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Within the non-Abelian SU(2) Proca-Higgs theory, we study localized axially symmetric solutions
possessing a finite field energy. It is shown that in a certain sense such solutions are analogs of the Nielsen-
Olesen tube, since they have a longitudinal magnetic field creating a flux of this field over the central cross
section of the Proca tube. The main difference between the Proca tube and the Nielsen-Olesen tube is that
the Proca tube is described by a topologically trivial solution and has finite size, since its energy density
decreases exponentially with distance. The dependence of the total field mass of the Proca tube on the value
of one of the parameters determining the solution is examined in detail. The solutions are obtained both in
the presence and in the absence of external sources (charge and current densities).
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I. INTRODUCTION

In recent years interest in systems involving various
massive vector fields has increased considerably. Such
fields do emerge, in particular, when considering Proca
theories. The presence of a mass of vector fields results in
substantial differences in the behavior of Proca fields
compared with Yang-Mills fields: the Proca fields decay
exponentially fast at spatial infinity, which is impossible in
principle for the Yang-Mills fields.
At the present time, studies of Proca theories are

performed in various directions. In particular, within the
past few years, there was prolific activity in the field of
physics of Proca stars [1–5] and black holes modeled
within generalized Proca theories [6]. The massive exten-
sion of a SU(2) gauge theory is studied in Refs. [7,8], the
static and spherically symmetric solutions in a class of the
generalized Proca theory with the nonminimal coupling to
the Einstein tensor are found in Ref. [9], the cosmological

implications of generalized Proca theories are under inves-
tigation in Ref. [10].
In Refs. [11–13], we have studied infinite cylindrically

symmetric solutions (tubes) containing a longitudinal
electric field. The solutions have been obtained within
the non-Abelian Proca-Higgs theory. It is of great interest to
get similar solutions describing finite-size objects; this
implies that the field energy density should decrease away
from the center of a configuration sufficiently fast. In this
connection, in the present study we extend the results of
Refs. [11–13] and examine axially symmetric solutions in
the non-Abelian Proca-Higgs theory with a longitudinal
color magnetic field directed along the symmetry axis and
transverse electric fields located in a plane perpendicular to
the symmetry axis. As will be shown below, the asymptotic
behavior of the fields leads to the fact that the total energy
of such configurations is finite; this enables us to call such
solutions as particlelike solutions. At the same time, the
field configurations obtained have a non-Abelian longi-
tudinal magnetic Proca field; this enables us to call them
tubes with a flux of the corresponding magnetic field over a
plane perpendicular to the tube axis and located at the
center of the axis. The latter means that such a tube can be
regarded as an analogue of the Nielsen-Olesen tube [14],
since in both cases there is the flux of the magnetic field
over the transverse cross section of the tube. On the other
hand, there also exist substantial differences: (i) the
Nielsen-Olesen tube is a topologically nontrivial configu-
ration, whereas our field configuration is topologically
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trivial; (ii) the Proca tube has finite size, since the fields
decrease exponentially with distance; and (iii) the Nielsen-
Olesen tube contains an Abelian magnetic field, whereas
the Proca tube—a non-Abelian magnetic field.
It should be also noted that in our study we consider a

system supported by Proca fields together with a Higgs
scalar field. The presence of the latter, as will be shown
below, leads to a very interesting result: it initiates the
process where the Proca fields are being pushed outside by
the Higgs field. This interesting result is an analogue of the
Meissner phenomenon in superconductivity and of the dual
Meissner effect in QCD.
The field configurations under investigation can emerge

as quasiparticles in the hypothetical “quark-Proca-gluon-
Higgs” plasma. In this connection we note that, in QCD, it
is assumed that in the quark-gluon plasma there exist
multiple bound states of quasiparticles (for details see
Ref. [15] where the existence of such quasiparticles has
been suggested, as well as Ref. [16] where studies in this
direction have been continued and the role of multiple
(colored) bound states in the quark-gluon plasma phase at
not too high temperature is demonstrated).
Thus, we will study here particlelike solutions in the

Proca-Higgs theory in which there is a color longitudinal
Proca field directed along the symmetry axis; this enables
us to call such solutions as Proca tubes with a flux of the
magnetic field. The paper is organized as follows. In Sec. II,
we write down the general field equations for the non-
Abelian-Proca-Higgs theory. In Sec. III, we obtain cylin-
drically symmetric solutions to the equations of Sec. II
describing infinite tubes with the flux of the longitudinal
color magnetic field. In Sec. IV, we find axially symmetric
solutions to the equations of Sec. II (both with and without
charge and current densities) describing finite-size tubes
with the flux of the longitudinal chromomagnetic field.
Finally, in Sec. V, we summarize and discuss the results
obtained in the present paper.

