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We analyze the quasi-two-body charmed B decays Bþ;0
ðsÞ → D�

ðsÞP2 → DðsÞP1P2 with P1;2 as a pion or
kaon. The intermediate processes BðsÞ → D�

ðsÞP2 are calculated with the factorization-assisted topological-

amplitude approach, and the resonant effects are calculated with the Breit-Wigner formalism. Taking all
P-wave resonance states D̄�

ðsÞ into consideration, we present the related branching fractions, calculate the

Breit-Wigner-tail effects, and investigate the flavor SUð3Þ breaking effects. Most of our branching fractions
are consistent with the perturbative QCD approach’s predictions as well as the current experimental data.
With more precision calculation of the intermediate two-body charmed B-meson decays, our quasi-two-
body B decays calculation has significantly less theoretical uncertainty than the perturbative QCD
approach. Many of those channels without any experimental data will be confronted with the future more
accurate experiment measurements. Our results of the Breit-Wigner-tail effects also agree with the
experimental data very well. In B0 decays, this effect can reach approximately to 5%. It is also found that
the Breit-Wigner tail effects are not sensitive to the widths of their corresponding resonances.

DOI: 10.1103/PhysRevD.104.116012

I. INTRODUCTION

B-meson nonleptonic decays are very important for the
study of many frontier topics, such as the mechanism of CP
violation and the emergence of quantum chromodynamics.
The three-body hadronic decays of B mesons, with many
kinds of intermediate states parametrized by the sequential
two-body decays, provide opportunities for the study of
these common topics and of the hadron spectroscopy. So
far, plenty of data on the three-body hadronic B-meson
decays have been collected by BABAR, Belle, and LHCb
experiments using the Dalitz plot technique, which induced
a lot of theoretical studies.
On the theoretical side, contrary to two-body B decays,

which have been analyzed extensively in the past two
decades within the frameworks of the factorization
approach, QCD factorization approach [1], perturbative

QCD (PQCD) [2], soft collinear effective theory [3], and
some model-independent approaches such as the factori-
zation-assisted topological-amplitude (FAT) approach [4],
three-body B decays are more complicated. On one hand,
the three-body decays receive both resonant and nonreso-
nant contributions; on the other hand, factorization of these
decays has not been completely proven. Some theoretical
models aimed to calculate the nonresonant effects of some
three-body B decays are in development, such as the heavy
meson chiral perturbation theory [5–7], a model combing
the heavy quark effective theory and chiral Lagrangian [8],
and the perturbative QCD approach by introducing dime-
son distribution amplitudes [9]. The three-body B-meson
decays are usually dominated by intermediate resonances.
They proceed formally as quasi-two-body decays with an
intermediate sate of a vector or scalar resonance and a
“bachelor” meson. The quasi-two-body framework is
employed by the PQCD approach [9–16] and some
phenomenological analysis based on factorization [5–7].
Some three-body B decays are also analyzed by the QCD
factorization approach [17–19] and implemented within the
U-spin, isospin, and flavor SUð3Þ symmetries (see also
Refs. [20–25]).
In this work, we concentrate on three-body charmed B

decays BðsÞ → DðsÞP1P2, where P1;2 is a pion or kaon, via
quasi-two-body decays BðsÞ→D�

ðsÞP2→DðsÞP1P2 with P1
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stemming from the decay of the resonance and P2 repre-
senting a bachelor light meson. The Belle, BABAR, and
LHCb Collaborations have achieved brilliant progress in
identifying the excited charmed states and also found that
their off-shell effects are indispensable [26–32]. The off-
shell effect, also called the Breit-Wigner tail (BWT) effect,
is the contribution when the pole mass of D�

ðsÞ is smaller

than the invariant mass of DðsÞP1 or, in the other case, the
contribution with the on-shell effect excluded by a cut on
the invariant mass of DðsÞP1. Recently, motivated by the
experimental measurements on the off-shell effects of the
D� meson in B → DππðKÞ decays, theoretical attention has
been paid to these virtual effects [14,33]. A new systematic
research on the three-body charmed B-meson decays
includingD�

ðsÞ resonant states have been done subsequently
in the PQCD approach [16]. About 5% off-shell contribu-
tions of D� resonances and tiny contributions (<1%) from
D�

s resonances are found.
The theoretical uncertainty of the two-step process of

BðsÞ→D�
ðsÞP2→DðsÞP1P2 is dominated by the uncertainty

from two-body nonleptonic B decays BðsÞ → D�
ðsÞP. Large

nonfactorizable contribution has been found in the factori-
zation approach [34–36] and the PQCD approach [37,38].
Since the charm quark mass scale is also involved in these
decays in addition to the b quark mass scale, the power
corrections mc=mb of these decays are very difficult to
calculate. In a previous work [39], two of us (S.-H. Z. and
C.-D. L.), with other colleagues, utilize the framework of
conventional topological diagram approach to group the
decay amplitudes by different electroweak Feynman dia-
grams [40]. A global fit with all experimental data of these
decays to extract the topological amplitudes including the
nonfactorizable QCD contributions as well as the SUð3Þ
breaking effects is performed. This so-called FAT approach
[4,39,41–44] gives the most precise decay amplitudes of
the two-body B-meson decays with charmed meson final
states. For example, the amplitudes of the color-suppressed
topological diagram (C) of Fig. 1(b), dominated by the
nonfactorizable QCD effect, is larger in the FAT approach

than that in other approaches. In this paper, we apply the
FAT approach to quasi-two-body B-meson decays, which
will significantly reduce the theoretical uncertainty. The
Breit-Wigner formalism is used to describe the resonance,
and a strong coupling accounts for the subsequent
decay D�

ðsÞ → DðsÞP1.
This paper is organized as follows. In Sec. II, the

theoretical framework is introduced. The numerical results
and discussions are collected in Sec. III. Section IV is a
summary.

