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Entanglement entropy and monotones in scattering process
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In this paper, we study the entanglement property of a four-particle system. In this system, two initially
entangled electrons A and C are scattered by two uncorrelated positrons B and D, respectively. We calculate
the entanglements among the particles both before and after the double QED scattering
(AB - AB,CD — CD). We find that the change of entanglement entropy between subsystems A and
B during the scattering process is proportional to the total cross section, 6., = 645 X o¢p. Even though
there is no direct interaction between subsystems A and C (or B and D), the scattering process induces
entanglement change among them which is also proportional to . This result shows some kind of
entanglement sharing property in multipartite system. In order to further investigate the entanglement
sharing, we calculate the entanglement monotones that quantify the genuine multipartite entanglement in a
multipartite system. For our chosen scattering process, e™ e~ — u'u~, however, we find that the outgoing

state is a W-type four-partite entangled state that has no genuine four-partite entanglement.

DOI: 10.1103/PhysRevD.104.116021

I. INTRODUCTION

Numerous concepts in quantum information have
received significant interest within the fundamental frame-
work of quantum field theory, including entanglement
entropy, error-correcting code, and complexity [1-3].
These issues provide some insight into the structure of
interacting quantum field theories and spacetime geometry.

The physics of the scattering process plays a crucial role
in various physical experiments and theories that probe the
behavior of elementary particles. Nevertheless, previous
theoretical investigations often focus on classical observ-
ables, such as the cross section and decay rate, as they are
directly related to experiments. However, these classical
properties cannot reveal all the information in the scattering
process. For example, some soft particles can be produced
during the scattering process, which is not captured by
classical observables, implying that some information is
lost in scattering events. In the framework of quantum
mechanics, entanglements between different degrees of
freedom are generated in a scattering event, which provide
us with a route to those with more detailed information.
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Furthermore, the entanglement entropy of scattering par-
ticles between high- and low-energy degrees of freedom in
momentum space could also provide some deep insights
into the scattering process [4]. Balasubramanian [5] studied
entanglement entropy of two divided momentum spaces
with the perturbative calculations method, and this method
was then followed by Refs. [6—12] for the study of the
entanglement in the 2-2 particles scattering process in a
weakly coupled field theory. They found that the entangle-
ment entropy changes during the scattering process; this
variation in entanglement entropy from the initial to final
state is proportional to the cross section. For a three-partite
system, Sampaio et al. [13] considered a QED scattering
(AB — AB), wherein B is initially entangled with a third
particle C that does not directly participate in the scattering
process. They found that the spin expectation value (o) of
particle C does not change, but (o,) and (s,) are propor-
tional to the total cross section of the AB scattering.

For a multiparticle system, the entanglement behavior of
entangled states cannot be completely described by the
entanglement entropy or mutual information. For example,
the GHZ state (]000) 4 [111))/+/2 and W state (|001) +

|010) + |100))/+/3 are both entangled three-qubit state.
When one party is traced out, the W state still exhibits
two-partite entanglement, whereas the GHZ state does not
exhibit any two-partite entanglement. In other words,
they belong to different classes of three-qubit entangled
states. For the pure states of bipartite systems, Bennett ef al.
[14] first discovered that partial entropy is a measure
of entanglement for a given pure multipartite state.
Subsequently, Wotters et al. [15,16] evaluated three-partite
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pure states by exploiting the knowledge of mixed-state
concurrence. Furthermore, Osterloh and Siewert [17] stud-
ied the entanglement monotones constructed with an anti-
linear operator filter, which can distinguish inequivalent
classes of states with multipartite entanglement. Generally,
the classification of entangled states is based on the
applications of quantum information theory, rather than
on specific mathematical forms. Two quantum states can
complete the same quantum information task in a com-
pletely equivalent way, if they can be converted into each
other under stochastic local operations and classical com-
munication (SLOCC). As a result, the genuine multipartite
entanglement in a multipartite system can be described and
quantified by entanglement monotones under SLOCC.
Accordingly, inequivalent classes of entangled states pos-
sess different entanglement monotones, and the entangled
states with larger monotones can be transformed into
entangled states with smaller monotones under SLOCC,
but not vice versa.