II. NON-ABELIAN SU(3) PROCA-HIGGS THEORY

The Lagrangian describing a system consisting of a non-
Abelian SU(3) Proca field Aa

μ interacting with nonlinear
scalar field ϕ can be taken in the form (hereafter, we work
in units such that c ¼ ℏ ¼ 1)

L ¼ −
1

4
Fa
μνFaμν −

1

2
ðμ2Þab;μνAa

μAbν þ 1

2
∂μϕ∂μϕ

þ λ

2
ϕ2Aa

μAaμ −
Λ
4
ðϕ2 −M2Þ2: ð1Þ

Here Fa
μν ¼ ∂μAa

ν − ∂νAa
μ þ gfabcAb

μAc
ν is the field strength

tensor for the Proca field, where fabc are the SU(3)
structure constants, g is the coupling constant, a; b; c ¼
1; 2;…; 8 are color indices, μ, ν ¼ 0, 1, 2, 3 are spacetime
indices. The Lagrangian (1) also contains the arbitrary
constantsM, λ, Λ and the Proca field mass tensor ðμ2Þab;μν.

Using (1), the corresponding field equations can be
written in the form

DνFaμν − λϕ2Aaμ ¼ −ðμ2Þab;μνAbν þ jaμ; ð2Þ

□ϕ ¼ λAa
μAaμϕþ ΛϕðM2 − ϕ2Þ; ð3Þ

where, for the sake of generality, we have also added the
current four-vector jaμ. For such systems, the field energy
density is

ε ¼ 1

2
ðEa

i Þ2 þ
1

2
ðHa

i Þ2 − ðμ2Þab;α0Aa
αAb

0 þ
1

2
ðμ2Þab;αβAa

αAbβ

þ 1

2
ð∂tϕÞ2 þ

1

2
ð∇ϕÞ2 þ λϕ2

�
ðAa

0Þ2 −
1

2
Aa
αAaα

�

þ Λ
4
ðϕ2 −M2Þ2; ð4Þ

where i ¼ 1, 2, 3 and Ea
i and H

a
i are the components of the

electric and magnetic field strengths, respectively.
In the present paper we will consider solutions belonging

to the subgroup SUð2Þ ⊂ SUð3Þ spanned on the Gell-Mann
matrices λ2;5;7.

III. INFINITE FLUX TUBE SOLUTIONS

To begin with, it will be helpful to study a simpler system
with an infinite flux tube containing a flux of a longitudinal
electric field [11–13]. To describe such a tube, let us choose
the ansatz for the field potentials in the form

A2
t ¼

fðρÞ
g

; A7
φ ¼ ρwðρÞ

g
; ϕ ¼ ϕðρÞ ð5Þ

written in cylindrical coordinates ft; ρ; z;φg. Such a tube
contains the following color electric and magnetic fields
(physical components):

E2
ρ ¼ −

f0

g
; E5

φ ¼ −
fw
2g

; H7
z ¼ −

ρw0 þ w
gρ

: ð6Þ

(Henceforth in this section the prime denotes differentiation
with respect to ρ.) In this case the energy flux is absent,
since all components of the Poynting vector are zero,

Si ¼ ϵijkffiffiffi
γ

p Ea
jH

a
k ¼ 0; ð7Þ

where ϵijk is the completely antisymmetric Levi-Civita
symbol and γ is the determinant of the space metric.
Substituting the potentials (5) in Eqs. (2) and (3), we get

the following set of equations (without the current):

f00 þ f0

ρ
¼ f

�
w2

4
þ λϕ2 − μ21

�
; ð8Þ
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w00 þ w0

ρ
−

w
ρ2

¼ w

�
−
f2

4
þ λϕ2 − μ22

�
; ð9Þ

ϕ00 þ ϕ0

ρ
¼ ϕ

�
λ

g2
ð−f2 þ w2Þ þ Λðϕ2 −M2Þ

�
ð10Þ

with the following components of the Proca field mass
tensor: μ21 ¼ ðμ2Þ22;tt and μ22 ¼ ðμ2Þ77;φφ. We seek a sol-
ution to Eqs. (8)–(10) in the vicinity of the origin of
coordinates in the form

fðρÞ ¼ f0 þ f2
ρ2

2
þ… with f2 ¼

f0
2
½λϕ2

0 − μ21�;
wðρÞ ¼ w1ρþ…;

