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Studying the b — sZ* ¢~ anomalies and (g - 2), in R-parity violating MSSM
framework with the inverse seesaw mechanism
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Inspired by the recent experimental results which show deviations from the standard model predictions
of b — s¢T¢~ transitions, we study the R-parity violating minimal supersymmetric standard model
extended by the inverse seesaw mechanism. The trilinear R-parity violating terms, together with the chiral
mixing of sneutrinos, induce the loop contributions to the b — s£7#~ anomaly. We study the parameter
space of the single-parameter scenario Cy; = —C\’, = Cy and the double-parameter scenario (Cy, Cy),
respectively, constrained by other experimental data such as B, — B, mixing, B — X,y decay, the lepton
flavor violating decays, etc. Both the single-parameter and the double-parameter scenario can resolve the
long existing muon anomalous magnetic moment problem, as well, and allow the anomalous ¢t — cg

process to reach the sensitivity at the Future Circular hadron-hadron Collider.

DOI: 10.1103/PhysRevD.104.115023

I. INTRODUCTION

In recent years, several hints of new physics (NP) beyond
the standard model (SM) have shown up, such as Ry =
B(B — K" u*tu~)/B(B — K*)e*e™) on the transitions of
b— stt¢~ (£ =e, p), which exhibits very attractive
anomalies. In particular, the measurement of Ry by the
LHCb Collaboration has just been updated with the full

run 11 data, as Ry = 0.8467 005270913 in the ¢* bin

[1.1,6] GeV? [1], which is much more precise than the
previous data Ry = 0.846f8"8§‘2f8&146 [2], giving rise to
discrepancy with the SM value changing from the preced-
ing 2.5¢0 to 3.16. The recent measurements of Rg- by LHCb
give Rg- = 0.66707 & 0.03 at the [0.045,1.1] GeV? bin
and Ry = 0.691017 & 0.05 at the [1.1, 6] GeV? bin, show-
ing a 2.16 deviation at the low ¢*> region and a 2.5¢
deviation at the high region, respectively [3]. The Ry
results by the Belle Collaboration [4,5] show consistency
with the SM predictions, although the results have sizeable
experimental error bars. Besides, there are also other
anomalies in the b — sZT¢~ transition, for instance, the
angular observable PS5 anomaly of the B — K*u*pu~ decay
persists with the new data [6] when compared with the run I
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results [7-12]. All of these anomalies may indicate the NP
that breaks lepton flavor universality (LFU).

We know that each single anomaly above cannot be
regarded as the conclusive evidence of NP. However, it is
interesting that nearly all of these anomalies can be
explained simultaneously with the four-Fermi operators
in the model-independent global fit [13-36]. In light of the
new measurement of Rg [1], there are already some new fit
results updated [14,23-36]. For the discussion of the global
fit, the related Lagrangian of the low energy effective field
theory is given by

4Gr
\/577[

where the Cabibbo—Kobayashi-Maskawa (CKM) factor
n; = K;;, K. The main operators for the anomaly explan-
ations are

Lo = > GO +He., (1.1)

2

e _
Oy = 1 (7, PLb)(Z1"0),
2
e _ -
Oy = 716712 (SVﬂPLb)(fY”YSf)» (1-2)

where P; = (1 —ys)/2 is the left-handed (LH) chirality
projector and the  Wilson  coefficients  are
Co(10) = Cg?fm + CI;I(];O)' In this work, we adopt the follow-
ing unified form of fit scenarios:

Clg\{llj = CV + Cu, CII\I({y == —Cv,
Cg’fe) = Cy, Cll‘l(fe =0, (1.3)
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where V denotes the contributions only of the p*u~
channel and U denotes LFU contributions. The first
scenario, called scenario A here, requires Cyy = 0 to realize
the single-parameter scenario Cy, = —Cly, in fact. We
adopt the fit result —0.46 < Cy < —0.32, which conforms
to the rare B-meson decays at the lo level in Ref. [28].
Except for the new Ry measurement [1], authors in
Ref. [28] have also considered other series of new exper-
imental results, such as the new angular analyses of B® —
KOutu~ [6] and B* — K**u*tu~ [37], the updated
branching ratio measurement of B, — ¢utu~ [38] that
confirms the previous tension [39] with the SM prediction,
as well as the recent results of B, — u*u~ from CMS [40]
and LHCb [41,42]. For the case of Cy # 0, named as
scenario B, we also utilize the fit regions in Ref. [28] with
the best fit point, (Cy, Cy) ~ (—=0.34,—-0.32).

After these results of the model-independent analyses are
obtained, the imperative work is to find the concrete NP
models which can conform to them. Both scenarios A and
B have been implemented in the R-parity violating minimal
supersymmetric standard model (MSSM) [43-48]. When
masses of sneutrinos/sd-quarks are sufficiently heavy or
there is a cancellation in the penguin contribution [46],
scenario B turns into scenario A.

More than the R-parity violating MSSM, the seesaw
mechanism [49-55] is also researched for the explanation
of b — s£+¢~ disparities in the supersymmetric (SUSY)
models [56], the two-Higgs doublet [57,58], and other
frameworks (see, e.g., Refs. [59-73]). The seesaw mecha-
nism is one of the most attractive methods to generate the
neutrino masses in accord with the conclusive evidence of
neutrino oscillations [74], as one type of seesaw mecha-
nism, the inverse seesaw [75,76], can give a O(1) neutrino
Yukawa coupling Y,. The relative large Y, implicates that
the admixture between LH neutrino superfields and right-
handed (RH) or extra singlet superfields is not negligible.
Therefore, it is meaningful to study the chiral mixings of (s)
neutrinos in the MSSM framework extended by both
inverse seesaw mechanisms and the tree-level trilinear
R-parity violating (RPV) terms, and then all chiral parts
of (s)neutrinos more than LH ones can interact with
(s)quarks. This new combination is naturally reason-
able [77-79] and has never been studied in the
b — s£*T¢~ anomalies to our knowledge.

The recent experimental results of R(D™)) = B(B —
DY) /B(B — D™¥¢v) in the charged current b — ctv
from BABAR [80,81], Belle [82-85], and LHCb [86—88]
have been averaged by the Heavy Flavor Averaging Group
[89], and also show the tension with the average of SM
predictions [90-93] and the recent new SM results [94—99].
While the new measurements of R(D*)) from Belle using
the semileptonic tagging method, such as the latest results
with the data sample of 772 x 10° BB pairs, are already
in good agreement with SM predictions, Belle combined
results are consistent with SM predictions within

1.60 [100]. Given this, in this work we do not investigate
R(D™) for the moment.

The clues of LFU violation exist not only in B-meson
decays but also in other processes, such as the muon
anomalous magnetic moment problem, which has existed
for several decades. The measurement of a, = (g —2), by
Fermilab [101-103] presents the 3.3¢ deviation as greater
than the SM prediction [104]," and agrees with the previous
Brookhaven ES821 experiment [114]. The combined
deviation average of the two experiments, Aa, =

a;’ —asM = (2.51 £0.59) x 10, shows the increased
tension at the significant 4.2¢ level, and this is a growing
motivation of NP. For the electron anomalous magnetic
moment, there is a negative 2.4 discrepancy between the
measurement [115] and the SM prediction [116],
Aa, = a;* — aSM = (8.7 £3.6) x 10713, due to the new
measurement of the fine structure constant in Ref. [1 17].2
There are plenty of articles discussing the (g — 2), problem
in the SUSY framework (e.g., see Refs. [48,120-169]). In
this work, we will investigate whether the parameter space
for the explanation of b — s£*¢£~ anomalies can be in
accordance with the deviation Aa,, and then we will
discuss the NP effects on a,.

