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We study the properties of a hot and magnetized quark matter in a rotating cylinder in the presence of a
constant magnetic field. To do this, we solve the corresponding Dirac equation using the Ritus
eigenfunction method. This leads to the energy dispersion relation, Ritus eigenfunctions, and the
quantization relation for magnetized fermions. To avoid causality-violating effects, we impose a certain
global boundary condition and study its effect, in particular, on the energy eigenmodes and the quantization
relations of fermions. Using the fermion propagator arising from this method, we then solve the gap
equation at zero and nonzero temperatures. At zero temperature, the dynamical mass m̄ does not depend on
the angular frequency, as expected. We thus study its dependence on the distance r relative to the axis of
rotation and the magnetic field B and explore the corresponding finite size effect for various couplings G.
We then consider the finite temperature case. The dependence of m̄ on the temperature T, magnetic field B,
angular frequency Ω, and distance r for various G is studied. We show that m̄ decreases, in general, with B
and Ω. This is the “inverse magnetorotational catalysis (IMRC)” or the “rotational magnetic inhibition”,
previously discussed in the literature. To explore the evidence of this effect in the phase diagrams of our
model, we examine the phase portraits of the critical temperature Tc as well as the critical angular
frequencyΩc with respect toG, B,Ω, and r as well asG, B, T, and r, respectively. We show that Tc and Ωc

decrease, in particular, with B. This is interpreted as clear evidence for IMRC.

DOI: 10.1103/PhysRevD.104.116022

I. INTRODUCTION

One of the main goals of modern experiments of heavy-
ion collision (HIC) at the Relativistic Heavy Ion Collider
(RHIC) and Large Hadron Collider (LHC) is to study the
quark matter under extreme conditions. These include
extremely high temperatures (>1012 K [1]), very large
densities (up to 5ρ0 with ρ0 ¼ 2.7 × 1014 gr=cm3 [2]),
extremely large electromagnetic fields (1018–1020 G [3]),
and, in particular, large angular frequencies (1022 Hz [4]).
The aim is to imitate the circumstances of the early
Universe, which is believed to be made of a hot plasma
of free quarks and gluons. It is known that the plasma
of quarks and gluons undergoes certain quantum

chromodynamics (QCD) phase transitions upon cooling,
and this leads to hadronization. These transitions include a
deconfinement/confinement and, in particular, a chiral
phase transition. Theoretically, the QCD phase transitions
can be studied using various effective QCD-like models,
e.g., the Nambu-Jona-Lasinio (NJL) model [5] and its
extensions. Numerically, it is the merit of lattice QCD
simulations at zero density [6], that show, inter alia, that
these transitions occur at the same critical temperature, and
they are nothing other than a smooth crossover. As
concerns the QCD matter under high density/high baryon
chemical potential, it is shown, via model building, that it
undergoes a certain spontaneous color symmetry breaking,
that leads to the formation of diquarks in a color super-
conductive medium [1]. Another important feature of
noncentral HICs is the generation of very strong magnetic
fields, which has many exciting effects on the quark matter
created in these collisions [3,7,8]. These effects, including
the (inverse) magnetic catalysis (see [9] and the references
therein) and the chiral magnetic effect [10], are the subject
of intensive studies in recent years. In particular, the impact
of a constant magnetic field on the QCD phase diagram is
studied intensively in the literature [11] (for a recent review
see [12] and the references therein). The main focus here is
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on the catalytic effect of constant magnetic fields. This
enhances the formation of chiral condensates and thus
leads, in comparison to the field-free case, to an increase of
the critical temperature of the chiral phase transition Tc.
There are, however, pieces of evidence from lattice QCD
simulations that in the absence of baryonic chemical
potential, Tc decreases with increasing the strength of
the magnetic field [13–16]. This effect, which is previously
dubbed “inverse magnetic catalysis” [17], is shown to be
present in dense quark matter [11], or once the anomalous
magnetic moment of the quark matter is nonzero [18], or an
axial vector interaction is present [19], or when the scalar
coupling constant of effective models depends on the
magnetic field and/or temperature [20–22], or for nonlocal
chiral quark models [23]. The true reason for the inverse
magnetic catalysis is still under debate (see [12] and the
references therein).
Apart from extreme temperatures, densities, and external

electromagnetic fields, the plasma of quarks and gluons
created at RHIC and LHC possesses extremely large
vorticity. This is the purpose of the present paper to focus
on the interplay between rotation, magnetic field,
and temperature on the chiral symmetry breaking (see
below for more explanation). A simple estimate of the
nonrelativistic vorticity Ω ¼ 1

2
∇ × v is made in [4].

Assuming that the difference between the z component
of the collective velocity in a HIC close to the target and
projectile spectators is about 0.1 (in the units of the speed of
light) and that the transverse size of the system is about
5 fm, the vorticity Ω turns out to be of the order
0.02 fm−1 ∼ 1022 Hz [4]. Many interesting transport phe-
nomena are related to a rotating quark matter, whose
macroscopic description is mainly made by relativistic
hydrodynamics. Some of them are the chiral vortical effect
and wave, in analogy to chiral magnetic effect and wave
(see [24] and references therein). Similar to the case of
magnetic fields, there are several attempts to study the
phase structure of QCD under rotation. In [25], the effect of
rotation on the formation of two different condensates in a
hot and dense QCD matter, the chiral condensate, and the
color superconductivity are studied, and the T-Ω phase
portrait is presented. It is found that a generic rotational
suppression effect occurs, in particular, on the scalar
pairing states. This effect is supposed to be caused by a
rotational polarization effect induced by the global rotation.
In order to check whether pairing states with nonzero
angular momentum are favorable, the effect of rotation on
the chiral phase transition in an NJL model with a vector
interaction is studied in [26]. It is shown that whereas the
phase structure in the T-μ plane is sensitive to the coupling
strength in the vector channel, the phase structure in T-Ω
plane is not. The aforementioned suppression of the chiral
condensate is originally found in [27]. Here, the Dirac
equation of a single flavor fermionic system is solved in
the presence of rotation and magnetic field, and the

corresponding energy dispersion relation is found. The
latter indicates a close analogy between the rotation and the
chemical potential because the energy spectrum is shifted
similarly by a term proportional to the angular frequency Ω
of the fermionic system. In [27], after solving the Dirac
equation in the presence of rotation and magnetic field, and
after determining the energy dispersion relation, the authors
introduce the temperature and magnetic field in a system
without boundary conditions. The zero temperature case is
then derived by taking the limit T → 0. In this way, the
dynamical mass exhibits Ω dependence and decreases with
increasing Ω. At a certain critical Ω, the dynamical mass
vanishes, and the chiral symmetry is restored. The fact that
the chiral condensate is suppressed in the presence of finite
rotation is interpreted as the inverse magnetic catalysis, a
phenomenon which occurs, in general, in low energy
effective models at finite densities [11]. It is referred to
as “rotational magnetic inhibition”.1 In [28], it is, however,
shown that in an explicit computation at zero temperature,
the dynamical mass does not depend on Ω. A fact that is
also confirmed in the present paper. In the absence of
magnetic fields, the authors in [28] also introduce a global
boundary condition to avoid causality-violating problems.
This is also systematically done in a series of papers by
Chernodub and Gongyo [29–31] in the absence and
presence of magnetic fields. Here, another MIT boundary
condition is imposed on the fermions on the surface of the
cylinder, and its effect of the phase diagram of a QCD-like
model in the presence of rotation is studied. The spectral
and MIT boundary conditions are originally introduced in
[32] and [33,34]. Various effects of these boundary con-
ditions on the thermal expectation values of the fermion
condensate, neutrino charge, and stress-energy tensor are
studied intensively in [35]. Other recent studies of the effect
of rotation on the confinement/deconfinement phase tran-
sition and mesonic condensation are studied in [36–38]
and [39,40].
In the present paper, we continue studying the interplay

between rotation and magnetic field at zero and finite
temperatures using a global boundary condition, and gain
additional insights into inverse magnetorotational catalysis
(IMRC). To do this, we use a one flavor NJL model and
solve numerically the corresponding gap equation for
different fixed parameters T, eB, Ω, and r. The aim is,
in particular, to find pieces of evidence for this effect in the
phase diagrams of our model. To do this, we first solve the
Dirac equation using the Ritus eigenfunction method [41].
We present the solutions as well as the quantization
relations for a system without/with global boundary con-
ditions. This quantization is then used to derive the fermion
propagator of fermions in a bounded, rotating, and mag-
netized system. Whereas the solutions arising from the

1In this paper, we use the term “inverse magnetorotational
effect”.
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Ritus method are similar to those presented in [27], the
quantization relations of the fields in these two cases are
novel. It includes, in particular, detailed expressions which
determine how the energy levels of a (un)bounded, mag-
netized, and rotating system are filled. Let us note that the
Ritus eigenfunction formalism is introduced as a methodi-
cal novelty in the present paper, though the same notations
as previously introduced and utilized in [11,42–44]
are used.
In the second part of the paper, we then turn to the

numerical solutions of the gap equation at zero and nonzero
temperatures in a bounded NJL model. At zero tempera-
ture, we mainly focus on the r and eB dependence of m̄
for different values of NJL couplings, and show, as
aforementioned, that it does not depend on Ω. This is in
contrast to [27] but in agreement with the result presented
in [28,29]. The reason for this difference is rather technical
and is related to the fact that taking the limit T → 0 is
singular (see Sec. III for more details). We show that the r
dependence of m̄ can be regulated by choosing appropriate
coupling for each fixed eB and that the eB dependence of
the dynamical mass at some fixed distance relative to the
rotation axis and for a relatively large coupling exhibits
certain oscillations. These are due to successive filling of
the Landau levels.
We then focus on the finite temperature case. It is worth

emphasizing that according to Ehrenfest-Tolman effect the
temperature in a gravitational field depends explicitly on
the distance r [45]. It is, in particular, given by
TðrÞ ¼ T=

ffiffiffiffiffiffi
g00

p
, where g00 is the 00th component of the

metric. In the case of rigid rotation, discussed in the present
paper, g00 ¼ 1 − r2Ω2. In what follows, we work, as in
[38], with T which is the temperature at the rotation axis,
i.e., Tðr ¼ 0Þ. We study the T, eB, Ω, and r dependence of
the dynamical mass at finite temperature. We show, in
particular, that the eB dependence of m̄ decreases with
increasing eB. Moreover, m̄ decreases with increasing Ω.
These are clear pieces of evidence of IMRC. We study the
G; eB;Ω, and r dependence of the critical temperature Tc
and show that it decreases with eB and Ω. We finally
examine the G; eB; T, and r dependence of the critical
angular frequency Ωc and show that it decreases with eB
and T. The latter results can be viewed as a new piece of
evidence of the IMRC.
The organization of the paper is as follows: In Sec. II, we

solve the Dirac equation using the Ritus eigenfunction
method in two cases of unbounded and bounded systems.
In Sec. III, we present numerical solutions for the gap
equation at zero and finite temperature. At finite tempera-
ture, apart from the T, eB, Ω, and r dependence of m̄, the
G; eB;Ω, and r dependence of the critical temperature Tc
and the G; eB; T, and r dependence of the critical angular
frequency Ωc are demonstrated in Sec. III. We devote
Sec. IV to our concluding remarks.

