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We propose a new candidate of GeV-scale inelastic dark matter (DM). Our construction has an anomaly-
free Uð1ÞX gauge group with a dark photon mediator, and it can realize either scalar or fermionic inelastic
DM. It is highly predictive and testable. We study the scattering rate of light inelastic DM with electrons in
the XENON1T experiment and with nuclei in the XENON1T, CRESST-III, CDEX-1B and DarkSide-50
experiments. We resolve the recent XENON1T anomaly via electron recoil detection. Combining the
XENON1T constraints from both electron recoils and nuclear recoils (including the Migdal effect), we
predict the inelastic DM mass ≲1.4 GeV. We further analyze the bounds by the DM relic abundance, the
lifetime of heavier DM components, and laboratory constraints, from which we identify the viable
parameter space for the future probe. This provides an important benchmark for the theories and
experimental tests of GeV-scale inelastic DM.
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I. INTRODUCTION

Searching for GeV-scale light dark matter (DM) particles
is a very challenging task, because the conventional direct
detection via DM-nucleon recoil becomes difficult for DM
masses ≲5 GeV. Hence, measuring the DM-electron recoil
spectrum has provided an important means for light DM
direct detection. The XENON Collaboration [1] recently
announced a 3.5σ excess of events with low electron recoil
energy in its Science Run I [2]. The XENON1T detector
recorded 285 events for the recoil energy ER ¼ ð1–7Þ keV,
among which the expected background events are 232� 15
[2]. This excess centers around ER ¼ ð2–3.5Þ keV. Lately,
the PandaX-II Collaboration also reported an independent
DM search by measuring the low-energy electron recoil
spectrum with robust estimates of backgrounds [3]. It is
consistent with the XENON1T measurement [2], although
its sensitivity is not yet enough to either confirm or exclude
the DM interpretation of the XENON1T anomaly. There
have been possible explanations for this excess in the

literature, including an unexpected tritium background
[2,4] and various new physics models [5–8].
One attractive resolution of the XENON1T anomaly is

the exothermic inelastic scattering [7,8] between the DM
and electrons. In this scenario, the DM consists of two
components ðX;X0Þ with a small mass splitting ΔmX ≡
mX0 −mX, which is around the anomalous recoil energy
region (2–3) keV of XENON1T. The heavier DM compo-
nent X0 is cosmologically stable, because its decay to the
lighter DM component X is highly suppressed by the small
mass splitting ΔmX. Inside the xenon detector, X0 scatters
inelastically with the xenon electron and deexcites to X.1

The DM mass splitting manifests itself as a peak in the
electron recoil energy spectrum. On the other hand, the
recoil energy from the elastic DM-electron scattering is
too small to be detectable in XENON1T unless the DM
particles are very fast moving [5]. To generate the
XENON1T anomaly, we can estimate the required normal-
ized cross section of the DM-electron inelastic scattering,
σ̄e=mX ≈ 8.8 × 10−44 cm2=GeV, by considering the DM
ðX;X0Þ of equal amount and the DM-electron interaction of
scalar or vector type [8]. Here we define σ̄e ≡ σXeðjqj ¼ 0Þ
as the scattering cross section of X0e− → Xe− in the zero-
momentum-exchange limit jqj ¼ 0.
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1This differs in an essential way from the well-studied
endothermic inelastic DM scattering in the literature [9], which
cannot explain the XENON1T anomaly and is irrelevant to the
our current work.
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In the literature, the inelastic scatterings mostly arise
from exchanging a light dark photon with couplings to
leptons by assuming a tiny kinetic mixing between the dark
photon and the standard-model (SM) photon [7]. These
models require a large hierarchy between the dark-photon–
lepton coupling and the dark-photon–DM coupling. So, the
dark photons could be hidden from various collider
searches by tuning the kinetic mixing of the dark photon
with the photon down to Oð10−3–10−6Þ. The origin of such
tiny kinetic mixing remains obscure [10], so we will not
pursue this for the present study.
In this work, we propose a new candidate of GeV-scale

inelastic DM. We realize this in an anomaly-free and
renormalizablemodel, inwhich theDMand the right-handed
first-family fermions join the interactions of a dark
Uð1ÞX gauge group. We achieve the desired OðkeVÞ
mass splitting of the inelastic DM by a scalar seesaw
mechanism without fine-tuning. We show that this minimal
model is viable for the inelastic DM of mass ≲1.4 GeV,
which can provide the intriguing anomaly in the XENON1T
electron recoil spectrum [2] and be consistent with the DM-
nucleon recoil detections (of low threshold) by XENON1T
[11], CRESST-III [12], CDEX-1B [13], and DarkSide-50
[14] experiments. For the dark photon mediator with mass
< 2mX, this model can provide the observed DM relic
abundance and ensure that the heavier DM component is
cosmologically stable. We further derive nontrivial bounds
from the existing laboratory measurements, including the
electroweak precision tests and collider searches. We also
discuss the possible future experimental probes.
This paper is organized as follows: We construct our

model in Sec. II. Then, in Sec. III, we analyze the DM-
electron and DM-nucleon recoil signals in various direct-
detection experiments. In Sec. IV,we study the cosmological
constraints on our model, including the X0 lifetime and the
DM relic abundance. In Sec. V, we study other laboratory
constraints, including the electroweak precision tests and the
collider searches. Finally, we conclude in Sec. VI. In
Appendix A, we propose an improved treatment of the
Migdal effect bound on the inelastic DM. Appendix B
presents our analysis on the Higgs sector of this model.

II. INELASTIC DM WITH DARK
PHOTON MEDIATOR

To realize the DM-electron interaction, we construct a
minimal extension of the SM by a dark Uð1ÞX gauge group
under which both the DM and the right-handed first-family
fermions are charged. We also include three right-handed
Majorana neutrinos νRj (j ¼ 1, 2, 3). We denote the Uð1ÞX
gauge boson (dark photon) by A0

μ. The Higgs sector consists
of two Higgs doublets plus three singlet scalars S, S0, and ϕ,
charged under Uð1ÞX. The electroweak symmetry breaking
is realized by two Higgs doublets H1 and H2 with vacuum
expectation values (VEVs) hHji ¼ ð0; vjÞT and their

combined VEV vh ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
v21 þ v22

p
≃ 174 GeV. We will set

v21 ≪ v22, so the observed Higgs boson (125 GeV) is mostly
made of the CP-even neutral component of H2. The dark
Uð1ÞX gauge group is mainly broken by the VEVs of the
singlet scalars S and S0, whose VEVs hSi ¼ vS and hS0i ¼
v0S are of Oð100 GeVÞ. Our model sets the first-family
fermions charged under Uð1ÞX, and the second- and
third-family fermions as Uð1ÞX singlets. In the following
subsections, we will study the case of scalar DM X̂ ¼
ðX þ iX0Þ= ffiffiffi

2
p

and the case of fermionic DM χ̂ ¼
ðχ1; χ2†ÞT , respectively. In Table I, we present the particle
content and charge assignments of our model for the dark
sector, the Higgs sector, and the first-family fermions.
We note that in the lepton sector, only the right-handed

ðeR; νR1Þ are charged under Uð1ÞX to maintain the stability
of the heavier DM component. The Uð1ÞX charge assign-
ments of the first-family SM fermions (including the
right-handed neutrino) are then uniquely determined by
the anomaly cancellation.

