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In this paper, we study the entanglement property of a four-particle system. In this system, two initially
entangled electrons A and C are scattered by two uncorrelated positrons B and D, respectively. We calculate
the entanglements among the particles both before and after the double QED scattering
(AB → AB;CD → CD). We find that the change of entanglement entropy between subsystems A and
B during the scattering process is proportional to the total cross section, σtot ¼ σAB × σCD. Even though
there is no direct interaction between subsystems A and C (or B and D), the scattering process induces
entanglement change among them which is also proportional to σtot. This result shows some kind of
entanglement sharing property in multipartite system. In order to further investigate the entanglement
sharing, we calculate the entanglement monotones that quantify the genuine multipartite entanglement in a
multipartite system. For our chosen scattering process, eþe− → μþμ−, however, we find that the outgoing
state is a W-type four-partite entangled state that has no genuine four-partite entanglement.

DOI: 10.1103/PhysRevD.104.116021

I. INTRODUCTION

Numerous concepts in quantum information have
received significant interest within the fundamental frame-
work of quantum field theory, including entanglement
entropy, error-correcting code, and complexity [1–3].
These issues provide some insight into the structure of
interacting quantum field theories and spacetime geometry.
The physics of the scattering process plays a crucial role

in various physical experiments and theories that probe the
behavior of elementary particles. Nevertheless, previous
theoretical investigations often focus on classical observ-
ables, such as the cross section and decay rate, as they are
directly related to experiments. However, these classical
properties cannot reveal all the information in the scattering
process. For example, some soft particles can be produced
during the scattering process, which is not captured by
classical observables, implying that some information is
lost in scattering events. In the framework of quantum
mechanics, entanglements between different degrees of
freedom are generated in a scattering event, which provide
us with a route to those with more detailed information.

Furthermore, the entanglement entropy of scattering par-
ticles between high- and low-energy degrees of freedom in
momentum space could also provide some deep insights
into the scattering process [4]. Balasubramanian [5] studied
entanglement entropy of two divided momentum spaces
with the perturbative calculations method, and this method
was then followed by Refs. [6–12] for the study of the
entanglement in the 2-2 particles scattering process in a
weakly coupled field theory. They found that the entangle-
ment entropy changes during the scattering process; this
variation in entanglement entropy from the initial to final
state is proportional to the cross section. For a three-partite
system, Sampaio et al. [13] considered a QED scattering
(AB → AB), wherein B is initially entangled with a third
particle C that does not directly participate in the scattering
process. They found that the spin expectation value hσzi of
particle C does not change, but hσxi and hσyi are propor-
tional to the total cross section of the AB scattering.
For a multiparticle system, the entanglement behavior of

entangled states cannot be completely described by the
entanglement entropy or mutual information. For example,
the GHZ state ðj000i þ j111iÞ= ffiffiffi

2
p

and W state ðj001i þ
j010i þ j100iÞ= ffiffiffi

3
p

are both entangled three-qubit state.
When one party is traced out, the W state still exhibits
two-partite entanglement, whereas the GHZ state does not
exhibit any two-partite entanglement. In other words,
they belong to different classes of three-qubit entangled
states. For the pure states of bipartite systems, Bennett et al.
[14] first discovered that partial entropy is a measure
of entanglement for a given pure multipartite state.
Subsequently, Wotters et al. [15,16] evaluated three-partite
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pure states by exploiting the knowledge of mixed-state
concurrence. Furthermore, Osterloh and Siewert [17] stud-
ied the entanglement monotones constructed with an anti-
linear operator filter, which can distinguish inequivalent
classes of states with multipartite entanglement. Generally,
the classification of entangled states is based on the
applications of quantum information theory, rather than
on specific mathematical forms. Two quantum states can
complete the same quantum information task in a com-
pletely equivalent way, if they can be converted into each
other under stochastic local operations and classical com-
munication (SLOCC). As a result, the genuine multipartite
entanglement in a multipartite system can be described and
quantified by entanglement monotones under SLOCC.
Accordingly, inequivalent classes of entangled states pos-
sess different entanglement monotones, and the entangled
states with larger monotones can be transformed into
entangled states with smaller monotones under SLOCC,
but not vice versa.
In this paper, we study the properties of entanglement

among scattering particles (AB → AB, CD → CD), based
on the double-scattering process eþe− → μþμ−, wherein
electrons A and C were initially entangled while positrons
B and D were uncorrelated. This paper is organized as
follows. In Sec. II, the variation of entanglement entropy
between all two particles in the final state is calculated. In
Sec. III, the entanglement monotones and classes of the
final state are analyzed. Section IV presents the conclusions
and final remarks.

