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Quantum fluctuations can induce friction on a neutral but polarizable particle and cause it to radiate
energy even if the particle is moving in free space filled with blackbody radiation and is not in contact with
or close to any surface or other object. We explore the energetics of such a particle moving uniformly in
vacuum, continuing our previous investigations of quantum friction. The intrinsic polarizability of the
particle is considered to be purely real before it is dressed by radiation. The particle is then guaranteed to be
in the nonequilibrium steady state (NESS), where it absorbs and emits energy at the same rate. We first
calculate the quantum frictional power and force on the particle in the rest frame of the blackbody radiation
from first principles, namely the Maxwell-Heaviside equations and the Lorentz force law. Then we provide
a simpler method of obtaining the same quantities in the rest frame of the particle by using the principle of
virtual work. The equivalence of the two approaches is illustrated. The formulas we derive for quantum
vacuum frictional power and force are fully relativistic and applicable to finite temperature. In NESS, the
quantum vacuum frictional force on the particle is shown to be a true drag, independent of the model for
polarizability and the polarization state of the particle. Finally, we give an estimate of the quantum vacuum
friction on a gold atom and comment on the feasibility of detecting such quantum vacuum frictional effects.
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I. INTRODUCTION

Friction has always been an intriguing subject to study.
Recently, we have investigated the friction felt by a charged
particle passing above a metallic surface [1] as well as by a
moving neutral particle carrying either an electric or a
magnetic dipole moment [2]. What serves as a frictional
force in these situations is just the classical electromagnetic
force given by the Lorentz force law. However, friction can
also be induced by quantum fluctuations. This idea has
been around for decades, tracing back to Ref. [3] or even
earlier Ref. [4–7]. For a brief review of the history, see
Ref. [8]. While most authors mainly consider quantum
friction in some complicated background, the frictional

effect in free space is often dismissed in the literature. This
friction on matter due to its interaction with the surrounding
blackbody radiation is what we term quantum vacuum
friction in this paper. In Ref. [2], we have already calculated
the quantum vacuum friction on a neutral but polarizable
particle with intrinsic dissipation moving through black-
body radiation. A Lorentz transformation to the rest frame
of the particle (frame P) does not eliminate the quantum
vacuum friction because it is the relative motion between
the particle and the blackbody radiation that causes this
frictional force. Mkrtchian et al. [9] have argued that this
“universal drag” is not without effect in various contexts,
ranging from tungsten ovens to the cosmos.
In this paper, we continue our efforts in Ref. [2] and

calculate the quantum frictional power and force on a
neutral but polarizable particle moving uniformly in vac-
uum. Unlike in Ref. [2], the neutral particle considered in
this paper is characterized by a real intrinsic polarizability
αðωÞ. But, as is demonstrated in Ref. [2], some dissipative
mechanism is always required for any frictional effect to
occur. Here, it is through the particle’s interaction with
fluctuations of the electromagnetic field that the particle’s
effective polarizability α̂ðωÞ acquires an imaginary part,
which is second order in αðωÞ. Since we assume there is
no dissipation intrinsic to the particle, it must be in the
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nonequilibrium steady state (NESS), where its energy is
conserved. In the rest frame of the blackbody radiation
(frameR), it is precisely the radiation reaction on the particle
that plays the role of the quantum friction. To keep the
particle moving with constant velocity, the quantum friction
has to be balanced by an external driving force. As a result,
the energy dissipated to the vacuum through the quantum
friction or blackbody radiation reaction is compensated by
the positiveworkdoneby the external driving force.Onemay
also choose to view NESS in frame P, where the energetics
becomes even simpler. The quantum friction is still balanced
by the external force to keep the particle fixed. But neither of
the forces do any work on the particle. We explore the
energetics of such a particle from both perspectives and
derive formulas for the quantum frictional power and force.
Various theoretical groups have also recently studied the

quantum friction in similar contexts. Volokitin and Persson
discussed the blackbody friction for a moving particle in
Sec. 8.5 of their book [10] and made a connection with the
famous Einstein-Hopf effect. Similar to our treatment in
Ref. [2], they include dissipation in the particle’s polar-
izability from the start and treat dipole fluctuations as
independent from field fluctuations. As a result, the friction
formula they derive involves both the temperature of the
radiation and the temperature of the particle. But the latter
can be eliminated by imposing the steady state condition. In
Ref. [11],DedkovandKyasovobtained analytic expressions
for nonrelativistic quantum friction at arbitrary temperature
in the particle-plate and plate-plate configurations. In a
series of papers, Intravaia et al. [12–15] have extensively
studied quantum friction on a particle moving above a
surface. Similar to this paper, they consider the dipole
fluctuations as entirely induced by the field fluctuations.
However, their formulas are limited to the nonrelativistic and
zero temperature regime. In contrast, our results for quantum
frictional power and force are fully relativistic and appli-
cable to arbitrary temperature. Even thoughwe have focused
on the vacuum situation in this paper, the formulation we
give can be extended to a more general background.
As is well-known, the environment that an open quantum

system interacts with can be modeled by a bath of harmonic
oscillators [16]. Earlier works [17–19] have been devoted
to study quantum Brownian motion, where a Brownian
particle couples linearly to such a bath of oscillators.
Indeed, the dissipative mechanism behind the scenes in
our work on quantum vacuum friction is similar. The
neutral particle considered in this paper is an open quantum
system interacting with the electromagnetic field, which
can be thought of as an infinite set of harmonic oscillators.
And we are here examining the manifestation of the
induced dissipation as friction on the neutral particle
moving through the thermal vacuum.
The outlineof the paper is as follows. InSec. II andSec. III,

we quantize the classical formula for power and force on a
moving classical dipole in frame R by applying the

fluctuation-dissipation theorem. The separate calculations
for power and force confirm the power-force relationP ¼ Fv
explicitly. It is also shown that both the frictional power and
force on the particle in NESS are negative definite, inde-
pendent of the specific form of its intrinsic polarizability and
its polarization state. In Sec. IV, we calculate the quantum
frictional power and force in frame P by differentiating the
interaction free energy, using the principle of virtual work.
The results obtained through this approach are shown to
agree with those in Sec. II and Sec. III. The calculation in
frameP is not only simpler butmore systematic in examining
contributions from different polarization states of the par-
ticle. Also, by introducing the effective polarizability α̂ðωÞ,
we are able to extend our analysis to all orders in the intrinsic
polarizability αðωÞ. In Sec. V, the renormalized effective
polarizability is used to calculate the quantum vacuum
friction on a gold atom, the intrinsic polarizability of which
is static and isotropic before being dressed by radiation. Only
above T ¼ 6000 K is the deviation from the low-frequency
radiation reaction model seen for the effective dissipation of
the gold atom. The frictional force on the gold atom is found
to be too small to be observed experimentally around room
temperature (T ¼ 300 K) but it becomes close to experi-
mental reach when the temperature is raised by 2 orders of
magnitude (T ¼ 30; 000 K). Concluding remarks can be
found in Sec. VI.
In Appendix A, the explicit form of both the general

Green’s dyadic and the vacuumGreen’s dyadic are given and
the symmetries of the Green’s functions are discussed. In
Appendix B, the Lorentz transformation properties for the
dipole and the field are described both in the spacetime
domain and inmomentum space, since they are needed in the
derivation of the quantum frictional power and force.
Appendix C defines the momemtum distribution functions
for different polarization states and collects their integrals
often used in the formulas for the quantum vacuum frictional
power and force inNESS.AppendixD gives the formulas for
quantum friction in a general background with translational
symmetry in the x and y directions. Appendix E provides a
proof of the principle of virtual work to be applied to our
calculation in frameP. AppendixF proves that the imaginary
parts of the diagonal elements of the effective polarizability
are always non-negative. Appendix G illustrates how the
emitted power coincides with the classical dipole radiation.
In this paper we use Heaviside-Lorentz (rationalized)

electromagnetic units. We also set kB ¼ c ¼ ℏ ¼ 1 in the
derivation of formulas but the Système International (SI)
units are used in the numerical evaluations.

II. QUANTUM FRICTIONAL POWER

A. Quantization of the power in the rest frame
of the blackbody radiation

In frame R, consider a neutral but polarizable particle
moving uniformly in vacuum. The intrinsic polarizability of
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the neutral particle measured in its own rest frame is αðωÞ.1
With no loss of generality, let us assume that it is moving in
the x direction with velocity v ¼ vx̂ and trajectory
rðtÞ ¼ vt. The same physical situation can be transformed
into frame P, where the particle sits in a fixed position,
which we assume to be the origin r0 ¼ 0. Throughout the
paper, primes are used to indicate quantities or spacetime
coordinates in frame P, except that primes on the polar-
izabilities are all omitted as they are always evaluated in
frame P whenever they appear.
In general, the electromagnetic power into a system

could be calculated by integrating the density of the rate at
which the electromagnetic force does work on it,

PðtÞ ¼
Z

drjðt; rÞ ·Eðt; rÞ: ð2:1Þ

To start with, let us first consider a time-dependent dipole
moving with constant velocity v. The corresponding
classical charge density and current density are

ρðt; rÞ ¼ −∇ · dðtÞδðr − vtÞ; ð2:2aÞ

jðt; rÞ ¼ −v∇ · dðtÞδðr − vtÞ þ _dðtÞδðr − vtÞ: ð2:2bÞ

When the current (2.2b) is inserted into Eq. (2.1), we obtain

PðtÞ¼dðtÞ ·∇½v ·Eðt;r¼ vtÞ�þ _dðtÞ ·Eðt;r¼ vtÞ: ð2:3Þ

Now consider the original problem we have in mind,
where a neutral but polarizable particle is moving through
vacuum. Classically, the particle does not possess any
intrinsic dipole moment nor is any electromagnetic field
present in the configuration. But quantum mechanically,
electromagnetic field fluctuations are able to induce a
dipole moment of the particle, which in turn induces an
electromagnetic field through the following relations:

d0ðωÞ ¼ αðωÞ ·E0ðω; 0Þ; ð2:4aÞ

Eðω; rÞ ¼
Z

dr̃

�
−

1

iω

�
Γðω; r; r̃Þ · jðω; r̃Þ; ð2:4bÞ

where Γ is the retarded Green’s dyadic in vacuum, which
has its explicit form detailed in Appendix A. We note the
first relation for the induced dipole is expressed in frame P
while the second relation for the induced field is more
conveniently written down in frame R. As a result, the
Lorentz transformation properties for the dipole and the
fields are frequently used in the derivation of the frictional
power and force. These are collected in Appendix B.

There are two leading contributions to the power,
because PðtÞ in Eq. (2.3) could be expanded to second
order in α in two different ways:

P ¼ PI þ PII: ð2:5Þ

For the I contribution, the d operator in Eq. (2.3) is
expanded to second order in the intrinsic polarizability
αðωÞ using Eq. (2.4) while the E operator in Eq. (2.3) is
not expanded. For the II contribution, the d operator in
Eq. (2.3) is expanded to only first order in αðωÞ while the
original E operator in Eq. (2.3) is expanded to first order in
αðωÞ at the same time, with the resultant product of the two
operators being second order in αðωÞ. In frame P, the
power P0 is also broken into two contributions, which
exactly correspond to the EE and dd contributions in
Ref. [2], as illustrated toward the end of Sec. IV.
After the expansion, each contribution contains a corre-

lation of field operators. We then use the fluctuation-
dissipation theorem (FDT) in frame R to evaluate the
correlation functions,

hEiðt1; r1ÞEjðt2; r2Þi

¼
Z

∞

−∞

dω
2π

e−iωðt1−t2ÞImΓijðω; r1; r2Þ coth
�
βω

2

�
; ð2:6Þ

where β is the inverse temperature of the blackbody
radiation and the field operators have been symmetrized
so that the correlation function is real.2

B. X polarization

Let us first calculate the contribution to the power due to
a nonvanishing x-x component of the polarizability αxx.
Then the induced dipole could only be polarized in the x
direction. After a Fourier transform on the dipole operator,
the power is written as

PXðtÞ ¼
Z

dω
2π

e−iωtdxðωÞðv∂x − iωÞExðt; r ¼ vtÞ: ð2:7Þ

Here, we describe in detail how PX
I is derived. First, expand

the dipole in its rest frame using (2.4a),

dxðωÞ ¼ d0xðγωÞ ¼ αxxðγωÞE0
xðγω; 0Þ; ð2:8Þ

where γ ¼ 1ffiffiffiffiffiffiffiffi
1−v2

p is the relativistic dilation factor. Next,

Lorentz transform the field to frame R,

1It will be shown later that this polarizability must have been
renormalized, absorbing the divergent part of the vacuum Green’s
dyadic.

2As discussed in Ref. [2], we use the correlation function for
the symmetrized product of operators, because this implies a
Hermitian interaction. Such symmetrized correlation functions
automatically occur when the closed-time-path formalism is
employed to derive the FDT [20].

ENERGETICS OF QUANTUM VACUUM FRICTION: FIELD … PHYS. REV. D 104, 116006 (2021)

116006-3



E0
xðγω; 0Þ ¼

Z
dt01e

iγωt0
1Exðt1 ¼ γt01; x1 ¼ γvt01Þ; ð2:9Þ

where the y and z dependences of the field are suppressed
as their Lorentz transformation is trivial. Then keep
expanding the field in (2.9) using (2.4b)3:

Exðt1 ¼ γt01; x1 ¼ γvt01Þ

¼
Z

dω1

2π
e−iω1γt01

Z
dr̃
�
−

1

iω1

�
Γxxðω1; r1; r̃Þjxðω1; r̃Þ;

ð2:10Þ

where the Fourier transformed current is

jxðω1; r̃Þ ¼ −i
ω1

v
dx

�
x̃
v

�
eiω1x̃=vδðỹÞδðz̃Þ: ð2:11Þ

The Green’s function could be further Fourier transformed
in the x direction,

Γxxðω1; r1; r̃Þ ¼
Z

dkx
2π

eikxðx1−x̃ÞGxxðω1; kxÞ; ð2:12Þ

where the y and z dependence of Gxxðω1; kxÞ is also
suppressed. Once again, expand the dipole operator inside
the current in Eq. (2.11),

dx

�
x̃
v

�
¼ 1

γ
d0x

�
x̃
γv

�

¼ 1

γ

Z
dω2

2π
e−iω2x̃=γvαxxðω2ÞE0

xðω2; 0Þ: ð2:13Þ

Finally, Lorentz transform the field in (2.13) back to
frame R,

E0
xðω2; 0Þ ¼

Z
dt02e

iω2t02Exðt2 ¼ γt02; x2 ¼ γvt02Þ: ð2:14Þ

Apply the FDT to evaluate the correlation between the
field operator appearing in (2.14) and the field operator
in (2.7) using the Fourier transformed Green’s function in
the x direction,

hExðt2;x2ÞExðt;xÞi

¼
Z

∞

−∞

dω3

2π
e−iω3ðt2−tÞ

×
Z

dk̄x
2π

eik̄xðx2−xÞImGxxðω3; k̄xÞcoth
�
βω3

2

�
: ð2:15Þ

When (2.8)–(2.15) are assembled into (2.7) and the
integrals on t01, t

0
2, x̃ are carried out, we find PX

I is actually
time independent, as a consequence of the time transla-
tional symmetry of the FDT shown in (2.6),

