq2�ð8m4

Kþ6m2
Kq

2þq4ÞAðmK;mKÞg

þ 1

96πf4K
f2½−2ð2b0−3b1þb2−4b3−b4þbDÞgαþð−bDþbFÞgβ�m3

Kþð3b1−b2þ4b3þb4ÞgαmKq2

−ð2m2
Kþq2Þ½2ð4b0−3b1þb2−4b3−b4þ2bDÞgαm2

Kþ2ðbD−bFÞgβm2
K−ð3b1−b2þ4b3þb4Þgαq2�AðmK;mKÞg

þ g4η
2304πM0f4ηð4m2

ηþq2Þf5m
5
ηþ13m3

ηq2þ3mηq4þ3ð8m4
ηq2þ6m2

ηq4þq6ÞAðmη;mηÞg

þ g2η
144πf4η

f−16ðb0þbD−bFÞm2
Kmηþ2ð2b0þ3bD−5bFÞm2

πmηþð5b1−3b2þ6b3Þð4m2
ηþq2Þmη

þð2m2
ηþq2Þ½−16ðb0þbD−bFÞm2

Kþ2ð2b0þ3bD−5bFÞm2
πþð5b1−3b2þ6b3Þð2m2

ηþq2Þ�Aðmη;mηÞg; ð19Þ

WðNNLOÞ
C ¼ g2A

128πM0f4πð4m2
π þ q2Þ fð−32þ 47g2AÞm5

π þ ð−16þ 23g2AÞm3
πq2 þ ð−2þ 3g2AÞmπq4

þ ½4ðg2A − 1Þm2
π þ ð3g2A − 2Þq2�ð8m4

π þ 6m2
πq2 þ q4ÞAðmπ; mπÞg

þ gβ
4608πM0f4Kð4m2

K þ q2Þ fð−96þ 26gβÞm5
K þ 6ð−8þ 3gβÞm3

Kq
2 þ 3ð−2þ gβÞmKq4

þ ½2ð−6þ gβÞm2
K þ 3ð−2þ gβÞq2�ð8m4

K þ 6m2
Kq

2 þ q4ÞAðmK;mKÞg
þ gβ
96πf4K

f2ð2b1 þ 2b2 þ 2b4 − bD − bFÞm3
K þ ðb1 þ b2 þ b4ÞmKq2

þ ð2m2
K þ q2Þ½2ðb1 þ b2 þ b4 − bD − bFÞm2

K þ ðb1 þ b2 þ b4Þq2�AðmK;mKÞg

þ g2Ag
2
η

768πM0f2πf2η½ðmη þmπÞ2 þ q2� fðmη þmπÞ½m4
η þm3

ηmπ þm2
ηm2

π þmηm3
π

þm4
π þ ð4m2

η þ 5mηmπ þ 4m2
πÞq2 þ 3q4� þ 3q2ðm2

η þm2
π þ q2Þ½ðmη þmπÞ2 þ q2�½Aðmη; mπÞ þ Aðmπ; mηÞ�g

−
gAgη

48πf2πf2η
fðmη þmπÞ½−2ðbD þ bFÞm2

π þ ðb1 þ b2Þð3m2
η − 2mηmπ þ 3m2

π þ q2Þ�

þ ðm2
η þm2

π þ q2Þ½−2ðbD þ bFÞm2
π þ ðb1 þ b2Þðm2

η þm2
π þ q2Þ�½Aðmη; mπÞ þ Aðmπ; mηÞ�g; ð20Þ

VðNNLOÞ
T ¼−

1

q2
VS¼

9g4A
512πM0f4π

fmπþð2m2
πþq2ÞAðmπ;mπÞg−

g2A
16πf4π

fðb9þb10Þ½mπþð4m2
πþq2ÞAðmπ;mπÞ�g

þ gα
9216πM0f4K

f3ð−6þgαÞmKþ½8ð−9þgαÞm2
Kþ3ð−6þgαÞq2�AðmK;mKÞg

þ gα
384πf4K

fð2b9−6b10−b11Þ½mKþð4m2
Kþq2ÞAðmK;mKÞ�gþ

g4η
1536πM0f4η

fmηþð2m2
ηþq2ÞAðmη;mηÞg; ð21Þ
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WðNNLOÞ
T ¼ −

