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The electroweak phase transition in grand unified theory inspired SO(5) x U(1) x SU(3) gauge-Higgs
unification is shown to be weakly first order and occurs at T = TEW ~ 163 GeV, which is very similar to
the behavior in the standard model in perturbation theory. A new phase appears at higher temperatures.
SU2), xU(1)y (8 =0) and SU(2)g x U(1)y (0 = m) phases become almost degenerate above
T ~ mgg where myy is the Kaluza-Klein mass scale (typically around 13 TeV) and @y is the Aharonov-
Bohm phase along the fifth dimension. The two phases become degenerate at 7 = TR ~ myy. As the
temperature drops in the evolution of the early Universe the SU(2), x U(1),s phase becomes unstable. The
tunneling rate from the SU(2), x U(1), phase to the SU(2), x U(1), phase becomes sizable and a first-
order phase transition takes place at T = 2.5-2.6 TeV. The amount of gravitational waves produced in this
left-right phase transition is small, far below the reach of the sensitivity of LISA. A detailed analysis of the
SU(2) x U(1), phase is also given. It is shown that the W boson, Z boson and photon, with 8 varying
from O to , are transformed to gauge bosons in the SU(2), x U(1),, phase. Gauge couplings and wave

functions of quarks, leptons, and dark fermions in the SU(2), x U(1),» phase are determined.

DOI: 10.1103/PhysRevD.104.115018

I. INTRODUCTION

The standard model (SM), SU(3) x SU(2), x U(1),
gauge theory, has been firmly established at low energies.
Implications of the model in the history of the Universe
have also been discussed intensively. There remain a few
important mysteries such as dark matter and baryon number
generation in the Universe. Something beyond the SM is
necessary.

The Higgs boson with a mass of 125 GeV was
discovered in 2012, whose properties (observed so far)
have been consistent with the SM within experimental
errors. Yet it is not clear whether the observed boson is
precisely what the SM assumes to exist. We need further
measurements of the Higgs boson’s couplings to itself and
other particles to make a judgment. With the possibility of
the appearance of cracks of the SM in mind, many
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alternative models with an extension of the scalar sector
have been proposed.

Furthermore the Higgs sector in the SM has the severe
gauge hierarchy problem when implemented in a larger
theory, such as grand unification. One possible answer to
this problem is gauge-Higgs unification (GHU) in which
the Higgs boson is identified with a zero mode of the fifth
dimensional component of the gauge potential [1-9]. It
appears as a fluctuation mode of an Aharonov-Bohm (AB)
phase 6y in the fifth dimension. The mass of the Higgs
boson is generated at the one-loop level, the finiteness of
which is guaranteed by gauge invariance. Among various
GHU models SO(5) x U(1)y x SU(3) GHU model in the
Randall-Sundrum (RS) warped space reproduces nearly the
same phenomenology at low energies as the SM for 0y <
0.1 [10-14]. Gauge couplings of quarks and leptons are
almost the same as in the SM. The Cabibbo-Kobayashi-
Maskawa (CKM) mass mixing is incorporated with natural
suppression of flavor-changing neutral currents (FCNCs).
Yukawa couplings of quarks and leptons are suppressed by
a factor of cos @ or cos? %HH compared to those in the SM.
The model predicts Z' bosons as Kaluza-Klein (KK)
excited modes of y, Z and Zp where Z; is the gauge
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boson of SU(2)g in SO(4) ~SU(2);, x SU(2)x C SO(5).
It has been shown that effects of Z' bosons can be observed
in fermion pair production at electron-positron (e~e™)
collider experiments. Significant interference effects should
be seen even in the early stage of the planned International
Linear Collider (ILC) experiments at energies of 250 GeV
by measuring the dependence on polarization of electron
and positron beams [15-22].

Natural questions arise about the behavior of SO(5) x
U(l)y x SU(3), GHU at finite temperature. At which
temperature is the electroweak (EW) symmetry,
SU(2), x U(1)y, restored? Is the transition first order or
second order? Is there any difference from the SM [23-26]?
These are main themes analyzed in this paper. Previously
phase transitions in GHU have been analyzed in various
models [27-31]. Adachi and Maru analyzed their SU(3) x
U(1) GHU model to show that the EW phase transition is
strongly first-order [v./T. = O(1)] though v, and T, turn
out about 1 GeV, being too small. In SO(5) x U(1)y x
SU(3). GHU the SU(2), x U(1), symmetric phase cor-
responds to @y = 0, which dynamically breaks down to
U(1)gy with nonvanishing €y ~ 0.1 at zero temperature. It
will be shown below that the SU(2), x U(1), symmetry is
restored around 7 = TEW ~ 163 GeV. The transition is
shown to be weakly first order, just as in the SM in
perturbation theory. A new phase emerges at higher
temperatures. In SO(5) x U(1)y x SU(3) GHU, SO(5)
symmetry breaks down to SO(4) ~ SU(2), x SU(2)x by
orbifold boundary conditions. Although a brane scalar at
the UV brane spontaneously breaks SU(2)z x U(1)y to
U(1)y at T = 0, a new minimum of the effective potential
at finite temperature appears at 8y = z. It will be seen that
above T = TLR ~ myy the O = 0 phase and the Oy =«
phase become almost degenerate. The two phases are
separated by a barrier so that a domain structure will be
formed in the Universe as the Universe expands and the
temperature drops to around 7LR. As the Universe cools
down further, the 8y = 7z phase becomes absolutely unsta-
ble at T = TR ~ 2.3 TeV. The transition from the 0 = x
phase to the 8y = 0 phase takes place by tunneling at

