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We propose a three-flavor version of the Polyakov-Nambu-Jona-Lasino (PNJL) model at zero
temperature regime, by implementing a traced Polyakov loop (Φ) dependence in the scalar, vector and
’t Hooft channel strengths. We study the thermodynamics of this model, named as PNJL0, with special
attention for the first-order confinement/deconfinement phase transition for whichΦ is the order parameter.
For the symmetric quark matter case, an interesting feature observed is a strong reduction of the constituent
strange quark mass (Ms) at the chemical potential related to point where deconfinement takes place. The
emergence ofΦ favors the restoration of chiral symmetry even for the strange quark. We also investigate the
charge neutral system of quarks and leptons in weak equilibrium. As an application, we construct a hadron-
quark phase transition with a density dependent hadronic model coupled to the SU(3) PNJL0 model. In this
case, the quark side is composed by deconfined particles. This approach is used to determine mass-radius
profiles compatible with recent data from the Neutron Star Interior Composition Explorer mission.
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I. INTRODUCTION

The understanding of the physics related to particles
interacting strongly is a fundamental issue studied for
both theoretical and experimental researchers. The inves-
tigations of collisions at ultrarelativistic energies in the
most sophisticated accelerators of the world, such as the
Relativistic Heavy-Ion Collider [1] and the Large Hadron
Collider [2], for instance, give the support needed for the
study of the strong force probed at the experimental level.
The forthcoming Electron Ion Collider [3] at Brookhaven,
the Facility for Antiproton and Ion Research [4], at
Darmstadt, and the Nuclotron-based Ion Collider facility
[5], at the Joint Institute for Nuclear Research, in Dubna,
are examples of other facilities with the same purpose.
Many aspects of the strongly interacting matter can be
directly or indirectly accessed from experiments, as for
example, the charge-parity violation observed in heavy
mesons decays. The reader is addressed to Ref. [6] and
references therein for an overview including the role of the
strong force in forming the observed charge-parity viola-
tion pattern.
From the theoretical point of view, on the other hand,

the physics of quarks and gluons is described by quantum
chromodynamics (QCD) [7–9]. Its nonperturbative

regime, i.e., QCD at large distances, or equivalently,
low energies, can be investigated through the lattice
discretization of QCD in the Euclidean space [10–12]
where the numerical calculations are based on Monte
Carlo simulations [13]. However, the so-called fermion
sign problem [14] restricts such technique when quarks at
finite chemical potential are included in the system.
A second approach applied to study the infrared region
of QCD is the use of continuous methods relying on
Dyson-Schwinger equations in Euclidean space [15], used
to determine the equations of motion of the n-point
functions. Another practical method of treating quarks
and gluons, in systems in which such particles are the
fundamental degrees of freedom, is the use of pheno-
menological models. Probably the simplest one used
for this aim is the famous MIT bag model [16]. In its
original version, it establishes that quarks are inside
a bag that effectively corresponds to a confining
potential. The constant B is added to the free quark
pressure, and all thermodynamics is based on this simple
assumption.
Other widely used effective quark model is the Nambu-

Jona-Lasinio (NJL) one [17–21]. It was proposed by
Y. Nambu and G. Jona-Lasinio before QCD and originally
described nucleons and pions. In the context of the quark
interaction, it presents some similarities with QCD such
as the dynamical breaking of chiral symmetry, and the
associated quark mass generation due to the quark con-
densates. Similar nonperturbative phenomena also occur in
the Bardeen-Cooper-Schrieffer model of superconductivity
[22] (in which the NJL model was inspired), where
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interactions give rise to energy gaps. In the NJL model, the
“gap” in the quark mass is produced by the pointlike
interactions between Dirac particles.
Although capable of describing some important features

of QCD, the NJL model fails to reproduce a particular
phenomenon, namely, the infrared dynamics of confine-
ment as well as the deconfinement of quarks, related to
the so-called asymptotic freedom, discovered by Gross,
Wilczek, and Politzer [23]. In the NJL model there is no
information regarding the interaction among the gluons.
Such an issue was corrected by K. Fukushima [24], who
proposed the inclusion of these mediators through a
background field obtained from the trace of a matrix in
color space associated to the gluon gauge field A4. The so-
called traced Polyakov loop, Φ (and its conjugate Φ�),
mimics the gluon dynamics in an effective way. Physically,
Φ can be seen as the order parameter of the confinement/
deconfinement phase transition, since it is related to e−F=T ,
with F being the free energy of an external static quark.
In the confined phase, the free energy of a single quark is
infinite and, consequently, Φ ¼ 0. In the deconfined phase,
on the other hand, F is finite and Φ ≠ 0. However, we
remind that Φ is not enough to have a true confinement in
the Polyakov-Nambu-Jona-Lasino (PNJL) model at finite
temperature since it only presents a statistical confinement
while asymptotic quark states still exists. The aforemen-
tioned analysis originally does not apply at zero tempera-
ture in the PNJL model and in most of its parametrizations,
since in this case the Polyakov potential vanishes and the
modified Fermi-Dirac distributions reduces to the step
functions. Because of that, confinement effects are lost
and it is not possible to investigate high density deconfined
quark systems at T ¼ 0. In order to circumvent this issue,
it was proposed in Refs. [25,26] a modification of the
strengths of the couplings in the NJL model by making
them dependent on Φ. As a direct consequence, the
Polyakov loop potential became nonvanishing even at
T ¼ 0. In this way, the new model constructed for flavor
SU(2) quarks, named as PNJL0 model, was able to exhibit
the confinement/deconfinement phenomenology at T ¼ 0.
In this work, we extend these previous studies by general-
izing the PNJL0 model to include flavor SU(3) quarks. We
investigate its thermodynamics at T ¼ 0 and also perform
an application in the context of the hadron-quark phase
transition.
The paper is organized as follows. In Sec. II we review

the main equations of the traditional the PNJL model at
finite temperature. In Sec. III, we generalize the PNJL0
model at T ¼ 0 by taking into account the dynamics of the
strange s quark. The thermodynamics of the SU(3) model is
studied for both cases, namely, symmetric quark matter,
and charge neutral system of quarks and leptons in weak
equilibrium. In the former, we verify a strong reduction of

the constituent strange quark mass (Ms) at the chemical
potential where the finite value of Φ emerges (deconfined
phase). An application to hybrid stars is also performed.
The results indicate that it is possible to generate hybrid
stars compatible with the recent data from the Neutron
Star Interior Composition Explorer (NICER) mission.
Finally, summary and concluding remarks are presented
in Sec. IV.

