
c → uνν̄ transitions ofBc mesons: 331model facing StandardModel null tests

Pietro Colangelo ,1,* Fulvia De Fazio ,1,† and Francesco Loparco1,2,‡
1Istituto Nazionale di Fisica Nucleare, Sezione di Bari, via Orabona 4, 70126 Bari, Italy

2Dipartimento Interateneo di Fisica “Michelangelo Merlin”, Università degli Studi di Bari,
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The Glashow-Iliopoulos-Maiani mechanism is extremely efficient to suppress the flavor-changing
neutral current decays of charmed hadrons induced by the c → u transitions, making such processes
particularly sensitive to phenomena beyond the Standard Model. In particular, c → u decays with a
neutrino pair in the final state are theoretically appealing due to the small long-distance contributions.
Moreover, in the framework of the Standard Model effective field theory (SMEFT), the SUð2ÞL invariance
allows us to relate the Wilson coefficients in the effective Hamiltonian governing the c → uνν̄ decays to the
coefficients in the c → ulþl− Hamiltonian. We analyze the Bc → Bð�Þþνν̄ decays, for which branching
fractions of at most Oð10−16Þ are predicted in the Standard Model including short- and long-distance
contributions, so small that they can be considered as null tests. Using SMEFT and the relation to the
c → ulþl− processes, we study the largest enhancement achievable in generic new physics scenarios, then
we focus on a particular extension of the Standard Model, the 331 model. SMEFT relations and the
connection with c → ulþl− imply that BðBc → Bð�Þþνν̄Þ could even reach Oð10−6Þ, an extremely
large enhancement. A less pronounced effect is found in the 331 model, with Oð10−11Þ predicted
branching fractions. Within the 331 model, correlations exist among the Bc → Bð�Þþνν̄ and K → πνν̄,
B → ðXs; K; K�Þνν̄ channels.

DOI: 10.1103/PhysRevD.104.115024

I. INTRODUCTION

In the Standard Model (SM), the flavor-changing neutral
current (FCNC) transitions occur at loop level and are
generally characterized by Cabibbo-Kobayashi-Maskawa
(CKM) and loop suppressions. The CKM cancellation
mechanism is particularly efficient in the processes involv-
ing up-type quarks which take place through penguin and
box diagrams with internal down-type quark exchanges.
This is the case of the charmed hadron decays induced by
the c → ulþl− and c → uνν̄ transitions, for which tiny
branching fractions are predicted in SM considering the
short-distance amplitude [1]. The modes with charged
dileptons are polluted by long-distance (LD) hadronic
contributions, and the phase-space regions where such
terms are large must be cut to pin down the effects of
the short-distance term [2]. In the c → u dineutrino modes,

long-distance effects are smaller than in the charged
dilepton modes. Therefore, such processes represent genu-
ine null tests of the SM; their observation would be an
indication of phenomena beyond the Standard Model
(BSM). Among all hadrons, the decays of Bc induced
by the c → u transitions are particularly interesting, since
in this case the main long-distance contributions affect a
region of the phase-space near the end point, differently,
e.g., fromD,Ds, and Λc. Hence, Bc plays an important role
in testing the Standard Model [3]. On general grounds,
searching for new physics (NP) effects requires the analysis
of several modes induced by the same underlying tran-
sition; the correlations among the various observables are
important to identify the possible NP contributions and to
relate them to the structure of the SM extensions.
The short-distance low-energy Hamiltonian governing

the c → uνν̄ transition has a simple structure. For left-
handed neutrinos, it consists of two operators,

Heff ¼ CLQL þ CRQR; ð1Þ

with

QL ¼ ðūγμð1 − γ5ÞcÞðν̄γμð1 − γ5ÞνÞ;
QR ¼ ðūγμð1þ γ5ÞcÞðν̄γμð1 − γ5ÞνÞ: ð2Þ
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In the SM, the Hamiltonian comprises onlyQL. TheWilson
coefficient CSM

L is obtained from loop diagrams with down-
type quark exchanges,

CSM
L ¼ −

GFffiffiffi
2

p α

2π sin2 θW

X
q¼d;s;b

λqXðxqÞ: ð3Þ

In (3), GF is the Fermi constant, α the fine structure
constant, θW the Weinberg angle, and λq ¼ V�

cqVuq with
Vij the CKM matrix elements. The Inami-Lim function
XðxqÞ, depending on xq ¼ m2

q=M2
W , can be found in [4].

The dominant contribution from the intermediate b quark
provides jCSM

L j ≃Oð10−13Þ. Analogously, the transitions
s → dνν̄ and b → ðs; dÞνν̄ are governed by a low-energy
Hamiltonian with the structure of (1) and intermediate up-
type quarks. BSM phenomena can manifest themselves
through the enhancement of CL and through the effects of
the operator QR.
FCNC dineutrino modes have been extensively studied

in the case of strange and beauty quarks. The Kþ → πþνν̄
and KL → π0νν̄ transitions are under strict theoretical
control [4] and intense experimental scrutiny [5–7]. In
the beauty sector, the modes B → Kð�Þνν̄ have been
theoretically investigated [8–19] and are within the reach
of the present facilities [20–23].
As for the charm sector, a few studies have analyzed the

FCNC dineutrino modes in the SM and BSM frameworks
[24–27]. Here, we focus onBc → Bð�Þþνν̄ decays, for which
lattice QCD results for the hadronic form factors can be used
[28], with a control of the theoretical uncertainty related to
nonperturbative QCD quantities. From the experimental
point of view, these modes will be accessible at high energy
eþe− colliders, namely the planned Future Circular Collider
FCC-ee machine running at the Z0 peak.We proceed both in
a model-independent way and in a defined BSM framework.
In the next section, we apply the Standard Model effective
field theory (SMEFT) to relate theWilson coefficients in the
low-energy c → uνν̄ Hamiltonian (1) to the coefficients in
the c → ulþl− Hamiltonian, as done in [24,25]. This allows
us to establish the largest enhancement for the Bc branching
fractions achievable in a generic NP scenario, with the
numerical results discussed in Sec. III. In Sec. IV, we focus
on a definite NP model, the 331 model in four variants. We
observe that in this framework it is possible to relate the
charm to the strange and beauty quark sectors, and that the
c → u processes can be constrained using bounds from
ΔS ¼ 2 and ΔB ¼ 2 observables. The correlations among
Bc and kaon andBmeson dineutrino decays are described in
Sec. VI. In the last section, we draw our conclusions.