II. FACTORIZATION OF AMPLITUDES FOR
TOPOLOGICAL DIAGRAMS

Under the framework of quasi-two-body decay, the
BðsÞ → DðsÞP1P2 decay is divided into two stages. BðsÞ-
meson decays to D�

ðsÞP2 first, and D�
ðsÞ decays to DðsÞP1

subsequently. The first decay BðsÞ → D�
ðsÞP2 is a weak

decay induced by b → cqūðq ¼ d; sÞ at quark level, and
secondary decay D�

ðsÞ → DðsÞP1 proceeds via strong inter-
action. In Fig. 1, we list the topological diagrams of these
decays under the framework of quasi-two-body decay,
including (a) the color-favored tree emission diagram T,
(b) color-suppressed tree emission diagram C, and
(c) W-exchange diagram E, which are specified by topo-
logical structures of the weak interaction. We will not
consider processes induced by b → uqūðq ¼ d; sÞ transi-
tions as they are Cabibbo-Kobayashi-Maskawa (CKM)
matrix suppressed and there are not enough experimental
data to do a global fit for their nonfactorizable contributions
as done in the b → c transition case.
The two-body charmless B decays have been proven

factorization at high precision [3]. Large nonfactorizable
contribution has been found in the two-body B decays with
charmed meson final states [36,38], which we have
illustrated in the fourth paragraph of the Introduction.
The matrix elements for the topological diagram T, C,
and E (C and E include large nonfactorizable contribution)
of BðsÞ → D�

ðsÞP2, derived by the FAT approach [39], are

given as (see Eqs. (8), (9), and (10) of Ref. [39])

(a)

D

D*

P2

P1

(b)

D

D*

P2

P1

(c)

D*

D

P2

P1

FIG. 1. Topological diagrams of BðsÞ → D�
ðsÞP2 → DðsÞP1P2 under the framework of quasi-two-body decay with the wave line

representing a W boson: (a) the color-favored tree diagram T, (b) the color-suppressed tree diagram C, and (c) the W-exchange
diagram E.
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TD�P2 ¼
ffiffiffi

2
p

GFVcbV�
uqa1ðμÞfP2

mD�AB→D�
0 ðm2

P2
Þðε�D� ·pBÞ;

CD�P2 ¼
ffiffiffi

2
p

GFVcbV�
uqfD�mD�FB→P2

1 ðm2
D�Þðε�D� ·pBÞχCeiϕC

;

ED�P2 ¼
ffiffiffi

2
p

GFVcbV�
uqmD�fB

fD�
ðsÞ
fP2

fDfπ
χEeiϕ

Eðε�D� ·pBÞ: ð1Þ

In these equations, for simpler notation, the subscript (s) in
D� has been kept only in fD�

ðsÞ
. This notation is also applied

in the following equations involving D�, such as Eqs. (3),
(4), and (6). ε�D� is the polarization vector of theD�. fP2

and
fD�

ðsÞ
are the decay constants of the corresponding meson P2

and D�
ðsÞ. A

BD�
0 ðm2

P2
Þ and FBP2

1 ðsÞ stand for the vector form

factors of BðsÞ → D�
ðsÞ and BðsÞ → P2 transitions. The form

factors are Q2 dependent, and we use the expression in the
pole model,

FiðQ2Þ ¼ Fið0Þ
1 − α1

Q2

m2
pole

þ α2
Q4

m4
pole

; ð2Þ

where Fi represents F1 and A0 and mpole is the mass of the
corresponding pole state, such as B for A0, and B� for F1.
a1ðμÞ is the effective Wilson coefficient for the factorizable
emission diagram T. χCðEÞ and ϕCðEÞ denote the magnitude
and associate phase of CðEÞ diagram, which are universal
and are extracted from the experimental data.
The intermediate vector D�

ðsÞ resonance is described by

the Breit-Wigner formalism [7],

RðsÞ ¼ 1

s −m2
D� þ imD�ΓD�ðsÞ ; ð3Þ

where the invariant mass square s ¼ ðpD þ p1Þ2 with pD
and p1 denoting the 4-momenta of the D and P1 mesons,
respectively. The width of the D� meson is energy
dependent [30],

ΓD� ðsÞ ¼ Γ0

�

q
q0

�

3
�

mD�
ffiffiffi

s
p

�

X2ðqrBWÞ: ð4Þ

The Blatt-Weisskopf barrier factor is given as [45]

XðqrBWÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½1þ ðq0rBWÞ2�=½1þ ðqrBWÞ2
q

� ð5Þ

with barrier radius rBW ¼ 4.0 GeV−1 [27,28,30].