In this paper, we study the properties of entanglement
among scattering particles (AB — AB, CD — CD), based
on the double-scattering process ete™ — utu~, wherein
electrons A and C were initially entangled while positrons
B and D were uncorrelated. This paper is organized as
follows. In Sec. II, the variation of entanglement entropy
between all two particles in the final state is calculated. In
Sec. III, the entanglement monotones and classes of the
final state are analyzed. Section IV presents the conclusions
and final remarks.

II. PARTICLES ENTANGLEMENT OF DOUBLE
SCATTERING PROCESS

For an elastic scattering process of two fermions in two-
particle Fock space, incoming and outgoing particle states
can be described as

V2E,a7(0), ® \/2Eqbit|0

where p and q are the 3-momenta of particles, and s, r
denote the spin of particles. The fermionic creation/anni-
hilation operators obey the anticommutation relations,

p.s3q.1) = (1)

A~

.ps)

{ap.ai"} = (2
{bg. b} = (2

)’ (p — k)5,

7)350) (q = 1), (2)

Then the inner product between two-particle states is
defined as

(k,s';1,7|p.s;q.r) = 2E2E (27)°6%) (k — p)(27)*

x 8 (1 — q)6 6" (3)

For a scattering process, the final state is determined by
the initial state and the S matrix [6],

i) = [ e [ ¢ S Ips. 7 pass)

Ps rs
X (p3. 15 pa. s|S|ini).

d’ps
27)32F

d’py
27)32E

The 7 matrix is defined as

i7=S-1,
(P3:133 P4 1aliT | pyory3 pas1a)
= (21)*8W (p)+ py— p3— pa) XiM(ry,r25r3.14),

(5)
where shorthand notation M (ry, r,; r3, r4) is the invariant
matrix element in a scattering process.

These concepts can be extended to a double scattering
process, shown in the left of Fig. 1, H,p: AB — AB
and Hep: CD — CD, whose total Hilbert space is
Hiot = Hap @ Hcp- The concrete double scattering proc-
ess we consider here is shown in the right of Fig. 1, where a
pair of initially entangled electrons (AC) collided with a
pair of positrons (BD). Based on an exemplary QED
process e"et — uTu~, in the initial state, the subsystems
A, C correspond to two electrons e, and the subsystems B,
D two positrons e™. In the final state, the subsystems A, C
correspond to two muons x~, and the subsystems B, D two
antimuons p . We will study the behavior of entanglement
in this four-particle system (ABCD) before and after double
scattering.

Cu™,a3)

Ale”,p1) Cle™,q)

D(e* )

FIG. 1.
QED processes, ete™ — uu,

B(e"

\p2)

4)

B(u*,pa

Left: schematic illustration of the double scattering process. Right: the concrete scattering process based on two exemplary
is considered in this paper. The process is shown in the center of mass frame.
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The initial state is chosen as follows:

|ini) = |pa.a) ® (cosn|py, 1:q1. 1) +sinne”|pi. 1;q1, 1)) ® |q2.b). (6)

where 5 € [0,7/2] and € [-x/2,3x/2] parametrizes the entanglement of the state.

The final state is given by

fin) = ini) - / dp / . dH?{ZZ[cosnMABm,a;m,r4>MCD<¢,b;s3,S4>
P37P1 Q374

r3,rq 83,54

+ e’ SinﬂMAB(JmGQ r37”4)MCD(¢717§S3’54>]|P3’rL§P47SL> ® |Q3, rR;LI4aSR>}v (7)

where [dIl15? Ef—d3p3 4 B

(271)32Ep3 2z ) (2”)46< )(pl +p2 -

Our main task is to analyze the entanglement distribution
in this state. In this section, we focus on the bipartite
entanglement between any two scattering particles. The
bipartite entanglement is measured by the mutual informa-
tion. For example,

I(A,C) = S(A) + S(C) — S(AC), (8)
where S(A), S(C), and S(AC) are the von Neumann
entropy of subsystems A, C, and AC.