T =Ty ~2.5TeV. In the 6y =0 phase there is

SU(2), x U(1)y gauge invariance, while in the 6y =«
phase SU(2)g x U(1),, gauge symmetry emerges. The
transition from the 8y = x phase to the 8y = 0 phase is
called as the left-right (LR) transition.

In this paper we consider GHU models defined in the
RS warped space with fixed curvature and size [32].
The stabilization of the RS warped space can be achieved
by the Goldberger-Wise mechanism [33]. It has been
discussed in the literature that in this case a decompacti-
fication phase transition from the RS space to the
black-brane phase may take place below the KK scale
[34,35]. The discussion of the LR transition in this paper
remains valid as long as the RS warped space is stable

LR
around 7' = Tjee,y-

The paper is organized as follows. In Sec. Il the SO(5) x
U(1)y x SU(3) GHU model is introduced, and its effec-
tive potential V. (0y; T) at finite temperature is given in
Sec. III. The EW phase transition is examined in Sec. IV,
and the LR transition is studied in Sec. V. The LR transition
is the transition from the 8y = x phase to the 6y =0
phase. We give a detailed analysis of the 6 = x phase in
Sec. VL. It will be shown that the 8;; = 7 phase corresponds
to SU(2)r x U(1)y, gauge symmetry, which becomes
manifest in the twisted gauge. Gauge couplings of quarks,
leptons, and dark fermions at 8y =0 and Oy = 7 are
clarified. Wave functions of those fields are summarized in
Appendixes. Section VII is devoted to a summary and
discussion.

II. MODEL

We analyze SO(5)x U(1)y x SU(3). GHU models
defined in the RS warped space. We focus on the grand
unified theory (GUT) inspired SO(5) x U(1)y x SU(3)
GHU model specified in Refs. [15-17]. The metric of the
RS space is given by

ds* = i dxtdx? —|—d—Z2 for 1 <z < (2.1)
—22 77,,”, k2 S757. .

The bulk region 1 < z < z; is anti—de Sitter spacetime with
a cosmological constant A = —6k?, which is sandwiched
by the UV brane at z = 1 and the IR brane at z = z;. The
KK mass scale is mgg = wk/(z;, — 1) =~ ﬂkZZ for z; > 1.

In addition to the gauge fields A,‘T,IU( Je A andA Ul of
SU(3)c, SO(5), and U(1)y, matter ﬁelds are 1ntroduced in
the bulk and on the UV brane. They are summarized in
Table I.

The action of the model is given in Refs. [15,17].
It has been shown that the model reproduces the SM
phenomenology at low energies. The bulk part of the
action for the fermion multiplets are given, with

P = Pyl

S{)eurlr]r(uon:/dSX\/m{z@J’D(cl)\PJ

—ZmD‘P 5Py +He)

—Z my, ¥4 ¥, 7)+H.c.)},

1
D(c) = yte, <DM + gwMBC[VB,YCO - ck,

SU(3)

. . U(1
—igsAy lgBQXAM( ),

(2.2)

. SO(5
DM:aM _lgAAM()_
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TABLE 1. Matter fields in the bulk and on the UV brane.
Content of each field in G = SU(3). x SO(5) x U(l)y and
Gy = SU(2), x SU(2)g(C SO(5)) is shown. Parity assignment
(Py, Py) of left- and right-handed quarks, leptons, and dark
fermion multiplets in the bulk is shown.