ϕðρÞ ¼ ϕ0 þ ϕ2

ρ2

2
þ… with

ϕ2 ¼
ϕ0

2g2
½−λf20 þ g2Λðϕ2

0 −M2Þ�;

where the expansion coefficients f0,ϕ0, andw1 are arbitrary.

The derivation of solutions to the set of equations (8)–
(10) is an eigenvalue problem for the parameters μ1, μ2, and
M. The numerical solution describing the behavior of the
Proca field potentials and of the corresponding electric and
magnetic fields is given in Figs. 1–4. In particular, Fig. 2
shows the energy density obtained from Eq. (4) using (5)
and (6) in the form

ε ¼ 1

g2

�
f02

2
þ ww0

ρ
þ w02

2
þ g2

2
ϕ02 þ w2

2ρ2
þ f2w2

8
−
μ21f

2

2

−
μ22w

2

2
þ λ

2
ðf2 þ w2Þϕ2 þ g2Λ

4
ðϕ2 −M2Þ2

�
: ð11Þ

The asymptotic behavior of the functions f, w, and ϕ,
which follows from Eqs. (8)–(10), is

fðρÞ ≈ f∞
e−ρ

ffiffiffiffiffiffiffiffiffiffiffiffi
λM2−μ2

1

p
ffiffiffi
ρ

p ; wðρÞ ≈ w∞
e−ρ

ffiffiffiffiffiffiffiffiffiffiffiffi
λM2−μ2

2

p
ffiffiffi
ρ

p ;

ϕ ≈M − ϕ∞
e−ρ

ffiffiffiffiffiffiffiffiffi
2ΛM2

p

ffiffiffi
ρ

p ;

where f∞, w∞, and ϕ∞ are integration constants.

FIG. 1. The graphs of the Proca field potentials f, w and of the
scalar field ϕ for the following values of the system parameters:
λ ¼ 10, Λ ¼ 1, g ¼ 1, f0 ¼ 0.2, ϕ0 ¼ 1, w1 ¼ 1, M ¼ 1.44227,
μ1 ¼ 3.359585, μ2 ¼ 3.7633.

FIG. 2. The profile of the flux tube energy density from Eq. (11)
for the solutions given in Fig. 1.

FIG. 3. The profiles of the color electric fields E2
ρ and E5

φ from
Eq. (6) for the solutions given in Fig. 1.

FIG. 4. The profile of the color magnetic field H7
z from Eq. (6)

for the solutions given in Fig. 1.
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It is seen from Figs. 1–4 that the cylindrically symmetric
solutions found can be used to describe infinitely long tubes
within the non-Abelian Proca-Higgs theory under consid-
eration. Such tubes possess the finite linear energy density
(see Fig. 2),

E ¼ 2π

Z
∞

0

ρεðρÞdρ < ∞;

and the finite flux of the longitudinal color magnetic field
H7

z (see Fig. 4),

ΦH
z ¼ 2π

Z
∞

0

ρH7
zdρ < ∞:

Note that, unlike the systems considered by us earlier in
Refs. [11–13], these tubes contain neither the flux of the
longitudinal color electric field Ea

z nor the energy flux/
momentum density (since the Poynting vector is zero).

