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Mirage mediation realized in the Kachru-Kallosh-Linde-Trivedi (KKLT) flux compactification can
naturally suppress the up-type Higgs soft mass at low-energy scales. As a result, compared to the
conventional scenarios, the degree of electroweak fine-tuning can be reduced further up to by a loop factor
if the Higgsinos are much lighter than the heavy Higgs doublet. Interestingly, this feature holds even in
high-scale supersymmetry as long as the gauge coupling unification, which is required as a prerequisite for
mirage mediation, accommodates such light Higgsinos. Under the experimental constraints on the
observed Higgs boson, it turns out that mirage mediation can exhibit low electroweak fine-tuning better
than a few percent for stops between about 2 TeV and 6 TeV, i.e., at the same level as in the weak-scale
supersymmetry, if the Higgsinos are around or below a few hundred GeV.
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I. INTRODUCTION

Supersymmetry (SUSY) is a unique extension of the
Poincaré spacetime symmetry, and it has been extensively
explored as one of the most plausible candidates for physics
beyond the Standard Model (SM) because it can address
various problems of the SM such as dark matter, unifica-
tion, and cosmological inflation [1,2]. In particular, it has
been strongly motivated by the hope to explain the huge
hierarchy between the weak scale and the unification or
Planck scale. However, the current experimental results
indicate that SUSY, if realized in nature, should be above
the TeV scale. In this circumstance, as it becomes more
difficult to stabilize the electroweak scale against large
radiative corrections from unknown ultraviolet physics, one
might need to rely on some other mechanism, such as
the cosmological relaxation [3], in order to explain
the hierarchy between the SUSY breaking scale and the
weak scale.
If SUSY exists above the TeV scale, an important

question worth asking is whether it can still solely solve
the gauge hierarchy problem, which has been believed to
be one of the important virtues of SUSYİn this paper,

we explore the possibility of relaxing the electroweak fine-
tuning in high-scale SUSY from mirage mediation [4] that
is realized in the KKLT flux compactification [5,6]. It has
been noticed that TeV scale mirage mediation can naturally
suppress the low-energy value of the up-type Higgs soft
mass through the combined effect of anomaly and moduli
mediations [7,8]. Consequently, it can reduce the degree of
fine-tuning for electroweak symmetry breaking roughly by
a loop factor if the Higgsinos are much lighter than the
heavy Higgs doublet. We stress that this naturalness feature
persists even in mirage-mediated high-scale SUSY as long
as the gauge coupling unification, which is a prerequisite
for mirage mediation, allows the Higgsinos to be very light
compared to other sparticles.
Mirage mediation, in which anomaly mediation is

comparable to moduli mediation in strength, effectively
corresponds to pure moduli mediation transmitted at the
mirage messenger scale, where there is no physical thresh-
old. The electroweak fine-tuning can considerably be
reduced when the mirage-messenger scale exists around
the SUSY breaking scale. It only requires a proper choice
of the discrete numbers associated with the string moduli
sector [7,8]. We find that such a mirage-mediation scheme
should make stops heavier than about 2 TeV in order to give
the correct mass to the SM-like Higgs boson, but none-
theless, it can exhibit low electroweak fine-tuning better
than a few percent for stops below 6 TeV if the Higgsinos
are around or below a few hundred GeV. One of the
important consequences of mirage mediation is that it leads
to highly compressed spectra of gauginos and sfermions,
thus allowing us to precisely fix the Higgsino mass by the
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condition of gauge coupling unification within the mini-
mal-supersymmetric SM (MSSM).
This paper is organized as follows. In Sec. II, we

present a review on how the Higgs sector parameters are
generated in the mirage mediation scheme and then
discuss the way to reduce the degree of electroweak
fine-tuning in high-scale SUSY while making the SM-
like Higgs boson compatible with the current experimen-
tal data. The viable parameter region leading to natural
electroweak symmetry breaking is examined in Sec. III.
The final section is for conclusions.

II. HIGGS SECTOR IN MIRAGE MEDIATION

In the MSSM, the Z-boson mass is determined by the
minimization condition of the Higgs scalar potential,

m2
Z

2
¼ −jμj2 þm2

Hd
−m2

Hu
tan2 β

tan2 β − 1
; ð2:1Þ

where the involved parameters in the expression above are
evaluated around the weak scale, and tan β is the ratio of the
vacuum expectation values (VEVs) of the Higgs doublets,
Hu and Hd. The Z-boson mass is quite sensitive to the
variation of m2

Hu
for moderate to large values of tan β,

and in general, the electroweak fine-tuning becomes more
severe as the SUSY breaking scale increases. Furthermore,
the successful electroweak symmetry breaking also
requires a sizable Higgs mixing term,

jBμj ¼ sin 2β
2

ðm2
Hd

þm2
Hu

þ 2jμj2Þ ð2:2Þ

at the weak scale. The degree of fine-tuning quantifies to
what extent the Z-boson mass is sensitive to the variations
of the Higgs sector parameters. As shall be discussed later,
the correct estimation of fine-tuning requires the addition of
the loop potential to the renormalization group (RG)
improved tree-level potential.
Combined with the nonobservation of sparticles around

the TeV scale in collider experiments so far, the measured
Higgs boson mass mh ≃ 125 GeV indicates that SUSY
may show up around or above the multi-TeV scale if
realized in nature. It is thus generally expected that the
electroweak symmetry breaking would require severe fine-
tuning, at the level of 0.1%, unless some other mechanism
to cure the fine-tuning is invoked. Having said that, if the
Higgsinos are relatively light as compared to other spar-
ticles, the degree of fine tuning can be reduced by a sizable
amount in a mediation scheme such that the up-type Higgs
soft mass is naturally suppressed at low-energy scales,

jm2
Hu
j≲ jμj2 ≪ m2

Hd
: ð2:3Þ

In terms of the electroweak fine-tuning, the stop sector is
particularly important since it affects the RG running of the

up-type Higgs soft mass via the top-quark Yukawa cou-
pling. The stop radiative contribution to m2

Hu
is given by

δm2
Hu

≃ −
3y2t
4π2

m2
t̃ ln

�
Λmess

mt̃

�
; ð2:4Þ

wheremt̃ is the stop mass, and Λmess denotes the messenger
scale at which SUSY breaking is transmitted to the MSSM
sector. It shows that having a suppressed value of m2