PX
I ¼ −

i
γ2

Z
dω
2π

Z
dkx
2π

Z
dk̄x
2π

α2xxðγωÞðωþ k̄xvÞ

×Gxxðωþ kxv; kxÞ

× ImGxxðωþ k̄xv; k̄xÞ coth
�
βðωþ k̄xvÞ

2

�
: ð2:16Þ

Taking into account the symmetry of the real polar-
izability in frequency αð−ωÞ ¼ αðωÞ together with the
symmetry properties of the Green’s functions discussed
in Appendix A, only the imaginary part of the first Green’s
function in Eq. (2.16) will be picked out. Rescaling the
frequency γω ¼ ω̃, the power PX

I may be written as

PX
I ¼

1

4π3γ3

Z
∞

0

dω̃
Z

dkxdk̄xα2xxðω̃Þ
�
ω̃

γ
þ k̄xv

�

×ImGxx

�
ω̃

γ
þkxv;kx

�

×ImGxx

�
ω̃

γ
þ k̄xv; k̄x

�
coth

�
β

2

�
ω̃

γ
þ k̄xv

��
; ð2:17Þ

where we have used the fact that the integrand is even in ω
after picking out the imaginary part of the first Green’s
function.
The explicit form for the vacuum Green’s functions is

shown in Eq. (A9),

Gxxðν; kxÞ ¼
Z

dky
2π

ν2 − k2x
2κ

; ð2:18Þ

where κ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 − ν2

p
becomes imaginary when ν2 > k2,

κ ¼ −isgnðνÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − k2

p
: ð2:19Þ

Since κ is the only place where an imaginary part could
arise in the Green’s function, ImGxxðν; kxÞ emerges in the
region ν2 − k2x > k2y > 0 but vanishes otherwise. Defining

k0y ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ν2 − k2x

p
, ImGxxðν; kxÞ can then be written as

3Here jx is the only nonvanishing component of the induced
current, and we therefore only count the diagonal contribution.
On the other hand, the off-diagonal contributions would vanish
simply based on the structure of the Green’s function even if other
components of the current exist, which is confirmed by the
explicit calculation in Sec. IV.
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ImGxxðν; kxÞ ¼
8<
:

sgnðνÞ R k0y
−k0y

dky
2π

ðk0yÞ2
2

ffiffiffiffiffiffiffiffiffiffiffiffiffi
ðk0yÞ2−k2y

p ¼ 1
4
ðk0yÞ2sgnðνÞ; k2x < ν2;

0; k2x > ν2:
ð2:20Þ

When we insert (2.20) into (2.17), the power reads

PX
I ¼ 1

64π3γ3

Z
∞

0

dω̃ α2xxðω̃Þ
Z

dkxsgn

�
ω̃

γ
þ kxv

���
ω̃

γ
þ kxv

�
2

− k2x

�

×
Z

dk̄xsgn

�
ω̃

γ
þ k̄xv

���
ω̃

γ
þ k̄xv

�
2

− k̄2x

��
ω̃

γ
þ k̄xv

�
coth

�
β

2

�
ω̃

γ
þ k̄xv

��
: ð2:21Þ

The integral limits on kx and k̄x are now over a finite range determined by ðω̃γ þ kxvÞ2 − k2x > 0 and ðω̃γ þ k̄xvÞ2 − k̄2x > 0,

respectively. It is convenient to make changes of variables ðω̃γ þ kxvÞ ¼ ω̃y and ðω̃γ þ k̄xvÞ ¼ ω̃ ȳ and use the definition of
the momentum distribution function for x polarization in Appendix C,

fXðyÞ ¼ 3

4γv

�
y2 −

�
y −

1

γ

�
2 1

v2

�
¼ 3

4γv

�
1 −

1

γ2v2
ðy − γÞ2

�
: ð2:22Þ

Then Eq. (2.21) can be expressed as

PX
I ¼ 1

36π3γ

Z
∞

0

dω̃ α2xxðω̃Þω̃7

Z
yþ

y−

dy fXðyÞ
Z

yþ

y−

dȳ ȳfXðȳÞ coth
�
βω̃

2
ȳ

�
; ð2:23Þ

where yþ ¼
ffiffiffiffiffiffiffi
1þv
1−v

q
and y− ¼

ffiffiffiffiffiffiffi
1−v
1þv

q
. With fXðyÞ being normalized as detailed in Appendix C, the integral on y is readily

carried out, leading to

PX
I ¼ 1

36π3γ

Z
∞

0

dω̃ α2xxðω̃Þω̃7

Z
yþ

y−

dȳ ȳfXðȳÞ coth
�
βω̃

2
ȳ

�
: ð2:24Þ

Although the integral on ȳ can be carried out explicitly and expressed in terms of polylogarithms, it is not very illuminating,
so we leave the result in the current form.
Following the second expansion scheme described after Eq. (2.5), we likewise find

PX
II ¼ −

1

4π3γ3

Z
∞

0

dω̃
Z

dkxdk̄x α2xxðω̃Þ
�
ω̃

γ
þ kxv

�
ImGxx

�
ω̃

γ
þ kxv; kx

�

× ImGxx

�
ω̃

γ
þ k̄xv; k̄x

�
coth

�
β

2

�
ω̃

γ
þ k̄xv

��
: ð2:25Þ

Comparing (2.17) and (2.25), we see that PX
II can be immediately obtained from PX

I by changing the sign of PX
I and trading

the factor ðω̃γ þ k̄xvÞ for ðω̃γ þ kxvÞ. This turns out to be a general symmetry that applies between I and II contributions.

Making similar variable changes as is done on PX
I and inserting the vacuum Green’s functions, we can write PX

II as

PX
II ¼ −

1

36π3γ

Z
∞

0

dω̃ α2xxðω̃Þω̃7

Z
yþ

y−

dy yfXðyÞ
Z

yþ

y−

dȳ fXðȳÞ coth
�
βω̃

2
ȳ

�
: ð2:26Þ

When the integral on y is carried out using the integrals provided in Appendix C, we find

PX
II ¼ −

1

36π3

Z
∞

0

dω̃ α2xxðω̃Þω̃7

Z
yþ

y−

dȳ fXðȳÞ coth
�
βω̃

2
ȳ

�
: ð2:27Þ
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We find the quantum frictional power due to the x polarization by adding Eq. (2.17) and Eq. (2.25),

PX ¼ v
4π3γ3

Z
∞

0

dω̃
Z

dkxdk̄x α2xxðω̃Þðk̄x − kxÞImGxx

�
ω̃

γ
þ kxv; kx

�

× ImGxx

�
ω̃

γ
þ k̄xv; k̄x

�
coth

�
β

2

�
ω̃

γ
þ k̄xv

��
: ð2:28Þ

This formula can be applied to general backgrounds with
translational symmetry in the x-y plane, since we have not
specified the Green’s functions.
In the vacuum situation, we may obtain PX by simply

adding Eq. (2.24) and Eq. (2.27). Even though the ω
integrals involved in PX

I and PX
II have ultraviolet divergen-

ces unless αðωÞ falls off faster than 1=ω4, the quantum
vacuum frictional power PX is free from such divergences
because the potentially divergent pieces cancel when doing
the integration on kx and k̄x. The quantum vacuum fric-
tional power due to the x polarization is then

PX¼ 1

18π3γ

Z
∞

0

dω̃α2xxðω̃Þω̃7

Z
yþ

y−

dȳðȳ−γÞfXðȳÞ 1

eβω̃ ȳ−1
;

ð2:29Þ

noting the integrand on ȳ without the exponential factor is
odd with respect to ȳ ¼ γ.

C. Other polarizations

Let us now turn to the contribution to the frictional power
due to other polarizations. If αyy is the only nonvanishing
component of the polarizability, the power becomes

PYðtÞ¼
Z

dω
2π

e−iωtdyðωÞ½v∂yExðt;r¼vtÞ−iωEyðt;r¼vtÞ�:

ð2:30Þ

The only complication is that the magnetic field will appear
when the electric field is transformed from P to R. This
requires the use of Faraday’s law in Fourier space,
∇ ×Eðω; rÞ ¼ iωBðω; rÞ. Then following the same quan-
tization procedure as outlined for PX, we find the two
contributions to the vacuum frictional power PY are,
respectively,

PY
I ¼ 1

36π3γ

Z
∞

0

dω̃ α2yyðω̃Þω̃7

Z
yþ

y−

dȳ ȳfYðȳÞ coth
�
βω̃

2
ȳ

�
;

ð2:31aÞ

PY
II ¼ −

1

36π3

Z
∞

0

dω̃ α2yyðω̃Þω̃7

Z
yþ

y−

dȳ fYðȳÞ coth
�
βω̃

2
ȳ

�
;

ð2:31bÞ

where we have used the momentum distribution function
for the Y polarization defined in Appendix C,

fYðyÞ ¼ 3

4γv

�
1 −

1

2

�
y2 −

�
y −

1

γ

�
2 1

v2

��

¼ 3

4γv

�
1 −

1

2

�
1 −

1

γ2v2
ðy − γÞ2

��
: ð2:32Þ

These formulas are just like Eqs. (2.24) and (2.27), only
replacing fX with fY . As a result, the total contribution to
the power due to the y-y component of polarizability PY has
the same form as PX in (2.29),

PY ¼ 1

18π3γ

Z
∞

0

dω̃α2yyðω̃Þω̃7

Z
yþ

y−

dȳðȳ−γÞfYðȳÞ 1

eβω̃ ȳ−1
:

ð2:33Þ

From the symmetry of the problem considered, the
contribution to the power due to the z polarization would
be like the y polarization, with αzz replacing the αyy,

PZ ¼ 1

18π3γ

Z
∞

0

dω̃α2zzðω̃Þω̃7

Z
yþ

y−

dȳðȳ− γÞfYðȳÞ 1

eβω̃ ȳ−1
:

ð2:34Þ

If the neutral particle is isotropic αij ¼ αδij, the con-
tributions from all three polarizations are easily summed. It
is convenient to use the momentum distribution function
for isotropic polarization defined in Appendix C,

fISOðȳÞ ¼ fXðȳÞ þ 2fYðȳÞ ¼ 3

2γv
: ð2:35Þ

The frictional power on the isotropic particle can then be
expressed as

PISO ¼ 1

18π3γ

Z
∞

0

dω̃ α2ðω̃Þω̃7

×
Z

yþ

y−

dȳ ðȳ − γÞfISOðȳÞ 1

eβω̃ ȳ − 1
: ð2:36Þ

As a result, the formulas for frictional power from the
different polarization states have exactly the same structure.
In Eqs. (2.29), (2.33), (2.34), and (2.36), the formulas for
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frictional power all involve ȳ − γ, the momentum distribu-
tion function for the specific polarization state fPðȳÞ, which
is even with respect to ȳ ¼ γ, and an exponential factor,
which is monotonically decreasing with ȳ. Since the
integrals on ȳ are all taken over ½y−; yþ�, an interval even
with respect to ȳ ¼ γ, the quantum vacuum frictional power
is negative definite in all cases. Therefore, the neutral
particle always radiates net energy out through interaction
with field fluctuations regardless of the model for its
polarizability or its polarization state.
For the more general situation when the atom is aniso-

tropic, there will be contributions from off-diagonal compo-
nents of the polarizability.Wewill discuss those contributions
in Sec. IV, where the system is quantized in frame P.

III. QUANTUM FRICTIONAL FORCE

A. Quantization of the force in the rest frame
of the blackbody radiation

The Lorentz force density is

fðt; rÞ ¼ ρðt; rÞEðt; rÞ þ jðt; rÞ ×Bðt; rÞ: ð3:1Þ

The frictional force on a system moving in the x direction
could be obtained by integrating the x component of the
Lorentz force density,

FðtÞ ¼
Z

dr½ρðt; rÞExðt; rÞ þ jyðt; rÞBzðt; rÞ

− jzðt; rÞByðt; rÞ�: ð3:2Þ

Inserting the charge and current densities associated with a
moving classical dipole in Eq. (2.2), we find

FðtÞ ¼ dðtÞ · ∇Exðt; vtÞ þ _dyðtÞBzðt; vtÞ
− _dzðtÞByðt; vtÞ: ð3:3Þ

The strategy of quantizing the force formula Eq. (3.3) is the
same as detailed for the power in Sec. II A. The quantum
frictional force from each diagonal polarization state of the
neutral particle is broken into two contributions,

FP ¼ FP
I þ FP

II; ð3:4Þ

where P denotes the different polarization states.

B. X polarization

The contribution to the frictional force due to a non-
vanishing x-x component of the polarizability αxx is

FXðtÞ ¼ dxðtÞ∂xExðt; vtÞ: ð3:5Þ

As an example, we work out FX
I explicitly in momentum

space, where the physics is more transparent than in the

spacetime domain. First, let us Fourier transform the
dipole,

dxðtÞ ¼
Z

dω
2π

e−iωtdxðωÞ: ð3:6Þ

Then expand it in frame P,

dxðωÞ ¼ d0xðγωÞ ¼ αxxðγωÞE0
xðγω; 0Þ; ð3:7Þ

followed by Lorentz transforming the field into R in
momentum space,

E0
xðγω; 0Þ ¼

1

γ

Z
d2k⊥
ð2πÞ2 Exðωþ kxv;k⊥; z ¼ 0Þ: ð3:8Þ

Next, expand the field in terms of the current in momentum
space,

Exðωþ kxv;k⊥; z ¼ 0Þ

¼
Z

dz̃
1

−iðωþ kxvÞ
gxxðωþ kxv;k⊥; z ¼ 0; z̃Þ

× jxðωþ kxv;k⊥; z̃Þ; ð3:9Þ

where the Fourier transformed current is

jxðωþ kxv;k⊥; z̃Þ ¼ −iðωþ kxvÞdxðωÞδðz̃Þ: ð3:10Þ

After expanding the dipole inside the current as we did
in (3.7) and (3.8), dxðtÞ in (3.5) is eventually written as

dxðtÞ ¼
1

γ2

Z
dω
2π

d2k⊥
ð2πÞ2

d2k̄⊥
ð2πÞ2 e

−iωtα2xxðγωÞgxxðωþ kxv;k⊥Þ

×Exðωþ k̄xv; k̄⊥Þ; ð3:11Þ

where we have suppressed the z and z̃ dependence in gxx
and Ex. They are all evaluated at z ¼ z̃ ¼ 0. For the original
field operator in Eq. (3.5), we just need to Fourier transform
it and take its x derivative,

∂xExðt; r ¼ vtÞ

¼
Z

dν
2π

d2k̃⊥
ð2πÞ2 e

−iνteik̃xvtik̃xExðν; k̃⊥Þ: ð3:12Þ

Now correlate the field operator in Eq. (3.11) with the one
in Eq. (3.12) and evaluate the correlation function using
FDT in momentum space,

hExðωþ k̄xv; k̄⊥ÞExðν; k̃⊥Þi
¼ ð2πÞ3δðωþ k̄xvþ νÞδð2Þðk̄⊥ þ k̃⊥Þ

× Imgxxðωþ k̄xv; k̄⊥Þ coth
�
β

2
ðωþ k̄xvÞ

�
: ð3:13Þ
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Combining (3.11) and (3.12) with the use of (3.13), we find the quantum vacuum frictional force on the polarizable atom is
also time independent,

FX
I ¼ 1

16π5γ3

Z
∞

0

dω̃
Z

d2k⊥d2k̄⊥ α2xxðω̃Þk̄xImgxx

�
ω̃

γ
þ kxv;k⊥

�
Imgxx

�
ω̃

γ
þ k̄xv; k̄⊥

�
coth

�
β

2

�
ω̃

γ
þ k̄xv

��
: ð3:14Þ

Here we have again utilized the symmetry properties of the integrand and rescaled the frequency dependence, ω̃ ¼ γω.
Following the second expansion scheme described after Eq. (2.5), we find the II contribution to the force to be

FX
II ¼ −

1

16π5γ3

Z
∞

0

dω̃
Z

d2k⊥d2k̄⊥ α2xxðω̃ÞkxImgxx

�
ω̃

γ
þ kxv;k⊥

�
Imgxx

�
ω̃

γ
þ k̄xv; k̄⊥

�
coth

�
β

2

�
ω̃

γ
þ k̄xv

��
: ð3:15Þ

The reflection rule that works for the two contributions to the frictional power also applies to the two contributions to the
frictional force: changing the sign of FX

I and exchanging the momentum factor k̄x for kx give FX
II directly.