A. Inelastic scalar DM with dark Uð1ÞX
The DM particles ðX;X0Þ form a complex scalar X̂ ¼

ðX þ iX0Þ= ffiffiffi
2

p
withUð1ÞX charge qX̂. As we will show, the

spontaneous breaking of Uð1ÞX will generate the desired
mass splitting ΔmX between X and X0. Our model sets the
left-handed fermion doublets asUð1ÞX singlets. This forbids
the decay channel X0 → Xν̄ν, and thus ensures that the
currentDM relic abundance consists of about equal amounts
of ðX;X0Þ so far. The anomaly cancellation conditions then
uniquely determine the Uð1ÞX charges of the first-family
fermions up to an overall normalization factor. The flavor
nonuniversality of Uð1ÞX ensuresH2 as a Uð1ÞX singlet, so
the A0 − Z mixing is suppressed by v21=v

2
h ≪ 1 and thus

experimentally viable, as will be shown in Sec. IV.
We write down the relevant Lagrangian terms of the DM

sector as follows:

ΔLDM ⊃ jDμX̂j2 −m2
X̂
jX̂j2 − λXjX̂j4

− ðλXϕX̂2ϕ2 þ H:c:Þ −
X
i

λXψ i
jX̂j2jψ ij2; ð1Þ

TABLE I. Particle content and group assignments of our model.
Here QL1

(L1) denotes the left-handed weak doublet of quarks
(leptons) in the first family of the SM, while the second and third
families of the SM fermions are Uð1ÞX singlets and Z2-even. The
second column from the right defines the scalar inelastic DM X̂, and
the lastcolumndefines the fermionic inelasticDM χ̂ asanother setup.

Group QL1 uR dR L1 eR νR1 H1 H2 S S0 ϕ X̂ χ̂

SUð2ÞL 2 1 1 2 1 1 2 2 1 1 1 1 1
Uð1ÞY 1

6
2
3

− 1
3
− 1

2
−1 0 1

2
1
2

0 0 0 0 0
Uð1ÞX 0 1

2
− 1

2
0 − 1

2
1
2

1
2

0 −1 1
2

−3 3 3
2

Z2 þ þ þ þ þ þ þ þ þ þ þ − −
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where the scalar fields ψ i ¼ H1, H2, S, S0, ϕ. According to
Table I, H1 only couples to the first-family fermions, while
H2 interacts only with the second and third families of
fermions. Thus, we can write the Lagrangian including the
relevant Yukawa terms with νRj and the relevant potential
terms with scalar singlets:

ΔL⊃ ēRiDeR−
X3
i¼1

�
yνi1L̄iH̃1νR1þ

X3
j¼2

yνijL̄iH̃2νRjþH:c:

�

−
1

2

�
ySνTR1SνR1þ

X3
i;j¼2

MRijν
T
RiνRjþH:c:

�

þM2
SjSj2þM2

S0 jS0j2þðM0
12H

†
1H2S0 þH:c:Þ

−M2
ϕjϕj2þðλSϕS3ϕ�þH:c:Þ: ð2Þ

We note that the cubic term M0
12H

†
1H2S0 can ensure the

pseudoscalars to be massive. In Eq. (2), the squared masses
ðM2

S;M
2
S0 ;M

2
ϕÞ are all positive, so S and S0 acquire VEVs

from their potentials directly, whereas ϕ can only obtain a
small VEV induced from hSi and hS0i. In our model, the
scalar potential holds CP symmetry, under which all the
scalar couplings and VEVs are real. Equation (2) shows
that the singlet S and the right-handed neutrino νR1 form a
Yukawa interaction which generates a weak scale Majorana
mass MR1 ¼ yS1vS for νR1. The second- and third-family
right-handed neutrinos are Uð1ÞX singlets, so they form
Majorana mass terms directly. Thus, the light neutrino
masses are generated by the type-I seesaw mechanism.
From the Lagrangian (1), we see that the DM mass is

determined by the DM quadratic mass term and the DM
couplings to jHij2, jSj2, and jS0j2. The mass splitting
between the two DM components is determined by the
unique quartic interaction X̂2ϕ2, where the singlet VEV hϕi
is naturally small as generated by a scalar seesaw2 from the
potential terms in the last line of Eq. (2). This is because ϕ
is much heavier than all the other scalars and leads to
vϕ ≡ hϕi ≃ λSϕv3S=M

2
ϕ. Thus, we derive the ðX;X0Þ mass

splitting:

mX0 −mX

mX
≃
λXϕv2ϕ
m2

X
¼ 2λXϕλ

2
Sϕv

6
S

m2
XM

4
ϕ

: ð3Þ

Hence, to realize the desired OðkeVÞ mass splitting for
explaining the XENON1T anomaly, we can choose the
sample inputs without fine-tuning: λXϕ, λSϕ ¼ Oð0.01Þ,
vS ¼ Oð100Þ GeV, mX ¼ OðGeVÞ, and Mϕ ¼ OðTeVÞ.
This gives vϕ ¼ Oð10Þ MeV and ΔmX ¼ OðkeVÞ.

Since the Higgs doublet H1 carries charges of both
Uð1ÞY and Uð1ÞX, its VEV induces mass mixing between
their gauge bosons. Denoting the neutral gauge bosons of
SUð2ÞL, Uð1ÞY , and Uð1ÞX as ðW3

μ; Bμ;XμÞ, we derive
their mass eigenstates ðZμ; Aμ; A0

μÞ to the leading order
of the gauge coupling gX ≪ 1 and VEV ratio v21=v

2
h ≪ 1,

with the mass eigenvalues

m2
A ¼ 0;

m2
A0 ≃ 2g2X

�
v2S þ

1

4
v2S0

�
;

M2
Z ≃

1

2

�
g2 þ g02 þ g2X

v41
v4h

�
v2h; ð4Þ

and their leading-order mixing matrix,

0
B@

A0
μ

Aμ

Zμ

1
CA ¼

0
BBBBB@

1 −g0gX
g2þg02

v2
1

v2h

ggX
g2þg02

v2
1

v2h

0 gffiffiffiffiffiffiffiffiffiffi
g2þg02

p g0ffiffiffiffiffiffiffiffiffiffi
g2þg02

p
−gXffiffiffiffiffiffiffiffiffiffi
g2þg02

p v2
1

v2h

−g0ffiffiffiffiffiffiffiffiffiffi
g2þg02

p gffiffiffiffiffiffiffiffiffiffi
g2þg02

p

1
CCCCCA

0
BB@

Xμ

Bμ

W3
μ

1
CCA: ð5Þ

B. Inelastic fermionic DM with dark Uð1ÞX
The mechanism of realizing OðkeVÞ mass splitting for

the scalar inelastic DM in Sec. II A can be extended to the
case of inelastic fermionic DM. In this subsection, we
present a construction of inelastic fermionic DM. In this
model, the charge assignments (Table I) and the scalar
potential [Eq. (2)] remain the same as before, except that
the fermionic DM χ̂ has a different Uð1ÞX charge, as shown
in the last column of Table I. The fermionic DM contains
two Weyl spinors χ1 and χ2, with opposite Uð1ÞX charges
qχ1 ¼−qχ2 ¼ 3

2
. They can form a Dirac spinor χ̂ ¼ ðχ1; χ†2ÞT,

which is vectorlike under Uð1ÞX. Thus, the dark sector
contains the following gauge-invariant Lagrangian terms:

ΔL ⊃ χ†1iσ̄
μDμχ1 þ χ2

†iσ̄μDμχ2 − ðmχ̂χ1χ2 þ H:c:Þ
þ ðyϕχ1χ1χ1ϕþ yϕχ2χ2χ2ϕ

� þ H:c:Þ; ð6Þ
where the parameters ðmχ̂ ; yϕχ1 ; yϕχ2Þ are positive after
proper phase rotations of ðϕ; χ1; χ2Þ. As shown in Sec. II A,
the scalar field ϕ acquires a small VEV vϕ ≃ λSϕv3S=M

2
ϕ due

to the scalar seesaw from Eq. (2). The VEV vϕ will induce
additional Majorana masses for ðχ1; χ2Þ through the
Yukawa interactions in Eq. (6). Thus, we have the follow-
ing DM mass terms:

Lχ1χ2 ⊃ −mχ̂χ1χ2 þ δm1χ1χ1 þ δm2χ2χ2 þ H:c:; ð7Þ
where ðδm1; δm2Þ ¼ ðyϕχ1vϕ; yϕχ2vϕÞ. To rotate ðχ1; χ2Þ
into the mass eigenstates ðχ; χ0Þ, we make the following
decomposition:

2The realization of this scalar seesaw mechanism requires the
presence of aUð1Þ symmetry. It is truly attractive and economical
to identify it as a gauge symmetry Uð1ÞX whose gauge boson
serves as the portal (mediator) between the dark and visible
sectors.
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χ1 ≃
1ffiffiffi
2

p ðχ − iχ0Þ; χ2 ≃
1ffiffiffi
2

p ðχ þ iχ0Þ: ð8Þ

In the limit vϕ ≪ mχ̂ , we derive the following Majorana
masses for the DM mass eigenstates ðχ; χ0Þ:

mχ ≃mχ̂ − ðδm1 þ δm2Þ;
mχ0 ≃mχ̂ þ ðδm1 þ δm2Þ; ð9Þ

which have a mass splitting

Δmχ ≃ 2ðδm1 þ δm2Þ: ð10Þ
To realize the required mass splitting of OðkeVÞ for
explaining the XENON1T anomaly, we choose the natural
sample inputs, λSϕ;yϕχ1 ;yϕχ2 ¼Oð0.01Þ, vS ¼ Oð20Þ GeV,
andMϕ ¼ OðTeVÞ. With these, we deduce a small VEVof
vϕ ¼ Oð0.1Þ MeV, and thus the desired mass splitting
Δmχ ¼ OðkeVÞ. From Eq. (6), we deduce theUð1ÞX gauge
interactions for the DM fields ðχ; χ0Þ:

Lint ⊃ iqχ̂gXðχ†σ̄μχ0 − χ0†σ̄μχÞXμ: ð11Þ
We note that the diagonal vertices χ-χ-Xμ and χ0-χ0-Xμ

vanish, whereas the above nondiagonal vertices can induce
the desired inelastic scattering for explaining the
XENON1T anomaly of DM-electron recoils.
Most discussions in the rest of this paper can apply to

both the scalar and fermionic DM. For the simplicity of
notation, unless specified otherwise, we will use the same
symbols ðΔmX;mXÞ and ðX̂; X; X0Þ for both scalar and
fermionic DM. For the fermionic DM, these notations refer
to ðΔmχ ; mχ̂Þ and ðχ̂; χ; χ0Þ.

III. ANALYZING CONSTRAINTS OF DM
DIRECT DETECTIONS

For the present study, we derive the DM-electron inelastic
scattering cross sectionwith zeromomentum transfer, which
holds for both scalar DM and fermionic DM:

σ̄e ≡ σXeðjqj ¼ 0Þ ¼ q2eq2DMg
4
X

4π

m2
e

m4
A0
; ð12Þ

where eR carries Uð1ÞX charge qe ¼ − 1
2
. The Uð1ÞX charge

of the scalar DM is qDM ¼ qX̂ ¼ 3, and the fermionic DM
has qDM ¼ qχ̂ ¼ 3

2
. InRef. [8], we proposed an effective field

theory (EFT) approach to perform a model-independent fit
of the inelastic DM for the XENON1T electron recoil
spectrum [2]. Our fit shows that the XENON1T anomaly
[2] can be fully explained by the two-component inelastic
DM with mass splitting ΔmX ≡mX0 −mX ¼ 2.8þ0.2

−0.3 keV
(68% C.L.) and 2.1 keV < ΔmX < 3.3 keV (95% C.L.).
We obtain the ratio of the inelastic cross section over the
DM mass, σ̄e=mX ¼ ð8.8� 4.0Þ × 10−44 cm2=GeV, under
the condition that the DM density contains an equal amount

of X and X0 particles. Thus, by fitting the XENON1T data
[2], we derive the following bound on our model:

mA0

gX
¼ 1.2þ0.2

−0.1 × 102 GeV ×

����� qeqDM3=2

����
1
2

�
1 GeV
mX

�1
4

�
: ð13Þ

In Fig. 1(a), we present the electron recoil energy
spectrum as predicted by the inelastic DM, in comparison
with that of the XENON1T measurement [2]. The recoil
spectra plotted in the (green, red, blue) dashed curves
correspond to the inelastic DM contributions with mass
splitting ΔmX ¼ ð2.5; 2.8; 3.0Þ keV, whereas the (green,
red, blue) solid curves further include the background
contribution as given by model B0 of XENON1T [2]
(depicted by the black solid curve). The data points with
error bars show the XENON1T measurement [2]. We have
input a sample cross-section/mass ratio σ̄e=mX ¼ 8.8×
10−44 cm2=GeV, which is the best fit with XENON1T data
[2], as mentioned above Eq. (13). We note that the shape of
our fitted recoil peak is mainly determined by the data
points below 5 keV, and the fit with the spectrum above
5 keV has little effect on the shape of this peak. The
background model B0 is fitted to the recoil energy data over
a very wide range of (1–210) keV [2], hence its normali-
zation has negligible fluctuation.
In Fig. 1(b), we show mA0=ðgX ffiffiffiffiffiffiffiffiffi

qDM
p Þ as a function of

the DMmassmX. By fitting the recent XENON1T data [2],
we present the allowed parameter space by the pink area at
95% C.L., and we plot the central values (best fit) by the
red solid curve. The PandaX-II Collaboration has accumu-
lated 100.7 ton-day data from measuring the electron
recoil spectrum [3], which is consistent with the back-
ground fluctuations. In each bin of the PandaX-II data,
we find the expected DM signal rate to be less than
10 events/keV, which is smaller than the error bar.
Hence, the best fit of our model is consistent with
PandaX-II, although its current bound is too weak to be
shown in Fig. 1.
The DM particles in our model can also scatter with

nuclei by exchanging the mediator A0
μ, since the quarks

ðuR; dRÞ carry Uð1ÞX charges as in Table I. The DM-
nucleon scattering cross section is dominated by the vector
coupling of A0

μ with quarks, since the contribution of the
axial-vector coupling is suppressed by the velocity of the
recoiled nucleus. Thus, the spin-independent contribution
dominates the DM-nucleon scattering. The Uð1ÞX
charge of a nucleon is the sum of its valence quarks at
low energy—i.e., qp ¼ 1

2
for a proton and qn ¼ − 1

2
for a

neutron. We thus compute the DM-nucleon scattering cross
section as follows [15,16]:

σXN ¼ m2
Nm

2
Xq

2
Nq

2
DMg

4
X

4πðmX þmNÞ2m4
A0
; ð14Þ
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wheremN ≃ 940 MeV is the mass of a nucleon, and qN ¼ 1
2

(− 1
2
) for protons (neutrons). The above formula of the DM-

nucleon scattering cross section remains the same for both
scalar and fermionic DM, except that theUð1ÞX charge qDM
of the DM can differ in the two cases. This is consistent with
the fact that the dominant contribution to the scattering is
spin independent and does not rely on the mass splitting
ΔmX. If such scattering could flip the spin of the fermionic
DM, it must proceed by changing either the orbital angular
momentumof the systemor the spin state of the nucleus. The
amplitude of the former is suppressed by the low DM
velocity, while the latter depends on the nuclear spin and
thus is much smaller than the dominant spin-independent
contribution. The leading amplitude is thus diagonal
in the space of DM spin states, and it is proportional to
JμX ¼ hXðk2ÞjĴμXjX0ðk1Þi ∝ qDMðkμ1 þ kμ2Þ þOðΔmXÞ. This
form is fixed by theUð1ÞX current conservation qμJμX ¼ 0 in
the limit ΔmX ⇝ 0, where the momentum transfer
qμ ¼ kμ1 − kμ2. This form does not depend on the spin of
DM; hence, the leading term of the DM-nucleus scattering
cross section remains the same for both scalar and fer-
mionic DM.
We also note that the Uð1ÞX charges of protons and

neutrons have opposite signs in our model. This gives the
total Uð1ÞX charge of a nucleus Q ¼ 1

