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We discuss the pion and kaon distribution amplitudes up to twist-3 in the context of the random instanton
vacuum (RIV). We construct explicitly the pertinent quasipion and quasikaon distributions in the RIV, and
analyze them in leading order in the diluteness factor, at a resolution fixed by the inverse instanton size.
The distribution amplitudes (DA) follow from the large momentum limit. The results at higher resolution
are discussed using QCD evolution, and compared to their asymptotic limits and some lattice results.
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I. INTRODUCTION

Light cone distributions are central to the description of
hard inclusive and exclusive processes. Thanks to factori-
zation, a hard process factors into a perturbatively calcu-
lable contribution times pertinent parton distribution and
fragmentation functions. Standard examples can be found
in deep inelastic scattering, Drell-Yan process and jet
production to cite a few.
The parton distribution functions are defined on the light

front, and their moments usually fitted using large empiri-
cal data banks. They are not readily amenable to a non-
perturbative and first principle formulation using lattice
simulations. This situation has by now changed. Ji [1] has
put forth the concept of spacelike quasiparton distributions
that are perturbatively matched to the timelike light cone
distributions [2–7]. This conjecture can be checked to hold
non-perturbatively in two-dimensional QCD at next-to-
leading order in the large Nc limit [8]. The quasiparton
distribution matrix elements calculated in a fixed size
Euclidean lattice QCD, have been argued to match those
obtained through LSZ reduction in continuum Minkowski
QCD, to all orders in perturbation theory [9]. Some variants
of this formulation can be found in the form of pseudodis-
tributions [10], and lattice cross sections [11]. A number of
QCD lattice collaborations have implemented some of
these ideas, with some reasonable success in extracting
the light cone parton distributions.

A good understanding of the nonperturbative gauge
fields responsible for chiral symmetry breaking was
achieved in the context of the QCD instanton vacuum.
Several QCD lattice simulations have shown that the bulk
characteristics and correlations in the QCD vacuum are
mostly unaffected by lattice cooling [12] where quantum
effects are pruned, suggesting that semiclassical gauge and
fermionic fields dominate the ground state structure. At
weak coupling, instantons and anti-instantons are exact
semiclassical gauge tunneling configurations with large
actions and finite topological charge which support exact
quark zero modes with specific chirality. They are at the
origin of the spontaneous breaking of chiral symmetry
and the emergence of a hadronic mass for the low-lying
hadronic excitations such as the pion, kaon and nucleon.
Orbitally excited hadrons are more sensitive to confine-
ment, perhaps in the extended QCD instanton-dyon vac-
uum [13,14], or in the QCD instanton vacuum with long
P-vortices [15,16].
In this work we follow up on our recent study of the

quasidistributions in the random QCD instanton vacuum
(RIV) [17]. More specifically, we will analyze the two-
particle pion and kaon quasidistributions up to twist-3 in
the RIV, and extract the light cone distribution amplitudes
in the large momentum limit. The moments of the twist-3
pion distribution amplitudes in an effective model of the
RIV, and the twist-3 pion distribution amplitudes in a light
front quark model using light cone signature, were recently
discussed in [18,19]. Since the RIV vacuum is Euclidean,
the distribution amplitudes are naturally extracted from the
quasidistributions with space-like signature.
The outline of the paper is as follows: In Sec. II we

briefly review the salient features of the RIV. In Sec. III we
discuss the general structure of the pion and kaon in terms
of the twist-2 and twist-3 contributions. Although the latter
are subleading at asymptotic momenta in say the pion
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electromagnetic form factor, they still contribute substan-
tially in the pre-asymptotic regime. In Sec. IV we define
the quasipion and quasikaon distribution amplitudes and
analyze them in the RIV using the power counting in the
diluteness factor detailed in [17]. The massless and massive
pseudoscalar and pseudotensor twist-3 pion and kaon
distribution amplitudes are then extracted in the large
momentum limit at the resolution fixed by the instanton
size. The twist-2,-3 pion and kaon distribution amplitudes
at higher resolution are discussed in Sec. Vusing the ERBL
evolution and compared to their asymptotic limits and some
lattice results. Our conclusions are in Sec. VI. Some useful
details are found in the Appendices.

II. INSTANTON EFFECTS

The cooled QCD vacuum is populated with strong and
inhomogeneous topological gauge configurations, i.e.,
instantons and anti-instantons as illustrated in Fig. 1 The
bulk characteristics of this vacuum were predicted long
ago [20]

nIþĪ ≈ 1 fm−4; ρ ∼
1

3
fm ∼

1

0.6
GeV−1 ð1Þ

for the instanton plus anti-instanton density and size,
respectively. They combine in the dimensionless parameter

κ ≡ π2ρ4nIþĪ ≈ 3.186 × 10−3

a measure of the diluteness of the instanton-anti-instanton
ensemble in the QCD vacuum. Previous lattice simulations
using cooling methods support these observations—see
[21] for a review.
Instanton fields are strong, since their field strengths are

large. For the dominant size instantons with ρ ≈ 0.30 fm
typical for chiral symmetry breaking, the fields are very
strong at the center