IV. FINITE FLUX TUBE SOLUTIONS

Let us now extend the solutions of the previous section to
the case of finite-size configurations. To obtain static
axially symmetric solutions, we employ the ansatz (5),
with an obvious generalization to the case where the
components of the four-potential depend also on the
coordinate z. As will be demonstrated below, in this case,
it is possible to get solutions describing configurations
possessing finite sizes both along the ρ-axis and along the
z-axis.
For convenience of performing numerical computations,

we employ spherical coordinates ft; r; θ;φg in which the
ansatz (5) can be recast in the form

A2
t ¼

fðr;θÞ
g

; A7
φ ¼ rsinθ

wðr;θÞ
g

; ϕ¼ϕðr;θÞ; ð12Þ

where all functions now depend on r and θ. For such
ansatz, there are the following nonzero physical compo-
nents of color electric and magnetic fields:

E2
r ¼ −

f;r
g
; E2

θ ¼ −
f;θ
gr

; E5
φ ¼ −

fw
2g

; ð13Þ

H7
r ¼ −

w;θ þ w cot θ
gr

; H7
θ ¼

wþ rw;r

gr
: ð14Þ

(Henceforth a comma in lower indices denotes differ-
entiation with respect to the corresponding coordinate.)
In turn, the field equations (2) and (3) yield

f;rrþ
2

r
f;rþ

1

r2
ðf;θθþcotθf;θÞ−

1

4
fðw2þ4λϕ2Þþμ21f¼j2t;

ð15Þ

w;rr þ
2

r
w;r þ

1

r2
ðw;θθ þ cot θw;θÞ −

w
r2sin2θ

þ 1

4
ðf2 − 4λϕ2Þwþ μ22w ¼ −r sin θj7φ; ð16Þ

ϕ;rr þ
2

r
ϕ;r þ

1

r2
ðϕ;θθ þ cot θϕ;θÞ þ

λ

g2
ðf2 − w2Þϕ

− Λϕðϕ2 −M2Þ ¼ 0: ð17Þ

The results of numerical simulations for these equations are
given in Sec. IVA (in the absence of the currents) and in
Sec. IV B (in the presence of the currents).

A. The case with no charges

Consider first the case where the currents jaμ ¼ 0 in
Eqs. (15) and (16). To solve the set of equations (15)–(17),
it is necessary to impose appropriate boundary conditions
for the Proca and scalar fields at the origin (r ¼ 0), at
infinity (r → ∞), on the positive z axis (θ ¼ 0), and, using
the reflection symmetry with respect to θ → π − θ, in the
fx; yg plane (θ ¼ π=2). So we require

∂f
∂r

����
r¼0

¼ ∂ϕ
∂r

����
r¼0

¼ 0; wjr¼0 ¼ 0;

fjr¼∞ ¼ 0; wjr¼∞ ¼ 0; ϕjr¼∞ ¼ M;

∂f
∂θ

����
θ¼0

¼ ∂ϕ
∂θ

����
θ¼0

¼ 0; wjθ¼0 ¼ 0;

∂f
∂θ

����
θ¼π=2

¼ ∂w
∂θ

����
θ¼π=2

¼ ∂ϕ
∂θ

����
θ¼π=2

¼ 0:

The set of three coupled nonlinear elliptic partial
differential equations (15)–(17) has been solved numeri-
cally subject to the above boundary conditions.
Calculations are carried out using the package FIDISOL

[17] where the numerical method based on the Newton-
Raphson method is employed. This method provides an
iterative procedure for obtaining an exact solution starting
from an approximate solution (an initial guess). The
essence of the procedure is that, in the first step, a
correction is computed that improves the approximate
solution. Then this improved approximate solution is used
in the next step to obtain the next correction that gives a
better approximation to the exact solution. Repeating the
calculations iteratively, the approximate solution will
eventually converge to the exact solution to a prescribed
accuracy.
To obtain a correct numerical solution, there are two key

points. First, it is essential to have a good initial guess for
starting the iteration procedure. As such initial guess, we
used the solution for the infinite tube obtained in Sec. III.
Second, an important point is the accuracy of numerical
solutions being obtained. The accuracy is directly related to
the discretization of the set of partial differential equations:
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it depends on the number of grid points and on the order of
consistency of the differential formulas for the derivatives.
Typical grids used by us have sizes 201 × 51 points,

covering the region of integration in the r and θ directions,
respectively. This enabled us to get solutions with typical
relative errors less than 10−4.