To obtain an explicit formula, we choose to evaluate
entanglement entropy in the center of mass frame, as shown
in Fig. 1. The mass of electron is ignorable, 4-momentum
of scattering particles can be written as

=(0,0,-E,E), p> = (0,0,E,E),
:( 2 _m?siné,,0, — Ez—mzcosel,E),
:< E?> —m?sin 6,0, 2—mzcosel,E),

= (0.0.E.E), — (0,0, ~E. E).

< E? —m?sin6,,0, V E> — m? cos 6, ),
qs = (—\/E2—m sin6,,0, —

At the lowest order, the scattering amplitude of process
ete” > putu is

E? — m? cos 05, E) (9)

M(ry, 1313, 74) = M(p1, 115 P2 T2 = P32 735 Pas Ty)

= dzaii(ps, r3)[iy*|v(pa. 14)
g/w

X mD(Pz» )iy’ Ju(pi, 1),

where a = e?/4x is the fine-structure constant, and mode
functions u(p, h) and v(p, h) are chosen as helicity spinor
in Ref. [18], which helicity = (1/2,-1/2) denoted
(1, ]). In the following calculations, the initial positron
pair is chosen to be in the polarized state a = b =1.

—P4)-

|
A. Subsystem AB

For a general (AB — AB) scattering process, it is found
that the interaction will lead to the change of entanglement
between the scattered particles and the change is propor-
tional to the scattering cross section [6,9]. In the following,
we will calculate the change of bipartite entanglement
between the particles during our double scattering process
(AB — AB, CD — CD). Obviously, for the given initial
state (6), initial mutual information between subsystems A
and B is zero. To get the mutual information between A and
B for the final state, we will first determine the reduced

density matrices, pﬁ; B pﬁ, pJ;, then calculate their entropies,

Sﬁ B Sf;, S, which will lead us to their mutual information.
By tracing out subsystem CD, we obtain the reduced
density matrix of the subsystem AB,

1
Phs = 77 (TAB+ITAB). (10)

The first term is

TAB = 2E, 2E, 2E 2E,, V4
2 |P17 1 p2.a)(pi, T§P2,a‘

x| cos[n]

2E1,12Ep2V2
+Sin[,7]2|P1,i§P2,a><P1,~£§sza| ’ (11)
2E, 2E,V
The second term is
p
fP%#PI dH '

IIAB = a4V42Eq12Eq22Ep] 2EP2 W
1 2

[ZZAA 3. 514, 7)

73,1 14,7

« |P3, 735 Pas 74) (P35 755 Pas 14 (12)
2 b
2E, 2E, V
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where N is the normalization factor fixed by tr,p Luf; sl =1
In performing partial traces, one finds Dirac deltas as
(27)87)(0) and (27)8) (0), which come from background
spacetime. The setting of the entire scattering process is
designated to occur in a large spacetime volume of duration
T and spatial volume V; these factors are artifacts caused by
regulating delta functions Ref. [19],

5y (p—p') = ——0pp-
v(P—p’) (27)7 PP
1 [r2 .
6r(Eif) = 6r(Egin— Eini) _—/ dre'Fu=Ew) - (13)
2z )12
which implies V = (27)%5\(0) and T = (27)5(0).
respectively.

To simplify the expressions, we choose some shorthand
notations,

Ap(Jirsriarh )

1
EEMAB(\L’a;r3’r4)MZB(T’a;rg7rﬁl)’ (14)
Aq(,1: 53,545 55, 53)
E% p(L. by 53, s4) MEp (1, b3 sy, s)),  (15)
@(1,1)
T dr®
:%ZAq(Tv T;S3,S4;S3,S4), (16)
q Q@ 53,54
AB (M5 41)
gy _ 1 E2—m? [ AP (14;11)
% 12872 E2V E? AB) (145 11)
AB)(Jd:11)
lllas1 the4} eigenvalues  {R¥ = o Ez‘z’”za?B,
i=1,..,4}.