Our paper is organized as follows. At first, the new
model in this work is introduced in Sec. II. Then, in Sec. III,
the one-loop contributions to the b — s#T#~ transition in
this model are scrutinized and we emphasize the main
contributions to explain the b — s£*¢#~ anomaly in our
parameter scheme. We discuss NP contributions to (g — 2),
and other related constraints in Sec. IV, followed by the
numerical results and discussions in Sec. V. Our conclu-
sions are presented in Sec. VI.

II. THE MODEL

The model considered in this work is R-parity violating
MSSM with the inverse seesaw mechanism, called RPV-
MSSMIS here, and the superpotential is expressed by

1

W = WMSSM + Y,i,jf?,f,jl:[u + M%R,S/ + ulS’S’,S'j

o

+ 4 Izinﬁkv

ijk (21)

'A recent calculation of the hadronic vacuum polarization
(HVP) [105] weakens the discrepancy between the experiment
and SM prediction of a,, while it shows the tension with the
R-ratio determinations [106—109]. Even the large HVP contri-
bution can account for the measurement of ay,, as there exists the
tension within the electroweak (EW) fit [110-113]. We do not
consider this HVP result here but consider the preceding review
of various SM results [104].

Another new measurement of the fine structure constant [118]
differs by more than 5S¢ to the previous one [117] and affects the
deviation Aa, to a positive 1.60 level [119]. The NP hint search in
a, still expects more experimental researches and we focus on a

anomaly explanations in this work.

i
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where the generation indices are i, j, k = 1, 2, 3, while the
color ones are omitted. All the repeated indices are
defaulted to be summed over unless otherwise stated.
Here the superpotential of the MSSM [170,171] is
expressed as

~

Wssm =pH H,+ Y U,0H,-YID,0,H,~YIEL,

(2.2)

In the RPV-MSSMIS, MSSM superfields are extended by
three generations of pairs of SM singlet superfields, R; and
S;. The neutral parts of two Higgs doublet superfields,
H,= (A}, H)" and A, = (HY, H;)", acquire the non-
zero vacuum expectation values, (H%)=wv, and
(HY) = vy, respectively, leading to the mixing angle
p =tan~!(v,/v,). The tree-level trilinear RPV coupling
A jkf, iQ jf)k can be added for L, sharing the same SM
quantum number with H . It is necessary to point out that
the RPV superpotential terms like 4; ]kf, 0 jf)k, ; jkf, L Ek,
ﬂ’;kU D Dk, and y;L;H, are all, in principle, allowed for
the SM gauge invariance if there are no extra symmetries.
Here we only consider the term jkl: ,»Q jDk, connecting the
quark sector with the lepton sector, without the pure-quark
term A/ U,D jbk or the purely lepton interaction
Ai jkf, L jEk. This is an attempt to avoid the probable
disastrously rapid proton decay [172,173] that occurs when
there are nonzero parameters A’ and A” simultaneously and
the strong collider constraints on the lightest sneutrino mass
when A and 1 both exist [174—184]. The bilinear term
u;L.H , is also allowed, but we exclude it in order to avoid
the extra contributions to neutrino masses [185]. With the
scalar components of Higgs doublet superfields denoted by
H, and H,, and squarks and sleptons denoted by “~”, the
soft supersymmetry breaking Lagrangian is given by

m%/ (Ay -

MI%I(R) = (Av

T
MRmD

a,.

—pcotfymp  my + MgMp + mpmj,
+usMp + By,

— Lo = ‘CIS\(/)IQSM ( )lleR +(

)ijS;FSj

1
RiL;H,+Bj, R:S;+-B}53;

+(AuY )lj i 2 i)

(2.3)

where L350, corresponds to the MSSM part [170,171]. It
should be mentioned that MSSM and singlet neutrino
sectors are all at low scale (around 1 TeV) in this work,
so some terms in the most general superpotential and soft
breaking Lagrangian are already or will be eliminated
ad hoc for the phenomenological consideration.

As to the three terms following Wyssm in Eq. (2.1),
which give the neutrino mass spectrum at tree level, the
9 x 9 mass matrix of the neutrino in the (v, R, S) basis is
given by

mp 0 MR s
0 M% Hs

(2.4)

in which mp = %UMYZ. The pg parameter can be
obtained by

ps = (mp)~ MRUPMNsmvla UpvinsMrmp' (2:5)
where ug << mp < My. The diagonalized neutrino mass
M in a physics basis, containing the three-light-
generation part mi®* in Eq. (2.5), is given by
M — Y M VT, Here, embedded in the whole 9 x 9
mixing matrix V7, the 3 x 3 light-generation sector VI,
should approximate the PMNS matrix UPMNS [74,186].

We then turn to the sneutrino mass square matrix in the

(f/f(R),RI(R), SZ(R)) basis, which is expressed as

p cot f)my, mpMg

+tMpps + By,
m3 + u3 + MyMg + B,

, (2.6)

where the “+” above expresses the CP-even and CP-odd masses, where CP odd is denoted by Z and CP even is denoted by

T

‘R. The soft mass m2 = m +1 mZ cos 23 + mpmy, can be regarded as one whole input, where m is the soft mass square

of Lin L3581 The CP even and CP-odd masses can be nearly the same for tiny yg and relatively small B, [187]. Besides,
the value of mé is set to be zero here. Thus, the approximate form is provided as [188]

2
ms,
,/\/l?/m) ~| (4,

T
MRmD

(A, — pcot fymj, mpMg
—/ACOtﬂ)mD m%+MRM£+mDm£ BM

R

Bl MM,

R
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In the following, we adopt this particular structure and then
the mixing matrices V*(®) which diagonalize sneutrino
mass square matrices by V* (R)Mgz(m VIR — (Mgz(m )diag,
are also the same whether CP even or odd. All the V* and
the physical mass m z can be expressed as VT and myz,
respectively, in the rest of the paper. With respect to
charged sleptons, the LH sector element is given by
mz, + mj — mpmj, — my, cos 2f3.

Afterwards, we discuss the last term of the superpoten-
tial. Fpr the supe.rpot.ential term ’%‘jk;inDk’ Fhe corre-
sponding Lagrangian in the flavor basis is obtained as

Ligp= /ujk (ﬂLiadeLj + aLjaRkVLi + EZ}EkDZidLj

_7Li5_iRk”Lj — iy jdpelpi— gl*RkZZi”Lj) +He., (2.8)

where “c” indicates the charge conjugated fermions. Then
in the context of mass eigenstates for the down quarks and
charged leptons, the Lagrangian above with other fields 7y,
vr, and u; (aligned with ii; ), rotated to mass eigenstates by

mixing matrices V* "), Y, and K, respectively, is given by

T(R) . - ~ = ~
'C/LQD = /1;,5{ )UvdedLj +/1/L%(dLdekUv + de”ﬁdLj)
— N (idgug; + g dgyly; + digd5 ugg) + Hee.,
(2.9)

where all the fields are represented by the mass eigenstates.
Concretely, v, and 7, are in the mass eigenstate with the
index v = 1,2, ...9 and the three neo-A’ terms are deduced

ZER) = Ai’jkvfi(R)*’ '%% = A Vi and Ay = 4 K. In
the following, we call the diagrams including these A’
couplings “A’ diagrams,” otherwise we call them “non-A’
diagrams.”