II. PARTICLES ENTANGLEMENT OF DOUBLE
SCATTERING PROCESS

For an elastic scattering process of two fermions in two-
particle Fock space, incoming and outgoing particle states
can be described as

jp; s; q; ri ¼ ffiffiffiffiffiffiffiffi
2Ep

p
asp†j0iA ⊗

ffiffiffiffiffiffiffiffi
2Eq

p
brq†j0iB; ð1Þ

where p and q are the 3-momenta of particles, and s, r
denote the spin of particles. The fermionic creation/anni-
hilation operators obey the anticommutation relations,

fasp; ark†g ¼ ð2πÞ3δð3Þðp − kÞδsr;
fbnq; bml †g ¼ ð2πÞ3δð3Þðq − lÞδnm: ð2Þ

Then the inner product between two-particle states is
defined as

hk; s0; l; r0jp; s;q; ri ¼ 2Ek2Elð2πÞ3δð3Þðk − pÞð2πÞ3
× δð3Þðl − qÞδss0δrr0 : ð3Þ

For a scattering process, the final state is determined by
the initial state and the S matrix [6],

jfini ¼
Z

d3p3

ð2πÞ32Ep3

Z
d3p4

ð2πÞ32Ep4

X
r;s

jp3; r;p4; si

× hp3; r;p4; sjSjinii: ð4Þ

The T matrix is defined as

iT ¼S−1;

hp3;r3;p4;r4jiT jp1;r1;p2;r2i
¼ð2πÞ4δð4Þðp1þp2−p3−p4Þ× iMðr1;r2;r3;r4Þ; ð5Þ

where shorthand notation Mðr1; r2; r3; r4Þ is the invariant
matrix element in a scattering process.
These concepts can be extended to a double scattering

process, shown in the left of Fig. 1, HAB∶ AB → AB
and HCD∶ CD → CD, whose total Hilbert space is
Htot ¼ HAB ⊗ HCD. The concrete double scattering proc-
ess we consider here is shown in the right of Fig. 1, where a
pair of initially entangled electrons (AC) collided with a
pair of positrons (BD). Based on an exemplary QED
process e−eþ → μþμ−, in the initial state, the subsystems
A, C correspond to two electrons e−, and the subsystems B,
D two positrons eþ. In the final state, the subsystems A, C
correspond to two muons μ−, and the subsystems B, D two
antimuons μþ. We will study the behavior of entanglement
in this four-particle system (ABCD) before and after double
scattering.

FIG. 1. Left: schematic illustration of the double scattering process. Right: the concrete scattering process based on two exemplary
QED processes, eþe− → μþμ−, is considered in this paper. The process is shown in the center of mass frame.
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The initial state is chosen as follows:

jinii ¼ jp2; ai ⊗ ðcos ηjp1;↑; q1;↑i þ sin ηeiβjp1;↓; q1;↓iÞ ⊗ jq2; bi; ð6Þ

where η ∈ ½0; π=2� and β ∈ ½−π=2; 3π=2� parametrizes the entanglement of the state.
The final state is given by

jfini ¼ jinii −
Z
p3≠p1

dΠp3

2

Z
q3≠q1

dΠq3
2

�X
r3;r4

X
s3;s4

½cos ηMABð↑; a; r3; r4ÞMCDð↑; b; s3; s4Þ

þ eiβ sin ηMABð↓; a; r3; r4ÞMCDð↓; b; s3; s4Þ�jp3; rL;p4; sLi ⊗ jq3; rR; q4; sRi
�
; ð7Þ

where
R
dΠp3

2 ≡R d3p3

ð2πÞ32Ep3

R d3p4

ð2πÞ32Ep4
ð2πÞ4δð4Þðp1þp2−p3−p4Þ.