II. THREE-FLAVOR POLYAKOV-NAMBU-JONA-
LASINIO MODEL

We start by presenting the Lagrangian density of the
three-flavor version of the PNJL model, which includes a
scalar and a vector four-fermion interaction. It reads

LPNJL ¼ q̄ðiγμDμ − m̂Þq − UðΦ;Φ�; TÞ

þ Gs

2

X8
a¼0

½ðq̄λaqÞ2 − ðq̄γ5λaqÞ2�

−
GV

2

X8
a¼0

½ðq̄γμλaqÞ2 þ ðq̄γμγ5λaqÞ2�

þ K½detfðq̄ð1 − γ5ÞqÞ þ detfðq̄ð1þ γ5ÞqÞ�; ð1Þ

where q is a vector of three spinors qf for f ¼ u, d, s,
m̂ ¼ diagðmu;md;msÞ is a matrix of current quark masses
in flavor space, and λa are the SU(3) Gell-Mann matrices.
The last term, a determinant in flavor space, corresponds to
the so-called ’t Hooft interaction [27] and is responsible for
the large value of the η0 mass due to the anomaly UAð1Þ
[28]. Such a kind of interactions were firstly considered
by Kobayashi and Maskawa [29]. The differences between
this model and the NJL one [17–21,30–32] are the
replacement of ∂μ by Dμ ≡ ∂μ þ iAμ, where Aμ ¼ δμ0A0

and A0 ¼ gA0
aλa=2 (g is the gauge coupling), and the

inclusion of the Polyakov potential UðΦ;Φ�; TÞ. It depends
on the traced Polyakov loop and its conjugate, Φ and Φ�,
with Φ is defined in terms of A4 ¼ iA0 ≡ Tϕ as

Φ ¼ 1

3
Tr

�
exp

�
i
Z

1=T

0

dτA4

��
;

¼ 1

3
½eiðϕ3þϕ8=

ffiffi
3

p Þ þ eið−ϕ3þϕ8=
ffiffi
3

p Þ þ e−2iϕ8=
ffiffi
3

p
�; ð2Þ

written in the Polyakov gauge where ϕ ¼ ϕ3λ3 þ ϕ8λ8. In
the mean-field approximation, and using that Φ ¼ Φ�
[25,26,33–39], Eq. (1) becomes
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Lmfa
PNJL ¼

X
f

q̄fðiγμDμ −MfÞqf − Gs

X
f

ρ2sf

þ GV

X
f

ρ2f − 4K
Y
f

ρsf − UðΦ; TÞ: ð3Þ

The grand canonical potential density obtained from
Eq. (3) reads

ΩPNJL ¼ Gs

X
f

ρ2sf −GV

X
f

ρ2f þ 4K
Y
f

ρsf

−
γ

2π2
X
f

Z
Λ

0

dk k2ðk2 þM2
fÞ1=2

−
γ

6π2
X
f

Z
∞

0

dk k4

ðk2 þM2
fÞ1=2

½fðEf; T;ΦÞ

þ f̄ðEf; T;ΦÞ� þ UðΦ; TÞ; ð4Þ

with

ρsf ¼
γ

2π2

Z
∞

0

dk k2
Mf

Ef
½fðEf; T;ΦÞ þ f̄ðEf; T;ΦÞ�

−
γ

2π2

Z
Λ

0

dk k2
Mf

Ef
;

¼ hq̄fqfi; ð5Þ

and

ρf ¼ −
∂ΩPNJL

∂μf ;

¼ γ

2π2

Z
∞

0

dk k2½fðEf; T;ΦÞ − f̄ðEf; T;ΦÞ�;

¼ hq̄fγ0qfi: ð6Þ

Here ρsf is the quark “scalar” density (quark condensate)
related to flavor f, and ρf is the “vector” quark density.
Furthermore, Ef ¼ ðk2 þM2

fÞ1=2 and γ ¼ Ns × Nc ¼ 6 is
the degeneracy factor given in terms of spin (Ns ¼ 2) and
color (Nc ¼ 3) numbers. The constituent quark masses,
Mf, are given in terms of the quark condensates as

Mf ¼ mf − 2Gsρsf − 2K
Y
f0≠f

ρsf0 : ð7Þ

As in the case of two-flavor PNJL model [24,36,40–43],
the functions fðEf; T;ΦÞ and f̄ðEf; T;ΦÞ, given by

fðEf;T;ΦÞ

¼ Φe2ðEf−μ̃fÞ=Tþ2ΦeðEf−μ̃fÞ=Tþ1

3Φe2ðEf−μ̃fÞ=Tþ3ΦeðEf−μ̃fÞ=Tþe3ðEf−μ̃fÞ=Tþ1
ð8Þ

and

f̄ðEf;T;ΦÞ

¼ Φe2ðEfþμ̃fÞ=Tþ2ΦeðEfþμ̃fÞ=Tþ1

3Φe2ðEfþμ̃fÞ=Tþ3ΦeðEfþμ̃fÞ=Tþe3ðEfþμ̃fÞ=Tþ1
; ð9Þ

are the generalized Fermi-Dirac distributions for quarks and
antiquarks with μ̃f ¼ μf − 2GVρf. It is worth to notice that
the vector interaction [35,44,45] produces a shift in the
chemical potentials (μf), exactly as it occurs in the NJL
model. Such distributions are one of two basic differences
between PNJL and NJL models. The other one is the
Polyakov potential UðΦ; TÞ, a quantity that determines
the thermodynamics of the gluonic pure gauge sector. It
presents some forms such as the following ones

URTW05

T4
¼ −

b2ðTÞ
2

Φ2 −
b3
3
Φ3 þ b4

4
Φ4; ð10Þ

URRW06

T4
¼ −

b2ðTÞ
2

Φ2 þ b4ðTÞ lnð1 − 6Φ2 þ 8Φ3 − 3Φ4Þ;
ð11Þ

UFUKU08

bT
¼ −54e−a=TΦ2 − lnð1 − 6Φ2 þ 8Φ3 − 3Φ4Þ;

ð12Þ

UDS10 ¼ ða0T4 þ a1μ4 þ a2T2μ2ÞΦ2 þ U0ðΦÞ; ð13Þ

with

b2ðTÞ ¼ a0 þ a1

�
T0

T

�
þ a2

�
T0

T

�
2

þ a3

�
T0

T

�
3

; ð14Þ

b4ðTÞ ¼ b4

�
T0

T

�
3

; ð15Þ

and

U0ðΦÞ≡ a3T4
0 lnð1 − 6Φ2 þ 8Φ3 − 3Φ4Þ; ð16Þ

with a, b, a0, a1, a2, a3, b3, and b4 being dimensionless
free parameters. T0 is defined as the transition temperature
for the pure gauge system. These potentials are named
as RTW05 [41], RRW06 [33,42], FUKU08 [46], and
DS10 [37,38]. The traced Polyakov loop is found from
∂ΩPNJL=∂Φ ¼ 0, and the current quark masses Mu;d;s are
determined through solutions of Eq. (7), in which con-
densates ρsu;d;s given in Eq. (5) are also used.
Finally, from Eq. (4) all the other thermodynamical

quantities can be determined: namely, pressure, entropy
and energy densities. The expressions are obtained from
PPNJL ¼ −ΩPNJL, SPNJL ¼ −∂ΩPNJL=∂T, and EPNJL ¼
TSPNJL − PPNJL þ

P
f μfρf, respectively.
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III. PNJL0 MODEL: THREE-FLAVOR CASE