By the end of this section, we should mention the
chargino and neutralino mass matrices in the MSSM sector

of this model. The chargino mass matrix is [171]

Mo — ( M, V2m,, sinﬁ)
! V2m,, cos f Il ’

as A

(2.10)

where the parameter M, is the wino mass and y is related to
the Higgsino mass. The mixing matrices V and U diag-

onalize M+ by U* M- Vi= ./\/ljifg. As for the neutralino
mass matrix Mo in the basis (B, W3, HY, H)T [171],

ey ev,,
M, 0 2cosfy  2cosfy
evy _ ey,
0 M2 2sinfy 2sinfy, 211
M)(O T ey evy 0 _ ’ ( . )
2cosfy  2sindy H
ev,, __ev, _
2cos Oy 2s8in@y H 0

with M being the bino mass and @y, being the weak mixing

angle, and it is diagonalized by NM oN" = M;:éag.

IIL. b —» s¢*¢~ PROCESS IN THE
RPV-MSSMIS

In the RPV-MSSMIS, the tree-level diagram of the b —
s¢T ¢~ process which exchanges ii; makes the RH-quark-
vector-current contribution

'’ V2n? ;1/21'22/2?3 (3.1)
ou = 04 = 272 :
. g Grne® my,,

where the related operator (’)’9 (10) is given by P; changed into
Py in Og(y¢). This contribution is unwanted to explain b —
st ¢~ anomalies. Besides, the box diagrams of the b —
sCTE~  process also give such RH-quark-vector-
current contributions which engage the sneutrino 7, and
LH slepton I, with the coupling factors A”Z,4%" and
A lis, tespectively [see Egs. (A2) and (A7)]. We concen-
trate on the loop effects of sneutrinos which are not expected
to be heavily decoupled, and furthermore, the NP particles
engaged in b — s£" ¢~ and other related processes, such as
B — X,y, B, — B, mixing, etc., are expected to have masses
at the sub-TeV or TeV scale, except for the heavy decoupled
particles. Thus, we set the A’ couplings taken at the 0.5 TeV
scale, called the pyp scale, and assume i non-negligible

with the single-value k at this scale. It is called the single-
value k assumption in this work, and the index & is not to be
summed over in equations from here on. This kind of
assumption is also taken in recent works for the similar
phenomenological consideration, such as in Refs. [43—47].
Authors of Ref. [45] further assume that 4}; = 4}, =0,
which are adopted in Refs. [46,47], considering the bounds
of 7 — up® and 7 — ug¢ decays, while these constraints can
also be negligible by setting sufficiently heavy m;, .

We scrutinize all the one-loop Feynman diagrams of the
b — s ¢~ process in the RPV-MSSMIS under the single-
value k assumption. For the box diagrams, there are eleven
chargino box diagrams including nine A’ diagrams
[Fig. 1(a)] and two non-A’ diagrams [Fig. 1(b)], fourteen
W with W Goldstones or charged Higgs box (called W/H*
box here) diagrams including ten A’ ones [Fig. 1(c)] and
four non-A’ ones [Fig. 1(d)], and three 44’ box diagrams
[Figs. 1(e) and 1(f)]. The entire contributions of the box
diagrams are listed in the Appendix (see formulas of the
Passarino—Veltman functions D, and Dy, in Ref. [47], where
D, (0)[m3, m3, m3, m3] is denoted as D (0)[m,, my, m3, my)
in this paper, respectively). The Wilson coefficients in the
Appendix are given at uyp, and if we consider the single-
value k assumption, only the LH-quark-vector-current con-
tributions, CgN(ljo) (1np), are existent and all the RH-quark-

vector-current ones, Cg‘(lfo) (1np), vanish. Then the Wilson

coefficients run down to the scale of y;, = m,; under QCD
renormalization. One can find that CI;(I;O) (1p) ~ CgNg o) ()

[189] and C’gl\g})O) (1p) vanishes due to the approximate
conservation of (axial-)vector currents. Thus we can

115023-4
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FIG. 1. Box diagrams for the b — s¢*£~ process in our parameter scheme. Figures 1(a) and 1(b) show an example of 4’ diagrams and
non-A’ diagrams within chargino boxes, respectively. Figures 1(c) and 1(d) show an example of A’ diagrams and non-A" diagrams within
the W/H?* box, respectively. Figures 1(e) and 1(f) show the three 41’ box diagrams with the 7®-engaged diagram omitted.

constrain the model parameters related to Coyg)(#;) using CNP = NP in Ref. [56]. The related C)P, namely C){/i(l)
the global fit results introduced in Sec. I. in this paper is given by

From the Appendix, one can see that /; and d; ; in the box
diagrams can be forbidden under the assumption of a W V2rki
single-value k. In the following we further assume that m; Ccy = ) G zyu,K 3KV Vi (92V i Vo=V Y3,)
is sufficiently heavy to focus on the contributions of Fhe
sneutrinos as the bridge between the trilinear RPV term
and the inverse seesaw mechanism. Therefore, contribu-
tions including dg; are negligible and can,_ be removed. ~ Where the Yukawa couplings y, = \/zmu[/ v, and
Besides, we also set m;, ; adequately heavy Because the ng =(Y,) JfVI (4+3)" This formula can be seen in the
LFU violating contributions, mainly from the g u~ chan-  second term of Eq. (Al).
nel, are expected to explain b — s ¢~ anomalies in both Then we show the A’ within the chargino box diagram
scenarios A and B, we will set that M;I(R) has no flavor  containing the RPV interactions between singlet sneutrinos
and quarks. The contribution is given by

(gZVnIVDZ_VZZYjZ:ﬂ)DZ[mD%7 £, My, My, ]7 (32)

mixing and the electron-flavor elements with both LH and

RH chirality are sufficiently heavy. Then nearly all box Vanti B

contributions to the b — se*e~ transition, and some box €, @ = AL AT (Vi Vi = VipYL)

contributions to the b — sy~ transition, can be elimi- - 2Gpme

nated, and afterwards we show which contributions remain. (9 mlvv,z - VoY %L,,)Dz [ml,z M, My mdk],
First among these non-negligible chargino box diagrams, ' (33)

the non-A' diagram with RH sneutrinos previously
discussed in Ref. [56] is recalculated by us. We find  which appears in the third term of Eq. (A1).
that the Wilson coefficient C)¥ from this diagram equals The nonignorable W/H* box contributions in

to —CNP 10> which is different from the condition that Eq. (A3) are
|

W) _ s V280 .
Cor " ==Ciup = 26 = (Vi KisK 23y, 23, Y2, Dalmy, oy my, ,my ]
f

_4g%mu,<yu,»mul,Ki3K;‘k2ZHh2Re(V1/‘fY%*)DO {mu(,’mui! myy, mHh] + SggKi3K:'k2|wa|2D2 [mu(,?mu,»! myy, mWD7 (34)

*In this work, my. and my, are set to be around 10 TeV.
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14 b

1

FIG.2. Photon penguin diagrams for the b — s£* £~ process in our parameter scheme. Here each example of the A’ diagrams (left), the
non-1’ diagrams with W/H* (middle), and charginos (right) engaged are shown respectively.

where the mixing matrix elements Zy  =-—sinf and

Zy, = —cosp, with Goldstone mass my, =my and
charged Higgs mass my, =my:, and Y%

(Y,);¢Vy(j13)- It is obvious that these W/H* box contri-

butions include SM effects, which cannot be separated
naively from NP effects because of the generation and the
chiral mixing of massive neutrinos. In addition, these
contributions still contain both the p*u~ channel sector
and eT e channel sector. We will further investigate these
contributions in detail in Sec. V.