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
G2

μνð0Þ
q

¼
ffiffiffiffiffiffiffiffi
192

p
=ρ2 ≈ 5 GeV2

Their scale is comparable to the matching scale in
the hard and perturbative matching kernels [23] which
may suggest nonperturbative improvements [24]. Their
contribution can be assessed using semiclassics. The
size distribution of the instantons and anti-instantons
in the QCD vacuum is well captured semiempirically
by [25,26]

dnðρÞ ∼ dρ
ρ5

ðρΛQCDÞbQCDe−α0ρ2 ð2Þ

with bQCD ¼ 11Nc=3 − 2Nf=3 ≈ 9 (one loop) and α0 ¼
1=2m2

ρ (rho meson slope).

III. TWIST AND CHIRAL STRUCTURES
OF THE DA OF THE PION

In the QCD instanton vacuum, the pion DA is captured
by the vertex π−ðpÞ → difαðkÞu†jgβðk − pÞ, which corre-
sponds formally to the connected amplitude

Z þ∞

−∞

pþdz−

2π
e−ixp·zh0jūβð0Þ½0; z�dαðzÞjπ−ðpÞi ¼

�
þ ifπ

4
γ5
�
pϕA

π−ðxÞ − χπϕ
P
π−ðxÞ þ iχπσμν

pμp0ν

p · p0
ϕ0T
π−ðxÞ
6

��
αβ

ð3Þ

and its conjugate

Z þ∞

−∞

p0−dzþ

2π
eixp

0·zhπ−ðp0Þjd̄βðzÞ½z; 0�uαð0Þj0i ¼
�
−
ifπ
4

γ5
�
p0ϕA

π−ðxÞ þ χπϕ
P
π−ðxÞ − iχπσμν

pμp0ν

p · p0
ϕ0T
π−ðxÞ
6

��
αβ

ð4Þ

up to twist-3. ½x; y� refers to the gauge link, σμν ¼ i
2
½γμ; γν�,

fα; βg represent spinor indices, and ϕT0
π ðxÞ ¼ ∂xϕ

T
π ðxÞ.

(3)–(4) are explicitly odd under P parity. Note that the
4-vector p0

μ appears in the DA of a pion with 4-vector pμ, in

reference to the conjugate light-cone direction, with gen-
erally no relation to the second pion. In the DA of a pion
with momentum p0

μ, the exchange p ↔ p0 needs to be
enforced, effectively flipping the sign of the last term.

FIG. 1. Instantons (yellow) and anti-instantons (blue) configu-
rations in the cooled YM vacuum [22].
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In (3), (4), and subsequent derivations, the ket jπ−ðPÞi refers to the physical negative-pion state. (Note the switch in
flavors if the current Jπ−ðxÞ ¼ d̄ðxÞiγ5uðxÞ is used to define the pion state). (3)–(4) can be inverted, to recast the pion twist-2
and twist-3 light-cone wave functions in explicit form

ϕA
π−ðxÞ ¼

1

ifπ

Z þ∞

−∞

dz−

2π
eixp·zh0jūð0Þγþγ5½0; z�dðzÞjπ−ðpÞi ð5aÞ

ϕP
π−ðxÞ ¼

pþ

fπχπ

Z þ∞

−∞

dz−

2π
eixp·zh0jūð0Þiγ5½0; z�dðzÞjπ−ðpÞi ð5bÞ

ϕT0
π−ðxÞ ¼

6

fπχπ

pμp0νpþ

p · p0

Z þ∞

−∞

dz−

2π
eixp·zh0jūð0Þσμνγ5½0; z�dðzÞjπ−ðpÞi ð5cÞ

with all DAs normalized to 1. The prime in the last relation refers to ∂xϕ
T
π−ðxÞ. The leading twist-2 DA ϕA

π ðxÞ is chirally-
diagonal. Its normalization to 1 is fixed by the weak pion decay constant fπ ≈ 130 MeV,

h0jūð0Þγμð1 − γ5Þdð0Þjπ−ðpÞi ¼ −Tr
�
γμð1 − γ5Þ

�
ifπ
4

γ5p

��Z
1

0

dxϕA
π−ðxÞ≡ ifπpμ ð6Þ

Isospin symmetry and charge conjugation force ϕπðxÞ ¼ ϕπðx̄Þ. The two twist-3 independent DAs ϕP
π ðxÞ and ϕT

π ðxÞ are
chirally nondiagonal [27]. They are tied by the current identity

∂νðūð0Þσμνγ5dðzÞÞ ¼ −∂μðūð0Þiγ5dðzÞÞ þmūð0Þγμγ5dðzÞ ð7Þ

and share the same couplings. The value of the dimensionful coupling constant χπ can be fixed by the divergence of the
axial-vector current and the PCAC relation