2
ðA − 2ZÞ, where A

and Z denote the nucleon number and proton number,
respectively. The form factor is nearly constant, fðqrnÞ ≃ 1,
because for the light DM mX < 5 GeV, the momentum
transfer q≲Oð10 MeVÞ is small. Thus, to compare our

model with the nuclear recoil measurements which usually
assume isospin symmetry between protons and neutrons for
spin-independent interactions, we can properly rescale their
original bounds on the DM-nucleon cross section by a
factor of A2=ðA − 2ZÞ2, where a weighted average over
isotope abundance is understood.
For dual-phase detectors such as XENON1T [17] and

DarkSide-50 [18], the nuclear recoil causes primary scin-
tillation signals that are measured with energy thresholds
at several keV, which are sensitive to DM particles with
masses≳5 GeV. Due to the Migdal effect [19], the recoiled
nuclei produce ionization and/or excitation of their atomic
electrons with finite probability. The secondary radiation
signals created by these electrons can be detected with
much lower energy thresholds (≲1 keV), and thus largely
enhance the sensitivity to sub-GeV DM. These effects have
been included in the direct-detection experimental papers
such as Ref. [11]. The differential rate of electron recoil
(ER) in the Migdal process accompanying a nucleus recoil
(NR) is given by [11,19]

dR
dEER

≃
Z

dENRdv

�
d2RN

dENRdv

X
n;l

dPc
qe

2πdEER

�
; ð15Þ

where Pc
qe encodes the probability for the ionization of

atomic electron with quantum numbers ðn;lÞ suppressed in
the expression. The differential rate of the nuclear recoil,
d2RN

dENRdv
, depends only on the short-scale particle physics

FIG. 1. (a) Electron recoil energy spectrum from electron-DM scattering as predicted by the inelastic DM and measured by
XENON1T [2]. The (green, red, blue) dashed curves present the inelastic DM contributions with the DM mass splitting
ΔmX ¼ ð2.5; 2.8; 3.0Þ keV, while the (green, red, blue) solid curves further include the XENON1T background contribution (shown
as the black solid curve). The data points with error bars show the XENON1T measurement [2]. (b) Constraints on our model by the
direct DM detections of XENON1T, CRESST-III, CDEX-1B, and DarkSide. The pink area shows the allowed region (95% C.L.), and
the red solid curve gives the central value from fitting the XENON1T electron recoil data [2]. The gray regions are excluded at 90% C.L.
by the nucleus recoil detections (of low threshold), where the (purple, light blue, green, dark blue) curves present the existing exclusion
limits from the XENON1T [11], CRESST-III [12], CDEX-1B [13], and DarkSide-50 [14] experiments via nucleon recoils, respectively.
The purple dashed curve presents the estimate of an improved constraint of the Migdal effect on the inelastic DM inferred from the
XENON1T result [11].
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model following the standard calculation of DM-nuclear
scattering. Because of the clear separation of the nuclear
and atomic physics effects as in Eq. (15), the XENON1T
Collaboration already took into account the atomic ioniza-
tion factor Pc

qe and transferred its limit on the electron recoil
event rate to the limit on the DM-nucleon elastic cross
section. For exothermic inelastic scattering, the energy
release from the DM makes it easier to excite Migdal
electrons than elastic scattering, as shown in Ref. [20].
Thus, we can view the XENON1T result [11] on DM-
nucleus elastic scattering as a conservative constraint on
Eq. (14). So far in the literature, the constraints of including
the Migdal effect are derived only for elastic DM [11] and
for inelastic DM with a few special inputs of δ [20]. In
Appendix A, we make an estimate of the improved
constraint of the Migdal effect on the inelastic DM by
using the XENON1T result [11].
In the following, we summarize the best constraints on

DM-nucleon scattering from current direct-detection
experiments. The strongest bound is set by the recent
XENON1T detection [11], which probes the light DM with
masses down to about 85 MeV by measuring electronic
recoils induced by the Migdal effect and bremsstrahlung.
It can detect both scintillation and ionization signals, as
well as ionization signals only, which allows for a lower
detection threshold.3 The recent DarkSide-50 measurement
[14] used a target of low-radioactivity argon and analyzed
the ionization signals, which probes the light DM mass
down to the (1.8–6) GeV range. The CDEX-1B experiment
[13] uses P-type point contact germanium (PPCGe) detec-
tors to detect both the nuclear recoil energy and electron
ionization energy. It can probe the light DM mass down to
50 MeV. Utilizing solid-state detectors with low energy
thresholds is another significant means for light DM
detection. The CRESST-III detection [12] operates scintil-
lating CaWO4 crystals as cryogenic calorimeters and can
achieve a low nuclear recoil threshold energy of 30.1 eV.
It is sensitive to light DM of mass below ∼2 GeV.
In Fig. 1(b), we present the bounds (90% C.L.) from

XENON1T [11], CRESST-III [12], CDEX-1B [13], and
DarkSide-50 [14] on the parameter space of our model,
shown by the gray region, over the mass range
mX ¼ ð0.01–5Þ GeV. Here the purple, light blue, yellow,
and dark blue curves give the 90% exclusion limits set by
the XENON1T, CRESST-III, CDEX-1B, and DarkSide-50
experiments, respectively. We find that the XENON1T
measurement (including the Migdal effect) imposes the
strongest limit on our parameter space among the existing

bounds.4 This constrains the inelastic DM mass within the
range mX ≲ 1.4 GeV. The purple dashed curve shows our
estimated constraint of the Migdal effect on the (exother-
mic) inelastic DM inferred from the original XENON1T
result [11] on elastic DM based on the scaling relation of
Eq. (A6). We see that this improved analysis could enhance
the constraint to around mX ≲ 0.8 GeV. We note that in
general, using the Migdal effect can place strong con-
straints on inelastic DM, and our new method can be
applied to a broad class of inelastic DM models. We will
perform a systematic analysis of the Migdal effect on
various inelastic DM models in future work.

IV. ANALYZING COSMOLOGICAL
CONSTRAINTS

In this section, we analyze the relevant cosmological
constraints on the present inelastic DM model.

A. Lifetime of the heavier DM component X0

To resolve the XENON1Tanomaly by inelastic DM, it is
important to ensure that the lifetime of the heavier DM
component X0 is longer than the age of the Universe. Since
we have the DM mass splitting ΔmX ≪ me, only the
decays such as X0 → Xγγ and X0 → Xνν̄ are kinematically
allowed. The decay channelX0 → Xγγ arises from one-loop
diagrams with electrons eR or quarks uR (dR) running in the
loop. Thus, with Refs. [8,21], we can estimate the partial
decay width of X0 as

ΓX0→Xγγ ≃
X

f¼e;u;d

α2g4Xq
2
DM

155520π5

�
qfNcf

m2
f

�
2Δm9

X

m4
A0

; ð16Þ

where the sum runs over the electron loop (f ¼ e) and
quark loops (f ¼ u, d), qf denotes the electric charge of
each fermion f, and the color factor Ncf ¼ 1ð3Þ for the
electron (quark) loop. Since the quark masses mu;d ≈
ð1.5–6Þ MeV are much larger than the electron mass with
the mass ratio ðme=mu;dÞ4 ¼ Oð10−2 − 10−4Þ, we see that
the electron loop dominates the partial decay width in
Eq. (16). From fitting the XENON1T event rate, we have a
small DM mass splitting ΔmX ≃ 3 keV and the ratio of
mA0=gX given by Eq. (13). This leads to a tiny partial decay
width ΓX0→Xγγ ≈ ð3 × 1024 yrÞ−1, and thus Γ−1

X0→Xγγ ⋙ τU,

where τU ≃ 1.38 × 1010 yr is the age of the present
Universe. Such a long lifetime is also much beyond the
x-ray [22] and CMB [23] constraints on the lifetime of
radiatively decaying DM. These observations typically
exclude DM with a lifetime shorter than 1020 yr.