Field G Gy Left Right  Name
Quark Pha (3’4)% 2.1 (+.+) (=-) wel
12 (o) (h) Hed
vy, (1) L] (£.4) (F.F) DjDi Dy
Lepton  Wf, (L4) [2.1] (+.+) (=.-) %=
[1’2} (_»_) (+,+) 12;’;1;1;%
darkF v (34) 21 (—+) (+-) F
1.2] (+.=) (=+) F
darkF, lP[Ij”f (1,4)_% 2.1 (= +) (+.-) F,
12 (+-) (—4+)  F
darkV 1}137 (1,5), [2,2] (£.4) (FF) 2/;5::
[L1] (F.F) ()  §*
Brane 7 (L1, 1,1 - .. P
fermion
Brane o5 (L4), [2.1] Dp
scalar

1.2 - Dy

where the sum _, extends over ¥/ = \I“(‘& e ‘I"{L Iy ‘Pgﬁ),

‘P/;, ‘I’/;f, and ‘I’?,Ey. The bulk mass parameter c;
of each fermion multiplet is important to specify
a mass and wave function of the lowest (zero) mode.
In the GUT inspired model bulk mass parameters

of T?3,4) and T?IA) are taken to be negative. ‘I’(i;’l) and

‘Py have additional Dirac-type masses mp, and my ,
respectively.
The original RS metric is given by

—20( )

ds*> = e wdxtdx? + dy?, (2.3)

where 7, =diag(—=1.,+1,+1,4+1), o(y) =o(y+2L) =
o(—y), and o(y) = ky for 0 <y < L. The coordinates y
and z are related by z = ¢ for 0 <y < L. The fifth
dimension in the RS space has topology of S'/Z,. In
the y coordinate the orbifold boundary conditions are given
by (A, Ay)(x, 3 = y) = Pi(Au, =A,) (x,y; + y)P; (=0
1), where (yg,y;) = (0,L) and (P;)* = 1. It follows that
A,(x,y +2L) = P1PyA,(x,y)PyP,. We take the orbifold
boundary conditions P, = P; = diag(1, 1,1, 1,—1), which
breaks SO(5) to SO(4) ~SU(2), x SU(2). Further, the
brane scalar field ®¢ located at z = 1, develops a non-
vanishing expectation value to spontanecously break
SUR)g xU(1)y to U(1)y.

The 4D Higgs boson ®(x) is the zero mode of the

0(5)/SO(4) part of A3,

1

AV (x,2) = ﬁﬁbj(x)uH(Z) +o (=1-4),
2
uy(z) = 2= e
1 (g
Pnl) =75 (¢4 ~ it > 24

At the quantum level @5 develops a nonvanishing expect-
ation value. Without loss of generality we assume

(@1). (¢2), (@3) =0 and (¢4) # 0, which is related to
the Aharonov-Bohm phase 0y in the fifth dimension.

Eigenvalues of

. L
W=P exp{igA/ dyAy}
-L
=P exp{2igA /ZL dZAZ}
1

(2k) ™2y (x)up (2) T

= explifjjpa(x) - 2714}

ﬁ .

0 (2.6
b= fH )

(2.5)

are gauge invariant. For A, =

where g,, = g4/V/L is the 4D SU(2), gauge coupling.

At zero temperature the effective potential V(@) has a
global minimum at 0y # 0 which breaks SU(2), x U(1)y
to U(1)gy. W bosons, Z bosons, quarks, and leptons
acquire masses with 8y # 0.

The RS metric has two parameters, k and L. With one of
them (or the KK mass scale mgx = nk(z; —1)7! ~ zkz;!)
given, the other parameter is fixed by the Z boson mass m
once the resultant values of 0y and the weak mixing angle
sin® @y, are specified. The bulk mass parameters ¢ of quark
multiplets ‘I"("& %) and lepton multiplets ‘P‘(’L g are determined

from masses of up-type quarks and charged leptons.
Masses of down-type quarks are reproduced through bulk
actions for ‘I‘((’M),‘I’a’l), and brane interactions among

‘P‘(’1’4>, ‘I’éﬁ), and ®g. It has been shown that the CKM

mixing matrix can be generated with natural suppression of
FCNCs in the quark sector [16]. The brane fermions y* are
Majorana fermions. Brane interactions among y“, ‘P?l ne

and @y induce the gauge-Higgs seesaw mechanism [36]
similar to the inverse seesaw mechanism in grand unified
theories [37]. Tiny neutrino masses are naturally explained.