The sum of the two contributions from the x polarization is manifestly convergent,

FX ¼ 1

8π5γ3

Z
∞

0

dω̃
Z

d2k⊥d2k̄⊥ α2xxðω̃Þðk̄x − kxÞImgxx

�
ω̃

γ
þ kxv;k⊥

�
Imgxx

�
ω̃

γ
þ k̄xv; k̄⊥

�
1

eβð
ω̃
γþk̄xvÞ − 1

: ð3:16Þ

In Eq. (3.16), we have not specified the background. So,
Eq. (3.16) applies to the more complicated situations.
For example, it could be used to investigate the quantum
friction experienced by a neutral particle moving above a
planar surface, which we hope to revisit in the near future.
Let us now specify the background to be merely black-

body radiation. Inserting the vacuum Green’s functions in
Appendix A and making the same change of variables,
Eq. (3.16) becomes

FX¼ 1

18π3γv

Z
∞

0

dω̃α2xxðω̃Þω̃7

Z
yþ

y−

dȳðȳ−γÞfXðȳÞ 1

eβω̃ȳ−1
;

ð3:17Þ

where fX is defined in Eq. (2.22). Comparing Eq. (3.16)
with Eq. (2.28) or Eq. (3.17) with Eq. (2.29), we see that the
power-force relation PX ¼ FXv is verified explicitly.

C. Other polarizations

We now turn to the contributions to the quantum fric-
tional force from other polarizations. The frictional force
for a neutral particle only polarizable in the y direction is

FYðtÞ ¼ dyðtÞ∂yExðvt; tÞ þ _dyðtÞBzðvt; tÞ: ð3:18Þ

To work in momentum space, we need Faraday’s law
written in that space,

iνBzðν;k⊥Þ ¼ ðikxEy − ikyExÞðν;k⊥Þ: ð3:19Þ

Following the same quantization procedure outlined for FX,
we find the quantum vacuum frictional force due to the
nonvanishing y-y component of polarizability to be

FY¼ 1

18π3γv

Z
∞

0

dω̃α2yyðω̃Þω̃7

Z
yþ

y−

dȳðȳ−γÞfYðȳÞ 1

eβω̃ȳ−1
;

ð3:20Þ

where fY is defined in Eq. (2.32). Apparently, the quantum
vacuum frictional force FY has exactly the same structure
as FX, only with fY replacing fX.
Using the symmetry between the y and z directions

for the vacuum problem, FZ can readily be inferred
to be

FZ¼ 1

18π3γv

Z
∞

0

dω̃α2zzðω̃Þω̃7

Z
yþ

y−

dȳðȳ−γÞfYðȳÞ 1

eβω̃ȳ−1
:

ð3:21Þ

Finally, if the neutral particle is isotropic, the total force
acting on it in the moving direction is

FISO¼ 1

18π3γv

Z
∞

0

dω̃α2ðω̃Þω̃7

Z
yþ

y−

dȳfISOðȳÞðȳ−γÞ 1

eβω̃ȳ−1
;

ð3:22Þ

where we used again the definition introduced in Sec. II,
fISOðȳÞ ¼ fXðȳÞ þ 2fYðȳÞ ¼ 3

2γv. Comparing the formulas
for force in this section with the formulas for power in
Sec. II, we verify explicitly the power-force relation

PP ¼ FPv ð3:23Þ

holds true for each polarization P. Since the frictional
powers are all negative, the frictional forces are true drags
on the particle, opposing its motion. In frame R, the
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moving particle loses energy to the electromagnetic vac-
uum because of the negative work done by the quantum
friction F. In the meantime, to keep the particle moving in
constant velocity, an external driving force Fext ¼ −F is
needed to balance the quantum friction. The particle
therefore gains exactly the same amount of energy through
the external force doing positive work as it loses through
the quantum friction doing negative work on it. Overall, the
energy of the neutral particle is conserved in the non-
equilibrium steady state.
So far, we have obtained formulas of quantum vacuum

frictional power and force for each polarization. These
formulas clearly exhibit symmetries between the I and II
contributions and between different polarizations. In the
process of working out the quantum vacuum friction, we
have in fact derived the formulas for the quantum frictional
force in a more general background for all diagonal polar-
izations. These formulas are recorded in Appendix D where
the symmetries between the I and II contributions and
between different polarizations are still obvious. With these
formulas, we could in principle calculate the quantum friction
on a neutral particle moving uniformly above a planar surface
lying in the x-y plane, in which case we would insert the
general Green’s function displayed in Eq. (A7) instead of the
vacuum Green’s function into the general formulas in
Appendix D. The main challenge of evaluating the quantum
friction in the general background lies in extracting the
imaginary part of the more complicated Green’s functions.
We note that our formulas for quantum friction in a general

background do not reduce to those obtained by Intravaia
et al., Eq. (1) togetherwithEq. (S3) ofRef. [13], in particular,
in the nonrelativistic and zero temperature limits. There are
several points of distinction between their approach and ours.
First, in spite of the claim in Ref. [14] that the ordering of the
operators does not matter, we believe symmetric ordering is
required in order to have aHermitian interaction; see footnote
2.Technically, the employment of symmetric orderingwould
change theHeaviside functions in the correlation functions to
sgn functions, which corresponds to the zero temperature
limit of the coth in our formulas. And only with the sgn
functions is it possible to restrict the frequency integration in
the friction formula to positive frequencies utilizing the
symmetry of the integrand. Second, even if symmetric
ordering is employed, their modified formula for quantum
friction only yieldswhatwe call the II contribution but leaves
out the I contribution. The source of this omission might be
that they have only considered the induced dipole fluctua-
tions, as they argue in Ref. [14]. Finally, their claim in
Ref. [13] that the vacuum part of the Green’s dyadic does not
contribute to the frictional force is indeed true at zero
temperature because of the exponentially decreasing factor
in the formulas for quantum friction. At finite temperature,
however, thevacuumpart of theGreen’s dyadic does give rise
to the blackbody friction (quantum vacuum friction), which
is precisely the subject of this paper.

The quantum vacuum frictional force plays a crucial role
in the energetics of a neutral particle maintained in NESS
and moving through blackbody radiation. It is particularly
in the vacuum situation that the importance of keeping both
the I and the II contributions becomes obvious; without
keeping both contributions, the force would have been
divergent. As a consequence of not symmetrically ordering
the operators and not including the I contribution, it is not
possible to obtain the well-known nonrelativistic Einstein-
Hopf drag [21] from the approach advocated in Ref. [13].
In contrast, our relativistic, finite-temperature formulas for
quantum vacuum friction correctly generalize the Einstein-
Hopf formula to the relativistic regime.
For instance, in the nonrelativistic limit, Eq. (3.22)

reduces to

FISO ∼ −
v

72π3

Z
∞

0

dωα2ðωÞω7
βω

sinh2ðβω=2Þ : ð3:24Þ

This is just the Einstein-Hopf drag [21] felt by the neutral
particle. It exactly coincides with the formula for Einstein-
Hopf friction in [2] if we use the radiation reaction model
for the effective dissipation

Imα̂ðωÞ ¼ ω3

6π
α2ðωÞ: ð3:25Þ

In fact, Eq. (3.25) is only a lowest order (second order in α)
approximation for the imaginary part of the full effective
polarizability, α̂ðωÞ, when the particle does not possess
any intrinsic dissipation, as will be seen more clearly in the
next section.

IV. QUANTIZATION IN THE REST FRAME
OF THE PARTICLE

A. Relationship between power and force in the rest
frame of radiation and in the rest frame of particle

The derivations in the preceding two sections of expres-
sions for the power, P, and the frictional force, F, in frame
R, are complicated by the need to Lorentz transform the
electromagnetic field and the dipole back and forth several
times between that frame and frame P. In this section, we
demonstrate a rather more efficient approach to establishing
and generalizing these expressions, by quantizing the
electromagnetic field directly in frame P.
The power, P0, and the frictional force, F0, in frame P,

are related to P and F in frame R by

P ¼ ∂
∂tF ¼ γ

� ∂
∂t0 − v

∂
∂x0

�
1

γ
F 0

¼
� ∂
∂t0 − v

∂
∂x0

�
F 0 ¼ P0 þ vF0 ð4:1aÞ

and
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F ¼ −
∂
∂xF ¼ −γ

� ∂
∂x0 − v

∂
∂t0

�
1

γ
F 0

¼ −
� ∂
∂x0 − v

∂
∂t0

�
F 0 ¼ F0 þ vP0; ð4:1bÞ

where F and F 0 denote the particle-field interaction free
energy in R and P, respectively, which are themselves
related4 by F 0 ¼ γF. Generation of the power and the
frictional force in this way, by differentiation of the
particle-field interaction free energy, is a statement of
the principle of virtual work, a proof of which, applicable
to the current context, is provided in Appendix E. We note,
in passing, that, as an immediate consequence of the
relationships in Eqs. (4.1), the NESS condition may be
expressed in any one of the following equivalent forms:

P0 ¼ 0; ð4:2aÞ

F ¼ F0; ð4:2bÞ

and

P ¼ Fv; ð4:2cÞ

which, respectively, pertain to only frame P, to both P and
R, and to only R.

B. Expressions to second order
in the intrinsic polarizability

F 0 may be formally written as the symmetrized expect-
ation of the (induced) dipole-field interaction Hamiltonian,

F 0 ¼ −
1

2
hE0T d̂0i ¼ −

1

2
hE0TαE0i

¼ −
1

2

	
E0fT 1

1 − αΓ0T α
1

1 − Γ0α
E0f



; ð4:3Þ

where the relationship

E0 ¼ E0f þ Γ0αE0 ð4:4Þ
has been used to express the effective, or interacting,
electric field, E0, in terms of the free, or fluctuating (rather
than induced), electric field,E0f, the (real, symmetric, bare)
intrinsic polarizability, α, and the vacuum Green’s dyadic
for the electric field in frame P, Γ0. In relation to the
expectation, hE0T d̂0i, in (4.3), we will refer to the location
of the dipole, d̂0, as the dipole point, and the location of the
field, E0T , as the field point.
In order to be able to generate P0 and F0 by differ-

entiation of F 0, it is first necessary to identify and separate
the dipole point, ðt00; r00Þ ¼ ðt00; x00; 0; 0Þ, and the field point,
ðt01; r01Þ ¼ ðt01; x01; 0; 0Þ. Doing so in Eq. (4.3), and keeping
terms only through second order in α, we obtain

F 0 ¼ F 0
0 þ F 0

I þ F 0
II; ð4:5Þ

where

F 0
0 ≡ −

1

2

Z
dω
2π

Z
dω0

2π
e−iðωt00þω0t0

1
Þtr½αðωÞC0ðω;ω0; r00; r

0
1Þ�jt0

1
→t0

0
;r0
1
→r0

0
; ð4:6aÞ

F 0
I ≡ −

1

2

Z
dω
2π

Z
dω0

2π
e−iðωt00þω0t0

1
Þtr½αðωÞΓ0ðω; r00; r00ÞαðωÞC0ðω;ω0; r00; r

0
1Þ�jt0

1
→t0

0
;r0
1
→r0

0
; ð4:6bÞ

and

F 0
II ≡ −

1

2

Z
dω
2π

Z
dω0

2π
e−iðωt00þω0t0

1
Þtr½αðω0ÞΓ0ðω0; r00; r

0
1ÞαðωÞC0ðω;ω0; r00; r

0
0Þ�jt0

1
→t0

0
;r0
1
→r0

0
: ð4:6cÞ

Here,

C0ðω;ω0; r00; r
0
1Þ≡ hE0fðω; r00Þ ⊗ E0fðω0; r01Þi ð4:7Þ

denotes the symmetrized correlation function of the corresponding free electric field operators, which, using the FDT in
frame P, may be written as

C0ðω;ω0; r00; r
0
1Þ ¼ 2πδðωþ ω0Þ

Z
dkx
2π

eikxðx00−x01ÞImG0ðω; kxÞ coth
�
βγ

2
ðωþ vkxÞ

�
; ð4:8Þ

4From the Lorentz invariance of the effective action, W ¼ −FT ¼ −F 0T 0, and the Lorentz transformation of the duration of the
steady state configuration, T ¼ γT 0, it follows that F 0 ¼ γF .
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with

G0ðω; kxÞ≡
Z

dky
2π

g0ðω; kx; kyÞ: ð4:9Þ

Substituting Eq. (4.8) into Eq. (4.6), there result

F 0
0 ¼ −

1

2

Z
dω
2π

Z
dkx
2π

e−iωðt00−t01Þeikxðx00−x01Þtr½αðωÞImG0ðω; kxÞ�jt0
1
→t0

0
;r0
1
→r0

0
coth

�
βγ

2
ðωþ vkxÞ

�
; ð4:10aÞ

F 0
I ¼ −

1

2

Z
dω
2π

Z
dkx
2π

e−iωðt00−t01Þeikxðx00−x01Þtr½αðωÞΓ0ðω; r00; r00ÞαðωÞImG0ðω; kxÞ�jt0
1
→t0

0
;r0
1
→r0

0

× coth

�
βγ

2
ðωþ vkxÞ

�
; ð4:10bÞ

and

F 0
II ¼ −

1

2

Z
dω
2π

Z
dkx
2π

e−iωðt00−t01Þeikxðx00−x00Þtr½αðωÞΓ0�ðω; r00; r01ÞαðωÞImG0ðω; kxÞ�jt0
1
→t0

0
;r0
1
→r0

0

× coth

�
βγ

2
ðωþ vkxÞ

�
; ð4:10cÞ

where, in the last of these, we have used the reflection
properties αð−ωÞ ¼ αðωÞ, since α is real, and
Γ0ð−ω; r00; r01Þ ¼ Γ0�ðω; r00; r01Þ.
Before proceeding to differentiation of these point-

separated F 0 expressions, let us note that, from the
symmetry of Eq. (4.3), there are two possible identifica-
tions of the field point and the dipole point, before
separation, which introduces a multiplicity factor of 2.
Also, although we could equally well differentiate with

respect to the dipole point, corresponding to the location
of the particle, we will find it more convenient to differ-
entiate with respect to the field point, as in the proof of
Appendix E.
So, differentiating the expression in Eq. (4.10a) with

respect to the time coordinate of the field point, t01, and then
taking the limit as the field point approaches the dipole
point, we obtain