FIG. 5. Distributions of the fields ϕ (upper row), f (second row), w (third row), and the total energy density of the system ε from
Eq. (18) (lower row) for different values of μ2 and fixed values of the parameters M ¼ 1.4, Λ ¼ 1, λ ¼ 10, g ¼ 1, and μ1 ¼ 3.3 are
shown as functions of the coordinates ρ ¼ r sin θ and z ¼ r cos θ.
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As in the case of an infinite tube of Sec. III, the input
parameters are eigenparameters μ1, μ2, and M, whose
magnitudes determine the solution completely. (Notice
here that by imposing appropriate boundary conditions
to Eqs. (15)–(17), one can reproduce solutions for an
infinite flux tube obtained in Sec. III.) For different values
of the aforementioned parameters, one can obtain qualita-
tively different field distributions, some typical examples of
which are depicted in Fig. 5.
In particular, Fig. 5 shows the total energy density of

the system under consideration obtained from (4) using
(12)–(14) in the form

ε¼ 1

g2

�
f2;θ
2r2

þf2;r
2
þw2

;r

2
þw2

;θ

2r2
þ cotθ

ww;θ

r2
þww;r

r

þg2

2

�
ϕ2
;θ

r2
þϕ2

;r

�
þf2w2

8
−
μ21
2
f2−

μ22
2
w2

þ λ

2
ϕ2ðf2þw2Þþ csc2θ

w2

2r2
þg2Λ

4
ðϕ2−M2Þ2

�
: ð18Þ

It is seen from the graphs of Fig. 5 that the energy
density is negative in some regions. To see whether this
will give a negative total energy of the system or not, we
calculate the total mass (energy) of the configurations under
consideration,

Mtot ¼ 2π

Z
εr2 sin θdrdθ: ð19Þ

The results of calculations are given in Fig. 6 for the range
1.02 ≤ μ2 ≤ 4.2 for fixed values of other system parame-
ters. For μ2 ¼ μ2ðcritÞ ≈ 3.73, the function f → 0, and with
further increase of μ2, it always remains equal to zero.
Correspondingly, the configurations with μ2 ≲ μ2ðcritÞ pos-
sess both the magnetic and electric fields, but for μ2 ≳
μ2ðcritÞ only the magnetic field is present. Taking into
account that the asymptotic expansions of the solutions
at large r give the restriction on the mass μ2 <

ffiffiffiffiffiffiffiffiffi
λM2

p
(see

below), the numerical calculations indicate that when μ2
goes to this upper limit the functions w → 0 (the magnetic
field is switched off) and ϕ → M over all space.
Correspondingly, the energy density and the total mass
of the system vanish, as is seen from Fig. 6.
Using the solutions obtained, in Figs. 7–9, we have

plotted the distributions of the color electric and magnetic
fields for different values of μ2. The analysis of these
distributions indicates that

(i) According to Fig. 7, there is a point lying on a circle
in the z ¼ 0 plane where the lines of force of the
electric field E⃗2 penetrate into. Aside from this, for
sufficiently small values of μ2, there is a surface in
the form of a torus where the lines of force of the
electric field penetrate into as well.

(ii) As is seen from Fig. 9, the magnetic field H⃗7

possesses a vortex centred at a circle in the z ¼ 0
plane. In this case, as ρ → 0, the component
H7

ρ → 0, whereas the component H7
z remains non-

zero; as a result, there is a flux of this field
perpendicular to the transverse cross section of
the tube.

(iii) The configurations obtained for μ2 ≳ μ2ðcritÞ resem-
ble somewhat the Nielsen-Olesen tube: both types of
systems contain only a magnetic field with the flux
directed along the z-axis.

(iv) For all the configurations obtained, the electric field
E⃗5 is a vortex field (see Fig. 8).

Thus, as in the case with an infinite tube of Sec. III, the
finite tube under consideration does not contain the flux of
the longitudinal chromoelectric field E2

z ,

ΦE
z ¼ 2π

Z
∞

0

ρE2
zðz ¼ 0; ρÞdρ ¼ 0;

but possesses the flux of the longitudinal chromomagnetic
field H7

z ,

ΦH
z ¼ 2π

Z
∞

0

ρH7
zðz ¼ 0; ρÞdρ ≠ 0:

Also, the finite tube contains no energy flux density—the
Poynting vector (7) is zero.