II. RITUS EIGENFUNCTION FORMALISM AND
ROTATING FERMIONS IN A CONSTANT

MAGNETIC FIELD

In this section, we use the Ritus eigenfunction method
[41] to solve the Dirac equation of a charged and massive
fermion in the presence of a constant magnetic field in a
system that uniformly rotates with a constant angular
velocity Ω about a fixed axis. Being interested on the
boundary effects, we set the system under certain global
boundary conditions and explore its consequences for the
solution of the corresponding Dirac equation. We assume
that the magnetic field is aligned in the z direction and that
all spatial regions of the system have the same angular
velocity about the same axis (rigid rotation). This system is
thus cylindrical symmetric around this axis and is naturally
described by the cylindrical coordinate system xμ ¼
ðt; x; y; zÞ ¼ ðt; r cosφ; r sinφ; zÞ. Here, r is the radial
coordinate, φ the azimuthal angle, and z the height. The
corresponding line element reads [29]

ds2 ¼ gμνdxμdxν ¼ ð1 − r2Ω2Þdt2 − dx2

þ 2Ωydtdx − dy2 − 2Ωxdtdy − dz2; ð2:1Þ
with r2 ¼ x2 þ y2. This is equivalent to the metric

gμν ¼

0
BBBBB@

1 − r2Ω2 þΩy −Ωx 0

þΩy −1 0 0

−Ωx 0 −1 0

0 0 0 −1

1
CCCCCA: ð2:2Þ

Adopting the conventional notations in the curved space,
we use the vierbein eμa to connect the general coordinate
with the Cartesian coordinate in the local rest frame
(tangent space), xμ ¼ eμaxa. Here, the Greek indices
μ ¼ t, x, y, z refer to the general coordinate in the rotating
frame, while the Latin indices a ¼ 0, 1, 2, 3 to the Cartesian
coordinate in the local rest frame. We choose the non-
vanishing components of eμa as [27,29]

eμa∶ et0 ¼ ex1 ¼ ey2 ¼ ez3 ¼ 1;

ex0 ¼ þyΩ; ey0 ¼ −xΩ: ð2:3Þ

They lead together with gμν from (2.2) to the met-
ric ηab ¼ gμνeμaeνb ¼ diagð1;−1;−1;−1Þ.
In a curved spacetime, the Dirac equation of a charged

massive fermion in a constant background magnetic field is
given by

½iγμðDðqÞ
μ þ ΓμÞ −mq�ψðxÞ ¼ 0; ð2:4Þ

with DðqÞ
μ ≡ ∂μ − iqeAμ. Here, mq is the mass of the

fermion with charge eq; e > 0. The gauge field Aμ in
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the rotating frame is defined by Aμ ¼ eaμAa. Here, eaμs
satisfy eaμeμb ¼ δab and are given by

eaμ∶ e0t ¼ e1x ¼ e2y ¼ e3z ¼ 1;

et1 ¼ −yΩ; et2 ¼ þxΩ:

Choosing Aa ¼ ð0;−AÞ ¼ ð0; By=2;−Bx=2; 0Þ, we arrive
at a magnetic field aligned in the z direction B ¼ Bẑ with
B > 0. In (2.4), the affine connection Γμ is defined in terms
of the spin connection ωμab and vierbeins eμa as

Γμ ≡ −
i
4
ωμabσ

ab; ð2:5Þ

with

ωμab ≡ gαβeαað∂μeβb þ Γβ
μνeνbÞ; ð2:6Þ

and σab ≡ i
2
½γa; γb�. In (2.6), the Christoffel connection

Γβ
μν ≡ 1

2
gβσð∂μgσν þ ∂νgμσ − ∂σgμνÞ. As it turns out, for the

metric (2.2), the nonvanishing components of Γβ
μν are

given by

Γx
tt ¼ −Ω2x; Γy

tt ¼ −Ω2y;

Γy
tx ¼ Γy

xt ¼ Ω; Γx
ty ¼ Γx

yt ¼ −Ω: ð2:7Þ

The affine connection Γμ is then given by

Γt ¼ −
i
2
Ωσ12; Γx ¼ Γy ¼ Γz ¼ 0: ð2:8Þ

Moreover, the γ matrices in (2.4) are defined by γμ ¼ eμaγa.
For eμa given in (2.3), they read [29]

γt ¼ γ0; γx ¼ yΩγ0 þ γ1;

γy ¼ −xΩγ0 þ γ2; γz ¼ γ3: ð2:9Þ

Plugging Γμ from (2.8) and γμ from (2.9) into (2.4), the
explicit form of the Dirac equation of a rotating fermionic
system in a constant magnetic field reads

ðγ · ΠðqÞ −mqÞψ ðqÞ ¼ 0; ð2:10Þ

where

γ · ΠðqÞ ≡ iγ0ð∂t − iΩĴzÞ þ iγ1ð∂x þ iqeBy=2Þ
þ iγ2ð∂y − iqeBx=2Þ þ iγ3∂z; ð2:11Þ

and Ĵz ≡ L̂z þ Σz=2 with L̂z ≡ −iðx∂y − y∂xÞ, the total
angular momentum in the z direction, and Σz ≡ I2×2 ⊗ σ3.
Here, we used the Weyl representation of the γ matrices

γ0 ¼
�
0 1

1 0

�
; γ ¼

�
0 σ

−σ 0

�
; ð2:12Þ

with σ ¼ ðσ1; σ2; σ3Þ the Pauli matrices, and ½σi; σj� ¼
2iϵijkσk to get σ12 ¼ i

2
½γ1; γ2� ¼ Σz. Moreover,

I2×2 ≡ diagð1; 1Þ.
Similar to the description presented in [44], in the Ritus

eigenfunction method, we start solving (2.10) by making

use of the ansatz ψ ðqÞ
þ ¼ EðqÞ

λ;l;þuðp̃l;þÞ for the positive

frequency solution and ψ ðqÞ
− ¼ EðqÞ

λ;l;−vðp̃l;−Þ for the neg-

ative frequency solution. Here, EðqÞ
λ;l;κ with κ ¼ �1 satisfies

the Ritus eigenfunction relation

ðγ · ΠðqÞÞEðqÞ
λ;l;κ ¼ κEðqÞ

λ;l;κðγ · p̃ðqÞ
λ;l;κÞ; ð2:13Þ

where ΠðqÞ is defined in (2.11). The aim is to determine the

Ritus function EðqÞ
λ;l;κ and the Ritus momentum p̃ðqÞ

λ;l;κ in
terms of λ. The latter plays the role of Landau levels in a
rotating system (see below). Using theWeyl basis (2.12) for
the γ matrices, the operator γ · ΠðqÞ turns out to be

γ · ΠðqÞ ¼
 

0 ΠðqÞ
R

ΠðqÞ
L 0

!
; ð2:14Þ

with

ΠðqÞ
R ¼

0
B@ i∂t þΩðL̂z þ 1=2Þ þ i∂z þið∂x þ iqeBy=2Þ þ ð∂y − iqeBx=2Þ

þið∂x þ iqeBy=2Þ − ð∂y − iqeBx=2Þ i∂t þ ΩðL̂z − 1=2Þ − i∂z

1
CA;

ΠðqÞ
L ¼

0
B@ i∂t þ ΩðL̂z þ 1=2Þ − i∂z −ið∂x þ iqeBy=2Þ − ð∂y − iqeBx=2Þ

−ið∂x þ iqeBy=2Þ þ ð∂y − iqeBx=2Þ i∂t þΩðL̂z − 1=2Þ þ i∂z

1
CA: ð2:15Þ

In a cylinder coordinate system ðr;φ; zÞ with ðx ¼ r cosφ; y ¼ r sinφ; zÞ, (2.15) is equivalently given by
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ΠðqÞ
R ¼

0
B@ i∂t þΩ

�
−i∂φ þ 1

2

�
þ i∂z þie−iφ

�
∂r − i

r ∂φ −
qeB
2
r
�

þieþiφ
�
∂r þ i

r ∂φ þ qeB
2
r
�

i∂t þ Ω
�
−i∂φ − 1

2

�
− i∂z

1
CA;

ΠðqÞ
L ¼

0
B@ i∂t þΩ

�
−i∂φ þ 1

2

�
− i∂z −ie−iφ

�
∂r − i

r ∂φ −
qeB
2
r
�

−ieþiφ
�
∂r þ i

r ∂φ þ qeB
2
r
�

i∂t þ Ω
�
−i∂φ − 1

2

�
þ i∂z

1
CA: ð2:16Þ

To arrive at (2.16), we used

i∂x � ∂y ¼ ie∓iφ

�
∂r ∓ i

r
∂φ

�
; ð2:17Þ

and replaced L̂z with L̂z ¼ −i∂φ. Plugging ψ ðqÞ
þ ¼

EðqÞ
λ;l;þuðp̃l;þÞ and ψ ðqÞ

− ¼ EðqÞ
λ;l;−vðp̃l;−Þ into (2.10), and

using (2.13), we arrive at

ðγ · p̃ðqÞ
λ;l;þ −mqÞuðp̃l;þÞ ¼ 0;

ðγ · p̃ðqÞ
λ;l;− þmqÞvðp̃l;−Þ ¼ 0: ð2:18Þ

The solutions are the standard Dirac spinors of free

electrons with pμ ¼ ðp0; pÞ replaced with p̃ðqÞ
λ;l;κ, where κ ¼

þ1 (κ ¼ −1) denotes the positive (negative) frequency
solution of the Dirac equation.
In what follows, we first determine EðqÞ

λ;l;κ and p̃ðqÞ
λ;l;κ in a

system with no boundary condition. We then consider a

certain global boundary condition and determine EðqÞ
λ;l;κ and

p̃ðqÞ
λ;l;κ. In both cases, we present the quantization relations

for fermionic field operators ψ̄ ðqÞ and ψ ðqÞ.

A. Rotating magnetized fermions in a system
with no boundary condition

1. Determination of EðqÞ
λ;l;κ

To determine EðqÞ
λ;l;κ in this case, we use, similar to the

nonrotating case [44], the ansatz

EðqÞ
λ;l;κ ¼ e−iκðEλ;l;κt−pzzÞPðqÞ

λ;l; ð2:19Þ

with the projector defined by

PðqÞ
λ;l ≡ Pþfþλ;l;sq þ P−f−λ;l;sq ; ð2:20Þ

sq ≡ sgnðqeBÞ, and the spin projector

P� ≡ 1� iγ1γ2

2
: ð2:21Þ

In (2.19), Eλ;l;κ and pz are the zeroth and fourth compo-

nents of the Ritus momentum p̃ðqÞ
λ;l;κ. Because of the specific

structure of the γ matrices in the Weyl representation, EðqÞ
λ;l;κ

reduces to a block diagonal matrix in the form

EðqÞ
λ;l;κ ¼

 
EðqÞ
λ;l;κ 0

0 EðqÞ
λ;l;κ

!
; ð2:22Þ

with

EðqÞ
λ;l;κ ¼ e−iκðE

ðqÞ
λ;l;κt−pzzÞ

� fþλ;l;sq 0

0 f−λ;l;sq

�
: ð2:23Þ

Plugging this ansatz into

ĴzE
ðqÞ
λ;l;κ ¼

�
lþ 1

2

�
EðqÞ
κ;λ ; ð2:24Þ

with Ĵz ¼ L̂z þ Σz=2, we arrive at

L̂zf
þ
λ;l;sq

¼ lfþλ;l;sq ;

L̂zf−λ;l;sq ¼ ðlþ 1Þf−λ;l;sq : ð2:25Þ

Plugging L̂z ¼ −i∂φ into (2.25), we arrive immediately at

fþλ;l;sq ¼ eilφχþλ;l;sq ;

f−λ;l;sq ¼ eiðlþ1Þφχ−λ;l;sq ; ð2:26Þ

with unknown functions χ�λ;l;sq . To determine these func-

tions, we consider first the quadratic equation

ðγ · ΠðqÞÞ2EðqÞ
λ;l;κ ¼ EðqÞ

λ;l;κðγ · p̃ðqÞ
λ;l;κÞ2: ð2:27Þ

Plugging γ · ΠðqÞ from (2.14) and EðqÞ
λ;l;κ from (2.22) into

(2.27), and using p̃ðqÞ2
λ;l;κ ¼ m2

q as well as ΠðqÞ
L ΠðqÞ

R ¼
ΠðqÞ

R ΠðqÞ
L , we arrive at

ΠðqÞ
L ΠðqÞ

R EðqÞ
λ;l;κ ¼ m2

qE
ðqÞ
λ;l;κ; ð2:28Þ

with ΠðqÞ
L ΠðqÞ

R given by
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ΠðqÞ
L ΠðqÞ

R ¼
�
Oþ 0

0 O−

�
: ð2:29Þ

Here,

O� ≡ ði∂t − Ωði∂φ ∓ 1=2ÞÞ2 þ ∂2
r þ

1

r
∂r þ

∂2
φ

r2

− qeBði∂φ ∓ 1Þ −
�
qeB
2

�
2

r2 þ ∂2
z : ð2:30Þ

The differential equation for χ�λ;l;sq arises by plugging E
ðqÞ
λ;l;κ

from (2.23) with f�λ;l;sq from (2.26) into (2.28). We thus

arrive at

�
x∂2

x þ ∂x þ λ −
l2

4x
þ sqðlþ 1Þ

2
−
x
4

�
χþλ;l;sq ¼ 0;

�
x∂2

x þ ∂x þ λ −
ðlþ 1Þ2

4x
þ sql

2
−
x
4

�
χ−λ;l;sq ¼ 0; ð2:31Þ

where x≡ jqeBjr2
2

. The parameter λ appears in the energy
dispersion relation as

EðqÞ
λ;l;κ ¼ −κΩj�

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λjqeBj þ p2

z þm2
q

q
; ð2:32Þ

with j≡ lþ 1=2. In what follows, we determine λ for the
case without and with boundary conditions separately.
To solve the differential equations (2.31), we use the

ansatz

χþλ;l;sq ¼ e−x=2xjlj=2gþλ;l;sq ;