II. RELATING THE c → u DINEUTRINO AND
CHARGED DILEPTON MODES USING SMEFT

A relation between the c → u dineutrino and the c → u
charged dilepton modes can be established on the basis of

SUð2ÞL invariance using the Standard Model effective
theory [24,25]. Considering the possibility of lepton flavor
violation, one focuses on c → uνiν̄j transitions, with the
indices i, j denoting the neutrino flavors. The coefficients
CL and CR in the low-energy Hamiltonian (1) become
lepton-flavor dependent Ci;j

L;R and can be combined giving

x�U ¼
X

i;j¼1;2;3

jC̃i;j
L � C̃i;j

R j2 ð4Þ

and

xU ¼ xþU þ x−U
2

; ð5Þ

with C̃L;R defined by CL;R ¼ − GFffiffi
2

p α
4π C̃L;R. The combina-

tions (4) and (5) account for the contributions of both the
operators QL and QR.
The relation of CL;R to the Wilson coefficients in the

c → ulþl− low-energy Hamiltonian has been proposed in
[24,25]. For two generic quarks q1 and q2, the q1 →
q2lþl− general Hamiltonian reads [29]

Hq1→q2lþl−
eff ¼ −4

GFffiffiffi
2

p
� X
i¼9;10;S;P

ðCiQi þ C0
iQ

0
iÞ

þ CTQT þ CT5QT5

�
; ð6Þ

with the operators

Q9 ¼
α

4π
ðq̄2γμPLq1Þðl̄γμlÞ;

Q0
9 ¼

α

4π
ðq̄2γμPRq1Þðl̄γμlÞ;

Q10 ¼
α

4π
ðq̄2γμPLq1Þðl̄γμγ5lÞ;

Q0
10 ¼

α

4π
ðq̄2γμPRq1Þðl̄γμγ5lÞ;

QS ¼ ðq̄2PRq1Þðl̄lÞ; Q0
S ¼ ðq̄2PLq1Þðl̄lÞ;

QP ¼ ðq̄2PRq1Þðl̄γ5lÞ; Q0
P ¼ ðq̄2PLq1Þðl̄γ5lÞ;

QT ¼ ðq̄2σμνq1Þðl̄σμνlÞ;
QT5 ¼ ðq̄2σμνq1Þðl̄σμνγ5lÞ; ð7Þ

and PR;L ¼ 1�γ5
2
. The relations are obtained using the

SMEFT operators classified in Ref. [30]. The tree-level
matching of the dimension-6 four-fermion operators invari-
ant under the SM SUð3ÞC × SUð2ÞL ×Uð1ÞY gauge group
with the Hamiltonian (1) gives the relations
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Cc→u
L ¼ v2

2Λ2
½ðCð1Þ

lq þ Cð3Þ
lq Þ þ ðCð1Þ

φq − Cð3Þ
φq Þ�;

Cc→u
R ¼ v2

2Λ2
ðClu þ CφuÞ: ð8Þ

Cc→u
L;R are defined by CL;R ¼ − GFffiffi

2
p Cc→u

L;R , with CL;R in (1).

The operators corresponding to the coefficients in the rhs of
Eq. (8) are expressed in the Warsaw basis [30]. In this
equation, v is the electroweak vacuum expectation value
and Λ the matching scale of NP with the SMEFT.
The relations between the coefficients in the c → ulþl−

Hamiltonian (6) and the coefficients of the SMEFT
operators can also be worked out,

Cc→u
9 ¼ πv2

αΛ2
ðCð1Þ

lq − Cð3Þ
lq þ CqeÞ

þ πv2

αΛ2
ð−1þ 4s2WÞðCð1Þ

φq − Cð3Þ
φq Þ;

C0c→u
9 ¼ πv2

αΛ2
ðCeu þ Clu þ ð−1þ 4s2WÞCφuÞ;

Cc→u
10 ¼ −

πv2

αΛ2
ðCð1Þ

lq − Cð3Þ
lq − CqeÞ þ

πv2

αΛ2
ðCð1Þ

φq − Cð3Þ
φq Þ;

C0c→u
10 ¼ πv2

αΛ2
ðCeu − Clu þ CφuÞ;

Cc→u
S ¼ Cc→u

P ¼ −
v2

4Λ2
Cð1Þ
lequ;

C0c→u
S ¼ −C0c→u

P ¼ −
v2

4Λ2
Cð1Þ�
lequ;

Cc→u
T ¼ −

v2

4Λ2
2Re½Cð3Þ

lequ�;

Cc→u
T5 ¼ −

v2

4Λ2
2iIm½Cð3Þ

lequ�: ð9Þ

The SMEFT operators have generation indices. The coef-
ficients in the rhs of Eqs. (8) and (9) read C ¼ Cij12, with i
and j the lepton generation indices and 1,2 indicating the u
and c quark in the first and second generation.1

The coefficients of the SMEFT operators appearing in
the rhs of Eq. (8) are also comprised in the rhs of Eq. (9).
This allows us to translate the experimental bounds on the
c → ulþl− modes, together with data on the s → dlþl−

modes, into an upper bound for the combination xU in
Eq. (5) [24,25]. Indeed, the SUð2ÞL symmetry links the
c → ulþl− with c → uνν̄ modes and the s → dlþl− with
c → uνν̄ modes. The bound on xU is obtained assuming
conservatively that the experimental limits on the charged

dilepton branching fractions are saturated by the short-
distance Hamiltonian (6). The limit depends on additional
assumptions on the structure of the transitions; the most
stringent one is obtained assuming lepton universality (LU)
and charged lepton flavor conservation (cLFC) [24,25],
with the results,

xU ≤ xmax
U ¼ 34 ðLUÞ; ð10Þ

xU ≤ xmax
U ¼ 196 ðcLFCÞ: ð11Þ

The bounds (10) and (11) have been considered in the
analysis of D�, D0, Ds, and charmed baryon decays
induced by c → uνν̄ [24,25]. Here, we focus on
Bþ
c → Bð�Þþνν̄. We use the lattice QCD Bc → Bd form

factors in [28] and the Bc → B�
d form factors derived in [3]

applying the heavy quark spin symmetry [32,33]. The
Bþ
c → Bð�Þþ form factors are obtained invoking the isospin

symmetry.