3We thank our experimental colleagues Qing Lin, Kaixuan Ni,
and Jingqiang Ye in the XENON1T Collaboration [11] for
discussing their analysis of including the Migdal effect and
confirming our application of their bound from Fig. 5 of Ref. [11].
We also thank Qian Yue of the CDEX-1B Collaboration for
confirming our application of their experimental bound [13]
including the Migdal effect.

4Note that for DM mass ≲1 GeV, the typical recoil energy of
scattering off a nucleus is below 1 keV. We thus only include the
down-scattering process X0 þ N → X þ N for the bound.
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The other decay channel, X0 → Xνν̄, occurs through the
A0 exchange due to the neutral gauge boson mixing matrix
[Eq. (5)]. The contribution of the Z exchange as induced by
the mixing matrix in Eq. (5) is fully negligible because of
the large suppression factor ðm4

A0=M4
ZÞ ≲Oð10−4Þ relative

to the A0 exchange. Thus, we can estimate the X0 decay
width as follows:

ΓX0→Xνν̄ ≃
q2DMg

4
X

160π3
v41Δm5

X

v4hm
4
A0

; ð17Þ

where we have included the contributions of the final-state
neutrinos from three families. The result holds for both
scalar and fermionic DM. By requiring that the X0 lifetime
be much longer than the age of our present Universe,
Γ−1
X0→Xνν̄ ≳ 10τU ≫ τU, we derive a constraint:

v1 ≲ 17 GeV ×

�
1 GeV
mX

�1
4

: ð18Þ

This shows that in our model, the electroweak symmetry
breaking (EWSB) is mainly generated by the Higgs doublet
H2, and the VEV ratio tan β ¼ v2=v1 ≳ 10.

B. Dark matter relic abundance

Since our construction always holds ΔmX ≪ mX, the
two DM components can be regarded as a degenerate
complex scalar or Dirac spinor before they freeze out. We
thus determine the relic density of a complex scalar X̂ or a
Dirac spinor χ̂. We compute the DM relic density of the
current model by using the package MicrOMEGAs [15,24]

and present our results for the scalar DM model in Fig. 2.
In Fig. 2(a), the blue curves show the masses of X ðX0Þ and
A0 which achieve the observed DM relic abundance for
each given value of the gauge coupling gX. The pink area
presents the allowed regions (95% C.L.) by the XENON1T
data [2] combined with the DM relic density bound, and the
red solid curve depicts the best fit. The gray region is
excluded by the XENON1T [11] and CRESST-III [12]
measurements combined with the DM relic density bound.
We find that the DM mass range mX ≲ 1.4 GeV is favored
in our model, and in the viable parameter space, the
dominant DM annihilation channel is X̂�X̂→A0→ fRf̄R,
where f ¼ u, d, e. In Fig. 2(b), the pink region presents the
allowed parameter space of mX versus gX at a 95% C.L.,
and the red solid curve gives the best-fit values. The blue
curves show the allowed values of the gauge coupling gX,
as a function of the DM mass mX, which achieve the
observed DM relic abundance for each given mediator
mass mA0 . We fit the XENON1T electron recoil data [2]
and DM relic density bound together, and include the
constraints of mX ≲ 1.4 GeV by XENON1T [11] and
CRESST-III [12] nuclear recoil measurements (the gray
area). With these, we derive the combined limit gX ≲ 0.016
for the case mA0=mX < 2.
In Fig. 3, we present our results for the inelastic

fermionic DM. Similarly to the scalar DM case, the
annihilation of fermionic DM in the viable parameter space
is dominated by the s-channel process χ̂†χ̂ → A0 → fRf̄R.
But the annihilation is more efficient in the case of
fermionic DM because it is s-wave dominant; whereas
for the scalar DM, the process is p-wave dominant due to
its derivative coupling. In order to achieve the observed

FIG. 2. Allowed parameter space for the inelastic scalar DM. In each plot, the pink areas depict the allowed regions (95% C.L.) by the
XENON1Telectron recoil data [2] combined with the DM relic density bound, and the red solid curve gives the best-fit values. The gray
areas are excluded by nucleon recoil detections of low threshold (90% C.L.), where the purple and light blue curves are exclusion limits
by XENON1T [11] and CRESST-III [12], respectively. (a) Constraints on the parameter space of mX versus mA0=mX . The blue dashed
curves show the allowed parameter space of realizing the observed DM relic density for a set of sample gX values. (b) Constraints on the
parameter space of mX versus gX . The blue dashed curves show the parameter space of realizing the observed DM relic density for a set
of sample mediator masses mA0 . The yellow region is excluded by the DM relic density bound for mA0=mX < 2.
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DM relic density, the parameters for the fermionic DM have
to be farther away from the resonance region than that for
the scalar DM. Hence, in Fig. 3(a), the viable parameter
region (pink area) for the fermionic DM covers lower
values of the mass ratio mA0=mχ , as compared to that in
Fig. 2(a).

C. Current ratio of X and X0

Next, we examine whether the constrained couplings
in Figs. 2 and 3 are consistent with the condition
nX ¼ nX0 . After the decoupling of the annihilation process
X̂X̂† → fRf̄R, the total DM number density nX̂ ¼ nX þ nX0

is fixed. However, X and X0 can still convert into each other
via the processes e�X ↔ e�X0 and X0X0 ↔ XX. As we
showed previously [8], the former process decouples
at T ∼með≫ΔmXÞ for the GeV-scale DM. The latter
process is induced by t- and u-channel exchanges of A0.
If the annihilation X0X0 → XX decoupled at a temperature
T 0 < ΔmX, the X0 density would be exponentially sup-
pressed by a factor of expð−ΔmX=T 0Þ. As an estimate,
this process becomes inefficient when the reaction rate
ΓðT 0Þ≲HðT 0Þ. We estimate this reaction rate as ΓðT 0Þ≃
hσ0vDMinDM, in which the thermally averaged DM anni-
hilation cross section hσ0vDMi ≃ g4Xq

4
DM

ffiffiffiffiffiffiffiffiffiffiffi
m3

XT
0p
=ðπm4

A0 Þ
and the DM density nDM ≃ TeqT 03=mX. Here, Teq is the
temperature at matter-radiation equality. Thus, with these
and Eq. (13), we can estimate

T 0 ≈ 0.01 GeV ×

�
1 GeV
mX

�
×

�
3

qDM

�4
3

: ð19Þ

Shortly after the kinetic decoupling, the DM temperature
drops rapidly as aðtÞ−2 and falls below ΔmX quickly. The
X0 density would get depleted if the annihilation X0X0 →
XX were still efficient. As a conservative estimate, we

demand T 0 ≳me, so the process X0X0 → XX decouples
before the kinetic decoupling between e� and the DM. This
imposes an upper bound mX ≲ 20ð50Þ GeV for scalar
(fermionic) DM, which is always satisfied in our models.

V. ANALYZING LABORATORY CONSTRAINTS

In this section, we proceed to analyze the relevant
laboratory constraints on our inelastic DM models.