Our main task is to analyze the entanglement distribution
in this state. In this section, we focus on the bipartite
entanglement between any two scattering particles. The
bipartite entanglement is measured by the mutual informa-
tion. For example,

IðA;CÞ ¼ SðAÞ þ SðCÞ − SðACÞ; ð8Þ

where SðAÞ, SðCÞ, and SðACÞ are the von Neumann
entropy of subsystems A, C, and AC.
To obtain an explicit formula, we choose to evaluate

entanglement entropy in the center of mass frame, as shown
in Fig. 1. The mass of electron is ignorable, 4-momentum
of scattering particles can be written as

p1 ¼ ð0; 0;−E;EÞ; p2 ¼ ð0; 0; E; EÞ;
p3 ¼

�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
sin θ1; 0;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
cos θ1; E

�
;

p4 ¼
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

E2 −m2
p

sin θ1; 0;
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
cos θ1; E

�
;

q1 ¼ ð0; 0; E; EÞ; q2 ¼ ð0; 0;−E;EÞ;
q3 ¼

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
sin θ2; 0;

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
cos θ2; E

�
;

q4 ¼
�
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
sin θ2; 0;−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p
cos θ2; E

�
; ð9Þ

At the lowest order, the scattering amplitude of process
eþe− → μþμ− is

Mðr1; r2; r3; r4Þ≡Mðp1; r1;p2; r2 → p3; r3;p4; r4Þ
¼ 4παūðp3; r3Þ½iγμ�νðp4; r4Þ
×

gμν
ðp1 þ p2Þ2

ν̄ðp2; r2Þ½iγν�uðp1; r1Þ;

where α ¼ e2=4π is the fine-structure constant, and mode
functions uðp; hÞ and vðp; hÞ are chosen as helicity spinor
in Ref. [18], which helicity h ¼ ð1=2;−1=2Þ denoted
ð↑;↓Þ. In the following calculations, the initial positron
pair is chosen to be in the polarized state a ¼ b ¼↑.

A. Subsystem AB

For a general (AB → AB) scattering process, it is found
that the interaction will lead to the change of entanglement
between the scattered particles and the change is propor-
tional to the scattering cross section [6,9]. In the following,
we will calculate the change of bipartite entanglement
between the particles during our double scattering process
(AB → AB, CD → CD). Obviously, for the given initial
state (6), initial mutual information between subsystems A
and B is zero. To get the mutual information between A and
B for the final state, we will first determine the reduced
density matrices, ρfAB; ρ

f
A; ρ

f
B, then calculate their entropies,

SfAB; S
f
A; S

f
B, which will lead us to their mutual information.

By tracing out subsystem CD, we obtain the reduced
density matrix of the subsystem AB,

ρfAB ¼ 1

N
ðIAB þ IIABÞ: ð10Þ

The first term is

IAB ¼ 2Ep1
2Ep2

2Eq12Eq2V
4

×

�
cos½η�2 jp1;↑;p2; aihp1;↑;p2; aj

2Ep1
2Ep2

V2

þ sin½η�2 jp1;↓;p2; aihp1;↓;p2; aj
2Ep1

2Ep2
V2

�
; ð11Þ

The second term is

IIAB ¼ α4V42Eq12Eq22Ep1
2Ep2

T
R
p3≠p1

dΠp3

2

2Ep1
2Ep2

V

×

�X
r3;r03

X
r4;r04

ΛABðr3; r03; r4; r04Þ

×
jp3; r3;p4; r4ihp3; r03;p4; r04j

2Ep3
2Ep4

V2

�
; ð12Þ
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whereN is the normalization factor fixed by trAB½ρfAB� ¼ 1.
In performing partial traces, one finds Dirac deltas as
ð2πÞδðTÞð0Þ and ð2πÞδð3Þð0Þ, which come from background
spacetime. The setting of the entire scattering process is
designated to occur in a large spacetime volume of duration
T and spatial volume V; these factors are artifacts caused by
regulating delta functions Ref. [19],

δ3Vðp−p0Þ¼ V
ð2πÞ3δp;p0 ;