A. Formulation

At this point, we remind the reader that the PNJL model
equations, previously presented, are reduced to those
related to the NJL one at zero temperature regime. The
origin of this result is twofold. First, one has that the
generalized Fermi-Dirac distributions, given in Eqs. (8) and
(9), become step functions θðkFf − kÞ at T ¼ 0 (kFf is the
Fermi momentum of the quark f). Therefore, Φ disappears
in all momentum integrals. The second reason is due to the
gluonic contribution enclosed by the Polyakov potential.
Notice that UðΦ; 0Þ vanishes for the most known versions.
In this case, Eq. (4) reads

ΩPNJLðT ¼ 0Þ ¼ Gs

X
f

ρ2sf −GV

X
f

ρ2f þ 4K
Y
f

ρsf

−
γ

2π2
X
f

Z
Λ

0

dk k2ðk2 þM2
fÞ1=2

−
γ

6π2
X
f

Z
kFf

0

dk k4

ðk2 þM2
fÞ1=2

¼ ΩNJLðT ¼ 0Þ: ð17Þ

In order to circumvent this problem, we implemented, in
Ref. [26], the introduction of Φ in the SU(2) NJL model at
T ¼ 0 by requiring that the strengths of the scalar and
vector channels are vanishing in the deconfined phase, i.e.,
at Φ ¼ 1. In that approach we incorporate expected effects
from QCD that at low densities, and corresponding large
interparticle distances, quarks should interact strongly
while at short distance the interaction should be weakened.
The former is associated to the nonperturbative infrared
physics from QCD that enhances the interaction between
the effective degrees of freedom, related to the quarks in the
model. The latter should represent the ultraviolet physics
of perturbative QCD where the quarks interact weakly due
to the asymptotic freedom phenomenon. Therefore, this
physics is incorporated in a dynamical way such that at low
densities quarks interact strongly and at large densities
weakly towards to the deconfinement phase transition.
For this purpose, we use the traced Polyakov loop as an
effective scalar background field at the zero temperature
regime. Although this quantity is not strictly defined at
T ¼ 0, we use it to bring the complexity of QCD dynamics
by incorporating, in a effective way, the transition from
strong (infrared) to weak (ultraviolet) regimes of the quark-
quark interaction. Here, we extended this phenomenology
also to the three-flavor version of the model. The mod-
ifications in the couplings for this case are

Gs → GsðGs;ΦÞ ¼ Gsð1 −Φ2Þ; ð18Þ

GV → GVðGV;ΦÞ ¼ GVð1 −Φ2Þ; ð19Þ

and

K → KðK;ΦÞ ¼ Kð1 −Φ2Þ: ð20Þ

Such changes lead to

ΩPNJL0¼Gs

X
f

ρ2sf−GV

X
f

ρ2fþ4K
Y
f

ρsf

−
γ

2π2
X
f

Z
Λ

0

dkk2ðk2þM2
fÞ1=2

−
γ

6π2
X
f

Z
kFf

0

dk k4

ðk2þM2
fÞ1=2

þUðρf;ρsf;ΦÞ ð21Þ

with

Uðρf; ρsf;ΦÞ≡ Uðρu; ρd; ρs; ρsu; ρsd; ρss;ΦÞ
¼ GVΦ2

X
f

ρ2f −GsΦ2
X
f

ρ2sf − 4KΦ2
Y
f

ρsf

þ U0ðΦÞ: ð22Þ

By choosing to incorporate the terms GsΦ2, GVΦ2, and
KΦ2 of the grand canonical potential into U defined in
Eq. (22), it is possible to identify Eq. (21) as the zero
temperature version of Eq. (4). As in Ref. [26], we refer to
this construction as the PNJL0 model, now written in its
SU(3) version. Quark masses and chemical potentials are
given, respectively, by

Mf ¼ mf − 2Gsð1 −Φ2Þρsf − 2Kð1 −Φ2Þ
Y
f0≠f

ρsf0 ; ð23Þ

and

μf ¼ ðk2Ff þM2
fÞ1=2 þ 2GVð1 −Φ2Þρf; ð24Þ

where

ρf ¼ γ

6π2
k3Ff ð25Þ

and

ρsf ¼ −
γMf

2π2

Z
Λ

kFf

dk k2

ðk2 þM2
fÞ1=2

: ð26Þ

Notice that in the three-flavor version of the PNJL0 model,
the modification of the couplings, Eqs. (18)–(20), also
induces the definition of a new Polyakov potential,
Eq. (22), in which the backreaction of quarks in the
gluonic sector happens, as well as the inverse one, namely,
gluons affecting quarks. This last effect is intrinsic in the
original PNJL model but the former is absent. In the SU(3)
PNJL0 model, the backreaction is complete, i.e., each
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sector interacts each other, exactly as in its two-
flavor version [26]. We remark that the modifications
pointed out in Eqs. (18)–(20) lead to the Polyakov
potential U¼GVΦ2

P
f ρ

2
f−GsΦ2

P
f ρ

2
sf−4KΦ2

Q
f ρsf.

However, this potential is not able to generate nonvanishing
solutions for Φ when the condition ∂ΩPNJL0=∂Φ ¼ 0 is
applied. Therefore, we add the term U0 given in Eq. (16) in
the definition of U and verify that it is responsible to ensure
Φ ≠ 0. Moreover, it is also important in order to restrict
the traced Polyakov loop in the range of 0 ≤ Φ ≤ 1 [37,38].
Finally, the pressure and energy density of the SU(3)
PNJL0 model, obtained from Eq. (21), are written as

PPNJL0 ¼ −Gs

X
f

ρ2sf þ GV

X
f

ρ2f − 4K
Y
f

ρsf

þ γ

2π2
X
f

Z
Λ

0

dk k2ðk2 þM2
fÞ1=2

þ γ

6π2
X
f

Z
kFf

0

dk k4

ðk2 þM2
fÞ1=2

− Uðρf; ρsf;ΦÞ þ Ωvac ð27Þ

and

EPNJL0 ¼ Gs

X
f

ρ2sf þ GV

X
f

ρ2f þ 4K
Y
f

ρsf

−
γ

2π2
X
f

Z
Λ

kFf

dk k2ðk2 þM2
fÞ1=2 − 2GVΦ2

X
f

ρ2f

þ Uðρf; ρsf;ΦÞ − Ωvac; ð28Þ

respectively. The constant Ωvac ¼ −Pvac is added to the
pressure and energy density in order to ensure that in
vacuum (ρu ¼ ρd ¼ ρs ¼ 0) one has ΩPNJL0ðρf ¼ 0Þ ¼
−PPNJL0ðρf ¼ 0Þ ¼ 0 and EPNJL0ðρf ¼ 0Þ ¼ 0.