A. Correction to Z-boson mass

Our model contributes to several electroweak precision
observables. Using Eq. (4), we derive the new correction to
Z-boson mass:

δMZ ¼ g2Xv
4
1

4v2hMZ
: ð20Þ

The Z pole observables have been measured with high
precision. Especially, fitting the SM with the precision data
gives the prediction Msm

Z ¼ ð91.1884� 0.0020Þ GeV,
while the direct measurement of the Z-boson mass gives
Mexp

Z ¼ ð91.1876� 0.0021Þ GeV [25]. This strongly con-
strains any new physics contribution to the Z mass: δMZ <
0.0049 GeV at a 95% C.L. Thus, we derive an upper bound
on the VEV of the Higgs doublet H1:

v1 ≲ 15.2 GeV=
ffiffiffiffiffi
gX

p
: ð21Þ

B. Correction to electron anomalous
magnetic moment

The Uð1ÞX interaction also alters the anomalous mag-
netic moments of electrons. For mA0 ≫ me, we derive the
one-loop correction to ae ¼ 1

2
ðge − 2Þ:

FIG. 3. Allowed viable parameter space for the inelastic fermionic DM, as shown in plot (a) formX versus mA0=mX , and in plot (b) for
mX versus gX. The curves and shaded regions have the same meanings as defined in the caption of Fig. 2, except that the current plots
present the case of the inelastic fermionic DM.
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δaXe ≃ −
g2Xq

2
e

12π2
m2

e

m2
A0
; ð22Þ

with qe ¼ − 1
2
, which agrees with Ref. [26]. We note that

δaXe < 0 because the mediator A0 couples to electrons via
right-handed coupling only. In contrast, the kinetically
mixed dark photon model generally predicts positive
correction to ae due to its vectorlike coupling to the
electron. For ðgX;mA0 Þ obeying Eq. (13) and for the scalar
(fermionic) DM having Uð1ÞX charge qDM ¼ 3ð3=2Þ, we
derive the correction to the electron anomalous magnetic
moment:

δaXe ≃ −3.8ð7.6Þ × 10−14 ×
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mX=ð1 GeVÞ

p
: ð23Þ

These are around the same order of magnitude as the
current experimental sensitivity of 2 × 10−13 [25] and can
be further probed by the future precision measurement of
electron magnetic dipole moment, especially for the fer-
mionic inelastic DM scenario.

C. Other constraints on the Higgs sector

There are additional bounds that can constrain the Higgs
sector of our inelastic DM model. For instance, the signal
strength of the SM-like Higgs boson hð125 GeVÞ mea-
sured at the LHC can constrain the mixing between the CP-
even neutral component ofH2 and the other scalar singlets.
The flavor-dependent feature of our two-Higgs-doublet
sector could induce the flavor-changing processes via
Higgs exchange, so the mass of the heavy neutral Higgs
(mainly from the H1 doublet) is constrained by meson
mixings. Since the present study focuses on analyzing the
DM and its vector portal to the SM particles, we note that
these constraints can be satisfied by proper parameter
choice in the Higgs sector, which will be elaborated in
Appendix B.

D. Collider constraints

Since the mediator A0
μ couples directly to the right-

handed electrons, our model will receive nontrivial tests by
the eþe− collider measurements. (There are discussions on
constraining light DM models at lepton colliders in the
literature [27–29].) The mediator A0

μ contributes construc-
tively to the cross section of eþe− → eþe−. This cross
section has been measured by LEP [30], with which we
infer a bound on our model,

ffiffiffiffiffiffiffiffi
4πs

p
=ðjqejgXÞ > 8.6 TeV at

95% C.L.,5 where
ffiffiffi
s

p
≃ 200 GeV is the LEP collider

energy, and qe ¼ − 1
2
is the Uð1ÞX charge of eR in our

model. From this, we deduce an upper bound on the Uð1ÞX
gauge coupling, gX ≲ 0.16.

The DM particles can be pair-produced in eþe− colli-
sions through s-channel A0ðZÞ exchanges and in associa-
tion with the final-state monophoton, eþe− → XX0γ. The
rate of the DM production with a monophoton via Z
exchange is highly suppressed by a coupling factor v41=v

4
h

which arises from the gauge boson mixing matrix [Eq. (5)].
As we have shown in Sec. IVand Figs. 2 and 3, the A0 mass
has to be less than a few GeV due to the combined bounds
of realizing the DM relic density and fitting the DM direct-
detection data. We find that for the contribution of A0

exchange in the case of
ffiffiffi
s

p
> mA0 > 2mX at LEP [31],

the cross section of this process has a resonance at
Eγ=Ebeam ∼ 1 −m2

A0=s. By fitting the LEP monophoton
data with parameters obeying the relic density bound,
we derive the 95% exclusion limit on our models,
gX ≲ 0.015. On the other hand, we find that in the
parameter region mA0 < 2mX and under the DM relic
density bound, the contribution to the LEP monophoton
process is too small to receive constraint, so this region is
always allowed.
The monophoton searches at low-energy eþe− colliders

such as BABAR [32] and Belle-II [33] can also place
nontrivial bounds on models of light DM [28]. We sum-
marize these bounds on our model as follows, according to
Ref. [28]: For themass regionmX ≲ 1 GeV andmA0 ≲ 2mX,
theBABARmeasurements constrain g2XjqejqDM < Oð10−2Þ.
For the ongoing Belle-II experiment, the projected con-
straint set by null result is g2XqeqDM < Oð10−3Þ, assuming
that the backgrounds are ideally known. As shown in
Sec. IV, for this case, combining the constraints from the
DMdirect detections and realizing the DM relic density will
require gX ≲ 0.016, which satisfies all the eþe− collider
bounds. For the mass rangemA0 > 2mX, the BABAR experi-
ment sets a strong constraint on the A0 − e� coupling. It is
stronger than the LEP monophoton search limit, due to
the much larger production cross section and the much
higher integrated luminosity of BABAR. Given our charge
assignment qe ¼ 1=2 and the branching fraction of
A0 → XX0, we can derive the corresponding constraint on
our model, gX ≲ 0.003. Combined with the bounds from the
XENON1Telectron recoil andDM relic density, theBABAR
bound on gX further constrains the DM andmediator masses
mX < 0.25 GeV and mA0 < 0.68 GeV for the inelastic
scalar DM, and mX < 0.21 GeV and mA0 < 0.55 GeV for
the inelastic fermionic DM. Thus, the mA0 > 2mX region is
largely excluded.
The LHC measurement of Z → 4μ decays [34]

can constrain the coupling between A0
μ and μ�. This

coupling is induced from the neutral gauge boson mixing
matrix [Eq. (5)], and the corresponding Lagrangian
term is

L ⊃
gXv21
v2h

μ̄γμ
��

sin2θW −
1

4

�
þ 1

4
γ5
�
A0
μμ: ð24Þ5Hereafter, all the quoted experimental bounds are set at

95% C.L. unless specified otherwise.
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For a vector-type new interaction gnewμ̄γμA0
μμ and the

small mediator mass mA0 < 10 GeV, the LHC has placed
a bound on its coupling, gnew ≲ 4.5 × 10−3 at 95% C.L. For
v21=v

2
h ¼ 10−2, we convert this LHCbound to a constraint on

the Uð1ÞX coupling of our model, gX ≲Oð1Þ, which is
weaker than the combined bound by the DM direct
detections and the DM relic density. The inelastic DM
particles of our model can also be directly produced at the
LHC through its coupling to the right-handed quarks
ðuR; dRÞ, giving raise to monophoton signals together with
the missingPT . Such signals have been actively searched by
ATLAS [35] and CMS [36], but these searches lose
sensitivity for gX < Oð0.1Þ [37] and do not constrain the
cosmologically favored parameter space as discussed
in Sec. IV.