FIG. 6. The dependence of the total mass (19) of the configu-
rations under consideration on μ2 for fixed values of the
parameters M ¼ 1.4, Λ ¼ 1, λ ¼ 10, g ¼ 1, and μ1 ¼ 3.3. The
vertical dashed line separates the systems containing the electric
and magnetic fields (located to the left of the line) from the
configurations possessing only the magnetic field (located to the
right of the line).
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Consider now the asymptotic behavior of the solutions
found. As r → ∞, the fields f; w → 0 exponentially fast;
hence, one can neglect the nonlinear terms in Eqs. (15)–(17)
containing f2 and w2. In turn, asymptotically, the field
ϕ ≈M − η → M, and the function η decays exponentially;
this permits us to replace the term ϕ2 byM2 in Eqs. (15) and
(16). As a result, from Eqs. (15)–(17), one can obtain the
following asymptotic equations:

△r;θf þ ðμ21 − λM2Þf ¼ 0; ð20Þ

△r;θw −
w

r2sin2θ
þ ðμ22 − λM2Þw ¼ 0; ð21Þ

△r;θη − 2ΛM2η ¼ 0; ð22Þ

where △r;θ is the Laplacian operator. Equations (20) and
(22) have obvious solutions in the form

f ≈ CfðYÞ0lf
e−r

ffiffiffiffiffiffiffiffiffiffiffiffi
λM2−μ2

1

p

r
; ð23Þ

η ≈ CηðYÞ0lη
e−r

ffiffiffiffiffiffiffiffiffi
2ΛM2

p

r
; ð24Þ

where ðYÞ0lf;η are spherical functions and Cf;η are constants.

In turn, Eq. (21) has a solution similar to (23), but only
with the angular part expressed in terms of special
functions (we do not show this expression here to avoid
overburdening the text). It follows from the above expres-
sions that there are upper limits for the masses μ1 and μ2
ensuring the exponential asymptotic decay of the solu-
tions: μ21; μ

2
2 < λM2.

B. The case with nonzero charges

In this subsection we consider the case where the right-
hand sides of the Proca equations (15) and (16) contain

FIG. 7. The color electric field E⃗2 strength distributions for different values of the Proca mass μ2 and a fixed value μ1 ¼ 3.3. The
parameters M ¼ 1.4, Λ ¼ 1, λ ¼ 10, g ¼ 1.

AXIALLY SYMMETRIC PARTICLELIKE SOLUTIONS WITH THE … PHYS. REV. D 104, 116027 (2021)

116027-7



nonzero current densities. When considering a self-
consistent problem with a tube connecting quarks such
currents must be created by spinor fields describing quarks.
For the sake of simplicity, here we consider a toy model
where the currents are given by hand. This means that the
location of the quarks and the magnitude of color currents
and charges created by them are fixed.
In the simplest case the currents can be given, for

instance, by the Gaussian distribution,

jaμ ¼ ðj0Þaμe
−R2

R2
0 ; ð25Þ

where ðj0Þaμ is an arbitrary constant and R is some function
of z and ρ.

1. The case of nonzero charge density j2t

Consider first the case where there is only the charge
density j2t in Eq. (15). For this case, we choose

R2 ¼ ðz − lÞ2 þ ρ2. Such a choice implies that a “quark”
is located on the tube axis at a distance l from the origin of
coordinates. Choosing different values of the constant
ðj0Þ2t, in Fig. 10, we have plotted the corresponding
distributions of the color electric field E⃗2. As is seen from
the figure, as ðj0Þ2t increases (in modulus), the behavior
of the lines of force changes qualitatively: if for small ðj0Þ2t
the electric field created by the Proca field by itself is still
comparable to the magnitude of the field determined by the
charge, it ceases to be so with increase of ðj0Þ2t when the
field determined by the charge becomes dominating; this
results in the aforementioned qualitative changes of the
structure of the electric field. This is illustrated by the
appearance of a “fixed” point in the z ¼ 0 plane and at
some distance from the tube axis. The behavior of the lines
of force is similar here to the behavior of phase trajectories
for autonomous differential equations.
Distributions of the electric, E⃗5, and magnetic, H⃗7, fields

change qualitatively only slightly compared with the case

FIG. 8. The color electric field E⃗5 strength distributions for different values of the Proca mass μ2 and a fixed value μ1 ¼ 3.3. The
parameters M ¼ 1.4, Λ ¼ 1, λ ¼ 10, g ¼ 1 (the graphs are plotted in the fx; yg plane, i.e., when θ ¼ π=2).
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without charge. Hence, to avoid overburdening the text, we
do not show them here.