III. B+
c → Bð�Þ+ νν̄ DECAYS

In the processes Bþ
c ðpÞ → Bþðp0Þνðk1Þν̄ðk2Þ and

Bþ
c ðpÞ → B�þðp0; ϵÞνðk1Þν̄ðk2Þ, the particle momenta are

p; p0; k1; k2, and ϵ is the B� polarization vector. Denoting
by Emiss the energy of the neutrino pair in the Bc rest frame,
the dimensionless variable x ¼ Emiss

mBc
varies in the range

1−r
2

≤ x ≤ 1 −
ffiffiffi
r

p
, with r ¼ m2

Bð�Þþ
m2

Bc

. The hadronic matrix

elements in the decay amplitudes are parametrized in terms
of form factors,

hBþðp0ÞjūγμcjBcðpÞi ¼ fþðq2Þ
�
pμ þ p0

μ −
m2

Bc
−m2

B

q2
qμ

�

þ f0ðq2Þ
m2

Bc
−m2

B

q2
qμ ð12Þ

and

hB�þðp0; ϵÞjūγμcjBcðpÞi ¼ −
2Vðq2Þ

mBc
þmB�

iϵμναβϵ�νpαp0β;

hB�þðp0; ϵÞjūγμγ5cjBcðpÞi

¼ ðmBc
þmB� Þ

�
ϵ�μ −

ðϵ� · qÞ
q2

qμ

�
A1ðq2Þ

−
ðϵ� · qÞ

mBc
þmB�

�
ðpþ p0Þμ −

m2
Bc

−m2
B�

q2
qμ

�
A2ðq2Þ

þ ðϵ� · qÞ 2mB�

q2
qμA0ðq2Þ: ð13Þ

The Bþ
c → Bþνν̄missing energy distribution obtained from

(1) involves the form factor fþðq2Þ,

1In Ref. [31], the relations in Eq. (8) are obtained neglecting
the contribution of the anomalous gauge boson couplings, which
correspond to the SMEFT coefficients with indices φ. The
relations for the c → u transitions are different from those for
b → s [29].
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dΓðBþ
c → Bþνν̄Þ
dx

¼ 3
jCL þ CRj2jfþðq2Þj2

48π3mBc

λ3=2ðq2; m2
Bc
; m2

BÞ; ð14Þ

with q ¼ p − p0 and λ the Källén function. For Bþ
c → B�þνν̄, the missing energy distributions for longitudinally and

transversely polarized B� read

dΓL

dx
¼ 3

jCL − CRj2
24π3

jp⃗0j
m2

B�
ððmBc

þmB� ÞðmBc
E0 −m2

B� ÞA1ðq2Þ −
2m2

Bc

mBc
þmB�

jp⃗0j2A2ðq2ÞÞ2;

dΓ�
dx

¼ 3
jp⃗0jq2
24π3

����ðCL þ CRÞ
2mBc

jp⃗0j
mBc

þmB�
Vðq2Þ ∓ ðCL − CRÞðmBc

þmB� ÞA1ðq2Þ
����
2

; ð15Þ

with p⃗0 andE0 the B� three-momentum and energy in theBc

rest frame. In Eqs. (14) and (15), the relation q2 ¼
m2

Bc
ð2x − 1Þ þm2

Bð�Þ is used; the factor 3 is due to the
sum over the three neutrino flavors.
As inferred from (14) and (15), BðBþ

c → Bþνν̄Þ depends
on the combination xþU in Eq. (4),BLðBþ

c → B�þνν̄Þ depends
on x−U, and BTðBþ

c → B�þνν̄Þ ¼ BþðBþ
c → B�þνν̄Þ þ

B−ðBþ
c → B�þνν̄Þ depends on both combinations. Using

the parameters in Table I and the central values for the form
factors [3,28] we obtain

BðBþ
c → Bþνν̄Þ ¼ 7.8 × 108jCL þ CRj2

¼ 6.9 × 10−9xþU ð16Þ

and

TABLE I. Parameters used in the analysis.

Constants and quark masses
GF ¼ 1.16637ð1Þ × 10−5 GeV−2 [34] mcðmcÞ ¼ 1.279ð8Þ GeV [35]
MW ¼ 80.385ð15Þ GeV [34] mbðmbÞ ¼ 4.163ð16Þ GeV [34,36]
sin2 θW ¼ 0.23121ð4Þ [34] mtðmtÞ ¼ 162.5�2.1

1.5 GeV [34]
αðMZÞ ¼ 1=127.9 [34] Mt ¼ 172.76ð30Þ GeV [34]

αð5Þs ðMZÞ ¼ 0.1179ð10Þ [34]

Meson masses and lifetimes
mKþ ¼ 493.677ð13Þ MeV [34] τðKþÞ ¼ 1.2380ð20Þ × 10−8 s [34]
mK0 ¼ 497.611ð13Þ MeV [34] τðKSÞ ¼ 0.8954ð4Þ × 10−10 s [34]

τðKLÞ ¼ 5.116ð21Þ × 10−8 s [34]
mBd

¼ 5279.63ð20Þ MeV [34] τðBdÞ ¼ 1.519ð4Þ ps [34]
mBþ ¼ 5279.25ð26Þ MeV [34]
mB�þ ¼ 5324.70ð21Þ MeV [34]
mBs

¼ 5366.88ð14Þ MeV [34] τðBsÞ ¼ 1.515ð4Þ ps [34]
mBc

¼ 6274.9ð8Þ MeV [34] τðBcÞ ¼ 0.510ð9Þ ps [34]

Decay constants and parameters related to ΔF ¼ 2 observables
FK ¼ 156.1ð11Þ MeV [37] B̂K ¼ 0.7625ð97Þ [37]
ΔMK ¼ 0.5293ð9Þ × 10−2 ps−1 [34] jϵKj ¼ 2.228ð11Þ × 10−3 [34]
FBd

¼ 190.0ð1.3Þ MeV [37] FBd

ffiffiffiffiffiffiffiffi
B̂Bd

q
¼ 216ð10Þ MeV [37]

FBs
¼ 230.3ð1.3Þ MeV [37] FBs

ffiffiffiffiffiffiffi
B̂Bs

q
¼ 262ð10Þ MeV [37]