B. Thermodynamics of the model
(symmetric quark matter)

We remark that from now on, all results are obtained at
zero temperature regime.
Since the main equations of the model are defined, we

are able to explore some thermodynamical features of the
SU(3) PNJL0 model. First, we need to define values for its
free parameters, namely, Gs, GV , K, mu, md, ms, and Λ.
Here we use the Rehberg-Klevansky-Hüfner parametriza-
tion [19,47] in which Gs ¼ 3.67=Λ2, K ¼ −12.36=Λ5,
mu ¼ md ¼ 5.5 MeV, ms ¼ 140.7 MeV, and Λ ¼
602.3 MeV. The last quantity is the cutoff parameter. As
in the NJL model, the PNJL0 one is nonrenormalizable.
Therefore, it is needed to adopt a certain regularization
scheme in order to avoid divergent contributions in the
momentum integrals. Here we use a three-momentum
cutoff for this purpose [19,48,49]. This parameters set

produces the values of fπ ¼ 92.4 MeV, mπ ¼ 135 MeV,
mK ¼ 497.7 MeV, mη ¼ 514.8 MeV, and m0

η ¼
957.8 MeV, respectively, for the pion decay constant and
mass, and for the masses of pseudoscalar mesons K, η, and

η0 [19,47]. For the vacuum, it also leads to MðvacÞ
u ¼

MðvacÞ
d ¼ 367.6 MeV, MðvacÞ

s ¼ 549.5 MeV, hūui1=3ðvacÞ ¼
hd̄di1=3ðvacÞ ¼−241.9MeV, and hs̄si1=3ðvacÞ ¼ −257.7 MeV.

With regard to the strength of the vector channel, we
remind that if a Fierz transformation of the color-current
interaction is performed, the value of GV ¼ 0.5Gs is found
[19,20]. In principle, this “canonical” value should be used
in all calculations involving NJL/PNJL models with the
vector channel included. However, GV is often taken as a
free parameter. Some authors use this freedom to fix the
vector meson masses, such as the ρ meson [50]. Other ones
also point out to changes in the magnitude of GV due to
medium effects. For instance, instanton-anti-instanton pair-
ing effects at high temperature can change its magnitude
[51]. Furthermore, it is also known that GV plays a
significant hole in the phase diagram of the strongly
interacting matter since it shifts the location of the critical
end point [35,52]. The increasing of GV induces the
disappearance of the critical end point and, consequently,
the vanishing of the first-order phase transition line.
Therefore, as in Ref. [26], we adopt here the approach
of setting GV as a free parameter in order to verify its
influence in our calculations.
Finally, the gluonic sector of the model present two more

constants, namely, T0 and a3, appearing in the last term of
the Polyakov potential, Eq. (22). The former is fixed to
190 MeV [26,53]. Concerning the constant a3, we remind
that it appears in the quantity denoted by U0, Eq. (16), first
used in Ref. [37]. In those works, the authors remark that
the free parameters presented in the Polyakov potential U,
which contains U0, are determined in order to reproduce
lattice data, as well as known information about the phase
diagram. In this case, the value obtained by them is
a3 ¼ −0.4. However, it is worth to notice that their model
is completely different from the PNJL0 model considered
here. If we take a3 ¼ −0.4, then no solutions of Φ ≠ 0 are
found, as wewill show in the first figure later on. Therefore,
one has GV and a3 as free parameters of the SU(3) PNJL0
model, as well as they are in its two-flavor version [26].
At zero temperature, one can also use the thermody-

namical relation given by

Eþ PV ¼ μBNB þ μSNS þ μINI;

¼ μuNu þ μdNd þ μsNs; ð29Þ

in order to write the quark chemical potentials as

μu¼
μB
3
þμI

2
; μd¼

μB
3
−
μI
2
; μs¼

μB
3
−μS; ð30Þ
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i.e., in terms of the baryonic, isospin, and strangeness
chemical potentials, namely, μB, μI , and μS, respectively.
First, we work at the so called symmetric quark matter, the
one in which all quark potentials are the same, namely,

μu ¼ μd ¼ μs ≡ μ; ð31Þ

situation found by taking μI ¼ μS ¼ 0 in Eq. (30). At this
point, we remark to the reader that the concept of
symmetric matter in this context is different from the
one used in nuclear matter described by hadronic models
[54], in which nucleons are in equal number and present
identical chemical potentials, since they have the same rest
masses and densities. In the case of the three-flavor quark
system studied here, mu ¼ md, but ms is quite different.
Therefore, densities of the light quarks are equal each other
but different from the strange quark one, despite the validity
of Eq. (31).
As a first investigation of the symmetric quark matter

described by the SU(3) PNJL0 model, we show in Fig. 1
ΩPNJL0 as a function of the traced Polyakov loop for GV ¼
0.25Gs and for the canonical relation GV ¼ 0.5Gs found
through Fierz transformation of the current-current inter-
action [19,20]. In order to construct these curves, we use
Eq. (21) with the constituent quark masses found by the
transcendental equations given by Eqs. (23) and (26). Φ is
free to run in this case. Our analysis points out that in the

range of chemical potentials from μ ¼ MðvacÞ
u;d to μ ¼ Λ, it is

possible to find curves in which ΩPNJL0 present global
minima for nonvanishing values of the traced Polyakov
loop, see Figs. 1(c) and 1(d), for instance. For the curve
presenting a3 ¼ −0.2 and GV ¼ 0.25Gs, we clearly

see a single minimum of ΩPNJL0 at Φ ¼ 0 for μ ¼ MðvacÞ
u;d

[Fig. 1(a)]. However, Φ ∼ 0.82 produces a minimum of
ΩPNJL0 for μ ¼ Λ [Fig. 1(d)]. As in the SU(2) case [26], we
verify a confinement/deconfinement phase transition in the
model, i.e., the existence of null and nonvanishing values
for the order parameter Φ as a function of the chemical
potential. One can observe in Figs. 1(e)–1(h) that a similar
behavior is verified for the curves in which GV ¼ 0.5Gs.
Another feature observed here, and also present in the
SU(2) version of the model [26], is the need of GV ≠ 0
values in order to become possible the existence of a global
minimum of ΩPNJL0 at Φ ≠ 0. For GV ¼ 0, the only
minimum is found at Φ ¼ 0 for different a3 values (figure
not shown). The vector interaction still plays an important
role even in the SU(3) version of the PNJL0 model.
The analysis of the ΩPNJL0 ×Φ curves is also useful in

order to determine the chemical potential in which the
confinement/deconfinement phase transition takes place,
named here as μconf . For the model with GV ¼ 0.25Gs and
a3 ¼ −0.1, for example, we see from Fig. 2 that
μconf ¼ 533.15 MeV. This particular chemical potential
value is defined as the one that generates a grand canonical
potential presenting two minima with the same value for

