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In this work we study how CPT-odd Maxwell-Carroll-Field-Jackiw (MCFJ) electrodynamics as well as
a dimension-5 extension of it affect the optical activity of continuous media. The starting point is
dimension-3 MCFJ electrodynamics in matter whose modified Maxwell equations, permittivity tensor, and
dispersion relations are recapitulated. Corresponding refractive indices are achieved in terms of the
frequency and the vector-valued background field. For a purely timelike background, the refractive indices
are real. Their associated propagation modes are circularly polarized and exhibit birefringence. For a purely
spacelike background, one refractive index is always real and the other can be complex. The circularly
polarized propagating modes may exhibit birefringence and dichroism (associated with absorption).
Subsequently, we examine a dimension-five MCFJ-type electrodynamics, previously scrutinized in the
literature, in a continuous medium. Following the same procedure, we find the refractive indices from a
sixth-order dispersion equation. For a purely timelike background, three distinct refractive indices are
obtained, one of them being real and two being complex. They are associated with two circularly polarized
propagating modes that exhibit birefringence or dichroism, depending on the frequency range. Scenarios of
propagation and absorption analogous to those found in dispersive dielectrics are also observed for purely
spacelike background configurations. We conclude by comparing the dimension-three and five results and
by emphasizing the richer phenomenology of the propagating modes in the higher-derivative model. Our
results are applicable in the realm of Weyl semimetals.
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I. INTRODUCTION

The dynamics of electromagnetic fields in continuous
media is governed by the Maxwell equations, supple-
mented by constitutive relations [1,2] that describe the
response of the medium to external, applied electromag-
netic fields. In vacuo these relations simply read D ¼ ϵ0E
and H ¼ μ−10 B, where ϵ0 and μ0 are the electric vacuum
permittivity and magnetic permeability constant, respec-
tively. The first constitutive relation takes into account the
electric polarization in a dielectric medium, while the latter
includes magnetization effects. For an isotropic medium,
the constitutive relations are D ¼ ϵE and H ¼ μ−1B with
scalar material parameters ϵ, μ replacing ϵ0, μ0 governing

the vacuum properties. More involved constitutive relations
appear in two main scenarios: (i) anisotropic media, where
electric permittivity and magnetic permeability become
tensors (cf. uniaxial and biaxial crystals [3–8], Weyl
semimetals [9,10], and magnetized materials [11,12]);
(ii) novel effects in matter described by extended con-
stitutive relations that introduce additional electric and
magnetic responses, encoded as linear functions of the
type D ¼ DðE;BÞ and H ¼ HðE;BÞ, in general. This
happens, for instance, in bi-isotropic media [13–16], chiral
materials [17], topological insulators [18–23], relativistic
electron gases [24], axion electrodynamics [25–27], and
Lorentz-violating electrodynamics [28,29], as well.
Generalizations of electrodynamics including higher-

derivative terms have also been conceived in the literature.
First studies of electrodynamics in the presence of higher
derivatives are ascribed to Bopp [30] in 1940, and to
Podolsky [31,32] in 1942. Their model implements a
second-order derivative term θ2∂αFαβ∂σFσ

β into the
Maxwell Lagrangian in vacuo. The modified Maxwell-
Podolsky equations, sometimes called Bopp-Podolsky
equations, yield a photon mass term, proportional to the
inverse of the Podolsky parameter θ. Furthermore, this
extension exhibits two dispersion relations, the usual one

*pedro.dss@discente.ufma.br
†leticia.lisboa@discente.ufma.br
‡manoel.messias@ufma.br, manojr.ufma@gmail.com
§marco.schreck@ufma.br

Published by the American Physical Society under the terms of
the Creative Commons Attribution 4.0 International license.
Further distribution of this work must maintain attribution to
the author(s) and the published article’s title, journal citation,
and DOI. Funded by SCOAP3.

PHYSICAL REVIEW D 104, 116023 (2021)

2470-0010=2021=104(11)=116023(25) 116023-1 Published by the American Physical Society

https://orcid.org/0000-0001-6215-8186
https://orcid.org/0000-0003-4939-3856
https://orcid.org/0000-0002-4691-8090
https://orcid.org/0000-0001-6585-4144
https://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevD.104.116023&domain=pdf&date_stamp=2021-12-27
https://doi.org/10.1103/PhysRevD.104.116023
https://doi.org/10.1103/PhysRevD.104.116023
https://doi.org/10.1103/PhysRevD.104.116023
https://doi.org/10.1103/PhysRevD.104.116023
https://creativecommons.org/licenses/by/4.0/
https://creativecommons.org/licenses/by/4.0/


from Maxwell theory and a second one ascribed to a
massive mode.
The constraint structure of this theory was investigated in

[33] and its quantization was performed in [34]. Further
aspects of the Maxwell-Podolsky model were examined,
including the problems of self-force and self-interaction
[35,36], Green functions and classical solutions [37],
multipole expansion for fields in the static regime [38],
symmetrization/conservation of the energy-momentum
tensor [39], its consistency based on the BRST approach
[40], quantum field theoretic properties [41,42] as well as
other characteristics [43].
A further example for a generalization of Maxwell

electrodynamics is provided by Lee-Wick electrodynamics
]44,45 ], which introduces the modification Fμν

□Fμν

[46–48]. The higher-derivative Lee-Wick term can arise
as a quantum correction in models with a nonminimal
coupling between the gauge and fermionic fields [49].
In the past years, higher-derivative contributions have

also been examined in the context of Lorentz-violating
theories. The possibility of Lorentz invariance violation
(LV) was proposed in the context of physics at the Planck
scale such as strings [50]. Presently, the Standard-Model
Extension (SME) [51], incorporating fixed background
tensor fields coupled to the dynamical Standard-Model
fields, is usually employed as the main framework to
parametrize it. Lorentz violation in the electromagnetic
sector of the SME occurs by means of a CPT-odd or a
CPT-even term [52–55]. The CPT-odd part is represented
by the Carroll-Field-Jackiw (CFJ) contribution [56–62],
which has found applications in condensed-matter systems
that violate parity (P) and time reversal (T) symmetry [63]
as well as those endowed with the chiral magnetic effect
[64–67] and the anomalous Hall effect [68].
Nonminimal extensions of the SME were proposed

including higher-derivative terms with mass dimensions
greater than four (in natural units) [69–71]. In this context,
the Myers-Pospelov model [72,73] was a pioneering pro-
posal focusing on dimension-five contributions. Recently,
classical aspects of a modified, higher-derivative electrody-
namics in vacuo were discussed in [74,75], including the
derivation of the gauge propagator, the dispersion relations
as well as an analysis of causality, unitary, and stability of
the modes. Profound analyses were accomplished for the
Maxwell-Podolsky electrodynamics modified by CPT-
even, dimension-six terms [74] and for a CPT-odd, dimen-
sion-five electrodynamics [75]. Some results of Ref. [75]
were revisited and discussed in Ref. [76]. Nonminimal
higher-derivative models have also been used to study the
interaction energy between electromagnetic sources [77]
and the thermodynamic properties of electrodynamic sys-
tems [78] as well as in the context of Horăva-Lifshitz
electrodynamics [79] and radiative corrections [80].
The plethora of nonminimal LV theories on the one hand

and the optical properties of new materials [13,81] on the

other hand is a strong motivation for investigating higher-
derivative effects on the propagation of electromagnetic
waves in dielectric substrates, including aspects of optical
activity and dichroism. In this sense, the present work is
devoted to analyzing the behavior of a continuous medium
governed by a MCFJ-type electrodynamics in the absence
and presence of higher-derivative terms.
This paper is outlined as follows. In Sec. II, we briefly

review the covariant description of electrodynamics in
macroscopic materials recapitulating the definition of
birefringence (double refraction) and dichroism. We will
be considering simple matter as opposed to designed
materials with highly peculiar properties such as metama-
terials [82–84]. In Sec. III, we present aspects of the MCFJ
electrodynamics in a ponderable medium, showing that the
timelike CFJ background yields birefringence, while the
spacelike one provides birefringence and dichroism. In
Sec. IV, we discuss the higher-derivative MCFJ electrody-
namics in continuous matter based on more involved
scenarios. Finally, we present our main findings in
Sec. V. Throughout the paper, we employ natural units
with ℏ ¼ c ¼ 1 unless otherwise stated. Furthermore, our
signature choice for the Minkowski metric ημν is
ðþ;−;−;−Þ.

II. ELECTRODYNAMICS IN SIMPLE MATTER

In a continuous medium, the electromagnetic properties
are described by the Maxwell equations [1,2] combined
with the constitutive relations. For a general linear, homo-
geneous, and anisotropic medium, the constitutive relations
can be written as

D ¼ ϵ ·Eþ γ ·B; ð1aÞ

H ¼ γ̃ · Eþ μ−1 ·B; ð1bÞ

where ϵ and μ represent the electric permittivity and
magnetic permeability tensors [8,13–16], respectively.
The tensor γ measures the magnetic contribution to the
electric displacement fieldD, while γ̃ represents the electric
contribution to the magnetic field H. Regarding the
structure of constitutive relations (1a) and (1b), interesting
scenarios of electromagnetic behavior may occur, e.g., in
anisotropic media [4,5,7,8,13–16], Weyl semimetals
[9,10,85], magnetized ferrites [11,12], and in chiral media
and topological insulators [19–21]. Besides Eq. (1), general
constitutive relations for the current density, J ¼ JðE;BÞ,
can also be considered. As an example, a dielectric system
endowed with a magnetic conductivity has recently been
examined at the classical level [86], reporting interesting
effects such as an induced electric conductivity, isotropic
birefringence, and parity violation. A physical realization
of the antisymmetric magnetic current examined in [86] via
a microscopic model was addressed in Ref. [87].
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The constitutive relations in Eq. (1) can be naturally
encoded in the Lagrange density formalism via

L ¼ −
1

4
GμνFμν − AμJμ; ð2aÞ

with the four-potential Aμ, the electromagnetic field
strength tensor Fμν ¼ ∂μAν − ∂νAμ, and an external, con-
served four-current Jμ. Furthermore, the antisymmetric
tensor Gμν is defined as [8]

Gμν ≡ 1

2
χμναβFαβ; ð2bÞ

with χμναβ being the constitutive tensor that parametrizes
the medium’s response to the applied electromagnetic fields
[88]. The constitutive tensor satisfies the following
symmetry properties:

χμναβ ¼ −χνμαβ; ð3aÞ

χμναβ ¼ −χμνβα; ð3bÞ

χμναβ ¼ χαβμν; ð3cÞ

compatible with the symmetries of the field strength tensor.
The Euler-Lagrange equation applied to the Lagrangian of
Eq. (2a) (a complete derivation is presented in Appendix A)
yields

∂μGμν ¼ Jν: ð4Þ

The homogenous Maxwell equations are obtained from the
Bianchi identity valid for the curvature Fμν of the principal
Uð1Þ fiber bundle:

∂μF̃μν ¼ 0; F̃μν ¼ 1

2
ϵμναβFαβ; ð5Þ

which is why the latter are not affected by the presence of
the medium. A straightforward calculation from Eqs. (4),
(5) leads to the well-known Maxwell equations in simple
matter, namely:

∇ · D ¼ ρ; ð6aÞ

∇ ×H − ∂tD ¼ J; ð6bÞ

∇ · B ¼ 0; ð6cÞ

∇ ×Eþ ∂tB ¼ 0; ð6dÞ

where the constitutive relations for the electric displace-
ment field D and magnetic fieldH are given in Eq. (1). The
Maxwell equations of Eq. (6) and the constitutive relations

given by Eq. (1) allow us to describe the dynamics of
electromagnetic fields in simple matter.
In crystals and generic anisotropic media, the

dispersion relations are given by the Fresnel equation
[2]. The latter is obtained from algebraic manipulations
of the Maxwell equations for continuous media whose
properties are encoded in the permittivity tensor. In such a
medium, the dielectric permittivity tensor is a function of
the frequency ω, the wave vector k, and the (external)
magnetic field B (or the magnetization, alternatively),
ϵij ¼ ϵijðω;k;BÞ, and can be expanded as [81]

ϵijðω;k;BÞ ¼ ϵ0ij þ αijlkl þ βijlBl þ γijabkaBb þ…: ð7Þ

The first term, ϵ0ij, is the usual permittivity tensor of a
dielectric. The second term, αijlkl, is a signature of spatial
inversion symmetry breaking. It implies an optical activity
that becomes manifest via linear birefringence or a rotation
of the oscillation plane of linearly polarized light [4,5]. The
third term, βijlBl, is associated with a fixed external
magnetic field or magnetization and leads to a violation
of time reversal symmetry. It gives rise to a magneto-optical
activity via the Faraday or the Cotton-Mouton effect [81].
As already mentioned, a known consequence of the

optical activity of a medium is linear birefringence, occur-
ring when two circularly polarized modes of opposite
chiralities, with refractive indices nþ and n−, respectively,
have different phase velocities, c=nþ and c=n−. This
property implies a rotation of the polarization plane of a
linearly polarized wave. The latter phenomenon is quanti-
fied by the specific rotatory power δ, which measures the
rotation of the oscillation plane of linearly polarized light
per unit traversed length in the medium. It is defined as

δ ¼ −
ω

2
½ReðnþÞ − Reðn−Þ�; ð8Þ

where nþ and n− are associated with left and right-handed
circularly polarized waves, respectively.
Another interesting effect occurring in anisotropic

crystals, dichroism, takes place when one polarization
component is more strongly absorbed than the other.
Obviously, this property is linked to the imaginary part
of the refractive index. The difference of absorption of left
and right-handed circularly polarized modes [81] is given
by the dichroism coefficient [see Appendix B for the
derivation of Eqs. (8), (9)]:

δd ¼ −
ω

2
½ImðnþÞ − Imðn−Þ�: ð9Þ

In the following, we examine two models of modified
electrodynamics in continuous matter: the first one gov-
erned by the MCFJ Lagrangian and the second one by a
higher-derivative MCFJ-type Lagrangian.
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III. MCFJ MODEL IN A CONTINUOUS MEDIUM

In principle, MCFJ electrodynamics has connections
with systems of chiral fermions, in particular, the chiral
magnetic effect (CME), the anomalous Hall effect (AHE),
and the anomalous generation of charge, besides birefrin-
gence effects. In Ref. [63], the Maxwell equations in vacuo
modified by the CFJ background were obtained, which
yields the terms ascribed to the CME and AHE. In this
section, we examine aspects of the MCFJ electrodynamics
embedded in a continuous medium. The latter plays a role
for condensed-matter systems such as Weyl semimetals
[89]. These novel materials are characterized by an even
number of Weyl cones separated from each other in
momentum space. In the vicinity of these cones, electrons
behave as massless particles and have a certain
Fermi velocity associated with them, whereupon their
description via the Weyl equation is admissible. Having
a microscopic realization of such a material at hand, it can
be consistently described in the context of effective field
theory via a b term of the minimal SME fermion sector
[51]. The modified Dirac theory is frequently recast into the
form [85,90]

L ¼ ψ̄ ½γμði∂μ − bμγ5Þ −m�ψ ; ð10Þ

where ψ is a Dirac spinor field, ψ̄ its Dirac conjugate,m the
electron mass, γμ the standard Dirac matrices, and γ5 is the
chiral Dirac matrix. The vector-valued background field bμ
is known to catch the essential properties of a certain class
of these materials. Integrating out the fermion fields implies
an action for the electromagnetic fields. The latter decom-
poses into a CPT-even part, which gives rise to a nontrivial
permittivity and permeability of the system, as well as a
CPT-odd part corresponding to a CFJ term. We will come
back to this point below.
The MCFJ Lagrange density in matter has the form

L ¼ −
1

4
GμνFμν −

1

4
ϵβλμνVβAλFμν − AμJμ; ð11Þ

with the intrinsic vector-valued field Vμ. Furthermore, ϵβλμν

is the Levi-Civita symbol in Minkowski spacetime ful-
filling ϵβλμν ¼ −ϵβλμν and ϵ0123 ¼ 1. The latter Lagrange
density yields the following modified inhomogeneous
Maxwell equations:

∇ ·D − V ·B ¼ ρ; ð12aÞ

∇ ×H − ∂tD − V0Bþ V ×E ¼ J; ð12bÞ

where V is the spatial part of Vμ and the fields D, H fulfill
the linear constitutive relations of Eq. (1). Notice that the
presence of the tensor Gμν renders the Lagrangian (11)
different from the one of Ref. [63], meaning that the
modified Maxwell equations of Eq. (12) apply to a

ponderable medium. Concerning the discrete symmetries,
C (charge conjugation), P, and T, it is worthwhile to recall
that the CFJ term is CPT-odd and the free part of the
Lagrangian in Eq. (11) can be written as:

L ⊃
1

2
ðE ·D −B ·HÞ

þ 1

2
½V0ðA · BÞ − A0ðV ·BÞ þ V · ðA ×EÞ�: ð13Þ

In this sense, the pieces involving V0 are P-odd and T-even,
while the terms composed of V are P-even and T-odd, as
properly shown in Table I. Thus, these terms can induce an
optical activity of the medium (in the form of birefringence
or dichroism).
Another interesting aspect of MCFJ electrodynamics is

that the term V0B plays a significant role in a chiral
magnetic current,

JCME ¼ e2

4π2
ðΔμÞB≡ ΣB; ð14Þ

usually generated in chiral fermion systems [64–67,86].
Here, Δμ≡ μR − μL is also known as the chiral chemical
potential and fermions of electric charge�e are considered.
In Eq. (14), Σ represents an isotropic chiral magnetic
conductivity and plays a role equivalent to that of the
timelike component V0 in Eq. (12b), as pointed out in
Ref. [63]. For the present analysis, we consider the usual
constitutive relations. We set γij ¼ γ̃ij ¼ 0 in Eq. (1),
implying

Di ¼ ϵijEj; Hi ¼ ðμ−1ÞijBj; ð15Þ

which can be restricted to the special scenario of an
isotropic medium by choosing configurations proportional
to the identity,

ϵij ¼ ϵδij; ðμ−1Þij ¼ μ−1δij; ð16Þ

where ϵ and μ are the electric permittivity and magnetic
permeability constants, respectively. This approach is
equivalent to taking the constitutive relations D ¼ ϵE,
and H ¼ μ−1B.
In what follows, we implement the latter relations

as well as J ¼ σE, where σ is the Ohmic conductivity.

TABLE I. Behavior of the LV terms of the Lagrangian given by
Eq. (13) under C (charge conjugation), P (parity), and T (time
reversal).

E B A0 A V0ðA ·BÞ A0ðV ·BÞ V · ðA × EÞ
C − − − − þ þ þ
P − þ þ − − þ þ
T þ − þ − þ − −
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Furthermore, we employ a plane-wave ansatz for the fields,
E ¼ E0eiðk·r−ωtÞ, B ¼ B0eiðk·r−ωtÞ, and similarly for D and
H in Eq. (12b). One then gets

ik × Bþ iμϵωE − μV0Bþ μV ×E − μσE ¼ 0; ð17Þ

which can be simplified by using Faraday’s law,
yielding

½k2δij − kikj − ω2μϵ̄ij�Ej ¼ 0; ð18aÞ

where we have defined

ϵ̄ij ≡
�
ϵþ i

σ

ω

�
δij −

i
ω2

ϵiajðkaV0 − ωVaÞ; ð18bÞ

as an effective electric permittivity tensor. Here, ϵijk is the
Levi-Civita symbol in three dimensions. The second term
on the right-hand side of Eq. (18b), ϵiajkaV0, is analogous
to the tensor αijlkl of Eq. (7), which breaks parity
invariance. The third term, ϵiajωVa, breaks time reversal
invariance. Both are responsible for the optical activity of
the medium, becoming manifest in birefringence, as we
shall see.
For a continuous medium, we write k ¼ ωn, where n is

a vector pointing along the direction of the wave vector and
yielding the refractive index n ¼ þ

ffiffiffiffiffi
n2

p
. To permit com-

plex refractive indices, we take þ
ffiffiffiffiffi
n2

p
instead of jnj. The

plus sign indicates, in principle, that we discard refractive
indices with negative real parts, whenever such could occur.
Composites with negative real parts of their refractive
indices are called metamaterials [82–84] and such pos-
sibilities will not be taken into account. Then, Eq. (18a)
becomes

MijEj ¼ 0; ð19aÞ

with the tensor

Mij ¼ n2δij − ninj − μϵ̄ij; ð19bÞ

where

ϵ̄ij ¼
�
ϵþ i

σ

ω

�
δij −

i
ω
ϵiajðnaV0 − VaÞ: ð19cÞ

The nontrivial solutions for the electric field are obtained
by requiring that the determinant of the matrix Mij vanish,
det½Mij� ¼ 0, which yields the dispersion relations that
describe wave propagation in the medium. The matrix Mij

is explicitly given by

½Mij� ¼ Mþ i
μ

ω
V; ð20aÞ

M ¼
�
n2 − μ

�
ϵþ i

σ

ω

��
13 −

0
B@

n21 n1n2 n1n3
n1n2 n22 n2n3
n1n3 n2n3 n23

1
CA;

ð20bÞ

V ¼

0
B@

0 V3 − V0n3 V0n2 − V2

V0n3 − V3 0 V1 − V0n1
V2 − V0n2 V0n1 − V1 0

1
CA; ð20cÞ

with the ð3 × 3Þ identity matrix 13. The dispersion equation
follows from det½Mij� ¼ 0:

0 ¼ ϵ̃ðn2 − μϵ̃Þ2 − μ

ω2
fμϵ̃½V2

0n
2 þ V2 − 2V0ðn · VÞ�

− V2n2 þ ðn · VÞ2g; ð21aÞ

where

ϵ̃ ¼ ϵþ i
σ

ω
: ð21bÞ

We note that via the choices

p̄μ ≡
� ffiffiffĩ

ϵ
p

ω;
kffiffiffi
μ

p
�
; V̄μ ≡

� ffiffiffi
μ

p
V0;