VI. CONCLUSIONS

In this work, we proposed a new candidate of GeV-scale
inelastic dark matter (DM), which can be either scalars or
fermions. For this we constructed anomaly-free and renor-
malizable inelastic DM models under a new Uð1ÞX gauge
symmetry with a dark photon mediator (without assuming
kinetic mixing) and with scalar or fermionic DM particles
(cf. Table I). We realized the natural OðkeVÞ mass splitting
for the inelastic DM by a scalar seesaw mechanism. Our
model resolved the recent XENON1T anomaly in the
electron recoil detection [2]. It is highly predictive and
testable. We further analyzed the nontrivial bounds from
the nuclear recoil detection (including the Migdal effect) by
the XENON1T [11], CRESST-III [12], CDEX-1B [13], and
DarkSide-50 [14] experiments with low recoil energy
thresholds. Combining the constraints from both the
electron recoil and nuclear recoil detections, we identified
the viable parameter space and predicted the inelastic
DM mass ≲1.4 GeV, as shown in Fig. 1(b). Then, we
derived the viable parameter space in Fig. 2 for the
scalar inelastic DM and Fig. 3 for the fermionic inelastic
DM, under the constraints by the DM relic abundance,
the lifetime of the heavier DM component, the electroweak
precision tests, and the collider searches. The upcoming
DM direct-detection experiments by the PandaX-4T [38],
LZ [39], and XENONnT [40] Collaborations will
provide decisive probes of our GeV-scale inelastic DM
candidate.
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APPENDIX A: ESTIMATE OF IMPROVED
CONSTRAINT OF THE MIGDAL EFFECT
ON THE INELASTIC DARK MATTER

In this appendix, we make an estimate of the improved
constraint on the inelastic DM by using a scaling relation of
the Migdal effect process.
We begin by recalling the formulation of the Migdal

process for the direct detection of a single component DM
[19]. The differential rate of electron recoil (ER) in the
Migdal process per unit target mass is given by

dR
dEER

≃
Z

dENRdv

�
d2RN

dENRdv

X
n;l

1

2π

dPc
qeðn;l→EeÞ
dEER

�
; ðA1Þ

where the differential rate of the nuclear recoil per unit
target mass is

dRN

dENRdv
≃

ρXσA
2mXμ

2
A

fðvÞ
v

: ðA2Þ

In the above, ρX is the local DM density, μA is the DM-atom

reduced mass, and σA ≡ jFAj2jMj2
ðmAþmXÞ2 is a parametrization of the

atomic form factor FA and the amplitude. It equals the
DM-nuclear cross section for elastic scattering, but not for
the inelastic case. The function fðvÞ is the distribution of
the local DM velocity v. The value Pc

qeðn;l → EeÞ is the
probability of exciting an ðn;lÞ electron with ionization
energy En;l to an unbounded electron with energy deposit
Ee ¼ EER − En;l. The momentum qe ¼ mevA, where vA is
the atom velocity after scattering in the lab frame. We can
further write

1

2π

dPqeðn;l → EeÞ
dEe

≡ q2eAn;lðEeÞ; ðA3Þ

where q2e ¼ 2m2
eENR=mA. Thus, An;lðEeÞ is only a function

of Ee [19], but it is independent of ENR.
In general, the detected energy Edet receives contribu-

tions from both nuclear and electron recoil, Edet ¼
EER þ LENR, with L ≈ 0.15 as the quenching factor of
nuclear recoil. For smallmX ≲ 1 GeV and δ ¼ OðkeVÞ, the
nuclear recoil energy ENR ≲ μA

mA
ð1
2
μAv2 þ δÞ is rather small,

so its contribution to the detected energy can be neglected
in the following estimate for the sensitive range of
XENON1T with Edet ≃ EER ≳ 0.1 keV.
For the spin-independent interaction, the DM-nuclear

cross section σA is independent of the nuclear recoil energy.
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We can perform the integration over ENR analytically in
Eq. (A1), and obtain the result6

dR
dEER

¼ 1

mA

ρXσAm2
eμ

2
A

mXm2
A

An;lðEER−En;lÞ

×2

Z
vmin

dvfðvÞv
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ2ðδ−EERÞ

μAv2

s �
δ−EERþμAv2

μA

�
:

ðA4Þ

For a fixed EER, the minimum velocity vminðEERÞ to excite
the electron is given by

vminðEERÞ2 ¼ max

�
2ðEER − δÞ

μA
; 0

�
; ðA5Þ

where vminðEERÞ ¼ 0 for EER < δ. For δ ≃ 2.8 keV con-
sidered in the present study, the major part of the recoil
spectrum of the Migdal process lies within EER ≲ 1 keV
[20]. As an estimate, we set v as the most probable velocity
v0 ≈ 0.77 × 10−3 of the local DM. Thus, we obtain an
approximate differential spectrum for μA ≈mX:

dR
dEER

∝
μ2A
μ2N

σN

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ 2ðδ − EERÞ

μAv20

s
ðδ − EER þ μAv20Þ: ðA6Þ

Here, μN is the DM-nucleon reduced mass and σN the DM-
nucleon cross section. To utilize the direct-detection results,
we have adopted the convention that DM is coupled equally
to neutrons and protons in deriving Eq. (A6), and thus7

σA=σN ¼ A2μ2A=μ
2
N .

For the light DM, the difference δ − EER ≫ μAv2 and the
recoil spectrum scales as

ffiffiffiffiffiffiffiffiffiffiffiffi
1=mX

p
.

So far in the literature, the constraints from including the
Migdal effect are only given for elastic DM and for inelastic
DM with a few special inputs of δ [20]. We estimate the
constraint on the (exothermic) inelastic DM candidate with
δ ¼ 2.8 keV (cf. main text) based on the following obser-
vations. Reference [20] shows that the detectable sides of
the spectrums are similar for elastic and inelastic DM with

the parameters [δ=keV, mX=GeV, σN=ð10−40 cm2Þ� ¼
ð0; 2; 1Þ and (4,0.5,0.65), respectively. According to the
scaling relation of Eq. (A6), for δ ¼ 2.8 keV, the input
parameters [mX=GeV, σN=ð10−40 cm2Þ� ¼ ð2; 0.41Þ,
(1,0.83), (0.5,1.20), and (0.1,1.13) give rise to the electron
recoil spectra which are similar to those of [δ=keV,
mX=GeV, σN=ð10−40 cm2Þ� ¼ ð4; 0.5; 0.65Þ, and thus are
also similar to those of elastic DM with [mX=GeV,
σN=ð10−40 cm2Þ� ¼ ð2; 1Þ. Since the constraint of the
XENON1T Migdal effect is already given for the elastic
DM cross section [11], we can estimate the constraint on
the inelastic DM by rescaling the elastic DM constraint
according to the parameters that give rise to similar spectra.
We show our estimate by the purple dashed curve in
Fig. 1(b).

APPENDIX B: CONSTRAINTS
ON THE HIGGS SECTOR

In this appendix, we present the constraints on the Higgs
sector of our model. For convenience, we denote the CP-
even neutral components of ðH1; H2; S0Þ as ðh1; h2; hS0 Þ,
respectively. We consider the case of M2

h1
≫ M2

h2
and

v21 ≪ v22, so the observed Higgs boson hð125 GeVÞmainly
contains the h2 state. To realize these conditions, we
consider the relevant part of the scalar potential,