1

q2
WS ¼

g2A
256πM0f4π

fð−2þ 3g2AÞmπ þ ½2ð−4þ 5g2AÞm2
π þ ð−2þ 3g2AÞq2�Aðmπ; mπÞg

þ gβ
9216πM0f4K

f3ð−2þ gβÞmK þ ½8ð−3þ gβÞm2
K þ 3ð−2þ gβÞq2�AðmK;mKÞg

−
gβ

384πf4K
fð2b9 þ 2b10 þ b11Þ½mK þ ð4m2

K þ q2ÞAðmK;mKÞ�g

þ g2Ag
2
η

512πM0f2πf2η
fmη þmπ þ ðm2

η þm2
π þ q2Þ½Aðmη; mπÞ þ Aðmπ; mηÞ�g; ð22Þ

VðNNLOÞ
LS ¼ 3g4A

32πM0f4π
fmπ þ ð2m2

π þ q2ÞAðmπ; mπÞg þ
gα

2304πM0f4K
fð18þ gαÞmK þ ½72m2

K þ ð18þ gαÞq2�AðmK;mKÞg

þ g4η
288πM0f4η

fmη þ ð2m2
η þ q2ÞAðmη; mηÞg; ð23Þ

WðNNLOÞ
LS ¼ g2Að1 − g2AÞ

32πM0f4π
fmπ þ ð4m2

π þ q2ÞAðmπ; mπÞg þ
gβ

2304πM0f4K
fð6þ gβÞmK þ ½24m2

K þ ð6þ gβÞq2�AðmK;mKÞg

þ g2Ag
2
η

96πM0f2ηf2π
fmη þmπ þ ðm2

η þm2
π þ q2Þ½Aðmη; mπÞ þ Aðmπ; mηÞ�g; ð24Þ

where

Aðm1; m2Þ ¼
1

2q
arctan

q
m1 þm2

: ð25Þ

At last, we calculate the reducible two-meson-exchange contribution which is generated from iterated one-meson
exchange. The iterated one-meson exchange is the only contribution to the nucleon-nucleon T matrix with a nonvanishing
imaginary part and restores unitarity at this order. In fact, the planar box diagram includes the iterated one-meson exchange,
which has the following integral representation:

V itðm1; m2Þ ¼
M2

0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

0 þ p2
p

Z
d3l
ð2πÞ3

σ⃗1 · ð⃗lþ p⃗0Þσ⃗2 · ð⃗lþ p⃗0Þσ⃗1 · ð⃗lþ p⃗Þσ⃗2 · ð⃗lþ p⃗Þ
ðp2 − l2 þ iϵÞ½ð⃗lþ p⃗0Þ2 þm2

2�½ð⃗lþ p⃗Þ2 þm2
1�

¼ M2
0ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

M2
0 þ p2

p
�
J0 −

m2
1 þ 3m2

2 þ 2q2

4
Γ0ðm2Þ −

m2
2 þ 3m2

1 þ 2q2

4
Γ0ðm1Þ

−
q2

4
½Γ1ðm1Þ þ Γ1ðm2Þ� þ

ðm2
1 þm2

2 þ q2Þ2
4

G0ðm1; m2Þ − q2G2ðm1; m2Þσ⃗1 · σ⃗2
þG2ðm1; m2Þσ⃗1 · q⃗σ⃗2 · q⃗ − ½Γ0ðm1Þ þ Γ0ðm2Þ þ Γ1ðm1Þ þ Γ2ðm2Þ
− ðm2