Vffiffiffĩ
ϵ

p
�
; ð22Þ

our Eq. (21) is equivalent to

p̄4 þ p̄2V̄2 − ðp̄ · V̄Þ2 ¼ 0: ð23Þ

Alternatively, we can introduce an effective metric of the
form

η̃μν ≡ diag

�
ϵ̃;−

1

μ
;−

1

μ
;−

1

μ

�
; ð24Þ

and write the dispersion equation as

0 ¼ ðp · η̃ · pÞ2

þ μ

ϵ̃
½ðp · η̃ · pÞðV · η̃ · VÞ − ðp · η̃ · VÞ2�: ð25Þ

In vacuo, where ϵ ¼ μ ¼ 1 and σ ¼ 0, the conventional
four-momentum pμ ¼ ðω;kÞ and the preferred spacetime
direction Vμ ¼ ðV0;VÞ satisfy

p4 þ p2V2 − ðp · VÞ2 ¼ 0; ð26Þ

as expected. Equation (26) is the well-known dispersion
equation of the MCFJ model in vacuo [56,57]. Therefore,
we interpret Eq. (23) as the dispersion equation for a
generalized MCFJ theory in media. The four-vector p̄μ of
Eq. (22) plays the role of an effective four-momentum that
formally satisfies an analogous dispersion equation as
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in vacuo when the preferred direction is replaced by V̄μ.
The possibility of expressing the dispersion equation in
terms of the effective metric in Eq. (24) and the conven-
tional four-momentum pμ is a different way of under-
standing this result. The presence of a medium described by
the material parameters ϵ, μ, and σ leads to electromagnetic
waves obeying an analogous dispersion equation as in
vacuum, but with the Minkowski metric replaced by an
effective metric.
Now, let us have another look at MCFJ theory in the

context of Weyl semimetals. As described in [85], integrat-
ing out the fermion fields of the effective field theory stated
in Eq. (10) implies a modified electrodynamics described
by the first two terms in Eq. (11). Considering the
realization of a Weyl semimetal studied in the latter
reference leads to a particular choice of Vμ with V0 ¼ 0
and V pointing along the third spatial axis [compare the
modified inhomogeneous Maxwell equations of their
Eqs. (31), (34) to our Eqs. (12a), (12b)]. Although the
CFJ term incorporates the most intriguing properties of
such materials, we must also take into account that a Weyl
semimetal (like any material) is characterized by a non-
trivial permittivity (whereas the permeability is often
simply to set 1). Thus, the optical response of such a
material is very well described by a dispersion equation of
the form of Eq. (25) (cf. Eq. (36) in [85]) being a
formidable motivation for considering theories such as
Eq. (11). The author of the latter paper emphasizes that the
presence of the CFJ term implies birefringence in Weyl
semimetals.
In order to further understand some properties of MCFJ

electrodynamics in a continuous dielectric medium with
magnetic properties, we address two main scenarios: (i) a
timelike and (ii) a spacelike background field Vμ. We
choose a non-Ohmic medium as a substrate, which implies
σ ↦ 0 in Eq. (21).

A. Purely timelike case

For the purely timelike scenario, Vμ ¼ ðV0; 0Þ, Eq. (21)
reduces to

ðn2 − μϵÞ2 − μ2V2
0

ω2
n2 ¼ 0; ð27Þ

which yields two distinct refractive indices:

n2� ¼ μϵþ μ2V2
0

2ω2
� μV0

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μϵþ μ2V2

0

4ω2

s
; ð28aÞ

or equivalently

n� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μϵþ μ2V2

0

4ω2

s
� μV0

2ω
: ð28bÞ

The latter result is in accordance with the refractive index
given in Eq. (25) of Ref. [86] for the diagonal isotropic
magnetic conductivity tensor. This is an expected corre-
spondence, since one knows that V0 plays the role of a
“magnetic conductivity,” as remarked below Eq. (14). Note
that n� are real and positive, allowing both modes to
propagate for any frequency, so that an absorbing behavior
is not observed here. Furthermore, in the limit of high
frequencies, Eq. (28b) provides n� ↦

ffiffiffiffiffi
μϵ

p
, recovering the

refractive index of a medium with electric permittivity ϵ
and magnetic permeability μ, as described in the context of
Maxwell electrodynamics. This behavior is illustrated in
Fig. 1, which depicts the refractive indices (28b) in terms of
the dimensionless parameter ω=V0 for some values of μ and
ϵ. The mode associated with nþ exhibits anomalous
dispersion, meaning that dnþ=dω < 0, while n− is char-
acterized by normal dispersion. In order to examine the
polarization state of the propagation modes, we first rewrite
Eq. (27),

n2 − μϵ ¼ � μV0

ω
n: ð29Þ

We employ the latter in Eq. (20), whereupon the condition
MijEj ¼ 0 yields

E� ¼ 1ffiffiffi
2

p
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − n21

p
0
B@

n2 − n21
∓ in3n − n1n2
�in2n − n1n3

1
CA: ð30Þ

Considering the special choice

FIG. 1. Refractive indices n�ðωÞ of Eq. (28b) in terms of ω=V0.
Blue (monotonically decreasing) lines represent nþ, while red
(monotonically increasing) lines depict n−. For solid lines, μ ¼ 1
and ϵ ¼ 2; for dashed lines, μ ¼ 1 and ϵ ¼ 3; for dashed-dotted
lines, μ ¼ 2 and ϵ ¼ 2.
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n ¼

0
B@

0

0

n3

1
CA; ð31Þ

the normalized electric fields obtained from Eq. (30) are

E� ¼ 1ffiffiffi
2

p

0
B@

1

∓ i

0

1
CA: ð32Þ

A polarization is defined to be right-handed (left-handed)
if the polarization vector of a plane wave rotates along a
circle in clockwise (counterclockwise) direction when the
observer is facing into the incoming wave [1,2]. Therefore,
E− is interpreted as a left-handed and Eþ as a right-handed
circular polarization vector, respectively. These are asso-
ciated with the distinct refractive indices n− and nþ of
Eq. (28b) that imply different phase velocities of the
physical modes giving rise to a rotation of the polarization
plane of a linearly polarized wave. The implied birefrin-
gence is measured by the specific rotatory power [see the
definition of Eq. (8) and Appendix B], here written as

δ ¼ −
μV0

2
; ð33Þ

which is a frequency-independent result dependent on the
timelike component V0 of the LV background. This non-
dispersive rotatory power differs from the rotatory power of
a typical birefringent crystal, which increases with the
frequency, as indicated by Eq. (8) for constant refractive
indices. As the refractive indices of Eq. (28b) are real, there
is no optical dichroism caused by V0.

B. Purely spacelike case

For the purely spacelike case, Vμ ¼ ð0;VÞ, that is, V0 ¼
0 and V ≠ 0, Eq. (21) yields

ϵðn2 − μϵÞ2 − μ

ω2
½μϵV2 − n2V2 þ ðn · VÞ2� ¼ 0: ð34Þ

Implementing n · V ¼ njVj cos θ, one finds

ðn2 − μϵÞ2 − μ2

ω2
jVj2α2 ¼ 0; ð35aÞ

where we defined

α2 ≡ 1 −
n2

μϵ
sin2 θ: ð35bÞ

The two refractive indices (squared) read

n2� ¼ μϵ −
μV2

2ϵω2
sin2 θ

� μjVj
2ϵω2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4ϵ2ω2 cos2 θ þ V2 sin4 θ

p
: ð36Þ

It is useful to analyze two special configurations: (i) the
perpendicular case where n · V ¼ 0 and sin2 θ ¼ 1, (ii) the
longitudinal case where n · V ¼ �njVj and sin2 θ ¼ 0.
In order to examine the propagation modes, let us choose

coordinates such that Eq. (31) holds, whereupon Eq. (20)
simplifies as

½Mij� ¼

0
B@

n2 − μϵ i μωV3 −i μωV2

−i μωV3 n2 − μϵ i μωV1

i μωV2 −i μωV1 −μϵ

1
CA: ð37Þ

Solving MijEj ¼ 0, one obtains

E� ¼ E0

0
B@

V1V2 − iϵωV3

V2
2 − ϵ2ω2fðα�Þ

V2V3 þ iV1ϵωfðα�Þ

1
CA; ð38aÞ

where

fðαÞ ¼ 1þ α2 − 1

sin2 θ
; α2� ¼ 1 −

n2�
μϵ

sin2 θ; ð38bÞ

and E0 is an appropriate normalization.

1. V-perpendicular configuration

Considering the perpendicular configuration with
sin2 θ ¼ 1, the solutions of Eq. (34) for n2 according to
Eq. (36) are

n2� ¼ μϵþ μV2

2ϵω2
ð−1� 1Þ; ð39Þ

that is

nþ ¼ ffiffiffiffiffi
μϵ

p
; n− ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μϵ −

μV2

ϵω2

s
: ð40Þ

While nþ is the standard refractive index of Maxwell
electrodynamics in media, corresponding to αþ ¼ 0, the
refractive index n− is associated with α− ¼ jVj=ðϵωÞ,
whereupon it is affected by the background. For
ω < ω−, we have n2− < 0 and n− becomes purely imagi-
nary, so that the corresponding mode no longer propagates.
This defines the cutoff frequency,

ω− ¼ jVj
ϵ

: ð41Þ
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The general behavior of the refractive indices is depicted in
Fig. 2, where the squared refractive indices (39) are plotted
in terms of the dimensionless parameter ω=jVj. The
horizontal dashed lines stand for n2þ, which is constant
for all frequencies. As for the mode associated with n2−, the
vertical gray dashed lines (located at different ω−=jVj for
each case) separate the absorption regime, ω < ω−, from
the propagation regime, ω > ω−. Furthermore, in the limit
of high frequencies, n2− ↦ n2þ ¼ μϵ.
In order to examine the propagation modes, let us choose

coordinates such that Eq. (31) holds. Then, a perpendicular
background configuration is V ¼ ðV1; V2; 0Þ. Due to αþ ¼
0 and fðαþÞ ¼ 0, Eq. (38) yields a linearly polarized,
transverse mode,

Eþ ¼ 1

jVj

0
B@

V1

V2

0

1
CA≡ V̂; ð42Þ

where V̂ is a unit vector pointing along the direction
of V. Also, inserting α− into Eq. (38) provides another
linearly polarized mode that has an additional longitudinal
component:

E− ¼ Eð−Þ
0

0
B@

V2

−V1

iðV2
1 þ V2

2Þ=ðϵωÞ

1
CA

¼ Ẽð−Þ
0

�
V̂ × n̂þ i

jVj
ϵω

n̂

�
; ð43Þ

where Eð−Þ
0 ; Ẽð−Þ

0 are properly chosen amplitudes and n̂ is
the unit vector pointing along the propagation direction of

Eq. (31). Note that the longitudinal component is sup-
pressed by the magnitude of the preferred direction V in
comparison to the transverse part. For V2 ¼ 0 the behavior
is even more transparent:

Eþ ¼

0
B@

1

0

0

1
CA; E− ¼ Ẽð−Þ

0

0
B@

0

−1
iV1=ðϵωÞ

1
CA: ð44Þ

The structure of Eqs. (42), (43) reveals immediately that
Eþ · E�

− ¼ E�þ · E− ¼ 0, i.e., both polarization vectors are
orthogonal to each other. The refractive indices (40) are
associated with the linearly polarized modes of Eq. (44).
Although the vector E− is composed of a transverse and a
longitudinal component, as for polarization properties, it is
interpreted as a linearly polarized mode and only its
transverse component is taken into account.
If birefringence originates from two linearly

polarized modes having different phase velocities,
this property is not suitably characterized in terms of the
usual rotatory power given by Eq. (8). Note that the latter is
based on a decomposition of a linearly polarized mode into
two circularly polarized ones of different chirality (see
Appendix B). Instead, in the propagation regime, ω > ω−,
the phase shift developed between the propagating modes
as a consequence of the distinct phase velocities is valuable
to characterize birefringence (see Eq. (8.32) in [6]):

Δ ¼ 2π

λ0
dðnþ − n−Þ: ð45Þ

Here, λ0 is the wavelength of the electromagnetic radiation
in vacuo and d corresponds to the thickness of the medium
or the distance the wave travels in the medium. Starting
from the refractive indices of Eq. (40), the phase shift per
unit length is

Δ
d
¼ 2π

λ0

ffiffiffiffiffi
μϵ

p
0
B@1 −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

V2

ϵ2ω2

s 1
CA; ð46Þ

which simplifies to

Δ
d
≃

π
ffiffiffiffiffi
μϵ

p
λ0ϵ

2ω2
V2; ð47Þ

in the limit jVj=ω ≪ 1. Notice that n− is real for ω > ω− or
jVj=ω < ϵ, so that in the limit jVj=ω ≪ 1, the expression
(46) remains real, justifying the result (47). These findings
indicate that birefringence is governed by the norm squared
of the LV background vector V and depends quadratically
on the inverse of the frequency ω, as well. That dependence
is neither observed in the purely timelike case (see Eq. (33)
for comparison) nor in usual crystals [see Eq. (45)].