V ⊃ M2
H1
jH1j2 −M2

H2
jH2j2 −M2

S0 jS0j2 −M0H†
1H2S0

þ λ1jH1j4 þ λ2jH2j4 þ λ3jH1j2jH2j2 þ λS0 jS0j4
þ λH1S0 jH1j2jS0j2 þ λH2S0 jH2j2jS0j2; ðB1Þ

where we only list terms relevant to H1, H2 and S0. The
cubic term H†

1H2S0 will ensure nonzero mass of the
pseudoscalars. In Eq. (B1), we take all the mass parameters
and the quartic couplings to be positive. We choose the
Higgs doublet H1 to have a positive mass term, so its mass
MH1

can be naturally large and M2
H1

≫ v22, v
2
S0 . Thus, we

deduce the VEV of H1,

v1 ≃
v2vS0M0

M2
H1

: ðB2Þ

We see that requiring M2
H1

≫ M0vS0 can realize v21 ≪ v22.
The LHC ATLAS and CMS experiments have measured
the signal strength of the Higgs boson hð125 GeVÞ for
various channels, defined as μh≡hσh ·BRiobs=hσh ·BRiSM,
with σh as the h-production cross section and BR as the
decay branching fraction of a given channel. The most
precisely measured decay channels are γγ andWW�, which
are consistent with the SM prediction (μh ¼ 1) to the 10%
level [25]. This constrains the mixings of the SM-like
Higgs boson h2 with hS0 and h1 down to 10% level. Note
that for v21 ≪ v22, the h2 − h1 mixing is mainly generated by

6We have evaluated Eq. (A4) numerically and confirmed its
good agreement with most curves in Figs. 2 and 3 of Ref. [20] for
EER ≳ 0.1 keV. We obtained a less suppressed exothermic
scattering spectrum in the range EER ≳ 1 keV for a DM of
7 MeV mass in comparison with the green curve in Fig. 3 of
Ref. [20]. We have confirmed this with Jayden Newstead (the
coauthor of Ref. [20]), and this discrepancy can be traced back to
a minor coding error in producing the curves of Ref. [20]. We
thank Jayden Newstead for clarification and for sharing his code
of Ref. [20].

7The inelastic DM candidate studied in the main text couples
to neutrons and protons with opposite charges. This requires
additional treatment, as we have shown in Sec. III of our main
text.
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the cubic term −M0H†
1H2S0, and the contributions from the

mixed quartic terms are suppressed by v1=M0. Thus, for
M2

H1
≫ M2

H2
, the h2 − h1 mixing is mainly determined by

jM0vS0=M2
H1
j ≃ v1=v2. With this condition, we may choose

the VEV ratio

v1=v2 ≲ 0.1: ðB3Þ

The small h2-hS0 mixing can be induced by the contribu-
tions from the cubic and quartic terms with opposite signs.
As an estimate, we ignore the small mixing of the heavy h1
with the lighter states h2 or hS0 and obtain

j sin θh2hS0 j≃
���� λH2S0v2vS0 −M0v1

M2
hS0

−M2
h

���� ≪ 1; ðB4Þ

whereMh ≃ 125 GeV andMhS0 are the mass eigenvalues of
the CP-even neutral Higgs states h and hS0 .
Another constraint on the heavy Higgs massMH1

comes
from the flavor-changing processes mediated by the heavy
scalars. The general Yukawa interactions for the quark
sector take the following form:

L ¼ −
X3
i¼1

ðyi1u Q̄LiH̃1uR1 þ yi1d Q̄LiH1dR1Þ

−
Xj¼2;3

i¼1;2;3

ðyiju Q̄LiH̃2uRj þ yijd Q̄LiH2dRjÞ ðB5aÞ

≡ −Q̄i
L❲y⃗uH̃1; ŷuH̃2❳ijuRj

− Q̄i
L❲y⃗dH1; ŷdH2❳ijdRj; ðB5bÞ

where we denote H̃i ¼ iσ2H�
i . For convenience, in the last

line, we have decomposed the 3 × 3 Yukawa matrix
yu;d ¼ ðy⃗u;d; ŷu;dÞij. Here, y⃗u;d are 3 × 1 matrices of
Yukawa couplings to H1 and ŷu;d are 3 × 2 matrices of
Yukawa couplings to H2. The quarks acquire masses
via Yukawa interactions with H1 and H2 taking their
VEVs. Themass eigenstates are obtained by chiral rotations,

u0
L ¼ Uu

LuL; d0
L ¼ Ud

LdL; ðB6aÞ

u0
R ¼ Uu†

R uR; d0
R ¼ Ud†

R dR; ðB6bÞ

where u and d are vectors in flavor space denoting the third
family of quarks, and Uu;d

L;R are unitary rotation matrices.
The quark mass matrices are diagonalized as

Uu†
L ❲y⃗uv1; ŷuv2❳Uu

R ¼ v2y
diag
u ; ðB7aÞ

Ud†
L ❲y⃗dv1; ŷdv2❳Ud

R ¼ v2y
diag
d ; ðB7bÞ

where v2y
diag
uðdÞ is the 3 × 3 diagonal mass matrix for up-type

(down-type) quarks, whose diagonal elements give the
measured quark masses. In the mass eigenbasis, the
Yukawa interactions for the up-type quarks become

L ¼ −ū0
LU

u†
L ❲y⃗uH̃0

1; ŷuH̃
0
2❳U

u
Ru

0
R ðB8aÞ

¼ −ū0
LU

u†
L ❲y⃗u

�
H̃0

1 −
v1
v2

H̃0
2

�
; ð0Þ❳Uu

Ru
0
R

− ū0
Ly

diag
u H̃0

2u
0
R; ðB8bÞ

where H̃0
1 and H̃0

2 denote the neutral components of the
Higgs doublets H̃1 and H̃2, respectively. Similarly, we can
deduce the Yukawa interactions for the mass eigenstates
of down-type quarks under the replacement u → d and
H̃i → Hi. In Eq. (B8b), (0) denotes a 3 × 2matrix in which
all elements vanish. The first term in Eq. (B8b) would
induce flavor-changing processes if the flavor-mixing
matrices Uu

L;R take an arbitrary pattern, and in this case
it will receive strong constraints by the meson mixings. It is
known that for well-motivated scenarios of flavor mixing,
such constraints can be much reduced. For instance, we
may consider a Cheng-Sher-like ansatz [41,42] on the
flavor-changing Yukawa couplings,

ξiju;d ¼ ξ̄iju;d ×
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

mi
u;dm

j
u;d

q
=vh

	
; ðB9Þ

where ði; jÞ are family indices and the coupling coefficients
ξ̄iju;d can be naturally around ξ̄iju;d ¼ Oð0.1–1Þ. Thus, we set

Uu;d†
L ❲y⃗u;d; ð0Þ❳Uu;d

R ¼ ξu;d: ðB10Þ

Then, the flavor-changing process between the ith and jth
families is characterized by the new physics (NP) scale,

ΛNP ¼ min

�
Mh1 ;

v2
v1

Mh2

�
ξ̄iju;dvhffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
mi

u;dm
j
u;d

q ; ðB11Þ

where Mh1 ¼ Oð5–10Þ TeV is the mass of the heavy
neutral Higgs state h1 and Mh2 ≃ 125 GeV is the SM-like
light Higgs boson h2. For instance, the measurements of
K − K̄ mixing constrain ΛNP ≳ 5 × 105 TeV [43]. With
this bound and for a natural coupling coefficient
ξ̄12d ¼ Oð0.1Þ, we obtain the limits on our Higgs sector,
Mh1 ≳ 6 TeV and v1 ≲ 3.6 GeV. The Uð1ÞX gauge boson
A0
μ also mediates the flavor-violating process, since it only

couples to the right-handed quarks and leptons in the first
family. The ratio mA0=gX is constrained by fitting the
XENON1T data as in Eq. (13). So, the constraints from
the meson-mixing measurements could be avoided by
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requiring the right-handed mass eigenstates u0R and d0R to be
mainly aligned with the gauge eigenstates uR and dR. In
addition, we note that the flavor-violating effects can also
occur in the lepton sector and induce flavor-violating
leptonic decay channels for the SM-like light Higgs boson

h2. For instance, this leads to the interesting decay channel
h2 → μ�e∓, which can be searched by analyzing the
current LHC Run-2 data [44]. The upcoming LHC
Run-3 and HL-LHC runs will have strong potential to
discover this channel.
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