Next we show the penguin contributions. Indeed, the
Wilson coefficients of Z-boson penguin diagrams are
negligible. While the contributions of photon penguin
diagrams can be nonignorable, where the A’ diagrams
[Fig. 2(a)] give

1
) = -

21/1' A/I* 2
\/_ 0337023 (§+10g mb) (35)

36GF11,mD% 2

7

for the case of k=3, and the non-A’ contributions

[Figs. 2(b) and 2(c)], namely CY(Z), are also calculated
by us for completeness.

IV. THE (g-2), AND OTHER CONSTRAINTS

In this section, we introduce the NP contributions to
(9 —2), and other related processes.

A. The muon (electron) anomalous
magnetic moment

The amplitude of the £ — ¢y (£ = e, p) transition is
given by

. . - ic" qp

— n ~
iM= zef(y +a, m, )fA,, (4.1)
in the zero limit of photon moment g. The second term in
the bracket gives the loop corrections and a, is called the
anomalous magnetic moment for the related lepton.

The SM-like diagrams that only involve SM particles
give the same contributions to a, as the SM. Hence the
SUSY part can contribute to the observed anomaly Aa,
[141]. The one-loop chargino and neutralino contributions

in the RPV-MSSMIS are given here, with reference to
Refs. [122,128,141,190], as

me
( mv‘z + | | )

a’; 167[ [6mﬂv i

2 2
RO / mm,)

m,+
+ 2 RelcthetPS 2 /)|
7,

mpy
1672

0 mf
st = [—@ﬂnm P+ R FY ()
l

i

kRO (o ). +2)

ni Mni
l

where

cmb = yzf’UmZva’ Crf;lli = _g2vm1]>%f =+ VmZY%:U’
= \/EglNz115i(f+3) + ¥¢Nu3bie,

‘L _

1
n,i -~ Nn + n
V2 (92Nw2 + 91N w1 )dir

— YN 30ie43) (4.3)

and with functions

1
_W(2+3x—6x2 +x3 + 6xlogx),

1
T (3 —4x +x* +2logx),

7 (1 = 6x 4 3x% 4 2x° — 6x* log x),

Fy(x) =

7 (1 —x* 4 2xlogx). (4.4)

(1-x)*
The flavor mixing of RH sleptons is not considered here,
and neither is the flavor mixing of LH sleptons. Since the
contributions from A’ diagrams are negligible for the heavy
bg and ii;, they are not shown in Eq. (4.3). The difference
from the MSSM is the form factor %% in Eq. (4.3), where
the extra V,,» Y?v term can make an enhancement. Because
the measured Aa, has different features when compared

with Aa,, we consider the schemes of |5a’f| > |6a’£i| ~0
and |5a’£0| > |5aﬂ€0| ~ 0 [131]. Thus, the muon generation
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associated with RH sleptons is set sufficiently heavy, as
well as heavy L} which is already assumed in Sec. III.
Afterwards we expect 1.92(1.33)<|5a% + 5a’ﬁo| x 10°<
3.10(3.69) to be in accord with a, data at 1(2)o,
respectively.

u"

B. Tree-level processes

In the following we investigate related transition bounds
which exchange dy; at the tree level. On account of the
assumption of heavy m; ~ 10 TeV, the neutral current

processes B — K%up, B > v, and D° — uru~, as well
as the charged current processes B — v, Dy — v, and
7 — K, provide no effective constraints. Besides, there are
some tree-level processes which may make some slight
bounds to mention here.

The SM prediction B(K" — ztwb)gy = (9.24 £
0.83) x 107! [191], combined with the experimental
measurement  B(K" — ztwb),, = (1.7 4+ 1.1) x 10710
[192], induces the constraint. The effective Lagrangian
for the K — nvv decay can be described by

Lo = (CM5;; + CNP)(dy, PLs) (07" PLyvy) + Hee., (4.5)
where the SM contributes CSM = %X (x,) and
7% sin? Oy,

X(x,) = ’gf;:jff + 38);;()‘72 log(x,) with x, = m2/m3, [193],
while the NP contribution is

N 9 IN*

NP = M (4.6)
Zma
Rk

Then the bound is obtained as M’{‘Z/kﬂ%ﬂ < 0.074 when

my is around 10 TeV [47], and, hence, we can set
|2,;] < 1072 to avoid this bound.

As to the processes of 7 decaying to a x4 and a vector
meson, 7 — up® and 7 — u¢p, the branching fraction is
given by [194]

7. fom’ m? m3 ms
By = S (1) (1 20

T

4.7)

where V stands for p° and ¢. The mean lifetime of the tauon
7, = 290.3 £ 0.5 fs [192], and the decay constants f have
the value of f, = 153 MeV and f = 237 MeV, respec-

tively [45]. Ay is given by [194]

ar ;1/*' 3 3k
_ 317251 A31kM21k
Ao

e 2m3_ Zlek ’

3]2 2*]2
A, == 4.8
? T om2 (4.8)

i

The most recent experimental upper limits on the branch
fractions of the two processes at 90% confidence level
(C.L) are B(z — pup®) <12x 107 and B(r — ugp) <
8.4 x 1078 [192]. We can obtain the bounds [45]

|/~1/3/1/~1/231 - ~/31k/~1/2*1k‘ < 1.9,

|Zs0050| < 3.6 (4.9)

when both my_ —and m; are around 10 TeV. Under the

negligible |1}, k| assumption, the bounds of Eq. (4.9) turn
into 135,45 + 25314551 < 1.9 or |Bpndhn, + 2333 | <
3.6 when the single-value k is restricted to 1 or 2 for the
nonzero A ijk» respectively, while there exists no effective
bound when £ is restricted to 3. We can see that if k is
restricted to 1(2) for the nonzero 4. |4, should be
below around 1(1.3), respectively, in the case of no
cancelling out.

C.B - X,y

At the one-loop level, the photon penguin diagrams in
Fig. 2 also contribute to the electromagnetic dipole operator
07 = % (50" Pgb)F,, constrained by the B — Xy decay.
The NP Wilson coefﬁcient C3® includes charged Higgs
contributions and the effects from the chargino with iir; as
well as the RPV contributions engaging sneutrinos.

