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In this work, we propose that there exists a moving triangle singularity in the ψð2SÞ → πþπ−KþK−

process, whose position can vary from 1.158 to 1.181 GeV in the invariant mass spectrum of KþK−. After a
precise analysis on this process, it turns out that after doing some cuts on mπþπ− , experiments do have the
opportunity to observe this triangle singularity. In addition, when changing the cuts onmπþπ− , the movement
of the predicted triangle singularity can also be observed. Thus, we suggest future experiments, especially
Super Tau-Charm Facility (STCF), to do an analysis on the ψð2SÞ → πþπ−KþK− process to verify
our prediction.
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I. INTRODUCTION

In the past decades, the triangle singularity that proposed
by L. D. Landau in 1959 [1] has been recognized to play
important roles in understanding a series of anomalous
experimental observations. For example, after introducing
the triangle loop composed by kaons, Refs. [2–6] success-
fully explained the isospin breaking process ηð1405Þ →
π0f0ð980Þ [7] and Ref. [8] interpreted the nature of
a1ð1420Þ through πp → a1ð1260Þ → f0ð980Þπ process.
Especially, in recent years, with the discoveries of a series
of exotic states such as Zc [9–15], Pc [16,17] and X(2900)
[18,19], many researches on triangle singularity have been
carried out [2–6,8,20–57] (for a recent review, see Ref. [58]),
which imply that these exotic states can be related to some
specific triangle singularities.
However, as pointed out by Ref. [59], although triangle

singularity can successfully explain so many experimental
phenomena, until now the anomaly peak structure due to the
triangle singularity has not been fully confirmed by any
experiments. Especially, recently, we noticed that the
COMPASS experiment reanalyzed the πp → a1ð1260Þ →
f0ð980Þπ → 3π process [60]. By using the triangle singu-
larity produced by the kaon loop, they successfully explained
the peak of a1ð1420Þ without introducing the Breit-Wigner
structure. Although it obviously shows the importance of
triangle singularity in the hadron reaction, as pointed out by

Ref. [60], the fit where triangle singularity participates in is
just slightly better than the Breit-Wigner model, which
indicates that the existing data still cannot rule out the
Breit-Wigner model for a1ð1420Þ. Thus, in our view, we
still need further evidence for the triangle singularity.
According to the conclusions of our previous work [59],

there are several difficulties to search a perfect process which
can show the triangle singularity phenomena. For example,
the interference from the thresholds cusp will make the
distinction of triangle singularity difficult, and the unknown
vertices in the triangle loop of most processes will make the
precise prediction impossible on the theoretical side. Thus,
Ref. [59] proposed that it is very possible for experiments to
detect a pure triangle singularity in the ψð2SÞ → pp̄η
process, where the triangle loop is composed by J=ψ, η
and proton. Under this situation, the position of the triangle
singularity is 80 MeVabove the J=ψη threshold. Also, since
J=ψ , η, and the proton are all very narrow particles, the
signal of the triangle singularity is very sharp, which can be
distinguished from excited nucleons easily. In addition,
ψð2SÞ → J=ψη, J=ψ → pp̄ and pη → pη processes can
all be constrained by the experimental data. As a result,
Ref. [59] do find a triangle singularity at the right shoulder
of Nð1535Þ, whose width is about 5 MeV, and it may be
observed by the future experiments such as Beijing
Spectrometer (BESIII) and STCF.
Usually, in most papers the triangle singularity effects are

studied in a process with three-body final state. However, we
find that in the process with four-body final states, there will
exist very interesting phenomena due to the triangle singu-
larity. In Fig. 1, we show the diagram for a 1 → 4 process,
where two final particles labeled as C and D are from the
decay of particle B. Then for the fixed masses of mother
particle A, intermediate particles 1, 2, and 3, the relationship
between the invariant masses of particles ðC;DÞ and ðE;FÞ
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can be derived by the kinematic condition of triangle
singularity known as Coleman-Norton theorem [56,59],
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and mCD=EF is the invariant masses of particles ðC;DÞ=
ðE;FÞ, respectively. In principle, if the triangle singularity is
permitted in this process, there would be a series of
ðmCD;mEFÞ that can satisfy the above equations. Thus, if
we fix the value of mCD in the permitted kinematical range,
due to the triangle singularity there will be a peak structure in
the invariant mass spectrum of ðE;FÞ and the peak position
can be solved exactly from Eqs. (1) and (2). Then once the
value of mCD is changed, such peak will also move, i.e., the
peak position solved by the above equations will be changed.
Here we call it as “a moving triangle singularity,” which
should be an interesting phenomena for both theorists and
experimentalists.
Thus, as the first step, in this work we propose that a

moving triangle singularity can really happen in the
ψð2SÞ → πþπ−KþK− process. As shown in Fig. 2(a),
ψð2SÞ decays into J=ψ and η first, then J=ψ decays into
ρ0 and π0, after that ρ0 decays into πþπ− and a re-scattering
happens between η and π0 and transit into KþK−.
Obviously, the π0 decay from the J=ψ has large velocity
and it can catch η easily, which causes the triangle
singularity. On the other hand, since the width of ρ is very
large, i.e., around 140 MeV, we expect that the triangle
singularity produced can move in a considerable range.
From Eqs. (1) and (2), we find that the position of the
triangle singularity produced by this process can vary from
1.158 GeV to 1.181 GeV in the invariant mass spectrum of
KþK−, i.e., there exists about 23 MeV kinematic space for
the triangle singularity to move. Thus, in the current paper,
we will do a detailed analysis on this triangle singularity
and explore the possibility if future experiments can verify
our predictions.

This paper is organized as follows. After the introduc-
tion, we give the main decay mechanisms of ψð2SÞ →
πþπ−KþK− process in Sec. II. Then the numerical results
and corresponding discussions are given in Sec. III. Finally,
a summary is presented.