1 þm2
2 þ q2ÞG0ðm1; m2Þ − 2ðm2

1 þm2
2 þ q2ÞG1ðm1; m2Þ�½−iS⃗ · ðq⃗ × k⃗Þ�

− ½G0ðm1; m2Þ þ 4G1ðm1; m2Þ þ 4G3ðm1; m2Þ�σ⃗1 · ðq⃗ × k⃗Þσ⃗2 · ðq⃗ × k⃗Þ
�
; ð26Þ

where

J0 ¼ −
1

4π
ip; ð27Þ

Γ0ðmÞ ¼ −
1

8πp

�
arctan

2p
m

þ i ln

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2 þ 4p2

p
m

�
; ð28Þ
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Γ1ðmÞ ¼ −
1

8πp2
ðmþ ipÞ − 1

2p2
ðm2 þ 2p2ÞΓ0ðmÞ; ð29Þ

G0ðm1; m2Þ ¼ −
1

16π

Z
1

0

dx

�
1

ðδ212 − 4p2q2Þx2 þ 2½δ12ðm2
2 þ 2p2Þ þ 2p2q2�xþ ðm4

2 þ 4m2
2p

2Þ

×

�
2ðm2

2 þ δ12xÞffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

2 þ ðδ12 þ q2 − q2xÞx
p þ 4ip

��
; δ12 ¼ m2

1 −m2
2; ð30Þ

G1ðm1; m2Þ ¼
1

4p2 − q2

�
1

2
½Γ0ðm1Þ þ Γ0ðm2Þ� −

�
m2

1 þm2
2

2
þ 2p2

�
G0ðm1; m2Þ þ

Aðm1; m2Þ
2π

�
; ð31Þ

G2ðm1; m2Þ ¼ p2G0ðm1; m2Þ þ
�
m2

1 þm2
2

2
þ 2p2

�
G1ðm1; m2Þ −

Aðm1; m2Þ
4π

; ð32Þ

G3ðm1; m2Þ ¼
1

4p2 − q2

�
1

4
½Γ1ðm1Þ þ Γ2ðm2Þ� − p2G0ðm1; m2Þ − ðm2

1 þm2
2 þ 4p2ÞG1ðm1; m2Þ

�
; ð33Þ

with Aðm1; m2Þ given in Eq. (25). In terms of the integral function V itðm1; m2Þ, the iterated one-meson-exchange
contributions to the nucleon-nucleon amplitudes read

V it
ðC;S;T;LS;σLÞ ¼

3g4A
16f4π

V itðmπ; mπÞ þ
g4η

144f4η
V itðmη; mηÞ; ð34Þ

Wit
ðC;S;T;LS;σLÞ ¼ −

g4A
8f4π

V itðmπ; mπÞ þ
g2Ag

2
η

48f2ηf2π
½V itðmη; mπÞ þ V itðmπ; mηÞ�: ð35Þ

It is straightforward to obtain the central, spin-spin, tensor,
spin-orbit, and quadratic spin-orbit components of the T
matrix. Note that the occurrence of the factorM0 in iterated
diagrams changes the correspondence between the loop
expansion and the small momentum expansion for proc-
esses involving two nucleons. For the above iterated one-
meson exchange, the power counting is two because the
number of the loop is one. The actual contribution from the
iterated one-meson exchange to the nucleon-nucleon T
matrix is of first order in small momenta, even though we
count the iterated one-meson-exchange diagram as next-
to-leading order in order to obtain a consistent result
with the SU(2) case and make a comparison. Besides,
the further iterations correspond to the diagrams with many
more loops which are extremely difficult to evaluate.

Numerically, we find that in most cases the iterated one-
meson-exchange contribution is small compared with the
irreducible meson-exchange contribution. Therefore, we
assume that the higher-order iterations can be neglected.