2. The case of nonzero current density j7φ

Consider now the case where there is only the current
density j7φ in Eq. (16). For this case, we take R2 ¼
ðρ − lÞ2 þ z2 in Eq. (25); this implies the presence of
the current of quarks in the z ¼ 0 plane located on a circle
of radius l. As in the case of the presence of the charge
density considered above, we will change the value of the
arbitrary constant ðj0Þ7φ and keep track of the behavior of
the electric and magnetic fields. As a result, it turns out that
both fields may exist simultaneously only in a very
restricted range of values of ðj0Þ7φ. For example, for the
same fixed values of the system parameters as those used in
the case with a charge, there is the following range of
possible values −11≲ ðj0Þ7φ ≲ 2 for which the system
possesses both the electric and magnetic fields. When one
goes beyond this range, only the magnetic field remains.

Thus there are some critical values of ðj0Þ7φ for which the
electric field is switched off. One might expect that for
another values of the system parameters, distinct from those
for which the aforementioned range of ðj0Þ7φ has been
found, there will take place a similar situation where there
will be some critical values of ðj0Þ7φ determining the range
in which configurations both with electric and magnetic
fields do exist.
The corresponding field strength distributions are given

in Fig. 11. It is seen from them that the qualitative picture
of the electric field strength distribution changes only
slightly (the same is true of the strength of the field E⃗5 that
is still a vortex field). In turn, the distribution of the
magnetic field may depend considerably on the value of
the constant ðj0Þ7φ; this especially manifests itself for
large negative values of ðj0Þ7φ when the influence of the
external source of the field becomes already comparable
with the contribution caused by the nonlinearity of the
Proca fields.

FIG. 9. The color magnetic field H⃗7 strength distributions for different values of the Proca mass μ2 and a fixed value μ1 ¼ 3.3. The
parameters M ¼ 1.4, Λ ¼ 1, λ ¼ 10, g ¼ 1.
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C. Classical stability

Here we address briefly the question of classical
stability of the configurations under investigation. In
studying systems supported by various fundamental
fields, one uses several stability criteria. First, this is
topological stability [18]. Typical examples of configu-
rations for which such criterion can be applied are
topological (kinklike) solutions for scalar fields [whose
stability is ensured by the difference in the values of
the field at spatial infinities, ϕð−∞Þ ≠ ϕðþ∞Þ] and the
’t Hooft-Polyakov monopole solution, when, as r → ∞,
the scalar field approaches different limits in different
directions. It is evident that since the solutions considered
here are nontopological ones, this criterion is not appli-
cable to our case.
Second, one can use a stability criterion related to the

presence of some conserved quantities in a system. In
particular, the question of stability of nontopological
solutions in SU(2) theory has been considered in

Ref. [19], where a spherically symmetric system with a
Higgs-type field is under investigation. There, a
crucial ingredient is the presence of a conserved non-
vanishing isospin: stable solutions do exist only when the
total isospin exceeds some critical value. A similar situation
occurs in the case of a system with two scalar fields, one of
which is complex and the other is real [20]. In this case the
system possesses a nonzero charge associated with the
complex scalar field, and stable solutions do exist only for
definite values of the charge. Since our system is supported
by real fields, there is no conserved charge (or particle
number), and such a stability criterion cannot be employed
as well.
Another possibility is to study the classical stability with

respect to linear and nonlinear perturbations of a different
type. In the case of spherically symmetric configurations,
such studies have been performed frequently in the liter-
ature for various systems, including investigations both of
nongravitating nontopological systems (see, e.g., Ref. [21])

FIG. 10. The color electric field E⃗2 strength distributions for different values of the parameter ðj0Þ2t and fixed values μ1 ¼ 3.3 and
μ2 ¼ 3.7. The parameters M ¼ 1.4, Λ ¼ 1, λ ¼ 10, g ¼ 1, R0 ¼ 0.2, and l ¼ 1.
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and of different objects supported by gravitating non-
Abelian fields (see, e.g., the problems with linear [22]
and nonlinear [23] perturbations). However, for axially

symmetric systems of the type considered in the present
paper, this is a much more technically complicated problem
that requires a careful analysis.