χ−λ;l;sq ¼ e−x=2xjlþ1j=2g−λ;l;sq ; ð2:33Þ

which leads to

½x∂2
x þ ðjlj þ 1 − xÞ∂x þN þ

λ;sq
�gþλ;l;sq ¼ 0;

½x∂2
x þ ðjlþ 1j þ 1 − xÞ∂x þN −

λ;sq
�g−λ;l;sq ¼ 0; ð2:34Þ

upon plugging (2.33) into (2.31). Here,

N þ
λ;sq

≡ λþ sqðlþ 1Þ − jlj − 1

2
;

N −
λ;sq

≡ λþ sql − jlþ 1j − 1

2
: ð2:35Þ

Comparing the differential equations (2.34) with Kummer’s
differential equation,

ðz∂2
z þ ðb − zÞ∂z − aÞgðzÞ ¼ 0;

whose solution

gðzÞ ¼ A1F1ða; b; zÞ þ BUða; b; zÞ;

is a linear combination of a hypergeometric function of the
first and second kind 1F1ða; b; xÞ and Uða; b; xÞ, and
requiring that g�λ;l;sq are regular at x → 0,2 we arrive at

gþλ;l;sq ¼ Aþ
1F1ð−N þ

λ;sq
; jlj þ 1; xÞ;

g−λ;l;sq ¼ A−
1F1ð−N −

λ;sq
; jlþ 1j þ 1; xÞ: ð2:36Þ

Here, A� are appropriate normalization factors, which can
be determined by using the orthonormality relation

Z
d4rĒðqÞ

λ0;l0;κðrÞEðqÞ
λ;l;κðrÞ

¼ δðEðqÞ
λ0;l0;κ − EðqÞ

λ;l;κÞδðkz − k0zÞδλ;λ0δl;l0Γλ;l;sq ; ð2:37Þ

where Γλ;l;sq is a factor considering the degeneracy of
energy levels, similar to that appearing in [42,46]. In what
follows, we determine among others the explicit form
of Γλ;l;sq .

3

In a cylinder coordinate system, we have

d4r ¼ dtrdrdφdz. Moreover, ĒðqÞ
λ0;l0;κðrÞ ¼ γ0EðqÞ†

λ;l;κγ
0. Here,

EðqÞ
λ;l;κ is given in (2.22) with EðqÞ

λ;l;κ from (2.23), and f�λ;l;sq
read

fþλ;l;sq ¼ Aþeilφe−x=2xjlj=21F1ð−N þ
λ;sq

; jlj þ 1; xÞ;
f−λ;l;sq ¼ A−eiðlþ1Þφe−x=2xjlþ1j=2

× 1F1ð−N −
λ;sq

; jlþ 1j þ 1; xÞ: ð2:38Þ

These solutions are general and valid for both cases of a
rotating fermionic system without and with a boundary
condition. Let us now assume that the rotating magnetized
fermions are in a system with no spatial boundary con-
dition. As it turns out, in this case, the parameter λ in (2.32)
is a positive integer, i.e., λ ∈ N0. Thus, λ plays the role of
Landau levels similar to the case of nonrotating fermions in
a magnetic field. On the other hand, if the first argument
−N �

λ;sq
in 1F1 appearing in (2.38) is a nonpositive integer,

the hypergeometric function can be replaced by the
associated Laguerre polynomials,

1F1ð−n;mþ 1; zÞ ¼ m!n!
ðmþ nÞ!L

m
n ðzÞ:

The solutions (2.38) thus read

2This is equivalent to r → 0.
3The expression Γλ;l;sq given in (2.53) summarizes the in-

formation provided in Table II concerning the degeneracy of the
energy levels in the case without boundary conditions.
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fþλ;l;sqðxÞ ¼
AþN þ

λ;sq
!jlj!

ðN þ
λ;sq

þ jljÞ! e
ilφe−x=2xjlj=2Ljlj

Nþ
λ;sq

ðxÞ;

f−λ;l;sqðxÞ ¼
A−N −

λ;sq
!jlþ 1j!

ðN −
λ;sq

þ jlþ 1jÞ! e
iðlþ1Þφe−x=2xjlþ1j=2

× Ljlþ1j
N −

λ;sq
ðxÞ: ð2:39Þ

Using then (2.37) for r ∈ ½0;∞½ and the orthonormality
relations of the Laguerre polynomial

Z
∞

0

dzzαe−zLα
nðzÞLα

mðzÞ ¼
ðnþ αÞ!

n!
δm;n;

for ReðαÞ > −1, A� are determined. We finally arrive at

fþλ;l;sq ¼
�jqeBj

2π

N þ
λ;sq

!

ðN þ
λ;sq

þ jljÞ!
�1=2

eilφe−x=2xjlj=2

× Ljlj
N þ

λ;sq

ðxÞ;

f−λ;l;sq ¼
�jqeBj

2π

N −
λ;sq

!

ðN −
λ;sq

þ jlþ 1jÞ!
�1=2

eiðlþ1Þφe−x=2

× xjlþ1j=2Ljlþ1j
N −

λ;sq
ðxÞ: ð2:40Þ

Here, P†
� ¼ γ0P�γ0, P2

� ¼ P�, and P�P∓ ¼ 0 are also
used. In Table I, N �

λ;sq
for sq ¼ þ1 and sq ¼ −1, corre-

sponding to q > 0 and q < 0, are listed. Let us notice that
the Laguerre polynomials L���

N �
λ;sq

appearing in (2.40) are

defined only forN �
λ;sq

≥ 0. This constraints the choice for l

for positively and negatively charged particles with positive
and negative spins, s ¼ þ1 and s ¼ −1, respectively.4 In
Table II, the allowed values of l for different choices of λ
are demonstrated. According to this table, the lowest
energy level (LEL) with λ ¼ 0 is only occupied either
with positively charged particles with s ¼ þ1 and l ≥ 0 or
with negatively charged particles with s ¼ −1 and l ≤ −1.
As concerns the higher energy levels with λ ≥ 1, they can

be occupied with positively and negatively charged
particles with both spin orientations s ¼ þ1 (spin up)
and s ¼ −1 (spin down). For positively charged
particles the allowed values for l are l ¼ −λ;−λþ
1;…;−2;−1; 0; 1; 2;… and for negatively charged par-
ticles l ¼ � � � ;−2;−1; 0; 1; 2;…; λ − 2; λ − 1. Plugging
f�λ;l;sq from (2.39) into (2.23) and the resulting expression

into (2.22), the Ritus function EðqÞ
λ;l;κ for an infinitely large

fermionic system in a constant magnetic field is deter-
mined. Let us notice, however, that since the ansatz (2.20)

for PðqÞ
λ;l does not take the boundaries for l demonstrated in

Table II into account, it has to be accordingly modified.
This is done in Sec. II A 3, where the final expression for
the quantization of the fermionic fields in a multiflavor
system under rotation and constant magnetic field with no
boundary condition is presented.

2. Determination of p̃ðqÞλ;l;κ

To determine p̃ðqÞ
λ;l;κ, let us first consider the Ritus relation

(2.13) with γ · ΠðqÞ from (2.14) and ΠðqÞ
R=L from (2.16).

Plugging EðqÞ
λ;l;κ from (2.22) into the left-hand side of (2.13),

we obtain

ðγ · ΠðqÞÞEðqÞ
λ;l;κ ¼

0
@ 0 ΠðqÞ

R EðqÞ
λ;l;κ

ΠðqÞ
L EðqÞ

λ;l;κ 0

!
; ð2:41Þ

with EðqÞ
λ;l;κ given in terms of f�λ;l;sq [see (2.23)]. For the sake

of generality, we use f�λ;l;sq , from (2.38) in terms of the

hypergeometric function 1F1ða; b; zÞ. To determine the
resulting differential equations −ie�iφð∂r � i

r ∂φ � qeB
2
rÞ

which appear on the right-hand side (rhs) of (2.41), we use
following relations:

TABLE I. The values for N �
λ;sq

appearing in the first argument
of the hypergeometric functions 1F1ða; b; xÞ in (2.38) and the
subscripts of the Laguerre polynomials in (2.39). Assuming
eB > 0, sq ¼ þ1, and sq ¼ −1 correspond to q > 0 and q < 0,
respectively.

l ≤ −1 l ≥ 0

q > 0, s ¼ þ1 N þ
λ;þ ¼ λþ l N þ

λ;þ ¼ λ
q > 0, s ¼ −1 N −

λ;þ ¼ λþ l N −
λ;þ ¼ λ − 1

q < 0, s ¼ þ1 N þ
λ;− ¼ λ − 1 N þ

λ;− ¼ λ − l − 1

q < 0, s ¼ −1 N −
λ;− ¼ λ N −

λ;− ¼ λ − l − 1

TABLE II. The allowed values of l for the LEL, λ ¼ 0, and
higher energy levels, λ ≥ 1, and for different combinations of
particles’ charge Q and spin s. In an infinitely extended rotating
fermionic system in a constant magnetic field, we have λ ∈ N0.

q > 0, s ¼ þ1
λ ¼ 0 l ¼ 0; 1; 2;…
λ ≥ 1 l ¼ −λ;−λþ 1;…;−2;−1; 0; 1; 2;…

q > 0, s ¼ −1 λ ¼ 0 —
λ ≥ 1 l ¼ −λ;−λþ 1;…;−2;−1; 0; 1; 2;…

q < 0, s ¼ þ1
λ ¼ 0 —
λ ≥ 1 l ¼ � � � ;−2;−1; 0; 1; 2;…; λ − 2; λ − 1

q < 0, s ¼ −1 λ ¼ 0 l ¼ � � � ;−2;−1
λ ≥ 1 l ¼ � � � ;−2;−1; 0; 1; 2;…; λ − 2; λ − 1

4Let us remember that the positive þ and negative − upper
indices on N �

sq denote the up (s ¼ þ1) and down (s ¼ −1) spin
orientations.
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b1F1ða; b; zÞ − b1F1ða − 1; b; zÞ − z1F1ða; bþ 1; zÞ ¼ 0;

1F1ða;b; zÞ −
ðbþ zÞ

b 1F1ða; bþ 1; zÞ − ða − b − 1Þ
bðbþ 1Þ 1F1ða; bþ 2; zÞ ¼ 0;

ða − bþ 1Þ1F1ða; b; zÞ − a1F1ðaþ 1; b; zÞ − ð1 − bÞ1F1ða;b − 1; zÞ ¼ 0; ð2:42Þ

and arrive after some work at

−ie�iφ

�
∂r �

i
r
∂φ �

qeB
2

r

�
f�λ;l;sq

¼ �isl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λjqeBj

p
f∓λ;l;sq ; ð2:43Þ

with sl ≡ sgnðlÞ ¼ 1 for l ≥ 0 and ¼ −1 for
l ≤ −1. Plugging these results into the rhs of (2.41), we
obtain

ΠðqÞ
R EðqÞ

λ;l;κ¼ κEðqÞ
λ;l;κΞ

ðqÞ
R ; ΠðqÞ

L EðqÞ
λ;l;κ¼ κEðqÞ

λ;l;κΞ
ðqÞ
L ; ð2:44Þ

where

ΞðqÞ
R ≡

 
ϵðqÞλ − pz þiκsl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λjqeBjp

þiκsl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λjqeBjp

ϵðqÞλ þ pz

!
;

ΞðqÞ
L ≡

 
ϵðqÞλ þ pz −iκsl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λjqeBjp

þiκsl
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λjqeBjp

ϵðqÞλ − pz

!
; ð2:45Þ

with ϵðqÞλ ≡ EðqÞ
λ;l;κ þ κΩj. These lead eventually to

ðγ · ΠðqÞÞEðqÞ
λ;l;κ ¼ κEðqÞ

λ;l;κ

 
0 ΞðqÞ

R

ΞðqÞ
L 0

!
; ð2:46Þ

with ΞðqÞ
R=L from (2.45). Comparing, at this stage, (2.46) with

the rhs of (2.13), we arrive immediately at the Ritus
momentum in a rotating fermionic system

p̃ðqÞμ
λ;l;κ ¼ ðϵðqÞλ ; 0; κsl

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λjqeBj

p
; pzÞ; ð2:47Þ

where ϵðqÞλ ¼ EðqÞ
λ;l;κ þ κΩj with j≡ lþ 1

2
. Let us notice

that since p̃ðqÞ2
λ;l;κ ¼ m2

q, (2.47) leads to

ϵðqÞλ ¼ �ðm2
q þ 2λjqeBj þ p2

zÞ1=2: ð2:48Þ

Thus, ϵðqÞλ depends only on λ,5 which, for a rotating
fermionic system with no boundary condition, is a positive
integer, i.e., λ ∈ N0. Hence, the expression under the
squared root in (2.48) turns out to be always positive.