ΩPNJL0, i.e.,ΩPNJL0ðΦ1Þ ¼ ΩPNJL0ðΦ2Þ. In that case,Φ1 and
Φ2 delimit the boundaries of the thermodynamical phases
associated to quark confinement and deconfinement. The
traced Polyakov loop is the order parameter of this tran-
sition. The procedure described above can be used to
construct the Φ × μ curve depicted in Fig. 3, in this case
for GV ¼ 0.25Gs and GV ¼ 0.5Gs. From this figure, we
notice the quark confinement region determined by the
condition given by μ < μconf. On the other hand, deconfine-
ment is achieved through a first-order phase transition, in the
region where μ > μconf , according to the thermodynamics
presented by the model. This feature was also observed in
Ref. [37] in which the authors included the traced Polyakov
loop in a hadronic SU(3) nonlinear σmodel alongwith quark
degrees of freedom. Furthermore, in Ref. [55] another
version of a three-flavor PNJL model at zero temperature
was studied. Specifically, a dependence on the quark density
was introduced in the b2ðTÞ function of the Polyakov
potential given in Eq. (11). In that model, a first-order phase
transition is also verified in the ΦðμÞ curve. Another effect
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verified in Fig. 3 is the decreasing of μconf as GV increases,
exactly as in the SU(2) case [26].
Now we evaluate three-flavor PNJL0 model equations

by solving Eqs. (23) and (26) together with condition
∂ΩPNJL0=∂Φ ¼ 0. In the SU(3) case, this procedure con-
sists in searching for solutions of Mu ¼ Md, Ms, and Φ,
obtained from the set of three coupled equations afore-
mentioned. By following this method, we are able to
evaluate Eq. (21), with result displayed in Fig. 4. One
can notice a typical signal of a system presenting first-order
phase transition [56–58], since Fig. 4 shows that ΩPNJL0
(thermodynamical potential that describes the system) is
multivalued. A requirement from thermodynamical stabil-
ity [56] imposes that branches associated to unstable and
metastable solutions is removed from the final curve. The
“crossing points” indicate the chemical potential values
related to the first-order phase transitions. In the case of the

PNJL0 model, there are two of them, one from confine-
ment/deconfinement and another one from restored/broken
chiral symmetry of the light quarks, that give rise to
μconf ¼ 533.15 MeV and μchiral ¼ 372.10 MeV, respec-
tively, for the parametrization of the model in which GV ¼
0.25Gs and a3 ¼ −0.1. Notice that at μ ¼ μconf , we find the
same value for ΩPNJL0 related to the two global minima of
Fig. 2, namely, ΩPNJL0ðμconfÞ ∼ −331 MeV=fm3. This
feature confirms the equivalence of the two methods used
to define the first-order phase transition points in such
systems. It is also worth to notice the decrease of μconf as
GV increases, exactly as pointed out in Fig. 3.
In the region where μchiral < μ < μconf we can recognize,

as in the SU(2) version of the model [26], a particular
thermodynamical phase in which the light quarks present a
very low mass in comparison to their vacuum values
(almost fully restored chiral symmetry), and with Φ ¼ 0
(confined quarks), i.e., the so-called quarkyonic phase,
pointed out in Refs. [46,59–63], for example. The quar-
kyonic phase related to the light quark sector can also be
identified by looking at the constituent quark masses as a
function of μ, as displayed in Fig. 5. One can notice two
sharp phase transitions occurring at μchiral ¼ 372.10 MeV
and μconf ¼ 533.15 MeV, for GV ¼ 0.25Gs, with the dif-
ference defining the “size” of the phase, in this case,
Δμ ¼ μconf − μchiral ¼ 161.05 MeV. As we can also see,
this difference is decreased for GV ¼ 0.5Gs. More specifi-
cally, for the SU(3) PNJL0 model Δμ depends on both, the
strength of the vector channel, GV , and the a3 parameter
related to the Polyakov potential. In Tables I and II we
present some values of Δμ by running a3 and GV
independently.
From Fig. 5, we can also notice a strong reduction of the

constituent strange quark mass at μ ¼ μconf . At this point,
Ms undergoes a reduction of almost 50% forGV ¼ 0.25Gs,
while for GV ¼ 0.5Gs the reduction is somewhat larger.
The origin of this feature is the emergence of Φ exactly at
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this chemical potential, see Fig. 3. The decreasing of the
couplings GsðΦÞ, GVðΦÞ, and KðΦÞ when Φ becomes
nonvanishing induces a reduction in the constituent quark
masses, including the strange quark one. We reinforce that
such an effect is not present in the original SU(3) NJL
model, also show in Fig. 5 (in that case changes in Ms are
only gradual, see the dotted line). For the light sector, on the
other hand, it is also verified a decreasing of Mu;d in the
PNJL0 model, however, with much smaller intensity, since
at μ ¼ μconf the light quark masses are nearly vanishing
already.
As already pointed out, the effect of the traced Polyakov

loop depends on GV and a3. In Fig. 6 for a3 ¼ −0.27 and
GV ¼ 0.25Gs, we verify that μconf is equal to the cutoff
parameter Λ resulting a smaller reduction of Ms with
respect to the NJL model, differently of what is seen in
Fig. 5 in the previous case. For the sake of comparison, we
also show the results concerning the parametrization
presenting GV ¼ 0.5Gs (value obtained from the Fierz
transformation of the current-current interaction). Notice
that the decrease of the reduction inMs is also observed for
this case.

C. Charge neutral system of quarks and leptons
in weak equilibrium within hybrid stars

In this section we proceed to show how the confinement
effects described by the traced Polyakov loop affect the
charge neutral system of quarks and leptons (muons
and massless electrons) in weak equilibrium. This study
is relevant in the context of quark stars or hybrid stars
[49,64–70], constructed from a particular quark model at
zero temperature and at high density regime. This is a
system fulfilling the following conditions for the quarks
and leptons chemical potentials: μs ¼ μd ¼ μu þ μe and
μe ¼ μμ. It is possible to write μu, μd, and μs in terms of a
common quark chemical potential (μ), and in terms of the
electron one (μe) as

μu ¼ μ −
2

3
μe; and μd ¼ μs ¼ μþ 1

3
μe; ð32Þ

in which the relation μB ¼ 3μ holds. Furthermore, the
requirement of charge neutral quark matter leads to the
additional relation to be satisfied

2

3
ρu −

1

3
ρd −

1

3
ρs ¼ ρe þ ρμ; ð33Þ

in which ρe is the electron density. μe and ρe are related to
each other through ρe ¼ μ3e=ð3π2Þ. The muon density is

TABLE I. Parameter a3 of the SU(3) PNJL0 model along with
μconf and Δμ. For each line one has GV ¼ 0.25Gs and
μchiral ¼ 372.10 MeV.

a3 μconf (MeV) Δμ (MeV)

−0.27 602.30 230.20
−0.20 576.74 204.64
−0.15 555.87 183.77
−0.10 533.15 161.05
−0.08 523.40 151.30
−0.06 513.14 141.04
−0.05 507.75 135.65

TABLE II. ParameterGV of the SU(3) PNJL0 model along with
μconf , μchiral, and Δμ. For each line we fixed a3 ¼ −0.1.