The magnitude q of the momentum is q ¼
1
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½s − ðmD þmP1
Þ2�½s − ðmD −mP1

Þ2�=s
q

of the final

state DðsÞ or P1 in the rest frame of the D�. The momentum
q0 is the value of q when the invariant mass is equal to the
pole mass of the resonance, s ¼ m2

D� . When a pole mass is

located outside the kinematics region, e.g., mD� <
mD þmP1

, it will be replaced with an effective mass,
meff

D� , given by the ad hoc formula [30,46,47],

meff
D� ðmD� Þ

¼ mmin þ ðmmax −mminÞ
�

1þ tanh

�

mD� − mminþmmax

2

mmax −mmin

��

;

ð6Þ

wheremmax andmmin are the upper and lower boundaries of
the kinematics region, respectively. The width Γ0 is the full
width of a resonance D�, i.e., the width in Eq. (4) when
s ¼ m2

D� . The full width of charged resonance is measured
as ΓðD�þÞ ¼ 83.4� 1.8 keV [48]. There is no measure-
ment for the neutral D� meson, and we will use the
theoretical value obtained by by the light-cone sum rules
ΓðD�0Þ ¼ 55.4� 1.4 keV [49]. There is no direct exper-
imental measurement for the full width of the D�

s meson
[48]. On the theoretical side, large discrepancies exist, such
as ΓD�

s→Dsγ ¼ 0.066� 0.026 keV in lattice QCD [50],
ΓD�

s→Dsγ ¼ 0.59� 0.15 keV in QCD sum rules [51], and
ΓD�

s→Dsπ
0 ¼ 8.1þ3.0

−2.6 eV in heavy meson chiral perturbation
[52]. Therefore, we will use the value of 1 keV to include
the largest uncertainty. To be more clear, the full widths of
these resonance states D�

ðsÞ, in addition to their masses, are

listed in Table I.
The strong decay hP1ðp1ÞDðpDÞjD�ðp�Þi with the

momentum of D� denoted by p� is parametrized as a
strong coupling constant gD�DP1

, which can be extracted
from the partial width ΓD�

ðsÞ→DðsÞP1
by

ΓD�
ðsÞ→DðsÞP1

¼ p3
P1

24πm2
D�

ðsÞ

g2D�
ðsÞDðsÞP1

: ð7Þ

gD�Dπ is determined precisely as gD�Dπ ¼ 16.92� 0.13�
0.14 [53,54] by using the isospin relation gD�D0πþ ¼
−

ffiffiffi

2
p

gD�Dþπ0 and the total decay width of the D�þ. The
other strong couplings can be related with gD�Dπ through
the universal coupling ĝ [53,55],

ĝ ¼ gD�DπðKÞfπ
2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�
DmD

p ¼ gD�
sDKfK

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�
Ds
mD

p : ð8Þ

TABLE I. The masses (MeV) and full widths (KeV) of
resonance states D�

ðsÞ.

mD�� mD�0 mD��
s

ΓD�� ΓD�0 ΓD��
s

2010 2007 2112 83.4� 1.8 55.4� 1.4 1
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With this universal relation, one gets gD�
sDK ¼ 14.6� 0.06� 0.07 and gD�DsK ¼ 14.6� 0.10� 0.13, which agree very well

with the values gD�
sDK ¼ 14.6� 1.7 and gD�DsK ¼ 14.7� 1.7measured by the CLEO Collaboration [56] and gD�

sDK ¼ 15.2
and gD�DsK ¼ 15.2 calculated by the quark model [57].
Combing them together, the decay amplitudes of each topological diagrams shown in Fig. 1 are given as

T ¼ hP1ðp1ÞDðpDÞjðc̄bÞV−AjBðpBÞihP2ðp2Þjðq̄uÞV−Aj0i

¼ hP1ðp1ÞDðpDÞjD�ðp�Þi
s −m2

D� þ imD�ΓD� ðsÞ hD�ðp�Þjðc̄bÞV−AjBðpBÞihP2ðp2Þjðq̄uÞV−Aj0i

¼ p2 · ðp1 − pDÞ
ffiffiffi

2
p

GFVcbV�
uqfP2

mD�ABD�
0 ðm2

P2
Þa1ðμÞ

gD�DP1

s −m2
D� þ imD�ΓD�ðsÞ ; ð9Þ

C ¼ hP1ðp1ÞDðpDÞjðc̄uÞV−Aj0ihP2ðp2Þjðq̄bÞV−AjBðpBÞi

¼ hP1ðp1ÞDðpDÞjD�ðp�Þi
s −m2

D� þ imD�ΓD� ðsÞ hD�ðp�Þjðc̄uÞV−Aj0ihP2ðp2Þjðq̄bÞV−AjBðpBÞi

¼ p2 · ðp1 − pDÞ
ffiffiffi

2
p

GFVcbV�
uqfD�mD�FBP2

1 ðp�ÞχCeiϕC gD�DP1

s −m2
D� þ imD�ΓD� ðsÞ ; ð10Þ

E ¼ hP1ðp1ÞDðpDÞP2ðp2ÞjHeff jBðpBÞi

¼ hP1ðp1ÞDðpDÞjD�ðp�Þi
s −m2

D� þ imD�ΓD� ðsÞ hD�ðp�ÞP2ðp2ÞjHeff jBðpBÞi

¼ p2 · ðp1 − pDÞ
ffiffiffi

2
p

GFVcbV�
uqfBmD�

fD�fP2

fπfD
χEeiϕ

E gD�DP1

s −m2
D� þ imD�ΓD� ðsÞ : ð11Þ

where p� ¼ p1 þ pD.