Then the entanglement entropy between subsystems AB
and CD in the final state is

Sy = —(cos[y]? log[cos[7]] + sin[y]? log[sin[]?)
=Y [ aou(@r ogla' R
+ a*A(1 + cos[n)? log[cos[y]?] + sin[n]? log[sin[y]?])
+0(a®). (22)

AAB) (13, rys 1y, 1))
= cos>nAp(1, 1373, 54575, 7)) AD (1,1)
+sin?gAp (1, Lira, ras ) AD (L)
+cosysinne™PAp(1, L rs, ras 15, 7,) AW (1, ])

+cosysinnePAp(L, 1srs, sy, rh) AW, 1), (17)
Tf anss
P37#P .
= VoE |2Ep2 ;};A 7'3,7'4,}’3,7'4). (18)
Then the normalization is given by
N =2E, 2E, 2E, 2E, V*(1 + a*A).  (19)

For the weak coupling theory, the reduced density matrix
for subsystem AB at order a* can be written as

U) = diag((1 — a*A)TUP), ...« )

Pap =
where the elements of this diagonal matrix correspond to

|I71srl;Psz><P1~V/,;P2~V/2| \Ps-f3§l’4qr4><P3~T'3;P4,"ﬁ;| the
2Ep1 2Ep2 V2 o 2Ep3 2E114 V2 ’

matrix of a particular scattering angle #; in momentum
space. For the unscattered direction 8, = 0, the matrix

A (20)

density

cos[pg> 0 0 0

sam_| 0 0 0 0
0 0 sin[g)* 0

0 0 0 0

has the eigenvalues {cos[y]?,cos[y]?,0,0}. And for the
scattered direction {6, # 0,6, # 0}, the matrix

AB (ML) AUBI (A1 L) AUBI (ML)
AB (AL AR L) ABBI(1) L)) o)
AB (UML) AR L) AUB( L) |
AB(LLAL) AUBI(LLLY) ABBI(LLLL)

From density matrix p,p we can obtain reduced
density matrix p, and pp. By tracing out the subsystem

B, p) = Try|p),), the density matrix p, at o* can be
written as
ph = diag((1 - a*N)TW, ... APV, .). (23)

where the elements of this matrix correspond to

|p1.ri)(pir] |P3.73)(p3.1%] g _
Ty Ve 2BV For the direction 6#; = 0, the
matrix

116021-4
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T _ (coszry 0 >
0 sin?y/)’

has the eigenvalues {cos[y]?, sin[y]*}. For the direction
0, # 0, the matrix

() T E*—m? <A(A>(TT) AW (1 i))
A9| s

T12822E2V E2
A<A>(r3’rg):ZA(AB) (r3,r4;r§,r4),

Ty

has the eigenvalues {R%,i=1,2}. The corresponding
entanglement entropy for subsystem A is

S§7(A) = —(cos[n]* log[cos[n]*] + sin[y]* log[sin[]*])
—Z / dQ, (a* R log|a*R4))

+a*A(1 + cos[n)* log[cos[n]?] + sin[y]? log][sin[y]?])
+0(a®). (25)

By tracing out the subsystem A, try Mf ), the density
matrix pp at a* can be written as

ph = diag((1 - *N)Z®), . a*AY) ), (26)
where the elements of this matrix correspond
lpz'zréijl\)fzm s ‘p4'2rgzjf,“z'r“|. And the matrices

7B) = (1 0>,
0 0
(B) (B)
w_ T  VE-m (ATT Ay )

0 = 212 2 ’
! 1287°E“V  E (B) (B)
Ayt Ay

A(B)(r4v rﬁl) = ZA(AB)(F37V4;r3ar£1)1 (27)

r3

have the eigenvalues {1,0} and {R5,i=1,2}, respec-
tively. The corresponding entanglement entropy of
subsystem B is

2
S/(B) = —a'A -3 / 49, (¢ R log[a* R¥))
i=1

+ O(a®). (28)

Thus, we obtain the variation of mutual information
between subsystem A and B during the double scattering
processes at leading order a*log a®,

AI(A,B)=S/(A)+S/(B)-S/(AB)—1!(A,B),

2 2 4
—_ 4log[a4]/d91 <ZR§‘ +ZR§—ZR;§B)
i=1 j=1 k=1

+0O(a*), (29)
where Y2 R4, 32 | RP and Y% | R4® are the ranks of
matrices (24), (27), and (21), respectively.