Let us also notice that according to our construction, EðqÞ
λ;l;κ

is always positive, while ϵλ is allowed to be positive and
negative.

3. Quantization of fermionic fields in an infinitely
extended rotating system

Combining the above results, the quantization relations
for a magnetized fermion in a rotating system without
boundary read

ψ ðqÞ
α ðxÞ ¼

X
l;λ;s

Z
dpz

2π

1ffiffiffiffiffiffiffiffiffiffiffi
2jϵðqÞλ

q
j
fe−iðEðqÞ

λ;l;þt−pzzÞaλ;l;spz ½P̃ðqÞ
λ;lðxÞ�αρus;ρðp̃l;þÞθðEðqÞ

λ;l;þÞ

þ eþiðEðqÞ
λ;l;−t−pzzÞbλ;l;s†pz ½P̃ðqÞ

λ;lðxÞ�†αρvs;ρðp̃l;−ÞθðEðqÞ
λ;l;−Þg;

ψ̄ ðqÞ
α ðxÞ ¼

X
l;λ;s

Z
dpz

2π

1ffiffiffiffiffiffiffiffiffiffiffi
2jϵðqÞλ

q
j
feþiðEðqÞ

λ;l;þt−pzzÞaλ;l;s†pz ūs;ρðp̃l;þÞ½P̃ðqÞ
λ;lðxÞ�†ραθðEðqÞ

λ;l;þÞ

þ e−iðE
ðqÞ
λ;l;−t−pzzÞbλ;l;spz v̄s;ρðp̃l;−Þ½P̃ðqÞ

λ;lðxÞ�ραθðEðqÞ
λ;l;−Þg: ð2:49Þ

Here, aλ;l;s†pz and aλ;l;spz , as well as bλ;l;s†pz and bλ;l;spz , are the
creation and annihilation operators of particles and anti-
particles. They satisfy the commutation relations

faλ;l;spz ; aλ
0;l0;s0†
p0
z

g ¼ 2πδðpz − p0
zÞδλ;λ0δl;l0δs;s0 ;

fbλ;l;spz ; bλ
0;l0;s0†
p0
z

g ¼ 2πδðpz − p0
zÞδλ;λ0δl;l0δs;s0 : ð2:50Þ

In (2.49), P̃ðqÞ
λ;l, the modified version of PðqÞ

λ;l from (2.20),
reads

5Here, κ2 ¼ 1 and sgn2ðlÞ ¼ 1 are used.
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P̃ðqÞ
λ;l ¼ ðPðqÞ

þ f
þsq
λ;l;sq

þ ΠλPðqÞ
− f

−sq
λ;l;sq

ÞΓλ;l;sq ; ð2:51Þ

with

PðqÞ
� ≡ 1� isqγ1γ2

2
; ð2:52Þ

which leads to PðþÞ
� ¼ P� and Pð−Þ

� ¼ P∓, and

Γλ;l;sq ≡ ½θðsqÞθðlþ λÞ þ θð−sqÞθð−lþ λ − 1Þ�
× ðPðqÞ

þ þ ΠλPðqÞ
− Þ

¼ θðsqÞθðlþ λÞðPþ þ ΠλP−Þ
þ θð−sqÞθð−l − 1þ λÞðP− þ ΠλPþÞ; ð2:53Þ

with Πλ ≡ 1 − δλ;0 and P� given in (2.21). Here, Πλ

considers the degeneracy of Landau levels. The fact that
positively charged particles with negative spins and neg-
atively charged particles with positive spins do not occupy
the LEL (see Table II) is considered by Γλ;l;sq. The above
definitions are written in the same language as previously
presented in [44] for the solutions of the Dirac equation of
nonrotating fermions in a constant magnetic field.
In (2.51),f�λ;l;sq aregiven in (2.40).Moreover, in (2.49) and

(2.53), the Heaviside function θðzÞ ¼ þ1 and ¼ 0 for z ≥ 0
and z < 0, respectively. As aforementioned, the modification

of PðqÞ
λ;l according to Table II is necessary because in this way

the allowed values of l for positively and negatively charged
fermions with up or down spins are considered directly in the
solutions of the Dirac equation as well as the quantization of
the Dirac fields for a system without boundary conditions. In
what follows, we introduce the global boundary condition for
the fermionic field to avoid the system having a velocity that
exceeds the speed of light [47].

B. Rotating magnetized fermions in a system with a
global boundary condition

1. Imposing a global boundary condition

The solutions of the Dirac equation for magnetized
fermions in a nonrotating system with the global boundary
condition are already presented in [47]. In what follows, we
use the solutions from Sec. II A for a rotating quark matter
with no boundary and impose the same global boundary
condition at r ¼ R as in [47],

I ≡
Z þ∞

−∞
dz
Z

2π

0

dφψ̄ ðqÞγrψ ðqÞ
				
r¼R

¼ 0; ð2:54Þ

with R the cylinder radius and γr ¼ γ1 cosφþ γ2 sinφ. In
contrast to [47], the solutions for ψ ðqÞ and ψ̄ ðqÞ are derived
using the Ritus eigenfunction method (see Sec. II A).

Plugging ψ ðqÞ ¼ EðqÞ
λ;l;þuðp̃l;þÞ and ψ̄ ðqÞ ¼ ūðp̃l;þÞEðqÞ

λ;l;þ

for positive frequency solution (κ ¼ þ1) and ψ ðqÞ ¼
EðqÞ
λ;l;−vðp̃l;−Þ as well as ψ̄ ðqÞ ¼ v̄ðp̃l;−ÞEðqÞ

λ;l;− for negative
frequency solution (κ ¼ −1), we arrive first at

Iþ ≡
Z þ∞

−∞
dz
Z

2π

0

dφūðp̃0
l0;þÞ

× EðqÞ
λ0;l0;þγ

rEðqÞ
λ;l;þuðp̃l;þÞ

				
r¼R

¼ 0;

I− ≡
Z þ∞

−∞
dz
Z

2π

0

dφv̄ðp̃0
l0;−Þ

× EðqÞ
λ0;l0;−γ

rEðqÞ
λ;l;−vðp̃l;−Þ

				
r¼R

¼ 0: ð2:55Þ

Using then EðqÞ
λ;l;κ from (2.19) with PðqÞ

λ;l from (2.20), and
f�λ;l;sq from (2.39) as well as γrP� ¼ P∓γr, I� become

proportional to

0 ¼ Iþ ∝ ūðp̃ðqÞ
λ;l;þÞHλ0;λ;luðp̃ðqÞ

λ0;l;þÞ;
0 ¼ I− ∝ v̄ðp̃ðqÞ

λ;l;þÞHλ0;λ;lvðp̃ðqÞ
λ0;l;þÞ; ð2:56Þ

where αb ≡ xðr ¼ RÞ ¼ jqeBjR2=2, and

Hλ0;λ;l≡

0
BBBBBBB@

0 0 0 þhð1Þλ0;λ;l

0 0 þhð2Þλ0;λ;l 0

0 −hð1Þλ0;λ;l 0 0

−hð2Þλ0;λ;l 0 0 0

1
CCCCCCCA
; ð2:57Þ

with

hð1Þλ0;λ;l ≡ 1F1ð−N þ
λ0;sq

; jlj þ 1; αbÞ
× 1F1ð−N −

λ;sq
; jlþ 1j þ 1; αbÞ; ð2:58Þ

and hð2Þλ0;λ;l ≡ hð1Þλ;λ0;l. In order to fulfill the boundary
condition I ¼ 0 with I from (2.54), we have to find the
solution of

1F1ð−N þ
λ;sq

; jlj þ 1; αbÞ ¼ 0;

1F1ð−N −
λ;sq

; jlþ 1j þ 1; αbÞ ¼ 0: ð2:59Þ

But, before doing this, let us notice that the hypergeometric
function 1F1ða; b; zÞ, being defined as

1F1ða;b; zÞ ¼
X∞
k¼0

ðaÞk
ðbÞk

zk

k!
;

yields only a polynomial with a finite number of terms,
when a < 0, and either b > 0 or b < a [48]. Here,
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ðxÞn ≡ Γðxþ nÞ=ΓðxÞ is the Pochhammer symbol. In
Table III, we summarize the intervals for −N þ

λ;sq
< 0

and jlj þ 1 > 0 or jlj þ 1 < −N þ
λ;sq

corresponding to

1F1ð−N þ
λ;sq

; jljþ1;αbÞ as well as −N −
λ;sq

< 0 and jlþ
1j þ 1 > 0 or jlþ1jþ1<−N −

λ;sq
corresponding

to 1F1ð−N −
λ;sq

; jlþ 1j þ 1; αbÞ.
As concerns the solutions of the hypergeometric func-

tions appearing in (2.59), we first consider sq ¼ þ1, and
choose αb ¼ 7.6 Then, setting

1F1ð−N þ
λ;þ; jlj þ 1; αbÞ ¼ 0; for l ≥ 0; ð2:60Þ

and

1F1ð−N −
λ;þ; jlþ 1j þ 1; αbÞ ¼ 0; for l ≤ −1; ð2:61Þ

we determine numerically the roots of these two functions.
In Fig. 1(a), the results of the first, second, and third roots of
the hypergeometric functions in (2.60) and (2.61) are
plotted. The roots are not symmetrically distributed around
j ¼ 0; i.e., there is a certain asymmetry with respect to
j → −j or equivalently l → −l − 1, which is also
observed in [47]. Here, it is argued that this is because
of broken C and CP symmetry in the case of nonvanishing
magnetic field. Let us denote these roots with
λk; k ¼ 1; 2;…. In contrast to the previous case of no
boundary condition, λk ∈ R (i.e., they are not necessarily
integers). Plugging λk into the energy dispersion equation
[see also (2.39)],

EðqÞ
λk;l;κ

¼ −κΩjþ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4λkαb
R2

þ p2
z þm2

q

r
; ð2:62Þ

where j ¼ lþ 1=2 and αb ¼ jqeBjR2=2, yields the value
of each energy level. At this stage, it is important to check

whether EðqÞ
λk;l;κ

for given values of κ;Ω; mq; pz; R; αb, and
for l ∈ ð−∞;þ∞Þ remains positive. To do this, let us
consider κ ¼ þ1, sq ¼ þ1 (or equivalently q > 0),
mq ¼ 0, pz ¼ 0, and αb ¼ 7. Plugging λ1 (k ¼ 1) from

Fig. 1(a) into (2.62), and assuming that the transverse size
of the quark-gluon plasma in the early stage of the collision

to be R ¼ 6 fm [4], we arrive at EðþÞ
λ1;l;þ as a function of l

andΩ. In Fig. 1(b), REðþÞ
λ1;l;þ is plotted for RΩ ¼ 0, 0.3, 0.6,

and −19 ≤ l ≤ 19. Since, according to [4],
Ω ¼ 0.02 fm−1 ∼ 1022 s−1, RΩ ¼ 0.3, and RΩ ¼ 0.6
with R ¼ 6 fm corresponding to 2.5 × 1022 s−1 and

5 × 1022 s−1, respectively. The energy EðþÞ
λ1;l;þ turns out

to be positive in the whole interval of l.
In Fig. 2, we have shown that the LEL is affected by the

choice of the angular frequency Ω. In Fig. 2(a), the RΩ
dependence of REðþÞ

λ1;l;þ is demonstrated for l ¼ 0 and
l ¼ 1. The data corresponding to up (down) spin s ¼ þ1
(s ¼ −1) arise by plugging mq ¼ pz ¼ 0, R ¼ 6 fm, κ ¼
þ (κ ¼ −) into (2.62) with λ1 determined from (2.60) for
s ¼ þ1 as well as (2.61) for s ¼ −1 with sq ¼ þ1 (or
equivalently a positively charged particle) and l ¼ 0 and
l ¼ 1.7 In Fig. 2(b), the same is done for κ ¼ −1 and sq ¼
−1 (or equivalently a negatively charged antiparticle). As it
turns out, for positively charged particles in the regime
RΩ < 0.6, the energy level corresponding to l ¼ 0 and
s ¼ þ1 is lower than l ¼ 0, s ¼ þ1 (green squares) and
l ¼ 1, s ¼ þ1 (yellow triangles). For RΩ ¼ 0.6, however,
the energy level for l ¼ þ1 becomes lower than that

corresponding to l ¼ 0, and for RΩ > 0.7 negative EðþÞ
λ1;l;þ

appear, which are unacceptable. The same effect is
observed in Fig. 2, for l ¼ 0, s ¼ −1 (gray circles),
and l ¼ 1, s ¼ −1 (red stars). The same plot shows
that for sq ¼ þ1 (or equivalently q > 1), in general, the
energy level for s ¼ þ1 is lower than the energy level
for s ¼ −1.
As concerns the results for a negatively charged anti-

particle in Fig. 2(b), it turns out that, in contrast to the
positively charged particle, the energies corresponding to
l ¼ 0 and spin orientations s ¼ þ1 and s ¼ −1 are lower
than the energies corresponding to l ¼ 1 with s ¼ �1.
We thus conclude that, in general, the spin degeneracy in the

TABLE III. The allowed intervals of l for which the hypergeometric functions 1F1ð−N þ
λ;sq

; jlj þ 1; αbÞ and

1F1ð−N −
λ;sq

; jlþ 1j þ 1Þ yield polynomials with a finite number of terms. Here, λ > 0 is assumed.