δTðEifÞ≡δTðEfin−EiniÞ¼
1

2π

Z
T=2

−T=2
dteiðEfin−EiniÞt; ð13Þ

which implies V ¼ ð2πÞ3δð3ÞV ð0Þ and T ¼ ð2πÞδTð0Þ,
respectively.
To simplify the expressions, we choose some shorthand

notations,

Apð↓;↑; r3; r4; r03; r04Þ

≡ 1

α2
MABð↓; a; r3; r4ÞM⋆

ABð↑; a; r03; r04Þ; ð14Þ

Aqð↓;↑; s3; s4; s03; s04Þ

≡ 1

α2
MCDð↓; b; s3; s4ÞM⋆

CDð↑; b; s03; s04Þ; ð15Þ

AðqÞð↑;↑Þ

¼ T
R
q3≠q1

dΠq3
2

V2Eq12Eq2

X
s3;s4

Aqð↑;↑; s3; s4; s3; s4Þ; ð16Þ

ΛðABÞðr3; r4;r03; r04Þ
¼ cos2 ηApð↑;↑;r3; s4;r03; r04ÞAðqÞð↑;↑Þ
þ sin2 ηApð↓;↓;r3; r4;r03; r04ÞAðqÞð↓;↓Þ
þ cosηsinηe−iβApð↑;↓;r3; r4;r03; r04ÞAðqÞð↑;↓Þ
þ cosηsinηeiβApð↓;↑;r3; r4;r03; r04ÞAðqÞð↓;↑Þ; ð17Þ

Λ ¼ T
R
p3≠p1

dΠp3

2

V2Ep1
2Ep2

X
r3;r4

ΛðABÞðr3; r4; r3; r4Þ: ð18Þ

Then the normalization is given by

N ¼ 2Ep1
2Ep2

2Eq12Eq2V
4ð1þ α4ΛÞ: ð19Þ

For the weak coupling theory, the reduced density matrix
for subsystem AB at order α4 can be written as

ρðfÞAB ¼ diagðð1 − α4ΛÞI ðABÞ;…; α4ΛðABÞ
θ1

;…Þ; ð20Þ
where the elements of this diagonal matrix correspond to
jp1;r1;p2;r2ihp1;r01;p2;r02j

2Ep1
2Ep2

V2 ;…; jp3;r3;p4;r4ihp3;r03;p4;r04j
2Ep3

2Ep4
V2 , the density

matrix of a particular scattering angle θ1 in momentum
space. For the unscattered direction θ1 ¼ 0, the matrix

I ðABÞ ¼

0
BBB@

cos½η�2 0 0 0

0 0 0 0

0 0 sin½η�2 0

0 0 0 0

1
CCCA;

has the eigenvalues fcos½η�2; cos½η�2; 0; 0g. And for the
scattered direction fθ1 ≠ 0; θ2 ≠ 0g, the matrix

ΛðABÞ
θ1

¼ 1

128π2E2V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

E2

r
0
BBBBB@

ΛðABÞð↑↑;↑↑Þ ΛðABÞð↑↑;↑↓Þ ΛðABÞð↑↑;↓↑Þ ΛðABÞð↑↑;↓↓Þ
ΛðABÞð↑↓;↑↑Þ ΛðABÞð↑↓;↑↓Þ ΛðABÞð↑↓;↓↑Þ ΛðABÞð↑↓;↓↓Þ
ΛðABÞð↓↑;↑↑Þ ΛðABÞð↓↑;↑↓Þ ΛðABÞð↓↑;↓↑Þ ΛðABÞð↓↑;↓↓Þ
ΛðABÞð↓↓;↑↑Þ ΛðABÞð↓↓;↑↓Þ ΛðABÞð↓↓;↓↑Þ ΛðABÞð↓↓;↓↓Þ

1
CCCCCA; ð21Þ

has the eigenvalues fRAB
i ¼ 1

128π2E2V

ffiffiffiffiffiffiffiffiffiffi
E2−m2

E2

q
aABi ;

i ¼ 1;…; 4g.
Then the entanglement entropy between subsystems AB

and CD in the final state is

SfAB ¼ −ðcos½η�2 log½cos½η�2� þ sin½η�2 log½sin½η�2Þ

−
X
i

Z
dΩ1ðα4RAB

i log½α4RAB
i �Þ

þ α4Λð1þ cos½η�2 log½cos½η�2� þ sin½η�2 log½sin½η�2�Þ
þOðα8Þ: ð22Þ

From density matrix ρAB we can obtain reduced
density matrix ρA and ρB. By tracing out the subsystem
B, ρfA ¼ TrB½ρfAB�, the density matrix ρA at α4 can be
written as