Hu

below the order of m2
t̃ at low energy is unattainable unless

the messenger scale is very low. In this regard, mirage-
mediated SUSY breaking, realized in the KKLT flux
compactification, is of particular interest because it effec-
tively corresponds to pure moduli mediation transmitted at
the mirage messenger scale,Mmir, while not being bothered
by physical thresholds at the scale. The mirage messenger
scale can be very low, depending on the relative strength of
anomaly mediation.
It should be noted that the inclusion of the loop potential

effectively amounts to the shift, roughly given by

m2
Hu

→ m2
Hu

−
3y2t
8π2

m2
t̃ ; ð2:5Þ

in the RG-improved tree-level potential. The above cor-
rection is quadratically sensitive to the sparticle mass scale
and remains unsuppressed in mirage mediation as is the
case in other scenarios. The stop contribution (2.4), which
generally makes the Higgs mass more sensitive to UV
scales due to the logarithmic factor, is the one we wish to
suppress within the KKLT framework. The minimization
condition (2.1) requires the Higgsino mass parameter
roughly to be

jμj2 ≈ m2
Hd

tan2 β
−m2

Hu
; ð2:6Þ

for moderate or large tan β. Moreover, the gauge coupling
unification is required for the sparticles to exhibit the
mirage pattern, and it can be achieved in high-scale SUSY
as precisely as in weak-scale SUSY if the Higgsinos are
light, as discussed below.
In the KKLT flux compactification, sparticle masses

exhibit the mirage mediation pattern as a result of mixed
anomaly and moduli mediation. Provided that the gauge
couplings unify at MGUT ∼ 1016 GeV, the gaugino masses
are given by

MaðQÞ ¼ M0

�
1 −

bag2a
4π2

ln

�
Mmir

Q

��
; ð2:7Þ

at the renormalization scale Q, with ba being the coef-
ficients of one-loop beta functions. Here the relative
strength between anomaly and moduli mediation is mea-
sured by the parameter defined as
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α≡ m3=2

M0 lnðMPl=m3=2Þ
; ð2:8Þ

with m3=2 being the gravitino mass. Then, the mirage
messenger scale is determined by

Mmir ¼ MGUT

�
m3=2

MPl

�
α=2

: ð2:9Þ

In the KKLT setup, the α parameter has a positive rational
number of order unity at leading order. The soft SUSY
breaking parameters of scalar fields also take the mirage
pattern

AijkðQÞ¼M0

�
1þγiþγjþγk

8π2
ln

�
Mmir

Q

��
;

m2
i ðQÞ¼M2

0

�
ciþ

1

4π2

�
γi−

_γi
2
ln

�
Mmir

Q

��
ln

�
Mmir

Q

��
;

ð2:10Þ

for a proper choice of matter modular weights, where γi is
the anomalous dimension of the corresponding field, and
the dot denotes differentiation with respect to Q. Here ci
parametrizes the moduli-mediated contribution, given by

ci ¼ 1 − ni þO
�

1

8π2

�
; ð2:11Þ

including quantum corrections from string loops and
higher-order α0 corrections. The modular weight ni has a
rational number of order unity, depending on the location of
the matter in extra dimensions. The above mirage pattern of
soft scalar parameters requires the matter fields having a
Yukawa coupling yijk to have modular weights satisfying

ni þ nj þ nk ¼ 2; ð2:12Þ

unless y2ijk is smaller than 1=8π2.
In the generalized KKLT scenario with dilaton-moduli

mixing in gauge kinetic functions, the α parameter can have
various values, depending on discrete numbers associated
with dilaton and moduli couplings [7,8]. Out of this
framework, we can have α ¼ 2 while allowing an extra-
dimensional interpretation for the origin of SUSY breaking.
The scenario of mirage mediation with α ¼ 2 and nHu

¼ 1

is of particular interest because it can considerably reduce
the electroweak fine-tuning. For α ¼ 2, the mirage mes-
senger scale is fixed at

Mmir ¼
MGUT

MPl
m3=2 ∼M0; ð2:13Þ

and thereby is around the SUSY breaking scale. Here we
have used the relation that the ratio between the Planck and

unification scales is numerically close to a loop factor.
Besides, if nHu

¼ 1, the up-type Higgs soft mass at Mmir is
loop-suppressed relative to the squared soft scalar mass
of other scalar fields. Interestingly, the electroweak fine-
tuning remains tempered even for M0 being the multi-TeV
energy regime as long as the gauge coupling unification
is maintained. As a benchmark for accomplishing a natural
electroweak symmetry breaking, let us assign matter
modular weights as

nHu
¼ 1; nHd

¼ 0; nquarks ¼ nleptons ¼
1

2
; ð2:14Þ

where nHu
¼ 1 is required to reduce the electroweak fine-

tuning, while there is no strict requirement on the modular
weights of other fields as long as the mirage conditions
(2.12) are satisfied.1 For the above choice of modular
weights, the mirage conditions are satisfied with good
accuracy in the region with tan2 β ≪ ðmt=mbÞ2 because the
effects of Yukawa couplings (other than that of top quark)
can be neglected in the RG evolution of scalar soft
parameters. Here we have assumed that the sfermions
are supposed to feel SUSY breaking through flavor-
conserving interactions unless they are heavier than about
100 TeV. Note that mirage mediation preserves CP sym-
metry as a result of axionic shift symmetries associated
with the moduli. One can then find that the gaugino masses
are universal

Ma ¼ M0; ð2:15Þ

and the soft SUSY breaking parameters for scalar fields
read

At ≃M0;

Ab ≃ Aτ ≃ 2M0;

m2
Hu

¼ O
�
M2

0

8π2

�
;

m2
Hd

≃M2
0;

m2
q̃ ≃m2

l̃
≃
M2

0

2
; ð2:16Þ

1A matter field has ni ¼ 0, 1=2, or 1 depending on its location
in extra dimensions. The modular weight can have a different
rational number in a generalized KKLT with an anomalous U(1)
gauge symmetry [9]. One may assign different modular weights
to the down-type Higgs and matter fields while keeping the flavor
universality and satisfying the mirage condition. It can change the
degree of electroweak fine-tuning only slightly if the modular
weights are of order unity. Still, we need ni < 1 for quarks and
leptons since otherwise there would appear dangerous color or
charge-breaking minima. See Ref. [10] for a recent study of other
viable assignment for matter modular weights.
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at the energy scale Q ¼ Mmir ∼M0. Here q̃ and l̃ refer to
squarks and sleptons, respectively, dropping the flavor
indices.
Let us now examine how light the Higgsino can be in

the mirage mediation scheme. In the MSSM, the gauge
coupling unification can successfully be attained in the
absence of heavy threshold corrections if the sparticle
spectrum satisfies the following relation [11,12]2:

jμj
m�

�
mH

m�

�
1=4

�
M2

m�

�
1=3

�
M2

M3

�
7=3

�
ml̃

mq̃

�
1=4

¼ 1; ð2:17Þ

with mH being the heavy Higgs doublet mass. The scale
parameterm� determines the precision of the gauge coupling
unification. It should be above a fewhundredGeVand below
10 TeV to achieve the unification within a deviation of a few
percent. As a consequence of the relation, for mirage
mediation with α ¼ 2 and the modular weights given by
the relation (2.14), we find the Higgsino mass as

jμj ≃ 130 GeV

�
m�

0.5 TeV

�
19=12

�
M0

5 TeV

�
−7=12

; ð2:18Þ

assuring thegauge couplingunification atMGUT∼1016 GeV.
Therefore, mirage mediation can be realized in high-scale
SUSY while accommodating light Higgsinos, even around
theweak scale. In high-scale SUSYwith light Higgsinos, the
lightest neutralinos and the lightest chargino are dominated
by the Higgsino components, and their mass difference is
estimated by