1F1ð−N þ
λ;þ; jlj þ 1; αbÞ λ ¼ 0 l ¼ 0; 1; 2;…

λ ≥ 1 l ¼ −λ;−λþ 1;…;−2;−1; 0; 1; 2;…

1F1ð−N −
λ;þ; jlþ 1j þ 1; αbÞ λ ¼ 0 —

λ ≥ 1 l ¼ −λ;−λþ 1;…;−2;−1; 0; 1; 2;…

1F1ð−N þ
λ;−; jlj þ 1; αbÞ λ ¼ 0 —

λ ≥ 1 l ¼ � � � ;−2;−1; 0; 1; 2;…; λ − 2; λ − 1

1F1ð−N −
λ;−; jlþ 1j þ 1; αbÞ λ ¼ 0 l ¼ � � � ;−2;−1

λ ≥ 1 l ¼ � � � ;−2;−1; 0; 1; 2;…; λ − 2; λ − 1

6The numerical results presented in Sec. III correspond to q >
0 leading to sq ¼ 1.

7Let us remember that the superscripts � in N þ
λ;sq

and N −
λ;sq

appearing in (2.60) and (2.61) correspond to fermions with spin
up (þ) and down (−).
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LEL for magnetized and rotating Dirac fermions
with a global boundary condition is to be determined
numerically.

2. Normalization of the wave functions
with the global boundary condition

In Sec. II A, we used the Ritus eigenfunction method and
derived the solutions to theDirac equation in a rotating system
of fermions in a constant background magnetic field. When
the system is infinitely extended, i.e., when no boundary
conditions are imposed, the Ritus function EðκÞ

λ;l;κ is given by
(2.19) and (2.20), with f�λ;l;sq given in (2.40). Here, the

normalization factorsA� from (2.39) are determinedbyusing
the orthonormality of the Laguerre polynomials. In what
follows, we determine A� for a fermionic system under the
global boundary condition (2.54).
To do this, we follow the method introduced in [47].

Here, f�λk;l;κ from (2.38) are given by

fþλk;l;sq ¼ Cþk;l;sqe
ilφΦþ

λk;l;sq
;

f−λk;l;sq ¼ C−eiðlþ1ÞφΦ−
λk;l;sq

; ð2:63Þ

where two functions Φ�
λk;l;sq

are defined as8

Φþ
λk;l;sq

≡ 1

jlj!
�jqeBj

2π

ðN þ
λk;sq

þjljÞ!
N þ

λk;sq
!

�1=2

e−x=2

×xjlj=21F1ð−N þ
λk;sq

; jljþ1;xÞ;

Φ−
λk;l;sq

≡ 1

jlþ1j!
�jqeBj

2π

ðN −
λk;sq

þjlþ1jÞ!
N −

λk;sq
!

�1=2

×e−x=2xjlþ1j=2
1F1ð−N −

λk;sq
; jlþ1jþ1;xÞ: ð2:64Þ

(a) (b)

FIG. 1. (a) The l dependence of the first, second, and third roots λk; k ¼ 1, 2, 3 of the hypergeometric functions appearing in (2.60)

(l ≥ 0) and (2.61) (l ≤ −1). (b) The l dependence of the energies REðþÞ
λ1;l;þ of the first root λ1 for different RΩ ¼ 0, 0.3, 0.6. The energy

EðþÞ
λ1;l;þ corresponds to a positively charged particle (sq ¼ þ1, κ ¼ þ1).

(a) (b)

FIG. 2. The RΩ dependence of EðþÞ
λ1;l;þ (a) and Eð−Þ

λ1;l;− (b).

8Let us remember that in this case (R → ∞) the hypergeo-
metric functions appearing in (2.64) are to be replaced with the
Laguerre function Lm

n , as described in Sec. II A.
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The normalization factors C�k;l;sq in a cylinder with a finite

radius R are defined so that by taking the limit R → ∞ the
results from (2.40) of an unbounded rotating system are
reproduced [47],

Cþk;l;sq ¼
� jqeBj
2π
R αb
0 dxðΦþ

λk;l;sq
ðxÞÞ2

�
1=2

;

C−k;l;sq ¼
� jqeBj
2π
R αb
0 dxðΦ−

λk;l;sq
ðxÞÞ2

�
1=2

: ð2:65Þ

For λks that satisfy two conditions in (2.60) and (2.61), it
turns out that Cþk;l;sq ¼ C−k;l;sq ≡ Ck;l;sq . This can be shown

numerically. This is the same result as previously reported

in [47] for a nonrotating quark matter in the presence of a

constant magnetic field.

3. Quantization of fermionic fields in a system with global
boundary conditions

In Sec. II A 3, we presented the quantization relations of
fermions in a rotating system without boundary condition
[see (2.49)–(2.53)]. Imposing a global boundary condition
does not change this quantization too much. The exact
quantization relations for fermionic fields ψ and ψ̄ are
given by

ψ ðqÞ
α ðxÞ ¼

X
k;l;s

Z
dpz

2π

Ck;l;sqffiffiffiffiffiffiffiffiffiffiffi
2jϵðqÞλk

q
j
fe−iðE

ðqÞ
λk;l;þt−pzzÞaλk;l;spz ½P̃ðqÞ

λk;l
ðxÞ�αρus;ρðp̃l;þÞθðEðqÞ

λk;l;þÞ

þ eþiðEðqÞ
λk;l;−

t−pzzÞbλk;l;s†pz ½P̃ðqÞ
λk;l

ðxÞ�†αρvs;ρðp̃l;−ÞθðEðqÞ
λk;l;−Þg;

ψ̄ ðqÞ
α ðxÞ ¼

X
k;l;s

Z
dpz

2π

Ck;l;sqffiffiffiffiffiffiffiffiffiffiffi
2jϵðqÞλk

q
j
feþiðEðqÞ

λk;l;þt−pzzÞaλk;l;s†pz ūs;ρðp̃l;þÞ½P̃ðqÞ
λk;l

ðxÞ�†ραθðEðqÞ
λk;l;þÞ

þ e−iðE
ðqÞ
λk;l;−

t−pzzÞbλk;l;spz v̄s;ρðp̃l;−Þ½P̃ðqÞ
λk;l

ðxÞ�ραθðEðqÞ
λk;l;−Þg: ð2:66Þ

Here, aλk;l;s†pz and aλk;l;spz as well as bλk;l;s†pz and bλk;l;spz are the
creation and annihilation operators of particles and anti-
particles and satisfy the commutation relations

faλk;l;spz ; a
λ0k;l

0;s0†
p0
z

g ¼ 2πδðpz − p0
zÞδλk;λ0kδl;l0δs;s0 ;

fbλk;l;spz ; b
λ0k;l

0;s0†
p0
z

g ¼ 2πδðpz − p0
zÞδλk;λ0kδl;l0δs;s0 : ð2:67Þ

In (2.49), P̃ðqÞ
λk;l

, themodifiedversionofPðqÞ
λk;l

from (2.20), reads

P̃ðqÞ
λk;l

¼ ðPðqÞ
þ f

þsq
λk;l;sq

þ ΠλkP
ðqÞ
− f

−sq
λk;l;sq

ÞΓλk;l;q; ð2:68Þ

with PðqÞ
� given in (2.52) with f�λk;l;sq from (2.63). Here,

ϵðqÞλk
¼ EðqÞ

λk;l;κ
þ κΩj with j ¼ lþ 1=2, as in the previous

section. Hence, according to these results, (2.49)–(2.52) are
still valid, except that in (2.51) two factorsΠλ andΓλk;l;q are to
determined numerically [see our descriptions in Sec. II B 2].9

Moreover, the summation over k and l is performed
according to the description in this section. Let us also
remember thatΠλ was introduced to consider the degeneracy
of the energy levels and Γλk;l;sq to consider the lower and

upper bounds of λ for positive and negative charges according
to Table II. We also notice that index k in the above
expressions counts the number of the roots of the hyper-
geometric functions (2.60) and (2.61), λk; k ¼ 1; 2;….

4. The fermion propagator in a magnetized rotating
fermionic system with boundary condition

The main purpose of this paper is to compute the chiral
condensate at zero and finite temperature T and zero
chemical potential and to study the effect of rotation on
its T dependence for a fixed magnetic field. To do this, we
use in Sec. III the mass gap relation

m̄q ¼ G lim
r→r0

TrðSðqÞðr; r0ÞÞ; ð2:69Þ

whereG is a dimensionful coupling constant, and Sðx; x0Þ is
the fermion propagator of magnetized Dirac fermions in a
rotating system with a global boundary condition. In what
follows, we show that the fermion propagator is given by

SðqÞαβ ðr;r0Þ¼ i
X
k;l

Z
dp0dpz

ð2πÞ2 C2k;l;sqe
−ip0ðt−t0Þþipzðz−z0Þ

× ½PðqÞ
λk;l

ðxÞ�αρ

×

�
γ · p̃ðqÞ

λk;l;þþmq

ðp0þΩjÞ2−ϵðqÞ2λk

�
ρσ

½PðqÞ
λk;l

ðx0Þ�†σβ; ð2:70Þ
9In what follows, we use instead of P̃ðqÞ

λk;l
from (2.68), PðqÞ

λk;l
from (2.20), keeping in mind that the restrictions for l are
automatically dictated by the properties of the hypergeometric
functions appearing in f�λk;l;sq from (2.63).
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with ϵðqÞ2λk
¼ m2

q þ 2λkjqeBj þ p2
z from (2.48). The func-

tions PðqÞ
λk;l

are given in (2.20) with f�λk;l;sq from (2.63). To

show this, let us start with the definition of the fermion
propagator,

SðqÞαβ ¼ θðt − t0ÞhψαðxÞψ̄βðx0Þi − θðt − t0Þhψ̄βðx0ÞψαðxÞi:
ð2:71Þ

Using the quantization relation (2.66), we arrive first at

hψαðxÞψ̄βðx0Þi ¼
X
k;l;s

Z
dpz

2π

C2k;l;sq

2jϵðqÞλk
j
fe−iE

ðqÞ
λk;þðt−t

0Þþipzðz−z0Þ½PðqÞ
λk;l

ðxÞ�αρus;ρðp̃l;þÞūσ;sðp̃l;þÞ½PðqÞ
λ;k �†σβg;

hψ̄βðx0ÞψαðxÞi ¼
X
k;l;s

Z
dpz

2π

C2k;l;sq

2jϵðqÞλk
j
feþiEðqÞ

λk;−
ðt−t0Þ−ipzðz−z0Þ½PðqÞ

λk;l
ðxÞ�αρus;ρðp̃l;þÞv̄ρ;sðp̃l;−Þ½PðqÞ

λ;k �†σβg: ð2:72Þ

Plugging then these expressions into (2.71) and using EðqÞ
λk;l;κ

¼ ϵðqÞλk
− κΩj,

θð�zÞ ¼ lim
ε→0þ

∓
Z

dp0

2π

eizt

p0 ∓ iε
; ð2:73Þ

as well as (2.18), we obtain

SðqÞαβ ðx; x0Þ ¼ −i
X
k;l

Z
dp0dpz

ð2πÞ2
C2k;l;sqe

iΩjðt−t0Þ

2ϵðqÞλk

½PðqÞ
λk;l

ðxÞ�αρ


γ · p̃ðqÞ

λk;l;þ þmq

p0 − iε
eiðp0−ϵ

ðqÞ
λk

Þðt−t0Þþipzðz−z0Þ

þ γ · p̃ðqÞ
λk;l;− −mq

p0 þ iε
eiðp0þϵðqÞλk

Þðt−t0Þ−ipzðz−z0Þ
�

ρσ

½PðqÞ
λk;l

ðx0Þ�σβ: ð2:74Þ

Performing a shift of variables p0 → −p0 þ ϵðqÞλk
and

p0 → −p0 − ϵðqÞλk
, and eventually p0 → p0 þ Ωj, we arrive

at (2.70), as claimed. In the next section, (2.70) is used
to determine the chiral condensate at zero and finite
temperature.