The total decay amplitude of BðsÞ → DðsÞP1P2 can be
written as

hDðsÞðpDÞP1ðp1ÞP2ðp2ÞjHeff jBðsÞðpBÞi
¼ p2 · ðp1 − pDÞAðsÞ; ð12Þ

where AðsÞ represents the summation of amplitudes in
Eq. (9)–(11) with the factor p2 · ðp1 − pDÞ taken out. The
differential width of BðsÞ → DðsÞP1P2 is

dΓ ¼ ds
1

ð2πÞ3
ðjp1kp2jÞ3
24m3

B
jAðsÞj2; ð13Þ

where jp1j and jp2j represent the magnitudes of the
momentum p1 and p2, respectively. In the rest frame of
the D�

ðsÞ resonance, their expressions are

jp1j ¼
1

2
ffiffiffi

s
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½s− ðmDþmP1
Þ2�½s− ðmD−mP1

Þ2�
q

;

jp2j ¼
1

2
ffiffiffi

s
p

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

½ðm2
B−m2

P2
Þ2�−2ðm2

Bþm2
P2
Þ2sþ s2

q

; ð14Þ

where jp1j ¼ q.

III. NUMERICAL RESULTS AND DISCUSSION

The input parameters in this work contain the CKM
matrix elements, decay constants, transition form factors,
Wilson coefficients, and nonpertubative parameters of
CðEÞ topological diagrams χCðEÞ and ϕCðEÞ. We use
Wolfenstein parametrization of the CKM matrix with the
Wolfenstein parameters as [48]

λ ¼ 0.22650� 0.00048; A ¼ 0.790þ0.017
−0.012 ;

ρ̄ ¼ 0.141þ0.016
−0.017 ; η̄ ¼ 0.357� 0.01;

which lead to VcbV�
ud ¼ 0.0395þ0.0009

−0.0006 and VcbV�
us ¼

0.0092� 0.0002. The decay constants of light pseudosca-
lar mesons and vector charm mesons D�

ðsÞ and transition

form factors of B-meson decays at recoil momentum square
Q2 ¼ 0 are listed in Tables II and III, respectively. The
decay constants of π, K, D, and B from the particle data
group are used [48]. There are no experimental data for
decay constants of Ds, D�

ðsÞ, and Bs and all form factors

used here. Here, we use the same theoretical values as in the
previous work by two of us (S.-H. Z. and C.-D. L.) with
other colleagues [39], with 5% uncertainty kept for decay
constants and 10% uncertainty for form factors. Similarly,
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we will also use the dipole parametrization to describe the
Q2 dependence of form factors.
TheWilson coefficients C1 and C2 at scale μ ¼ mb=2 are

−0.287 and 1.132, respectively. Then, the effective Wilson
coefficients a1 is 1.036. The nonpertubative contribution
parameters χCðEÞ and ϕCðEÞ extracted from experimental
data by the fit performed in Ref. [39] are

χC ¼ 0.48� 0.01; ϕC ¼ ð56.6þ3.2
−3.8Þ°;

χE ¼ 0.024þ0.002
−0.001 ; ϕE ¼ ð123.9þ3.3

−2.2Þ°: ð15Þ

With all the inputs, the branching fractions of B0;þ →
D̄�

ðsÞP2 → D̄ðsÞP1P2 and B0
s → D̄�

ðsÞP2 → D̄ðsÞP1P2 can be

obtained by integrating the differential width in Eq. (13)
over the kinematics region. Our numerical results for B0;þ

and B0
s decays are collected in Tables IV and V, respec-

tively. In our results, the errors are estimated with 5%
variations of form factors, 10% variations of decay con-
stants, and the uncertainties of the other nonpertubative
parameters. One can see that the dominating errors are from
the uncertainties of form factors. In the tables, we also list
the intermediate decays as well as the topological contri-
butions represented by the corresponding symbols.

A. Hierarchy of branching fraction

The hierarchies of branching fractions can be seen
clearly in the last columns of Tables IV and V. First, let
us pay attention to those decays in Table IV whose
intermediate states can be changed to each other by
swapping the bachelor light mesons pion with a kaon,

TABLE II. The decay constants of light pseudoscalar mesons and vector mesons (in units of MeV).

fπ fK fD fDs
fD� fD�

s
fB fBs

130.2� 1.7 155.6� 0.4 211.9� 1.1 258� 12.5 220� 11 270� 14 190.9� 4.1 225� 11.2

TABLE III. The transition form factors at Q2 ¼ 0 and dipole
model parameters used in this work.