ρfA ¼ diagðð1 − α4ΛÞI ðAÞ;…; α4ΛðAÞ
θ1

;…Þ; ð23Þ

where the elements of this matrix correspond to
jp1;r1ihp1;r01j

2Ep1
V ;…; jp3;r3ihp3;r03j

2Ep3
V . For the direction θ1 ¼ 0, the

matrix
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I ðAÞ ¼
	
cos2 η 0

0 sin2 η



;

has the eigenvalues fcos½η�2; sin½η�2g. For the direction
θ1 ≠ 0, the matrix

ΛðAÞ
θ1

¼ T
128π2E2V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2−m2

p

E2

	
ΛðAÞð↑↑Þ ΛðAÞð↑↓Þ
ΛðAÞð↓↑Þ ΛðAÞð↓↓Þ



;

ΛðAÞðr3;r03Þ¼
X
r4

ΛðABÞðr3;r4;r03;r4Þ; ð24Þ

has the eigenvalues fRA
i ; i ¼ 1; 2g. The corresponding

entanglement entropy for subsystem A is

SfðAÞ ¼−ðcos½η�2 log½cos½η�2�þ sin½η�2 log½sin½η�2�Þ

−
X
i¼1

Z
dΩ1ðα4RA

i log½α4RA
i �Þ

þα4Λð1þ cos½η�2 log½cos½η�2�þ sin½η�2 log½sin½η�2�Þ
þOðα8Þ: ð25Þ

By tracing out the subsystem A, trA½ρfAB�, the density
matrix ρB at α4 can be written as

ρfB ¼ diagðð1 − α4ΛÞI ðBÞ;…; α4ΛðBÞ
θ1

;…Þ; ð26Þ

where the elements of this matrix correspond
jp2;r2ihp2;r02j

2Ep2
V2 ;…; jp4;r4ihp4;r04j

2Ep4
V2 . And the matrices

I ðBÞ ¼
	
1 0

0 0



;

ΛðBÞ
θ1

¼ T
128π2E2V

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
E2 −m2

p

E2

 
ΛðBÞ
↑↑ ΛðBÞ

↑↓

ΛðBÞ
↓↑ ΛðBÞ

↓↓

!
;

ΛðBÞðr4; r04Þ ¼
X
r3

ΛðABÞðr3; r4; r3; r04Þ; ð27Þ

have the eigenvalues f1; 0g and fRB
i ; i ¼ 1; 2g, respec-

tively. The corresponding entanglement entropy of
subsystem B is

SfðBÞ ¼ −α4Λ −
X2
i¼1

Z
dΩ1ðα4RB

i log½α4RB
i �Þ

þOðα8Þ: ð28Þ

Thus, we obtain the variation of mutual information
between subsystem A and B during the double scattering
processes at leading order α4 log α4,

△IðA;BÞ¼SfðAÞþSfðBÞ−SfðABÞ−IiðA;BÞ;

¼−α4 log½α4�
Z

dΩ1

	X2
i¼1

RA
i þ
X2
j¼1

RB
j −
X4
k¼1

RAB
k




þOðα4Þ; ð29Þ

where
P

2
i¼1 R

A
i ,
P

2
i¼1 R

B
i and

P
4
i¼1 R

AB
i are the ranks of

matrices (24), (27), and (21), respectively.
For the chosen initial state, jinii¼jp2;ai⊗

ðcosηjp1;↑;q1;↑iþsinηeiβjp1;↓;q1;↓iÞ⊗ jq2;bi, the total
cross section at the lowest α4 for the double scattering
eþe− → μþμ− is

σjinii ¼ σAB × σCD

¼
(
α4 ðE2−m2Þð2E2þm2Þ2π2

9E10π2
sin½η�2; a ¼ b ¼↑

α4 ðE2−m2Þð2E2þm2Þ2π2
9E10π2

cos½η�2; a ¼ b ¼ ↓
: ð30Þ

Finally, for the initial polarized system BD, detailed
calculations show that the variation of mutual information
between subsystems A and B at leading order is

△IðA;BÞ ¼ −α4 log½α4� T
2

V2
fABðEcm;m; ηÞ þOðα4Þ;