III. INVERSE MAGNETOROTATIONAL
CATALYSIS AT ZERO AND FINITE

TEMPERATURE: NUMERICAL RESULTS

One of the aims of this paper is to elaborate on the
interplay between the rotation and the presence of a constant
magnetic field, in particular, on the formation of bound
states. It is known that external magnetic fields enhance
chiral symmetry breaking. This is the well-established
magnetic catalysis. There are a number of attempts explor-
ing the effect of the rigid rotation of a system of quarkmatter
on magnetic catalysis. In this section, after reviewing the
results for zero temperature by shedding light on some new
aspects, which are not discussed before in the literature, we
introduce the temperature T and explore the T, eB,Ω, and r
dependence of the dynamical mass. We then present
numerical results for the G; eB;Ω, and r dependence of
the critical temperature Tc and G; eB; T, and r dependence
of certain critical frequency Ωc.

A. Zero temperature

In this section, after presenting the relations which are
used to study the effect of rotation on the magnetic catalysis
in a fermionic system with boundary at zero temperature,
we explore, in particular, the r dependence of the dynami-
cal mass m̄. Here, it is shown that the angular frequency
plays no role in the behavior of m̄.
First, we focus on the mass gap relation (2.69). Plugging

the propagator SðqÞ from (2.70) into (2.69) and performing
the trace over γ matrices, we arrive at

m̄q

G
¼ im̄q

2π2
X
k;l

C2k;l;sqΦ
2
λk;l;sq

Z
dp0dpz

½ðp0 þ ΩjÞ2 − ϵðqÞ2λk
�
; ð3:1Þ

with

Φ2
λk;l;sq

≡Φþ2
λk;l;sq

þΦ−2
λk;l;sq

:

Performing then a shift of variable p0 → p0 −Ωj, the
integration over p0 can be immediately carried out. The
resulting expression reads

m̄q

G
¼ im̄q

2π2
X
k;l

C2k;l;sqΦ
2
λk;l;sq

Z
dpz

1

ϵðqÞλk

: ð3:2Þ
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As it turns out, the angular frequency Ω is canceled from
the computation and has indeed no effect on the mass mq,
arising from (3.2). This is in contrast to the results
presented in [27], where the zero temperature case is
considered as a limit of the finite temperature case. In this
case, the p0 integration appearing in (3.1) is replaced with a
sum over Matsubara frequencies, and the Ωj dependence
thus appears in a Heaviside θ function, arising from

lim
T→0

T ln ð1þ e−
x
TÞ ¼ −xθð−xÞ:

The fact that at zero temperature the vacuum is insensitive
to rotation is explicitly mentioned in [28,29]. The integra-
tion over pz is carried out by introducing the ultraviolet
smooth cutoff [27,47,49]

fðp;Λ; δΛÞ ¼ sinh ðΛ=δΛÞ
½cosh ðp=δΛÞ þ cosh ðΛ=δΛÞ� ; ð3:3Þ

with p ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2λk;l;sq jqeBj þ p2

z

q
. For the limit δΛ=Λ → 0,

the function fðp;Λ; δΛÞ approaches the Heaviside θ
function

lim
δΛ=Λ→0

fðp;Λ; δΛÞ → θðΛ2 − 2λk;l;sq jqeBj − p2
zÞ: ð3:4Þ

Plugging the θ function into the remaining pz integral in
(3.1) and integrating pz from −ðΛ2 − 2λk;l;sq jqeBjÞ1=2 to

þðΛ2 − 2λk;l;sq jqeBjÞ1=2, dictated by the θ function, we
arrive at

m̄q

G
¼ m̄q

π

X
k;l

C2k;l;sqΦ
2
λk;l;sq

× tanh−1

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − 2λk;l;sq jqeBj

q
Λ2 þm2

q

1
CA

× θðΛ2 − 2λk;l;sq jqeBjÞ: ð3:5Þ

Assuming m̄q ≠ 0, the nontrivial solutions to (3.5) can be
determined numerically by fixing q;Λ; R; eB, and G. In
what follows, we choose

q ¼ þ1; Λ ¼ 1 GeV; R ¼ 6 fm: ð3:6Þ

Instead of eB, it is more appropriate to work with the
dimensionless quantity αb ¼ eBR2=2 which is introduced
in the previous section. To generate our data, we use αb ¼
1;…; 10 that correspond to eB=m2

π given in Table IV
for R ¼ 6 fm.10

As concerns G, let us notice that the mass gap m̄q arising
in (2.69) is related to the chiral condensate which is created
as a result of a spontaneous chiral symmetry breaking in a
QCD-like model. An appropriate example is the
Lagrangian density of one flavor NJL model,

L ¼ ψ̄ðγ · Π −mÞψ þG
2
½ðψ̄ψÞ2 þ ðψ̄iγ5ψÞ2�: ð3:7Þ

Here, Π≡ Πðq¼1Þ is given in (2.11), and m≡mq¼1 is the
current mass of a particle with q ¼ 1. For the sake of
simplicity, we assume the fermion to be massless (m ¼ 0).
The solution of the mass gap m̄ is related to the value of
chiral condensate hψ̄ψi through

m̄ ¼ −Ghψ̄ψi: ð3:8Þ

For vanishing magnetic fields and in a nonrotating as well
as unbounded fermionic system, the condensate is built
only when GΛ2 is larger than a certain critical coupling Gc
[5,50]. However, it is known that external magnetic fields
catalyze the condensation, and a nontrivial solution for the
gap equation (3.8) exists for all G > 0 [50]. This is the
magnetic catalysis of dynamical chiral symmetry breaking.
In our case, because of the boundary conditions, the
dynamical mass becomes r dependent [47]. In order to
focus on the boundary effects on the magnetic catalysis, we
thus have to determine the minimum value of GΛ2 for
which at each fixed αb the gap equation (3.5) possesses a
nontrivial solution in the whole interval x ∈ ½0; αb� with
x ¼ eBr2=2. Denoting these kinds of G’s by Gm, we
plotted them as a function of eB=m2

π in Fig. 3. Their
values are listed in Table V.11

As it is shown in Fig. 3, for small values of eB ≤ 0.22m2
π ,

the NJL coupling Gm increases with increasing eB. This
means that the magnetic field is not yet strong enough to
hold the constituent mass nonvanishing in the whole

TABLE IV. The values of eB=m2
π for R ¼ 6 fm and given αbs.

αb eB=m2
π αb eB=m2

π

1 0.05 6 0.33
2 0.10 7 0.39
3 0.17 8 0.44
4 0.22 9 0.50
5 0.28 10 0.55

10Here, we use 1 fm−1 ∼mπ in MeV, where mπ ∼ 200 MeV is
the pion mass.

11Let us emphasize that, according to the above descriptions,
the definition ofGm is different fromGc. Whereas forG < Gc the
gap equation has only a trivial solution m ¼ 0, for G < Gm, it
possesses nontrivial (nonvanishing) solutions in the interval 0 ≤
r < R where R is the cylinder radius (see Fig. 4). Since we are
interested on the effect of the boundary conditions on the
magnetic catalysis, we have to determine Gm so that nontrivial
solutions appear in the whole range r ∈ ½0; R�.
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interval r ∈ ½0; R�. However, once eB increases and
becomes strong enough, it enhances the production of
the dynamical mass even when the coupling is not very
large. This is why Gm decreases with increasing
eB > 0.22m2

π . The fact that Gm decreases for large enough
eB is thus an indication of the magnetic catalysis of the
chiral symmetry breaking, which is expected once the
rotation does not affect the mass production at T ¼ 0. The
situation here is similar to what is studied in [47], where
magnetized fermions are considered in a nonrotating finite-
size cylinder at zero temperature for a fixed coupling, and
the finite-size effects on the magnetic catalysis are
discussed.
In Fig. 4, the mass gap m̄ is plotted as a function of

x=αb ¼ r2=R2 for αb ¼ 7 (eB ∼ 0.4m2
π) and three different

GΛ2, G1Λ2 ¼ 24, G2Λ2 ¼ 32, and GmΛ2 ¼ 28.37. It is
demonstrated how larger values of G enhance the chiral
symmetry breaking. Moreover, it is shown that for
G1 < Gm, the dynamical mass vanishes at r < R. This
shows the fine difference between Gm and the critical
coupling Gc, which is the minimum coupling necessary for
the formation of dynamical mass in an nonrotating and
unbounded fermionic system for eB ¼ 0. The qualitative
dependence of the constituent mass m̄ on the position
relative to R does not change dramatically by increasing G.

In Fig. 5, the x dependence of m̄ is plotted for αb ¼ 2, 4,
6, 8, 10. In Fig. 5(a), we used the corresponding GmΛ2 to
each αb (see Table IV), while in Fig. 5(b) GΛ2 ¼ 32 is
used. The color code in Fig. 5(b) is the same as in Fig. 5(a).
As it is shown, the quantitative dependence of m̄ does not
change by increasing αb, but the position where m̄ starts to
decrease depends on αb, because, according to its defi-
nition, the maximum value of x ¼ eBr2=2 is equal to
αb ¼ eBR2=2. In Fig. 5(b), we consider only the interval
m̄ ∈ ½700; 820� in the vertical axis for fixed GΛ2 ¼ 32 and
the same values of αb as demonstrated in Fig. 5(a). It is
shown that independent of αb, m̄ exhibits small oscillations
as a function of x. The amplitudes of the oscillations
become large in the vicinity of the boundary. At boundary
R (x ¼ αb), m̄ decreases rapidly.
Being a function of eB, the parameter x is not a natural

quantity to demonstrate the dependence of m̄ on the
position r relative to the boundary R. This is why we
plotted m̄ as a function of r2=R2 in Fig. 6(a) for αb ¼ 2, 4,
6, 8, 10. Here, GΛ2 is chosen to be GmΛ2 which are
different for different αb (see Table IV). As expected from
the previous results in Fig. 5(a), independent of αb, m̄
remains relatively constant for a large interval r2 ∈
½0; 0.8R2� before it starts decreasing at the boundary
r ∼ R. However, for a fixed r=R, it has a nonmonotonic
dependence on αb. First, it increases and then decreases
with αb. To scrutinize this dependence, we plotted in
Fig. 6(b) the eB dependence of m̄ for fixed r2=R2 ¼ 0.2,
0.8 and for GΛ2 ¼ GmΛ2. According to Table V, for each
eB, the value of Gm is different. As it is demonstrated here,
it increases first as a function of eB and then decreases with
increasing eB. This specific behavior is mainly related to
the αb dependence of the NJL coupling Gm, demonstrated
in Fig. 3.

/

FIG. 3. The minimum value of the coupling constant for which
the mass gap possesses nonvanishing solution in the interval
x ∈ ½0; αb�, with x ¼ eBr2=2 and αb ¼ eBR2=2.

FIG. 4. The r2=R2 dependence of the mass gap m̄ is plotted for
αb ¼ 7 (eB ∼ 0.4m2

π) and three different values of G. As it turns
out, for a fixed eB, increasing G enhances the chiral symmetry
breaking.

TABLE V. The eB=m2
π dependence of Gm as the minimum

value of G for which a nonvanishing constituent mass m̄ arises in
the interval x ∈ ½0; αb�.
αb eB=m2

π Gm αb eB=m2
π Gm

1 0.05 22.60 6 0.33 30.22
2 0.10 28.71 7 0.39 28.37
3 0.17 31.30 8 0.44 26.55
4 0.22 31.89 9 0.50 24.11
5 0.28 31.37 10 0.55 21.57
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The r2=R2 dependence of m̄ for αb ¼ 2, 4, 6, 8, 10 and a
fixed GΛ2 ¼ 32 is plotted in Fig. 7. As it is shown, m̄
remains almost constant for r2 < 0.8R2 and rapidly
decreases for r → R. The values of m̄ corresponding to
αb are slightly different. In order to see the difference
between m̄’s in the interval r2 ∈ ½0; 0.8R2�, the eB depend-
ence of m̄ is plotted for r2 ¼ 0.2R2; 0.8R2 and relatively
large GΛ2 ¼ 32 in Fig. 7(b). In the interval m̄ ∈ ½780; 810�,
the constituent mass oscillates with eB. This is in contrast
to the behavior of m̄ demonstrated in Fig. 6. The positions
of the maxima and minima appearing in Fig. 7 do not
change by increasing r2 from r2 ¼ 0.2R2 to r2 ¼ 0.8R2.
The oscillations are related to the de Haas-Alfven effect and
are because of the successive filling of Landau levels.