Δm ¼ mχþ
1
−mχ0

1
≃ 0.8 GeV

�
M0

5 TeV

�
−1

þ 0.3 GeV
� jμj
300 GeV

�
0.15

; ð2:19Þ

including the contributions from gauge boson loops [14].
Here we have used the sparticle mass pattern of mirage
mediation with α ¼ 2, where the gauginos have a degenerate
mass spectrum,Ma ≃M0. Although it would be difficult to
detect the lightest chargino at the LHC because of the
degenerate mass spectrum, we expect that future lepton
colliders may probe the signals from the processes of
eþe− → χ01χ

0
2γ or χþ1 χ

−
1 γ, mediated by a virtual Z boson

or photon [15,16].
We close this section by discussing the dynamical

generation of the Higgs mixing parameter. In models with

sizable anomaly mediation, the Higgs mixing parameter is
generally of the order of the gravitino mass, which is too
large to induce electroweak symmetry breaking correctly.
To generate it at the right scale, i.e., to have B ∼M0, one
can extend the Higgs sector, for instance, by coupling it to
the Kähler modulus T through the nonperturbative super-
potential term from hidden gaugino condensation

ΔW ¼ Ae−
1
2
aTHuHd; ð2:20Þ

for T stabilized by the nonperturbative superpotential term,
ΔWnp ¼ A0e−aT , in the KKLT setup [7,8]. Another inter-
esting way to obtain B ∼M0 is to consider the effective
Kähler potential

ΔK ¼ κ
S̄
S
HuHd þ H:c:; ð2:21Þ

in the model, where the singlet scalar S is radiatively
stabilized [17,18]. In this case, the phase component of S
can play the role of the axion that can provide a solution to
the strong CP problem. It is also worthwhile to note that the
fermionic partner, the axino, can contribute to the dark
matter of the Universe while avoiding the cosmological
problems arising when the Universe experiences the
modulus-dominated phase [17].

III. ELECTROWEAK NATURALNESS

In this section we examine how naturally the electroweak
symmetry breaking arises in the mirage mediation with
α ¼ 2 and nHu

¼ 1. In this benchmark scenario, the Higgs
soft masses are given by

jm2
Hu
j ∼ m2

t̃

8π2
≪ m2

Hd
∼m2

t̃ ; ð3:1Þ

at the SUSY breaking scale, with the stop mass mt̃ ≃
M0=

ffiffiffi
2

p
as presented in the relation (2.16). The value of

m2
Hu

is rather sensitive to the renormalization scale at
energy scales around the mirage messenger scale, which is
close to the stop mass mt̃. To cancel the dependence of the
Higgs sector parameters on the renormalization scale, one
needs to include one-loop effective potential as

V ¼ V tree þ ΔV; ð3:2Þ

where V tree is the RG improved tree-level potential,
and the loop potential ΔV is generated dominantly by the
loops involving third-generation sfermions. In the electro-
weak symmetry breaking conditions derived from V tree, the
inclusion of ΔV effectively corresponds to the replacement

m2
i → m2

i þ ti; ð3:3Þ

2If high-scale threshold corrections are sizable, the gauge
coupling unification can accommodate a much wider spectrum of
sparticle masses [13], allowing for lighter Higgsinos than
required by the relation (2.17). In such a case, however, the
mirage-mediated pattern of sparticle masses is spoiled, making it
difficult to suppress the up-type Higgs soft mass at low-energy
scales. See Appendix for details.
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for i ∈ fHu;Hdg. Here the tadpoles ti are calculable from
the squared mass matrix after electroweak symmetry break-
ing [19], and have the values of

jtij ∼
M2

0

8π2
: ð3:4Þ

The above radiative corrections represent the quadratic
sensitivity of the Higgsmass to the scale of sparticle masses.
Our scenario is to suppress the RG evolved up-type Higgs
mass squared down to the order of the tadpoles, which is
naturally achieved by taking α ¼ 2 and nHu

¼ 1 in mirage
mediation. As a result, the degree of electroweak fine-tuning
can be reduced further, up to a loop factor, compared to the
conventional scenarios.
For the correct estimation of the degree of electroweak

fine-tuning, one should note that the Higgs mass param-
eters are given by m2

i ¼ ciM2
0 at the mirage messenger

scale, in which ci generally does receive model-dependent
quantum corrections from string loops and higher-order α0
corrections. This implies that the RG improved Higgs mass
parameters include a correction of the order of M2

0=8π
2,

thus it is as sizable as the tadpoles ti from the loop potential.
Taking this into account, we examine the electroweak
symmetry breaking using V tree by replacing the Higgs
mass parameters as

m2
i → m̃2

i ¼
�
1 − ni þ

κi
8π2

�
M2

0; ð3:5Þ

for constants κi of order unity or below. The parameters κi
encompass all the renormalization scale dependence and
higher-order effects; the tadpole ti, higher-order moduli
mediated contributions, and model-dependent stringy
higher-order corrections. It is obvious that κi should be
treated as a free parameter of order unity or below due to
the stringy corrections. We emphasize that setting κHu

to be
a free parameter is quite important in our scenario because
nHu

¼ 1 gives m̃2
Hu

¼ κHu
M2

0=8π
2. In our analysis below,

the value of κHu
is fixed by imposing the minimization

condition of the Higgs potential.
Let us now explore the parameter region leading to the

correct electroweak symmetry breaking while satisfying the
current experimental constraints. The minimization con-
ditions now read

1

2
m2

Z ¼ −jμj2 þ m̃2
Hd

− m̃2
Hu

tan2 β

tan2 β − 1
;

sin 2β ¼ 2jBμj
m̃2

Hd
þ m̃2

Hu
þ 2jμj2 ; ð3:6Þ

with the Higgs mass parameters given by

m̃2
Hu

¼ κHu

8π2
M2

0;

m̃2
Hd

¼
�
1þ κHd

8π2

�
M2

0: ð3:7Þ

Here the Higgs sector parameters must satisfy

m̃2
Hd

þ m̃2
Hu

þ 2jμj2 > 2jBμj;
ðm̃2

Hd
þ jμj2Þðm̃2

Hu
þ jμj2Þ < jBμj2; ð3:8Þ

for the scalar potential to be bounded from below and to
have a minimum at nonzero Higgs VEVs. The minimiza-
tion conditions are insensitive to the value of κHd