II. MAIN DECAY MECHANISMS OF
ψð2SÞ → π +π −K +K − PROCESS

The typical diagrams for the ψð2SÞ → πþπ−KþK− proc-
ess are given in Fig. 2. Here, Fig. 2(a) presents the triangle
loop diagram for ψð2SÞ → πþπ−KþK−, which is similar to
our previous work on ψð2SÞ → pp̄η=pp̄π0 process [59]. On
the other hand, the corresponding tree diagram considered as
the “background” is shown in Fig. 2(b), whereM denotes an
intermediate meson.
It is clear that the diagram shown in Fig. 2(a), which is

similar as Fig. 1, is a nice place to study the moving triangle
singularity. In the triangle loop diagram, ψð2SÞ decays into
J=ψ and η first, then J=ψ decays into ρ0 and π0. When π0

moves in the same direction as η and catches up with it, it
scatters to the charged kaon pair and the triangle singularity
happens. Obviously, the value of the invariant mass of kaon
pair at the triangle singularity point are determined by the
relative velocity between π0 and η. Actually, the velocity of
the π0 emitted by J=ψ will change because of the broad ρ
meson. As a result, the peak position due to the triangle
singularity in the invariant mass of kaon pair should move
with the invariantmass of πþπ−. By applyingEqs. (1) and (2),
we find that when the invariant mass of πþπ− changes within
½mρ−Γρ;mρþΓρ�, wheremρ∼770MeV and Γρ ∼ 140 MeV
denote the mass and width of ρ meson, respectively, the
position due to the triangle singularity at the invariant mass

FIG. 1. Kinematical mechanism of the production of a moving
triangle singularity.

(a) (b)

FIG. 2. The Feynman diagrams describing the process
ψð2SÞ → πþπ−KþK−. (a): loop diagram where triangle singu-
larity happens; (b): tree diagram called background.
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spectrum of final koan pair changes in the interval
½1.158 GeV; 1.181 GeV�. In this energy range, the main
“background” should comes from M ¼ a0ð980Þ and
a2ð1320Þ as shown in Fig. 2(b). Furthermore, we will give
an estimation of the other possible background in the next
section.
The tree diagram in Fig. 2 gives the dominant contribution

to ψð2SÞ → πþπ−KþK− process, thus, our target is to find a
way to make the signal caused by the triangle singularity
visible. In this work, we adopt the effective Lagrangian
approach to do the calculation, and the general forms of the
relevant effective Lagrangians are constructed as

LVVP ¼ gVVPεμναβ∂μVν∂αVβP; ð7Þ

LVPP ¼ igVPPVμP∂↔μP; ð8Þ

LSPP ¼ gSPPSPP; ð9Þ

LVVS ¼ gVVSVμVμS; ð10Þ

LVVT ¼ gVVT VμVνT μν; ð11Þ

LT PP ¼ gT PPT μν∂μP∂νP; ð12Þ

where P, S, V, and T are the fields of pseudoscalar, scalar,
vector, and tensor mesons, respectively.
Then, the amplitudes of the triangle loop diagram and

tree diagram given in Fig. 2 can be obtained straightfor-
wardly. For the triangle loop diagram, we can get that
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Z

d4q
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ðp4 þ p5 − qÞ2 −m2
η þ imηΓη

Mηπ0→KþK−

× gψð2SÞJ=ψηεμναβp1μϵψð2SÞνðp2α þ p3α þ qαÞ
× gJ=ψρπ0ε

λτχωðp2λ þ p3λ þ qλÞðp2χ þ p3χÞ
× gρππðpξ

3 − pξ
2ÞGβτðp2 þ p3 þ q;mJ=ψ Þ; ð13Þ

where Gμνðp;mÞ ¼ −gμν þ pμpν

m2 is the projection operator,
Mηπ0→KþK− is the amplitude of ηπ0 → KþK− transition,

which will be discussed later, and F ðq;m;ΛÞ ¼
Λ4

ðq2−m2Þ2þΛ4 is the form factor, which is used to describe

the structure effects of interaction vertices and off-shell
effects of internal particles, also, the introduction of this
form factor will help us avoid the ultraviolet divergence.
We want to note here that when the triangle singularity
happens, all the internal particles are on-shell. At that

time, we have F ðp;m;ΛÞ ¼ 1, i.e., these form factors will
not affect the strength of triangle singularity at the peak
position. In the current calculation, as done in Ref. [59],
ΛJ=ψ ;η;π0 is set as mJ=ψ ;η;π0 þ αΛQCD, where α is a free
parameter and ΛQCD ¼ 0.22 GeV. The value of α is taken
as 1 because the change of this α affects little the behavior
ofMLoop. A similar conclusion is proven by the numerical
calculation in the previous work on the ψð2SÞ →
pp̄η=pp̄π0 process [59].
For the Mηπ0→KþK− appears in Eq. (13), i.e., the

amplitude of ηπ0 → KþK− transition, we describe it with
the chiral unitary approach [61–73] and the detailed
expressions are derived in the appendix. Furthermore, in
Fig. 3, we make a comparison between the chiral unitary
approach and Breit-Wigner model in describing the ηπ0 →
KþK− transition, where the contribution of a0ð980Þ is
included in the Breit-Wigner model. In Fig. 3, the upper
figure represents the modules of the amplitudes of ηπ0 →
KþK− transition and the lower figure describes the phases
of the amplitudes, from which two approaches shown by
solid (red) and dashed (blue) lines have very similar