FIG. 2. Refractive indices n2�ðωÞ of Eq. (39) in terms of ω=V
where V ¼ jVj. Blue (horizontal) lines represent n2þ, while red
(curved) lines depict n2−. For solid lines, μ ¼ 1 and ϵ ¼ 2; for
dashed lines, μ ¼ 1 and ϵ ¼ 3; for dashed-dotted lines, μ ¼ 2 and
ϵ ¼ 2.
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For ω < ω−, n− becomes complex while nþ remains
real. Thus, absorption (only) occurs for the mode labeled
with a minus sign. In this case, the absorption coefficient
[2], γ ¼ 2ωImðnÞ, reads

γ ¼ 2
ffiffiffiffiffi
μϵ

p
ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ jVj2

ω2ϵ2

s
: ð48Þ

So the mode associated with Eq. (43) is absorbed, whereas
the remaining mode given by Eq. (42) propagates without
attenuation. Therefore, after traveling a certain distance in
such a medium, only the mode of Eq. (42) will survive.

2. V-longitudinal configuration

We now consider configurations where n · V ¼ �njVj
implying sin2 θ ¼ 0 and α2 ¼ 1 in Eq. (35a). This means
that n andV point along the same direction, i.e., for n given
by Eq. (31) we choose V ¼ ð0; 0; V3Þ. Hence, based on
Eq. (36), the solutions of Eq. (35a) for n2 in this case are

n2� ¼ μϵ� μjVj
ω

: ð49Þ

Note that n2þ > 0, meaning that the mode associated with
the refractive index nþ propagates within the full frequency
domain. On the other hand, the mode associated with n−
just propagates for ω > ω−, for which n2− > 0. Here, ω− is
the cutoff frequency of Eq. (41). This description is verified
in Fig. 3, where the refractive indices (49) are depicted as
functions of the dimensionless parameter ω=jVj. The
modes associated with n2þ and n2− exhibit anomalous and

normal dispersion, respectively, recovering the standard
value n2� → μϵ in the regime of high frequencies.
For the special choice of Eq. (31), MijEj ¼ 0

provides

E� ¼ 1ffiffiffi
2

p

0
B@

1

�i

0

1
CA: ð50Þ

Here, Eþ and E− represent polarization vectors for left-
handed and right-handed circularly polarized modes,
respectively. The two refractive indices of Eq. (49) also
imply birefringence providing the following rotatory
power:

δ ¼ −
ffiffiffiffiffi
μϵ

p
2

ω

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ jVj

ωϵ

r
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

jVj
ωϵ

r �
: ð51Þ

In the limit jVj=ω ≪ 1, the quantity n− remains real, which
also implies a real rotatory power,

δ ≃ −
1

2

ffiffiffi
μ

ϵ

r
jVj; ð52Þ

representing frequency-independent birefringence, simi-
larly to Eq. (33).
On the other hand, for jVj=ω > ϵ, n− becomes purely

imaginary, while nþ remains real. In this frequency regime,
both modes are absorbed to a different degree. The latter is
characterized by the dichroism coefficient defined in
Eq. (9), which yields (cf. Eq. (48)):

δd ¼
ffiffiffiffiffi
μϵ

p
2

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1þ jVj

ωϵ

r
: ð53Þ

With the latter finding at hand, we bring our study of the
essential properties of MCFJ theory in continuous media to
a close.

IV. HIGHER-DERIVATIVE DIMENSION-FIVE
ELECTRODYNAMICS IN MATTER

After analyzing the properties of MCFJ theory in a
material [see Eq. (11)], the next logical step is to construct
and investigate an extension involving additional four-
derivatives. Such extensions are naturally contained in the
nonminimal (nongravitational) SME [69–71], which is a
comprehensive framework for the parametrization of
Lorentz and CPT violation in effective field theory in
Minkowski spacetime. For the past two decades it has been
the foundation of various experiments testing the funda-
mental spacetime symmetries [91]. No signal of Lorentz
violation in vacuo has been found, so far. However, Lorentz
violation can be considered as an intrinsic property of
material media, which is why the SME is more than

FIG. 3. Refractive indices n2�ðωÞ of Eq. (49) in terms of ω=V
where V ¼ jVj. Blue (monotonically decreasing) lines represent
n2þ, while red (monotonically increasing) lines depict n2−. For
solid lines, μ ¼ 1 and ϵ ¼ 2; for dashed lines, μ ¼ 1 and ϵ ¼ 3;
for dotted-dashed lines, μ ¼ 2 and ϵ ¼ 2. The vertical dashed
lines, from left to right, are given by ω−=V ¼ 1=3 and
ω−=V ¼ 1=2, respectively, with ω− from Eq. (41).
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suitable as a base for representing certain material proper-
ties within a field theory setting and to even propose novel
materials with unusual characteristics.
The electromagnetic sector of the nonminimal SME

gives rise to a modified electrodynamics and is given by

L ¼ −
1

4
FμνFμν þ 1

2
ϵκλμνAλðk̂AFÞκFμν

−
1

4
Fκλðk̂FÞκλμνFμν: ð54Þ

The CPT-odd and CPT-even operators, ðk̂AFÞκ and
ðk̂FÞκλμν, respectively, are the analogs of ðkAFÞκ and
ðkFÞκλμν of the minimal SME. However, they involve
nonminimal coefficients contracted with additional four-
derivatives in the form of the following infinite operator
series:

ðk̂AFÞκ ¼
X
d odd

ðkðdÞAFÞκα1…αðd−3Þ∂α1…∂αðd−3Þ ; ð55aÞ

ðk̂FÞκλμν ¼
X
d even

ðkðdÞF Þκλμνα1…αðd−4Þ∂α1…∂αðd−4Þ ; ð55bÞ

where d is the mass dimension of the tensor field operator
that a certain coefficient is contracted with. Besides, (4 − d)
is the mass dimension of the associated controlling coef-

ficients ðkðdÞAFÞ
α1…αðd−3Þ
κ and ðkðdÞF Þκλμνα1…αðd−4Þ . The Lorentz

indices αi are contracted with additional spacetime
derivatives.
We are interested in the CPT-odd dimension-five

(d ¼ 5) extension, which is represented by a CFJ-like term
of the form

1

2
ϵκλμνAλðk̂AFÞκFμν; ð56aÞ

with

ðk̂AFÞκ ¼ ðkð5ÞAFÞκα1α2∂α1∂α2 : ð56bÞ

For our investigation, we will use the parametrization

ðkð5ÞAFÞκα1α2 ¼ Uκη
α1α2 ; ð57Þ

with the Lorentz-violating four-vector, Uκ, and the
Minkowski metric tensor, ημν. Using Eq. (57), the
higher-derivative term becomes

1

2
ϵκλμνAλUκ□; ð58Þ

where we have introduced the d’Alembertian □ ¼
ηα1α2∂α1∂α2 . The resulting higher-derivative Lagrangian,

L ¼ −
1

4
FμνFμν þ

1

2
ϵβλμνUβAλ□Fμν − AμJμ; ð59Þ

involves LV parametrized by the background vector,
Uμ ¼ ðU0;UÞ. Some classical aspects of this model were
examined in Refs. [73,75].
In order to study the effects of this higher-derivative term

on electromagnetic propagation in continuous matter, we
take as a starting point the Lagrangian (59), but employ the
field strength tensor Gμν in its kinetic term, as it occurs in
Eq. (2a). Thus, the Lagrangian of this new model is

L ¼ −
1

4
GμνFμν þ

1

2
ϵβλμνUβAλ□Fμν − AμJμ; ð60Þ

where the tensor Gμν is written in terms of the constitutive
tensor χμναβ, defined in Eqs. (2b), (3). The latter provides a
generalization of the electrodynamics of Eq. (59) in matter.
One may expect a connection between this theory and a
generalization of the modified Dirac theory given by
Eq. (10) where additional derivatives are included in the
second contribution. However, it is beyond the scope of the
current paper to demonstrate such a connection explicitly.
Thus, by using Eq. (59) we can take into consideration an
additional energy-momentum dependence that goes
beyond that of the CFJ term in matter.
The Lagrangian of Eq. (60) involves a third-order

derivative of the four-potential, which requires an associ-
ated Euler-Lagrange equation endowed with derivatives for
field derivatives that are of the same order. In principle, the
derivative order can be decreased by rewriting Eq. (60) in
the form

L ¼ −
1

4
GμνFμν −

1

2
ϵβλμνUβð∂ηAλÞ∂ηFμν − AμJμ: ð61Þ

As for the Lagrangian of Eq. (61), it is enough to consider
the Euler-Lagrange equation involving derivatives for
second-order derivatives of the fields, that is,

∂L
∂Aκ

− ∂ρ

� ∂L
∂ð∂ρAκÞ

�
þ ∂α∂ρ

� ∂L
∂ð∂ρ∂αAκÞ

�
¼ 0: ð62Þ

Applying the latter to Eq. (61) yields

∂ρGρκ þ ϵβκμνUβ□Fμν ¼ Jκ: ð63Þ

In this scenario, the modified Gauss’s and Ampère’s
laws are

∇ ·Dþ 2□ðU ·BÞ ¼ ρ; ð64aÞ

∇ ×H − ∂tDþ 2□U0B − 2□ðU × EÞ ¼ J; ð64bÞ

respectively. These modified inhomogeneous Maxwell
equations can describe new effects on the propagation of
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electromagnetic waves in continuous media characterized
by the constitutive tensor χμναβ. In the forthcoming sections
we obtain the dispersion relations and study the behavior of
refractive indices and propagating modes for a medium
characterized by the usual constitutive relations, D ¼ ϵE
and H ¼ μ−1B.
With regards to the discrete symmetries, the background

Uμ in the Lagrangian of Eq. (60) behaves in the very exact
way as Vμ does in Eq. (11), since the two CPT-odd terms
differ from each other by the presence of the second-order
differential operator, □, that is even under the discrete
symmetries P and T. In fact, by simple inspection, one
finds that the terms involving the timelike coefficient, U0,
are P-odd, C-even, T-even, and PT-odd, while the con-
tributions with U are P-even, C-even, T-odd, and PT-odd,
as shown in Table II. This means that the terms proportional
to U0 and U will act as a source for optical activity (as well
as birefringence) of the medium under study.