ηB ¼ 0.55ð1Þ [38,39]
ΔMd ¼ 0.5065ð19Þ ps−1 [34] SJ=ψKS

¼ 0.695ð19Þ [34]
ΔMs ¼ 17.756ð21Þ ps−1 [34] SJ=ψϕ ¼ 0.054ð20Þ [37]

CKM parameters
jVusj ¼ 0.2252ð5Þ [34] jVcbj ¼ ð41.0� 1.4Þ × 10−3 [34]
jVubj ¼ 3.72 × 10−3 [34] γ ¼ 68° [34]
jVcdj ¼ 0.22507 jVcsj ¼ 0.97348
jVtdj ¼ 0.00856 jVtsj ¼ 0.04027
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BLðBþ
c → B�þνν̄Þ ¼ 1.2× 109jCL −CRj2 ¼ 1.0× 10−8x−U;

BTðBþ
c → B�þνν̄Þ ¼ 1.9× 107jCL þCRj2

þ 7.4× 108jCL −CRj2
¼ 1.7× 10−10xþU þ 6.5× 10−9x−U;

BðBþ
c → B�þνν̄Þ ¼ 1.9× 107jCL þCRj2

þ 1.9× 109jCL −CRj2
¼ 1.7× 10−10xþU þ 1.7× 10−8x−U: ð17Þ

The largest values of BðBþ
c → Bþνν̄Þ and BðBþ

c → B�þνν̄Þ
correspond to the largest xþU and x−U, respectively.We scan the
branching fractions using x−U ¼ 2xU − xþU and varying
0 ≤ xþU ≤ 2xU, with xU ≤ xmax

U for the two cases (10) (LU
bound). We extend the computation up to the cLFC bound
(11), which has been established by the analysis of the
charged lepton modes, to investigate the size of the enhance-
ment in this case. In Fig. 1, we show the largest enhancement
for the dBðBþ

c → Bþνν̄Þ=dx distribution obtained for
xþU ¼ 2xU. In Fig. 2, we depict the maximum enhancement
for the missing energy distribution and for the distributions
of longitudinally and transversely polarized B�þ in Bþ

c →
B�þνν̄. Integrating over x we have

BðBþ
c → Bþνν̄Þmax

LU ¼ ð4.7� 0.25Þ × 10−7;

BðBþ
c → Bþνν̄Þmax

cLFC ¼ ð2.7� 0.15Þ × 10−6; ð18Þ

BðBþ
c → B�þνν̄Þmax

LU ¼ ð1.1� 0.06Þ × 10−6;

BðBþ
c → B�þνν̄Þmax

cLFC ¼ ð6.5� 0.3Þ × 10−6: ð19Þ

The largest values of the branching fractions must be
compared with the SM prediction from Eq. (3),
BðBþ

c →Bþνν̄ÞSM¼ð8.5�0.5Þ×10−18, BðBþ
c →B�þνν̄ÞSM¼

ð2.1�0.1Þ×10−17, andwith the estimate of the long-distance

contributions discussed in the Appendix. Hence, a huge
enhancement with respect to tiny SM prediction is possible.
Setting xU below the bounds (10) and (11) and varying
xþU ∈ ½0; 2xU�, the branching fractions can be read in the plot
in Fig. 3.
The enhancements in Eqs. (18) and (19), achievable in

generic NP scenarios, must be taken with caution, since
they would be the manifestation of BSM phenomena
affecting other processes to a level that is necessary to
control. For this reason, it is worth considering a well
defined extension of the Standard Model, as discussed in
the next section.

IV. c → uνν̄ TRANSITION IN THE 331 MODEL

Among the extensions of the Standard Model, we focus
on the 331 models, a class of models based on the gauge
group SUð3ÞC × SUð3ÞL ×Uð1ÞX [40,41]. The gauge
symmetry is spontaneously broken to the SM group
SUð3ÞC × SUð2ÞL ×Uð1ÞY , followed by the spontaneous
breaking to SUð3ÞC ×Uð1ÞQ. This extension of the gauge
group has remarkable features. Left-handed fermions trans-
form under SUð3ÞL either as triplets or as antitriplets. The
requirement of gauge anomaly cancellation imposes that
the number of triplets should be equal to the number of
antitriplets. This constraint together with the asymptotic
freedom of QCD imposes that the number of fermion

LU

cLFC

0.146 0.148 0.150 0.152 0.154 0.156 0.158
0

1

2

3

4

FIG. 1. Missing energy distribution dBðBþ
c → Bþνν̄Þ=dx for

the largest value of the coefficients combination xU in Eqs. (10)
(LU bound, blue curve) and (11) (cFLC bound, red curve). The
widths of the curves are obtained varying the form factor
parameters [3,28].

LU

cLFC

0

2

4

6

8

L T

L

T

LU

cLFC

0.140 0.142 0.144 0.146 0.148 0.150
0

1

2

3

4

5

FIG. 2. Missing energy distributions dBðBþ
c → B�þνν̄Þ=dx

(top) and dBL;TðBþ
c → B�þνν̄Þ=dx (bottom) for xmax

U in Eqs. (10)
(blue curves) and (11) (red curves). The widths of the curves are
obtained varying the form factor parameters.
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generations is equal to the number of colors, a hint of why
there are three generations in nature. The quark generations
transform differently under SUð3ÞL, and a possibility is that
two left-handed quark generations transform as SUð3ÞL
triplets and one as an antitriplet. Choosing the latter one as
the third generation, the different assignment can be a hint
of why there is a large top mass.