FIG. 3. The comparison between the chiral unitary approach
and Breit-Wigner model in describing the ηπ0 → KþK− tran-
sition, where the red solid line gives the behavior of Breit-Wigner
model and the dashed blue line gives the behavior of chiral
unitary model. For the Breit-Wigner model, we include the
contribution of a0ð980Þ. In this figure, the upper figure represents
the modules of the amplitudes of ηπ0 → KþK− transition and the
lower figure describes the phases of the amplitudes.
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behaviors. Since our triangle singularity varies in the
interval [1.158 GeV, 1.181 GeV], as shown in Fig. 3, in
this region the magnitude of the amplitude given by the
chiral unitary model is a little smaller than that of Breit-
Wigner model. It indicates that at least the choice of chiral
unitary model will not make any overestimation. In
addition, Refs. [63–68] pointed that a good agreement
with experimental data is obtained up to 1.2 GeV by using
the unitary approach. Thus, it is reasonable to apply it to
describe the π0η → KþK− vertex here.
Next, for the tree diagram, i.e., Fig. 2(b), when the

intermediate mesonM is a0ð980Þ, considering that a0ð980Þ
is very close to the KþK− threshold, the propagator of
a0ðð980Þ should be expressed in Flatte form [74]. Thus, this
amplitude can be written as

MTree
a0ð980Þ ¼ gψð2SÞa0ð980Þ0ρ0gρ0πþπ−ϵψð2SÞμðp3ν − p2νÞ

×
ga0ð980Þ0KþK−

m2
a0ð980Þ0 −m2

45 − im45Γa0ð980Þ0ðm45Þ

×
Gμνðp2 þ p3; mρ0Þ

m2
23 −m2

ρ0
þ imρ0Γρ0

; ð14Þ

with

Γa0ð980Þ0ðm45Þ ¼ Γηπ0

a0ð980Þ0ðm45Þ þ ΓKK̄
a0ð980Þ0ðm45Þ; ð15Þ

Γbc
a ðsÞ ¼ g2abc

16π
ffiffiffi
s

p ρbcðsÞ; ð16Þ

ρbcðsÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðmb −mcÞ2Þðs − ðmb þmcÞ2Þ

p
s

; ð17Þ

where m45 and m23 are the invariant masses of KþK− and
πþπ− respectively, gabc is the coupling constant of the a →

bc process, and ΓKK̄
a0ð980Þ0ðm45Þ ¼

g2
a0ð980Þ0KþK−

16πm45
½ρKþK−ðm45Þ

þ ρK0K̄0ðm45Þ� [75]. As done in Ref. [74], in this work,
we set ga0ð980Þ0KþK− ¼ 2.54 GeV and ga0ð980Þ0π0η ¼
3.33 GeV.
Then, for the tree diagram where the intermediate meson

M is a2ð1320Þ, the amplitude can be written as

MTree
a2ð1320Þ ¼ gψð2SÞa2ð1320Þ0ρ0gρ0πþπ−ϵ

μ
ψð2SÞðp2ξ − p3ξÞp4αp5β

×
ga2ð1320Þ0KþK−Gμναβðp4 þ p5; ma2ð1320Þ0Þ
m2

45 −m2
a2ð1320Þ0 þ ima2ð1320Þ0Γa2ð1320Þ0

×
Gνξðp2 þ p3; mρ0Þ

m2
23 −m2
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þ imρ0Γρ0

; ð18Þ

where

Gμναβðp;mÞ¼1

2
ðGμαðp;mÞGνβðp;mÞþGμβðp;mÞGναðp;mÞÞ

−
1

3
Gμνðp;mÞGαβðp;mÞ: ð19Þ

Finally, the differential decay width of the ψð2SÞ →
πþπ−KþK− process can be expressed as [76]

dΓ ¼
X

jMTree
a0ð980Þ þMTree

a2ð1320Þ þMLoopj2

×
m234m45jp⃗πj�
48ð2πÞ6m3

ψð2SÞ
dm234dm45dm23dΩ�

π; ð20Þ

where
P

denotes the summation and average over the spin
of ψð2SÞ, jp⃗πj� andΩ�

π are the modulus of the 3-momentum
and solid angle of πþ=π− in the ρ0 rest frame respectively.

III. NUMERICAL RESULTS AND DISCUSSIONS

A. Determining the coupling constants

Before presenting our numerical results, we need to
determine the relevant coupling constants needed first.
For the coupling constants gψð2SÞJ=ψη, gJ=ψρ0π0 , gρ0πþπ− ,
ga2ð1320Þ0KþK− and gψð2SÞa2ð1320Þ0ρ0 , since experiments have
measured the branching ratios of the corresponding proc-
esses [77], these coupling constants can be extracted from
the data given in RPP [77], both of which are collected in
Table I.
For the gψð2SÞa0ð980Þρ0 , since the branching ratio of

ψð2SÞ → a0ð980Þρ process is still absent in RPP [77], by
assuming that J=ψ and ψð2SÞ have very similar properties,
we naively estimate the coupling constants between ψð2SÞ,
a0ð980Þ, and ρ by the following way. From RPP, we
can get that the branching ratios of J=ψ → f0ð980Þω,
J=ψ → f0ð980Þϕ, J=ψ → f0ð980Þϕ → ϕπþπ−, and ψð2SÞ
→ f0ð980Þϕ → ϕπþπ− processes are ð1.4� 0.5Þ × 10−4,
ð3.2� 0.9Þ × 10−4, ð2.59� 0.34Þ × 10−4, and ð7.5� 3.3Þ
×10−5, respectively [77]. Thus the branching ratio of
ψð2SÞ → a0ð980Þρ process might be estimated as

TABLE I. The values of relevant coupling constants extracted
from the corresponding branching ratios [77].