FIG. 11. The electric and magnetic fields strength distributions for different values of the parameter ðj0Þ7φ and fixed values μ1 ¼ 3.3
and μ2 ¼ 3.7. The parameters M ¼ 1.4, Λ ¼ 1, λ ¼ 10, g ¼ 1, R0 ¼ 0.2, and l ¼ 1. For ðj0Þ7φ ¼ −15 and 10, the electric field is
absent.
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Finally, there is a possibility to examine the stability
within catastrophe theory. As applied to solitons, it was
used in Ref. [24]. When gravity is present, this theory was
applied to boson (spin-0) spherically symmetric systems in
Ref. [25] and has been extended to the case of axially
symmetric nontopological soliton solutions in Ref. [26].
Keeping all this in mind and taking into account that a

study of the question of stability of the axially symmetric
system under consideration will require a fair amount of
effort, we plan to do this in a separate work.

V. DISCUSSION AND CONCLUSIONS

In the present paper, we have studied particlelike
solutions with the flux of a magnetic field in the non-
Abelian Proca-Higgs theory. The crucial feature of these
solutions is that they are localized in space and have the
flux of the color magnetic Proca field passing through
the central cross section of the Proca tube. This allows
the possibility of comparing the field configurations
obtained with the Nielsen-Olesen tube. In both cases, there
are common features: (i) the presence of a longitudinal
magnetic field creating the flux of the magnetic field over
the transverse cross section of the tube; and (ii) the scalar
field pushes out the magnetic field (the analog of the
Meissner effect). The main distinctions between the Proca
tube and the Nielsen-Olesen tube are: (i) the Proca tube has
finite size, whereas the Nielsen-Olesen tube is infinite; and
(ii) the Proca tube is a topologically trivial object.
Natural questions arising in this context are: (i) Do Proca

fields really exist in nature? (ii) Where the tubes obtained
by us could occur? Regarding the first question, it should
be pointed out that at the present time numerous studies
are carried out to find such fields in nature, see, e.g.,
Refs. [5,27–29]. According to another point of view, Proca
theories may be not fundamental but some phenomeno-
logical approaches to other theories. For instance, one
might suppose that the SU(2) Proca-Higgs theory could
serve as a phenomenological description of some phenom-
ena in SU(3) QCD. For example, this could be in the case
where some degrees of freedom belonging to the subgroup
SUð2Þ ⊂ SUð3Þ acquire mass as a result of quantization,
and such degrees of freedom are approximately described
by a SU(2) Proca theory, whereas the remaining degrees of
freedom are purely quantum and are approximately
described by a scalar field as a condensate. Of course,
such a description is approximate and is rather similar to a
phenomenological description of superconductivity by the
Ginzburg-Landau equation.
Regarding the second question, one may suppose that if

Proca fields do exist in nature (it is unimportant whether
they are fundamental or phenomenological ones), at high

temperatures, in non-Abelian Proca theories, there can exist
a “quark-Proca-gluon-Higgs” plasma; this is analogous to
what happens in QCD when the quark-gluon plasma
occurs.
Summarizing the results obtained in the present paper:
(i) We have studied finite-size tube solutions in the non-

Abelian Proca-Higgs theory both with and without
external sources.

(ii) It is shown that such configurations have the finite
total energy and the flux of the magnetic field over
the transverse cross section.

(iii) It is demonstrated that there exist some critical
values of the system parameters μ2 and ðj0Þ7φ for
which the electric field is switched off and only the
magnetic field remains nonzero.

(iv) It is established that for the Proca tubes to exist, the
presence of a scalar field is necessary; such field acts
as Cooper pairs in a superconductor and pushes out
the Proca field creating localized objects.

(v) Comparison of properties of the solutions obtained
with the properties of the Nielsen-Olesen tube has
been carried out.

(vi) It is assumed that such particlelike solutions may
describe quasiparticles in the hypothetical “quark-
Proca-gluon-Higgs” plasma.

In conclusion, we would like to emphasize the rich
internal structure of Proca theories allowing the possibility
of obtaining the particlelike solutions studied in the present
paper, whose existence is ensured by the presence of a mass
of the vector Proca bosons. This is also applied to the case
of strongly gravitating particlelike configurations consist-
ing of coupled Proca and Higgs fields considered by us in
Ref. [30]. For such systems, it is possible to obtain
localized regular asymptotically flat solutions describing
Proca-Higgs mini-boson stars possessing an axially sym-
metric dipole field. This in turn permits one to expect that it
will also be possible to get solutions for systems containing
both other components of the Proca field and another types
of fundamental fields (for example, spinor ones).
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