P0
0 ¼ −

Z
dω
2π

Z
dkx
2π

iωtr½αðωÞImG0ðω; kxÞ� coth
�
βγ

2
ðωþ vkxÞ

�
¼ 0; ð4:11Þ

since the integrand is odd under a combined reflection in ω and kx. Likewise, keeping only the part of the integrand that is
even under this combined reflection, Eq. (4.10b) yields

P0
I ¼

Z
dω
2π

Z
dkx
2π

ωtr½αðωÞImΓ0ðω; r00; r00ÞαðωÞImG0ðω; kxÞ� coth
�
βγ

2
ðωþ vkxÞ

�

¼ 1

6π

Z
dω
2π

Z
dkx
2π

ω4tr½α2ðωÞImG0ðω; kxÞ� coth
�
βγ

2
ðωþ vkxÞ

�

¼ 1

36π3

Z
∞

0

dωω7

Z
yþ

y−

dȳ tr½α2ðωÞdiagðfXðȳÞ; fYðȳÞ; fYðȳÞÞ� coth
�
β

2
ωȳ

�

¼ 1

36π3

Z
∞

0

dωω7

Z
yþ

y−

dȳ½ðα2ÞxxðωÞfXðȳÞ þ ððα2ÞyyðωÞ þ ðα2ÞzzðωÞÞfYðȳÞ� coth
�
β

2
ωȳ

�
; ð4:12Þ

where we have used the properties of ImG0ðω; kxÞ detailed in Appendix A to deduce that
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ImΓ0ðω; r00; r00Þ ¼
Z

dkx
2π

ImG0ðω; kxÞ ¼
ω3

6π
1 ð4:13Þ

and

Z
dkx
2π

ImG0ðω; kxÞ coth
�
βγ

2
ðωþ vkxÞ

�
¼ ω3

6π

Z
yþ

y−

dȳ diagðfXðȳÞ; fYðȳÞ; fYðȳÞÞ coth
�
β

2
ωȳ

�
; ð4:14Þ

and, in the latter expression, have employed the change of variable from kx to ȳ, defined by ωȳ≡ γðωþ vkxÞ. Since
fXðȳÞ ≥ 0 and fYðȳÞ ≥ 0 on the ȳ integration interval ½y−; yþ�, it is clear from Eq. (4.12) that P0

I > 0 if the diagonal
elements of α2ðωÞ are non-negative. That this is indeed the case follows from the fact that these diagonal elements are sums
of squares: for example, ðα2Þxx ¼ ðαxxÞ2 þ ðαxyÞ2 þ ðαxzÞ2.
For P0

II, the only change is the replacement of Γ0 in Eq (4.10b) by Γ0� in Eq. (4.10c), so P0
II ¼ −P0

I < 0. Thus, P0 ¼ 0 to
second order in α.
In fact, it is not difficult to show that P0 ¼ 0 to all orders in α. Applying the above approach to Eq. (4.3), we obtain

P0 ¼−
Z

dω
2π

Z
dkx
2π

iωtr

�
1

1−αð−ωÞΓ0ð−ω;r00;r00Þ
αðωÞ 1

1−Γ0ðω;r00;r00ÞαðωÞ
ImG0ðω;kxÞ

�
coth

�
βγ

2
ðωþvkxÞ

�
: ð4:15Þ

Since the matrix

ᾱðωÞ≡ 1

1 − αð−ωÞΓ0ð−ω; r00; r00Þ
αðωÞ 1

1 − Γ0ðω; r00; r00ÞαðωÞ
ð4:16Þ

is contracted with the symmetric matrix ImG0ðω; kxÞ, it may be replaced in Eq. (4.15) by its transpose,

ᾱTðωÞ ¼ 1

1 − αðωÞΓ0ðω; r00; r00Þ
αðωÞ 1

1 − Γ0ð−ω; r00; r00Þαð−ωÞ
¼ ᾱð−ωÞ; ð4:17Þ

or, indeed, by the average,

1

2
ðᾱðωÞ þ ᾱTðωÞÞ ¼ 1

2
ðᾱðωÞ þ ᾱð−ωÞÞ; ð4:18Þ

which is manifestly reflection symmetric in ω. It is then easily seen that the integrand in Eq. (4.15) is odd under a combined
reflection in ω and kx, and therefore that P0 ¼ 0 to all orders in α.
Differentiating the expression in Eq. (4.10a) with respect to the spatial coordinate of the field point, x01, and then taking

the limit as the field point approaches the dipole point, we obtain

F0
0 ¼ −

Z
dω
2π

Z
dkx
2π

ikx tr½αðωÞImG0ðω; kxÞ� coth
�
βγ

2
ðωþ vkxÞ

�
¼ 0; ð4:19Þ

since the integrand is odd under a combined reflection in ω and kx. Likewise, keeping only the part of the integrand that is
even under this combined reflection, Eq. (4.10b) yields

XIN GUO et al. PHYS. REV. D 104, 116006 (2021)

116006-12



F0
I ¼

Z
dω
2π

Z
dkx
2π

kx tr½αðωÞImΓ0ðω; r00; r00ÞαðωÞImG0ðω; kxÞ� coth
�
βγ

2
ðωþ vkxÞ

�

¼ 1

6π

Z
dω
2π

Z
dkx
2π

ω3kx tr½α2ðωÞImG0ðω; kxÞ� coth
�
βγ

2
ðωþ vkxÞ

�

¼ 1

36π3γv

Z
∞

0

dωω7

Z
yþ

y−

dȳ ðȳ − γÞtr½α2ðωÞdiagðfXðȳÞ; fYðȳÞ; fYðȳÞÞ� coth
�
β

2
ωȳ

�

¼ 1

36π3γv

Z
∞

0

dωω7

Z
yþ

y−

dȳ ðȳ − γÞ½ðα2ÞxxðωÞfXðȳÞ þ ððα2ÞyyðωÞ þ ðα2ÞzzðωÞÞfYðȳÞ� coth
�
β

2
ωȳ

�

¼ 1

18π3γv

Z
∞

0

dωω7

Z
yþ

y−

dȳ ðȳ − γÞ½ðα2ÞxxðωÞfXðȳÞ þ ððα2ÞyyðωÞ þ ðα2ÞzzðωÞÞfYðȳÞ�
1

eβωȳ − 1
; ð4:20Þ

where we have invoked Eq. (4.13) and have used the properties of ImG0ðω; kxÞ detailed in Appendix A to deduce that

Z
dkx
2π

kxImG0ðω; kxÞ coth
�
βγ

2
ðωþ vkxÞ

�
¼ ω4

6πγv

Z
yþ

y−

dȳ ðȳ − γÞdiagðfXðȳÞ; fYðȳÞ; fYðȳÞÞ coth
�
β

2
ωȳ

�
: ð4:21Þ

Apart from the thermal factor, ðeβωȳ − 1Þ−1, the ȳ integrand in Eq. (4.20) is odd about the midpoint, γ, of the integration
interval. However, the thermal factor is a decreasing function of ȳ on this interval, and so gives less weight to the positive
ȳ > γ contributions compared to the negative ȳ < γ contributions. Thus, F0

I < 0, that is, the frictional force is indeed a drag.
For F0

II, note that, in differentiating the expression in Eq. (4.10c), we encounter

∂
∂x01 Γ

0�ðω; r00; r01Þ
����
r0
1
→r0

0

¼ ∂
∂x01 Γ

0�ðω; r01; r00Þ
����
r0
1
→r0

0

¼ −
∂
∂x00 Γ

0�ðω; r01; r00Þ
����
r0
1
→r0

0

¼ −
∂
∂x01 Γ

0�ðω; r00; r01Þ
����
r0
1
→r0

0

¼ 0: ð4:22Þ

This also follows directly from the property, inherited from
the symmetry of the spatial configuration, that the Green’s
dyadic is reflection symmetric in the x direction:
Γ0ðω; r00 þ δx̂; r00Þ ¼ Γ0ðω; r00 − δx̂; r00Þ, for δ ≥ 0. Thus,
F0
II ¼ 0, which simply expresses the fact that, because of

the isotropic nature of the (induced) dipole radiation
emitted by the particle in its rest frame, there is no radiation
reaction force on the particle in this frame.
It is easily verified that the formulas for quantum vacuum

frictional force Eqs. (3.17), (3.20), (3.21), (3.22) obtained

by quantization in frame R are now systematically sum-
marized in Eq. (4.20).

C. Extension to all orders in the
intrinsic polarizability

Again, it is not difficult to extend these results to all
orders in α. Using ð1 − Γ0αÞ−1 − 1 ¼ Γ0αð1 − Γ0αÞ−1 in
Eq. (4.3) to generalize Eq. (4.6) and Eq. (4.10) to all orders
in α, we obtain

F 0
I ≡ −

1

2

Z
dω
2π

Z
dkx
2π

e−iωðt00−t01Þeikxðx00−x01Þtr
�
αðωÞΓ0ðω; r00; r00ÞαðωÞ

×
1

1 − Γ0ðω; r00; r00ÞαðωÞ
ImG0ðω; kxÞ

�����
t0
1
→t0

0
;r0
1
→r0

0

coth

�
βγ

2
ðωþ vkxÞ

�
ð4:23aÞ

and, likewise,

F 0
II ≡ −

1

2

Z
dω
2π

Z
dkx
2π

e−iωðt00−t01Þeikxðx00−x00Þtr
�

1

1 − αðωÞΓ0�ðω; r00; r00Þ
αðωÞΓ0�ðω; r00; r01ÞαðωÞ

×
1

1 − Γ0ðω; r00; r00ÞαðωÞ
ImG0ðω; kxÞ

�����
t0
1
→t0

0
;r0
1
→r0

0

coth

�
βγ

2
ðωþ vkxÞ

�
; ð4:23bÞ
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where, in the second of these, we have again employed the reflection properties αð−ωÞ ¼ αðωÞ, recalling that α is real,
and Γ0ð−ω; r00; r01Þ ¼ Γ0�ðω; r00; r01Þ.
Differentiating the expression in Eq. (4.23a) with respect to the spatial coordinate of the field point, x01, and then taking

the limit as the field point approaches the dipole point, we obtain, using Eq. (4.21),

F0
I ¼

Z
dω
2π

Z
dkx
2π

kx tr½Imα̂ðωÞImG0ðω; kxÞ� coth
�
βγ

2
ðωþ vkxÞ

�

¼ 1

6π2γv

Z
∞

0

dωω4

Z
yþ

y−

dȳ ðȳ − γÞtr½Imα̂ðωÞdiagðfXðȳÞ; fYðȳÞ; fYðȳÞÞ� coth
�
β

2
ωȳ

�

¼ 1

6π2γv

Z
∞

0

dωω4

Z
yþ

y−

dȳ ðȳ − γÞ½Imα̂xxðωÞfXðȳÞ þ ðImα̂yyðωÞ þ Imα̂zzðωÞÞfYðȳÞ� coth
�
β

2
ωȳ

�

¼ 1

3π2γv

Z
∞

0

dωω4

Z
yþ

y−

dȳ ðȳ − γÞ½Imα̂xxðωÞfXðȳÞ þ ðImα̂yyðωÞ þ Imα̂zzðωÞÞfYðȳÞ�
1

eβωȳ − 1
; ð4:24Þ

where

α̂ðωÞ≡ αðωÞ 1

1 − Γ0ðω; r00; r00ÞαðωÞ
ð4:25Þ

denotes the effective, or dressed, polarizability, which is clearly symmetric. For F0
II, it is immediate from Eq. (4.22) that

Eq. (4.23b) yields

F0
II ¼ 0; ð4:26Þ

to all orders in α.
Likewise, differentiating the expression in (4.23a) with respect to the time coordinate of the field point, t01, and then

taking the limit as the field point approaches the dipole point, we obtain, using (4.14),

P0
I ¼

Z
dω
2π

Z
dkx
2π

ω tr½Imα̂ðωÞImG0ðω; kxÞ� coth
�
βγ

2
ðωþ vkxÞ

�

¼ 1

6π2

Z
∞

0

dωω4

Z
yþ

y−

dȳ tr½Imα̂ðωÞdiagðfXðȳÞ; fYðȳÞ; fYðȳÞÞ� coth
�
β

2
ωȳ

�

¼ 1

6π2

Z
∞

0

dωω4

Z
yþ

y−

dȳ½Imα̂xxðωÞfXðȳÞ þ ðImα̂yyðωÞ þ Imα̂zzðωÞÞfYðȳÞ� coth
�
β

2
ωȳ

�
: ð4:27Þ

For P0
II, it similarly follows from Eq. (4.23b), or immediately from the earlier result that P0 ¼ 0, that

P0
II ¼ −P0

I ¼ −
1

6π2

Z
∞

0

dωω4

Z
yþ

y−

dȳ ½Imα̂xxðωÞfXðȳÞ þ ðImα̂yyðωÞ þ Imα̂zzðωÞÞfYðȳÞ� coth
�
β

2
ωȳ

�
; ð4:28Þ

to all orders in α. Of course, in each of Eq. (4.27) and
Eq. (4.28), the coth factor includes the corresponding zero-
point energy of the electromagnetic field, and so each
integral over ω is formally divergent. However, these two
contributions to P0 come in with opposite signs, so the
divergences due to the zero-point energy exactly cancel.
It is easily verified that Eq. (4.24) and Eq. (4.27) agree

with Eq. (4.20) and Eq. (4.12), respectively, to second order
in α. To this order, Eq. (4.25) becomes

α̂ðωÞ ¼ αðωÞ þ αðωÞΓ0ðω; r00; r00ÞαðωÞ; ð4:29Þ

whence, using the vacuum Green’s dyadic in Eq. (4.13),

Imα̂ðωÞ ¼ αðωÞImΓ0ðω; r00; r00ÞαðωÞ ¼
ω3

6π
α2ðωÞ: ð4:30Þ

When Eq. (4.30) is inserted into Eq. (4.24) and Eq. (4.27),
Eq. (4.20) and Eq. (4.12), respectively, are reproduced.
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D. Renormalization of the intrinsic polarizability

However, beyond second order in α, Eq. (4.24) and
Eq. (4.27) are formally divergent, because, beyond this
order, Imα̂ðωÞ involves ReΓ0ðω; r00; r00Þ, which is itself
divergent. In fact, this divergence is inherent in all of
our work thus far, but we have been able to eliminate or
ignore it by making use of certain symmetry properties in
our analyses of P0