¼ −4 log½α4�T
2σjinii
V2

þOðα4Þ; ð31Þ

where Ecm ¼ 4E stands for the total energy in a four-
particle system. The functions fAB appearing in the mutual
information is plotted in Fig. 2. Obviously, it is propor-
tional to the scattering cross section σjinii.
Equation (31) and Fig. 2 show that the change of

entanglement between subsystems A and B during the
double scattering process is proportional to the total cross
section σAB × σCD rather than σAB alone. Therefore, the
scattering process (CD → CD) affects the entanglement
between A and B, given the initial entanglement between
subsystems A and C. This illustrates the global sharing
property of entanglement in a multipartite system.
In fact, the function fAB is related to the quantity Λ in a

normalization factor (19) as

fAB ¼ V2

T2
Λ ¼ 4

α4
σjinii: ð32Þ

As shown in Ref. [13], if the subsystems A and B
experience other QED processes, like Bhabha scattering
e−eþ → e−eþ, Møller scattering e−e− → e−e−, and a
process e−μ− → e−μ−, the cross section is diverging
because of collinearity. Then the factor Λ → ∞ and
function fAB will also diverge. For elimination of diver-
gence, the contributions of soft photon scattering should be
included. However, when soft photons are included, the
four-particle final state will become a mixed state after
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tracing out these soft photons, which leads to difficulty in
calculations.
As a compromise, we may consider the change of

entanglement entropy along a particular scattering angle
θ1 in momentum space,

△Iθ1ðA;BÞ ¼ Sfθ1ðAÞ þ Sfθ1ðBÞ − Sfθ1ðABÞ;

¼ −α4 log½α4�
	X2

i¼1

RA
i þ

X2
j¼1

RC
j −

X4
k¼1

RAC
k




þOðα4Þ;

¼ −4 log½α4� T
2

V2

dσtot
dΩ1

þOðα4Þ; ð33Þ

where dσtot=dΩ1 is the differential cross section for
the scattering rate into an element of solid angle
dΩ1 ¼ dðcos θ1Þdϕ. Since the change of entanglement
entropy is proportional to the differential cross section, it
is reasonable to expect that, for other QED scattering

process, the change of entanglement entropy is also
proportional to the total cross section.

B. Subsystems AC and BD

During the double scattering process, subsystems A
and C (also B and D) have no direct interactions, but as
we will show in this section their entanglement or mutual
information also change. Their initial mutual information
can be easily calculated with the initial state (6),
where IiðACÞ ¼ −2½cos2 η ln½cos2 η� þ sin2 η ln½sin2 η��.
By tracing out the subsystem BD of the final state (7),

ρfAC ¼ 1
N TrðBDÞ½ρf�, we obtain the reduced density matrix

of the subsystem AC,

ρfAC ¼ 1

N
ðIAC þ IIACÞ: ð34Þ

The first term is

IAC ¼ 2Ep1
2Ep2

2Eq12Eq2V
4

�
cos2η

jp1;↑; q1;↑ihp1;↑; q1;↑ j
2Ep1

2Eq1V
2

þ sin2η
jp1;↓; q1;↓ihp1;↓; q1;↓j

2Ep1
2Eq1V

2

þ sin η cos ηe−iβ
jp1;↑; q1;↑ihp1;↓; q1;↓j

2Ep1
2Eq1V

2
þ sin η cos ηeiβ

jp1;↓; q1;↓ihp1;↑; q1;↑ j
2Ep1

2Eq1V
2

�
: ð35Þ

The second term is

IIAC ¼ α4T2V2

Z
p3≠p1

dΠp3

2

Z
q3≠p1

dΠq3
2

�X
r3;r03

X
s3;s03

ΛðACÞðr3; s3; r03; s03Þ
jp3; r3; q3; s3ihp3; r03; q3; s

0
3j

2Ep3
2Eq3V

2

�
: ð36Þ

Choosing a shorthand notation,

ΛðACÞðr3; s3; r03; s03Þ ¼
X
r4;s4

cos2ηApð↑;↑; r3; r4; r03; r4ÞAqð↑;↑; s3; s4; s03; s4Þ

þ sin2ηApð↓;↓; r3; r4; r03; r4LÞAqð↓;↓; s3; s4; s03; s4Þ
þ cos η sin ηe−iβApð↑;↓; r3; r4; r03; r4ÞAqð↑;↓; s3; s4; s03; s4Þ
þ cos η sin ηeiβApð↓;↑; r3; r4; r03; r4ÞAqð↓;↑; s3; s4; s03; s4Þ; ð37Þ

FIG. 2. The α4 log α4 order contributions to variation of mutual information IðA; BÞ and the total cross section σjinii as a function of the
entanglement parameter η of the initial state.
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It can be easily shown that the factor Λ in Eq. (18) satisfies