B. Finite temperature

In this section, we generalize our previous results to the
case of finite temperature. We demonstrate the T; RΩ; eB,
and r2=R2 dependence of m̄ for a fixed set of parameters

fαb; x; RΩ; GΛ2; Tg. We also determine the phase diagram
Tc (Ωc) versus RΩ; eB (T; eB) and r2=R2 for a fixed set of
parameters fαb; x; RΩ; GΛ2g (fαb; x; T; GΛ2g). We dem-
onstrate, in particular, the IMRC, in which a finite rotation
neutralizes the magnetic catalysis induced by a constant
magnetic field. As a consequence, m̄ decreases with
increasing eB for relatively large RΩ and small coupling
GΛ2. Moreover, in exploring the phase diagram of Tc
versus RΩ, this effect is reflected in reducing Tc as a
function of eB for large value of RΩ. The same effect is also
demonstrated in the phase diagram RΩc versus eB and T.
The dependence of Tc and Ωc on the coupling GΛ2 and
r2=R2 is also explored.
To introduce the temperature, let us consider (3.1) and

use

p0 → iωn ¼ iπTð2nþ 1Þ;
Z

dp0

2π
→ iT

Xþ∞

n¼−∞
; ð3:9Þ

(a) (b)

FIG. 5. The x dependence of m̄ is plotted for αb ¼ 2, 4, 6, 8, 10 andGΛ2 equal toGmΛ2 from Table V (a) and a constantGΛ2 ¼ 32 (b).

(a) (b)

FIG. 6. (a) The r2=R2 dependence of m̄ is plotted for αb ¼ 2, 4, 6, 8, 10, and GΛ2 ¼ GmΛ2. The couplings are chosen so that m̄
remains almost constant in the range r2 < 0.8R2. (b) Using same couplings GmΛ2 from Table V, the eB=m2

π dependence of m̄ is plotted
for fixed r2 ¼ 0.2R2 and r2 ¼ 0.8R2. The behavior reflects the dependence of GmΛ2 on eB=m2

π (see Fig. 3).
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where ωn is the corresponding Matsubara frequencies for
fermions. We arrive first at

m̄q

G
¼ m̄q

2π2
X
k;l;n

C2k;l;sqΦ
2
λk;l;sq

Z
dpz

½ðp0 − iΩjÞ2 þ ϵðqÞ2λk
�
;

ð3:10Þ

with ϵðqÞλk
from (2.48). Using then

T
Xþ∞

n¼−∞

1

ðωn− iμÞ2þϵ2
¼1−fðϵþμÞ−fðϵ−μÞ

2ϵ
; ð3:11Þ

where fðϵ� μÞ≡ ðeðϵ�μÞ=T þ 1Þ−1 is the Fermi-Dirac dis-
tribution function, the gap equation (3.10) is separated into
a T independent and a T dependent part,

m̄q

G
¼ m̄q

π

X
k;l

C2k;l;sqΦ
2
λk;l;sq

tanh−1

0
B@

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − 2λk;l;sq jqeBj

q
Λ2 þm2

q

1
CAθðΛ2 − 2λk;l;sq jqeBjÞ

−
m̄q

π

X
k;l;n

C2k;l;sqΦ
2
λk;l;sq

Z
∞

0

dpz

fðϵðqÞλk
þΩjÞ þ fðϵðqÞλk

−ΩjÞ
ϵðqÞλk

: ð3:12Þ

The T independent part of the gap equation is regularized in
the same manner as in (3.2). This yields (3.5), which
appears again in the first term on the rhs of (3.12). Here, Λ
is the corresponding cutoff, as appears also in (3.5).
Concerning the T dependent part of the gap equation,
the distribution functions prevent the corresponding inte-
grals to be divergent. In what follows, we present first the
numerical results for the gap equation (3.12) for fixed
parameters fq;Λ; Rg from (3.6). Then, focusing on the
critical temperature as well as angular frequency, we study,
in particular, their eB dependence.

1. The constituent mass as a function of
T; eB;RΩ, and r2=R2

In Fig. 8(a), theT dependence of the constituentmass m̄ is
plotted for fixed αb ¼ 10, x ¼ 5, and RΩ ¼ 0.5 and two

different choices of GΛ2 ¼ 24 and GΛ2 ¼ 26.12 As
expected, for fixed αb; RΩ, and T, m̄ increases with
increasing GΛ2. The same is also true for the critical
temperature Tc. As it is demonstrated in Fig. 8(a), the
corresponding critical temperatures for GΛ2 ¼ 24 and 26
are Tc ∼ 220 MeV and ∼250 MeV, respectively. As
expected, Tc increases with increasing coupling. The results
presented in Fig. 8(a) indicate also a second-order chiral
phase transition. This is in contrast to the results presented in
[11],where it is shown that the presence of externalmagnetic
fields leads principally to a first-order chiral phase transition.

(a) (b)

FIG. 7. (a) The r2=R2 dependence of m̄ is plotted for αb ¼ 2, 4, 6, 8, 10, and GΛ2 ¼ 32. In contrast to the results from Fig. 6(a), weak
magnetic fields do not affect the dependence of m̄ on r. Only small perturbations occur, which are explicitly shown in (b), where the
eB=m2

π dependence of m̄ is plotted for fixed r2 ¼ 0.2R2 and r2 ¼ 0.8R2. The oscillations are due to successive filling of the Landau
levels (de Haas-van Alfven effect).

12By combining the definitions of x and αb, we arrive at
x ¼ αbr2=R2. Hence, fαb ¼ 10; x ¼ 5g corresponds to
r2 ¼ 0.5R2. Moreover, the choice x ¼ αb=2 in Figs. 8, 10, and
12 corresponds to r2 ¼ 0.5R2 in the whole range of eB.
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In Fig. 8(b), the eB dependence of m̄ is plotted for
GΛ2 ¼ 26, 27, x ¼ xmax=2 ¼ αb=2, T ¼ 200 MeV, and
RΩ ¼ 0.8. As it turns out, in the regime of weak magnetic
fields eB ≤ 0.5m2

π, the dynamical mass m̄ decreases with
increasing eB. Let us remember that in a nonrotating system,
because of themagnetic catalysis effect, the dynamical mass
increases with increasing eB [11]. In contrast, the results
presented in Fig. 8(b) show that the rotation of a bounded
system neutralizes this effect and leads to IMRC. A similar
effect is introduced in [27] for an unbounded system. It has
been dubbed “the rotational magnetic inhibition”. Let us
notice that the IMRC is best demonstrated for large RΩ and
smallGΛ2. This is because it ismainly an effect of rotation in
combination with the magnetic field.
The results presented in Fig. 8(c) and, in particular,

Fig. 10(c) are another demonstration for this effect. In

Fig. 8(c), the RΩ dependence of m̄ is plotted forGΛ2 ¼ 25,
27, 30, αb ¼ 10, x ¼ 5, and T ¼ 200 MeV. For
small couplings GΛ2 ¼ 25, 27, m̄ decreases significantly
with RΩ. It even vanishes at some critical RΩc. The
value of RΩc increases with increasing GΛ2. This is
because a larger coupling enhances the production of the
condensate, whereas rotation has a countereffect. There is
thus a competition between rotation/coupling to destroy/
produce chiral condensates. For a larger value of
GΛ2 ≥ 30, m̄ decreases with increasing RΩ, but it does
not vanish, at least in the allowed regime of 0 ≤ RΩ ≤ 1.
According to the above results, for a constant magnetic
field, the IMRC occurs in a bounded system of quark
matter.
In Fig. 8(d), the r2=R2 dependence of m̄ is plotted for

GΛ2 ¼ 24, 26, αb ¼ 10, T ¼ 200 MeV, and RΩ ¼ 0.5. As

(a) (b)

(c) (d)

FIG. 8. (a) The T dependence of m̄ is plotted for GΛ2 ¼ 24, 26, αb ¼ 10, x ¼ 5, and RΩ ¼ 0.5. The results indicate a second-order
phase transition at certain critical temperature Tc. (b) The eB=m2

π dependence of m̄ is plotted for GΛ2 ¼ 26, 27, x ¼ αb=2,
T ¼ 200 MeV, and RΩ ¼ 0.8. In the regime of weak magnetic field eB ≤ 0.5m2

π , m̄ decreases with increasing eB. This is an indication
for the IMRC. (c) The RΩ dependence of m̄ is plotted for GΛ2 ¼ 25, 27, 30, αb ¼ 10, x ¼ 5, and T ¼ 200 MeV. While for large
couplings, m̄ turns out to be almost constant, it decreases with increasing RΩ for small GΛ2 ¼ 25, 27. This is another indication of the
IMRC, in particular, for small couplings. This effect can also be observed in the RΩ dependence of the critical temperature Tc in Fig. 10.
The critical RΩ, for which the dynamical mass vanishes, increases with increasing coupling GΛ2 (see also Fig. 12). (d) The r2=R2

dependence of m̄ is plotted for GΛ2 ¼ 24, 26, αb ¼ 10, T ¼ 200 MeV, and RΩ ¼ 0.5. As it turns out, for small couplings, m̄ decreases
with increasing r. The larger the velocity is, and consequently the kinetic energy as well as the centrifugal force of a rotating system is, it
is most probably in the chirally restored phase, where the dynamical mass vanishes.
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it turns out, for intermediate values of RΩ, and fixed αb and
T, the dynamical mass decreases with increasing r2=R2.
Moreover, the results show that in order to keep m̄ almost
constant in the whole range of 0 < r ≤ R, the coupling
GΛ2 has to be large enough. The r dependence of m̄,
demonstrated in Fig. 8(d), indicates that the IMRC is in fact
induced by the linear velocity v ¼ rΩ. For a given Ω, the
farther the condensate is from the axis of rotation, i.e.,
the larger r is, the larger is the rotational kinetic energy
of the condensate as well as the centrifugal force it feels,
and the smaller is the value of the dynamical mass m̄. This
has, by itself, positive consequences for the chiral sym-
metry restoration in rotating systems (see Fig. 9 for a sketch
of a system of quark matter in a rotating cylinder).
Let us notice at this stage that the above results are

only valid for intermediate values of the magnetic fields.
For a larger value of αb, the dynamical mass increases
near the boundary. This is known as “the surface
magnetic catalysis”, and is elaborated, among other things,
in [47].

2. Critical temperature as a function of
GΛ2; eB;RΩ, and r2=R2

To explore the interplay between the background mag-
netic field and the rotation of a bounded system of quark
matter and, in particular, to scrutinize their possible effects
on the critical temperature Tc of a chiral phase transition,

the GΛ2; eB; RΩ, and r dependence of the critical temper-
ature Tc are plotted for various fixed parameters (see
Fig. 10). In Fig. 10(a), the GΛ2 dependence of Tc is
plotted for αb ¼ 10, RΩ ¼ 0.5, and x ¼ 1, 5, 10. The latter
correspond to r2=R2 ¼ 0.1, 0.5, 1, respectively. As
expected, Tc increases with increasing coupling. This is
because with large values of GΛ2 the formation of a chiral
condensate is enhanced, and a phase transition to a chiral
symmetry restored phase becomes only possible at higher
temperatures. Moreover, the transition temperature depends
on the distance (velocity/angular kinetic energy/centrifugal
force) of the system with respect to the rotation axis.
The farther bound states are from the origin (rotation axis),
the lower is the critical temperature of a chiral phase
transition.
In Fig. 10(b), the eB dependence of Tc is plotted for

x ¼ αb=2, RΩ ¼ 0.8, and GΛ2 ¼ 24, 26. We choose an
appropriate large value of RΩ, and small values of GΛ2, to
best demonstrate the IMRC. As it turns out, Tc decreases
with increasing eB. This is definitely a sign for an IMRC
induced solely by the rotation of a bounded system of quark
matter. Let us remember that the results presented in [11]
for a nonrotating two-flavor NJL model at zero chemical
potential μ show an increase of Tc as a function of eB. This
is because of the catalytic effect of the magnetic field. In
contrast, it is also shown that for nonvanishing chemical
potential, Tc decreases with increasing eB, and thus,
inverse magnetic catalysis occurs for μ ≠ 0 [11]. There
are, however, pieces of evidence for inverse magnetic
catalysis arising from an ab initio lattice QCD computa-
tions [51]. Here, it is shown that Tc decreases with eB even
in a system with zero chemical potential.
The IMRC is best demonstrated in the Tc versus RΩ

phase portrait in Fig. 10(c). Here, the RΩ dependence of Tc

is plotted for x ¼ αb=2, GΛ2 ¼ 30, and αb ¼ 1, 3, 5, 10.
The critical temperature decreases with increasing RΩ, but
the slope of the corresponding curves increases with
increasing αb. Moreover, for a constant RΩ, Tc decreases
with increasing αb. These effects become more significant
in the regime of large RΩ, e.g., 0.4 < RΩ ≤ 1 (see
also Fig. 11).
In Fig. 10(d), the r2=R2 dependence of Tc is plotted for