The RPV contribution is given by

\/>/1/II /1/11'*
C?PV e YV S3k 02k (4 1 O)
F’?tm,;%

Compared with CJ/(1> in Eq. (3.5), CX*V contains the
common part Aﬁ ook L Im> 7 while containing no logarithmic

term.
The charged Higgs contribution is given by

+ 1 1 2
=t 00 FF ) @)
Vi(7=5y,— 8)r)
where the form factors are F ( ) = S T
Vi (3}’r (2) _ »(3=5y) (3y,=2)
T logy, and F57(y,) = Bo1E T 60 1 > log y,, with
2)

y, = mi/m3.,. One can see that the F ( ;) part is not

suppressed when tan 3 is large, and this is unlike the H*
contributions to Co(1g) Which are entirely suppressed by the

large tan . The formulas of C)f engaging the chargino,
together with iip j and the QCD corrections, can be seen in
Ref. [195].

The recent measurements of the branching ratio
B(B = X1 )exp X 10* = 3.43 £0.21 £ 0.07 [89] is consis-
tent with the SM prediction B(B — X,y)sy x 10* =
3.36 £0.23 [196], and induces the bound to |C}?| <
0.025 [48].

115023-7



MIN-DI ZHENG and HONG-HAO ZHANG

PHYS. REV. D 104, 115023 (2021)

D. B, - B, mixing
Another process we should consider is B, — B, mixing,
mastered by the Lagrangian

Loy = (CP + C3F) (57, PLb)(57"PLb) + Hee.,  (4.12)

where the non-negligible NP contribution is given by
3t D2

+ yu yu (Ki3K?2)(Kj3K;2)|Vm2Vn2|2
X Dz[m){i

i
NP __ 1T I Ix 91T /I*
CBJ = _g(’11;3k/11)2k)“ A, [mz{ ’mi{,’mdymdk}

My, my, my, 1), (4.13)
including the A" diagram with double sneutrinos and the
non-A' diagram with double RH su-quarks, and the SM
contribution C3™ = — 2L, GimjntS(x,) with the function

o x,(4—11x,+x?) 3x, log(x,)
() = G T 21y

AMS? = (17.757 £ 0.021) ps‘1 (891, the recent SM pre-
diction AMSM = (18.4107) ps™! = (1.041057) AMS™ [198]
leads to the bound of

With the measurement of

0.90 < |1+ CYP/CM| < 1.11, (4.14)

at the 20 level.

E. Lepton flavor violating decays

We discuss the lepton flavor violating decays including
Ty, u—> ey, t— 0, u— eee, and T — £'¢F. First,
the /'-diagram contributions can be eliminated when by, is
sufficiently heavy [47]. As to the non-A’ diagrams, all the
neutralino-slepton diagrams contain flavor mixings of
charged sleptons and all the chargino-sneutrino diagrams
contain flavor mixings of sneutrinos (see Ref. [199] for
concrete formulas). So, the effects of these two kinds of
diagrams vanish when there is no flavor mixing in the two
mass matrices. For contributions of the W/H*-neutrino
|

3% /’{
AZ ]22 lz?,k {leBl(mtﬂ md;ﬂ miu) - f% 2024

diagrams, they are always connected to these terms, which

T T T T T\ )T :
are Vi3,V 5130 YiarsyVper ad VoV, and their

conjugate terms, where a,ff =e, u, 7 and a # f [199].
In Sec. VA, we will show how all these terms contribute no
effects under the particular structure of the neutrino mass
matrix. The same analyses can also be applied to the non-A'
diagrams in B — t*y¥ and B* — K*r*u¥. For the V
diagrams of these two processes, we refer to the detailed
discussions in Ref. [46], and no obvious constraints
are found.

F. Anomalous ¢ — ¢V (h) decays

The SM predicts the branching ratios of t — ¢V decays
(V stands for the vector bosons, including Z, y, and the
gluon g) and t — ch decay (h stands for SM-like Higgs
boson) below the scale of 10~°—10'% [200] due to the
Glashow-Iliopoulos—Maiani suppression. This scale is
beyond the detection capabilities at the collider in the near
future. The most recent experimental 95% C.L. upper limits
on the branching ratios of these top quark decays at the
Large Hadron Collider (LHC) show that B(r — c¢Z) <
2.4 x107* [201], B(t = cy) < 1.8 x 10™* [202], B(t —
cg) <4.1x10™* [203], and B(t — ch) <1.1x1073
[204]. Compared with the effects from pure MSSM, the
one-loop RPV diagrams can make more contributions
[205,206], and hence we will investigate these effects in
our model.

For the t — ¢V decays, the effective tcV vertices are
expressed as

Vi(1cZ) = ie(y" PLA? + ik 0" PRB?),
V#(1cy) = ie(ik,o" PgBY),
VE(teg) = igyt“(ik,o" PrBY), (4.15)

where k, is the momentum of the vector boson. The form
factors A% and BV are given by [205]

1
=5+ my(crn + 023)] (=Pi: Pesmg . my . mg,)

2

= f5[2¢a4 + mi(ciy = cpp + o1 = c23)|(=pin K, my,, my, ., mh,)}’

A1k
BY = 2k’113k

= {fymlen — e+ o = exs)(=py, pes ma, my,  my,)

1677

= fimen = e+ ean = ea3l(=py k,my,, my, . my, )},

(4.16)

“The newly updated experimental result of AM; by LHCb has been reported [197]. The combined result with previous LHCb

measurements gives AMEHC = (17,7656 4 0.0057) ps~!

Eq. (4.14).

with the improved precision. Using this new combined result will not change
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where p, and p. are the momentums of top and charm
quarks and functions B; and c;; are the Passarino—Veltman
integrals totally referring to Ref. [207]. The constants

7 __ 3—4sin’dy Z _ _ sinfy 7 _ 2sin®Gy—1
f " 65sin Oy cos Oy’ f2 T 3cosOy’ and f3 " sinOy cos Oy
in the form factors AZ and BZ. In BY, the relevant constants
are f5 =1/3 and f = —1, while f§ = —1 and f§ =0 in

BY. Then the decay widths of + — ¢V are given as

are

[(t— cZ)p = W [(2 + z) |A%|?
:
— 6m,Re(A?B%) + (2m? + m%)|BZ|2} .
L(t = cy)np = elzén? |B"|?,
It = cq)np = 91‘;"? |BY[2. (4.17)

As for the t — ch decay, the effective tch vertex is
expressed as
V(tch) = ie(P A" + PRAR). (4.18)
After omitting masses of charm quarks and all down-type
quarks, one can obtain [206]

3%
2k’113k

Al =
R 16x2

yiumt(cll - 612)(—]7;, k.0, mzu’ mZL[>’

(4.19)
where factor V;  ~ 5= (3 — sin? Oy cos 28 when the
masses of leptons are omitted and the mass of CP-odd
Higgs bosons is sufficiently heavy. Then the decay width of
t—chis

[(t = ch)yp = (4.20)

NP contributes to related branching ratios which are
given by B(t—cV(h))p=L(t=cV(h))np/T(t=bW)g\
where the dominant decay t+ — bW has the SM prediction
['(r — bW)gy = 1.42 GeV [208].