A. Dispersion relations

As is commonly known, the Maxwell equations con-
stitute one starting point for achieving the dispersion
relations in electrodynamics. Taking the time derivative
of Eq. (64b) and employing Eq. (6d), one obtains

∂t∇ ×H − ∂2
tD − 2□U0ð∇ × EÞ − 2∂t□ðU ×EÞ ¼ ∂tJ:

ð65Þ

Using now the constitutive relations given in Eqs. (15) and
(16) as well as J ¼ σE and the plane-wave ansatz for the
fields, Eq. (65) yields

½k2δij − kikj − ω2μϵ̄ijðωÞ�Ej ¼ 0; ð66aÞ

where we have defined the effective permittivity tensor
[cf. Eq. (18b)]

ϵ̄ijðωÞ≡
�
ϵþ i

σ

ω

�
δij −

2i
ω2

ðk2 − ω2Þ

× ϵiajðωUa − kaU0Þ: ð66bÞ

The latter quantity is interpreted as an extended frequency-
dependent electric permittivity, which contains contributions
stemming from the higher-derivative term. On the right-hand

side of Eq. (66b), the contribution involving ϵiajωUa violates
time reversal invariance, while the term ϵiajkaU0 breaks
parity invariance. Using k ¼ ωn, Eq. (66a) can now be cast
into the form:

MijEj ¼ 0; ð67aÞ

with the tensor Mij given by

Mij ¼ n2δij − ninj − μϵ̄ijðωÞ; ð67bÞ

while the effective permittivity tensor now reads

ϵ̄ijðωÞ ¼
�
ϵþ i

σ

ω

�
δij − 2iωðn2 − 1Þ

× ϵiajðUa − naU0Þ: ð67cÞ

It is important to note that although the medium has an
isotropic electric permittivity ϵδij, anisotropy effects are
generated by the backgroundUμ, present in the off-diagonal
components of ϵ̄ijðωÞ in Eq. (67c).
The matrix Mij in Eq. (67b) has the explicit form

½Mij� ¼ Mþ 2iμωðn2 − 1ÞW; ð68aÞ

with M given by Eq. (20b) and

W ¼

0
B@

0 U0n3 −U3 U2 − U0n2
U3 − U0n3 0 U0n1 −U1

U0n2 −U2 U1 − U0n1 0

1
CA: ð68bÞ

Evaluating det½Mij� ¼ 0 implies the dispersion equation

0 ¼ ϵ̃ðn2 − μϵ̃Þ2 − 4ðn2 − 1Þ2μω2

× fμϵ̃½U2
0n

2 þ U2 − 2U0ðn · UÞ�−U2n2 þ ðn · UÞ2g;
ð69Þ

with ϵ̃ stated in Eq. (21b). We point out that by employing
the four-momentum of Eq. (22) as well as

Ūμ ≡
� ffiffiffi

μ
p

U0;
Uffiffiffĩ
ϵ

p
�
; ð70Þ

we can cast the dispersion equation into the form

p̄4 þ 4p4½Ū2p̄2 − ðŪ · p̄Þ2� ¼ 0: ð71Þ

By consulting the effective metric of Eq. (24), the latter can
also be expressed in terms of the conventional four-
momentum pμ and the preferred direction Uμ as follows:

TABLE II. Behavior of the LV terms in the Lagrangian of
Eq. (59) under charge conjugation, parity transformation, and
time reversal.

E B A0 A U0ðA ·□BÞ A0ðU ·□BÞ U · ðA ×□EÞ
C − − − − þ þ þ
P − þ þ − − þ þ
T þ − þ − þ − −
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0 ¼ ðp · η̃ · pÞ2 þ 4ðp · η · pÞ2 μ
ϵ̃

× ½ðU · η̃ · UÞðp · η̃ · pÞ − ðU · η̃ · pÞ2�: ð72Þ

Note that in contrast to the dispersion equation of MCFJ
theory stated in Eq. (23), the recent Eq. (71) cannot be
written in terms of the effective four-momentum p̄μ only,
but pμ is necessary, as well. The reason for pμ playing a
role are the two additional four-derivatives contracted with
the dimension-5 coefficients in Eq. (57). Equation (72) also
allows us to say that the propagation of modified electro-
magnetic waves in media is governed by two metrics: the
Minkowski metric ημν and the effective metric η̃μν of
Eq. (24). Thus, the dimension-5 MCFJ-type theory defined
by Eq. (60) could be called bimetric in this sense. We
conclude that the structure of the dimension-5 MCFJ-type
theory in media is quite different from that of the gener-
alized MCFJ model in Eq. (60).
In vacuo, the constitutive parameters read ϵ ¼ 1, μ ¼ 1,

and σ ¼ 0. In this case, the dispersion equation in Eq. (69)
reduces to

0 ¼ ðn2 − 1Þ2f1 − 4ω2½U2
0n

2 − U2n2 þ U2

þ ðn · UÞ2 − 2U0ðn · UÞ�g; ð73Þ

being conveniently simplified as

p4f1þ 4½p2U2 − ðU · pÞ2�g ¼ 0; ð74Þ

with the four-momentum pμ and the preferred direction
Uμ ¼ ðU0;UÞ. Notice that Eq. (74) recovers the dispersion
equation obtained in Eq. (23) of Ref. [75], where this
higher-derivative electrodynamics was examined in vacuo.
It is important to point out that the remarkable difference
between Eq. (71) and Eq. (74) is ascribed to the presence of
the continuous medium, since the dimension-five higher-
derivative terms in the Lagrangians of Eqs. (59), (60)
correspond to each other.
In what follows, we analyze the dispersion equation (69)

for the timelike and spacelike configurations of the vec-
torial background, Uμ.

B. Purely timelike case

Considering the purely timelike scenario for the back-
ground vector, U0 ≠ 0 and U ¼ 0, and also ϵ̃ ↦ ϵ, which
means that the medium does not have Ohmic conductivity
(whereupon σ ¼ 0), Eq. (69) is reduced to the form

ϵðn2 − μϵÞ2 − 4μ2ω2U2
0ϵn

2ðn2 − 1Þ2 ¼ 0; ð75aÞ

implying

n2 − μϵ ¼ �2μωU0nðn2 − 1Þ; ð75bÞ

or equivalently

�2μωU0n3 − n2 ∓ 2μωU0nþ μϵ ¼ 0: ð75cÞ

The latter equation is cubic in n and has 3 (complex)
solutions, in general, given as functions n ¼ nðωÞ. These
solutions extend to frequency domains defined in accor-
dance with the sign of the discriminant of the cubic
equation, written as

Δ ¼ S
2433μ3ω4U4

0

; ð76aÞ

with

S ¼ −ϵ − μω2U2
0½1þ 9μϵð2 − 3μϵÞ þ 16μ2ω2U2

0�: ð76bÞ

For a cubic polynomial equation, the sign of Δ helps us to
identify the nature (real or complex) of the 3 solutions, in
accordance with Table III.
Since the denominator of Eq. (76a) is positive, we only

need to analyze the sign of the numerator, S. As S is a
function quartic in ω, it is possible to find two roots
that provide three frequency ranges for positive or
negative values of Δ. In this way, the relation S ¼ 0
establishes the critical values of frequencies (roots) that
separate the absorption domain S > 0 from the propagation
domain S < 0. Solving S ¼ 0, one achieves two roots for
ω2 given by

ω2
� ¼ 1

32μ2U2
0

f9μϵð3μϵ−2Þ−1�
ffiffiffiffiffiffiffiffiffiffiffiffi
μϵ−1

p
ð9μϵ−1Þ3=2g:

ð77Þ

Thus, the three frequency ranges associated with two
distinct scenarios are as follows:

(i) Forω− < ω < ωþ, one has S > 0 andΔ > 0, so that
Eq. (75c) yields one real function nðωÞ and two
complex functions nðωÞ.

(ii) For ω < ω− or ω > ωþ, one has S < 0 and Δ < 0,
so that there are three real refractive indices nðωÞ.

The first domain describes absorption effects, whereas
electromagnetic waves can freely propagate without attenu-
ation in the second domain. The sign of S determines the
real or complex nature of nðωÞ in the corresponding
frequency range. For a complex refractive index, we can

TABLE III. Sign of discriminantΔ of Eq. (76) and the nature of
the roots (solutions) of Eq. (75c).

Sign Solutions

Δ > 0 One real root and two complex conjugate roots
Δ ≤ 0 Three real roots (with two or all three

equal to each other if Δ ¼ 0)
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write nðωÞ ¼ n0ðωÞ þ in00ðωÞ, where Re½nðωÞ� ¼ n0ðωÞ is
the refractive index of the medium, and Im½nðωÞ� ¼ n00ðωÞ
is associated with the medium’s absorption coefficient α ¼
2ωn00ðωÞ [2].
Joining the above domains, we can conclude that:

(a) For ω < ω− there are three real solutions.
(b) For ω− < ω < ωþ two solutions become complex and

the remaining one stays real.
(c) For ω > ωþ the three solutions become real again.
In general, propagation without attenuation is associated

with real (positive) refractive indices, whereas absorption
effects (damping of the amplitude of electromagnetic
waves) are related to complex refractive indices. The
modified electrodynamics defined by Eq. (61) ascribes a
conducting behavior to a dielectric substrate (with

additional magnetic properties). For the particular scenario
studied previously, electromagnetic waves propagate with-
out being damped in the frequency range where the three
solutions are real. In the range where complex solutions for
nðωÞ occur, both propagation and absorption (attenuation)
is observed. These novel effects stem from the higher-
derivative coupling of the background coefficient U0 with
the electromagnetic fields.
The refractive indices for a continuous medium with

signal propagation described by Eq. (75c) are given by very
intricate expressions [the roots of Eq. (75c)], which will not
be stated here explicitly. We depict these three functions,
niðωÞ, for i ¼ 1, 2, 3 in terms of the dimensionless
parameter ωU0 for the special values μ ¼ 1 and ϵ ¼ 2.
These plots are presented in Figs. 4, 5, and 6, where the
solid (dotted) lines stand for the real (imaginary) part of
nðωÞ. The refractive indices shown in the previous figures
are characterized by positive real parts. The remaining three
refractive indices, which follow from the generic sixth-
order polynomial of Eq. (75a), have negative real parts.
We notice that n1ðωÞ is real for the full frequency range.

The functions n2ðωÞ and n3ðωÞ become complex in the
range ω− < ω < ωþ, in agreement with the previous
analysis. Combining all three plots in Fig. 7, we realize
the full scenario described in items (a)–(c) previously
stated. The vertical dashed lines indicate the critical
frequency values of Eq. (77), namely ω−U0 and ωþU0,
which define the transition between the ranges given in
(a)–(c). Another characteristic of Figs. 5 and 6 are the
discontinuities in the real parts of n2ðωÞ and n3ðωÞ, at the
frequencies ω�. Note that n2ðωÞ and n3ðωÞ become purely
imaginary at these values.
As a final comment, we point out that the physical

behavior described above only occurs for the higher-
derivative electrodynamics of Eq. (61) in matter. In fact,
in vacuo, Eq. (75a) would provide

FIG. 4. Plot of one real root of Eq. (75c), the refractive index
n1ðωÞ, in terms of ωU0. It is obtained by choosing the lower signs
of Eq. (75c). The solid (dotted) line represents Re½n1ðωÞ�
(Im½n1ðωÞ�) where the latter vanishes.

FIG. 5. Plot of one complex root of Eq. (75c), the refractive
index n2ðωÞ, in terms of ωU0. It follows from Eq. (75c) with the
upper signs taken into account. The solid (dotted) line represents
Re½n2ðωÞ� (Im½n2ðωÞ�).