I, P
0
II, F

0
I, and F

0
II to second order in α, and

of P0 and F0
II to all orders in α. To analyze F0

I and P
0
I, or P

0
II,

beyond second order in α, these symmetry properties alone
are insufficient, and we need to properly recognize and
address this divergence.
There are two contributions to Γ0ðω; r00; r00Þ:

ReΓ0ðω; r00; r00Þ is purely real and divergent;
iImΓ0ðω; r00; r00Þ is purely imaginary and finite. The
first contribution gives rise to an infinite particle-field
interaction free energy. In order to obtain finite results,
we effect an infinite renormalization of the bare intrinsic
polarizability by replacing Γ0ðω; r00; r00Þ in Eq. (4.25) by the
reduced Green’s dyadic i ImΓ0ðω; r00; r00Þ. We now proceed
to formalize this prescription.5

Let us relabel the bare intrinsic polarizability by α0ðωÞ.
Then Eq. (4.25) may be written as

α̂ ¼ α0½1 − Γ0α0�−1 ¼ α0½1 − ReΓ0α0 − i ImΓ0α0�−1
¼ α0f½1 − i ImΓ0α0ð1 − ReΓ0α0Þ−1�ð1 − ReΓ0α0Þg−1
¼ α0ð1 − ReΓ0α0Þ−1½1 − i ImΓ0α0ð1 − ReΓ0α0Þ−1�−1
¼ α½1 − i ImΓ0α�−1; ð4:31Þ

where we have dropped all of the obvious arguments and

αðωÞ≡ α0ðωÞ
1

1 − ReΓ0ðω; r00; r00Þα0ðωÞ
ð4:32Þ

is the renormalized intrinsic polarizability, which clearly
inherits from the bare intrinsic polarizability the properties
of being real and symmetric. In vacuum, the effective
polarizability may therefore be written, using Eq. (4.13), as

α̂ðωÞ ¼ αðωÞ 1

1 − i ImΓ0ðω; r00; r00ÞαðωÞ
¼ αðωÞ 1

1 − i ω
3

6π αðωÞ
; ð4:33Þ

which agrees with the functional form of the atomic
polarizability obtained in Ref. [22] by a perturbative
analysis of the energy shift; see also Refs. [23–25],
whence6 the imaginary part of the effective polarizability
reads

Imα̂ðωÞ ¼ ω3

6π
α2ðωÞ 1

1þ ðω3

6πÞ2α2ðωÞ : ð4:34Þ

The diagonal elements of Imα̂ðωÞ, constructed as in
Eq. (4.34), are non-negative. This may be obvious, given its
structure and the fact that, as noted earlier, the diagonal
elements of α2ðωÞ are non-negative, but we provide a
formal proof in Appendix F. We may therefore conclude, as
for our earlier second-order expressions, that F0

I < 0,
F0
II ¼ 0, P0

I > 0, and P0
II ¼ −P0

I < 0 to all orders in the
renormalized intrinsic polarizability α. Following the above
renormalization, those earlier second-order expressions
themselves should be reinterpreted in terms of the renor-
malized, rather than bare, intrinsic polarizability.

E. Asymptotic behavior of the frictional force

The structure of Eq. (4.34) has implications for the low-
and high-temperature behavior of the frictional force, as
we now illustrate in the case of isotropic polarizability,
αðωÞ ¼ αðωÞ1, where, using Eq. (2.35), Eq. (4.24) sim-
plifies to

F0
I¼

1

2π2γ2v2

Z
yþ

y−

dȳðȳ− γÞ
Z

∞

0

dωω4Imα̂ðωÞ 1

eβωȳ−1

¼ 1

2π2γ2v2β5

Z
yþ

y−

dȳ
ðȳ− γÞ
ȳ5

Z
∞

0

duu4Imα̂

�
u
βȳ

�
1

eu−1
:

ð4:35Þ

It is therefore clear that the low-frequency modes dominate
in the force integral at low temperatures while the high-
frequency modes dominate at higher temperatures.
Let us assume the asymptotic behavior of the renormal-

ized intrinsic polarizability at low and high frequencies are
described by the different power laws

αðωÞ∼Aωa ðω→ 0þÞ; αðωÞ∼Bωb ðω→∞Þ ð4:36Þ

with A ≠ 0 and B ≠ 0. Then the low-temperature and high-
temperature limits of the quantum vacuum friction can be
readily obtained as follows:

5In similar contexts, where the interaction occurs with a
surface, these two contributions are associated with evanescent
electromagnetic waves and with propagating electromagnetic
waves, respectively [10]. The propagating wave is the solution
that picks up the contribution from the imaginary part of the wave
number κ. In this view, the renormalization prescription may be
thought of as discarding the contribution of the evanescent waves
and retaining only the contribution of the propagating waves. 6This is a version of the optical theorem [26].
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F0
I;LowT ∼

8>>><
>>>:

A2Γð8þ2aÞζð8þ2aÞ
6π3β8þ2a ηð8þ 2a;vÞ; a >−3;
A2

36π½1þð A
6πÞ2�β2

ηð2; vÞ; a¼−3;
π
β2
ηð2; vÞ; a <−3;

F0
I;HighT ∼

8>>><
>>>:

B2Γð8þ2bÞζð8þ2bÞ
6π3β8þ2b ηð8þ 2b;vÞ; b <−3;
B2

36π½1þð B
6πÞ2�β2

ηð2; vÞ; b¼−3;
π
β2
ηð2; vÞ; b >−3;

ð4:37Þ

where we have introduced

ηðn; vÞ≡ 1

2γ2v2

Z
yþ

y−

dȳ
ðȳ − γÞ
ȳn

: ð4:38Þ

The obvious symmetry between the two limits of the
force in Eq. (4.37) can easily be understood. First, in the
low-temperature limit with a > −3 and in the high-
temperature limit with b < −3, Imα̂ðωÞ in Eq. (4.34)
reduces to ω3α2ðωÞ=6π. Then for the special cases with
critical power a ¼ −3 or b ¼ −3, both terms in the
denominator for Imα̂ should be kept, contributing an
additional numerical factor multiplying ω3α2ðωÞ=6π.
Finally, in the low-temperature limit with a < −3 and in
the high-temperature limit with b > −3, Imα̂ðωÞ reduces to
6π=ω3. As a result, the asymptotic behavior of the force
becomes independent of the details (power and coeffi-
cients) of the model for the renormalized intrinsic polar-
izability αðωÞ, and is always proportional to T2:

F0
I ∼

πT2

2γ2v2

�
ln

�
1þ v
1 − v

�
− 2γ2v

�
: ð4:39Þ

F. Interpretation

It will be clear from above that working in frame P,
rather than in frameR, enables more efficient derivation of
expressions for the power and for the frictional force. In
particular, we have been able to handle all polarization
states together, and to extend the earlier analysis to all
orders in the renormalized intrinsic polarizability. Working
in P also aids in the elucidation and interpretation of the
underlying physics, to which we now turn.
The NESS condition is simply stated as P0 ¼ 0 in frame

P, and we have shown that it holds to all orders in the
renormalized intrinsic polarizability. This means that
the particle absorbs (P0

I > 0) and emits (P0
II < 0) energy

at the same rate. (We explicitly show in Appendix G that P0
II

is the power radiated due to the induced dipole radiation.)
In frame P, the blackbody radiation carries a momentum
bias, oriented opposite to the direction of motion of the
particle in frameR; blackbody radiation is isotropic only in
its own rest frame. As the blackbody radiation is absorbed,
this momentum bias is transferred to the particle and gives

rise to the frictional force (F0
I < 0) that the particle

experiences; indeed, the rate and direction of this momen-
tum transfer are equal to the magnitude and sense of the
frictional force.
The absorption and extraction of momentum from the

blackbody radiation are accomplished through a process
that is entirely internal to the particle. Since we consider
only a point interaction, we cannot probe the precise
mechanism further here. However, in the similar realistic
case of a nanoparticle made of some dielectric material, one
might imagine that this material may suffer mechanical
deformation as it absorbs and extracts the momentum from
the blackbody radiation, such that it is compressed at one
end and stretched at the other, resulting in a mechanical
stress tensor gradient that produces an internal force equal
and opposite to that due to the momentum transfer from the
blackbody radiation. Likewise, in the case of an atom, one
might imagine that the wave function is similarly distorted
from its symmetric at-rest configuration, in response to
the absorption of the momentum imparted by the black-
body radiation. If this is the case, so that the process of
momentum absorption is indeed entirely internal, one
might wonder how, when viewed externally, the particle
can experience a frictional force. The resolution of this
seeming paradox is that the internal stress tensor gradient
also produces a gradient at the boundary of the particle,
between that boundary and the outside, and it is this stress
tensor gradient, or difference, that gives rise to the frictional
force that the particle experiences. Even in our simple
point-interaction model, we see evidence for this interpre-
tation in the discontinuity in the stress tensor from one side
of the point to the other that emerges from the proof in
Appendix E of the principle of virtual work applicable to
the current context. Figure 1(a) illustrates the (y-z cross-
sectional integral of the) stress tensor for a point particle,
and Fig. 1(b) that for an extended particle.
So, the particle functions as a shock absorber, or

momentum converter: it extracts momentum from the
absorbed blackbody radiation, and, in doing so, gives rise
to a difference in the stress tensor between the boundary of
the particle and the outside, which, in turn, results in the
frictional force that it experiences. This interpretation holds
water only if the radiation emitted by the particle in its rest
frame, which arises from the induced dipole fluctuations,
has no momentum bias, that is, is isotropic. That this is
indeed the case is evidenced by the fact that F0

II ¼ 0, which,
as we have shown, holds to all orders in the renormalized
intrinsic polarizability. In spite of this difference between
the absorbed and emitted radiation—that absorbed carries
a momentum bias, whereas that emitted does not—they
transfer energy into and out of the particle, respectively, at
the same rate. The energy, or spectral, distributions of the
absorbed and emitted radiation are therefore identical.
Because the Lorentz transformation between frame R
and frame P mixes frequency and momentum, the spectral
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density of the blackbody radiation in frame P is not purely
Planckian but is instead a mixture of Planckian spectral
densities, with an appropriate mixing distribution over
inverse temperature. This is true of both the absorbed
and the emitted radiation.
Indeed, we may write Eq. (4.27) as

P0
I ¼

Z
∞

0

dωω½Imα̂xxðωÞρXðωÞ

þ ðImα̂yyðωÞ þ Imα̂zzðωÞÞρYðωÞ�; ð4:40Þ

where

ρX;YðωÞ≡
Z

yþ

y−

dȳ
ω3

6π2
fX;YðȳÞ coth

�
βȳω

2

�
ð4:41Þ

denote the spectral densities appropriate to X and Y
polarizations and βȳ ≡ βȳ denotes the ȳ-dependent inverse
temperature. In fact, we could have started from Eq. (4.40),
recognizing both that the spectral density of the field is the
sum of the diagonal elements of Eq. (4.14), which, itself,
results from the FDT, Eq. (4.8), and that the diagonal
elements of the imaginary part of the effective polarizability
in Eq. (4.40) serve merely to reflect the extent to which the
corresponding components of the field energy are absorbed
by the particle through the particle-field interaction.
It is easily verified from Eq. (4.41) that, for v ¼ 0, ρXðωÞ

and ρYðωÞ each reduce, as they should, to one-third of the
Planckian spectral density,

ρPLðωÞ≡ ω3

2π2
coth

�
βω

2

�
: ð4:42Þ

More generally, for v ≠ 0, Eq. (4.41) indicates how the
spectral density deviates from purely Planckian form: one
of the ω factors represents the energy, the remaining
ω2

6π2
fX;YðȳÞ factor represents the density of states for that

energy, which is x-momentum dependent, here represented
through the corresponding transformed variable ȳ, and the

coth factor governs the occupation of any such specific
energy and x-momentum state, through the corresponding
transformed energy, ωȳ ¼ γðωþ vkxÞ, in frame R, where
the purely Planckian distribution appropriate to inverse
temperature β pertains; finally, the expression is integrated
over the permitted x-momentum values, as represented
through ȳ. Because of its structure, Eq. (4.41) may,
equivalently, be thought of as the energy factor, ω,
multiplied by the (v ¼ 0 and therefore x-momentum-
independent) Planckian density of states factor, ω2

6π2
, multi-

plied by the coth thermal occupation factor for that energy,
but at transformed inverse temperature βȳ, and finally
integrated over the mixture of such transformed inverse
temperatures governed by the appropriate probability
density function fX;YðȳÞ for the mixing factor ȳ. So, in
this view, Eq. (4.41) is a mixture of Planckian spectral
densities, with fX;YðȳÞ serving as the appropriate proba-
bility density function that mixes the corresponding inverse
temperatures.
In the case of isotropic polarizability, Eq. (4.40) sim-

plifies to

P0
I ¼

Z
∞

0

dωω Imα̂ðωÞρðωÞ; ð4:43Þ

where

ρðωÞ≡ ρXðωÞ þ 2ρYðωÞ ¼ ω3

4π2γv

Z
yþ

y−

dȳ coth

�
βȳω

2

�

¼ ω2

2π2γvβ
ln

�
sinhðβωyþ

2
Þ

sinhðβωy−
2
Þ

�
; ð4:44Þ

which explicitly exhibits the non-Planckian nature of the
corresponding spectral density.
It is clear from its construction that Eq. (4.40) represents

the rate of absorption of energy per unit time by the particle
from the field: the leading ω factor represents the rate of
change per unit time, the spectral density represents the

(a) (b)

FIG. 1. Stress tensor for (a) a point particle, and (b) an extended particle.
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energy distribution of the field, and the effective polar-
izability represents the extent to which this field energy is
transferred to the particle through the particle-field inter-
action. It is also clear that the corresponding expression
for the rate of absorption of x-momentum per unit time by
the particle from the field, that is, the frictional force
experienced by the particle, should be obtained simply
by replacing the energy factor, ω, in Eq. (4.41) for the
spectral density, by the corresponding x-momentum factor,

kx ¼ ω ðȳ−γÞ
γv :

F0
I ¼

Z
∞

0

dωω½Imα̂xxðωÞpXðωÞ

þ ðImα̂yyðωÞ þ Imα̂zzðωÞÞpYðωÞ�; ð4:45Þ

where

pX;YðωÞ≡
Z

yþ

y−

dȳ
ω3

6π2
ðȳ− γÞ
γv

fX;YðȳÞcoth
�
βȳω

2

�
: ð4:46Þ

It is easily verified that this approach reproduces Eq. (4.24).
Finally, let us relate the NESS condition to the optical

theorem. Using Eq. (4.31) to rewrite Eq. (4.3) in terms
of the effective polarizability, α̂, we easily obtain the
decomposition

F 0 ¼ F 0
E0fE0f þ F 0

d̂0d̂0

≡ −
1

2
hE0fTα̂E0fi − 1

2
hd̂0TΓ0d̂0i; ð4:47Þ

where d̂0 ≡ α̂E0f is the corresponding induced dipole
moment. In fact, this decomposition is simply a restatement
of that met earlier in Eq. (4.5), with