, so wewill
simply set κHd

¼ 0 in the numerical analysis. The viable
parameter region can then be examined by scanning over
the two-dimensional space of

fM0; tan βg: ð3:9Þ

The value of μ is fixed by the unification condition (2.18)
for a given value of m�, and the B and κHu

values are
obtained by the minimization conditions (3.6).
At present, one of the most important constraints on

models with an extended Higgs sector is from the meas-
urement of the Higgs boson mass. The viable parameter
region of fM0, tan βg can thus be found by requiring
the SM-like Higgs boson to have mh ≃ 125 GeV. In
the MSSM, the mass of the lightest neutral Higgs boson
reads

m2
hjtree ¼

1

2

�
m2

Z þm2
A −

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðm2

Z þm2
AÞ2 − 4m2

Zm
2
A cos

2 2β
q �

≃m2
Z cos

2 2β; ð3:10Þ

at tree level. The last approximation holds in the decoupling
limit withmA ≫ mZ. Higher-order corrections to the Higgs
boson mass arise mainly via the loops of third-generation
sfermions, and the gluinos also take part in at two-loop
level. Using the effective field theory approach with RG
improvements, one finds the Higgs boson mass in the
MSSM to be

m2
h ¼ m2

hjtree þ
3r
4π2

m̄4
t

v2
; ð3:11Þ

where r is given by

r ¼ tþ X2
t

M2
S

�
1 −

X2
t

12M2
S

�
þ
�
4αs
3π

−
5m̄2

t

16π2v2

�
t

þ 1

16π2

�
3

2

m̄2
t

v2
− 32παs

��
X2
t

M2
S

�
2 −

X2
t

6M2
S
tþ t2

��
;

ð3:12Þ
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up to two-loop leading corrections [20–22], with v ≃
174 GeV and t≡ lnðM2

S=m̄
2
t Þ. Here M2

S is the average of
the squared masses of two stops, and Xt is the stop mixing
parameter defined by

Xt ¼ At −
μ

tan β
; ð3:13Þ

with At being the stop trilinear coupling. In the mirage
mediation under consideration, the stop sector has

At ≃M0; MS ≃
M0ffiffiffi
2

p ; ð3:14Þ

because the modular weights have been assigned to satisfy
the mirage conditions. In our analysis, we have evaluated
all the couplings at the running top mass m̄t ≃ 163 GeV in
the MS scheme. We have also included the loop contribu-
tions from the sbottom and stau adopting the results from
Refs. [23,24]. The analytic expression (3.11) is valid if
tan β is moderate or large, and if the splitting of the stop
mass eigenvalues is small [25]

m2
t̃2
−m2

t̃1

m2
t̃2
þm2

t̃1

≲ 0.5: ð3:15Þ

We have confirmed that the parameter space considered in
our analysis satisfies the above condition.
In Fig. 1, we display the Higgs boson mass as a function

of the SUSY breaking scale, mhðM0Þ, for the mirage
mediation with soft SUSY-breaking terms given by

(2.15) and (2.16) at the mirage messenger scale
Mmir ∼M0. Note that the Higgs sector parameters, μ, B,
and m2

Hu
are fixed by the unification condition (2.18) and

the minimization conditions, respectively. For largeM0, the
stop mixing is sizable but smaller than the maximal mixing
where jXtj ¼

ffiffiffi
6

p
MS. Taking into account the fact that light

Higgsinos are favored for reducing the electroweak
fine-tuning, we have taken the SUSY threshold scale to
be m� ¼ 1 TeV to fix the value of μ by the unification
condition. We will discuss the effect of the SUSY threshold
scale shortly. Currently, the uncertainty of the combined
measurement of the Higgs boson mass from the ATLAS
and CMS experiments at the LHC is 0.24 GeV [26].
However, because the theoretical uncertainty of the Higgs
mass calculation in the SUSY models is typically about a
few GeV [27–29], we show the Higgs boson mass lying in
the range of mh ¼ 125.09� 1 GeV in the figure. From the
numerical analysis, we find that tan β should be large
enough to have mh around the measured value. For
m� ¼ 1 TeV, the lower bound is numerically found to
be tan β ≳ 8. One can also see that a larger M0 value is
required for smaller tan β.
The values of M0 and tan β leading to the correct

Higgs boson mass can be seen in Fig. 2. Again, the
blue-shaded region corresponds to the parameter space of
mh ¼ 125.09� 1 GeV in each panel. It shows that theM0

value tends to be larger for smaller tan β. For mh ¼
125 GeV and tan β ¼ 10, we need M0 ≃ 4 TeV. In the
figure, we have taken m� ¼ 0.5 TeV and 1 TeV in the left
and right panels, respectively. The m� value does not
affect the M0 value but it does affect model parameters,
such as B, by changing the Higgsino mass parameter
through the condition of gauge coupling unification as
given in Eq. (2.18). In most of the parameter space, we
find that jBj is around or belowM0, which lies in the range
expected in the models as discussed in the previous
section. For m� ¼ 1 TeV and tan β ¼ 10, jBj ≃M0. The
experimental constraint on the M0 value comes from the
gluino searches at the LHCĊurrently, the lower bound on
the gluino mass is about 2.2 TeV [30,31]. In Fig. 2,
one can see that the region with large tan β already starts to
be excluded due to the gluino bound. The M0 parameter
also receives constraints from stop searches at the
LHC [32,33], but the corresponding bound is weaker
than that from the gluino searches; M0 ≳ 1.6 TeV for
mt̃1 > 1 TeV.
As the benchmark points of the TeV scale mirage

mediation with α ¼ 2 and nHu
¼ 1, we present the Higgs

and sparticle mass spectra for the input parameters at Q ¼
Mmir in Table I. The mass spectra have been calculated with
SOFTSUSY [34]. The soft SUSY-breaking parameters are set
by the mirage relations given in (2.15) and (2.16), and the
Higgsino mass parameter μ is fixed by the condition of
the gauge coupling unification in (2.17) with m� ¼ 1 TeV.
We have taken μ > 0 and mt ¼ 173 GeV. The mirage

FIG. 1. Mass of the SM-like Higgs boson as a function of the
SUSY breaking scale M0. Here we have fixed the Higgsino
mass parameter μ under the condition of precise gauge
coupling unification by taking the SUSY threshold scale
to be m� ¼ 1 TeV. The blue-shaded band corresponds to
mh ¼ 125.09� 1 GeV.
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messenger scale Mmir is determined as in (2.9) for the
gravitino mass m3=2 obtained using the relation (2.8) and
MGUT ¼ 1016 GeV. For illustration,Mmir andm3=2 are also
shown in Table I. We note that in the benchmark point with
smaller M0, the gluino mass is right within the reach of the
high-luminosity LHC for an integrate luminosity of 3 ab−1

[35], while in the other benchmark point with largerM0, it is
far beyond the reach.