Coupling constant Branching ratio [77] Value

gψð2SÞJ=ψη ð3.37� 0.05Þ × 10−2 (0.218� 0.003)
gJ=ψρ0π0 ð5.6� 0.7Þ × 10−3 ð2.535� 0.159Þ × 10−3

gρ0πþπ− ∼100% ∼7.242
ga2ð1320Þ0KþK− ð2.45� 0.8Þ × 10−2 (5.669� 0.956)
gψð2SÞa2ð1320Þ0ρ0 ∼8.67 × 10−5 ∼6.215 × 10−4
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Bðψð2SÞ → a0ð980Þ0ρ0Þ
≈ Bðψð2SÞ → f0ð980ÞωÞ

¼ BðJ=ψ → f0ð980ÞωÞ
BðJ=ψ → f0ð980ÞϕÞ

Bðψð2SÞ → f0ð980ÞϕÞ

¼ BðJ=ψ → f0ð980ÞωÞ
BðJ=ψ → f0ð980ÞϕÞ

BðJ=ψ → f0ð980ÞϕÞ

×
Bðψð2SÞ → f0ð980Þϕ → ϕπþπ−Þ
BðJ=ψ → f0ð980Þϕ → ϕπþπþÞ

¼ BðJ=ψ → f0ð980ÞωÞ
Bðψð2SÞ → f0ð980Þϕ → ϕπþπ−Þ
BðJ=ψ → f0ð980Þϕ → ϕπþπþÞ

¼ ð4.054� 2.358Þ × 10−5: ð21Þ

Then the coupling constant for the vertex of ψð2SÞ →
a0ð980Þ0ρ0 is calculated as gψð2SÞa0ð980Þ0ρ0 ¼ ð9.6� 3.1Þ×
10−4 GeV.

B. The signal of triangle singularity

With all the preparations above, now we can present our
numerical results. First of all, we want to show the behavior
of the loop diagram of ψð2SÞ → πþπ−KþK− process. In
Fig. 4, the Dalitz plot of the loop diagram only is presented,
where a thin band totally caused by the triangle singularity
can be clearly seen. In this figure, mπþπ− and mKþK− are
limited in [0.59 GeV, 0.96 GeV] and [1.04 GeV, 1.31 GeV]
respectively. Here, the interval of mπþπ− just covers the ρ
meson as ½mρ − 1.3Γρ; mρ þ 1.3Γρ�, and the range of
mKþK− is just around the range where the triangle singu-
larity is happening. From Fig. 4, it is clear that when mπþπ−

is closer to the mass of ρ meson, the brightness of the thin
band is higher. In addition, when mπþπ− is smaller than
mρ − Γρ (0.62 GeV) or larger thanmρ þ Γρ (0.92 GeV), the
color of the thin band is too gloomy to be distinguished
from the region where the triangle singularity doesn’t
happen, i.e., the strength of the triangle singularity is
suppressed tremendously by the propagator of ρ meson
when the difference between mπþπ− and mρ is larger than
Γρ. Thus, in the loop diagram of ψð2SÞ → πþπ−KþK−

process, when mπþπ− changes in the interval [0.59 GeV,
0.96 GeV], it already contains most of the contribution of
the triangle singularity. In the current calculation, we will
just focus on the physics in this phase space range, and such
cut will be perfect by reducing the interference from the
background.
Additionally, a thin and bright curve in Fig. 4 covers

almost 30 MeV for the invariant mass of KþK−, which
indeed proves our previous argument in Sec. II that there
exists a moving triangle singularity in Fig. 2(a). When
getting the coordinate of the point on the curve, we can
easily find that when the value of the mπþπ− is smaller, the
mKþK− will be larger. Actually, this phenomena is easy to be
understood from the physics of the triangle singularity.

Since the mass of ψð2SÞ is fixed, for the ψð2SÞ → J=ψη
process, the velocity of the emitted η meson is also fixed.
However, for the J=ψ → ρ0π0 process, when the mπþπ− is
smaller, it is equivalent to having the mass of the emitted ρ0

smaller, then it will cause the velocity of π0 become larger.
Obviously, under this situation π0 can catch up with η
easier, which lets the position of triangle singularity in the
invariant mass spectrum of KþK− become larger.
To check the behavior of the triangle singularity in the

KþK− invariant mass spectrum, an integration on mπþπ−

is carried out for the intervals as ½mρ − Γρ; mρ þ Γρ�,
½mρ −

Γρ

2
; mρ þ Γρ

2
� and ½mρ −

Γρ

4
; mρ þ Γρ

4
�. The results

are shown in Fig. 5. For each range of integration, the
loop diagram [Fig. 2(a)] produces a broad bump in
the KþK− invariant mass spectrum, and we find that
the width of bumps will become narrower when ΔΓ is
reduced. It indicates that this broad width depends on the
integration range of mπþπ− , rather than on the triangle
singularity only. Actually, the peak due to triangle
singularity here should be very sharp, because the
intermediate states, J=ψ , η, and π0 are all very narrow.
It was proven in our previous work on ψð2SÞ →
pp̄η=pp̄π0 processes [59], where the triangle singularity
caused by the pure J=ψηp loop generates a very sharp
structure with width around 1 MeV.
Now let us explain why the integration range of mπþπ−

affects the width of the bump in the invariant mass spectrum
of KþK−. As we have mentioned in Sec. II, the change of

FIG. 4. The Dalitz plot of the ψð2SÞ → πþπ−KþK− process
after considering the contribution of Fig. 2 (a) only, where mπþπ−

and mKþK− are limited in [0.59 GeV, 0.96 GeV] and [1.04 GeV,
1.31 GeV] respectively, and the thin band in the middle is the
contribution of the triangle singularity.
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mπþπ− will cause the movement of the peak position due to
the triangle singularity in the KþK− invariant mass spec-
trum. In addition, the integration range of mπþπ− is
½mρ − Γρ; mρ þ Γρ�, where each value of mπþπ− can have
a triangle singularity. As a result, the broad structure
actually is constructed by a series of narrow bumps purely
due to the triangle singularities. Obviously, if we reduce
ΔΓ, due to the fact that the triangle singularity with mπþπ−

out of ½mρ − ΔΓ; mρ þ ΔΓ� is suppressed tremendously, the
triangle singularity located around mKþK− ¼ 1.17 GeV,
which is the mEF solved from Eq. (1) with the
mCD ¼ mπþπ− ¼ mρ ¼ 0.77 MeV, will give the largest
contribution. At that time, the signal of the triangle
singularity will be very sharp, which will give the same
behavior as that in ψð2SÞ → pp̄η=pp̄π0 processes [59].
In Fig. 6, we continue to reduce ΔΓ to present the KþK−

invariant mass spectrum of the loop diagram (Fig. 2 (a)).