ðmu þmdÞh0jūð0Þiγ5dð0Þjπ−ðpÞi ¼ −ðmu þmdÞTr
�
iγ5

�
ifπ
4

γ5χπ

��Z
1

0

dxϕP
π ðxÞ ¼ ðmu þmdÞfπχπ ð8Þ

with ϕP
π ðxÞ normalized to 1. Using the Gell-Mann-Oakes-Renner relation

f2πm2
π ¼ −2ðmu þmdÞhq̄qi ð9Þ

with jhq̄qij ≈ ð240 MeVÞ3, yield

χπ ¼
m2

π

ðmu þmdÞ
ð10Þ

The values of the quark masses depend on the renormalization scale μ. Lattice simulations with fine lattices use μ ≈ 2 GeV.
However, for the DAs it is more appropriate to use a softer μ ≈ 1=ρ renormalization with slightly larger current quark
masses giving χπ ≈ 1.2 GeV.
The twist-3 pion DAs asymptote ϕP

π−ðxÞ → 1 and ϕT
π−ðxÞ → 6xx̄ owing to their conformal collinear spin, with

ϕT0
π−ðxÞ → 6ðx̄ − xÞ. At large Q2 their contribution is subleading in the pion electromagnetic form factor [28]

f2πχ2π
Q4

Z
dx1dx2

1

x̄1x̄2

��
1

x̄2
− 1

�
þ ðx̄2 − x2Þ

�
1

x̄2
þ 1

�
¼ 2x̄2

�
¼ 2

f2πχ2π
Q4

Z
dx1
x̄1

ð11Þ

IV. TWIST-3 QDA OF THE PION AND KAON

The quasipion distribution distribution amplitudes (qPDA) variants of (5) are

ϕ̃A
π−ðx; PzÞ ¼

i
fπ

Z
∞

−∞

dz
2π

ei
x−x̄
2
Pzzh0jūðz−Þγzγ5½z−; zþ�dðzþÞjπ−ðpÞi ð12aÞ
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ϕ̃P
π−ðx; PzÞ ¼

iPz

fπχπ

Z
∞

−∞

dz
2π

ei
x−x̄
2
Pzzh0jūðz−Þγ5½z−; zþ�dðzþÞjπ−ðpÞi ð12bÞ

ϕ̃T0
π−ðx; PzÞ ¼

6Pz

fπχπ

Pμn0ν

P · n0

Z
∞

−∞

dz
2π

ei
x−x̄
2
Pzzh0jūðz−Þσμνγ5½z−; zþ�dðzþÞjπ−ðpÞi ð12cÞ

where z is a spacelike separation, z� ¼ �z=2, and
nμ ¼ f0; 0; 0; 1g is the unit-vector along the linear
quark-separation (spacelike, z-direction here). For the
corresponding K− qPDAs, one would simply replace the
d-quark with the s-quark, and switch to the state jK−ðPÞi.
For finite Pz, the qPDAs can be matched with the
corresponding light-cone DA counterparts (5) by an in-
tegration kernel, calculable order-by-order in powers of μ

Pz

where μ represents any other mass-scale present [1,23].
However we will be taking the limit Pz → ∞, where the
matching becomes trivial ϕ̃ðx; Pz → ∞Þ → ϕðxÞ. Modulo
x-independent prefactors, the twist-3 distributions only
differ from the twist-2 distribution in their Dirac structure.
We write this common factor as:

Z
∞

−∞

dz
2π

ei
x−x̄
2
Pzzh0jūðz−ÞΓ½z−; zþ�dðzþÞjπ−ðpÞi ð13Þ

Following the prescription of the present authors’ pre-
vious paper [17], we insert the physical pion source and
resum planar diagrams to leading order in the diluteness
factor α ∼

ffiffiffi
κ

p
to get

−P2 þm2
π

Pzgπ

Z
d4k
ð2πÞ4 δ

�
x −

1

2
−
kz
Pz

�
Tr½ΓS1O5ðP; p1ÞS2�

ð14Þ
where in going from (13) to (14), S1 refers to the d-quark
(or s-quark for the negative kaon) and S2 refers to the
u-quark. We have subsumed notation for the pion’s on-
shell condition limP2 → −m2

π . The trace is over all indices,
and pμ

1;2 ¼ kμ � Pμ=2 is the momentum carried by

each quark flavor. The resummed quark propagator
S1;2 ≡ Sðp1;2; m1;2Þ is

Sðk;mÞ ¼
�

1

=k − iσðk;mÞ
�

≈
1

k2 þM2ð0; mÞ ð=kþ iMðk;mÞÞ ð15Þ

where m is the current mass of the individual quark. The
effective mass at LO in α is given by σðk;mÞ≈
Mðk;mÞ þOðα2Þ