FIG. 6. Plot of one complex root of Eq. (75c), the refractive
index n3ðωÞ, in terms of ωU0. It results from choosing the upper
signs of Eq. (75c). The solid (dotted) line depicts Re½n3ðωÞ�
(Im½n3ðωÞ�).
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ðn2 − 1Þ2ð1 − 4ω2U2
0n

2Þ ¼ 0; ð78Þ

whose solutions are real, namely:

n ¼ 1; n ¼ 1

2ωjU0j
; ð79Þ

meaning the absence of absorption effects in vacuo (for this
dimension-5 theory). The latter behavior can also be inferred
directly from Eq. (77), since Δω ¼ ωþ − ω− ¼ 0, for
μ ¼ ϵ ¼ 1, corresponding to the disappearance of frequency
ranges where absorption occurs.
Furthermore, the second refractive index of Eq. (79) does

not have a well-defined limit for U0 ↦ 0. In vacuo, such
modes are sometimes called spurious and their occurrence
is characteristic for higher-derivative theories (see, e.g.,
[71,74,75] for detailed investigations in the nonminimal
electromagnetic sector of the SME). They can be inter-
preted as high-energy effects decoupling from the theory at
low energies. However, a finite U0 in macroscopic media,
that is, mjU0j ∼Oð1Þ (with the electron mass m), is
realistic. Then, the second refractive index is not neces-
sarily suppressed for low energies in continuous media, but
must be considered on an equal footing with the remaining
modes. This behavior will become more transparent for the
purely spacelike case to be investigated below.

1. Propagation modes

In order to examine the propagation modes for the purely
timelike sector, we can employ Eq. (75b) in the matrix of
Eq. (68), yielding

½Mij� ¼ −

0
B@

n21 n1n2 n1n3
n1n2 n22 n2n3
n1n3 n2n3 n23

1
CA

þ 2μωU0ðn2 − 1Þ

0
B@

�n in3 −in2
−in3 �n in1
in2 −in1 �n

1
CA: ð80Þ

Solving MijEj ¼ 0, one finds

Ey ¼
�in3n − n1n2

n2 − n21
Ex; ð81aÞ

Ez ¼
∓ in2n − n1n3

n2 − n21
Ex; ð81bÞ

such that the normalized electric fields E� of the propa-
gating waves are given by

E� ¼ 1ffiffiffi
2

p
n

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
n2 − n21

p
0
B@

n2 − n21
�in3n − n1n2
∓ in2n − n1n3

1
CA: ð82Þ

The latter coincide exactly with those of Eq. (30) except of
the labels being switched. Basically, for the timelike
configuration, the electric-field modes of the MCFJ and
MCFJ-type higher-derivative electrodynamics are the
same, despite the different refractive indices of these
theories. Note that E� of Eqs. (30), (82) do not depend
on V0 and U0, respectively. The refractive index illustrated
in Fig. 4 is associated with the electric field E− of Eq. (82),
whereas those of Figs. 5, 6 are linked to Eþ.
For a direct physical interpretation of these propagating

modes, let us choose again a convenient coordinate system
where propagation occurs along the z axis, i.e., let n be
given by Eq. (31). In this system, the normalized electric
fields are

E� ¼ 1ffiffiffi
2

p

0
B@

1

�i

0

1
CA; ð83Þ

which are the same as those stated in Eq. (32). These are
polarization vectors for a left-handed and right-handed
circular polarization, respectively, typical of optically
active media. Such an optical activity can be expressed
in terms of the rotatory power of Eq. (8), if the refractive
indices nþ and n− are known. It is worthwhile to note that,
although Eq. (75c) provides, in general, three refractive
indices, there are only two distinct electric-field configu-
rations, those of Eq. (83). There are still three propagating
modes, one associated with each refractive index. We will
come back to this aspect in the forthcoming section, too.

FIG. 7. Compilation of complex refractive indices nðωÞ from
Figs. 4, 5, and 6. The solid lines illustrate the real parts of n1ðωÞ
(blue), n2ðωÞ (red), and n3ðωÞ (green). Their corresponding
imaginary pieces are represented by dotted lines with the same
colors. The solid brown line indicates that Re½n2ðωÞ� and
Re½n3ðωÞ� lie on top of each other. Black dotted lines are
employed whenever all three imaginary parts merge.
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C. Purely spacelike case

Let us now consider the purely spacelike scenario for the
background vector, U0 ¼ 0 and U ≠ 0, and also ϵ̃ ↦ ϵ
(setting σ ¼ 0). Then Eq. (69) yields

0 ¼ ϵðn2 − μϵÞ2 − 4ðn2 − 1Þ2μω2

× ½ðμϵ − n2ÞU2 þ ðn · UÞ2�: ð84Þ

Implementing n · U ¼ njUj cos θ in Eq. (84), we obtain

n2 − μϵ ¼ �2μωðn2 − 1ÞjUjα; ð85aÞ

where we have defined

α2 ≡ 1 −
n2

μϵ
sin2 θ: ð85bÞ

With this parametrization, we can straightforwardly ana-
lyze two special cases: (i) the perpendicular configuration
where n · U ¼ 0 and sin2 θ ¼ 1; (ii) the longitudinal
configuration with sin2 θ ¼ 0 and n · U ¼ �jnjjUj where
the plus (minus) sign holds for n parallel (antiparallel) toU.
These choices can provide some insights on the behavior of
electromagnetic-wave propagation.
To obtain the propagation modes, we again work in a

coordinate system where Eq. (31) holds. Then the matrix
(68) simplifies as

½Mij� ¼

0
B@

n23−μϵ −iμϵβðωÞU3 iμϵβðωÞU2

iμϵβðωÞU3 n23−μϵ −iμϵβðωÞU1

−iμϵβðωÞU2 iμϵβðωÞU1 −μϵ

1
CA;

ð86Þ

where βðωÞ ¼ 2ωðn23 − 1Þ=ϵ. For each case parametrized
with α, we can insert Eq. (85) into Eq. (86) and solve
MijEj ¼ 0 to achieve the electric fields of the correspond-
ing modes.

1. U-perpendicular configuration

First, we consider the orthogonal configuration, i.e.,
U⊥n and sin2 θ ¼ 1, so that Eq. (85) becomes

n2 − μϵ ¼ �2μωðn2 − 1ÞjUj
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

n2

μϵ

s
; ð87Þ

which can be written as

ðn2 − μϵÞ½4μ2ω2U2ðn2 − 1Þ2 þ μϵðn2 − μϵÞ� ¼ 0; ð88Þ

implying n2 ¼ μϵ and

0 ¼ 4μ2ω2U2n4 þ ðμϵ − 8μ2ω2U2Þn2
− μ2ϵ2 þ 4μ2ω2U2: ð89Þ

The first solution, n2 ¼ μϵ, corresponds to the ordinary
refractive index of Maxwell electrodynamics in macro-
scopic media that we denote as n0 ¼ ffiffiffiffiffi

μϵ
p

. On the other
hand, Eq. (89) captures information stemming from the
higher-derivative term of Eq. (58) and the background U,
leading to the following solutions:

n2� ¼ 1þ f�; ð90aÞ

where

f� ¼ ϵ

8μω2U2
ð−1� ffiffiffiffiffiffiffiffiffiffiffiffi

1þϒ
p Þ; ð90bÞ

ϒ ¼ 16μ2ω2U2

�
1 −

1

μϵ

�
: ð90cÞ

The behavior of n2� in terms of the dimensionless
parameter ωjUj is presented in Fig. 8. We notice that nþ
is real in the entire frequency domain and exhibits
anomalous dispersion. Furthermore, the function n2− has
a simple root,

ω− ¼ ϵ

2jUj : ð91Þ

The latter is interpreted as a critical value [cf. Eq. (41)],
below which n− is purely imaginary, whereupon no
propagation occurs. Above ω−, the refractive index n−

FIG. 8. Behavior of the refractive indices n2� of Eq. (90) in
terms of ωU where U ¼ jUj. Blue curves (above the horizontal
dashed line) represent n2þ, while red curves (below the horizontal
dashed line) depict n2−. For solid lines, μ ¼ 2 and ϵ ¼ 2; for
dashed lines, μ ¼ 2 and ϵ ¼ 4; for dashed-dotted lines, μ ¼ 1 and
ϵ ¼ 4. Gray vertical dashed lines indicate ω−U ¼ 1 and
ω−U ¼ 2, respectively, where ω− is given by Eq. (91).

EFFECTS OF CPT-ODD TERMS OF DIMENSIONS … PHYS. REV. D 104, 116023 (2021)

116023-15



becomes real. As a consequence, electromagnetic waves
can propagate in this regime.
The first vertical dashed line, located at the value

ω−jUj ¼ 1, separates the absorption and propagation zones
for the mode represented by the solid red line. The second
vertical dashed line, in ω−jUj ¼ 2, does so for the modes
depicted by the dashed and dashed-dotted lines. In detail,
we observe that:

(i) For 0 < ω < ω−: the refractive index nþ is real and
n− is purely imaginary; thus, only the mode asso-
ciated with nþ propagates in this range.

(ii) For ω > ω−: one has n2� > 0 and both modes
propagate.

(iii) In the limit of very low frequencies, ωjUj ↦ 0, it
holds that nþ ¼ ffiffiffiffiffi

μϵ
p

, recovering the usual refractive
index of a simple continuous medium in standard
electrodynamics.

(iv) In the limit of very high frequencies, ωjUj ↦ ∞, the
behavior of the refractive indices is

n� ¼ 1� 1

4ωjUj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ

�
ϵ −

1

μ

�s
: ð92Þ

Unsurprisingly, the high-frequency behavior of
Eq. (92), n� ↦ 1, differs from that of the refractive
indices of MCFJ theory of Eq. (40) in macroscopic
media, which is given by n� ↦

ffiffiffiffiffi
μϵ

p
. Thus, the

impact of a nontrivial permeability and permittivity
is suppressed in this regime of the MCFJ-type theory
in Eq. (60) endowed with higher-derivative op-
erators.

With regards to the propagating modes, Eq. (85b) yields

α� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

n2�
μϵ

s
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1þ f�
μϵ

s
; ð93Þ

indicating different values of α for the distinct refractive
indices n� of Eq. (90). Taking n as given in Eq. (31), the
background has the form U ¼ ðU1; U2; 0Þ such that
n · U ¼ 0. The following propagation modes are then
achieved:

E� ¼ E0
0

0
B@

U2

−U1

−2iωf�ðU2
1 þ U2

2Þ=ϵ

1
CA

¼ Ẽ0
0

�
Û × n̂ − 2iωf�

jUj
ϵ

n̂

�
; ð94Þ

with f� given by Eq. (90b) and the unit vector Û pointing
along the direction of U. In case we choose the background
vector of the simple form U ¼ ð0; U2; 0Þ, Eq. (94) provides

E� ¼ E0
0

0
B@

1

0

−2iωf�U2=ϵ

1
CA: ð95Þ

The latter correspond to transverse, linear polarization
modes with additional longitudinal components, in analogy
to the mode E− of Eq. (44). Now, by comparing Eq. (94) to
Eq. (43) obtained for the MCFJ theory in macroscopic
matter, we spot intriguing similarities. Our interpretation is
that the single mode of Eq. (43) splits into the two of
Eq. (94) as a result of the higher-derivative nature of this
theory. To understand these modes better, it is reasonable to
perform Taylor expansions for U ↦ 0. Investigating the
behavior of f� in Eq. (90b) provides

fþ ≃ ϵμ − 1; f− ≃ −
ϵ

4μω2U2
þ 1 − ϵμ; ð96Þ

giving rise to

nþ ↦
ffiffiffiffiffi
μϵ

p
; n− ↦

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 −

ϵ

4μω2U2
− ϵμ

r
: ð97Þ

As a consequence, the mode described by Eþ has a
well-defined limit for U ↦ 0, whereas the second mode
associated with E− does not. Here it is also evident that n−
becomes complex in this regime. So such as for the purely
timelike sector, we again encounter a mode whose counter-
part in vacuowould frequently be denoted as spurious. The
situation is different in macroscopic matter, though,
because mjUj ∼Oð1Þ can be realistic. As before, the
second mode must be interpreted as a regular, propagating
mode.
Finally, we discuss the first solution n0 ¼ ffiffiffiffiffi