The bump caused by triangle singularity becomes much
sharper, however, its strength also becomes much smaller.
In summary, a very important information that we can get
from the above explanation is that the broad bump in Fig. 5
is actually a superposition of a series of sharp triangle
singularities with different positions. Then, through chang-
ing the integration range of mπþπ− , i.e., the value of ΔΓ, the
width of the peak in the invariant mass spectrum of KþK−

can be adjusted to a suitable value. As Ref. [59] points out,
the width is too narrow to be detected because of the
limitation of the resolution of the detector. Thus, by
comparing the structure at all ΔΓ as shown in Figs. 5
and 6, we find that ΔΓ ¼ 16 MeV looks the best choice.
Finally, Fig. 7 presents the movement of the triangle

singularity. Here, we carry out the integration on mπþπ−

within the interval ½mρ þ Δm − ΔΓ; mρ þ Δmþ ΔΓ�,
where Δm is the shift from the center mass of ρ and ΔΓ
is fixed as 16 MeV. As shown in this figure, when Δm
changes, the positions of the peaks caused by the triangle
singularities change explicitly. Furthermore, when jΔmj
become larger, the strength of the peak is reduced because
of the suppression from the propagator of ρ meson. For
each peak, the width is around 3 MeV because of the same
value of ΔΓ ¼ 16 MeV used.

C. The possibility of observing this triangle singularity
in the ψð2SÞ → π +π −K +K − process

Apparently, to study if our triangle singularity in the
ψð2SÞ → πþπ−KþK− process can be observed in experi-
ments, discussions on the loop diagram only is far from
enough. In principle, we should consider the contributions
of the tree diagrams given by Fig. 2(b), i.e., the back-
ground, to see the possibility.
Similarly as done in Sec. III B, we also present the Dalitz

plot first, and the result is given by Fig. 8. In this Dalitz
plot, two bright spots located around 1 and 1.35 GeVare for

FIG. 5. The KþK− invariant mass spectra of the ψð2SÞ →
πþπ−KþK− process, which contains the contribution of loop
diagram only. In this figure, the symbol ΔΓ means that the
integration on mπþπ− is carried out within the interval ½mρ − ΔΓ;
mρ þ ΔΓ�.

FIG. 6. The KþK− invariant mass spectra of the ψð2SÞ →
πþπ−KþK− process, where we contain the contribution of the
loop diagram only. In this figure, the symbol ΔΓ means that the
integration on mπþπ− is carried out within the interval ½mρ − ΔΓ;
mρ þ ΔΓ�.

FIG. 7. The KþK− invariant mass spectra of the ψð2SÞ →
πþπ−KþK− process, where the Δm means that the integration on
mπþπ− is carried out within the interval ½mρ þ Δm − ΔΓ; mρ þ
Δmþ ΔΓ� with ΔΓ ¼ 16 MeV. In this figure, we only include
the contributions of the loop diagram.
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the contributions of M ¼ a0ð980Þ and a2ð1320Þ from the
tree diagrams as shown in Fig. 2(b), respectively. These two
bright spots indicate that the contribution of tree diagram
dominate in our interested phase space range. However,
fortunately, in Fig. 8, we can still slightly see a subtle thin
band at the same location of Fig. 4, which tells us that the
effect caused by our triangle singularity may still be
observable. Thus, next, our task is to find a proper way
to make the signal of the triangle singularity still be visible
after including the background.
In the first step, we draw the similar figure as Fig. 5 but

including the background contribution as shown in Fig. 9.
Unfortunately, the broad peaks due to the triangle singularity
almost disappear and just leave some twists there. It is
natural to continue reducing the value of ΔΓ, because the
peak structure of the loop becomes much sharper as shown
in Fig. 6. Then we set ΔΓ as 4 MeV, 8 MeV, and 16 MeV to
see the change of the KþK− invariant mass spectrum, and
the corresponding numerical results are given in Fig. 10.
Now the peaks due to the triangle singularity are clearly seen
even taking into account the contribution of the tree diagram,
which means that it may be possible for experiments to
observe our triangle singularity by adding cuts on the
invariant mass of πþπ−. This phenomenon is understand-
able. For each fixed value of mπþπ− , in the invariant mass

spectrum of KþK−, the triangle singularity only dominates
in a very small range. However, the background contribution
is everywhere and almost flat. Then, through the integration,
these background contributions are summed together for
every point in the invariant mass spectrum of KþK−. Once
we reduce the value ofΔΓ roughly with a factor 10, i.e., from
ΔΓ ¼ Γρ ∼ 140 MeV to 16 MeV, as shown by the dashed
blue lines in Fig. 5 and Fig. 6, the background contribution is
also suppressed roughly with a factor 10, while from Fig. 5
and Fig. 6 the peak strength of dΓ=dmKþK− only reduces
from 3.8 × 10−10 to 1.2 × 10−10. In other words, the con-
tribution of background will be suppressed much faster than
that of signal when ΔΓ is reduced. Thus, if the integral
interval of mπþπ− is too large, the discrepancy between the
contributions of tree and loop diagrams will be too large.
Furthermore, as discussed before, when ΔΓ is larger, the

FIG. 8. The Dalitz plot of the ψð2SÞ → πþπ−KþK− process
after considering the contributions of both Fig. 2(a) and Fig. 2(b),
where the intermediate M in Fig. 2(b) includes a0ð980Þ and
a2ð1320Þ. Same as Fig. 4, mπþπ− and mKþK− are limited in
[0.59 GeV, 0.96 GeV] and [1.04 GeV, 1.31 GeV] respectively. In
this figure, the two bright spots located around 1 and 1.35 GeV
correspond to the contributions of a0ð980Þ and a2ð1320Þ re-
spectively. The subtle thin band pointed by the red arrow in the
middle is the contribution of the triangle singularity.