FB→π
1 FB→K

1 FBs→K
1 AB→D�

0 ABs→D�
s

0

Fð0Þ 0.28 0.33 0.29 0.56 0.57
α1 0.52 0.54 0.57 2.44 2.49
α2 0.45 0.50 0.50 1.98 1.74

TABLE IV. The branching ratios of quasi-two-body decays Bu;d → D�
ðsÞP2 → DðsÞP1P2. The decays with on-shell

effects are denoted by B, and those without on-shell effects are denoted by Bv. The characters T, C and E represent
the corresponding topological contributions. The uncertainties are from form factors, decay constants and
nonperturbative parameters, respectively.

Decay modes Amplitudes B or Bv Results Units

B0 → D�−πþ → D̄0π−πþ Tþ E B 1.77þ0.39þ0.05þ0.01
−0.35−0.05−0.01 10−3

→ D−π0πþ B 8.03þ1.74þ0.22þ0.07
−1.57−0.22−0.04 10−4

→ D−
s K0πþ Bv 1.64þ0.36þ0.05þ0.01

−0.32−0.04−0.01 10−5

B0 → D�−Kþ → D̄0π−Kþ T B 1.47þ0.31þ0.08þ0
−0.28−0.08−0 10−4

→ D−π0Kþ B 6.63þ1.39þ0.03þ0
−1.26−0.03−0 10−5

→ D−
s K0Kþ Bv 1.28þ0.27þ0.01þ0

−0.24−0.01−0 10−6

B0 → D̄�0π0 → D̄0π0π0 1
ffiffi

2
p ðE − CÞ B 1.39þ0.30þ0.14þ0.07

−0.27−0.14−0.07 10−4

→ D−πþπ0 Bv 1.07þ0.23þ0.10þ0.05
−0.21−0.10−0.05 10−5

→ D−
s Kþπ0 Bv 1.60þ0.35þ0.16þ0.08

−0.31−0.16−0.08 10−6

B0 → D̄�0K0 → D̄0π0K0 C B 2.23þ0.47þ0.23þ0.09
−0.42−0.22−0.09 10−5

→ D−πþK0 Bv 1.67þ0.35þ0.17þ0.07
−0.32−0.16−0.07 10−6

→ D−
s KþK0 Bv 2.38þ0.50þ0.24þ0.10

−0.45−0.23−0.10 10−7

Bþ → D̄�0πþ → D̄0π0πþ Tþ C B 3.09þ0.51þ0.01þ0.08
−0.47−0.01−0.09 10−3

→ D−πþπþ Bv 2.27þ0.37þ0.07þ0.06
−0.34−0.07−0.06 10−4

→ D−
s Kþπþ Bv 3.21þ0.52þ0.11þ0.09

−0.48−0.10−0.10 10−5

Bþ → D̄�0Kþ → D̄0π0Kþ Tþ C B 2.35þ0.39þ0.06þ0.06
−0.36−0.06−0.07 10−4

→ D−πþKþ Bv 1.69þ0.28þ0.04þ0.04
−0.26−0.04−0.05 10−5

→ D−
s KþKþ Bv 2.29þ0.37þ0.06þ0.06

−0.35−0.06−0.07 10−6
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e.g., B0→D�−πþ→D̄0π−πþ and B0→D�−Kþ→D̄0π−Kþ.
One can find that the branching ratios of the modes with a
pion bachelor meson are one power larger than their
corresponding ones with a kaon bachelor meson. The
reason is that the pion bachelor modes are the Cabibbo
favored (Vud) processes, while the kaon bachelor modes
are Cabibbo suppressed (Vus) ones. The branching ratios
of the Cabibbo favored decays B0

s → D�−
s πþ → D̄0K−πþ

and B0
s → D̄�0K̄0 → D̄0π0K̄0 shown in Table V are larger

than those of the remaining Cabibbo suppressed decays.
Similar to the dynamics in two-body hadronic B decays,

the color favored tree (T) topological diagram is absolutely
dominating. Branching fractions of decays with the T
diagram are larger than those with only C or E diagrams.
Our results for these branching fractions with the T diagram
are in good agreement with the PQCD predictions [16]. We
have jCj > jEj in the FAT approach [39], while jCj ∼ jEj in
the PQCD approach [58]. The jCj contributes larger in the
FAT approach than in the PQCD approach. Therefore, our
branching fractions of B0 → D̄�0K0 → D̄0π0K0 and B0

s →
D̄�0K̄0 → D̄0π0K̄0 decays with only the C diagram are
about two times larger than that in the PQCD approach.
For those decays with exactly the same intermediate

state D�
ðsÞP2, their hierarchies of the branching ratios

are completely caused by the strong decays of D�
ðsÞ →

DðsÞP1. There are two hierarchy sources. One is the BWT
effect, and the other is the strong couplings. Some of the
decays, labeled by B in the tables, can proceed by the pole
mass dynamics; i.e., the pole mass is larger than the
invariant mass threshold of two final states. The others
labeled by Bv can only happen by the BWT effect. The
branching ratios of B mode decays are apparently one to
two orders larger than those of Bv mode decays. The
difference due to strong couplings is also obvious. For

instance, the isospin relation leads to gD�−D̄0π− ¼
−

ffiffiffi

2
p

gD�−D−π0 . As a result, the branching ratio of B0
ðsÞ →

D̄0π−πþðKþÞ is approximatively two times larger than that
of B0

ðsÞ → D−π0πþðKþÞ. The strong decays with a pair of

ss̄ quarks from the sea proceed only by the BWT effect
because of the heavy strange quark mass. Consequently, the
corresponding branching fractions are smaller than the
others.