The electric charge generator Q is defined by

Q ¼ T3 þ βT8 þ X; ð20Þ

with T3 and T8 the diagonal SUð3ÞL and X the Uð1ÞX
generators. The parameter β defines the specific variant of
the model. Four new gauge bosons have integer electric
charges if β is a multiple of 1ffiffi

3
p and

ffiffiffi
3

p
. The Uð1ÞX gauge

coupling gX and the SUð3ÞL coupling g are related,

g2X
g2

¼ 6 sin2 θW
1 − ð1þ β2Þ sin2 θW

: ð21Þ

Equation (21) provides the bound jβj ≤ 1
tan θWðMZ0 Þ which

corresponds to jβj < 1.737 for the sine of the Weinberg
angle sin θWðMZ0 ¼ 1 TeVÞ ¼ 0.249.
In all the 331 variants, there is a neutral gauge boson Z0

mediating tree-level FCNC in the quark sector, with
universal and diagonal Z0 couplings to leptons. The
extended Higgs sector involves three SUð3ÞL triplets and
one sextet. New heavy fermions are also present in the
spectrum.
As in the SM, quark mass eigenstates are defined upon

rotation of flavor eigenstates through two unitary matrices,
UL (for up-type quarks) and VL (for down-type quarks).
The relation VCKM ¼ U†

LVL holds. However, while in the
SM, VCKM only enters in charged current interactions, and
the two rotation matrices do not appear individually. In 331
model, only one matrix, either UL or VL, can be expressed
in terms of VCKM and of the other one. The remaining
rotation matrix affects the Z0 couplings to the quarks.
Choosing VL as the surviving rotation matrix, it can be
parametrized as

VL ¼

0
B@

c̃12c̃13 s̃12c̃23eiδ3 − c̃12s̃13s̃23eiðδ1−δ2Þ c̃12c̃23s̃13eiδ1 þ s̃12s̃23eiðδ2þδ3Þ

−c̃13s̃12e−iδ3 c̃12c̃23 þ s̃12s̃13s̃23eiðδ1−δ2−δ3Þ −s̃12s̃13c̃23eiðδ1−δ3Þ − c̃12s̃23eiδ2

−s̃13e−iδ1 −c̃13s̃23e−iδ2 c̃13c̃23

1
CA; ð22Þ

with c̃i ¼ cos θi, s̃i ¼ sin θi, and phases δ1;2;3. With this
parametrization, considering the Z0 couplings to the quarks,
one finds that the Bd system involves the parameters s̃13
and δ1, the Bs system s̃23 and δ2, and the kaon system s̃13,
s̃23, and δ2 − δ1. This provides remarkable correlations
among observables in kaon, Bd, and Bs systems [42–46].
It is interesting to observe that the relation

UL ¼ VL · V†
CKM ð23Þ

allows us to bound the Z0 mediated FCNC transitions of up-
type quarks using the constraints established in the down-
type quark sector [47]. Such a relation connecting the
down-type and up-type quark FCNC processes is a peculiar
feature of the 331 model.
The Z0 coupling to ordinary fermions, for a generic value

of the β parameter, is encoded in the 331 Lagrangian
density,

xU=2

xU
max (LU)

xU=59

xU=112

xU
max (cLFC)

0.0 0.5 1.0 1.5 2.0 2.5

0

1

2

3

4

5

6

FIG. 3. Anticorrelation between BðBþ
c → Bþνν̄Þ and

BðBþ
c → B�þνν̄Þ, varying the combination of the coefficients

xU up to the bounds in Eqs. (10) and (11). Colors from cyan to
magenta indicate increasing values of xU. The dark blue line
corresponds to the value saturating the LU bound and the dark
purple line to the value saturating the cLFC bound. The colors
corresponding to three other representative values of xU
(2,59,112) are also indicated in the legend.
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iLZ0
int ¼ i

gZ0μ

2
ffiffiffi
3

p
cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ β2Þs2W

p

×
� X

l¼e;μ;τ

f½1 − ð1þ
ffiffiffi
3

p
βÞs2W �ðν̄lLγμνlL þ l̄LγμlLÞ − 2

ffiffiffi
3

p
βs2Wl̄RγμlRg

þ
X

i;j¼1;2;3

��
−1þ

�
1þ βffiffiffi

3
p

�
s2W

�
ðq̄uLÞiγμðquLÞjδij þ 2c2Wðq̄uLÞiγμðquLÞju�3iu3j

þ
�
−1þ

�
1þ βffiffiffi

3
p

�
s2W

�
ðq̄dLÞiγμðqdLÞjδij þ 2c2Wðq̄dLÞiγμðqdLÞjv�3iv3j

þ 4ffiffiffi
3

p βs2Wðq̄uRÞiγμðquRÞjδij −
2ffiffiffi
3

p βs2Wðq̄dRÞiγμðqdRÞjδij
	
; ð24Þ

where sW ¼ sin θW , cW ¼ cos θW , quðqdÞ denotes an up
(down)-type quark (i, j are generation indices), and vij and
uij are the elements of the VL and UL matrices, respec-
tively. The models corresponding to β ¼ � 2ffiffi

3
p and

β ¼ � 1ffiffi
3

p , together with the choice of the fermions in

the third generation as transforming as SUð3ÞL antitriplets,
satisfy a number of phenomenological constraints [43]. In
particular, it is possible to select a region of the parameter
space compatible with the constrains from ΔF ¼ 2 observ-
ables in the Bd, Bs, and K systems and from the electro-
weak precision observables, provided that the Z0 mass is
not lighter than 1 TeV. In the variant with β ¼ 2ffiffi

3
p , relevant

contributions are predicted to the ratio ε0
ε [45].

As shown in [44], the Z − Z0 mixing can be neglected in
ΔF ¼ 2 transitions, while it must be taken into account in
decays with neutrinos in the final state. The Z − Z0 mixing
angle is written as [44]

sin ξ ¼ c2W
3

ffiffiffiffiffiffiffiffiffi
fðβÞ

p �
3β

s2W
c2W

þ
ffiffiffi
3

p
a

�
M2

Z

M2
Z0

¼ Bðβ; aÞ M
2
Z

M2
Z0
; ð25Þ

where

fðβÞ ¼ 1

1 − ð1þ β2Þs2W
> 0 ð26Þ

and

−1 < a ¼ v2−
v2þ

< 1: ð27Þ

v2� are given in terms of the vacuum expectation values of
two Higgs triplets ρ and η,

v2þ ¼ v2η þ v2ρ; v2− ¼ v2η − v2ρ: ð28Þ

The parameter a is expressed in terms of tan β̄ ¼ vρ
vη

as in

two Higgs doublet models [we use β̄ to distinguish this
parameter from β defining the 331 model in (20)] [44],

a ¼ 1 − tan2 β̄
1þ tan2 β̄

: ð29Þ

We consider the four variants scrutinized in [43]. For the
modes with a neutrino-antineutrino pair in the final state,
the Z − Z0 mixing is included replacing