Mðk;mÞ ¼ MðkÞ
ð1þ ξ2Þ1=2 þ ξ

þm

MðkÞ ¼ Mð0ÞðjzðI0K0 − I1K1Þ0j2Þz¼kρ
2

ξ ¼ mMð0Þρ2
8π2κ

ð16Þ

with MðkÞ≡Mðk; 0Þ throughout. In the above approxi-
mation we have dropped the term Δσ2 ≡ σ2ðkÞ − σ2ð0Þ
because it only provides a correction to our final integrals
which is subleading in α. The benefit of this approximation
is that our integrals will have vastly simplified kμ depend-
ence. In Fig. 2 we show the induced constituent quark mass
(16) for the parameters of the instanton vacuum. In Fig. 2(a)
we show Mðp; 0Þ solid-red curve versus p in GeV units.
The spread corresponds to Mð0Þ ¼ 383� 39 MeV and
ρ ¼ 0.313� 0.016 fm. The open-circles are lattice gener-
ated quark masses in Coulomb gauge [29]. In Fig. 2(b) we
show the dependence of the ratio Mð0; mÞ=Mð0; 0Þ on the
current mass by the solid-blue curve for fixed ξ, and by the
dashed-red curve for ξ ≪ 1.

(a) (b)

FIG. 2. (a) Effective quark massMðpÞ ¼ Mðp; 0Þ, both axes GeV; (b) Effective quark mass ratio, as a function of current quark mass.
See text.
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The resummed pseudoscalar pion vertex is

O5ðP;p1Þ≈γ5ð1þF5ðP;p1ÞÞþαF̄5ðP;p1ÞþOðα2Þ ð17Þ

F5ðP; p1Þ ≈
P2→m2

π gπ
fπ

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðp1Þ

p 1

P2 þm2
π

ffiffiffiffiffiffiffiffiffiffiffiffiffi
Mðp2Þ

p
ð18Þ

where gπ is the pseudoscalar pion-quark-quark coupling.
For an explicit calculation of gπ in the RIV framework, see
Sec. III. C in [17]. Expanding to first order in α, [14]
keeping in mind that MðkÞ ¼ ασ0ðkÞ, the common factor
becomes

− P2 þM2
π

Pzgπ

Z
d4k
ð2πÞ4 δ

�
x −

1

2
−
kz
Pz

��
Tr

�
Γ

p1

p2
1 þM2

1

γ5ð1þ F5ðp1; p2ÞÞ
p2

p2
2 þM2

2

�

þ Tr

�
Γ
�
iασ0ðp1Þ
p2
1 þM2

1

�
γ5ð1þ F5ðp1; p2ÞÞ

p2

p2
2 þM2

2

�
þ Tr

�
Γ

p1

p2
1 þM2

1

γ5ð1þ F5ðp1; p2ÞÞ
�
iασ0ðp2Þ
p2
2 þM2

2

��

þ Tr

�
Γ

p1

p2
1 þM2

1

αF̄5ðP; p1Þ
p2

p2
2 þM2

2

��
þOðα2Þ ð19Þ

with M1;2 ≡Mð0; m1;2Þ being the effective mass for each
quark.
In (19) there are four traces: the first is of order α0, the

next three are of order α1. If Γ contains an odd number of
γ’s (e.g., Γ ¼ γzγ5), the first trace term at order α0 has
vanishing Dirac trace, whereas the remaining three do not
have vanishing Dirac trace. This is the case when calculat-
ing the twist-2 qPDA. However if Γ contains an even
number of γ’s (e.g., Γ ¼ γ5, σμνγ5), then the first term has
nonvanishing Dirac trace. At next to leading order (NLO) in
α, the second and third terms vanish. The fourth term
involving F̄5 does not have vanishing Dirac trace, and
requires special attention. This is the case with the twist-3

distributions, which we are considering here. In our
previous paper [17] we showed that this term vanishes
for the axial-vector twist-2 DA, Γ ¼ γzγ5. We now make
explicit the leading contributions in α ∼

ffiffiffi
κ

p
to the twist-3

DAs, ϕP
0 ðxÞ and ϕT

0 ðxÞ. We also recap the similar expres-
sion for the twist-2 DA, ϕA

0 ðxÞ.

A. Pseudoscalar, Γ = γ5

The calculation of ϕ̃P
0 ðx; Þ begins by reinstating the

appropriate prefactor in (19). Out of the first three zero-
mode contributions in (19), only the first has nonvanishing
Dirac trace