B. Dependence of branching fractions on the
invariant mass of intermediate state

We take the decays Bþ→D̄�0πþ→D̄0π0ðD−πþ;
D−

s KþÞπþ as an example to show the dependence of
branching fractions on the invariant mass of D̄0π0 pair
(or D−πþ, D−

s Kþ), which is depicted in the left diagram of
Fig. 2. To demonstrate the flavor SUð3Þ symmetry breaking
effect, curves of their corresponding decays with the
bachelor pion replaced with the kaon are plotted in the
right diagram of Fig. 2. The decay with a pole mass
dynamical strong decay D̄�0 → D̄0π0 and those with the
BWTeffect strong decays D̄�0 → D−πþ and D̄�0 → D−

s Kþ
are represented by solid (red) lines, dashed (blue) lines, and
dot-dashed (green) lines, respectively. Data of the decays
with D̄�0 → D−

s Kþ, which are 1 order of magnitude
smaller than those with D̄�0 → D−πþ, are multiplied by
10 in order to be shown clearly on the same figure.
One may notice the two conspicuous flagpoles located
at the mass of D̄�0 in Fig. 2. It is the distinguishing
characteristic of pole dynamics. Our curves of Bþ →
D̄�0πþ → D̄0π0ðD−πþ; D−

s KþÞπþ (the red solid lines) have
higher peaks than that from the ones in the PQCD approach
[16], which indicates the pole mass dynamics plays a more
important role in our results.

TABLE V. The same as Table IV, but for the quasi-two-body B0
s → D�

ðsÞP2 → DP1P2 decays.

Decay modes Amplitudes B or Bv Results Units

B0
s → D�−

s πþ → D̄0K−πþ T Bv 4.21þ0.88þ0.11þ0
−0.80−0.11−0 10−5

→ D−K̄0πþ Bv 4.07þ0.85þ0.11þ0
−0.77−0.11−0 10−5

B0
s → D�−

s Kþ → D̄0K−Kþ Tþ E Bv 2.84þ0.62þ0.02þ0.03
−0.56−0.02−0.02 10−6

→ D−K̄0Kþ Bv 2.74þ0.60þ0.02þ0.03
−0.54−0.02−0.02 10−6

B0
s → D�−πþ → D̄0π−πþ E B 5.98þ0þ0.87þ1.04

−0−0.83−0.49 10−7

→ D−π0πþ B 2.71þ0þ0.39þ0.47
−0−0.37−0.22 10−7

→ D−
s K0πþ Bv 5.80þ0þ0.84þ1.01

−0−0.80−0.47 10−9

B0
s → D̄�0π0 → D̄0π0π0 1

ffiffi

2
p E B 2.76þ0þ0.30þ0.36

−0−0.28−0.17 10−7

→ D−πþπ0 Bv 2.03þ0þ0.40þ0.48
−0−0.38−0.23 10−8

→ D−
s Kþπ0 Bv 2.91þ0þ0.42þ0.50

−0−0.40−0.24 10−9

B0
s → D̄�0K̄0 → D̄0π0K̄0 C B 3.40þ0.71þ0.35þ0.14

−0.65−0.33−0.14 10−4

→ D−πþK̄0 Bv 2.61þ0.55þ0.27þ0.11
−0.50−0.26−0.11 10−5

→ D−
s KþK̄0 Bv 3.88þ0.81þ0.40þ0.16

−0.74−0.38−0.16 10−6

ZHOU, LI, WEI, and LÜ PHYS. REV. D 104, 116012 (2021)

116012-6



Only a few charmed three-body B decays are measured
by the experiments. We collected these channels in
Table VI as well as the results of the PQCD approach.
Our results are consistent with the PQCD ones except the
decay B0

s → D�−
s πþ → D̄0K−πþ. However, the experimen-

tal data of this decay have a very large uncertainty. It may
be a good choice to wait for more accurate experimental
measurement. Our calculation of the intermediate decays
B → D�

ðsÞP is more precise than the PQCD approach,

especially for the color suppressed (C) or exchange decay
amplitudes (E) as these two nonfactorizable amplitudes,
C and E, are fitted from precise experiment data in FAT not
calculated perturbatively. Therefore, our theoretical uncer-
tainty is much smaller than the previous PQCD approach.
We also study the BWT effects in these decays. Although
the Bs decay in Table VI has only BWT contribution, the
four decays of Bþ;0 are dominated by pole dynamics. To
make an effective comparison, the BWT effects of Bþ;0

decays are calculated with a cut of
ffiffiffi

s
p

≥ 2.1 GeV, which is
also adopted by experiments and the PQCD approach.
Comparing the data in Tables VI and IV, one can see that
the BWT effect contributes about 5% in B0-meson decays.
For example, the center value of the branching ratio of
B0 → D�−πþ → D̄0π−πþ in Tables VI by a cut of

ffiffiffi

s
p

≥
2.1 GeV in FAT is 10.26 × 10−5, and the one in the whole

physical region of the D̄0π− invariant mass IV is
1.77 × 10−3, which lead to the percentage of BWT effect
being 10.26 × 10−5=1.77 × 10−3 ∼ 5%.
Comparing the BWT effects of Bþ → D̄�0πþ →