Λ ¼ T
R
p3≠p1

dΠp3

2

V2Ep1
2Ep2

T
R
q3≠q1 dΠ

q3
2

V2Eq12Eq2

X
r3;s3

ΛðACÞðr3; s3; r3; s3Þ:

ð38Þ
The reduced density matrix for subsystem AC at order α4

can be written as

ρðfÞAC ¼ diagðð1 − α4ΛÞI ðACÞ;…; α4ΛðACÞ
θ1;θ2

;…Þ; ð39Þ
where the elements of this matrix correspond to
jp1;r1;q1;s1ihp1;r01;q1;s

0
1
j

2Ep1
2Eq1

V2 ;…; jp3;r3;q3;s3ihp3;r03;q3;s
0
3
j

2Ep3
2Eq3

V2 ; � � �, the density

matrix of scattering angle ðθ1; θ2Þ in momentum space. For
the direction θ1 ¼ 0, θ2 ¼ 0, the matrix

I ðACÞ ¼

0
BBB@

cos2 η 0 0 sin η cos ηe−iβ

0 0 0 0

0 0 0 0

sin η cos ηeiβ 0 0 sin2 η

1
CCCA

has the eigenvalues f0; 0; 0; 1g. For the direction θ1 ≠ 0,
θ2 ≠ 0, the matrix

ΛðACÞ
θ1;θ2

¼
	

T
128π2E2V



2
	
E2 −m2

E2



0
BBBBB@

ΛðACÞð↑↑;↑↑Þ ΛðACÞð↑↑;↑↓Þ ΛðACÞð↑↑;↓↑Þ ΛðACÞð↑↑;↓↓Þ
ΛðACÞð↑↓;↑↑Þ ΛðACÞð↑↓;↑↓Þ ΛðACÞð↑↓;↓↑Þ ΛðACÞð↑↓;↓↓Þ
ΛðACÞð↓↑;↑↑Þ ΛðACÞð↓↑;↑↓Þ ΛðACÞð↓↑;↓↑Þ ΛðACÞð↓↑;↓↓Þ
ΛðACÞð↓↓;↑↑Þ ΛðACÞð↓↓;↑↓Þ ΛðACÞð↓↓;↓↑Þ ΛðACÞð↓↓;↓↓Þ

1
CCCCCA; ð40Þ

has the eigenvalues fRAC
i ¼ ð T

128π2E2VÞ2ðE
2−m2

E2 ÞaACi ;
i ¼ 1…4g. The corresponding entanglement entropy of
subsystem AC is

SfAC ¼ α4Λ −
X
i

Z
dΩ1

Z
dΩ2ðα4RAC

i log½α4RAC
i �Þ

þOðα8Þ: ð41Þ
Based on the symmetry of the system (ABCD), we have
SðAÞ ¼ SðCÞ. Thus, we obtain the variation of mutual
information between subsystems A and C at leading order,

△IðA;CÞ ¼ −α4 log½α4� T
2

V2
fACðEcm;m; ηÞ þOðα4Þ;

¼ −4 log½α4�T
2σjinii
V2

þOðα4Þ: ð42Þ

For the initial polarized positron pair (BD), the final state
is pure, and the corresponding entanglement entropy has
SfðACÞ ¼ SfðBDÞ. The particles B and D of the final state
obey the transformation θ1 → π − θ2, and one can obtain
SfðBÞ ¼ SfðDÞ. Thus, the variation of mutual information
between subsystems B and D at leading order is

△IðB;DÞ ¼ −α4 log½α4� T
2

V2
fBDðEcm;m; ηÞ þOðα4Þ;

¼ −4 log½α4�T
2σjinii
V2

þOðα4Þ: ð43Þ

The functions fAC and fBD appearing in the entanglement
entropy are plotted in Fig. 3.
If subsystems A and C are initially untangled, then the

double scattering process reduces completely into two
separate scattering processes, and the final state will be

FIG. 3. The α4 log α4 order contributions to mutual information change among scattering particles is a function of the entanglement
parameter η of the initial state. The left figure is for subsystem AC. The right figure is for subsystem BD.
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jfini ¼ jfiniAB ⊗ jfiniCD, where no entanglement exist
among subsystems A and C or B and D. However, if
subsystems A and C are initially entangled, even though
they do not have direct interactions during the scattering
process, their entanglement still changes proportionally to
the total cross section of the double scattering process. Our
calculations show that the bipartite entanglement distrib-
utes among all pairs of subsystems after the scattering
process (AB → AB, CD → CD).