F 0
E0fE0f ¼ F 0

0 þ F 0
I ð4:48aÞ

and

F 0
d̂0d̂0

¼ F 0
II: ð4:48bÞ

The correlation function in Eq. (4.7) is symmetrized, so
C0ðω;ω0; r00; r

0
0Þ is symmetric on the interchange of ω and

ω0, and may be expressed as

C0ðω;ω0; r00; r
0
0Þ ¼ 2πδðωþ ω0ÞĈ0ðω; r00Þ; ð4:49Þ

where the symmetric matrix Ĉ0ðω; r00Þ is even in ω. It
follows that P0 may be correspondingly decomposed as

P0 ¼ P0
E0fE0f þ P0

d̂0d̂0
; ð4:50Þ

where

P0
E0fE0f ¼

Z
dω
2π

ω tr½Imα̂ðωÞĈ0ðω; r00Þ� ð4:51aÞ

and

P0
d̂0d̂0

¼
Z

dω
2π

ω tr½Imfα̂�ðωÞΓ0�ðω; r00; r00Þα̂ðωÞgĈ0ðω; r00Þ�:

ð4:51bÞ

Since the matrix in braces in Eq. (4.51b) is contracted with
the symmetric matrix Ĉ0ðω; r00Þ, it may be replaced by its
transpose or, indeed, by the average of itself and its
transpose,

1

2
fα̂�Γ0�α̂þ α̂Γ0�α̂�g

¼ 1

2
fα̂�ReΓ0α̂ − iα̂�ImΓ0α̂g

þ 1

2
fα̂ReΓ0α̂� − iα̂ImΓ0α̂�g: ð4:52Þ

The sum of the terms in Eq. (4.52) that involve ReΓ0 is real,
and therefore even in ω, so does not contribute to the
integral in Eq. (4.51b); the sum of the terms in Eq. (4.52)
that involve ImΓ0 is imaginary, and therefore odd in ω, so it
does contribute to the integral in Eq. (4.51b). We may
therefore rewrite Eq. (4.51b) as

P0
d̂0d̂0

¼ −
Z

dω
2π

ω tr

�
1

2
fα̂�ðωÞImΓ0ðω; r00; r00Þα̂ðωÞ

þ α̂ðωÞImΓ0ðω; r00; r00Þα̂�ðωÞgĈ0ðω; r00Þ
�
: ð4:53Þ

However, from Eq. (4.31), it follows that

Imα̂ðωÞ ¼ 1

2
fα̂�ðωÞImΓ0ðω; r00; r00Þα̂ðωÞ

þ α̂ðωÞImΓ0ðω; r00; r00Þα̂�ðωÞg; ð4:54Þ

which is a statement of the optical theorem in the current
context [26]. Thus, we immediately find from Eqs. (4.51a)
and (4.53) that

P0 ¼ P0
E0fE0f þ P0

d̂0d̂0
¼ 0: ð4:55Þ

We may conclude, therefore, that, in the current context,
satisfaction of the NESS condition is an immediate con-
sequence of the optical theorem. In the second paper in
this series, we will again consider the decomposition in
Eq. (4.47), but will allow for dipole fluctuations that are
uncorrelated with field fluctuations and satisfy a separate
FDT at a corresponding dipole temperature. In this case, as
one might expect, the NESS condition is not automatically
satisfied, since the optical theorem does not account for the
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intrinsic (rather than induced) dipole radiation emitted by
the particle, but this condition may be engineered to hold by
suitably relating the temperatures of the absorbed black-
body radiation and of the emitted dipole radiation.
The radiative corrections included in the effective polar-

izability, α̂, discussed here are reminiscent of radiative
corrections in quantum electrodynamics. The radiative
corrections to the intrinsic polarizability α are already
accounted for in the phenomenological value—see
Refs. [27,28] for an example of the helium atom.
However, the correction to the photon propagator (vacuum
polarization) should be considered. The imaginary part of
the modified photon propagator will indeed give a correc-
tion, but only when the frequency ω > 2me, where me is
the mass of the electron. Because, in the present context,
the typical frequency modes that contribute to the quantum
vacuum friction are of the same order as the temperature T
of the blackbody radiation, this effect would be expected
to be significant only if T > 1010 K, which should be far
beyond the range of applicability of our considerations.
Even in that extreme regime, the effect of vacuum polari-
zation would be small: relative to the imaginary part of the
vacuum Green’s function in Eq. (4.13), the one loop effect
is calculated to be only

ImΓ0ð1Þðω;0;0Þ
ImΓ0ð0Þðω;0;0Þ∼

2

3π

�
ln
2ω

me
−
5

3

�
α; ω≫ 2me; ð4:56Þ

where α ≈ 1=137 is the fine structure constant.

V. NUMERICAL ESTIMATE FOR QUANTUM
VACUUM FRICTION OF A GOLD ATOM

How big is quantum vacuum friction? Will it be
accessible to experiments? To answer these questions, in
this section let us obtain an estimate for the quantum
friction on a gold atom moving uniformly in vacuum. We
will assume the intrinsic (renormalized, but not dressed)
polarizability is isotropic and static, αðωÞ ¼ αð0Þ1. Then
the effective polarizability in Eq. (4.34) becomes

Imα̂ðωÞ ¼ ω3

6π
α2ð0Þ 1

1þ ðω3

6πÞ2α2ð0Þ
; ð5:1Þ

where αð0Þ is the static polarizability of the gold atom,
being 5.33 × 10−24 cm3 according to Ref. [29]. In the low-
frequency limit, Imα̂ðωÞ reduces to the well-known radi-
ation reaction model [30], ω3

6π α
2
0. In the high-frequency

limit, Imα̂ðωÞ becomes 6π
ω3, which is independent of the

value for the static polarizability.
Plugging Eq. (5.1) into the formula for quantum friction

Eq. (4.35), we obtain

FISO ¼ α20
12π3

Z
∞

0

dω
ω7

1þ ðω3

6πÞ2α20

Z
yþ

y−

dy
γ2v2

y− γ

eβωy − 1
: ð5:2Þ

For ease of numerical evaluation, let us introduce
the dimensionless frequency x ¼ βω

2
and temperature

λ ¼ ðα0
6πÞ1=3 2

β. Then Eq. (5.2) can be rewritten as

FISO ¼ C
Z

∞

0

dx
λ8x7

1þ λ6x6

Z
yþ

y−

dy
γ2v2

y − γ

e2xy − 1
;

C ¼ ð6πÞ8=3
12π3

α−2=30 : ð5:3Þ

For a gold atom, the dimensional factor C in Eq. (5.3),
which is independent of temperature and velocity, evaluates
to C ¼ 6.99 × 10−6 N, after converting to SI units. The
remaining factor in Eq. (5.3) is a dimensionless function
of velocity v and rescaled temperature λ. The integral in
Eq. (5.3) is dominated by the low-frequency contributions
in the low-temperature limit (λ ≪ 1) and the high-
frequency contributions in the high-temperature limit
(λ ≫ 1). Effectively, the model for Imα̂ðωÞ reduces to
the radiation reaction model at low temperatures and 6π=ω3

at high temperatures. The more general expressions of the
frictional force in the two limits have been worked out in
Eq. (4.37). Since the gold atom considered has a static
polarizability before being dressed by the radiation, we just
need to set a ¼ 0 and b ¼ 0 together with A ¼ B ¼ α0 in
these equations to obtain

FISO
Low T ¼

4π5α20
45β8

ηð8; vÞ ¼ −
4π5α20γ

6

45β8

�
8

3
vþ 16

3
v3 þ 8

7
v5
�
;

ð5:4aÞ

FISO
HighT¼

π

β2
ηð2;vÞ¼ π

2γ2v2β2

�
ln

�
1þv
1−v

�
−2γ2v

�
; ð5:4bÞ

where Eq. (5.4b) is identical to Eq. (4.39) and the force is
independent of the actual value of the intrinsic polar-
izability of the gold atom. Here, we note the nonrelativistic
limit of the low-temperature blackbody friction agrees
exactly with Eq. (15) in Ref. [30]. But our Eqs. (5.4) also
give the high-temperature and relativistic behavior of the
blackbody friction.
In Fig. 2, we illustrate the velocity dependence and

temperature dependence of the quantum vacuum friction on
the moving gold atom. It is seen from Fig. 2(a) that the
magnitude of the quantum vacuum friction monotonically
increases with velocity. For a fixed velocity, raising the
temperature in general enhances the quantum friction. But
the temperature effect is more pronounced for the lower
temperatures than the higher temperatures because the
frictional force is proportional to T8 in the low-temperature
limit but only T2 in the high-temperature limit as predicted
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by Eq. (5.4a) and Eq. (5.4b). In Fig. 2(b), the transition of
different temperature behaviors is seen to occur roughly in
between 106 K and 108 K. That is, the low-frequency
radiation model is a good approximation so long as the
temperature does not get above 106 K.
For the sake of attracting the attention of experimen-

talists, let us comment on the possibility of detecting the
effects of quantum vacuum friction. It will cause the
gold atom to decelerate when the external driving
force is removed. To make a rough estimate of the
time taken for the atom to decelerate by a noticeable
amount, we assume the gold atom would be in a “quasi-
nonequilibrium steady state” where the friction on it
could still be calculated using the NESS formulas. Since
it is hard, experimentally, to accelerate a neutral particle
to relativistic velocities or raise the temperature of the
vacuum above 106 K, we restrict our calculation in the
low-temperature and nonrelativistic regime, where we
can safely apply Newton’s second law together with the
lowest order (in v) approximation of the frictional force
shown in Eq. (5.4a):

FðvÞ ¼ −
32π5α20
135β8

v ¼ m
dv
dt

: ð5:5Þ

The time taken for the gold atom to decelerate from
an initial velocity vi to a final velocity vf is then found
to be

Δt ¼ −τ ln
vf
vi

; τ ¼ 135mβ8

32π5α20
; ð5:6Þ

where τ is evaluated to be 1.72 × 1025 s at room
temperature T ¼ 300 K.7

For example, the time taken for the velocity to be reduced
by 10% is Δt ¼ 1.81 × 1024 s. It then seems hopeless
to detect the quantum vacuum frictional effect at room
temperature. However, if the experiment could be performed
at T ¼ 30; 000 K, Δt would be 16 orders of magnitude
shorter, being1.81 × 108 s ¼ 5.91 yr. Coincidentally, this is
close to the average time graduate students spend in a
U.S. institution.

VI. CONCLUSIONS

In this paper, we provide fully relativistic and finite
temperature formulations for calculating the quantum fric-
tional power and force on a neutral particle with real
intrinsic polarizability αðωÞ. The focus of our exploration is
on the quantum vacuum frictional phenomenon for a
particle maintained in the NESS. That is, the particle is
assumed to be moving with constant velocity, relative to a
background filled only with blackbody radiation, and its
energy is conserved.
We perform calculations both in the rest frame of the

blackbody radiation (frame R) and in the rest frame of the
particle (frame P). In both frames, we obtain explicit
expressions for the quantum vacuum frictional power and
force for different polarization states to second order in
αðωÞ. It is easily seen from our results that the quantum
vacuum friction is always a true drag, independent of the
assumed model for polarizability of the particle and its
polarization state. The frictional power and force in each of
these two frames are simply related, through Eqs. (4.1). It is
a special property of NESS that the quantum vacuum
frictional force is the same in the two frames. As a
consequence, the external force that maintains the motion
of the particle at constant velocity in frame R must equal
that which keeps the particle at rest in frame P. The
energetics, however, are different in the two frames. In
frame R, this frictional force does negative work on the

(a) (b)

FIG. 2. The magnitude of the quantum vacuum frictional force −FISO on a gold atom moving uniformly with velocity v through the
blackbody raditation at temperature T is illustrated in Newtons. (a) At various temperatures of the blackbody radiation, −FISO is plotted
as a function of velocity of the gold atom for v ∈ ½0.01; 0.99�. (b) The solid blue curve plots −FISO as a function of temperature of the
blackbody radiation T at a fixed velocity v ¼ 0.5. The dashed black curve and the dashed magenta curve plot the low and high
temperature limits of the quantum vacuum friction shown in Eq. (5.4a) and Eq. (5.4b), respectively, as a function of the blackbody
temperature T for v ¼ 0.5. It is seen that the transition occurs at an incredibly high temperature around T ¼ 107 K.

7The mass of a gold atom is 197u ¼ 1.84 × 1011 eV. The con-
version factors used in the estimate are kB ¼ 8.62 × 10−5 eV=K,
ℏc ¼ 1.97 × 10−5 eV · cm and c ¼ 3.00 × 1010 cm=s.

XIN GUO et al. PHYS. REV. D 104, 116006 (2021)

116006-20



particle, which is compensated by the positive work done
by the external driving force. In frame P, neither force does
any work on the particle as it is not moving.
At a microscopic level, the particle acts as both a

momentum converter and an energy bookkeeper. Due to
the relative motion between the particle and the blackbody
radiation, in frameP, this radiation carries a momentum bias
oriented opposite to the velocity of the particle in frameR. It
is this momentum bias that is transferred to the particle and
gives rise to the quantum vacuum frictional force. But the
particle can never absorb nor emit net energy because its
intrinsic polarizability is purely real, ImαðωÞ ¼ 0, or, equiv-
alently, its effective polarizability α̂ðωÞ satisfies the optical
theorem, Imα̂ðωÞ ¼ ImΓ0ðωÞjα̂ðωÞj2. In both R and P, the
net power gained by the particle can be broken into an
absorbed part, PI and P0

I, respectively, and an emitted part,
−PII and −P0

II, respectively. The emitted power is entirely a
quantum version of the classical dipole radiation with the
dipole being induced by the field fluctuations, which is
clearly illustrated in Appendix G. It must be combined with
the absorbed power to account for the total rate of work done
on the particle by the quantum vacuum friction, PI þ PII ¼
P ¼ Fv in frame R and P0

I þ P0
II ¼ P0 ¼ 0 in frame P.

Replacing αΓ0α in the second-order expressions for
power and force with the effective polarizability written
in terms of the intrinsic polarizability, α̂ ¼ αð1 − Γ0 · αÞ−1,
we are able to extend our expressions to all orders in α.
Since the real part of the vacuum Green’s dyadic ReΓ0 is
divergent, it must be absorbed through a renormalization
of the bare intrinsic polarizability. A numerical estimate of
the quantum vacuum friction on a moving gold atom is
obtained using the expression for the force to all orders in
the intrinsic polarizability α; it is seen that the higher order
(in α) corrections only become important at rather high
temperatures, above 106 K for a gold atom. The numerical
results also show that the effect of quantum vacuum friction
is too tiny to be observed at room temperature but it may
become observable when the temperature is raised by at
least 2 orders of magnitude.
The exclusion of any intrinsic dissipation may be too

idealistic. Susceptibilities which are consistent with cau-
sality requirements must develop both real and imaginary
parts in order to respect the Kramers-Kronig relation.8 In
view of this, we will further study in a subsequent paper the
quantum frictional phenomenon associated with a neutral
particle that does possess intrinsic dissipation. In that case,
NESS is no longer automatically satisfied because the
particle itself has the ability to act as a net absorber or
emitter of energy. Indeed, satisfaction of the NESS require-
ment imposes a relation between the temperature of the
particle and the temperature of the blackbody radiation.