G. LHC direct searches

The LHC direct searches have led to stringent limits on
the masses of sbottoms and stops [209-215], and the recent
searches [213-215] have excluded the heavy stops more
than 1.35 TeV. In view of the fact that dg, and ii;; have
already been set adequately heavy, we further set
my,. > 1.4 TeV.

For the constraints on LH sleptons as mentioned in
Sec. II, when considering nonzero A couplings, the lower
bounds of my;, and m; reach the TeV scale [182-184].

Because only nonzero A’ couplings are restricted in this
work, LH sleptons decaying to pure leptons directly is
secondary, and processes without 4 interactions should be
taken into consideration mainly. We consider the searches
which focus on LH sleptons decaying into leptons and the
lightest neutralino 9 [216-218], and the recent ATLAS
results [217] show that the LH sleptons that are heavier than
2" can avoid the exclusion for mp 2 300 GeV. Besides, the

compressed scenario, that the lightest chargino mass s is
slightly heavier than m,, 0 [219], is adopted. Thus we will let
inputs induce m, = Z my % 300 GeV and m; > 300 GeV.

V. NUMERICAL RESULTS
AND DISCUSSIONS

In this section, we investigate b — s£T#~ anomalies
numerically, as well as the a, anomaly and the related
constraints.

A. Choice of input parameters

The first parts of the input parameters used throughout
the paper are collected in Table I, which includes the lepton
oscillation data [74] under the normal ordering (NO)
assumption of LH neutrino masses. In addition, we further
keep Scp = 7 to omit the CP violation in UPMNS, The
lightest neutrino mass is set to zero to have the masses of
three-flavor light neutrinos as {0,0.008,0.05} eV with
my“® x diag(0, /Am3,, /AmZ,) [220]. Then we collect
the fixed values of relevant model parameters in Table II.
The sets give m,s = 325 GeV and mp =307 GeV, which

are in accordance with the constraints discussed in Sec. IV
G. Besides, we set the diagonal parameters for Y, M, mj,
mg, By, and A, in Eq. (2.7) so that the sneutrino mixing
matrices VZ®) only have chiral mixings without flavor
mixings and let them have pro Jper values to agree with the
discussions in Secs. III and IV.” As for the remaining model
parameters, mg,, mp;, Myor Mragr Aspps and A5, they can
vary freely in the ranges considered.

With related inputs in Tables I and II, the pg term in
Eq. (2.4) can be figured out with m,, Mg, UPMNS and the
light neutrino masses ma“¢ through Eq. (2.5). Then we
obtain the approximate numerical form of the mixing
matrix V7,

>Under the premise of no flavor mixing in V2 we mention
that sufficiently heavy mg and mp can eliminate the box

except for CW/ ) in Sec. 111,
and mp are set sufficiently heavy for the scheme of

contributions to b — seTe”

My

nondominant |3 | and [5a% | in Sec. IVA. The V() without
flavor mixings is also for satisfying the bounds from lepton flavor
violating decays mentioned in Sec. IV E.
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TABLE I. Summary of parts of input parameters used throughout this paper.
QCD and EW parameters [192]
Gp[107 GeV™?] a,(mz) a,(mz) my [GeV] sin? Oy
1.1663787 1/128 0.1179(10) 80.379 0.2312
Quark and lepton masses [GeV] [192]
my (mb) m, (mc) m, me my me
4~18f8_'8§ 1.27(2) 172.76(30) 0.511 x 1073 0.1057 1.777

CKM Wolfenstein parameters [221]

Ackm A P i
022484108 082359 01569:00% 0.3499° 72
Lepton oscillation parameters (NO) [74]
sin® 6, sin® @y sin® 6,5
0.304(12) 0.57370 06 0.02219900063
Sepl] Am3,[107° eV?] Am3,[1073 eV?]
197137 742102 2.5175098
0.840  0.509 —-0.147 -0.085i 0 0 0.085 0 0
—-0.231 0.599  0.755 0 0.097i 0 0 0.097 0
0478 —0.608 0.628 0 0 0.061i 0 0 —0.061
0 0 0 0.707i 0 0 0.707 0 0
VI~ 0 0 0 0 —0.707i 0 0 0.707 0 , (5.1)
0 0 0 0 0 —0.707i 0 0 —-0.707
-0.102 -0.062 0.018 —0.702i 0 0 0.702 0 0
0.032 -0.083 —0.105 0 0.700i 0 0 0.700 0
-0.041 0.053 —0.055 0 0 0.704i 0 0 -0.704
[
corresponding to the light neutrino masses m, =  and Z VT*VﬂI @h—4 Vg;h V/n , related to the

{0,0.008,0.05} eV and the nearly degenerate heavy ones
m,, around 1 TeV. One can see that there is no flavor
mixing when the RH sector is engaged but chiral mixing
exists. With the numerical result of Eq. (5.1), we can

eliminate the VTa L3) VT/, \3), and VTa ' 3) l,v;b terms in the

contributions of W/HjE neutrino diagrams to the lepton
flavor violating decays within Sec. IV E. VI* V};p can be

decomposed into the following two parts: >3 _, Vs Vi,

TABLE II. The sets of fixed model parameters, defined at pnp
scale. The two sets of A, are for scenario A and B, respectively.

Parameters Sets Parameters Sets

tan 15 Y, diag(0.7,0.8,0.5) [222]
M, 320 GeV My diag(1,1,1) TeV
M, 350 GeV By, diag(0.5,0.5,0.5) TeV?
u 450 GeV A, 0; diag(0,—1.5,0) TeV
Mg, 1.5 TeV mp 5 TeV

my, 5 TeV My diag(5,0,0) TeV

nearly degenerate heavy neutrinos and light neutrinos,
respectively [188]. It can also be found that Vi;Vj,
provides no effects from Eq. (5.1). In sum, the lepton
flavor violating decays mentioned in Sec. IV E contribute
no effective bounds in our input sets. .

In the following we discuss the feature of C;‘E{g. ;1) in
Eq. (3.4), which includes the e+e‘ channel. The three terms
of Eq. (3.4) contain [V, 5, |*, Re(V}, V], 5),) and |V, |?
respectively. For & 0r/and h’ = 2 first, this part of Eq. (3.4)
includes the contribution of charged Higgs bosons and it
can be ignored for the set of tanf = 15. In the case of
h = h' = 1, this part of Eq. (3.4) describes the contribution
of seesaw-extended SM. [VI > in the third term is
dominated by |[UPMNS|2, and thus this term is nearly equal
to the contribution of the original SM. Because

Re(VI VI (¢43),) 1s negligible compared with |V £43)0 1,
we focus on the first term in Eq. (3.4) and the second term
can be omitted safely. According to the discussion above,

the pure NP contribution AC o(1 ) . in Eq. (3.4) is induced
by only heavy neutrinos and is given by

>
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o Z T 2GR P Vi,
v, =4
X DZ[vah s My, My, my|. (5.2)
W/Hi o

Our parameter set leads that the contribution ACy ,~ =

-AC %/ ;’ “in Eq. (5.2) is at a negative 1072 scale for both
uu~ and e" e channels. This small LFU effect cannot be
included in both Cy and Cy within Eq. (1.3) and is ignored
for the approximation. We also obtain C{J(z) around 0.01

and C){,i(l) around —0.01 in which the main contributions
are from A’ diagrams. In summary, the LFU violating
coefficient and the LFU coefficient can be represented by
Cy = C){,t(l) + C)(,t(z) and Cy = Cﬁ(l) + ij(z), respec-
tively. We find that the factor cify = —g,V,q V% +
V,o¥% in Eq. (43) is also included in %" and
C){,i(z). Therefore, the large chiral mixing of sneutrinos

NP

will make some enhancements to both Cy and a,

simultaneously.