αb ¼ 10, RΩ ¼ 0.5, and GΛ2 ¼ 24, 30. In the regime
0 < r2 < 0.8R2, Tc decreases slightly with r=R. Only near
the boundary for 0.8R2 < r2 < R2 does the critical temper-
ature Tc decrease drastically with r=R. These results
indicate that as long as the ratio r2=R2 is not larger than
r2=R2 ¼ 0.8, the above conclusions concerning the appear-
ance of the IMRC do not depend on r. The reason for the
slight decrease of Tc as a function of r is the fact that for
small values of coupling the dynamical mass decreases
with increasing r [see Fig. 8(d)], and thus, smaller temper-
atures are necessary to destroy the bound states.
To have a measure for the effect of large RΩ on IMRC,

let us define a quantity Δc as

FIG. 9. A sketch of a system of quark matter in a rotating
cylinder. It can be imagined to consist of an infinite number of
rotating cylinders with radii ri ≤ R; i ¼ 1; 2; 3;…, made of chiral
condensate. According to the results from Fig. 8(c), for a given
angular velocity Ω, the larger r is, the smaller is m̄; thus, the most
probable is the chiral symmetry restoration. Moreover, the larger
r is, the larger are the kinetic energy and the centrifugal force
applied on each layer. The fact that m̄ decreases with increasing r
indicates that larger kinetic energy and centrifugal force have a
positive impact on destroying the chiral condensate and thus
restoring the chiral symmetry in a rotating system.
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Δc ≡ Tcðαb;1Þ − Tcðαb;2Þ
Tcðαb;1Þ

in %; ð3:13Þ

for fixed x andGΛ2. In Fig. 11, the RΩ dependence ofΔc is
plotted for αb;1 ¼ 1, 5 and αb;2 ¼ 10, fixed x ¼ αb=2, and
GΛ2 ¼ 25, 30, 40 [See Figs. 11(a)–11(c)].13 The results
reveal that independent of the value of the coupling GΛ2,
Δc increases with increasing RΩ.

3. Critical RΩc as a function of GΛ2, eB, T, and r2=R2

Focusing on the behavior of the dynamical mass and the
critical temperature of the chiral phase transition with
respect to eB and RΩ, the IMRC is demonstrated in
Figs. 8(b) and 8(c), as well as Figs. 10(b) and 10(c). As
it is shown in Fig. 8(c), for fixed values of αb, x, T, and, in

particular, for small values of GΛ2, the dynamical mass m̄
vanishes for certain critical velocity RΩc ≤ 1. For GΛ2 ¼
25 and GΛ2 ¼ 27, RΩc ∼ 0.78 and RΩc ¼ 0.93, respec-
tively. In what follows, the dependence of RΩc onGΛ2, eB,
T, and r2=R2 is explored.
In Fig. 12(a), the GΛ2 dependence of RΩc is plotted for

αb ¼ 10, T ¼ 200, and x ¼ 1, 3, 5. Although for all values
of x, RΩc increases with GΛ2, but the slope of the curves
decreases with increasing x. For a given value of GΛ2, the
smaller the value of x is, the larger Ω is necessary to break
the condensate and to restore the chiral symmetry. This is
because, for a given Ω, the larger x is, the larger is the
kinetic energy of a bound state in the rotating system of
quark matter and the centrifugal force applied on it.
Apparently, larger kinetic energy/centrifugal force applied
on constituents helps to destroy the corresponding bound
state. The same effect is also observed in Fig. 12(d), where
the r2=R2 dependence of RΩc is plotted for αb ¼ 10,

(a) (b)

(c) (d)

FIG. 10. (a) The GΛ2 dependence of Tc is plotted for αb ¼ 10, RΩ ¼ 0.5, and x ¼ 1, 5, 10. As expected, Tc increases with increasing
GΛ2. This confirms the fact that larger couplings enhance the formation of the dynamical mass. (b) The eB=m2

π dependence of Tc is
plotted for x ¼ αb=2, RΩ ¼ 0.8, and GΛ2 ¼ 24, 26. Because of the IMRC, Tc decreases with increasing eB. The effect is mainly
induced by the rotation so that for a smaller value of RΩ, the slope of the curves becomes smaller. (c) The RΩ dependence of Tc is
plotted for x ¼ αb=2,GΛ2 ¼ 30 and αb ¼ 1, 3, 5, 10. As it turns out, Tc decreases with increasing RΩ. This indicates an IMRC induced
apparently by the interplay between rotation and the presence of a magnetic field in a bounded system of quark matter. (d) The r2=R2

dependence of Tc is plotted for αb ¼ 10, RΩ ¼ 0.5, and GΛ2 ¼ 24, 30. Only at the boundary 0.8R2 < r2 < R2 does the critical
temperature Tc decrease with r=R; otherwise, it remains almost constant.

13Note that Tcðαb ¼ 10Þ ≤ Tcðαb ¼ 1Þ and Tcðαb ¼ 3Þ.
Hence, Δc ≥ 0 in these two cases.
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(b)(a) (c)

FIG. 11. The RΩ dependence of Δc is plotted for x ¼ αb=2 as well as GΛ2 ¼ 25 (a),GΛ2 ¼ 30 (b), andGΛ2 ¼ 40 (c). As it turns out,
Δc increases with increasing RΩ. A comparison between the results in (a), (b), and (c) shows that the maximum value of Δc decreases
with increasing GΛ2.

(a) (b)

(c) (d)

FIG. 12. (a) The GΛ2 dependence of RΩc is plotted for αb ¼ 10, T ¼ 200 MeV, and x ¼ 1, 3, 5. As expected, RΩc increases with
increasing GΛ2. For a given value of GΛ2, the smaller x is, the larger values of Ω are necessary to restore the chiral symmetry. (b) The
eB=m2

π dependence of RΩc is plotted for x ¼ αb=2, T ¼ 200 MeV, and GΛ2 ¼ 24, 25. Because of the IMRC, RΩc decreases with
increasing eB. (c) The T dependence of RΩc is plotted for αb ¼ 10, x ¼ 5, and GΛ2 ¼ 24, 26. As expected, RΩc decreases with
increasing temperature, which, by itself, triggers the chiral symmetry restoration. (d) The r2=R2 dependence of RΩc is plotted for
αb ¼ 10, T ¼ 200 MeV, and GΛ2 ¼ 23, 25. For given values of eB, Ω, T, and G, the farther the distance from the rotational axis is, the
larger is the kinetic energy of a bound state as well as the centrifugal force applied on it; thus, the smaller values of Ω are necessary to
destroy the bound state and restore the chiral symmetry.
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T ¼ 200 MeV, and GΛ2 ¼ 23, 25. Here, for a fixed Ω, the
larger r is, the larger is the rotational kinetic energy as well
as the centrifugal force; thus, smaller values of Ω are
necessary to destroy the chiral condensate and restore the
chiral symmetry.
In Fig. 12(b), the eB dependence of RΩc is plotted for

fixed x ¼ αb=2, T ¼ 200 MeV, and GΛ2 ¼ 24, 25.
Because of the IMRC, in which the dynamical mass
decreases with increasing eB [see Fig. 8(b)], the larger
eB is, the smaller the values of RΩ are necessary to restore
the chiral symmetry. The same is also true for the temper-
ature dependence of Ωc. Since higher temperatures help to
destroy the chiral condensate, the larger T is, the smaller the
values of Ω are necessary to restore the chiral symmetry.

IV. CONCLUDING REMARKS

One of the key ingredients in studying the possible
effects of the simultaneous presence of the rotation and
constant magnetic field on fermionic systems is the solution
of the corresponding Dirac equation. In the first part of the
present work, we presented a systematic derivation of the
solutions of the Dirac equation in a rotating and magnetized
system, using the Ritus eigenfunction method. Using the
Ritus eigenfunctions and energy spectrum, we derived the
corresponding quantization relations for fermions in an
infinitely extended system with no boundary condition. We
then imposed a global boundary condition on this fermionic
system to avoid causality-violating effects and scrutinized
the effect of boundary conditions on the energy spectrum of
fermions once they are bounded in a cylinder with radius R.
This derivation, which did not appear in the literature
before, gives us new insight, in particular, into the way how
fermions occupy the lowest energy levels. We showed, in
particular, that for a bounded system the lowest energy
level is to be determined numerically. Using the afore-
mentioned quantization relation of a bounded magnetized
and rotating system, we derived the corresponding fermion
propagator, from which appropriate expressions for the gap
equations of a QCD-like model at zero and nonzero
temperatures were found.
We showed that at zero temperature, the dynamical mass

m̄ has no dependence on the angular frequency Ω. This
confirms the statement in [29] that “cold vacuum does not
rotate”. Its dependence on the distance r from the rotation
axis could be regulated by choosing appropriate coupling
Gm for each fixed eB. The values of Gm are determined so
that the dynamical mass remains almost constant in a
relatively large interval of r (see Table V). We then studied
the r and eB dependence m̄ for different values of Gm
and fixed values of eB and r, respectively, and showed
how the eB dependence of Gm is reflected in the eB
dependence of m̄ [compare the results demonstrated in
Figs. 3 and 6(b)].
In the finite temperature case, we numerically determined

the T, eB, Ω, and r dependence of m̄ and plotted the

complete phase portraits ofTc versusGΛ2, eB=m2
π ,RΩ, and

r2=R2 as well as RΩc versus GΛ2, eB=m2
π , RΩ, and r2=R2.

Our results show that there are, at least, three signatures for
the fact that rigid rotation initiates the IMRC. The first one is
the decrease of m̄ with eB, once GΛ2, T, r, and Ω are kept
fixed [see Fig. 8(b)]. As it turns out, the slope is larger for
smaller values ofGΛ2 andRΩ. Hence, an appropriate choice
of these two parameters negatively affects the production of
the dynamical mass and leads to IMRC. Apart from this
specific behavior of m̄, the fact that Tc decreases with
increasing eB is a result of the IMRC [see Fig. 10(b)]. This is
similar to ordinary inverse magnetic catalysis in a non-
rotating quark matter, whose evidence from lattice QCD is
exactly the same phenomenon. But, there is also a third and
novel evidence of IMRC. This is the decrease ofΩc with eB
[see Fig. 12(b)]. Recent studies show similar results for a
two-flavor quark matter [52].
Apart from the IMRC, the r dependence of m̄ is striking.

It turns out that, for small enough coupling GΛ2 and even
for large eB, the dynamical mass decreases with increasing
r=R [see Fig. 8(d)]. A similar conclusion is also made in
[29]. Here, we must be cautious. Actually, we solved the
gap equation with the assumption of ∂rm̄ ≪ m̄ðrÞ2 [47].
Hence, m̄ðrÞ curves with very large slopes in Fig. 8(d) are
unacceptable. As it turns out, for fixed values of eB, T, and
RΩ, an appropriate choice of GΛ2 affects the slope of the
m̄ðrÞ curves. Without this assumption, we are facing
an integral equation, whose solution leads to an inhomo-
geneous mass gap. In [53,54], the nonlocal chiral
condensate in 2þ 1 dimensions is treated using a
Bogoliubov-de Gennes-like method [55]. It is shown that
for sufficiently large angular frequency, chiral vortices are
built in the ground state. These are topological defects in
analogy to the ones appearing in superfluids and super-
conductors [54]. It would be interesting to extend this
work to the case of magnetized quark matter, which is
relevant in the physics of neutron stars. These compact
stars are subject to extremely large angular frequencies and
very large magnetic fields. Other methods to treat
inhomogeneous chiral condensates are presented in [56],
where the magnetic dual chiral density wave phase is
studied. A possible extension of this work is to introduce
the rotation and to study its effect on the phase diagram of
this system [57]. Implications of rotation on the phenom-
enological observables of HIC, like dilepton and photon
production rates, are also most relevant in HIC’s physics.
We postpone these interesting subjects to our future
publications.
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