In the course of this investigation on quantum vacuum
friction, we have also derived formulas for the quantum
frictional power and force applicable to a more general
backgound. We hope, in the near future, to revisit the
classic situation where a neutral particle is passing above a
dielectric surface. Of course, many other authors have
already studied this problem but have obtained disparate
answers. Oelschläger’s thesis [31] contains a very useful
summary of the different results. Our relativistic and finite
temperature formulation may prove to be advantageous in
resolving this controversy.
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APPENDIX A: THE GREEN’S DYADIC

The Green’s dyadic Γðr; r0;ωÞ satisfies the following
differential equation derived from Maxwell-Heaviside
equations:

�
1

ω2
∇×∇×1−εðr;ωÞ1

�
·Γðr;r0;ωÞ¼1δðr−r0Þ; ðA1Þ

where εðr;ωÞ is the permittivity of the dielectric, if any. The
source of the field could be some polarization field or any
current,

Eðr;ωÞ ¼
Z

dr0 Γðr; r0;ωÞ · Pðr0;ωÞ

¼
Z

dr0
�
−

1

iω

�
Γðr; r0;ωÞ · jðr0;ωÞ: ðA2Þ

The geometry of the problem we consider always possesses
a translational symmetry in the x-y plane, which permits us
to Fourier transform the Green’s dyadic in these spatial
directions,

Γðr; r0;ωÞ ¼
Z

d2k⊥
ð2πÞ2 e

ik⊥·ðr⊥−r0⊥Þgðz; z0;ω;k⊥Þ: ðA3Þ

Solving the differential equation Eq. (A1) amounts to
finding the reduced Green’s dyadic gðz; z0;ω;k⊥Þ.
Imagining a uniform dielectric occupying the semispace

z < 0, we define wave numbers

k¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2xþk2y

q
; κ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−ω2

p
; κ0 ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2−ω2ε

p
ðA4Þ

and the reflection coefficients for the transverse electric (E)
and transverse magnetic (H) modes

8Atoms, however, acquire dissipation only through interaction
with the radiation field.
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rE ¼ κ − κ0

κ þ κ0
; rH ¼ κ − κ0=ε

κ þ κ0=ε
: ðA5Þ

The scalar Green’s functions for the transverse electric and transverse magnetic modes are

gE;Hðz; z0;ω; kÞ ¼ 1

2κ
e−κjz−z0j þ rE;H

2κ
e−κðzþz0Þ: ðA6Þ

Then the reduced Green’s dyadic can be conveniently written in terms of scalar Green’s functions,

gðz; z0;ω;k⊥Þ ¼

0
BBB@

k2x
k2

1
ε ∂z

1
ε0 ∂z0gH þ k2y

k2 ω
2gE kxky

k2
1
ε ∂z

1
ε0 ∂z0gH − kxky

k2 ω2gE ikx
εε0 ∂zgH

kxky
k2

1
ε ∂z

1
ε0 ∂z0gH − kxky

k2 ω2gE k2y
k2

1
ε ∂z

1
ε0 ∂z0gH þ k2x

k2 ω
2gE iky

εε0 ∂zgH

−ikx
εε0 ∂z0gH

−iky
εε0 ∂z0gH k2

εε0 g
H

1
CCCA: ðA7Þ

Here ε and ε0 are the permittivities evaluated at z and z0, respectively.
In this paper, we are entirely concerned with the vacuum situation with ε ¼ ε0 ¼ 1. As a result, the reflection coefficients

vanish and the scalar Green’s functions coincide,

gEðz; z0;ω; kÞ ¼ gHðz; z0;ω; kÞ ¼ 1

2κ
e−κjz−z0j: ðA8Þ

The vacuum Green’s dyadic therefore reads

gðz; z0;ω;k⊥Þ ¼
1

2κ
e−κjz−z0j

0
BB@

ω2 − k2x −kxky −ikxκsgnðz − z0Þ
−kxky ω2 − k2y −ikyκsgnðz − z0Þ

ikxκsgnðz0 − zÞ ikyκsgnðz0 − zÞ k2

1
CCA: ðA9Þ

Obviously, the vacuum Green’s dyadic is a symmetric matrix.

The symmetries of the vacuum Green’s functions in
frequency and wave number are frequently taken advantage
of in various calculations throughout the paper. The sym-
metries in kx and ky are obvious from Eq. (A9). All the
diagonal Green’s functions are even in both kx and ky but the
off-diagonal Green’s functions are odd in either kx or ky.
The Fourier transform of gij in y evaluated at coincident

y coordinates is

Gijðω; kxÞ ¼
Z

dky
2π

gijðω; kx; kyÞ: ðA10Þ

The real parts of Gij are all even in ω and actually
divergent. Only if ω2 > k2 does the wave number κ become
imaginary,

κ ¼ −isgnðωÞ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ω2 − k2

p
: ðA11Þ

The branch is chosen so that the Green’s functions are
retarded. The imaginary part of Gij are always odd in ω
because of the additional factor of sgnðωÞ in κ. As an
example, the imaginary part of Gxxðω; kxÞ is worked out in

detail in Eq. (2.20). Below we give the explicit forms for the
imaginary parts of all different Gij:

ImGxxðω;kxÞ¼
�1

4
ðω2−k2xÞsgnðωÞ; k2x <ω2;

0; k2x >ω2;
ðA12aÞ

ImGyyðω;kxÞ¼
�1

8
ðω2þk2xÞsgnðωÞ; k2x <ω2;

0; k2x >ω2;
ðA12bÞ

ImGzzðω;kxÞ¼
�1

8
ðω2þk2xÞsgnðωÞ; k2x <ω2;

0; k2x >ω2;
ðA12cÞ

ImGxyðω;kxÞ¼ ImGyzðω;kxÞ¼ ImGxzðω;kxÞ¼0: ðA12dÞ

We note ImGzz has exactly the same form as ImGyy,
reflecting the symmetry of the geometry of the vacuum
problem. The imaginary part of all off-diagonal Green’s
functions vanishes, but for different reasons: gxy is odd in ky
so that ImGxy evaluates to zero when taking the ky
integration over an even interval; gyz and gxz each contains
a factor of sgnðz − z0Þ, so ImGyz and ImGxz both evaluate to
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zero because we are taking the limit of the coincident z
coordinates.

APPENDIX B: LORENTZ TRANSFORMATION
PROPERTIES OF DIPOLE AND FIELD

Here, we describe how both the dipole and the field
transform under a Lorentz boost in the x direction with
speed v.
The dipole is often transformed from its moving frame to

its rest frame. In the frequency domain, the transformations
of x and y components of the dipole are

dxðωÞ ¼ d0xðγωÞ; dyðωÞ ¼ γd0yðγωÞ: ðB1Þ

In the time domain, the transformations for dx and dy are

dxðtÞ ¼
1

γ
d0x

�
t
γ

�
; dyðtÞ ¼ d0y

�
t
γ

�
: ðB2Þ

However, the field is often transformed from frame P to
frame R. In spacetime coordinates, the transformations of
different components of the electric field read

E0
xðr0; t0Þ ¼ Exðr; tÞ;

E0
yðr0; t0Þ ¼ γ½Eyðr; tÞ − vBzðr; tÞ�;

E0
zðr0; t0Þ ¼ γ½Ezðr; tÞ þ vByðr; tÞ�; ðB3Þ

where the transformation of the coordinates are

t¼ γðt0 þvx0Þ; x¼ γðx0 þvt0Þ; y¼ y0; z¼ z0: ðB4Þ

In momentum space, these transformations become

E0
xðω; kx; kyÞ ¼ Ex½γðωþ kxvÞ; γðkx þ ωvÞ; ky�;

E0
yðω; kx; kyÞ ¼ γðEy − vBzÞ½γðωþ kxvÞ; γðkx þ ωvÞ; ky�;

E0
zðω; kx; kyÞ ¼ γðEz þ vByÞ½γðωþ kxvÞ; γðkx þ ωvÞ; ky�:

ðB5Þ

APPENDIX C: THE MOMENTUM
DISTRIBUTION FUNCTIONS FOR
DIFFERENT POLARIZATIONS

The momentum distribution functions for the x polari-
zation and y polarization are defined, respectively, as

fXðyÞ ¼ 3

4γv

�
y2−

�
y−

1

γ

�
2 1

v2

�
¼ 3

4γv

�
1−

1

γ2v2
ðy− γÞ2

�
;

fYðyÞ ¼ 3

4γv

�
1−

1

2

�
y2 −

�
y−

1

γ

�
2 1

v2

��

¼ 3

4γv

�
1−

1

2

�
1−

1

γ2v2
ðy− γÞ2

��
: ðC1Þ

These functions are normalized to 1 with respect to the
integral on y,

Z
yþ

y−

dy fX;YðyÞ ¼ 1; ðC2Þ

with yþ ¼
ffiffiffiffiffiffiffi
1þv
1−v

q
and y− ¼

ffiffiffiffiffiffiffi
1−v
1þv

q
. Other integrals of these

distribution functions used in the formulas for quantum
vacuum frictional power and force are

Z
yþ

y−

dy yfX;YðyÞ ¼ γ;

Z
yþ

y−

dy
1

v

�
y −

1

γ

�
fX;YðyÞ ¼ γv: ðC3Þ

The momentum distribution function for the isotropic
polarization is defined as

fISOðyÞ ¼ fXðyÞ þ 2fYðyÞ ¼ 3

2γv
; ðC4Þ

which is normalized to 3, reflecting the contributions from
the three different diagonal polarizations,

Z
yþ

y−

dy fISOðyÞ ¼ 3: ðC5Þ

Other integrals of fISO used in the formulas for quantum
vacuum frictional power and force are

Z
yþ

y−

dy yfISOðyÞ ¼ 3γ;

Z
yþ

y−

dy
1

v

�
y −

1

γ

�
fISOðyÞ ¼ 3γv: ðC6Þ

APPENDIX D: THE QUANTUM FRICTIONAL
FORCE IN A GENERAL BACKGROUND

We provide in this appendix formulas for the quantum
frictional force that can be applied to backgrounds trans-
lationally invariant in the x-y plane. For example, the
particle is flying above a surface with a fixed z coordinate.
The following formulas are all written in terms of compo-
nents of the general Green’s dyadic in frameR evaluated at
the coincident spatial coordinates z ¼ z̃, the fixed position
of the particle.
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FY
I ¼ γ

Z
dω̃
2π

Z
d2k⊥
ð2πÞ2

Z
d2k̄⊥
ð2πÞ2 α

2
yyðω̃Þk̄x coth

�
β

2

�
ω̃

γ
þ k̄xv

��

×
1

ðω̃γ þ kxvÞ2
�
k2yv2Imgxx þ

ω̃2

γ2
Imgyy þ

ω̃

γ
kyvImgxy þ

ω̃

γ
kyvImgyx

��
ω̃

γ
þ kxv;k⊥; z; z̃

�

×
1

ðω̃γ þ k̄xvÞ2
�
k̄2yv2Imgxx þ

ω̃2

γ2
Imgyy þ

ω̃

γ
k̄yvImgxy þ

ω̃

γ
k̄yvImgyx

��
ω̃

γ
þ k̄xv; k̄⊥; z; z̃

�
: ðD1Þ

FY
II ¼ −γ

Z
dω̃
2π

Z
d2k⊥
ð2πÞ2

Z
d2k̄⊥
ð2πÞ2 α

2
yyðω̃Þkx coth

�
β

2

�
ω̃

γ
þ k̄xv

��

×
1

ðω̃γ þ kxvÞ2
�
k2yv2Imgxx þ

ω̃2

γ2
Imgyy þ

ω̃

γ
kyvImgxy þ

ω̃

γ
kyvImgyx

��
ω̃

γ
þ kxv;k⊥; z; z̃

�

×
1

ðω̃γ þ k̄xvÞ2
�
k̄2yv2Imgxx þ

ω̃2

γ2
Imgyy þ

ω̃

γ
k̄yvImgxy þ

ω̃

γ
k̄yvImgyx

��
ω̃

γ
þ k̄xv; k̄⊥; z; z̃

�
: ðD2Þ

FZ
I ¼ γ

Z
dω̃
2π

Z
d2k⊥
ð2πÞ2

Z
d2k̄⊥
ð2πÞ2 α

2
zzðω̃Þk̄x coth

�
β

2

�
ω̃

γ
þ k̄xv

��

×
1

ðω̃γ þ kxvÞ2
�
v2∂z∂ z̃Imgxx þ

ω̃2

γ2
Imgzz − i

ω̃

γ
v∂zImgxz þ i

ω̃

γ
v∂ z̃Imgzx

��
ω̃

γ
þ kxv;k⊥; z; z̃

�

×
1

ðω̃γ þ k̄xvÞ2
�
v2∂z∂ z̃Imgxx þ

ω̃2

γ2
Imgzz − i

ω̃

γ
v∂zImgxz þ i

ω̃

γ
v∂ z̃Imgzx

��
ω̃

γ
þ k̄xv; k̄⊥; z; z̃

�
: ðD3Þ

FZ
II ¼ −γ

Z
dω̃
2π

Z
d2k⊥
ð2πÞ2

Z
d2k̄⊥
ð2πÞ2 α

2
zzðω̃Þkx coth

�
β

2

�
ω̃

γ
þ k̄xv

��

×
1

ðω̃γ þ kxvÞ2
�
v2∂z∂ z̃Imgxx þ

ω̃2

γ2
Imgzz − i

ω̃

γ
v∂zImgxz þ i

ω̃

γ
v∂ z̃Imgzx

��
ω̃

γ
þ kxv;k⊥; z; z̃

�

×
1

ðω̃γ þ k̄xvÞ2
�
v2∂z∂ z̃Imgxx þ

ω̃2

γ2
Imgzz − i

ω̃

γ
v∂zImgxz þ i

ω̃

γ
v∂ z̃Imgzx

��
ω̃

γ
þ k̄xv; k̄⊥; z; z̃

�
: ðD4Þ

We notice the symmetry between the I and II contribu-
tions for the quantum vacuum friction formula in the
main text are still at work for a general background: FII
can be obtained directly by changing the overall sign and
trading the momentum factor k̄x for kx in FI. In addition,
there exists an obvious symmetry between the formulas
for FY and FZ. To be precise, FZ can be obtained by the
following replacement rules: k2ygxx → ∂z∂z

∼gxx, gyy → gzz,
kygxy → −i∂zgxz, kygyx → i∂z

∼gzx. At first sight, the
distinct replacements for the two off-diagonal contributions

seem different. But when the explicit Green’s
functions in Eq. (A7) are considered, we see that the
replacement rules make the two off-diagonal terms in FZ

the same.
The quantum friction in a general background from the x

polarization has already been written down in Eq. (3.14)
and Eq. (3.15). But these formulas could indeed be recast
into more complicated forms to make the symmetry
between polarizations more obvious (k2ygxx → k2xgxx,
gyy → gxx, kygxy → kxgxx, kygyx → kxgxx):
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FX
I ¼ 1

γ3

Z
dω̃
2π

Z
d2k⊥
ð2πÞ2

Z
d2k̄⊥
ð2πÞ2 α

2
xxðω̃Þk̄x coth

�
β

2

�
ω̃

γ
þ k̄xv

��

×
1

ðω̃γ þ kxvÞ2
�
k2xv2Imgxx þ

ω̃2

γ2
Imgxx þ

ω̃

γ
kxvImgxx þ

ω̃

γ
kxvImgxx

��
ω̃

γ
þ kxv;k⊥; z; z̃

�

×
1

ðω̃γ þ k̄xvÞ2
�
k̄2xv2Imgxx þ

ω̃2

γ2
Imgxx þ

ω̃

γ
k̄xvImgxx þ

ω̃

γ
k̄xvImgxx

��
ω̃

γ
þ k̄xv; k̄⊥; z; z̃

�
; ðD5Þ

FX
II ¼ −

1

γ3

Z
dω̃
2π

Z
d2k⊥
ð2πÞ2

Z
d2k̄⊥
ð2πÞ2 α

2
xxðω̃Þkx coth

�
β

2

�
ω̃

γ
þ k̄xv

��

×
1

ðω̃γ þ kxvÞ2
�
k2xv2Imgxx þ

ω̃2

γ2
Imgxx þ

ω̃

γ
kxvImgxx þ

ω̃

γ
kxvImgxx

��
ω̃

γ
þ kxv;k⊥; z; z̃

�

×
1

ðω̃γ þ k̄xvÞ2
�
k̄2xv2Imgxx þ

ω̃2

γ2
Imgxx þ

ω̃

γ
k̄xvImgxx þ

ω̃

γ
k̄xvImgxx

��
ω̃

γ
þ k̄xv; k̄⊥; z; z̃

�
: ðD6Þ

The overall factor has different powers of γ for FX than
for FY and FZ. This can be understood as a result of the
different γ factors in the Lorentz transformation of dipole
and field, i.e., Eq. (B1) and Eq. (B3), for parallel polari-
zation and perpendicular polarizations.