Δνν̄
L ðZ0Þ → Δνν̄

L ðZ0Þð1þ RL
νν̄ðaÞÞ: ð30Þ

RL
νν̄ðaÞ is defined as

RL
νν̄ðaÞ ¼ Bðβ; aÞ Δνν̄ðZÞ

Δνν̄
L ðZ0Þ ; ð31Þ

with Bðβ; aÞ in (25) and Δνν̄ðZÞ the SM Z coupling to
neutrinos.
In the 331 model, the Bc → Bð�Þþνν̄ modes present

several features. The structure of the 331 model allows
us to use data from B and K decays to constrain c → u
modes. Moreover, Z0 mediates FCNC at tree level only in
the case of left-handed quarks; hence, the coefficient CR in
the Hamiltonian (1) vanishes in all the model variants.
Considering the contribution from the tree-level diagram

in Fig. 4 and using the coupling of Z0 to quarks and
neutrinos derived from Eq. (24), the coefficient CL in (1)

FIG. 4. Tree-level Z0 contribution to the c → uνν̄ effective
Hamiltonian.
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reads

C331
L ¼ Δuc

L ðZ0ÞΔνν̄
L ðZ0Þ

M2
Z0

ð1þ RL
νν̄ðaÞÞ; ð32Þ

where

Δuc
L ðZ0Þ ¼ gcWffiffiffi

3
p ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

1 − ð1þ β2Þs2W
p u�31u32;

Δνν̄
L ðZ0Þ ¼ g½1 − ð1þ ffiffiffi

3
p

βÞs2W �
2

ffiffiffi
3

p
cW

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 − ð1þ β2Þs2W

p : ð33Þ

The elements uij are obtained from Eqs. (22) and (23). As a
consequence, CL depends on the parameters s̃13, δ1, s̃23, δ2
that in pair control the Bd and Bs decays, respectively, and
altogether govern the K decays. CL also depends on the
Z − Z0 mixing parameter a. The Bþ

c → Bð�Þþνν̄ processes
must be studied in such a parameter space.

V. B+
c → Bð�Þ+ νν̄ DECAYS IN THE 331 MODEL

In the numerical analysis of Bþ
c → Bð�Þþνν̄ in the 331

model, we follow the method described in [45]. We select
the model parameters imposing that ΔMBd

, SJ=ψKS
, and

ΔMBs
, SJ=ψϕ, whose measurements are quoted in Table I,

lie in their experimental ranges within 2σ. In the kaon
sector, we require that εK is in the range ½1.6; 2.5� × 10−3,
and ΔMK varies between ½0.75; 1.25� × ðΔMKÞSM, i.e.,
ðΔMKÞSM ¼ 0.0047 GeV using Vub in Table I. The for-
mulas for such observables in the SM and in 331 models
can be found in [42]. For εK, we use the updated result in
[48]. The other input quantities are also collected in Table I.
For the CKM matrix elements, the Table displays the four
entries chosen as the independent ones, the others are
derived.
The obtained allowed regions in the parameter space s̃13,

δ1, s̃23, δ2 are in Fig. 5 for MZ0 ∈ ½1; 5� TeV. The regions
ðs̃13; δ1Þ are obtained imposing the constraints on ΔMBd

,
SJ=ψKS

, the regions ðs̃23; δ2Þ using ΔMBs
, SJ=ψϕ. In our

FIG. 5. Allowed regions in the 331 space of parameters s̃13, δ1 (top) and s̃23, δ2 (bottom) for β ¼ � 2ffiffi
3

p (left) and β ¼ � 1ffiffi
3

p (right),
varying the Z0 mass in the range [1, 5] TeV.

COLANGELO, DE FAZIO, and LOPARCO PHYS. REV. D 104, 115024 (2021)

115024-8



computation of the observables in the 331 model, we vary
s̃13, δ1, s̃23, δ2 in their allowed ranges and select the values
for which the constraints from ΔF ¼ 2 processes in the
kaon sector are also satisfied. For each value of β,
Fig. 5 shows the presence of two ranges for the phases
δ1;2 which are independent of MZ0 . Choosing the 331
parameters in the allowed ranges, the coefficient C331

L can
be computed, and the Bc → Bð�Þþνν̄ branching fractions
can be predicted.
In Fig. 6, we plot the missing energy distributions

for the set of s̃13, δ1, s̃23, δ2, and a maximizing the
dineutrino Bc branching fractions for each M0

Z up to
5 TeV. In all cases, the choice a ¼ 1 provides the
largest enhancement. The central values of the branching
fractions are

BðBþ
c → Bþνν̄Þ ¼ 4.91

ðMZ0=GeVÞ4 ;
�
β ¼ −

2ffiffiffi
3

p
�
;

BðBþ
c → Bþνν̄Þ ¼ 4.31

ðMZ0=GeVÞ4 ;
�
β ¼þ 2ffiffiffi

3
p

�
;

BðBþ
c → Bþνν̄Þ ¼ 2.60

ðMZ0=GeVÞ4 ;
�
β ¼ −

1ffiffiffi
3

p
�
;

BðBþ
c → Bþνν̄Þ ¼ 2.48

ðMZ0=GeVÞ4 ;
�
β ¼þ 1ffiffiffi

3
p

�
; ð34Þ

and

BðBþ
c →B�þνν̄Þ¼ 12.02

ðMZ0=GeVÞ4 ;
�
β¼−

2ffiffiffi
3

p
�
;

BðBþ
c →B�þνν̄Þ¼ 10.56

ðMZ0=GeVÞ4 ;
�
β¼þ 2ffiffiffi

3
p

�
;

BðBþ
c →B�þνν̄Þ¼ 6.36

ðMZ0=GeVÞ4 ;
�
β¼−

1ffiffiffi
3

p
�
;

BðBþ
c →B�þνν̄Þ¼ 6.08

ðMZ0=GeVÞ4 ;
�
β¼þ 1ffiffiffi

3
p

�
: ð35Þ

The enhancement with respect to the SM is large, even
though the branching fractions do not exceed Oð10−11Þ.