GV=Gs μconf (MeV) μchiral (MeV) Δμ (MeV)

0.50 517.29 382.18 135.11
0.45 519.38 380.21 139.17
0.40 521.82 378.22 143.60
0.35 524.75 376.21 148.54
0.30 528.41 374.18 154.23
0.25 533.15 372.10 161.05
0.20 539.70 370.00 169.70
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ρμ ¼ ½ðμ2μ −m2
μÞ3=2�=ð3π2Þ, and mμ ¼ 105.7 MeV. In this

case, the total energy density and total pressure are given,
respectively, by

Etq¼EPNJL0þ
μ4e
4π2

þ 1

π2

Z ffiffiffiffiffiffiffiffiffiffi
μ2μ−m2

μ

p

0

dkk2ðk2þm2
μÞ1=2; ð34Þ

and

Ptq¼PPNJL0þ
μ4e

12π2
þ 1

3π2

Z ffiffiffiffiffiffiffiffiffiffi
μ2μ−m2

μ

p

0

dkk4

ðk2þm2
μÞ1=2

: ð35Þ

We start by showing in Fig. 7 the μB dependence of the
quark fractions defined as Yi ¼ ρi=ðρu þ ρd þ ρsÞ, for the
SU(3) PNJL0 model with GV ¼ 0.25Gs and different
values of a3. We clearly verify that d quark fraction
gradually reduces to a value close to the u quark fraction.
Furthermore, at the chemical potential related to the
deconfinement transition, point in which Φ becomes non-
vanishing, one observes that this reduction is anticipated by
a sharp variation. For the s quark fraction, the opposite is
found, namely, Ys approaches to Yu with sharp variations
produced by the emergence of Φ. In the case of Yu, we find
no significant variations along the μB dependence in
comparison with both previous cases. From the figure, it
is also clear that the critical baryonic chemical potential
moves to the direction of increasing μB as ja3j increases,
feature also present in symmetric quark matter, as shown in
Table I.
As mentioned before, an important application of a quark

model available at zero temperature is the description of
hybrid stars, in which a hadron-quark phase transition takes
place at high density regime. A recent study based on a
model-independent analysis, performed in Ref. [71], sug-
gests evidences for massive stars composed by cores of
quark matter. Here we take the PNJL0 model to take into

account the quark side of the equations of state used to
describe stellar matter. For the hadronic side, we use the
relativistic mean-field model DDHδ given by the following
Lagrangian density

LHAD¼ ψ̄ðiγμ∂μ−MÞψþΓσðρÞσψ̄ψ−ΓωðρÞψ̄γμωμψ

−
ΓρðρÞ
2

ψ̄γμρ⃗μτ⃗ψþΓδðρÞψ̄ δ⃗ τ⃗ψþ1

2
ð∂μσ∂μσ−m2

σσ
2Þ

−
1

4
FμνFμνþ

1

2
m2

ωωμω
μ−

1

4
B⃗μνB⃗μνþ

1

2
m2

ρρ⃗μρ⃗
μ

þ1

2
ð∂μδ⃗∂μδ⃗−m2

δδ⃗
2Þ; ð36Þ

where

ΓiðρÞ ¼ Γiðρ0Þai
1þ biðρ=ρ0 þ diÞ2
1þ ciðρ=ρ0 þ diÞ2

; ð37Þ

for i ¼ σ, ω, and

ΓiðρÞ ¼ Γiðρ0Þ½aie−biðρ=ρ0−1Þ − ciðρ=ρ0 − diÞ�; ð38Þ

for i ¼ ρ, δ. In Eq. (36) ψ is the nucleon field, whereas σ,
ωμ, ρ⃗μ, and δ⃗ are the scalar, vector, isovector-vector, and
isovector-scalar fields that represent mesons σ, ω, ρ, and δ,
respectively. The antisymmetric tensors Fμν and B⃗μν are

written as Fμν ¼ ∂νωμ − ∂μων and B⃗μν ¼ ∂νρ⃗μ − ∂μρ⃗ν. The
nucleon rest mass is Mnuc, and the mesons masses are mσ,
mω, mρ, and mδ. A more simplified version of this model
was firstly proposed by J. D. Walecka in Ref. [72] in which
the couplings between mesons and nucleons are constants.
Here we choose to use a more sophisticated structure for
the hadronic model in which such couplings are density
dependent, namely, ΓiðρÞ, with ρ being the sum of the
densities of proton (ρp) and neutrons (ρn). In Eqs. (37) and
(38) ρ0 is the nuclear matter saturation density and Γiðρ0Þ,
ai, bi, ci, and di are free parameters of the model, that along
with the nucleon and meson masses, define a specific
hadronic parametrization. In particular, we use here the
DDHδ [73] one. It is one of the 263 parametrizations tested
against a set of constraints related to symmetric nuclear
matter, pure neutron matter, symmetry energy and its slope
(evaluated at ρ ¼ ρ0) [74]. It was also shown that this
particular model is capable to generate massive neutron
stars with mass around two solar masses [75].
Concerning the inclusion of more baryons in the had-

ronic sector, we remind the reader that some studies point
out to a possible suppression of the hyperons population in
hadron-quark phase transitions [69,76] due to the onset of
hyperons occurring above the onset of quark matter.
Furthermore, the inclusion of hyperons soften the hadronic
equation of state with a direct consequence of producing
not so massive stars in comparison with the case in which
only nucleons are considered. Because of that, and since the
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main focus of this work is to analyze the thermodynamical
structure of a quark model presenting deconfinement
effects at zero temperature regime (PNJL0 model), we
decide to use a relativistic mean-field model only with
nucleons, avoiding a proliferation of more coupling con-
stants to be fixed in the hadronic sector (hyperons inter-
actions are not completely determined and some
assumptions are required).
The Euler-Lagrange equations are used in order to obtain

the field equations of the model. In addition, the imple-
mentation of the Hartree approximation (no Fock term)
[72,77] in these equations, leading to σ → hσi≡ σ,
ωμ → hωμi≡ ω0, ρ⃗μ → hρ⃗μi≡ ρ̄0ð3Þ, and δ⃗ → hδ⃗i≡ δð3Þ,
allows for the determination of the energy-momentum
tensor quantity used to calculate the energy density and
pressure of the hadronic model. These last two thermody-
namical equations of state are given by

EHAD ¼ 1

2
m2

σσ
2 −

1

2
m2

ωω
2
0 −

1

2
m2

ρρ̄
2
0ð3Þ þ

1

2
m2

δδ
2
ð3Þ

þ ΓρðρÞ
2

ρ̄0ð3Þρ3 þ
1

π2

Z
kFp

0

dkk2ðk2 þM�2
p Þ1=2

þ ΓωðρÞω0ρþ
1

π2

Z
kFn

0

dkk2ðk2 þM�2
n Þ1=2 ð39Þ

and

PHAD ¼ ρΣRðρÞ −
1

2
m2

σσ
2 þ 1

2
m2

ωω
2
0 þ

1

2
m2

ρρ̄
2
0ð3Þ

−
1

2
m2

δδ
2
ð3Þ þ

1

3π2

Z
kFp

0

dkk4

ðk2 þM�2
p Þ1=2

þ 1

3π2

Z
kFn

0

dkk4

ðk2 þM�2
n Þ1=2 ; ð40Þ

with

ΣRðρÞ ¼
∂Γω

∂ρ ω0ρþ
1

2

∂Γρ

∂ρ ρ̄0ð3Þρ3 −
∂Γσ

∂ρ σρs

−
∂Γδ

∂ρ δð3Þρs3; ð41Þ

ρs ¼ ρsp þ ρsn;