μϵ
p

of
Eq. (88). In this case, Eq. (85b) provides α ¼ 0. Hence,
MijEj ¼ 0 implies

0
B@

0 0 iU2

0 0 −iU1

−iU2 iU1 −1=β

1
CA
0
B@

Ex

Ey

Ez

1
CA ¼ 0; ð98Þ

yielding the following propagating mode:

E0 ¼
1

jUj

0
B@

U1

U2

0

1
CA ¼ Û: ð99Þ

The latter is a linearly polarized mode related to the
refractive index n0 ¼ ffiffiffiffiffi

μϵ
p

and it is perpendicular to the
propagation direction of Eq. (31). Also, one finds
E0 ·E�

� ¼ 0, with E� given by Eq. (94). The mode of
Eq. (99) is equivalent to that of Eq. (42) found for
MCFJ theory in macroscopic matter. Thus, this
particular mode remains unaffected by the presence of
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the additional derivatives in the CFJ-type field operator
of Eq. (58). Also, even in the limit U ↦ 0, the electric
fields E0;E� are still governed by the direction Û.
However, Û does then not indicate a preferred direction,
anymore. Instead, the components U1, U2 take the role of
parametrizing the plane orthogonal to the propagation
direction n̂.
In total, the number of the physical modes in the MCFJ-

type theory defined by Eq. (60) amounts to 3. Two of these
approach the behavior of a standard isotropic medium in
the limitU ↦ 0. In particular, it is the mode associated with
nþ in Eq. (97) and that linked to n0 ¼ ffiffiffiffiffi

μϵ
p

of Eq. (88).
Having three propagating modes does not indicate a
breakdown of gauge invariance of the theory defined by
Eq. (60). The operator of Eq. (58) is clearly gauge-
invariant. The third mode originates from the presence
of the d’Alembertian in Eq. (58) increasing the polynomial
order of the dispersion equation. In vacuo, the third mode
could be denoted as spurious, but this technical term is
misleading in macroscopic matter where the coefficients
mU can take values of Oð1Þ.
As the associated modes are not circularly polarized,

birefringence for this case is better characterized in terms of
the phase shift per unit length given by Eq. (45) instead of
the rotatory power in Eq. (8). We introduce

Δa;b

d
≡ 2π

λ0
ðna − nbÞ; ð100Þ

where a; b ∈ f0;þ;−g. Since there are three propagating
modes forω > ω−, we can define the following phase shifts
acquired after propagation (divided by the propagation
distance d):

Δ�;0

d
¼ 2π

λ0
½

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f�

p
−

ffiffiffiffiffi
μϵ

p �; ð101aÞ

Δþ;−

d
¼ 2π

λ0
½ ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ fþ
p

−
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ f−

p
�; ð101bÞ

which are valid in the range where n− is real, i.e.,
ωjUj>ϵ=2. In the limit of high frequencies, ðωjUjÞ−1 ≪
1, Eq. (101) yields

Δ�;0

d
¼ 2π

λ0
ð1 − ffiffiffiffiffi

μϵ
p Þ � Δ

2d
; ð102aÞ

Δþ;−

d
¼ Δ

d
; ð102bÞ

with

Δ
d
≡ π

λ0ωjUj

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ

�
ϵ −

1

μ

�s
: ð102cÞ

Comparing the modes labeled with� to the standard mode,
there is a zeroth-order contribution that only involves the
permittivity and permeability of the medium.
For ω < ω− (or ωjUj < ϵ=2), n− is purely imaginary.

Then from Eq. (90), n− is rewritten as

n− ¼ i
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
−1 − f−

p
: ð103Þ

Since ImðnþÞ ¼ 0 for the full frequency domain, only the
mode labeled with the minus sign undergoes attenuation,
which is quantified by the absorption coefficient,
γ ¼ 2ωImðn−Þ, that is

γ ¼ 2ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ϵ

8μω2U2
ð1þ ffiffiffiffiffiffiffiffiffiffiffiffi

1þϒ
p Þ − 1

r
; ð104Þ

with ϒ given by Eq. (90c). In the limit of low frequencies,
ωjUj ≪ 1, Eq. (104) can be expanded as

γ ≃
1

jUj
ffiffiffi
ϵ

μ

r �
1þ 2

�
1 −

2

μϵ

�
ω2μ2jUj2

�
: ð105Þ

It is important to note that the absorption coefficient of
Eq. (105) is evaluated in the limit ωjUj ≪ 1, while the
phase shift in Eq. (102) is determined in the opposite limit
ðωjUjÞ−1 ≪ 1. Attenuation takes place for a purely imagi-
nary n− and birefringence occurs when n− is real. The
condition ωjUj ¼ ϵ=2 states a clear cutoff separating the
frequency regimes for each effect from each other.

2. U-longitudinal configuration

Let us now consider the configurations where sin θ ¼ 0,
i.e., n and U are parallel or antiparallel, for which Eq. (84)
is equivalent to

0 ¼ ð1 − 4μ2ω2U2Þn4 − 2ðμϵ − 4μ2ω2U2Þn2
þ μ2ϵ2 − 4μ2ω2U2; ð106Þ

whose solutions for n2 are

n2� ¼ μðϵ� 2ωjUjÞ
1� 2μωjUj : ð107Þ

The behavior of n2� in terms of the dimensionless parameter
ωjUj is displayed in Fig. 9, for some parameter values. In
this scenario, the mode associated with nþ exhibits anoma-
lous dispersion and propagates in the full frequency range,
since n2þ > 0.
The mode associated with n2− has two branches. In the

superior branch, defined in the frequency range
0 < ω < ω0, the mode propagates, with n2− increasing very
rapidly with ω. Here,
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ω0 ¼
1

2μjUj ; ð108Þ

is the value for which n2− diverges. In Fig. 9, the first
vertical dashed line, given by ω0jUj ¼ 1=4, is asymptotic to
the red solid as well as the red dashed curve where the
associated functions have singularities at this point and
change their signs. The second vertical dashed line is in
ω0jUj ¼ 1=2, being asymptotic to both the red upper and
lower dashed-dotted curves. When ω > ω0 one has n2− < 0
whose lower branch becomes a purely imaginary refractive
index n−, representing a nonpropagating mode. This
behavior is characteristic in the range ω0 < ω < ω−, with

ω− ¼ ϵ

2jUj ; ð109Þ

being the root of Eq. (107). Equation (109) stands for the
cutoff frequency above which the mode associated with n−
propagates. The third and fourth vertical dashed lines,
given by ω−jUj ¼ 1 and ω−jUj ¼ 1.5, indicate the begin-
ning of the propagation regime for the red solid curve and
the red dashed curve, respectively.
Regarding the U-longitudinal propagation modes, for

which n · U ¼ �njUj, one takes α ¼ 1 as well as U ¼
ð0; 0; U3Þ for n given by Eq. (31). In this case, the resulting
modes are

E� ¼ 1ffiffiffi
2

p

0
B@

1

∓ i

0

1
CA; ð110Þ

representing right-handed and left-handed circularly polar-
ized waves, respectively. Hence, when U and n point along

the same direction, the modes become transverse again
such that their polarizations are perpendicular to n.
Now, in order to describe birefringence effects, we

evaluate the rotatory power by inserting Eq. (107) into
Eq. (8), that is,

δ ¼ −
ffiffiffiffiffi
μϵ

p
2

ω

�
gþffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1þ 2μωjUjp −
g−ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − 2μωjUjp �
; ð111aÞ

where

g� ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� 2ω

ϵ
jUj

r
: ð111bÞ

The latter result holds for the regions where n− is real, that
is, for ω < ω0 and ω > ω−, according to Fig. 9. In the limit
ωjUj ≪ 1, Eq. (111) provides a rotatory power nonlinear in
the frequency, namely:

δ ≃
ffiffiffi
μ

ϵ

r
ðμϵ − 1Þω2jUj: ð112Þ

As already mentioned, the refractive index n− is purely
imaginary in the range ω0 < ω < ω−, constituting an
absorption zone, which is explicitly given by

1

2μjUj < ω <
ϵ

2jUj : ð113Þ

In this regime the refractive index reads

n− ¼ i
ffiffiffiffiffi
μϵ

p
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ωjUj=ϵ
2μωjUj − 1

s
; ð114Þ

and the corresponding dichroism coefficient is

δd ¼
ffiffiffiffiffi
μϵ

p
2

ω

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − 2ωjUj=ϵ
2μωjUj − 1

s
: ð115Þ

V. FINAL REMARKS

In this work, we examined an electrodynamics of
continuous media based on Maxwell equations modified
by CPT-odd terms, whereas the usual constitutive relations
D ¼ ϵE and H ¼ μ−1B were assumed to hold. At first, we
reviewed some basic properties of the MCFJ model,
followed by an analysis of the dimension-five higher-
derivative extension of MCFJ electrodynamics. Our general
focus was on describing electromagnetic-wave propagation
in matter governed by these CPT-odd modifications.
In Sec. III, we examined MCFJ electrodynamics, given

by the Lagrangian of Eq. (11), in a continuous mediumwith
a fixed background Vμ ¼ ðV0;VÞ present. To analyze the

FIG. 9. Plot of n2� of Eq. (107) in terms of ωU with U ¼ jUj.
The blue curves, which are positive and monotonically decreas-
ing for the entire frequency range, represent n2þ. The red lines,
constituted by positive upper and negative lower branches,
illustrate n2−. Solid lines: μ ¼ 2 and ϵ ¼ 2; dashed lines: μ ¼ 2
and ϵ ¼ 4; dashed-dotted lines; μ ¼ 1 and ϵ ¼ 3. Gray vertical
dashed lines indicate ωU ∈ f1=4; 1=2; 1; 3=2; 2g.
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propagation behavior of electromagnetic waves, we
obtained the dispersion relations and the refractive indices
for two scenarios: (i) a timelike background, Vμ ¼ ðV0; 0Þ
and (ii) a spacelike background, Vμ ¼ ð0;VÞ. For scenario
(i), the refractive indices are always real, giving rise to
propagation without losses as well as birefringence. The
corresponding rotatory power, δ ¼ −μV0=2, is frequency-
independent. For scenario (ii), one refractive index, nþ, is
always real, while the other, n−, may be complex, corre-
sponding to an absorption regime. In this case, birefrin-
gence and dichroism occur in different frequency ranges.
The rotatory power and dichroism coefficient are both
frequency-dependent.
In Sec. IV, we considered an electrodynamics in a

ponderable medium modified by a MCFJ-type higher-
derivative term of dimension five, given by the
Lagrangian of Eq. (60). After writing up the altered
Maxwell equations, a sixth-order dispersion equation was
achieved. In the purely timelike scenario, Uμ ¼ ðU0; 0Þ,
studied in Sec. IV B, we obtained a third-order equation in
the refractive index n providing three solutions. One
solution is real for any frequency, while the remaining
two are complex for some frequency range (absorption
range). This behavior occurs even for a dielectric non-
conducting substrate. Such an effect is represented, for
example, by Figs. 5 and 6, where the graphs indicate that
Im½nðωÞ� ≠ 0 in the absorption range ω− < ω < ωþ, with
ω� given in Eq. (77). That property is entirely ascribed to the
higher-derivative coupling term, since the usual MCFJ
electrodynamics in ponderable media does not exhibit an
absorption regime for a purely timelike background.
Comparing Figs. 1 and 7 with each other allows us to
notice the differences between the propagating modes in the
usual and higher-derivative timelike case. Furthermore, the
propagation modes obtained correspond to left-handed and
right-handed circular polarizations [see Sec. IV B 1].
In Sec. IV C, we addressed the purely spacelike scenario,