ϕ̃P
0 ðx; PzÞ ¼

iPz

fπχπ

−P2

Pzgπ

Z
d4k
ð2πÞ4 δ

�
x −

1

2
−
kz
Pz

�
Tr

�
γ5

p1

p2
1 þM2

1

γ5ð1þ F5ðp1; p2ÞÞ
p2

p2
2 þM2

2

�

¼ 4iNc

f2πχπ

Z
d2k⊥dk4dkz

ð2πÞ4 δ

�
x −

1

2
−
kz
Pz

�
ðMðp1ÞMðp2ÞÞ1=2

p1 · p2

ðp2
1 þM2

1Þðp2
2 þM2

2Þ

¼ 4iNcPz

f2πχπ

Z
d2k⊥dk4
ð2πÞ4 ðMðp1ÞMðp2ÞÞ1=2

p1 · p2

ðp2
1 þM2

1Þðp2
2 þM2

2Þ
ð20Þ

where the delta function has set P1;z ¼ xPz and P2;z ¼ −x̄Pz. Since

p1 − p2 ¼ P ⇒ p1 · p2 ¼
1

2
½p2

1 þ p2
2 þm2

π� ð21Þ
the last term in (20) can be recast in the form

ϕ̃P
0 ðx; PzÞ ¼

2iNcPz

f2πχπ

Z
d2k⊥dk4
ð2πÞ4 ðMðp1ÞMðp2ÞÞ1=2

p2
1 þ p2

2 þm2
π

ðp2
1 þM2

1Þðp2
2 þM2

2Þ
ð22Þ

Notice that for the k4-integration, the pole and branch point structure is exactly the same as in the twist-2 case. Therefore we
evaluate in the same way, by Wick-rotating and shifting in k4, into the Minkowski domain as we detail in Appendix A.
Taking the final limit Pz → ∞, including the finite pion mass [17], and simplifying the pre-factor using χπ ¼ −2hψ̄ψi=f2π ,
the final result for the leading-order pseudoscalar DA is

ϕ̃P
0 ðxÞ ¼ i

Nc

2hψ̄ψi
θðxx̄Þ
xx̄

Z
d2k⊥
ð2πÞ3M

�
k⊥

λ
ffiffiffiffiffi
xx̄

p
�

k2⊥ þ x̄2M2
1 þ x2M2

2

k2⊥ þ x̄M2
1 þ xM2

2 − xx̄m2
π

ð23Þ
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The requisite x ↔ x̄, m1 ↔ m2 symmetry is manifest.
For plotting we use phenomenological values Mð0Þ ¼
383 MeV, jhψ̄ψij ¼ ð240 MeVÞ3, and ρ ¼ 0.313 fm.
The normalizing values of λ are provided in Table I in
Appendix B. Unevolved plots of (23) are shown in Fig. 3
for both the limit of a small instanton size ρ → 0 and typical
instanton size ρ ¼ 0.313 fm. For the pion, there is no
perceptible difference in (23) between using physical
masses (mπ ¼ 140 MeV, mu ¼ 3 MeV, md ¼ 7 MeV)
and the chiral counterparts (mπ;u;d ¼ 0). For the kaon we

use mK ¼ 494 MeV, mu ¼ 3 MeV, ms ¼ 136 MeV. The
small-size instanton limit (ρ → 0) corresponds to very high
resolution and is commensurate with the QCD asymptotic
result as expected.

B. Pseudotensor, Γ= σμνγ5

The only difference with the pseudoscalar case
will be that instead of having a factor iTr½=p=p�, we will
have

6
Pμnν
P · n

Tr½σμν=p1=p2� ¼ −24i
Pμnν
P · n

ðpμ
1p

ν
2 − pμ

2p
ν
1Þ

¼ −24i
P · n

½ðP · p1Þðn · p2Þ − ðn · p1ÞðP · p2Þ� ð24Þ

where nμ is the tangent vector to the spacelike quark separation line in (12), nμ ¼ ẑμ. Making this replacement in (20), we
get

ϕ̃T0
0 ðx; PzÞ ¼

−24iNc

f2πχπ

Z
d2k⊥dk4
ð2πÞ4 ðMðp1ÞMðp2ÞÞ1=2

ðP · p1Þðn · p2Þ − ðn · p1ÞðP · p2Þ
ðp2

1 þM2
1Þðp2

2 þM2
2Þ

ð25Þ

As before, we Wick-rotate and shift the k4 integration, k4 → iðk4 þ ðx − 1
2
EÞÞ, leaving us with

ϕ̃T0
0 ðx; PzÞ ¼

24Nc

f2πχπ

Z
d2k⊥dk4
ð2πÞ4 ðMðy1ÞMðy2ÞÞ1=2

ðP · y1Þðn · y2Þ − ðn · y1ÞðP · y2Þ
ðy21 þM2

1Þðy22 þM2
2Þ

ð26Þ

To evaluate the integrand we use the same kinematics as in (A2). To perform the k4 integral, we follow the same procedure
as in the pseudoscalar case—use the modified effective mass, then integrate the remaining rational function using Cauchy’s
residue theorem. The final result for the integrated ϕTðxÞ is

ϕ̃T
0 ðxÞ ¼

−3iNc

hψ̄ψi θðxx̄Þ
Z

x

0

dv
Z

d2k⊥
ð2πÞ3M

�
k⊥

λ
ffiffiffiffiffiffi
vv̄

p
�

1

vv̄
ðv̄ − vÞk2⊥ þ v̄2M2

1 − v2M2
2

k2⊥ − vv̄m2
π þ v̄M2

1 þ vM2
2

ð27Þ

Again, the requisite x ↔ x̄, m1 ↔ m2 symmetry is manifest (the integrand is odd under this transformation). Unevolved
plots of (27) are shown in Fig. 3 for phenomenological and limiting values of ρ. In the case that ρ → 0 (high resolution), the
pseudotensor DA approaches its asymptotic form. Once again, the normalizing values of λ are given in Table I in
Appendix B.