VI. CORRELATIONS BETWEEN THE MODES
c → uνν̄ AND s → dνν̄, b → sνν̄ IN THE 331 MODEL

We have remarked that a peculiar feature of the 331
model is the possibility of constraining FCNC up-type
quark processes using information on FCNC down-type
quark transitions. On this basis, we can establish the
correlations between Bc → Bð�Þþνν̄ and the s → dνν̄
induced transitions Kþ → πþνν̄ and KL → π0νν̄ and
between Bc → Bð�Þþνν̄ and B → fXs; K;K�gνν̄ induced
by b → sνν̄. In the SM, such transitions proceed through
box and Z0 penguin diagrams. The low-energy s → dνν̄
Hamiltonian reads in the SM as

Hs̄→d̄νν̄
eff jSM ¼ 4

GFffiffiffi
2

p α

2πsin2θW

×
X

l¼e;μ;τ

½V�
csVcdXl

NNLðxcÞ þ V�
tsVtdXðxtÞ�

× ðs̄γμPLdÞðν̄lγμPLνlÞ þ H:c:; ð36Þ

with xi ¼ m2
i =M

2
W . X

l
NNLðxcÞ takes into account the inter-

nal charm contribution [49–54]; the function

XðxtÞ ¼ ηX
xt
8

�
xt þ 2

xt − 1
þ 3xt − 6

ðxt − 1Þ2 ln xt
�

ð37Þ

describes the internal top contribution. ηX ¼ 0.994 is a
QCD correction computed for mt ¼ mtðmtÞ [50,55]. In the
charged Kþ → πþνν̄ mode, both contributions must be
taken into account; in KL → π0νν̄, the top quark contri-
bution dominates. The top quark contribution also domi-
nates in the b → sνν̄ modes governed by the effective
Hamiltonian

Hb→sνν̄
eff jSM ¼ 4

GFffiffiffi
2

p α

2πsin2θW

×
X

l¼e;μ;τ

½V�
tsVtbXðxtÞ�ðs̄γμPLbÞðν̄lγμPLνlÞ

þ H:c:: ð38Þ

0.0
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FIG. 6. Branching ratios BðBþ
c → Bþνν̄Þ and BðBþ

c → B�þνν̄Þ
in 331 model for β ¼ � 2ffiffi

3
p and β ¼ � 1ffiffi

3
p , varying MZ0 from 1 to

5 TeV. The results correspond to the values of s̃13, δ1, s̃23, δ2, and
a producing the largest rates.
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The 331 contribution from the tree-level Z0 exchange can
be included in the Hamiltonian replacing XðxtÞ → XðMÞ
with

XðMÞ ¼ XðxtÞ þ ΔXiðMÞ ð39Þ

and

�
4
GFffiffiffi
2

p α

2πsin2θW
V�
tsVtd

�
ΔXsdðKÞ¼Δsd

L ðZ0ÞΔνν̄
L ðZ0Þ

M2
Z0

; ð40Þ

�
4
GFffiffiffi
2

p α

2πsin2θW
V�
tsVtb

�
ΔXbsðBÞ¼Δbs

L ðZ0ÞΔνν̄
L ðZ0Þ

M2
Z0

: ð41Þ

The Z − Z0 mixing is included multiplying the rhs of
Eqs. (40) and (41) by ð1þ RL

νν̄ðaÞÞ, with RL
νν̄ in (31).

A. Correlations with dineutrino kaon modes

In the SM, the decays Kþ → πþνν̄ and KL → π0νν̄ are
predicted with branching ratios ofOð10−11Þ. The processes
are theoretically well controlled, due to the possibility of
relating their hadronic matrix elements to the precisely
measured semileptonic Kþ → π0eþνe matrix element. The
NA62 Collaboration at CERN has measured BðKþ →
πþνν̄Þ ¼ ð10.6�4.0

3.4 jstat � 0.9systÞ × 10−11 at 68% C.L.
[5]. The upper bound for the neutral mode is BðKL →
π0νν̄Þ < 3.9 × 10−9 (at 90% C.L.) [6,7]. Detailed discus-
sions of the dineutrino kaon modes in the SM and in the
331 model are presented in Refs. [4] and [42–46]. The
branching ratios are expressed in the form

BðKþ → πþνν̄Þ

¼ κþð1þ ΔEMÞ
��

ImXeff

λ5

�
2

þ
�
ReXeff

λ5
− PcðXÞ

�
2
�
;

ð42Þ

BðKL → π0νν̄Þ ¼ κL

�
ImXeff

λ5

�
2

; ð43Þ

with λ ¼ jVusj in Table I. The other quantities are

κþ ¼ ð5.21� 0.025Þ
�

λ

0.2252

�
8

× 10−11;

κL ¼ ð2.247� 0.013Þ
�

λ

0.2252

�
8

× 10−10;

PcðXÞ ¼ 0.405� 0.024;

ΔEM ¼ −0.03;

Xeff ¼ V�
tsVtdXðKÞ; ð44Þ

with XðKÞ in Eqs. (39) and (40) [51–53,56,57].

In Figs. 7 and 8, we show the correlations between
BðBc → Bð�Þþνν̄Þ and BðKþ → πþνν̄Þ and in Figs. 9 and
10 the correlations with BðKL → π0νν̄Þ. The Z0 mass is set
to MZ0 ¼ 1 TeV, and the results for heavier Z0 can be
obtained by a simple rescaling. For each β ¼ �1=

ffiffiffi
3

p
,

�2=
ffiffiffi
3

p
, the parameters s̃13, δ1, s̃23, δ2 are varied in their

allowed regions in Fig. 5. In each plot, the sliding colors
represent nine values of the Z − Z0 mixing parameter a in
the range ½−1; 1� (the colors corresponding to a ¼ −1, 0, 1
are indicated in the legends). Only for a ¼ −1 are the
results compatible with the SM. For a ¼ 1, the branching
fractions sizably deviate from the SM prediction, and the
largest enhancement of the Bc modes corresponds to a
suppression of the kaon modes with respect to the SM.