IV. PHASE SHIFTS AND MIXING ANGLES

In order to calculate phase shifts and mixing angles, the
matrix elements of Tðp⃗0; p⃗Þ in the LSJ basis are needed,
where S denotes the total spin, L the total orbital angular
momentum, and J the total angular momentum. The T
matrix is decomposed into partial waves following
Ref. [51], and the following projection formulas are
obtained.
(a) Spin singlet with S ¼ 0 and L ¼ J:

hJ0JjTjJ0Ji ¼ 1

2

Z
1

−1
dz½UC − 3US − q2UT þ p4ðz2 − 1ÞUσL�PJðzÞ: ð36Þ

(b) Uncoupled spin triplet with S ¼ 1 and L ¼ J:

hJ1JjTjJ1Ji ¼ 1

2

Z
1

−1
dzf2p2ð−ULS=2 −UT þ p2zUσLÞ½PJþ1ðzÞ þ PJ−1ðzÞ�

þ ½UC þ US þ 2p2ð1þ zÞUT þ 2p2zULS − p4ð3z2 þ 1ÞUσL�PJðzÞg: ð37Þ
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(c) Coupled triplet states with S ¼ 1 and L ¼ J � 1:

hJ � 1; 1JjTjJ � 1; 1Ji ¼ 1

2

Z
1

−1
dz

�
2p2

�
−ULS=2�

1

2J þ 1
ðUT − p2zUσLÞ

�
PJðzÞ

þ
�
UC þUS þ p2

�
p2ð1 − z2ÞUσL þ zULS �

2

2J þ 1
ðp2UσL −UTÞ

��
PJ�1ðzÞ

�
: ð38Þ

(d) Coupled triplet states with S ¼ 1, L0 ¼ J − 1, and L ¼ J þ 1:

hJ − 1; 1JjTjJ þ 1; 1Ji ¼
ffiffiffiffiffiffiffiffiffiffiffi
J þ 1

p
p2ffiffiffi

J
p ð2J þ 1Þ

Z
1

−1
dzfðUT − p2UσLÞPJþ1ðzÞ þ ½ð2J − zð2J þ 1ÞÞUT þ p2zUσL�PJðzÞg: ð39Þ

Here, PJðzÞ are ordinary Legendre polynomials of degree
J. The UC;…;σL are given by

UK ¼VKþð4I−3ÞWK; ðK¼C;S;T;LS;σLÞ; ð40Þ

with total isospin I ¼ 0, 1. The Lþ Sþ I must be odd
because of the Pauli exclusion principle.
The phase shifts and mixing angles are calculated via

δLSJ ¼ −
M2

Np
4πEN

RehLSJjTjLSJi; ð41Þ

ϵJ ¼ −
M2

Np
4πEN

RehJ − 1; 1JjTjJ þ 1; 1Ji; ð42Þ

with the c.m.s. nucleon energy EN ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
M2

N þ p2
p

. Note
that the calculation of the phase shift and the mixing angle
based on Eqs. (41) and (42) is valid only as long as the
difference between δ and sin δ cos δ is small. In addition,
the c.m.s momentum p is related to the kinetic energy of the
incident neutron in the laboratory system T lab by

p2 ¼ M2
pT labðT lab þ 2MnÞ

ðMp þMnÞ2 þ 2T labMp
: ð43Þ

V. RESULTS AND DISCUSSION

In this section, for the T matrix given in Eq. (10), we
present and discuss our results for the phase shifts with
2 ≤ L ≤ 6 and mixing angles with 2 ≤ J ≤ 6 up to
T lab ¼ 250 MeV. At such an energy, momentum transfers
up to q ¼ 4.9mπ ¼ 685 MeV are involved, which are still
quite large for the application of chiral perturbation
theory. Nonetheless, we give results up to 250 MeV in
order to show where our predictions are consistent with the
existing data and where deviations appear. Before present-
ing the results, we summarize the values of the physical
parameters: mπ ¼ 139.57 MeV, mK ¼ 493.68 MeV,
mη ¼ 547.86MeV, fπ ¼ 92.07 MeV, fK ¼ 110.03 MeV,
fη ¼ 1.2fπ, Mp ¼ 938.27 MeV, Mn ¼ 939.57 MeV,