FIG. 3. Pseudoscalar and pseudotensor pion DAs at different instanton sizes or resolution. The ρ ≈ 0 curves (solid blue) are
indiscernible from the asymptotic forms. For the pseudotensor DA ϕT , both for phenomenological and small ρ, the curves are
indistinguishable from the asymptotic form 6xx̄.
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C. Axial-vector, twist-2, Γ = γzγ5

Here we generalize a key expression from our previous
paper [17]: the twist-2 DA at leading order in α, now
including finite current quark masses m1;2 for the pseudo-
scalar meson P. It is given by

ϕA
PðxÞ ≈

2Nc

f2P
θðxx̄Þ

Z
d2k⊥
ð2πÞ3Mðk̃⊥Þ

×
x̄Mðk̃⊥; m1Þ þ xMðk̃⊥; m2Þ
k2⊥ − xx̄m2

P þ x̄M2
1 þ xM2

2

ð28Þ

with k̃⊥ ¼ k⊥=λ
ffiffiffiffiffi
xx̄

p
. We use fπ ¼ 130 MeV for massive

pions and fK ¼ 155 MeV for massive kaons. Unevolved
plots of (28) are shown in Fig. 4 for phenomenological and
limiting values of ρ. For ρ → 0 the curves tend toward a
normalized step-function, rather than toward the asymp-
totic distribution 6xx̄. This type of curve has been noted for
chiral quark models with point interactions [30,31], and
some bound-state resummations [32].

V. QCD EVOLUTION

The two-particle twist 2 and 3 DAs in the random
instanton vacuum (RIV) are defined at a low renor-
malization scale set by the typical inverse instanton
size Q0 ¼ 1=ρ ¼ 631 GeV. Assuming factorization, their
forms at higher renormalization scales follow from QCD
evolution equations

ϕAðx;QÞ ¼ 6xx̄
X∞
n¼0

anðQ0Þ
�
αsðQ2Þ
αsðQ2

0Þ
�

γAn=β0

× C3=2
n ðx − x̄Þ ð29aÞ

ϕPðx;QÞ ¼ 1þ
X∞
n¼1

bnðQ0Þ
�
αsðQ2Þ
αsðQ2

0Þ
�

γPn =β0

× C1=2
n ðx − x̄Þ ð29bÞ

ϕTðx;QÞ¼6xx̄

�
1þ

X∞
n¼1

cnðQ0Þ
�
αsðQ2Þ
αsðQ2

0Þ
�

γTn =β0
C3=2
n ðx− x̄Þ

�

ð29cÞ

with the anomalous dimensions γA;P;Tn given by [33]

γAn ¼ CF

�
−3þ 4

Xnþ1

j¼1

1

j
−

2

ðnþ 1Þðnþ 2Þ
�

ð30aÞ

γPn ¼ CF

�
−3þ 4

Xnþ1

j¼1

1

j
−

8

ðnþ 1Þðnþ 2Þ
�

ð30bÞ

γTn ¼ CF

�
−3þ 4

Xnþ1

j¼1

1

j

�
ð30cÞ

Here Cm
n ðzÞ are Gegenbauer polynomials, CF ¼

ðN2
c − 1Þ=2Nc is the quadratic-Casimir in the fundamental

representation, αsðQ2Þ ¼ 4π=ðβ0 lnðQ2=Λ2ÞÞ is the one-
loop running QCD coupling, β0 ¼ 11

3
Nc − 2

3
Nf, and

Λ ¼ 250 MeV. One can easily verify that the normaliza-
tions are preserved under QCD evolution, as they should
be. Owing to the orthogonality of the Gegenbauer poly-
nomials, the initial coefficients are given by

anðQ0Þ ¼
2ð2nþ 3Þ

3ðnþ 1Þðnþ 2Þ
Z

1

0

dyC3=2
n ðy − ȳÞϕAðy;Q0Þ

ð31aÞ

bnðQ0Þ ¼ ð2nþ 1Þ
Z

1

0

dyC1=2
n ðy − ȳÞϕPðy;Q0Þ ð31bÞ

cnðQ0Þ ¼
2ð2nþ 3Þ

3ðnþ 1Þðnþ 2Þ
Z

1

0

dyC3=2
n ðy − ȳÞϕTðy;Q0Þ

ð31cÞ

FIG. 4. Twist-2 (axial-vector) pion and kaon DAs at different instanton sizes or resolution. The normalizing values of λ for the
ρ ¼ 10−5 fm curves are as follows: λπ ¼ 7.51, λK ¼ 9.7 (for the phenomenological curves see Appendix B). For both the pion and kaon,
the ρ ≈ 0 curves (solid blue) tend toward a normalized step-function θðxx̄Þ.
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The twist-2 and twist-3 DAs, evolved toQ ¼ 2 GeV, are
shown in Fig. 5. All curves are shown at the same renorm-
alization scale. Our twist-2 pion DA shows a shape slightly
broader than the asymptotic form. This shape has been seen
in recent lattice calculations [2,34]. In some light-front
constituent quark models, a shape slightly narrower than
the asymptotic form is seen—we do not display this curve in
Fig. 5(a) because of a mismatch in renormalization schemes
[35]. The empirical pion twist-2DA extracted from dijet data
by the E791 collaboration is in agreement with all curves
shown Fig. 5(a), though the precise shape is obscured by
uncertainties [36]. The same broad shape is seen in our twist-
2 kaon DA, Fig. 5(b), although we see a smaller asymmetry
than other phenomenological approaches.