Let us continue to discuss the fine-tuning issue. In
order to estimate quantitatively to what extent the Z-boson
mass is sensitive to the variations of the Higgs sector
parameters, we take the conventional fine-tuning measure
defined by

Δa ≡ ∂ lnm2
Z

∂ ln a ; ð3:16Þ

FIG. 2. Parameter space of M0 and tan β consistent with the Higgs boson mass. for m� ¼ 0.5 TeV (left) and 1 TeV (right). The
contours of the degrees of fine-tuning for the EWSB are also exhibited. See the text for the details. The blue-shaded region corresponds
to mh ¼ 125.09� 1 GeV.

TABLE I. Higgs and sparticle mass spectra in GeV for (a) smaller and (b) larger M0. The first and second
generation sfermions are degenerate in mass; mci ≃mui , msi ≃mdi , and mμi ≃mei for i ¼ L, R. The neutralino
masses are taken to be positive. In the bottom rows, we exhibit the values of the fine-tuning measures for each point.

Parameters (a) (b)

M0 (GeV) 2800 4000
μ (GeV) 548 445
tan β 25 10
Mmir (GeV) 700 1000

m3=2 (TeV) 169.65 272.34
mh 125.1 125.6
mH, mA, mHþ 2855, 2855, 2856 4044, 4044, 4045
mg̃ 2686 3842
mχ̃0

1
, mχ̃0

2
, mχ̃0

3
, mχ̃0

4
558, 560, 2788, 2818 455, 457, 3981, 4024

mχ̃þ
1
, mχ̃þ

2
559, 2788 456, 3981

mt̃1 , mt̃2 1796, 2030 2609, 2839
mb̃1

, mb̃2
1912, 1940 2714, 2735

mũL , mũR , md̃L
, md̃R

1890, 1905, 1891, 1905 2704, 2726, 2705, 2724
mτ̃1 , mτ̃2 1973, 1991 2808, 2819
mẽL , mẽR 1964, 1970 2806, 2815

Δjμj2 , ΔjBj, Δm2
Hd
, Δm2

Hu
−69.7, 6.3, −3.0, 70.5 −9.5, 80.3, −39.7, 10.1

ΔM2
0
, ΔκHd

, ΔκHu
67.5, 0, 70.6 −29.6, 0, 10.1
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where a stands for the parameters involved in the Higgs
scalar potential [36–38].3 For moderate to large tan β
values, the ratio between the Higgs VEVs is given by
tan β ≃ ðm̃2

Hd
þ m̃2

Hu
þ 2jμj2Þ=jBμj. Then, in terms of the

mass parameters in the Higgs sector, a ¼ fμ, B, m̃2
Hd
,

m̃2
Hu
g, the Z-boson mass is expressed as follows:

1

2
m2

Z ≃
jBμj2m̃2

Hd

ðm̃2
Hd

þ m̃2
Hu

þ 2jμj2Þ2 − m̃2
Hu

− jμj2: ð3:17Þ

In mirage mediation, the soft Higgs masses have the
relation that jm̃2

Hu
j≲ m̃2

Hd
=8π2, which implies that the

minimization conditions of the Higgs scalar potential
can be satisfied only for

jμj2; jm̃2
Hu
j ≪ m̃2

Hd
: ð3:18Þ

From Eq. (3.17), it is thus straightforward to see that
the fine-tuning measures for the μ and B parameters are
given as

Δμ2 ≃
2jBμj2
m2

Zm̃
2
Hd

−
2jμj2
m2

Z
≃
2m̃2

Hu

m2
Z

;

ΔjBj ≃
4jBμj2
m2

Zm̃
2
Hd

; ð3:19Þ

while those for m2
Hu

and m2
Hd

are

Δm2
Hd

≃ −
2jBμj2
m2

Zm̃
2
Hd

≃ −
1

2
ΔjBj;

Δm2
Hu

≃ −
2m̃2

Hu

m2
Z

≃ −Δμ2 ; ð3:20Þ

where the last equality in Δμ2 follows from the observation
that the minimization conditions approximately require
jBμj2 ≃ ðm̃2

Hu
þ jμj2Þm̃2

Hd
. Therefore, the degree of fine

tuning is determined by the larger of jΔμ2 j and ΔjBj. The
Z-boson mass is more sensitive to the variation of the Higgs
mixing parameter B,

Δ−1
jBj ≃ 0.05 ×

�
tan β
15

�
2
�

M0

3 TeV

�
−2
; ð3:21Þ

if jμj is smaller than 3jBj= tan β, i.e., if the Higgsinos are as
light as

jμj < 346 GeV ×

�
tan β
15

�
−1
�

M0

3 TeV

�
; ð3:22Þ

where we have used the minimization condition,
jBμj ≃ m̃2

Hd
= tan β, with m̃2

Hd
≃M2

0. Figure 2 shows the
contours of the fine-tuning measures as well. We find that
the degree of fine-tuning is about a few percent or better in
the parameter space of 2 TeV≲M0 ≲ 6 TeV and
8≲ tan β ≲ 25, while being consistent with the measured
Higgs boson mass. Multi-TeV SUSY in the mirage media-
tion can therefore achieve the electroweak symmetry
breaking as naturally as the weak-scale SUSY.
The fine-tuning measures (3.19) and (3.20) have been

obtained by varying the Higgs sector mass couplings at the
weak scale, which are determined by the input parameters,
M0, Mmir, ni, and κi. One may be concerned about the
sensitivity of the Z-boson mass to the variation of the input
parameters and severer fine-tuning than the above estima-
tion. It is, however, not the case, as one can see from

ΔM2
0
¼ Δm2

Hd
þ Δm2

Hu
;

ΔκHd
≃
κHd

8π2
Δm2

Hd
;

ΔκHu
¼ Δm2

Hu
; ð3:23Þ

where we have used that κi are of the order unity, and the
modular weights are assigned by nHu

¼ 1 and nHd
¼ 0.