FIG. 9. The KþK− invariant mass spectra of the ψð2SÞ →
πþπ−KþK− process, where the ΔΓ means that the integration on
mπþπ− is carried out within the interval ½mρ − ΔΓ; mρ þ ΔΓ�. In
this figure, both the contributions of the loop diagram and the tree
diagrams are considered, where for the tree diagrams, we include
the contributions of a0ð980Þ and a2ð1320Þ.

FIG. 10. The KþK− invariant mass spectra of the ψð2SÞ →
πþπ−KþK− process, where the ΔΓ means that the integration on
mπþπ− is carried out within the interval ½mρ − ΔΓ; mρ þ ΔΓ�. In
this figure, the contributions of loop diagram in addition with the
contributions of a0ð980Þ and a2ð1320Þ are all included.
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peak structure of the triangle singularity becomes broader.
Thus, the signal of the triangle singularity is buried, which
will make our triangle singularity invisible. Thus, to observe
the peak due to the triangle singularity, we need a small
interval range of mπþπ− . However, from Fig. 10 we can see
that we cannot cut mπþπ− as small as possible because if the
integral interval mπþπ− is too small, not only the overall
magnitude of the KþK− invariant mass spectrum will be too
small, but also the width of the signal will be too narrow,
which will make it too difficult for experiments to observe
this signal of the triangle singularity. Thus, in our view, to
detect the triangle singularity in future experiments, we
should find a balance between the cut on mπþπ− , the overall
magnitude of KþK− invariant mass spectrum and the
significance of the signal of the triangle singularity, which
we will discuss in detail in Sec. III D.
Furthermore, by changing the integral interval of mπþπ− ,

Fig. 11 presents the “moving triangle singularity”. In
Fig. 11, the integration on mπþπ− is carried out within
the interval ½mρ þ Δm − ΔΓ; mρ þ Δmþ ΔΓ�, where Δm
is the divergence from the center mass of ρ meson and ΔΓ
is fixed as 16 MeV. From Fig. 11 we can see that when
jΔmj ¼ 35 MeV, the center value of the signal caused by
our triangle singularity can move about 3 MeV, in addition,
when Δm ≠ 0, both the significance of the signal and the
overall magnitude of KþK− invariant mass spectrum are
decreased, which is easy to be understood since when
Δm ≠ 0, both of them will be suppressed by the propagator
of ρmeson. Thus, it requires to change the cuts onmπþπ− in
experiments to observe the movement of the triangle
singularity, which, in our view, must be a very interesting
topic and help us understand more about the triangle
singularity itself.
At last, it is worthy to make a discussion to justify that it is

almost enough to use these tree diagrams instead of all

possible background contribution. We have done two other
calculations to estimate the background. From RPP, we have
the branching ratio of the ψð2SÞ → πþπ−KþK− process is
7.2 × 10−4 [77]. However, in our calculation the branching
ratios of ψð2SÞ → ρ0a00ð980Þ → πþπ−KþK− and ψð2SÞ →
ρ0a02ð1320Þ → πþπ−KþK− are around 5 × 10−6. It indi-
cates that both of them are not the dominant processes for
the ψð2SÞ → πþπ−KþK− reaction. From Refs. [78,79], the
main contribution is from ψð2SÞ → K�ð892ÞK̄�ð892Þ.
Thus, we assume the branching ratio of ψð2SÞ →
K�ð892ÞK̄�ð892Þ → πþπ−KþK− is 7.2 × 10−4, i.e., all
πþπ−KþK− final states are from K�ð892ÞK̄�ð892Þ. But
we find that dΓ=dmKþK− with the integration range ofmπþπ−

frommρ − Γρ tomρ þ Γρ is around 10−11, which is an order
of magnitude smaller than that of the tree diagrams of
a00ð980Þ and a02ð1320Þ. Furthermore, if we just consider a
phase space distribution, the dΓ=dmKþK− by integrating
mπþπ− from mρ − Γρ to mρ þ Γρ is around 10−10 which is
still smaller than the contribution of the a00ð980Þ and
a02ð1320Þ resonances. By these two comparisons, we believe
that in the range which is sensitive for the signal of the
triangle singularity, the main background is roughly from the
tree diagram with a00ð980Þ and a02ð1320Þ resonances as
calculated above.

D. How to detect the triangle singularity in the
ψð2SÞ → π +π −K +K − process in experiments

Finally, in this subsection we will discuss in detail how to
detect the predicted triangle singularity in the ψð2SÞ →
πþπ−KþK− process in future experiments. As discussed in
the above subsection, if the integral interval of mπþπ− is too
large, the signal of the triangle singularity would be invisible
in the invariant mass spectrum of KþK− since the ratio
between the contributions of loop and tree diagrams is
negligible. Thus, when analyzing the experimental data of
ψð2SÞ → πþπ−KþK− process, experimentalists cannot get
the signal of the triangle singularity directly from the full
KþK− invariant mass spectrum, which just integrate the
completed range of mπþπ− . Therefore, to extract the triangle
singularity, the experimentalists should make cuts on the
mπþπ− around themρ region, and then divide them in several
bins of mπþπ− .
Now let us discuss how to make the cut ofmπþπ− to show

the peak due to triangle singularity on the mKþK− spectrum.
Here, we need to balance two facts, the visible peak structure
and enough statistic events, and there exists one variable ΔΓ
to control them. Furthermore, because of the limitation of the
resolution of the detector, for example, currently the reso-
lution of BESIII is about 4 MeV [80], the width of peaks to
be observed should not be too small. Thus, by comparing
various lines in Figs. 9 and 10, we think that ΔΓ ¼ 16 MeV
maybe a good choice. In this situation, the width of the signal
is enlarged to about 3 MeV, and the signal almost takes 5%,