D−πþπþ and Bþ → D̄�0πþ → D−
s Kþπþ, we find that the

peaks of the green (dot-dashed) lines are located farther
from the pole mass of D̄�0 than the peaks of the blue
(dashed) lines in Fig. 2. The reason is that D−

s Kþ has much
larger threshold mass than D−πþ. It can also be seen that
the green (dot-dashed) line is smoother than the blue
(dashed) line, which is very steep in the vicinity of the
pole mass. Our calculation shows that the BWT effect in
Bþ → D̄�0πþ → D−πþπþ is about 4%.
To check the dependence of the BWT effect on

the widths of the intermediate resonance, we can
compare those decays with different intermediate states.
For instance, we find that contribution of the BWT
effect is ð1.64þ0.36

−0.32Þ × 10−5 for B0 → D�−πþ → D−
s K0πþ,

ð3.21þ0.54
−0.50Þ × 10−5 for Bþ → D̄�0πþ → D−

s Kþπþ, and
ð4.21þ0.89

−0.81Þ × 10−5 for B0
s → D�−

s πþ → D̄0K−πþ. Their
BWT effects are at the same order even though the
widths of the resonances vary widely with ΓD�þ ¼
83.4�1.8keV, ΓD�0 ¼55.3�1.4keV, and ΓD�−

s
≃ 1 keV.

It indicates that the BWT effects in these decays are not
very sensitive to the widths of resonances, which is

FIG. 2. The differential branching fractions of Bþ → D̄�0πþ → D̄0π0ðD−πþ; D−
s KþÞπþ decays (left panel) and corresponding decays

with the bachelor pion replaced with the kaon (right panel).

TABLE VI. The comparison of BWT effects between FAT, PQCD predictions, and available experimental
measurements, where Bcut

FAT;PQCD represents a cut on the invariant mass for Bþ;0 decays.

Decay modes BðcutÞ
FAT ð10−5Þ BðcutÞ

PQCDð10−5Þ [14] Data ð10−5Þ
Bþ → D̄�0πþ → D−πþπþ 18.8þ3.16

−2.96 19.2þ8.80
−6.20 22.3� 3.20 [59]

10.9� 1.8 [60]
10.9� 2.7 [30]

Bþ → D̄�0Kþ → D−πþKþ 1.39þ0.24
−0.21 1.48þ0.68

−0.47 0.56� 0.23 [47]
B0 → D�−πþ → D̄0π−πþ 10.26þ2.25

−2.02 8.7þ4.5
−2.9 8.8� 1.3 [26]

7.8 [29]
B0 → D�−Kþ → D̄0π−Kþ 0.83þ0.17

−0.15 0.72þ0.36
−0.24 0.81� 0.38 [28]

B0
s → D�−

s πþ → D̄0K−πþ 4.21þ0.89
−0.81 1.90þ1.01

−0.68 4.70� 4.38 [32]

ANALYSIS OF THREE-BODY CHARMED B-MESON DECAYS … PHYS. REV. D 104, 116012 (2021)

116012-7



confirmed by the PQCD approach [14,16]. This can be
explained by the behavior of the Breit-Wigner propagators
in the kinematics regions of these decays, where the real
parts of their denominators are much larger than the
imaginary parts. Taking D�−

s → D̄0K− as an example,
the kinematics region starts from

ffiffiffi

s
p ¼ 2.359 GeV,

while ΓD�−
s
≃ 1 keV. It is obvious that jm2

D�−
s
− sj ≫

jmD�−
s
ΓD�−

s
ðsÞj.

C. Flavor SUð3Þ symmetry breaking

Now, we turn to discuss the flavor-SUð3Þ symmetry
breaking effect in the quasi-two-body decays Bþ →
D̄�0πþðKþÞ → D̄0π0πþðKþÞ and B0 → D�−πþðKþÞ →
D̄0π−πþðKþÞ with different bachelor particles π and K.
The ratio of the branching fractions,

RD�− ¼ BðB̄0 → D�−Kþ → D̄0π−KþÞ
BðB̄0 → D�−πþ → D̄0π−πþÞ ;

RD�0 ¼ BðBþ → D̄�0Kþ → D̄0π0KþÞ
BðBþ → D̄�0πþ → D̄0π0πþÞ ; ð16Þ

can be used to test SUð3Þ symmetry breaking. Substituting
the results in Table IV into the above equations, one gets