MN ¼ 938.92MeV, λ¼ 4πfπ ¼ 1.16GeV, D ¼ 0.80, and
F ¼ 0.47 [52–54]. We use M0 ¼ 963.58� 153.97 MeV,
bD¼ 0.06GeV−1, bF ¼−0.48GeV−1, b0 ¼ −0.69 GeV−1

from the results of the pion-nucleon scattering at chiral
order Oðp3Þ in our previous paper [40]. Unfortunately, the
remaining low-energy constants bi¼1;…;11 were combined
into three linear combinations C1;2;3. The separated bi were
not obtained at this order. However, the respective values
of the bi¼1;…;11 have been obtained in pion-nucleon
scattering at order p4 in our other paper [41]. We take
the low-energy constants bi¼1;…;11 used in the calculation:
b1 ¼ 1.61 GeV−1, b2 ¼ 0.10 GeV−1, b3 ¼ −4.50 GeV−1,
b4¼−1.34GeV−1, b9¼1.86GeV−1, b10 ¼ −0.38 GeV−1,
b11 ¼ 17.66 GeV−1. This may cause some errors. Thus,
we give a common uncertainty of �20% to the low-
energy constants bD;F;0;…;4;9;10;11. The error bands will
be generated by the standard error propagation formula
δ2O ¼ ð∂O=∂x1Þ2ðδx1Þ2 þ ð∂O=∂x2Þ2ðδx2Þ2 þ… using
the uncertainties of the low-energy constants bi and the
chiral limit baryon massM0 without correlations. Although
the errors are crude, they can measure how dependent the
phase shifts and the mixing angles are on bi and M0.
Furthermore, the orders displayed will be defined as LO
[one-meson exchange, Eq. (12)], NLO [LO plus iterated
one-meson exchange, Eqs. (34) and (35), plus the con-
tributions of second order, Eqs. (14)–(17)] and NNLO
[NLO plus the contributions of third order, Eqs. (19)–(24)]
in following figures.

A. D wave

The D wave phase shifts and the mixing angle ϵ2 are
shown in Fig. 2. The dotted lines correspond to the one-
meson-exchange approximation, i.e., LO. The dashed and
solid lines present the NLO and NNLO, respectively. The
black dots denote the SM16 solutions from SAID online
[55]. The open circles present the Granada 2013 results
from the upgrade of the nucleon-nucleon database by the
Granada group [56,57]. The results from Granada 2013
have uncertainties, but we do not show them because the
uncertainties are small, below 250 MeV laboratory kinetic
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energy; for more details about the analysis, see
Refs. [58,59]. The dot-dashed lines refer to the results
from the SU(2) HBχPT at NNLO [50]. The light gray
bands are generated by the standard error propagation
formula with the errors of the low-energy constants bi and
the chiral limit baryon mass M0. The gray bands including
13 high statistical quality potentials are given at 1σ
confidence level from Fig. 10 of Ref. [60]. These potentials
include the Nijmegen PWA [61], NijmI, NijmII, Reid93
[62], AV18 [63], CD Bonn [64], Spectator [65], and the six
Granada potentials denoted as DS-OPE [56,57], DS-χTPE
[66,67], SOG-OPE [68], SOG-χTPE, DS-ΔBO, and SOG-
ΔBO [69]. In all cases, the chiral nucleon-nucleon phase
shifts at third order go in the proper direction—that means
the two-meson-exchange corrections give consistent signs
of the phase shifts with empirical values below 100 MeV