¼ M�

π2

�Z
kFp

0

dkk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM�2

p

q þ
Z

kFn

0

dkk2ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k2 þM�2

n

p
�
; ð42Þ

ρ3 ¼ ρp − ρn, and ρp;n ¼ kF3p;n=3π2. Furthermore, the
fields are determined as σ ¼ ΓσðρÞρs=m2

σ ,
ω0 ¼ ΓωðρÞρ=m2

ω, ρ̄0ð3Þ ¼ ΓρðρÞρ3=2m2
ρ, and δð3Þ ¼

ΓδðρÞρs3=m2
δ with ρs3 ¼ ρsp − ρsn. The nucleon effective

masses read

M�
p;n ¼ Mnuc − ΓσðρÞσ � ΓδðρÞδð3Þ; ð43Þ

with (−) for protons and (þ) for neutrons. Finally, the
proton and neutron chemical potentials, obtained through
μp;n ¼ ∂EHAD=∂ρp;n, are given by

μp ¼ ðk2Fp þM�
p
2Þ1=2 þ Γωω0 þ

Γρ

2
ρ̄0ð3Þ þ ΣR ð44Þ

and

μn ¼ ðk2Fn þM�
n
2Þ1=2 þ Γωω0 −

Γρ

2
ρ̄0ð3Þ þ ΣR; ð45Þ

respectively. We also implement charge neutrality and
chemical equilibrium in the hadronic side by including
muons and massless electrons in the system, in the same
way it was done in the quark sector. This leads to the
following relations: ρp − ρe ¼ ρμ and μn − μp ¼ μe,
with μμ ¼ μe. In this case, total energy density and total
pressure are constructed as EtH ¼ EHAD þ Ee þ Eμ and
PtH ¼ PHAD þ Pe þ Pμ. Moreover, Ee;μ and Pe;μ can be
extracted from Eqs. (34) and (35).
In Fig. 8(a) we display total pressure as a function of μB

for the hadronic model and for three different parametriza-
tions of the PNJL0 quark model. In the hadronic side, one
has μB ¼ μn. For the quark sector we construct the PNJL0
parametrizations as follows: first we choose some values
for the ratio GV=Gs, namely, 0.15, 0.25, 0.35, and 0.5. For
each of these values we impose that the point related to the
confinement/deconfinement phase transition takes place
exactly at the match with the hadronic equation of state.
The value of a3 is then determined for this purpose. This
procedure, also adopted in Ref. [55], generates the linked
models presented in Fig. 8(b), in which the entire curves
start with the hadronic model until the crossing point, and
change to the deconfined quark model thereafter. This is the
basis of the Maxwell construction, that imposes equal
pressures and chemical potentials at both phases, for a fixed
temperature, with a sharp first-order phase transition. The
PNJL0 parametrizations constructed from this method
present (i) set 1: GV=Gs ¼ 0.15, a3 ¼ −0.052; (ii) set 2:
GV=Gs ¼ 0.25, a3 ¼ −0.135; (iii) set 3: GV=Gs ¼ 0.35,
a3 ¼ −0.241; and (iv) set 4: GV=Gs ¼ 0.5, a3 ¼ −0.458.
Notice that, in set 4, where GV=Gs ¼ 0.5, we found a
value very close (a3 ¼ −0.458) to one used in
Ref. [37] (a3 ¼ −0.4).
In Fig. 9 it is depicted how Pt depends on Et for the

linked models. It is clear that the effect of the first-order
phase transition is to establish a plateau in the pressure with
a gap in the energy density. The values of the transition
pressure (Ptrans) and the energy density gap at the transition
point (ΔEtrans) for each PNJL0 parametrization are also
shown. Another interesting feature present in this analysis
is that the two quantities, Ptrans and ΔEtrans, increase with
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GV , or equivalently, with ja3j, both free parameters related
to the PNJL0 quark model. The increasing of Ptrans means
that the hadronic side of the linked model persists at higher

values of μB. This leads to a decreasing of the quark side,
consequently, whilst the increasing of ΔEtrans indicates an
increasing of the coexistence region of hadrons and
(deconfined) quarks.
In order to describe a spherically symmetric hybrid star

of mass M, we solve the Tolman-Oppenheimer-Volkoff
equations [78–80] given by (G ¼ c ¼ 1)

dpðrÞ
dr

¼ −
½ϵðrÞ þ pðrÞ�½mðrÞ þ 4πr3pðrÞ�

r2½1 − 2mðrÞ=r� ; ð46Þ

dmðrÞ
dr

¼ 4πr2ϵðrÞ; ð47Þ

whose solution is constrained to pð0Þ ¼ pc (central pres-
sure) and mð0Þ ¼ 0. At the star surface, one has pðRÞ ¼ 0
andmðRÞ≡M, with R defining its radius. The equations of
state used as input to solve Eqs. (46)–(47) are given by total
pressure and total energy density of the linked models
presented before. Furthermore, at the hadronic side we
describe the crust of the star by the model developed by
Baym, Pethick, and Sutherland [81] in a density region
from ρ ¼ 0.16 × 10−10 fm−3 to ρ ¼ 0.89 × 10−2 fm−3.
The mass-radius profiles of the hybrid stars obtained from
the models studied here are shown in Fig. 10. In this figure
we compare our results with some important observational
data. Two of them are related to the mass values of the
objects PSR J1614-2230 and PSR J0348þ 0432 with
M ¼ ð1.97� 0.04Þ M⊙ [82] and M ¼ ð2.01� 0.04Þ M⊙
[83], respectively, and the recent one related to the MSP
J0740þ 6620 pulsar at 68.3% credible level, namely,M ¼
2.14 þ0.10

−0.09 M⊙ [84]. As one can see, the hybrid model is
able to produce stars with masses inside these boundaries.
For the sake of comparison, we also depict in Fig. 10 the
recent data extracted from the NICER mission concerning
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the radius related to the stars of masses equal to 2.08 M⊙
and 1.4 M⊙. Such points are given by M ¼ 1.4 M⊙
with R ¼ ð12.45� 0.65Þ km [85], M ¼ ð2.08�
0.07Þ M⊙ with R ¼ ð12.35� 0.75Þ km [85] (squares);
M ¼ 2.072þ0.067

−0.066 M⊙ with R ¼ 12.39þ1.30
−0.98 km [86]