For the chosen initial state, |ini)=|p;,a)®
(cosn|py.15q1.1) +sinne’’|py,liq1.1)) ®|qy.b), the total
cross section at the lowest a* for the double scattering

ete” > /,ﬁ'u_ is
Oliniy = OAB X OCD
a* —(Ez_ngglf;ij)zﬂz sin[y]?>, a=b=1% .
o 4 (E2=m*)2E>+m?)*n® 2 —p= ( )
a WCOS[T[] s a = = l,

Finally, for the initial polarized system BD, detailed
calculations show that the variation of mutual information
between subsystems A and B at leading order is

T2
AI(A’ B) = —(l4 log[a4] WfAB(Ecm’ m, 7]) + O(a4)’
TG0
= —4log[a?] ;‘2"") + O(a*), (31)

where E,.,, = 4E stands for the total energy in a four-
particle system. The functions f 5 appearing in the mutual
information is plotted in Fig. 2. Obviously, it is propor-
tional to the scattering cross section ojy;).

Equation (31) and Fig. 2 show that the change of
entanglement between subsystems A and B during the
double scattering process is proportional to the total cross
section o4p X ocp rather than o,5 alone. Therefore, the
scattering process (CD — CD) affects the entanglement
between A and B, given the initial entanglement between
subsystems A and C. This illustrates the global sharing
property of entanglement in a multipartite system.

In fact, the function f,p is related to the quantity A in a
normalization factor (19) as

V2 4

FA = yﬁ‘ino. (32)

fap =
As shown in Ref. [13], if the subsystems A and B
experience other QED processes, like Bhabha scattering
e"et = e"e’, Mgller scattering e“e” — e"e”, and a
process e~ u~ — e"u~, the cross section is diverging
because of collinearity. Then the factor A — oo and
function f,p will also diverge. For elimination of diver-
gence, the contributions of soft photon scattering should be
included. However, when soft photons are included, the
four-particle final state will become a mixed state after

116021-5
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4
fag*Ecm

0.15

0.10

0.05

0.5 1.0 1.5 n

Utot*Ecm4
0.04
0.03
0.02

0.01

0.5 1.0 1.5 n

FIG.2. The a*loga* order contributions to variation of mutual information (A, B) and the total cross section 0|ini) as a function of the

entanglement parameter # of the initial state.

tracing out these soft photons, which leads to difficulty in
calculations.

As a compromise, we may consider the change of
entanglement entropy along a particular scattering angle
6, in momentum space,

Al (A.B) = S} (A) + S}, (B) — S} (AB),

2 2 4
= —a* log[a] (ZR? +> RS- ZR;‘C>
i=1 j=1 k=1
+ O(a*),
7% d
= —4logla] 5 d‘g’;t Ola?), (33)

where do,/dQ, is the differential cross section for

process, the change of entanglement entropy is also
proportional to the total cross section.

B. Subsystems AC and BD

During the double scattering process, subsystems A
and C (also B and D) have no direct interactions, but as
we will show in this section their entanglement or mutual
information also change. Their initial mutual information
can be easily calculated with the initial state (6),
where I'(AC) = —2[cos? i In[cos? 5] + sin? 5 In[sin? ]].