FIG. 11. The KþK− invariant mass spectra of the ψð2SÞ →
πþπ−KþK− process, where the Δm means that the integration on
mπþπ− is carried out within the interval ½mρ þ Δm − ΔΓ; mρ þ
Δmþ ΔΓ� with ΔΓ ¼ 16 MeV. In this figure, the contributions
of loop diagram in addition with the contributions of a0ð980Þ and
a2ð1320Þ are all included.
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which requires almost 500 events at least to control the
statistical fluctuations.
Now let us derive the expression to estimate the events

number through dΓ=dmKþK− as follows,

NΔm ¼
Z
Δm

dΓ
dmKþK−

dmKþK−
Nψð2SÞ
Γψð2SÞ

; ð22Þ

where Nψð2SÞ is the number of ψð2SÞ events, Γψð2SÞ
is the width of ψð2SÞ, Δm is the bin width, NΔm is the
events that the bin contains, and the integrationR
Δm

dΓ
dmKþK−

dmKþK− is the total width under each bin.

Then with Eq. (22), as an example, we now analyse if the
current BESIII experiment can observe the triangle
singularity. According to Ref. [80], nowadays BESIII
has 800 million ψð2SÞ, while in the future, the number of
ψð2SÞwill increase to 4 billion [80]. In addition, currently
the resolution of BESIII is about 4 MeV [80]. By taking
ΔΓ ¼ 16 MeV, if we have 4 billion ψð2SÞ, then we will
have about 10 events per MeV, also, the width of the
signal is enlarged to about 3 MeV. The enhancement of
the signal is about 5%, which means it will be very hard
for BESIII to observe the triangle singularity.
Recently, we notice that there is a talk on the updated

simulation progress of STCF [81]. In this talk, we find that
in the future STCF, we can get 640 billion ψð2SÞ even per
year [81], which means even using the ΔΓ ¼ 16 MeV cut
on mπþπ− , for the KþK− invariant mass spectrum, we will
have about 1600 events per MeV per year, also, since the
enhancement of the signal is about 5%, we can get 200
events of the enhancement per year. In addition, STCF has
excellent resolution [81], which makes us believe STCF
will be a very nice platform for searching this triangle
singularity.
If in the future, experiments can really observe our

triangle singularity after doing some cuts on mπþπ− .
Experimentalists are encouraged to change the cuts to
verify the movement of our triangle singularity, i.e.,
experiments can continue to check the results given in
Fig. 11. In our view, both the detection of our triangle
singularity and the observation of its movement are very
important and interesting topics. They will not only help
us verify the concept of triangle singularity, but also help
us understand more about its properties.
Finally, we should admit that the signal is so small that

a very high statistic is needed. The main reason is that we
choose a process with narrow widths of all intermediate
particles in the loop, which will lead to difficulties in
registering the effect. As discussed in Ref. [82], when
Γ → 0, the amplitude corresponding to the triangle dia-
gram has a singularity of the form lnΓ. But in fact, the
decay vertex is proportional to

ffiffiffi
Γ

p
so the singularity

collapses at zero width. In our previous paper [59], it is
shown by the numerical calculation by changing the
width of J=ψ . However, after considering the width of ρ

meson, the width of the peak due to the triangle
singularity will become much broader. In other words,
the integration on the invariant mass of πþπ− will
strengthen the signal a bit. Anyway, although the effect
due to the triangle singularity proposed here is not so
strong, fortunately, there still exist a glimmer of hope to
observe this signal at STCF in the future.

IV. SUMMARY

Although the triangle singularity proposed by L. D.
Landau [1] might be very important in explaining many
abnormal experimental results [7,9–17]. The manifesta-
tion as a very narrow peak has not yet been seen in
experiments because in practical case the particle
with mass m1 in Fig. 1 has a width of the order of tens
of MeV.
Thus, Ref. [59] predicted precisely that there exists a

pure triangle singularity in the ψð2SÞ → pp̄η process,
which can be observed by the future experiments such
as BESIII and STCF. However, apart from searching for the
triangle singularity in a process with 3 final states only, we
find that it is more interesting to search for a triangle
singularity in a process with 4 final states since it will not
only give us a triangle singularity, but also this triangle
singularity can move in a range.
In the current work, we propose that we can detect such a

moving triangle singularity in the ψð2SÞ → πþπ−KþK−

process in the invariant mass of KþK−, we find that the
position of the triangle singularity produced by this process
can vary from 1.158 to 1.181 GeV.
According to our analysis, it is really possible for

future experiments to observe the triangle singularity.
However, to detect this triangle singularity and its move-
ment, experimentalists cannot observe the KþK− invari-
ant mass spectrum directly, instead, they should do some
cuts on themπþπ− first. Based on our numerical results, we
suggest that experimentalists can do a series of cuts with
about 32 MeV each on the mπþπ− around the center mass
of ρ meson, i.e., 770 MeV. At that time, the enhancement
of the triangle singularity is about 5%, and the width of
the signal is about 3 MeV. In addition, with different cuts
on mπþπ− , we are confident that experiments can see the
movement of the triangle singularity clearly.
Considering the current experimental status, we find that

the verification on the triangle singularity in this work may
not be observed in the BESIII experiment [80]. However,
according to the talk on the updated simulation progress of
STCF [81], we find that in the future STCF, we can get
about 200 events of the enhancement of our triangle
singularity per year, which will be a nice place for detect
this triangle singularity. In our view, the observation of this
triangle singularity will not only verify the concept of
triangle singularity, but also help to understand more about
its properties.
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APPENDIX