(circle); M ¼ 1.4 M⊙ with R ¼ 12.33þ0.76
−0.81 km [87], M ¼

1.4 M⊙ with R ¼ 12.18þ0.56
−0.79 km [87] (diamonds). We also

observe that hybrid star mass-radius curve is essentially
dominated by the hadronic phase, leaving little room to the
detailed dynamics from the PNJL0 model, unless for stars
with the smallest radius, where the mass is somewhat
decreasing by shrinking its size. That effect comes from
the softening of the repulsion in the PNJL0 model when the
deconfinement phase transition is approached, without
the star loosing the stability, as we discuss below.
As an illustration, we plot in Fig. 11 how the pressure

depends on the radial coordinate for a particular hybrid star
constructed from the four sets of the DDHδ-PNJL0 model.
In this case we chose the M ¼ 2.098 M⊙ star. Notice that
this particular star is predicted by all the sets considered
here. In this figure, the kinks identify the quark cores of
the star with radius Rq ∼ 1.0 km for set 1. For sets 2 and 3
we found practically the same result of Rq ∼ 1.5 km and
Rq ∼ 1.6 km, respectively. Finally, set 4 predicts a quark
core of Rq ∼ 1.3 km. In our approach, the core is composed
by deconfined quarks. On the other hand, hadrons are the
degrees of freedom of the star from r ¼ Rq to r ¼ R.
As a last remark of our results concerning the mass-

radius diagrams, we observe that for each parametrization
constructed, namely, sets 1 to 3 of the DDHδ-PNJL0
hadron-quark model, one identifies linear branches in
which M decreases as R decreases. From the investigation
of the static condition for the star’s stability, this kind of
branch would indicate unstable configurations [88,89].

However, a dynamical analysis of the star stability can
give further insights by verifying its response to small
radial perturbations, see for instance Refs. [90–96] for
details. By using this criterion, stars are said to be stable if
such perturbations produce well-defined oscillations. On
the other hand, an indefinite increasing of the perturbations
amplitude characterizes unstable stars. The set of differ-
ential equation that need to be solved, coupled to the
Tolman-Oppenheimer-Volkof ones, are given by [90–96]

dξ
dr

¼ −
1

r

�
3ξþ Δp

Γp

�
−
dp
dr

ξ

ðpþ ϵÞ ð48Þ

and

dΔp
dr

¼ ξ

�
ω2eλ−νðpþ ϵÞr − 4

dp
dr

�

þ ξ

��
dp
dr

�
2 r
pþ ϵ

− 8πeλðpþ ϵÞpr
�

þ Δp
�
dp
dr

1

pþ ϵ
− 4πðpþ ϵÞreλ

�
; ð49Þ

with eλ ¼ 1–2mðrÞ=r, dν=dr ¼ −2ðdp=drÞðpþ ϵÞ−1, and
Γ ¼ ðρ=pÞðdp=dρÞ. The relative radial displacement and
the perturbation of the pressure, ξ ¼ Δr=r and Δp,
respectively, are assumed to have a time dependence of
eiωt with ω being the eigenfrequency.
Furthermore, other important aspect that must be men-

tioned is the kind of phase transition chosen. In stars with
two phases, transitions are classified as “fast” or “slow”
depending on the timescale of the transition compared to
the timescale of the fundamental oscillation [97]. As we can
see in Refs. [91–93], slow transitions have important
consequences in the microscopic structure of compact stars
with two different phases. It is well known that in stable
stars the fundamental frequency has to satisfy the condition
of ω2 > 0, and the last stable star occurs at ω ¼ 0.
In general, this property coincides with the maximum
mass in the mass-radius diagram. However, when a star
presents two phases and the transition is slow, the last stable
star (ω ¼ 0) can occur after the point of maximum mass, as
we can verify in the results shown in Ref. [91], for instance.
By following this approach, we verify that all branches
analyzed in the parametrizations shown in Fig. 10 are
stable; i.e., we found no points in which ω ¼ 0.

IV. SUMMARY AND CONCLUDING REMARKS

In this work we generalize the study performed in
Ref. [26], where we have proposed a version of the
Polyakov-Nambu-Jona-Lasino model that exhibits effects
of the confinement/deconfinement phase transition at zero
temperature regime for the two-flavor case. We improve
our analysis in order to take into account the strangeness in
the dense system by introducing the dynamics of
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FIG. 11. Pressure as a function of the radial coordinate for the
M ¼ 2.098 M⊙ star obtained from the DDHδ-PNJL0 model (sets
1, 2, 3, and 4). The vertical lines mark the kinks related to the
quark cores of each parametrization.
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the strange quark s, whose current mass is considered as
ms ¼ 140.7 MeV. We start with the Nambu-Jona-Lasinio
Lagrangian density model with the ’t Hooft interaction
included. We recall the NJL grand canonical potential
written in terms of the strengths of the scalar, vector, and
quark mixture channels, namely, Gs, GV , and K, respec-
tively. The implementation of the infrared quark-gluon
dynamics is performed by making these couplings depen-
dent on the traced Polyakov loop as follows, Gs→
GsðGs;ΦÞ¼Gsð1−Φ2Þ, GV →GVðGV;ΦÞ¼GVð1−Φ2Þ,
and K → KðK;ΦÞ ¼ Kð1 −Φ2Þ. The motivation for
this procedure is to ensure vanishing quark interactions
at Φ ¼ 1 (deconfined phase). By using these new functions
GsðK;ΦÞ, GVðK;ΦÞ, andKðK;ΦÞ, it is possible to define a
new Polyakov potential now with strangeness included in
the back reaction (quarks and gluons affecting each other).
We also analyze how the confinement/deconfinement

phase transition takes place from the study of the minima of
Φ at a fixed (common) quark chemical potential. In this
investigation, we focus on the case of symmetric quark
matter, namely, the system presenting μu ¼ μd ¼ μs. The
same study applied to other values of μ generates a typical
first-order phase transition for the order parameter Φ as a
function of μ. Therefore, the system presents two phase
transitions, namely, the one defined by Φ, and the other
related to the broken/restored chiral symmetry phase
transition, in which the quark condensates are the order
parameters. This last one is already presented in the original
NJL model. The region between these two transitions can
be identified, as in the SU(2) case, as the quarkyonic phase,
defined here as the phase in which the light quarks present
restored chiral symmetry but are still confined (Φ ¼ 0).
Another interesting feature of the SU(3) version of the

PNJL0 model is the strong reduction of the constituent
strange quark mass (Ms) at the deconfinement phase
transition. We verify that Ms undergoes a reduction of

almost 50% for the parametrization in which GV ¼ 0.25Gs
and a3 ¼ −0.1. The dynamics of the traced Polyakov loop
at T ¼ 0 favors the restoration of chiral symmetry even
for the strange quark. This effect is not present in the
original SU(3) NJL model since Φ is always vanishing in
this case.
We also implement the chemical equilibrium and charge

neutrality in the SU(3) PNJL0 model in order to apply it in
the description of hybrid stars. For the hadronic side we use
a density dependent model and match both equations of
state exactly at the point where quarks are deconfined.
Different PNJL0 parametrizations were constructed by
changing the values of GV and a3. We verify that the
increasing of both, GV and ja3j, increases the transition
pressure and the gap in the energy density of the hadron-
quark phase transition. Finally, we generate the mass-radius
profiles determined by the parametrizations of the PNJL0
model (different GV and ja3j values) coupled to the
hadronic model. Our results indicate that it is possible to
construct hybrid stars compatible with some observational
data. In particular, the recent ones proposed by the NICER
mission [85–87].
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