laboratory kinetic energy. But they are too large to keep the
signs of the phase shifts at high energies in some cases and
even larger than the SU(2) case. Not surprisingly, the
coupling constants bi in our calculation have large errors.
When considering the bands from the errors of the
constants, our results are almost consistent with the
SU(2) case. However, our predictions for the D-wave
phase shifts obviously deviate from the data. One excep-
tion is the mixing angle ϵ2 which is consistent with the
data below 100 MeV laboratory kinetic energy. The
leading-order two-meson-exchange contributions are not
small for the D-wave phase shifts, especially for 3D1 phase
shifts. This is different from the SU(2) case. This also
results in the 3D1 phase shift being only in fair agreement
with the data up to 100 MeV laboratory kinetic energy. In
the SU(2) case, there exists an almost complete cancella-
tion of irreducible two-pion exchange and iterated
one-pion exchange contributions for the 3D1 wave.
Nevertheless, for the SU(3) case, the iterated one-meson-
exchange contributions only include the π and η-meson
exchange, while the irreducible two-meson-exchange con-
tributions involve π, K, and η-meson exchange. Thus, this
cancellation mechanism does not work anymore in the
SU(3) case. The one-meson-exchange contribution in the
3D1 wave is roughly consistent with the data. The situation
is same as the SU(2) case. This shows that the η-meson-
exchange contribution is small. At last, we also do not
obtain a proper convergence. To sum up, the one-meson and
two-meson exchange alone is also not sufficient to describe
the dynamics in the nucleon-nucleonDwaves, as concluded
in the SU(2) case [50].

B. F wave

The F-wave phase shifts and the mixing angle ϵ3 are
shown in Fig. 3. Again, our predictions go in the right
direction and are roughly consistent with the SU(2) case
when the error bands are considered. The predictions for
the phase shifts in the 1F3, 3F2, 3F3, and 3F4 partial waves
are in good agreement with the data up to 100 MeV
laboratory kinetic energy. There are also large error bands
in the four waves, especially for 1F3. This means that we
can improve the description of the four F waves by
refitting the data. The mixing angle ϵ3 with a small error
band, however, is in perfect agreement with the data for all
energies up to 250 MeV laboratory kinetic energy, the
same as in the SU(2) case. Our prediction at third order is
almost consistent with the result from the one-meson-
exchange contribution below 150 MeV for the mixing
angle ϵ3. The leading-order two-meson-exchange contri-
butions are small for the F-wave phase shifts and the
mixing angle ϵ3. The situation is the same as in the SU(2)
case. The convergence is still not appropriate for all four
partial-wave phase shifts and the mixing angle at high
energies. All in all, the dynamics in the SU(3) case for the
nucleon-nucleon F waves and the mixing angle ϵ3 is

FIG. 2. D-wave NN phase shifts and mixing angle ϵ2 versus the
nucleon laboratory kinetic energy T lab. The dotted, dashed, and
solid lines present the predictions to LO, NLO, and NNLO,
respectively. The dot-dashed lines refer to the results from the
SU(2) HχPT at order NNLO, the black dots denote the SM16
solutions, and the open circles present the Granada 2013 results.
The bands (light gray) are generated by the standard error
propagation formula with the errors of the low-energy constants
bi and the chiral limit baryon mass M0, and the bands (gray)
including 13 high statistical quality potentials are given at 1σ
confidence level. See main text.
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almost the same as in the SU(2) case. The predictions for
F-wave phase shifts are also clearly dependent on the low-
energy constants. This can be used to refit the data to
improve the description of the nucleon-nucleon phase
shifts and obtain more accurate low-energy constants in
the future.

C. G wave

The G-wave phase shifts and the mixing angle ϵ4 are
shown in Fig. 4. Our predictions are in good agreement
with data for all partial-wave phase shifts (except for 3G5)
and the mixing angle up to 250 MeV laboratory kinetic
energy within error. The phase shifts for 3G5 are only
consistent with the data below 150 MeV laboratory kinetic
energy. When considering the error band, the description of
the 3G5 wave cannot be improved. The problem can be
solved when the higher-order contributions are considered.
The differences between one-meson exchange and the data
are still sizeable in the 1G4 and 3G5 partial waves. For the
3G3 and 3G4 phase shifts and ϵ4, the two-meson-exchange
corrections are small. In short, our predictions for the four
partial-wave phase shifts and the mixing angle are almost
the same as in the SU(2) case.