In Table I, we exhibit the values of ΔM2
0
and ΔκHd

, and ΔκHu

for the benchmark points of mirage mediation with α ¼ 2
and nHu

¼ 1. For the variation of ni andMmir, we note that
the modular weights ni are not continuous but rational
numbers, 0, 1=2, or 1, determined by the location of the
corresponding matter in extra dimensions. This implies that
the choice of modular weights is not a fine-tuning. The α
parameters is also a rational number, and taking α ¼ 2
leads to

Mmir ≃
2MGUT

MPl
ln

�
MPl=M0

2 lnðMPl=M0Þ
�
×M0: ð3:24Þ

Here, the unification scale is given by MGUT ≈ 1016 GeV,
which is insensitive to the value of M0 because it is
determined by the ratios of the sparticle masses, i.e., by
the choice of modular weights. The above expression
shows that Mmir is fixed by the M0 value. Specifically, it
is approximately proportional to M0, e.g., Mmir ≈ 0.24M0

forM0 between TeVand PeV scales. The mirage messenger
scale appears in soft SUSY breaking couplings, renormal-
ized at the SUSY breaking scale only through the combi-
nation of lnðMmir=M0Þ, which rarely changes under the
variation ofM0 for α ¼ 2. As is well known, the stop sector
can significantly affect the Z-boson mass through the RG
running and loop-potential contributions to the up-type
Higgs soft mass squared, (2.4) and (2.5). In mirage

3There are also other ways to quantify the degree of fine-tuning
for the electroweak symmetry breaking. See, for example,
Ref. [39] for more discussion. We also refer the reader to
Refs. [40,41] for a recent discussion of electroweak naturalness
using other convention of the fine-tuning measure in general
mirage mediation.
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mediation, the contributions are proportional to
m2

t̃ lnðMmir=mt̃Þ and m2
t̃ , respectively, with the stop mass

given by mt̃ ≃
ffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − nq

p
M0. It is therefore obvious that in

the case of α ¼ 2, both the stop contributions are of the
order ofM2

0=8π
2, and they are sensitive only to the variation

of M0. The effects are included in ΔM2
0
, or equivalently, in

Δm2
Hu
. These observations explain why the degree of fine-

tuning can be reduced up to a loop factor, compared to the
conventional scenarios.
We finally discuss the effect of the SUSY threshold

scale. A precise gauge coupling unification is achieved for
m� ≃ 2 TeV, assuming that the threshold corrections
induced by heavy fields of a grand unified theory are
absent [11]. If one allows a 3% deviation of the strong
coupling [42], m� could be as small as 200 GeV. Setting
m� ¼ 1 TeV gives rise to about 1% deviation. We note that
the size of the μ parameter increases as m� becomes larger,
as can be seen in Eq. (2.18). Figure 3 shows the parameter
space of jμj and tan β consistent with the measured Higgs
mass. One important experimental constraint concerning
the μ parameter is the lower bound on the charged Higgsino
mass set by the LEP experiment; jμj > 104 GeV. The
bound can be translated into the lower bound on m�, which
is m� ≳ 300 GeV for M0 ≳ 2 TeV. Meanwhile, a large
m� ≳ 1.5 TeV gives rise to jμj≳ 1 TeV, which results in
too severe electroweak fine-tuning induced by the μ
parameter; jΔ−1

μ2
j≲ 0.01. Therefore, it can be argued that

m� is bounded from above by the naturalness of the Higgs
sector. We conclude that the SUSY threshold scale of about
300 GeV to a TeV is consistent with the successful gauge
coupling unification within a deviation below a few percent
while satisfying the mass bound on the charged Higgsino
and the electroweak naturalness.

IV. CONCLUSIONS

Combined with the null results of SUSY searches at
collider experiments so far, the Higgs boson at 125 GeV
indicates that SUSY may exist around or above the multi-
TeV scale. However, even in such a high-scale SUSY
scenario, the electroweak symmetry breaking can naturally
occur with low fine-tuning if the sparticles obtain masses
via mirage mediation as in the KKLT flux compactifica-
tion. It is because the up-type Higgs soft mass can be
suppressed at low-energy scales, insensitively to the SUSY
breaking scale, and light Higgsinos much below the SUSY
breaking scale are compatible with the gauge coupling
unification. We note that, if the Higgsinos are around or
below a few hundredGeV,miragemediation can serve low-
electroweak fine-tuning better than a few percent for stops
between about 2 TeVand 6 TeV, while accommodating the
Higgs boson consistent with the current experimental data.
We expect that the electroweak naturalness with light
Higgsinos will be tested by searching for the light neu-
tralinos and charginos at future colliders.
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APPENDIX: GAUGE THRESHOLD
CORRECTIONS

In this Appendix we examine how much the mirage
mediation pattern is affected by gauge threshold correc-
tions. Let us suppose that the gauge couplings receive

FIG. 3. Parameter space of μ and tan β consistent with the Higgs boson mass for m� ¼ 0.5 TeV (left) and 1 TeV (right). The blue-
shaded region corresponds to mh ¼ 125.09� 1 GeV.
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4Deflected mirage mediation [43–45] is an example of
universal gauge-threshold corrections.

threshold corrections at mth, and consequently do not unify
at MGUT if extrapolated with the MSSM beta functions for
running. At energy scales below mth, the gauge couplings
are written as

1

g2aðQÞ ¼
1

g20
þ ba
4π2

ln

�
MGUT

Q

�
þ Δa; ðA1Þ

where Δa is the threshold correction to the gauge coupling,
and the universal part is determined by the gauge kinetic
function, g20 ¼ 1=ReðfaÞ, with fa ¼ T þ constant. Using
the modulus dependence of gauge couplings, one finds the
gaugino masses to be

MaðmthÞ ¼
g2aðmthÞ

g20
M0 þ

bag2aðmthÞ
8π2

m3=2; ðA2Þ

at the scale just below mth. Here the term proportional to ba
is the anomaly-mediated contribution, which does not
depend on physics at higher-energy scales. Because the
combinationMa=g2a does not run with the scale, low-energy
gaugino masses are obtained by

MaðQÞ ¼ Ma0

�
1 −

bag2aðQÞ
4π2

ln

�
Mamir

Q

��
; ðA3Þ

for Ma0 and Mamir given by

Ma0 ¼
M0

1þ ϵa
;

Mamir ¼ MGUT

�
m3=2

MPl

�α
2
ð1þϵaÞ

; ðA4Þ

where ϵa ≡ g20Δa parametrize the threshold corrections.
The above shows that the unification of gaugino masses
does not occur if the threshold corrections are nonuniversal.
For universal ϵa, the gauginos have a common mass at the
mirage messenger scale, but its value is different from M0

unless ϵa vanish.4 It is only when ϵa ¼ 0 that mirage
mediation effectively corresponds to pure moduli media-
tion transmitted at the mirage-messenger scale. Such
correspondence is essential for reducing the electroweak
fine-tuning because it allows to suppress the up-type Higgs
soft mass at the mirage-messenger scale by taking an
appropriate modular weight. We thus require that ϵa be at
most around the loop factor, 1=8π2, in size if any.

[1] H. P. Nilles, Supersymmetry, supergravity and particle
physics, Phys. Rep. 110, 1 (1984).