RD�− ¼ 0.0831þ0.0008
−0.0006 ; RD�0 ¼ 0.0761� 0.0001: ð17Þ

RD�− is consistentwith thevalue ð0.081þ0.000
−0.002ðωBÞþ0.001

−0.000ðaDπÞÞ
in the PQCD approach [14], ð7.76� 0.34� 0.29Þ%
measured by the BABAR Collaboration [61], and ð0.074�
0.015� 0.006Þ measured by the Belle Collaboration [62].
RD�0 also agrees well with the PQCD result of RD�0 ¼
0.077þ0.000

−0.001ðωBÞþ0.000
−0.001ðωDπÞ [14] and the experimental data

RD�0 ¼ 0.0813� 0.0040ðstatÞþ0.0042
−0.0031ðsystÞ [63]. The above

ratios RD�− ≃RD�0 ≃ jVus=Vudj2×ðfK=fπÞ2¼0.076, which
indicates that the source of SUð3Þ asymmetries are mainly
from decay constants or weak transition form factors.
It is expected that the SUð3Þ symmetry breaking effect

in the quasi-two-body decays should be equal to the

breaking effect calculated with their intermediate two-body
decays

RD�0 ¼ BðBþ → D̄�0Kþ → D̄0π0KþÞ
BðBþ → D̄�0πþ → D̄0π0πþÞ

≈
BðBþ → D̄�0KþÞ
BðBþ → D̄�0πþÞ : ð18Þ

This conclusion can be obtained with the narrow width
approximation, under which one has

B½Bþ → D̄�0πþðKþÞ → D̄0π0πþðKþÞ�
≈ B½Bþ → D̄�0πþðKþÞ� · B½D̄�0 → D̄0π0�: ð19Þ

Equation (18) can be checked numerically. Using the
branching fractions calculated with the FAT approach [39],

BðBþ → D̄�0KþÞ ¼ ð3.8þ0.6
−0.4Þ × 10−4;

BðBþ → D̄�0πþÞ ¼ ð50.7þ8.1
−8.2Þ × 10−4; ð20Þ

one gets

BðBþ → D̄�0KþÞ
BðBþ → D̄�0πþÞ ¼ 0.0750� 0.0001: ð21Þ

This value agrees with the RD�0 in Eq. (17), which indicates
that the narrow width approximation works very well in
these decays.
Besides, the above conclusion can also be checked by the

local SUð3Þ breaking effects, which are defined as the
ratios of corresponding differential branching fractions on
the invariant mass of D̄0π− or D̄0π0. Our results are plotted
in Fig. 3. It can be seen that the magnitudes of the SUð3Þ
symmetry breaking at every physical point are approxi-
mately equal.

FIG. 3. The plotted curves are the ratios of corresponding differential branching fractions as functions of the invariant mass of D̄0π− or
D̄0π0. These ratios could be defined as dRD�− or dRD�0, which could be the y labels.
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IV. CONCLUSION

The three-body charmed B-meson decays are dominated
by intermediate resonances; i.e., they proceed via quasi-
two-body decays as BðsÞ → D�

ðsÞP2 → DðsÞP1P2. The first
step of two-body decay is induced by flavor changing weak
decays b → cqūðq ¼ d; sÞ, and the intermediate resonant
state D�

ðsÞ successionally decays into DðsÞP1 via strong
interaction. We utilize the decay amplitudes extracted from
the two-body charmed B decays to quasi-two-body decays
with the intermediate resonance described by the Breit-
Wigner propagator. Including all the P-wave resonant
states D̄�

ðsÞ, we systematically study these decays. The
BðsÞ → D�

ðsÞP2 → DðsÞP1P2 decays can be divided into two
groups: B and Bv. B represents the group of decays whose
pole mass of the resonance D̄�

ðsÞ is larger than the threshold
mass of producing D̄ðsÞP1. This group of decays is
dominated by the pole dynamics, and the main contribu-
tions to their branching fractions are from vicinity of the
resonances’ pole masses. The others labeled by Bv can only
happen with the BWTeffect. The BWTeffects in B0 decays
are approximately 5%. We also found that the Breit-Wigner
tail effects are not sensitive to the widths of their corre-
sponding resonances.
We compare our results of the branching fractions with

the PQCD approach’s predictions as well as the exper-
imental data. The largest theoretical uncertainty in the
calculation is from the intermediate two-body charmed

B-meson decays. Since this calculation is done by a global
fit to all experimental data, our results of three-body B
decays have significantly less theoretical uncertainty than
the PQCD calculation. We use the same cut on the
kinematics region of those decays proceeding via pole
dynamics as the experiments. Our results agree well with
the experimental data. For those ones without any exper-
imental data, we would like to confront them with the
future more accurate experiment measurements.
The flavor-SUð3Þ symmetry breaking effect in these

decays is studied. Our results RD�− ¼ 0.0831þ0.0008
−0.0006 and

RD�0 ¼ 0.0761� 0.0001 are perfectly consistent with their
experimental values. Besides, the local SUð3Þ-breaking
effects, which are defined as ratios of corresponding
differential branching fractions, are investigated. Their
magnitudes are found not sensitive to the invariant mass
of the strong decay final states, which confirms the that the
SUð3Þ asymmetry in three-body decays is dominated by
the two-body weak decays.
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