B. Explanations of b — s€* ¢~ anomalies with (g-2),

In this part we will search for the common areas of five
variables, mp Myozs Ayzzs Asp3, and Aysy, to explain
b — s¢*¢~ anomalies as well as (g—2), deviations
considering related constraints in the two fit scenarios
mentioned in Sec. I. In scenario A, we fix mp, = mp, =
50 GeV which is a benefit for satisfying the constraint of
B, — B, mixing. In scenario B, we fix mp, = mp,. For the
bounds of m; in LHC searches mentioned in Sec. IV G,
we focus on mj, > 370 GeV which causes the mass of

lightest charged slepton m; (sneutrino m; ) to be above

1.7 . -
Scenario A

16f

Aa,at2o0 .

131 ~.

1.2

380 400 420 440 460 480 500

318(301) GeV in scenario A and m;, to be heavier than
100 GeV, while m; is above 352 GeV in scenario B. In
particular, we choose k =3 for a benchmark of the
numerical calculation.

1. Explanations of (g -2), anomalies

At first, we show the bound for mj, with ap® in each
scenario at Fig. 3, in which a)* can contribute to ay™
increasing and accommodate the observed Aa, deviation
from the 4.20 to 20 level below. In scenario B, there are
also allowed spaces at the 1o level. In scenario A, we obtain

the allowed range 370 < m I, < 470 GeV at the 20 level,
and in scenario B there is a larger range of 370 < mp; <
820 GeV at the 20 level as well as a range of 420 < m;, <

610 GeV at the 1o level. Besides, we have calculated that
al? can reach negative O(107'#) only in the case of

mg, ~ 100 GeV in our parameter spaces.

2. Results in scenario A

Next we investigate b — s£7£~ anomalies further with
the parameter regions of m iy, we have obtained above. In

scenario A, Cy; should have 0 as the definition. To make Cy,
cancel out, 455,45, is figured out as the expression of
235325, and vice versa, and the constraints from B, — B
mixing and B — X,y will be mainly suppressed. Also the
large my- as 2 TeV and my, as 1.5 TeV avoid too strong of
bounds on the MSSM part of the model from B — Xy
decays. In Fig. 4, the common areas of b — s£*¢~
explanations under other bounds show a larger value and

*

region of A5, A5, or —A%5. %4, for a heavier m;, . The values
g 2234233 3234333 L

of 155,15+ always have the negative sign compared with the
positive 45534535, and their region sizes are nearly the same

4.0 v .
Scenario B
35
3.0
N 2.5
o \
=
= Aa, at 1
21 20 e ey
[}
1.5} Aa, at 20
1.0f
0.5

400 500 600 700 800 900 1000

FIG. 3. a? varies with m 1, in scenario A (left) and scenario B (right). The dark (light) green areas are 1(2)o favored to explain the

"
Aa, deviation.
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1.0

(a)

0.8fAa, at 2

g

0.6F

(=1) A3 i3

0.4f ool 8

0.2} . =3

0.0

400 500 600 700 800 900
m;: (GeV)

1.0

0.8fAa, at 2o

(=1)'A3Aiss

0.0

400 500 600 700 800 900
m;_z (GeV)

FIG. 4. The common scopes of constraints with the fit level of rare B-meson decays as 1o (left) and 20 (right) in scenario A. The blue

s«

(green) points show that 455,454, (—45534545) varies with m i and then 155,455 (A5534545) is derived. It should be paid attention to that

among 1553545 and 25554445 there is only one independent variable in this scenario, so the blue and green points are relevant. The area on
the left of the red dashed line is allowed to be accordant with a, data at 2o.

for the same value of 7, . The results in scenario A show
that b — s£7¢~ anomalies in both 16 and 2¢ fits can be
explained.

Combined with considering the Aa, deviation, we find
the final common region to explain the b — s£*¢~ and q,,
anomalies simultaneously at the 2¢ level, which are shown
by the points on the left of the Aa, bound line in Fig. 4(b).
The result provides the m 1, range with 370 GeV < m I <

470 GeV and the edge values of A’ combinations are
collected in Table III.

3. Results in scenario B

In scenario B, the common scopes are shown at Figs. 5
and 6. Similar to scenario A, the values of allowed 455,435
are always negative compared with the positive 155,455, and
the region sizes of their common scopes become larger as
m, is varying heavier. As shown in Fig. 5, there exist areas
to explain b — s£"#~ anomalies at the 1o level for rare
B-meson decay fits, and the B, — B, mixing mostly
constrains. While B — X,y decays provide no extra bounds
when mj, 2 430 GeV and even reaches TeV. When m;,

TABLE III.  The edge values of 155,455, and 455,445 related to
different m i for the simultaneous explanation of b — s£ ¢~ and

a, anomalies at the 2o level in scenario A.

mp, [GeV] A323h033 A3234333

370 [0.14, 0.30] [-0.26, —0.12]
420 [0.17, 0.37] [-0.32,—0.15]
470 [0.20, 0.44] [-0.38, —0.18]

blow around 430 GeV, 1o explanations will not be viable,
and B — X,y decays provide extra bounds versus B; — B,
mixing. In Fig. 6(a), we compare the common region sizes
for the different fixed m;, with each other and find that the
deviation between the allowed region sizes of 455,455 and
—A553 4535 are small, up to around 0.1 scale. Thus we further
fix them equaling each other and show A55;4%,, varying
with increasing m;, only in Fig. 6(b), and find that the 1o

favored fit requires m i 2 550 GeV and the region of 2¢ fit
has a broader size. When m z is below 550 GeV, there also

exists common regions of 1o fit while in these
regions, 45534545 + 45534535 # 0.
Combined with a, data, the final common region of

400 GeV <m 0 < 820 GeV is required to explain the b —

s¢*¢~ and a, anomalies simultaneously at the 2o level,

and edge values of A combinations are collected in
Table 1V.

C. Predictions of t — cg decay

As in the numerical discussions above, we have the final

parameter spaces of m i as well as the coupling combi-

nations A5534%;5 and 45534545, to explain related LFU

violating anomalies, while these variables also provide
NP effects on the top decays t — cV(h).

We have checked that our final parameter spaces can
satisfy the most recent upper limits on the branching ratios
of t = cV(h) decays at the LHC easily. The NP contri-
butions to the branching ratios of t — ¢V (h) depend on the
term A5, AL, f3,, where f; ~stands for the loop integral
including LH charged sleptons. This term can be given
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A= 31 '~ /%
by A iz S I ~ (i
Because of canceling out in

2 2

ok T ik PK ey + A3 [*Kep) 13, -
ixdiaf7,,» the hierarchical
structure between A/, and 15, (a = 2, 3) is considered to

make prominent contributions, and we set the large A/ 5,

TABLE IV. The same as Table III except for scenario B.

mp, [GeV] 223433 5234533
420 [0.062, 0.086] [-0.137,—0.063]
650 [0.22, 0.62] [-0.70,—0.17]
820 [0.35, 1.00] [-1.10,-0.30]

here. We keep restricting k as 3 and set Ayy; = 533 =2
or 3.