[2] H. E. Haber and G. L. Kane, The search for supersymmetry:
Probing physics beyond the standard model, Phys. Rep.
117, 75 (1985).

[3] P. W. Graham, D. E. Kaplan, and S. Rajendran, Cosmologi-
cal Relaxation of the Electroweak Scale, Phys. Rev. Lett.
115, 221801 (2015).

[4] K. Choi, K. S. Jeong, and K.-i. Okumura, Phenomenology of
mixed modulus-anomaly mediation in fluxed string com-
pactifications and brane models, J. High Energy Phys. 09
(2005) 039.

[5] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi, De
Sitter vacua in string theory, Phys. Rev. D 68, 046005 (2003).

[6] K. Choi, A. Falkowski, H. P. Nilles, and M. Olechowski,
Soft supersymmetry breaking in KKLT flux compactifica-
tion, Nucl. Phys. B718, 113 (2005).

[7] K. Choi, K. S. Jeong, T. Kobayashi, and K.-i. Okumura,
Little SUSY hierarchy in mixed modulus-anomaly media-
tion, Phys. Lett. B 633, 355 (2006).

[8] K. Choi, K. S. Jeong, T. Kobayashi, and K.-i. Okumura,
TeV scale mirage mediation and natural little SUSY
hierarchy, Phys. Rev. D 75, 095012 (2007).

[9] K. Choi and K. S. Jeong, Supersymmetry breaking and
moduli stabilization with anomalous U(1) gauge symmetry,
J. High Energy Phys. 08 (2006) 007.

[10] J. Kawamura and Y. Omura, Analysis of the TeV-scale
mirage mediation with heavy superparticles, J. High Energy
Phys. 11 (2017) 189.

[11] S. Krippendorf, H. P. Nilles, M. Ratz, and M.W. Winkler,
Hidden SUSY from precision gauge unification, Phys. Rev.
D 88, 035022 (2013).

[12] K. S. Jeong, Light higgsino for gauge coupling unification,
Phys. Lett. B 769, 42 (2017).

[13] S. A. R. Ellis and J. D. Wells, High-scale supersymmetry,
the Higgs boson mass, and gauge unification, Phys. Rev. D
96, 055024 (2017).

[14] S. D. Thomas and J. D. Wells, Phenomenology of Massive
Vectorlike Doublet Leptons, Phys. Rev. Lett. 81, 34 (1998).

[15] H. Baer, V. Barger, and P. Huang, Hidden SUSYat the LHC:
The light higgsino-world scenario and the role of a lepton
collider, J. High Energy Phys. 11 (2011) 031.

[16] M. Berggren, F. Brümmer, J. List, G. Moortgat-Pick, T.
Robens, K. Rolbiecki, and H. Sert, Tackling light higgsinos
at the ILC, Eur. Phys. J. C 73, 2660 (2013).

[17] S. Nakamura, K.-i. Okumura, and M. Yamaguchi, Axionic
mirage mediation, Phys. Rev. D 77, 115027 (2008).

[18] K. Choi, K. S. Jeong, W.-I. Park, and C. S. Shin, Thermal
inflation and baryogenesis in heavy gravitino scenario,
J. Cosmol. Astropart. Phys. 11 (2009) 018.

[19] H. Baer, V. Barger, P. Huang, D. Mickelson, A. Mustafayev,
and X. Tata, Radiative natural supersymmetry: Reconciling

KWANG SIK JEONG and CHAN BEOM PARK PHYS. REV. D 104, 115028 (2021)

115028-10

https://doi.org/10.1016/0370-1573(84)90008-5
https://doi.org/10.1016/0370-1573(85)90051-1
https://doi.org/10.1016/0370-1573(85)90051-1
https://doi.org/10.1103/PhysRevLett.115.221801
https://doi.org/10.1103/PhysRevLett.115.221801
https://doi.org/10.1088/1126-6708/2005/09/039
https://doi.org/10.1088/1126-6708/2005/09/039
https://doi.org/10.1103/PhysRevD.68.046005
https://doi.org/10.1016/j.nuclphysb.2005.04.032
https://doi.org/10.1016/j.physletb.2005.11.078
https://doi.org/10.1103/PhysRevD.75.095012
https://doi.org/10.1088/1126-6708/2006/08/007
https://doi.org/10.1007/JHEP11(2017)189
https://doi.org/10.1007/JHEP11(2017)189
https://doi.org/10.1103/PhysRevD.88.035022
https://doi.org/10.1103/PhysRevD.88.035022
https://doi.org/10.1016/j.physletb.2017.03.028
https://doi.org/10.1103/PhysRevD.96.055024
https://doi.org/10.1103/PhysRevD.96.055024
https://doi.org/10.1103/PhysRevLett.81.34
https://doi.org/10.1007/JHEP11(2011)031
https://doi.org/10.1140/epjc/s10052-013-2660-y
https://doi.org/10.1103/PhysRevD.77.115027
https://doi.org/10.1088/1475-7516/2009/11/018


electroweak fine-tuning and the Higgs boson mass, Phys.
Rev. D 87, 115028 (2013).

[20] M. Carena, M. Quiros, and C. Wagner, Effective potential
methods and the Higgs mass spectrum in the MSSM, Nucl.
Phys. B461, 407 (1996).

[21] H. E. Haber, R. Hempfling, and A. H. Hoang, Approximat-
ing the radiatively corrected Higgs mass in the minimal
supersymmetric model, Z. Phys. C 75, 539 (1997).

[22] M. Carena, H. Haber, S. Heinemeyer, W. Hollik, C. Wagner,
and G. Weiglein, Reconciling the two loop diagrammatic
and effective field theory computations of the mass of the
lightest CP-even Higgs boson in the MSSM, Nucl. Phys.
B580, 29 (2000).

[23] M. Carena, M. Olechowski, S. Pokorski, and C. Wagner,
Electroweak symmetry breaking and bottom—top Yukawa
unification, Nucl. Phys. B426, 269 (1994).

[24] M. Carena, S. Gori, N. R. Shah, and C. E. Wagner, A
125 GeV SM-like Higgs in the MSSM and the γγ rate,
J. High Energy Phys. 03 (2012) 014.

[25] M. Carena, J. Espinosa, M. Quiros, and C. Wagner,
Analytical expressions for radiatively corrected Higgs masses
and couplings in the MSSM, Phys. Lett. B 355, 209 (1995).

[26] ATLAS, CMS Collaborations, Combined Measurement of
the Higgs Boson Mass in pp Collisions at

ffiffiffi
s

p ¼ 7 and
8 TeV with the ATLAS and CMS Experiments, Phys. Rev.
Lett. 114, 191803 (2015).