By tracing out the subsystem BD of the final state (7),
Phe = + Trsp)[p], we obtain the reduced density matrix
of the subsystem AC,

the scattering rate ipto an element of solid angle pf; c= 1 (ZAC + ITAC). (34)
dQ, = d(cos0;)d¢. Since the change of entanglement N
entropy is proportional to the differential cross section, it
is reasonable to expect that, for other QED scattering The first term is
|
P Mg e Mg M o [P dign (e 4 g 4
TAC =2E, 2E, 2E, 2E, V* {005217 5 + siny .
oo 2E, 2E,V 2E, 2E,V
+ sinr]cosne‘i/’ |P1, tq1. T><P17 ¢2§CI17 H + sinnCOSnei/} |P1, Liqy, ¢><P1, T2§6]1, 0 | . (35)
2E, 2E, V 2E, 2E, V
The second term is
. / . /
TTAC = a4T2V2/ dngs / dngz [ZZA(AC)(%’%;,,&’S/S) |p3,1’3,6;3E,‘S32>ép3"/’;3sQB,S3|:|' (36)
P3#P1 43 7P rarh 83,5, p3<q;
Choosing a shorthand notation,
AAO (13, 53574, 54) = ZCOSZWAP(T7 1573, 14575, 74)AqQ(1, 1553, 545 55, 54)
Fq,54
+sin®nAp (L. L rs, ras . ral)Aq(, ;53,545 85, 54)
+ cosnsinne™PAp(1, Lirs, ras i ra) Aq(1, Ls 3. 543 55, 54)
+ cosnsinnePAp(l, 15 r3, ras . ra)Aq(L, 15 53, 543 55, 54), (37)

116021-6
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It can be easily shown that the factor A in Eq. (18) satisfies

T [, o AT [ dIIY

A— s#P; 374 A(AC)(r3? 53573, S3).
V2E, 2E, V2E,2E,, Z

(38)

The reduced density matrix for subsystem AC at order a*
can be written as

= diag((1 - a*A)TUO), .. .a*AY) ). (39)

where the elements of this matrix correspond to
[p1.riiqrs)(prarysanst | |P3.73:q3.53)(p3.75:q3.55) .
2E, 2E, V? reees 26, 2E,, V2 , the density

AO(11 1)
AUO) _ ( T >2<E2—m2> A
v\ 12872 EPV E? A0(14:11)
A9 t)

has the eigenvalues {R{C = (hmy )2 (B
i =1...4}. The corresponding entanglement entropy of

subsystem AC is
Sﬁc — A — Z/dQl /sz(a“Rf‘C log[a*RAC])

+ 0(a®). (41)

Based on the symmetry of the system (ABCD), we have
S(A) = S(C). Thus, we obtain the variation of mutual
information between subsystems A and C at leading order,

T2
AI(A. €) = —a'logla'] 75 fac(Ecn o) + O(a).

= —4logle’] Vlz +0(a*). (42)
fac*Ecm®
o15La=b={ a=b="7
010t
0.05f
05 10 15 N

FIG. 3.

matrix of scattering angle (6, 6,) in momentum space. For
the direction 8; = 0, 6, = 0, the matrix

cos’n 0 0 sinycosne™#
e 0 0 0 0
0 0 0 0
singcosne” 0 0 sin’

has the eigenvalues {0,0,0, 1}. For the direction 0; # 0,
6, # 0, the matrix

For the initial polarized positron pair (BD), the final state
is pure, and the corresponding entanglement entropy has
S/(AC) = S/(BD). The particles B and D of the final state
obey the transformation 6, — 7 — 6,, and one can obtain
S7(B) = S/(D). Thus, the variation of mutual information
between subsystems B and D at leading order is

T2
AI(B7 D) =-a ]Og[a4] WfBD(Ecm: m, 77) + 0(054),

= —4log[a*] V‘;‘“ +0(a). (43)
The functions f,¢ and fpp appearing in the entanglement
entropy are plotted in Fig. 3.

If subsystems A and C are initially untangled, then the
double scattering process reduces completely into two
separate scattering processes, and the final state will be

fBD*Ecm4
015} a=b=4 a=b=1
0.10
0.05F
05 10 15 N

The a*log a* order contributions to mutual information change among scattering particles is a function of the entanglement

parameter 7 of the initial state. The left figure is for subsystem AC. The right figure is for subsystem BD.
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fin) = |fin) ;5 ® |fin).p, where no entanglement exist
among subsystems A and C or B and D. However, if
subsystems A and C are initially entangled, even though
they do not have direct interactions during the scattering
process, their entanglement still changes proportionally to
the total cross section of the double scattering process. Our
calculations show that the bipartite entanglement distrib-
utes among all pairs of subsystems after the scattering
process (AB — AB, CD — CD,).