In Sec. II, we have written out the amplitudes of triangle
loop diagram and tree diagram through effective
Lagrangian approach. However, the specific expression
of Mπ0η→KþK− in Eq. (13) is still unknown. Thus, in this
appendix we will give in detail how we get Mπ0η→KþK− .
We adopt the chiral unitary approach for meson meson

interaction to describe the π0η → KþK− scattering. Under
this approach, all possible meson meson channels that
couple within SU(3) to certain given quantum numbers are
considered, then by using the Bethe-Salpeter equation with
kernel (potential) taken from chiral Lagrangians in coupled
channels [61,62], there only remains some regularization
scale in the meson meson loop, which can be fitted from the
meson meson scattering data. With the chiral unitary
approach, a good agreement with experimental data is
obtained up to 1.2 GeV [63–68], which exactly covers the
range where our triangle singularity moves. Thus, in our
view, applying chiral unitary approach to describe the
π0η → KþK− scattering is reasonable.
We start with the leading order chiral Lagrangian, which

is expressed as [61–73]

L2 ¼
1

12f2
hð∂μΦΦ −Φ∂μΦÞ2 þMΦ4i; ðA1Þ

where

Φ¼

0
BBBBB@

π0ffiffi
2

p þ ηffiffi
3

p þ η0ffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
3

p þ η0ffiffi
6

p K0

K− K̄0 − ηffiffi
3

p þ
ffiffi
2
3

q
η0

1
CCCCCA; ðA2Þ

M ¼

0
B@

m2
π 0 0

0 m2
π 0

0 0 2m2
K −m2

π

1
CA: ðA3Þ

Then, with the leading order chiral Lagrangians above,
we can get the leading order T −matrix elements of the
scatterings between KþK−, K0K̄0, and π0η as [69]

ð1Þ KþðkÞK−ðpÞ → Kþðk0ÞK−ðp0Þ
t1 ¼ −

s
2f2

; ðA4Þ

ð2Þ K0ðkÞK̄0ðpÞ → K0ðk0ÞK̄0ðp0Þ
t2 ¼ t1; ðA5Þ

ð3Þ KþðkÞK−ðpÞ → K0ðk0ÞK̄0ðp0Þ

t3 ¼
1

2
t1; ðA6Þ

ð4Þ KþðkÞK−ðpÞ → π0ðk0Þηðp0Þ

t4 ¼ −
ffiffiffi
3

p

12f2

�
3s −

1

3
m2

π −
8

3
m2

K −m2
η

�
; ðA7Þ

ð5Þ K0ðkÞK̄0ðpÞ → π0ðk0Þηðp0Þ
t5 ¼ −t4; ðA8Þ

ð6Þ π0ðkÞηðpÞ → π0ðk0Þηðp0Þ

t6 ¼ −
m2

π

3f2
; ðA9Þ

where s ¼ ðkþ pÞ2 and f ¼ 0.093 GeV [69].
Next, after considering the isospin relation, we can get

the following Tð2Þ −matrix elements as [69]

Tð2Þ
KK̄→KK̄ ¼ 1

2
ðt1 − t3 − t3 þ t2Þ

¼ −
s

4f2
; ðA10Þ

Tð2Þ
KK̄→πη

¼ Tð2Þ
πη→KK̄ ¼ Tð2Þ

KK̄→π0η
¼ −

1ffiffiffi
2

p ðt4 − t5Þ

¼
ffiffiffi
6

p

12f2

�
3s −

1

3
m2

π −
8

3
m2

K −m2
η

�
; ðA11Þ

Tð2Þ
πη→πη ¼ Tð2Þ

π0η→π0η
¼ t6

¼ −
m2

π

3f2
: ðA12Þ

Thus, the leading order coupled channel T −matrix, i.e.,
T2, is

T2 ¼
0
@ Tð2Þ

πη→πη Tð2Þ
πη→KK̄

Tð2Þ
KK̄→πη

Tð2Þ
KK̄→KK̄

1
A: ðA13Þ

Then, the final T −matrix can be written as

T ¼
 

Tπη→πη Tπη→KK̄

TKK̄→πη TKK̄→KK̄

!
¼ ½1 − T2G�−1T2; ðA14Þ
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where G is a diagonal matrix of loop functions, whose diagonal matrix elements can be written as

GðsÞ ¼ i
Z

d4q
ð2πÞ4

1

q2 −M2
1 þ iϵ

1

ðP − qÞ2 −M2
2 þ iϵ

¼ 1

32π2

2
64−Δ

s
log

M2
1

M2
2

þ 2
Δ
s
log

1þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M2

1

q2max

q
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M2

2

q2max

q − 2 log

��
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M2

1

q2max

s ��
1þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M2

2

q2max

s ��

þ log
M2

1M
2
2

q4max
þ ν

s

�
log

s − Δþ ν
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M2

1

q2max

q
−sþ Δþ ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M2

1

q2max

q þ log
sþ Δþ ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M2

2

q2max

q
−s − Δþ ν

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M2

2

q2max

q �375; ðA15Þ

with ν ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðs − ðM1 þM2Þ2Þðs − ðM1 −M2Þ2Þ

p
, Δ ¼ M2

1 −M2
2, and qmax is the cutoff, which is set as qmax ¼ 0.6 GeV

[69–73].
Finally, considering the isospin relation, the amplitude of π0η → KþK− process can be expressed by the T-matrix

element as

Mπ0η→KþK− ¼ 1

2
Tπη→KK̄: ðA16Þ
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