[27] P. Athron, J.-h. Park, T. Steudtner, D. Stöckinger, and A.
Voigt, Precise Higgs mass calculations in (non-)minimal
supersymmetry at both high and low scales, J. High Energy
Phys. 01 (2017) 079.

[28] B. Allanach and A. Voigt, Uncertainties in the lightest CP
even Higgs boson mass prediction in the minimal super-
symmetric standard model: Fixed order versus effective
field theory prediction, Eur. Phys. J. C 78, 573 (2018).

[29] H. Bahl, S. Heinemeyer, W. Hollik, and G. Weiglein,
Theoretical uncertainties in the MSSM Higgs boson mass
calculation, Eur. Phys. J. C 80, 497 (2020).

[30] ATLAS Collaboration, Search for squarks and gluinos in
final states with jets and missing transverse momentum
using 36 fb−1 of

ffiffiffi
s

p ¼ 13 TeV pp collision data with the
ATLAS detector, Phys. Rev. D 97, 112001 (2018).

[31] CMS Collaboration, Searches for physics beyond the
standard model with the MT2 variable in hadronic final
states with and without disappearing tracks in proton-proton
collisions at

ffiffiffi
s

p ¼ 13 TeV, Eur. Phys. J. C 80, 3 (2020).

[32] ATLAS Collaboration, Search for top squarks in events with
a Higgs or Z boson using 139 fb−1 of pp collision data atffiffiffi
s

p ¼ 13 TeV with the ATLAS detector, Eur. Phys. J. C 80,
1080 (2020).

[33] CMS Collaboration, Search for top squark pair production
using dilepton final states in pp collision data collected atffiffiffi
s

p ¼ 13 TeV, Eur. Phys. J. C 81, 3 (2021).
[34] B. C. Allanach, SOFTSUSY: A program for calculating

supersymmetric spectra, Comput. Phys. Commun. 143, 305
(2002).

[35] H. Baer, V. Barger, J. S. Gainer, P. Huang, M. Savoy, D.
Sengupta, and X. Tata, Gluino reach and mass extraction at
the LHC in radiatively-driven natural SUSY, Eur. Phys. J. C
77, 499 (2017).

[36] J. R. Ellis, K. Enqvist, D. V. Nanopoulos, and F. Zwirner,
Observables in low-energy superstring models, Mod. Phys.
Lett. A 01, 57 (1986).

[37] R. Barbieri and G. Giudice, Upper bounds on super-
symmetric particle masses, Nucl. Phys. B306, 63
(1988).

[38] S. Dimopoulos and G. Giudice, Naturalness constraints in
supersymmetric theories with nonuniversal soft terms, Phys.
Lett. B 357, 573 (1995).

[39] H. Baer, V. Barger, and D. Mickelson, How conventional
measures overestimate electroweak fine-tuning in super-
symmetric theory, Phys. Rev. D 88, 095013 (2013).

[40] H. Baer, V. Barger, and D. Sengupta, Mirage mediation from
the landscape, Phys. Rev. Research 2, 013346 (2020).

[41] H. Baer, V. Barger, S. Salam, D. Sengupta, and X. Tata, The
LHC higgsino discovery plane for present and future SUSY
searches, Phys. Lett. B 810, 135777 (2020).

[42] S. Raby, M. Ratz, and K. Schmidt-Hoberg, Precision
gauge unification in the MSSM, Phys. Lett. B 687, 342
(2010).

[43] L. L. Everett, I.-W. Kim, P. Ouyang, and K. M. Zurek,
Deflected Mirage Mediation: A Framework for Generalized
Supersymmetry Breaking, Phys. Rev. Lett. 101, 101803
(2008).

[44] L. L. Everett, I.-W. Kim, P. Ouyang, and K. M. Zurek,
Moduli stabilization and supersymmetry breaking in de-
flected mirage mediation, J. High Energy Phys. 08 (2008)
102.

[45] K. Choi, K. S. Jeong, S. Nakamura, K.-I. Okumura, and M.
Yamaguchi, Sparticle masses in deflected mirage mediation,
J. High Energy Phys. 04 (2009) 107.

LIGHT HIGGSINOS FOR ELECTROWEAK NATURALNESS IN … PHYS. REV. D 104, 115028 (2021)

115028-11

https://doi.org/10.1103/PhysRevD.87.115028
https://doi.org/10.1103/PhysRevD.87.115028
https://doi.org/10.1016/0550-3213(95)00665-6
https://doi.org/10.1016/0550-3213(95)00665-6
https://doi.org/10.1007/s002880050498
https://doi.org/10.1016/S0550-3213(00)00212-1
https://doi.org/10.1016/S0550-3213(00)00212-1
https://doi.org/10.1016/0550-3213(94)90313-1
https://doi.org/10.1007/JHEP03(2012)014
https://doi.org/10.1016/0370-2693(95)00694-G
https://doi.org/10.1103/PhysRevLett.114.191803
https://doi.org/10.1103/PhysRevLett.114.191803
https://doi.org/10.1007/JHEP01(2017)079
https://doi.org/10.1007/JHEP01(2017)079
https://doi.org/10.1140/epjc/s10052-018-6046-z
https://doi.org/10.1140/epjc/s10052-020-8079-3
https://doi.org/10.1103/PhysRevD.97.112001
https://doi.org/10.1140/epjc/s10052-019-7493-x
https://doi.org/10.1140/epjc/s10052-020-08469-8
https://doi.org/10.1140/epjc/s10052-020-08469-8
https://doi.org/10.1140/epjc/s10052-020-08701-5
https://doi.org/10.1016/S0010-4655(01)00460-X
https://doi.org/10.1016/S0010-4655(01)00460-X
https://doi.org/10.1140/epjc/s10052-017-5067-3
https://doi.org/10.1140/epjc/s10052-017-5067-3
https://doi.org/10.1142/S0217732386000105
https://doi.org/10.1142/S0217732386000105
https://doi.org/10.1016/0550-3213(88)90171-X
https://doi.org/10.1016/0550-3213(88)90171-X
https://doi.org/10.1016/0370-2693(95)00961-J
https://doi.org/10.1016/0370-2693(95)00961-J
https://doi.org/10.1103/PhysRevD.88.095013
https://doi.org/10.1103/PhysRevResearch.2.013346
https://doi.org/10.1016/j.physletb.2020.135777
https://doi.org/10.1016/j.physletb.2010.03.060
https://doi.org/10.1016/j.physletb.2010.03.060
https://doi.org/10.1103/PhysRevLett.101.101803
https://doi.org/10.1103/PhysRevLett.101.101803
https://doi.org/10.1088/1126-6708/2008/08/102
https://doi.org/10.1088/1126-6708/2008/08/102
https://doi.org/10.1088/1126-6708/2009/04/107