APPENDIX E: THE PRINCIPLE
OF VIRTUAL WORK

Here, we provide a proof of the principle of virtual work,
applicable to the current context. A similar proof, appli-
cable to a different context, may be found in Ref. [32].
Let F 0ðr00; r01Þ denote the point-separated particle-field

interaction free energy in frame P, where we have
identified and separated the dipole point, r00 ¼ ðx00; 0; 0Þ,
and the field point, r01 ¼ ðx01; 0; 0Þ. Here, for simplicity
of exposition, we ignore the temporal coordinates of these
two points, which are set equal. Under the combined
coordinate scaling

x0 → x0λ ¼ x00 þ
1

λ
ðx0 − x00Þ; ðE1aÞ

where λ > 0, and dual metric scaling

gx0x0 → gλx0x0 ¼ λ2gx0x0 ; ðE1bÞ

localized to a neighborhood of the line segment between
the two points, fx00 ≤ x0 ≤ x01; y

0 ¼ 0; z0 ¼ 0g, F 0 is invari-
ant; that is, in an obvious notation, F 0λ ¼ F 0. Thus, to first
order in δλ,

δF 0λ¼∂F 0λ

∂x0λ1 δx0λ1 þ
Z

dr0λ
δF 0λ

δgλx0x0 ðr0λÞ
δgλx0x0 ðr0λÞ¼0: ðE2Þ

Setting λ ¼ 1, Eq. (E2) becomes

−
∂F 0

∂x01 ðx
0
1−x00Þδλþ

Z
dr0

δF 0

δgx0x0 ðr0Þ
2gx0x0 ðr0Þδλ¼0; ðE3Þ

that is,

−
∂F 0

∂x01 ¼ 1

jx01 − x00j
Z

x0
1

x0
0

dx0
Z

dy0 dz0 T̂x0
x0 ðx0; y0; z0Þ

¼ 1

jx01 − x00j
Z

x0
1

x0
0

dx0 t̂x0x0 ðx0; 0; 0Þ; ðE4Þ

where we have used the fact that the free energy is the
negative of the effective Lagrangian of the particle-field
interaction, and

t̂x
0
x0 ðx0; 0; 0Þ≡

Z
dy0 dz0 T̂x0

x0 ðx0; y0; z0Þ ðE5Þ

is the transverse integral of the x0x0 component of the
corresponding stress tensor, which is localized to the
line segment between the dipole point and the field point.
In the limit as the field point approaches the dipole point,
Eq. (E4) yields

−
∂
∂x01 F

0ðr00; r01Þ
����
r0
1
→r0

0
�
¼ �t̂x

0
x0 ðr00�Þ: ðE6Þ

However, since changing the argument of differentiation in
the left-hand side of Eq. (E6) simply changes the sign, the
limit in the left-hand side must be independent of the sense
of approach, that is,
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∂
∂x00F

0ðr00; r01Þ
����
r0
1
→r0

0

¼ ∂
∂x00F

0ðr00; r01Þ
����
r0
1
→r0

0
�

¼ −
∂
∂x01F

0ðr00; r01Þ
����
r0
1
→r0

0
�

¼ �t̂x
0
x0 ðr00�Þ: ðE7Þ

From Eq. (E7), we deduce that

∂
∂x00 F

0ðr00; r01Þ
����
r0
1
→r0

0

¼ −
∂
∂x01 F

0ðr00; r01Þ
����
r0
1
→r0

0

¼ t̂x
0
x0 ðr00þÞ ¼ −t̂x0x0 ðr00−Þ; ðE8Þ

that is, the transverse integral of the x0x0 component of the
stress tensor changes sign as we pass from one side of the
interaction point to the other. The corresponding force
acting on either spatial side of the interaction point is
therefore the same:

∂
∂x00F

0ðr00;r01Þ
����
r0
1
→r0

0

¼−
∂
∂x01F

0ðr00;r01Þ
����
r0
1
→r0

0

¼ F̂0ðr00þÞ¼ F̂0ðr00−Þ¼ F̂0ðr00Þ; ðE9Þ

where F̂0ðr00þÞ≡ t̂x
0
x0 ðr00þÞ−0 and F̂0ðr00−Þ≡0−t̂x0x0 ðr00−Þ.

Finally, we must account for the fact that, because of the
symmetry ofF 0, there are two ways to identify and separate
the dipole point and the field point, each of which results in
a contribution identical to the above. Thus, including the
corresponding multiplicity factor of 2, the principle of
virtual work in the current context may be stated as

−
∂F 0

∂x0 ¼ −2
∂
∂x01F

0ðr00; r01Þ
����
r0
1
→r0

0

¼ F0ðr00Þ ¼ F0; ðE10Þ

where F0 ¼ 2F̂0.
A variant of the above approach may be used to establish

the corresponding relationship for the power. In this case,
we let F 0ðt00; t01Þ denote the point-separated particle-field
interaction free energy in frame P, where we have
identified and separated the dipole point, t00, and the field
point, t01. Here, for simplicity of exposition, we ignore the
spatial coordinates of these two points, which are set equal.
We also define

G0ðt00; t01Þ≡ F 0ðt00; t01Þ − F 0ðt00; t00Þ

¼
Z

t0
1

t0
0

dt0
∂
∂t0F

0ðt00; t0Þ: ðE11Þ

Under the combined coordinate scaling

t0 → t0λ ¼ t00 þ
1

λ
ðt0 − t00Þ; ðE12aÞ

where λ > 0, and dual metric scaling

gt0t0 → gλt0t0 ¼ λ2gt0t0 ; ðE12bÞ

localized to a neighborhood of the line segment between
the two points, ft00 ≤ t0 ≤ t01; x

0 ¼ x00; y
0 ¼ 0; z0 ¼ 0g, G0 is

invariant, that is, in an obvious notation, G0λ ¼ G0. Thus, to
first order in δλ,

δG0λ ¼ ∂F 0λ

∂t0λ1 δt0λ1 þ
Z

t0λ
1

t0
0

dt0λ
∂
∂t0λ

Z
dr0

δF 0λ

δgλt0t0 ðt0λÞ
δgλt0t0 ðt0λÞ¼ 0:

ðE13Þ

Setting λ ¼ 1, Eq. (E13) becomes

−
∂F 0

∂t01 ðt
0
1− t00Þδλþ

Z
t0
1

t0
0

dt0
∂
∂t0

Z
dr0

δF 0

δgt0t0 ðt0Þ
2gt0t0 ðt0Þδλ¼ 0;

ðE14Þ

that is,

∂F 0

∂t01 ¼ −
1

t01 − t00

Z
t0
1

t0
0

dt0
∂
∂t0

Z
dr0T̂t0

t0 ðt0Þ

¼ 1

t01 − t00

Z
t0
1

t0
0

dt0
∂
∂t0 Ê

0ðt0Þ

¼ 1

t01 − t00

Z
t0
1

t0
0

dt0P̂0ðt0Þ; ðE15Þ

where we have used the fact that the free energy is the
negative of the effective Lagrangian of the particle-field
interaction, and the energy

Ê0ðt0Þ≡ −
Z

dr0T̂t0
t0 ðt0Þ ðE16Þ

is the spatial integral of the t0t0 component of the corre-
sponding stress tensor, which is localized to the line
segment between the dipole point and the field point. In
the limit as the field point approaches the dipole point,
Eq. (E15) yields

∂
∂t01F

0ðt00; t01Þ
����
t0
1
→t0

0
�
¼ P̂0ðt00�Þ: ðE17Þ

However, since changing the argument of differentiation in
the left-hand side of Eq. (E17) simply changes the sign, the
limit in the left-hand side must be independent of the sense
of approach, that is,
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−
∂
∂t00 F

0ðt00; t01Þ
����
t0
1
→t0

0

¼ −
∂
∂t00F

0ðt00; t01Þ
����
t0
1
→t0

0
�

¼ ∂
∂t01F

0ðt00; t01Þ
����
t0
1
→t0

0
�

¼ P̂0ðt00�Þ: ðE18Þ

From Eq. (E18), we deduce that

−
∂
∂t00F

0ðt00;t01Þ
����
t0
1
→t0

0

¼ ∂
∂t01F

0ðt00;t01Þ
����
t0
1
→t0

0

¼ P̂0ðt00þÞ¼ P̂0ðt00−Þ¼ P̂0ðt00Þ; ðE19Þ

that is, the power on either temporal side of the interaction
point is the same. Finally, we must account for the fact that,
because of the symmetry of F 0, there are two ways to
identify and separate the dipole point and the field point,
each of which results in a contribution identical to the
above. Thus, including the corresponding multiplicity
factor of 2, the relationship for the power in the current
context may be stated as

∂F 0

∂t0 ¼ 2
∂
∂t01F

0ðt00; t01Þ
����
t0
1
→t0

0

¼ P0ðt00Þ ¼ P0; ðE20Þ

where P0 ¼ 2P̂0.

APPENDIX F: SIGN OF THE IMAGINARY PART
OF THE EFFECTIVE POLARIZABILITY

In this appendix, we prove that the diagonal elements of
the imaginary part of the effective, or dressed, polariz-
ability, Imα̂ðωÞ, are non-negative.
Since the (renormalized) intrinsic polarizability,

α≡ αðωÞ, is a real symmetric matrix, it may be diagon-
alized by the transformation

U−1αU ¼ λ; ðF1Þ

where the column vectors, u1, u2, and u3, of the orthogonal
matrix U ¼ ðu1;u2;u3Þ are orthonormal eigenvectors of α
and the diagonal elements of λ ¼ diagðλ1; λ2; λ3Þ are the
corresponding real eigenvalues. Then

α ¼ UλU−1 ðF2Þ

and

α2 ¼ UλU−1UλU−1 ¼ Uλ2U−1: ðF3Þ

We may therefore write

�
1þ

�
ω3

6π

�
2

α2

��
1þ

�
ω3

6π

�
2

α2

�−1
¼ 1 ðF4Þ

as

U

�
1þ

�
ω3

6π

�
2

λ2
�
U−1

�
1þ

�
ω3

6π

�
2

α2

�−1
¼ 1; ðF5Þ

whence
�
1þ

�
ω3

6π

�
2

α2

�−1
¼ U

�
1þ

�
ω3

6π

�
2

λ2
�−1

U−1: ðF6Þ

From Eq. (F3) and Eq. (F6), it follows that

Imα̂ ¼ ω3

6π
α2

�
1þ

�
ω3

6π

�
2

α2

�−1

¼ ω3

6π
Uλ2

�
1þ

�
ω3

6π

�
2

λ2
�−1

U−1; ðF7Þ

that is,

Imα̂¼ω3

6π
Udiag

�
λ21

1þðω3

6πÞ2λ21
;

λ22
1þðω3

6πÞ2λ22
;

λ23
1þðω3

6πÞ2λ23

�
U−1:

ðF8Þ
Since U is orthogonal, U−1 ¼ UT , so Eq. (F8) may be
written as

Imα̂ ¼ ω3

6π

X3
k¼1

λ2k
1þ ðω3

6πÞ2λ2k
ukuT

k : ðF9Þ

The elements of Imα̂ are therefore given by

Imα̂ij ¼
ω3

6π

X3
k¼1

λ2k
1þ ðω3

6πÞ2λ2k
UikUjk; ðF10Þ

where i; j ∈ fx; y; zg. In particular, the diagonal elements
of Imα̂ are manifestly non-negative:

Imα̂ii ¼
ω3

6π

X3
k¼1

λ2k
1þ ðω3

6πÞ2λ2k
U2

ik ≥ 0: ðF11Þ

APPENDIX G: INDUCED DIPOLE RADIATION

In Sec. IV we provided a physical intepretation of the
power emitted in frameP,−P0

II, and the power absorbed,P
0
I.

But is this interpretation correct? Indeed, it is, as a simple
calculation based on classical dipole radiation, supplemented
by the fluctuation-dissipation theorem, shows.
We start from the formula for the energy emitted per

unit frequency interval by dipole radiation (ω > 0) [see
Ref. [33], Eq. (35.36), except we are now using rationalized
Heaviside-Lorentz units]

dE0
rad

dω
¼ 1

6π2
ω4jd0ðωÞj2; ðG1Þ
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in frame P. Here, we envisage that there is no intrinsic
dipole moment, but rather, the dipole moment is induced by
the fluctuating electromagnetic field,

d0ðωÞ ¼ αðωÞ · E0ðωÞ; ðG2Þ

where the product of E0 fields is given by the fluctuation-
dissipation theorem (4.7-8). The imaginary parts of the
Green’s functions there are given by Eqs. (A12). Then, with
the interpretation that the delta function at coincident
frequencies is interpreted as T 0 ¼ 2πδð0Þ, where T 0 is
the time the configuration exists, we have

P0
rad ¼

E0
rad

T 0 ¼ 1

6π2

Z
∞

0

dωω4

Z
ω

−ω

dkx
2π

�
ðα2Þxx

1

4
ðω2 − k2xÞ þ ½ðα2Þyy þ ðα2Þzz�

1

8
ðω2 þ k2xÞ

�
coth

βγ

2
ðωþ kxvÞ: ðG3Þ

When the same variable change is made as in the main text ωy ¼ γðωþ kxvÞ, we recover exactly the formula (4.12),
thereby proving P0

rad ¼ −P0
II ¼ P0
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