The general behavior of all our DAs show agreement
with those denoted DSE [37], except that our curves
are closer to the respective asymptotic forms. This is
most notable in the pseudoscalar DAs, where our curves
are remarkably closer to the asymptotic form. Although
our kaon’s pseudoscalar DA seems to lack asymmetry,
especially compared to the pion’s pseudoscalar DA, this
is only because the overall scale of all its Gegenbauer
moments are smaller, thereby making its difference
from the asymptotic form indiscernible. We can see
this with a comparison of the first two nontrivial
Gegenbauer moments—the ratio b1=b2 is nearly an
order of magnitude larger for the kaon compared to
the pion.

FIG. 5. ERBL evolution of DAs, compared with data. All curves are given atQ ¼ 2 GeV. RIV (red-solid-thick) represents our current
work, the random instanton vacuum approach, given by Eqs. (23), (27), and (28). MSULAT curves (green-solid-bands) are recent lattice
computations utilizing the LaMET framework [34]. DSE curves (purple-dash-dot-dot) are from [37] which utilized Dyson-Schwinger
equations with Bethe-Salpeter amplitudes.
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bπ1ðQ0Þ ¼ 8.4 × 10−5 bπ2ðQ0Þ ¼ 1.74 × 10−2				 b
π
1ðQ0Þ

bπ2ðQ0Þ
				 ¼ 4.82 × 10−3 ð32aÞ

bK1 ðQ0Þ ¼ 1.41 × 10−4 bK2 ðQ0Þ ¼ 3.46 × 10−3				 b
K
1 ðQ0Þ

bK2 ðQ0Þ
				 ¼ 4.07 × 10−2 ð32bÞ

VI. CONCLUSIONS

Cooled lattice gauge configurations display strongly
inhomogeneous instanton and anti-instanton configura-
tions. The dilute QCD instanton vacuum in its simplified
RIV form capture the essentials physics of these tunneling
configurations at low resolution. Each tunneling traps a
zero mode of a given chirality for each flavor, breaking
dynamically chiral symmetry. The disordering of these zero
modes leads to a multitude of multiquark condensates and a
running constituent quark mass [21,38].
In the RIV the pion quasi-DA is a state made of zero-

modes and nonzero-modes that interact collectively. While
still complex, this state can be organized in terms of the
RIV diluteness factor α ∼

ffiffiffi
κ

p
. In leading order in α, the

twist-2 contribution to the pion quasi-DA involves both
the zero-modes and nonzero-modes as we have analyzed in
details in [17] and smoothly yields the pion DA in the large
momentum limit. quasi-DA are dominated solely by the
zero-modes owing to their pseudoscalar and pseudotensor
content. They also yield smoothly the pion DA in the large
momentum limit. In all cases the DA follows from the large
momentum limit of the quasi-DA.
Our evolved results for the twist-2 (axial-vector) and

twist-3 (tensor) pion and kaon DA amplitudes, are very
close to the DSE results, and consistent with the recently
reported lattice results for the twist-2. Our evolved results
for the twist-3 (pseudoscalar) for the pion and kaon DA
amplitudes are different from those obtained using the
DSE, but very close to the QCD asymptotic results. It is
rather remarkable, that our pion and kaon DA amplitudes
probe specifically the running emergent topological quark
mass in the dilute RIV, which is the dominant component of
the QCD vacuum at low resolution.
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APPENDIX A: DETAILS OF EQ. (23)

We start from (22) and perform the analytical continu-
ation k4 → ik4, followed by the shift k4 → k4 þ ðx − 1

2
ÞE.

The result is

ϕ̃P
0 ðx; PzÞ ¼

2iNcPz

f2πχπ

Z
d2k⊥ðidk4Þ

ð2πÞ4 ðMðy1ÞMðy2ÞÞ1=2

×
y21 þ y22 þm2

π

ðy21 þM2
1 − iϵÞðy22 þM2

2 − iϵÞ ðA1Þ

where

yμ1 ¼ ðk⃗⊥; xPz; iðk4 þ xEÞÞ
y21 ¼ −k4ðk4 þ 2xEÞ þ k2⊥ − x2m2

π

y21 þM2
1 − iϵ ¼ −ðk4 − k4þÞðk4 − k4−Þ

yμ2 ¼ ðk⃗⊥;−x̄Pz; iðk4 − x̄EÞÞ
y22 ¼ −k4ðk4 − 2x̄EÞ þ k2⊥ − x̄2m2

π

y22 þM2
2 − iϵ ¼ −ðk4 − k̄4þÞðk4 − k̄4−Þ: ðA2Þ

The emergent constituent quark massMðyÞ is characterized
by branch points. In [17] we have shown that the analysis
retaining the branch points in MðyÞ is similar to the one
following from the modified effective mass at large Pz,