governed by an involved dispersion relation. It was
analyzed for two particular cases: (a) the perpendicular
configuration, where n · U ¼ 0, and (b) the longitudinal
configurations, n · U ¼ �njUj. In scenario (a), one finds
n2þ > 0 for all frequencies, which indicates the absence of
absorption for this mode. On the other hand, n− becomes
purely imaginary for ω < ω−, with ω− defined in Eq. (91).
Absorption occurs in this range for the mode associated
with n− (see Fig. 8). Hence, attenuation and birefringence
are expected in the regions ω < ω− and ω > ω−, respec-
tively. For scenario (b), the refractive index nþ is always
real, as well, while n− exhibits two distinct branches
separated by the frequency ω0 given in Eq. (108). The
upper branch, defined for ω < ω0, is characterized by a
region of sharp normal dispersion. In ω ¼ ω0, the refractive
index n− diverges. In the lower branch, the mode associated
with n− turns complex and returns to the propagation
regime for ω > ω−. This mode possesses different physical

behaviors (propagation or absorption). Birefringence
occurs for ω < ω0 and ω > ω−, while absorption takes
place for ω0 < ω < ω−. In both ranges, the acquired
phaseshift between different modes and the absorption
coefficient are frequency-dependent.
In order to compare the spacelike configurations of the

dimension-three and five MCFJ electrodynamics, we
examined Figs. 2 and 8. The dimension-three model shows
normal dispersion, while in the dimension-five framework
modes emerge that exhibit both anomalous and normal
dispersion. The absorption zones are qualitatively analo-
gous to each other in both cases. Comparing Figs. 3 and 9,
we notice that dimension-three and five modes are char-
acterized by normal and anomalous dispersion, while only
the higher-derivative model exhibits two branches of
normal dispersion. In the limit of high frequencies, one
has n2� ↦ μϵ based on Eq. (36) for dimension-three MCFJ
electrodynamics and n2� ↦ 1 inferred from Eqs. (90), (107)
for dimension-five MCFJ-type electrodynamics. These
findings allow us to distinguish between the two models.
Therefore, the presence of higher derivatives implies a
richer plethora of frequency-dependent propagating modes.
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APPENDIX A: COVARIANT MAXWELL
EQUATIONS IN MATTER

Here we derive the Maxwell equations and the con-
stitutive relations from Eqs. (2a) and (2b). Equation (2b)
implies

G0i ¼ 1

2
χ0iαβFαβ; ðA1aÞ

G0i ¼ 1

2
χ0i0jF0j þ

1

2
χ0ij0Fj0 þ

1

2
χ0imnFmn; ðA1bÞ

which can be simplified by using the symmetry properties
of the tensor χμνϱσ, i.e., Eq. (3b). We also implement

F0i ¼ −Fi0 ¼ Ei; Fmn ¼ −ϵmnkBk; ðA2Þ

where ϵmnk is the three-dimensional Levi-Civita symbol.
Thus, Eq. (A1b) becomes
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G0i ¼ −χ0ij0Ej −
1

2
χ0imnϵmnkBk; ðA3aÞ

G0i ¼ −Di; ðA3bÞ

where we have defined the electric displacement field Di,
which involves the medium’s response to applied electro-
magnetic fields, as

Di ¼ χ0ij0Ej þ 1

2
χ0imnϵmnkBk: ðA3cÞ

From Eq. (A3c) we can define the electric permittivity ϵij as
well as the tensor γij describing the magnetic contribution
to the electric displacement field [see Eq. (1a)] as

ϵij ≡ χ0ij0; γik ≡ χ0imnϵmnk

2
: ðA4Þ

The antisymmetric nature of χμναβ allows us to write

Gμν ¼ −Gνμ: ðA5Þ

Now we can evaluate the components Gij. In doing so,
we get

Gij ¼ 1

2
χijαβFαβ; ðA6aÞ

Gij ¼ 1

2
χij0kF0k þ

1

2
χijk0Fk0 þ

1

2
χijmnFmn; ðA6bÞ

which is recast by using Eq. (3b) as well as Eq. (A2). Then,

Gij ¼ −χijk0Ek −
1

2
χijmnϵmnkBk: ðA7Þ

In order to obtain a relation between Gij and Hi similar to
that between Fij and Bi, let us now contract Eq. (A7) with
ϵijl such that

ϵijlGij ¼ −
2

2
ϵijlχ

ijk0Ek −
2

4
ϵijlχ

ijmnϵmnkBk; ðA8Þ

where we introduced the factor of (2=2) in each term of
Eq. (A8). The motivation for doing so will become clear
shortly, as this manipulation allows us to write down an
expression very similar to Fmn ¼ −ϵmnkBk, but for the
components Gij and Hi. Thus, we define the magnetic
permeability μij as well as γ̃ij governing the electric
contribution to the magnetic field [see Eq. (1b)] as

ðμ−1Þlk ≡ 1

4
ϵijlχ

ijmnϵmnk; γ̃lk ≡ ϵijlχ
ijk0

2
: ðA9Þ

Then Eq. (A8) simplifies as

ϵijlGij ¼ −2ðμ−1ÞlkBk − 2γ̃lkEk; ðA10aÞ

ϵijlGij ¼ −2Hl; ðA10bÞ

where we have defined the magnetic field Hl, which
describes the medium’s response to applied electromag-
netic fields via

Hl ¼ ðμ−1ÞlkBk þ γ̃lkEk: ðA10cÞ

Let us contract Eq. (A10b) with ϵlmn, whereupon

ϵlmnϵijlGij ¼ −2ϵlmnHl; ðA11aÞ

Gmn ¼ −ϵmnlHl; ðA11bÞ

where we have used Eq. (A5).
Now that we have expressed the constitutive relations in

terms of the constitutive tensor χμναβ, we can derive the
field equations associated with the Lagrange density of
Eq. (2a). Thus, we start by rewriting Eq. (2a):

L ¼ −
1

8
χμναβFαβFμν − AμJμ;

¼ −
1

8
χμναβ∂αAβ∂μAν þ

1

8
χμναβ∂αAβ∂νAμ

þ 1

8
χμναβ∂βAα∂μAν −

1

8
χμναβ∂βAα∂νAμ − AμJμ:

ðA12Þ
We rename the indices (ν ↔ μ) in the second and fourth
term of Eq. (A12) and after that we employ the symmetry
property of Eq. (3a). This gives us

L ¼ −
1

4
χμναβ∂αAβ∂μAν þ

1

4
χμναβ∂βAα∂μAν − AμJμ;

ðA13Þ

which can be simplified by replacing α ↔ β in the second
term and using Eq. (3b). Hence, we finally obtain

L ¼ −
1

2
χμναβ∂αAβ∂μAν − AμJμ: ðA14Þ

Using the Euler-Lagrange equations

∂L
∂Aκ

− ∂ρ

� ∂L
∂ð∂ρAκÞ

�
¼ 0; ðA15Þ

one arrives at

∂L
∂ð∂ρAκÞ

¼ −
1

2
ðχβαρκ∂βAα þ χρκαβ∂αAβÞ; ðA16Þ

where we have relabeled μ → β, ν → α in the first term on
the right-hand side. Now, we also implement Eq. (3c) in the
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first contribution, and in the second term we take advantage
of Eq. (3b). Therefore, Eq. (A16) provides

∂L
∂ð∂ρAκÞ

¼ −
1

2
χρκβαFβα ¼ −Gρκ; ðA17Þ

and one also finds

∂L
∂Aκ

¼ −Jμδμκ ¼ −Jκ: ðA18Þ

So using Eqs. (A17) and (A18) in Eq. (A15), we finally get
the covariant form of the Maxwell equations in simple
matter:

∂ρGρκ ¼ Jκ: ðA19Þ

Taking κ ¼ 0, one finds Gauss’s law:

∂iGi0 ¼ J0; ðA20aÞ

∇ · D ¼ ρ; ðA20bÞ

where we have employed Eq. (A3b) and Jμ ¼ ðρ; JÞ.
Ampère’s law is obtained by taking κ ¼ i in Eq. (A19),
that is

∂0G0i þ ∂jGji ¼ Ji; ðA21aÞ

∂tð−DiÞ − ∂jðϵjikHkÞ ¼ Ji; ðA21bÞ

where we have used Eqs. (A3b), (A5), and (A11b).
Applying further simplifications to Eq. (A21b), yields

ϵijk∂jHk − ∂tDi ¼ Ji; ðA22aÞ

∇ ×H − ∂tD ¼ J: ðA22bÞ

APPENDIX B: ROTATORY POWER AND
DICHROISM COEFFICIENT

As mentioned at the end of Sec. II, when the propagating
modes resulting from an electromagnetic theory are left-
handed and right-handed circularly polarized waves, bire-
fringence is characterized in terms of the rotatory power
while absorption is described via the dichroism coefficient,
presented in Eqs. (8) and (9), respectively. Such relations
can be derived by means of the polarization vectors of a
wave traveling through a medium. Consider, for instance, a
linearly polarized wave propagating through a medium
along the z axis. Hence, the initial electric field can be
written as

Ei ¼ E0ieiðkz−ωtÞ; ðB1aÞ

with the polarization vector (for an electric field pointing
along the x axis):

E0i ¼

0
B@

1

0

0

1
CA ¼ 1

2

0
B@

1

−i
0

1
CAþ 1

2

0
B@

1

i

0

1
CA;

which corresponds to the sum of polarization vectors
associated with left-handed and right-handed circular polar-
izations, respectively. After the wave passes through a
distance z in the medium, the final electric field is a linear
combination of two components, Eþ and E−, with the
wave vectors kþ and k−, respectively. One then has

Ef ¼ Eþeiðkþz−ωtÞ þE−eiðk−z−ωtÞ;

Ef ¼
1

2

0
B@

1

i

0

1
CAeikþze−iωt þ 1

2

0
B@

1

−i
0

1
CAeik−ze−iωt; ðB2Þ

which can be cast into the form

Ef ¼
1

2
eiψe−iωt

2
64e−iθ

0
B@

1

i

0

1
CAþ eiθ

0
B@

1

−i
0

1
CA
3
75;

Ef ¼ eiψe−iωt

0
B@

cos θ

sin θ

0

1
CA; ðB3aÞ

with the quantities

θ≡ −
ðkþ − k−Þz

2
; ðB3bÞ

ψ ≡ ðkþ þ k−Þz
2

: ðB3cÞ

Notice that Eq. (B3a) describes a linearly polarized wave
whose polarization vector is rotated by an angle θ. From
Eq. (B3b), one obtains

θ ¼ −
ðnþ − n−Þzω

2
; ðB4Þ

where we have used k ¼ ωn. In general, the refractive
indices can be complex quantities. Because of this, one can
infer from Eq. (B4)

θ

z
¼ −

ω

2
½ReðnþÞ þ iImðnþÞ − Reðn−Þ − iImðn−Þ�; ðB5Þ

from which we define the specific rotatory power stated in
Eq. (8) as well as the dichroism coefficient of Eq. (9).
Notice that when the medium is nonbirefringent, θ ¼ 0 and
ψ ¼ kz. Then, the form of Eq. (B1a) is recovered
from Eq. (B3a).
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