III. MONOTONES OF SCATTERING PARTICLES

From the above calculations, for the double-scattering
process eþe− → μþμ−, entanglement is present among the

final particles. Reference [20] shows that there exist nine
families of states corresponding to nine different ways of
entangling four qubits. This classificationmethod is based on
the calculation of the entanglement monotones of entangled
states, which can distinguish inequivalent types of genuine
four-qubit entanglement. The entanglement monotone for a
given state is zero if the state is separable, i.e., a one- or
two-qubit part exists that can be factoredout. Identificationof
the families of the scattering final state, can provide a way to
prepare specific genuine multiparticles entangled states.
The three entanglement monotones, named filters in

Ref. [21], are constructed with antilinear operators as
follows:

F ð4Þ
1 ¼ ðσμσνσyσyÞ · ðσμσyσλσyÞ · ðσyσνσλσyÞ; ð44Þ

F ð4Þ
2 ¼ ðσμσνσyσyÞ · ðσμσyσλσyÞ · ðσyσνσyστÞ · ðσyσyσλστÞ; ð45Þ

F ð4Þ
3 ¼ 1

2
ðσμσνσyσyÞ · ðσμσνσyσyÞ · ðσρσyστσyÞ · ðσρσyστσyÞ · ðσyσρστσyÞ · ðσρσyστσyÞ; ð46Þ

where gμν ¼ diagf−1; 1; 0; 1g and Pauli matrices σ0 ≔ 1, σ1 ≔ σx, σ2 ¼ σy, σ3 ≔ σz. Next, we calculate the entanglement
monotones of the final state.
Here we are interested in the final state of the double scattering process,

jfini ¼ jinii −
Z
p3≠p1

dΠp3

2

Z
q3≠q1

dΠq3
2

�X
r3;r4

X
s3;s4

½cos ηMABð↑; a; r3; r4ÞMCDð↑; b; s3; s4Þ

þ eiβ sin ηMABð↓; a; r3; r4ÞMCDð↓; b; s3; s4Þ�jp3; r3;p4; r4i ⊗ jq3; s3; q4; s4i
�
; ð47Þ

where a and b are chosen as ↑ or ↓, because the condition
for calculating monotones is for the pure state.
Through direct calculations, we find that for both a ¼

b ¼↑ and a ¼ b ¼ ↓ cases, the entanglement monotones
of this final state are zero,

hfin⋆jF ð4Þ
1 jfini ¼ 0; hfin⋆jF ð4Þ

2 jfini ¼ 0;

hfin⋆jF ð4Þ
3 jfini ¼ 0: ð48Þ

As mentioned above, when an entangled electron pair
collides with a polarized positron beam via double-
scattering process eþe− → μþμ−, entanglement are present
among random scattering particles. However, entanglement
monotones for the final state show that the scattering final
state is not a genuine multiparticle entangled state, and that
the state of the four entangled particles is similar to the W
state. In other words, if the entanglement of two particles
(AB) in the final state is broken, other particles (AC) still
remain entangled.

IV. CONCLUSION

We studied the properties of entanglement among
scattering particles (AB → AB, CD → CD), based on
the double scattering processes eþe− → μþμ−, wherein
electron A is initially entangled with electron C. Using
the perturbative method, we studied the change in the
mutual information in subsystems AC, BD, and AB. The
results show that, for an initially polarized positron pair,
the change in mutual information in subsystems A and B
is proportional to the total cross section σtot of double
scattering processes, rather than the cross section of one
scattering process. Particularly, the entanglement between
subsystems A and C still changes proportionally to the
total cross section, even they do not have direct inter-
actions with each other during the entire scattering
process. Our calculations show that the bipartite entan-
glement distributes among all pairs of subsystems after the
scattering process, indicating some kind of entanglement
sharing property in multipartite system. Using the four-
qubit filter operators given by Osterloh and Siewert, we
calculated the entanglement monotones of the final state
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in the double-scattering process. The results show that, for
the double-scattering process eþe− → μþμ−, the scatter-
ing final state is not a genuine entangled state, and the
state of the four entangled particles resembles the W
entangled state.
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