D. H wave

The H-wave phase shifts and the mixing angle ϵ5 are
shown in Fig. 5. The contributions from two-meson
exchange are quite small. Our predictions are also in good
agreement with data for all partial-wave phase shifts (except
for 3H6) and the mixing angle up to 250 MeV laboratory
kinetic energy. The 3H6 phase shifts come out too large.
Nevertheless, the 3H6 phase shifts are very small, less than
0.5°, and the gap between the data and our predictionmay be
insignificant if one considers the nucleon-nucleon scattering
data. We also find that the contributions from one η-meson
exchange are also very small in the four phase shifts and the
mixing angle, but still obviously make some difference.
Once again, our results are the same as in the SU(2) case in
the phase shifts and the mixing angle.

E. I wave

The I-wave phase shifts and the mixing angle ϵ6 are
shown in Fig. 6. The two-meson-exchange contributions
are still quite small, and our predictions are in very in good
agreement with the data for all partial-wave phase shifts
and the mixing angle up to 250 MeV laboratory kinetic
energy. There is only a little gap in 3I7 at high energy, and it

FIG. 3. F-wave NN phase shifts and mixing angle ϵ3 versus the
nucleon laboratory kinetic energy T lab. For notation, see Fig. 2.

FIG. 4. G-wave NN phase shifts and mixing angle ϵ4 versus the
nucleon laboratory kinetic energy T lab. For notation, see Fig. 2.
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also is insignificant because the phase shifts for this wave
are very small. The contributions from η-meson exchange
are quite small and can even be completely ignored.
Furthermore, we find fast convergence in the high angular
momentum partial waves (except for 3I7) as the existing
nucleon-nucleon phase shifts analyses.

VI. SUMMARY

We have calculated the complete T matrices of elastic
nucleon-nucleon scattering up to third order in SU(3)
HBχPT. With the T matrices, the phase shifts with orbital
angular momentum L ≥ 2 and the mixing angles with
J ≥ 2 have been evaluated by using low-energy constants
that were extracted from meson-baryon analysis. Then, we
have compared our predictions with the empirical phase
shifts and mixing angles data, and as well as the results
from SU(2) HBχPT. The description of the data within the
SU(3) case is slightly worse than the SU(2) case because a
large number of low-energy constants cannot be deter-
mined accurately at this order. In addition, we have found
that one-meson and two-meson exchange alone is not
sufficient to describe the dynamics in the nucleon-nucleon
D waves, the same as in the SU(2) case. For higher partial
waves, the model-independent amplitudes up to third order

in the SU(3) case bring the chiral prediction close to
empirical nucleon-nucleon phase shifts, as in the SU(2)
case. Meanwhile, in the high angular momentum partial
waves(L ≥ 5), we find fast convergence to the result of
one-meson exchange as obtained in the empirical nucleon-
nucleon phase shifts analyses. The errors of the phase shifts
and mixing angles have been obtained by the standard error
propagation formula with the errors of the low-energy
constants bi and the chiral limit baryon massM0. Besides D
waves, the predictions for F-wave phase shifts were also
clearly dependent on the low-energy constants. This can be
used to refit the data to improve the description of the
nucleon-nucleon phase shifts and obtain more accurate
low-energy constants in the future. In a word, our pre-
dictions for the peripheral nucleon-nucleon phase scatter-
ing in SU(3) HBχPT are quite reasonable. The higher-order
amplitudes for nucleon-nucleon scattering and much more
baryon-baryon scattering channels can be investigated
further in the SU(3) case.
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