B. Correlations with dineutrino B decays

Let us consider the modes B → Msνν̄ (Ms ¼ Xs; K; K�).
The NP effects in scenarios with a Z0 with tree-level flavor-
changing couplings only to left-handed fermions can be
expressed in the form [10,42]

BðB → Msνν̄Þ ¼ BðB → Msνν̄ÞSM × ϱ2; ð45Þ

with

ϱ ¼ jXðBsÞj
XðxtÞ

ð46Þ

and XðBsÞ in Eqs. (39) and (41). The SM terms are
[4,10,12]

BðB → Xsνν̄ÞSM ¼ ð3.0� 0.3Þ × 10−5; ð47Þ

BðBþ → Kþνν̄ÞSM ¼ð4.35� 0.59Þ × 10−6; ð48Þ

BðB0 → K�0νν̄ÞSM ¼ð9.44� 0.89Þ × 10−6: ð49Þ

They can be compared to the experimental upper bounds (at
90% C.L.) [20,22],

BðBþ → Kþνν̄Þexp ≤ 1.6 × 10−5; ð50Þ

BðB → K�νν̄Þexp ≤ 2.7 × 10−5: ð51Þ

The correlations between BðBc → Bþνν̄Þ and BðB →
ðXs; K; K�Þνν̄Þ for β ¼ − 2ffiffi

3
p ;− 1ffiffi

3
p are in Figs. 11 and

12. The correlations for the vector Bc → B�þνν̄ mode have
the same pattern, differing only for the BðBc → B�þνν̄Þ
scale factor. The sliding colors describe the variation of
a ∈ ½−1; 1�; the 331 result is compatible with the SM for
a ¼ −1. The largest enhancements of BðBc → Bþνν̄Þ
correspond to a suppression of b → sνν̄ with respect to
the SM.

COLANGELO, DE FAZIO, and LOPARCO PHYS. REV. D 104, 115024 (2021)

115024-10



FIG. 8. Correlations between BðBc → B�þνν̄Þ and BðKþ → πþνν̄Þ in the 331 model with parameters as in Fig. 7. The black dot is the
SM result.

FIG. 7. Correlations between the branching fractions BðBc → Bþνν̄Þ and BðKþ → πþνν̄Þ in the 331 model with
β ¼ 2ffiffi

3
p ; 1ffiffi

3
p ;− 2ffiffi

3
p ;− 1ffiffi

3
p , MZ0 ¼ 1 TeV and Z − Z0 mixing parameter a ¼ −1, 0, 1. The black dot is the SM result.
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FIG. 10. Correlations between BðBc → B�þνν̄Þ and BðKL → π0νν̄Þ in the 331 model with parameters as in Fig. 7. The black dot is the
SM result.

FIG. 9. Correlations between BðBc → Bþνν̄Þ and BðKL → π0νν̄Þ in the 331 model with parameters as in Fig. 7. The black dot is the
SM result.
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VII. CONCLUSIONS

Null tests, like rare FCNC charm decays, are useful to
investigate the existence of phenomena beyond the Standard
Model. The Bc → Bð�Þþνν̄ modes are predicted within the
SM with branching ratios not exceeding Oð10−16Þ and can
be used for null tests. Exploiting the relations between the
Wilson coefficients of c → uνν̄ and the c → ulþl− low-
energy Hamiltonian obtained from the SMEFT, together
with the experimental bounds on the charged dilepton c → u
processes, we have derived the largest enhancement for the
dineutrino modes in generic NP scenarios, finding branch-
ing fractions up to Oð10−6Þ. Specific NP scenarios predict
smaller effects. To investigate this point, we have predicted
the branching fractions for these processes in the 331model.
The reason to consider this framework is that in this model
the NP parameters entering in FCNC charm decays are the
same that govern the B; Bs; K FCNC transitions. This
provides nontrivial correlations among the observables in
the various systems. In the 331 models, the effective c →
uνν̄Hamiltonian comprises only one operator, as in the SM,
with a modification of the Wilson coefficient enhancing
BðBc → Bð�Þþνν̄Þ up toOð10−11Þ. Moreover, in this model,
a correlationwith down-type quark dineutrino processes can
be established. We have found that the largest branching

fractions correspond to β ¼ −2=
ffiffiffi
3

p
and are anticorrelated

with Kþ → πþνν̄, KL → π0νν̄, and B → fXs; K; K�gνν̄.
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APPENDIX: LONG-DISTANCE CONTRIBUTIONS
TO Bc → Bð�Þ+ νν̄

We estimate the main long-distance contributions to
Bc → Bð�Þþνν̄ represented by the processes Bc →
Bð�ÞþV0 → Bð�Þþνν̄, with V0 ¼ ρ0;ω;ϕ [2]. The nonlep-
tonic color suppressed Bc → Bð�ÞþV0 amplitude can be
estimated using naive factorization in terms of the Bc →
Bð�Þ form factors. The V0 → νlν̄l amplitude involves the
hadronic matrix elements

h0jq̄γμðgqV − gqAγ5ÞqjV0ðq; ϵÞi; ðA1Þ

with gqV;A the vector and axial-vector couplings constants
of the neutral current for quarks. Actually, (A1) takes

FIG. 11. Correlations between BðBc → Bþνν̄Þ and BðBþ → Xsνν̄Þ (left), BðBþ → Kþνν̄Þ (middle), and BðB0 → K�0νν̄Þ (right) for
β ¼ − 2ffiffi

3
p , MZ0 ¼ 1 TeV. The black dot indicates the SM result.

FIG. 12. Correlations between BðBc → Bþνν̄Þ and BðBþ → Xsνν̄Þ (left), BðBþ → Kþνν̄Þ (middle), and BðB0 → K�0νν̄Þ (right), for
β ¼ − 1ffiffi

3
p , MZ0 ¼ 1 TeV. The black dot indicates the SM result.
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contributions only from the vector quark current. These
matrix elements can be obtained from the V0 matrix
element of the electromagnetic (em) current
Jμem ¼ P

q eqq̄γ
μq, with eq the quark charges, parametrized

as

h0jJμemjV0ðq; ϵÞi ¼ m2
V0

fV0

ϵμ: ðA2Þ

Using the V0 masses, widths, and V0 → eþe−ðμþμ−Þ
branching fractions [34], we have fρ0 ¼ 4.99� 0.03
(5.08� 0.16), fω ¼ 16.50� 0.25 (16.49� 2.01), and
fϕ ¼ 13.51� 0.22 (13.78� 0.51). The results for
the LD contribution, BðBc → Bþνν̄ÞjLD ≃ 1.0 × 10−16

and BðBc → B�þνν̄ÞjLD ≃ 9.8 × 10−17 confirm the role of
Bc → Bð�Þνν̄ as null tests of the SM.
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