In the following we show that the prediction values of
B(t — cg)yp from the parameter spaces to explain b —
s¢*¢~ and a, anomalies can reach the sensitivity at the
FCC-hh in Fig. 7. One can see that in scenario A, when
370 GeV < mj, <440 GeV and 133 = 3, the prediction
B(t = cg)np is higher than the prospective upper limit
9.87 x 1078, at the 100 TeV FCC-hh for the integrated
luminosity of £ = 10 ab™! of data through the triple-top
signal [223], and the prediction in scenario B for the same

! 33 can also reach this upper limit. When 4/, is set to be 2,
the branching ratio is much lower and can not even reach
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FIG. 7. The predictions of B(t — cg)yp compared with the
prospect upper limit at the 100 TeV FCC-hh.

the sensitivity at the FCC-hh for the estimated £ = 39 ab~!
in both scenarios A and B. We conclude that, at the
FCC-hh, this model signal on the t — cg transition has
considerable possibilities to be found for sufficiently large
X33, but the model can escape easily from the bound of this
transition when the structure between 1/,; and 4/ ;5 is not
hierarchical enough.

VI. CONCLUSIONS

Recent measurements on the transition b — s£¢~
reveal the deviations from SM predictions. The most

(%)

motivative Ry’ anomaly and anomalies from other

observables like P%, called b — s£¢~ anomalies collec-
tively, suggest the NP of LFU violation may exist. Besides,
these NP may also affect the enduring muon anomalous
magnetic moment, the (g —2), problem.

In this work, we have studied the chiral mixing effects of
sneutrinos in the R-parity violating MSSM with the inverse
seesaw mechanism to explore the explanation of b —
s£*¢~ anomalies with the (g—2), problem simultane-
ously. Here all the one-loop contributions to b — s£¢~
processes are scrutinized under the assumption of a single-
value k. Among them, the contributions of chiral mixing
between LH and singlet (s)neutrinos within a superpoten-
tial term A jkﬁiQ jDk are given for the first time to our
knowledge. To explain b — s£7#~ anomalies in this
model, two kinds of model-independent global fits are
adopted. One is the single-parameter scenario of Cg{z =

- ., and the other scenario is the double-parameter one

in which (4)Cy contributes to the Cgl(]io),

channel and Cy contributes to the C)¥ part in both the
uTu~ and ete” channels. Then in the numerical analyses,
we find that b — s£7¢~ and (g —2), anomalies can be
explained simultaneously in both scenario A and B. The
main constraints among related processes are from B — B,
mixing covering B — X,y decay mostly, but the other tree-
level and one-loop processes provide no effective bounds.
At last, we make a prospect that NP contributions to t — cg
process can reach the sensitivity at the FCC-hh in parts of
the parameter spaces of this model.

, partin the uwryum
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APPENDIX: ONE-LOOP BOX CONTRIBUTIONS IN THE RPV-MSSMIS
In this Appendix, we list all Wilson coefficients from the one-loop box diagrams of b — s£Z*¢#~ in the RPV-MSSMIS

without the extra assumption of a single-value k.

The LH-quark-current contributions of chargino box diagrams to the b — s£+£~ process are given by

\/fﬂz I

=t =Y
9.0 10,7 2GF’7t€

+32 KK Vi Vi (92Vin Vi = Vid Y2, (92 VE V2, —

22Y5'1;>D2 [mﬂlz.’m +

2 (Q%KBK}EVZ] Vi (92Vm1]>%f - szYgﬂ) (92‘/21 v%f - V;izygv)Dz [m,;lz,,mﬁ,mﬁ ) mﬂu]

v My My |

1T 1T* * )L * T \)Z T
- A’zﬁkﬂy’Zk(gZle va - Vm2 va) (g2Vm1 Vz;'f - Vm2 qu;’)DZ [miqz ’ ml?f, ’ m)(ﬁ ’ mdk]

qr 0 3k 2 * 2 kY 1L % * A T
—Aeikh ek KK |V oun |2 Dolmy,  mg omy my |+ Ay 250 (02K i3 Vi ) (92V it Vie = Vi Y2, ) Do mgz .my m e ;my, |

+}”lf*ikj'lvz3k(92K?2 le)(gzv;.;ll V%f =V ng)Dz [m;{.’mauvmﬁ ) mdk])’

(A1)
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where the Yukawa couplings are y, = \/Emui/ v, and Y’ gv =(Y,) jffﬁf(*j +3) while the corresponding RH-quark-current
contributions are

V2ri

+ ~ ~
Cg(f C/l)% £ 2G AwZA;)I;;( :‘nlvff - V:nZ ng)(gZlev%’f - Vm2 ng/)Dz [mz'/fv mz'/lI, s Myt md,-]' (Az)

The contributions of W/H* box diagrams to the b — s£#+#~ process are given by

ol =l = Zan O3 KoK Zhy, 23, YA PDalm,, .y my, m)
Fll:€

— 4g2mu,yu,»mvl,KiBK;EZ%—I,ZZRe(VLfY “)Do[m,, . m,, . my,my |

+ 59421K53K?2|VM|2D2 [mvlm muiv My, mW]

+ ZHIZ N* YN '11)3k/1/1{\€ZD2 [mD ’ m’/,/ My, mam]

—2¢3m, m, VeV ,f/lwkﬂ;j\g}z olmy,,m, ,,my,mg |

+2m,,vm,,1,Z T, vKN*/lwk/l’,QkDo[m,, My, My, my |

+2m _muAyuAyquingZZthﬂﬁk/l sixDolmy,,my .my, ,my |

- gzvva*'fﬁuzkl%}iDz [m,,, my,, My, maRk]
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+ BK V) Ay D[y, my,  my, mg 1), (A3)

/W/HY _ JW/HE V2rti N AN yIN -
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Ny IN //\/* .
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where the mixing matrix elements are Zy , = —sinf§, Zy,, = — cos §, with the Goldstone mass my, = my and charged

Higgs mass my, = my+ and Y2, = (¥ DieViss)
The contributions of 44’ box diagrams to the b — s£7£~ process are given by

\/_ﬂl ~ IN %

A _ o
Cop=—Cio, = T3Gm s (M o e Dy[my,.my.mg, .my ]
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14y V272 o« N
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The contributions of neutralino box diagrams only contain RH-quark-current parts, which are given by

0 0 V2rti (1 ~
Csy=—Clop = T2 (z (911\’ nt + 0N ) e dfaDalmy my  my,, myp]
t
2 -
+ §Q%|Nn1 2223 Da [my,, mo, ms,, m/;R]
1 27 %
- gangl (91Nn1 + 2N w2)Apindsia (Dz[mjw, my,, m,o, msR] + Dz[miL,’ my, ., m,o, mZ,R] . (A7)
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