III. MONOTONES OF SCATTERING PARTICLES

From the above calculations, for the double-scattering
process ete™ — putu~, entanglement is present among the
|

final particles. Reference [20] shows that there exist nine
families of states corresponding to nine different ways of
entangling four qubits. This classification method is based on
the calculation of the entanglement monotones of entangled
states, which can distinguish inequivalent types of genuine
four-qubit entanglement. The entanglement monotone for a
given state is zero if the state is separable, i.e., a one- or
two-qubit part exists that can be factored out. Identification of
the families of the scattering final state, can provide a way to
prepare specific genuine multiparticles entangled states.

The three entanglement monotones, named filters in
Ref. [21], are constructed with antilinear operators as
follows:

*7:(14) = (o,0,0,0y) - (6#0,0,0,) - (Uy"yaiay)’ (44)
Fi = (6,0,0,0,) - (0"0,0,0,) - (0,6°0,0) - (0,0,0,07), (43)
1
4 y p T
j_-g ) _ = (0,0,0,0,) - (6"6’c,0,) - (6,0,0.0,) - (6,0,0,0,) - (6,06,0.0,) - (6°6,075,), (46)

where ¢ = diag{—1, 1,0, 1} and Pauli matrices 6, := 1, 6| = o,, 6, = 6,, 03 := 6. Next, we calculate the entanglement

monotones of the final state.

Here we are interested in the final state of the double scattering process,

|fin) = [ini) —/ dl'[é”/ dl'[?{z Z[COSWIMAB(T’G;@ ry)Mcp (1, s s3,54)
P3#Pi [VEE

r3.r4 83,54

+ e’ SiﬂﬂMAB(i,a;73,r4)MCD(¢,b;S3,S4>]|P3,V3;P4, r4> ® |613,S3;614’S4>}7 (47)

where a and b are chosen as 1 or |, because the condition
for calculating monotones is for the pure state.

Through direct calculations, we find that for both a =
b =1 and a = b = | cases, the entanglement monotones
of this final state are zero,

(fin*|FP[fin) =0, (fin*|FSY|fin) =0,
(fin*|F\V[fin) = 0. (48)

As mentioned above, when an entangled electron pair
collides with a polarized positron beam via double-
scattering process e e~ — ptyu~, entanglement are present
among random scattering particles. However, entanglement
monotones for the final state show that the scattering final
state is not a genuine multiparticle entangled state, and that
the state of the four entangled particles is similar to the W
state. In other words, if the entanglement of two particles
(AB) in the final state is broken, other particles (AC) still
remain entangled.

IV. CONCLUSION

We studied the properties of entanglement among
scattering particles (AB — AB, CD — CD), based on
the double scattering processes ete™ — utu~, wherein
electron A is initially entangled with electron C. Using
the perturbative method, we studied the change in the
mutual information in subsystems AC, BD, and AB. The
results show that, for an initially polarized positron pair,
the change in mutual information in subsystems A and B
is proportional to the total cross section o, of double
scattering processes, rather than the cross section of one
scattering process. Particularly, the entanglement between
subsystems A and C still changes proportionally to the
total cross section, even they do not have direct inter-
actions with each other during the entire scattering
process. Our calculations show that the bipartite entan-
glement distributes among all pairs of subsystems after the
scattering process, indicating some kind of entanglement
sharing property in multipartite system. Using the four-
qubit filter operators given by Osterloh and Siewert, we
calculated the entanglement monotones of the final state
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in the double-scattering process. The results show that, for
the double-scattering process ete™ — ptu~, the scatter-
ing final state is not a genuine entangled state, and the
state of the four entangled particles resembles the W
entangled state.
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