MðyÞ → M

�
k⊥

λ
ffiffiffiffiffiffiffiffijxx̄jp

�
ðA3Þ

This removes the explicit k4-dependence in MðyÞ, so we
can evaluate the k4 integral by residues. The value of λ is
then fixed to reproduce unit normalization of the DA. Note
that in [17], we used the additional constraint k⊥ > Mð0Þ in
the cutoff, which does not affect the power counting, but is
not necessary.
With the above in mind, the integrand in (A1) has 4 poles

in the complex k4 plane, fk4�; k̄�g. For large Pz, two poles
fk4þ; k̄4−g tend toward the origin, whereas the other two
fk4−; k̄4þg tend toward infinity.

k4þ ≈
k2⊥ þM2

1 − x2m2
π − iϵ

2xE
k̄4− ≈

k2⊥ þM2
2 − x̄2m2

π − iϵ
−2x̄E

k4− ≈−2xEþ iϵ k̄4þ ≈ 2x̄E− iϵ ðA4Þ
Notice that only for the physical domain xx̄ > 0 do the poles
close to the origin appear on each half-plane. In the
unphysical domain xx̄ < 0, both of these poles lie in the same
half-plane, which after closing the contour in the opposite
half-plane gives a vanishing result. We encapsulate this fact,
that the leading-order PDAshave support only in thephysical
domain xx̄ > 0, with on overal θðxx̄Þ. We close the contour
for (A1) in the UHP, picking up only k̄4− and k4−. At the
location of the first pole k̄4−, we have

y22 þM2
2 ¼ 0 y21 ≈

1

x̄
½k2⊥ þM2

2 − xx̄m2
π� −M2

2

k̄4− − k̄4þ ¼ −2x̄E: ðA5Þ
At the second pole k4−, we have

y21þM2
1 ¼ 0 y22 ≈−4E2x k4− − k4þ ¼−2xE: ðA6Þ
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APPENDIX B: NORMALIZATION λ VALUES APPENDIX C: MODIFICATIONS TO THE
CONSTITUENT QUARK MASS

Our effective quark mass obtained at leading order in α
is given by (16). A plot of the zero-momentum limit as a
function of current mass m is shown in Fig. 2. This
constituent quark mass has the interesting property of
being approximately constant for 0MeV<m<180MeV,
assuming phenomenological values of ρ and α. Although
obtained from a OðαÞ integral equation, (16) contains
higher powers of α resummed into dependence on m
through ξ. If we maintain strict power counting in α and
simultaneously assume sufficiently small quark mass m
such that ξ ≪ 1 (for our parameter values this is not true),
then we arrive at the approximation Mðk;mÞ ≈MðkÞ þm.

FIG. 6. Unevolved DA, at Q ¼ Q0 ¼ 631 MeV, with certain modifications to the effective mass. “Original” (red-thick-solid) denotes
(23), (27), and (28). “mod(1)” (blue-dotted) denotes the shifted effective mass, and “mod(2)” (purple-dash-dot-dot) the shifted cutoff.
See text.

TABLE I. Values of λ which normalize the DAs. A,P, and T
correspond to axial-vector (twist-2), pseudoscalar (twist-3), and
pseudotensor (twist-3) DAs respectively. “original” corresponds to
our main expressions for the DA, (23), (27), and (28). The
modifications “mod(1)” and “mod(2)” are discussed inAppendixC.

Original mod(1) mod(2)

λAπ 4.918 4.906 5.839
λAK 5.944 6.125 6.877
λPπ 1.631 1.633 1.906
λPK 1.556 1.595 1.846
λTπ 1.5337 1.538 1.988
λTK 1.466 1.594 1.932

ARTHUR KOCK and ISMAIL ZAHED PHYS. REV. D 104, 116028 (2021)

116028-10



We insert this approximation into the expressions for the
DAs and see how they change. In Fig. 6, this change is
denoted by “mod(1).” The most notable resulting change
is seen in the kaon pseudotensor DA, which no longer
approaches zero at x → 1. A slight restoration of x ↔ x̄
symmetry is seen in the kaon twist-2 DA. All other DAs are
relatively unchanged.

Finally,we consider the effect of restrictingk⊥ > Mð0; mÞ
in the cutoff (A3), as was noted in Sec. IV. This modification
was implicitly present in our previous paper [17]. In Fig. 6
this change is denoted by “mod(2).” This results in a slight
narrowing of the axial-vector (twist-2) and pseudotensor
(twist-3) DAs. The biggest change is seen in the pseudoscalar
(twist-3) DA, which becomes concave.
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