Dark fermions are relevant to have dynamical-electro-
weak symmetry breaking by the Hosotani mechanism.
There are five parameters (ng, cp, ny, ¢y, my) to be speci-
fied in the dark fermion sector where ny (ny) and cp (cy)
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are the number and bulk mass parameter of W, (%)
multiplets, and my is a Dirac-type mass in (2.2).
Rigorously speaking, there are additional parameters
(nf,.cp,) associated with Wy, . In the evaluation of the
effective potential Vi (0y), contributions coming from
W, are summarized by the replacement ny — nyp + %n F,
for ¢y, = cp. For |cf,| > Lits contributions are negligible.
As seen below, such physical quantities as transition
temperature do not depend on ny so much, and therefore
we suppress the reference to (np,,cp,) in discussing
Vet (0y) below. The parameters (ng, cg,ny,cy,my) are
chosen such that V (@y) has a global minimum at a
desired value of @y and the resultant Higgs boson mass
my = f,‘,‘{dZVeff(H)/d92|6:9H}1/2 is 125.1 GeV. This
procedure leaves three parameters unfixed. Surprisingly
there appears the fy universality in physics at low energies
[17]. Gauge couplings of quarks, leptons, and W and Z
bosons are almost independent of 8 and other parameters.
Yukawa couplings of quarks and leptons, Higgs couplings
of W and Z are suppressed, compared to those in the SM,
by a factor cos® 16} or cos 0, but do not depend on details
of the parameters in the dark fermion sector. Similarly
cubic and quartic self-couplings of the Higgs boson
become smaller than those in the SM, depending solely
on @y, but not on the choice of the parameters in the dark
fermion sector. The resultant phenomenology at low
energies is nearly the same as that in the SM.

Distinct signals of GHU appear in physics of KK excited
modes of gauge fields and fermions. For 8y ~ 0.1 the KK
mass scale mgg turns out in the range 10 TeV to 15 TeV.
Masses of the first KK bosons of y, Z, and Zy, which play
the role of Z’ bosons, are around 0.8 mgg. Couplings of
quarks and leptons to those Z’ bosons exhibit large parity
violation, and couplings of either left-handed or right-
handed quarks and leptons become rather large. It has been
shown that a large deviation from the SM can be observed
in the e~et — ff processes, where f is a lepton or quark,
at energies well below m. Significant deviation can be
observed even in the early stage of the planned
International Linear Collider (ILC) at /s = 250 GeV.
The interference effect between the two amplitudes for
e"et -y, Z— ff and e"et — Z' — ff becomes very
large, and cross sections reveal a distinct dependence on the
polarization of incident ¢~ and e' beams [18-22].

|

Veff (QH ’

—1yle [ dp 1
T):;( 2) / p

(27)°p

1 2n
=g o= (+})

In this paper we explore the behavior of the model at
finite temperature, particularly in the context of cosmo-
logical evolution of the Universe. In the SM the electro-
weak SU(2), x U(1), symmetry is restored at high
temperature. In perturbation theory the transition is weakly
first order with 7', around 160 GeV. We will show that the
behavior of the EW phase transition in GHU is very similar
to that in the SM, though the mechanism of EW symmetry
breaking at zero temperature is quite different. It will be
shown further that a new phase transition, called the LR
phase transition, emerges around 2.5 TeV in the GUT
inspired GHU.

III. EFFECTIVE POTENTIAL AT FINITE
TEMPERATURE

At zero temperature the effective potential V¢ (0y, T =
0) at the one-loop level is evaluated from the mass spectra
of all fields which depend on 6. It is given by

Veit (0. T = 0)

—1 ) 4
=S [ GRS ok + mitonr).

(3.1)

where >, extends over all field multiplets and 5, = 0 or 1
for bosons or fermions, respectively. When the KK spec-
trum {m%(0y)} is determined by the zeros of a function
pa(z;0y); namely, by p,(m%;0y) =0, (n=1,2,3,...),
then V. is given [38] by

Verr (0. T = 0)

_Z%/j dyy* Inp,(iy;0y).  (3.2)

The 0y-dependent part of V12P(0,) is finite and inde-

pendent of the cutoff and regularization method employed.
As explained in the previous section the parameters of the
model are determined such that V.;(60y,7 =0) has a
global minimum at a desired value of 8 and the resultant
Higgs boson mass is my = 125.1 GeV.

At finite temperature 7 # 0, the effective potential
becomes

Z Zln{wf + P+ mi(0n)°},

f=—00 n

(3.3)

There appears summation over Matsubara frequencies and KK modes. There are two ways to evaluate it. One way is to first
sum over Matsubara frequencies. Employing the identity [23]
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d3 3
(2”1) ;Zln{wf—i—p +m?} = / ap {

where w(p) = \/p> + m?, one finds
Vet (0. T) =
eff 9Hs Z Z 27T2ﬂ4

where m% = m&(0y). AVeg;(0y, T) is finite. The sum over
KK modes converges. Contributions from modes with
m, > ' =T are negligible. In the following sections
we numerically evaluate V 4(0y,0) by (3.2) and
AV (04, T) by (3.5).

Alternatively one can evaluate Ve by first
summing over contributions from the KK modes. The

key observation is that |/@2 + m2 in the expression in
(3.3) can be viewed as a mass of the £th Matsubara mode in
(3+1) dimensions. When the spectrum {m,(0y)}

is determined by p(m,;0y) =0, (n=1,273,..),

then the spectrum {z, = /w% + m3} is determined by
P(2,:0) = p(y/ 23 — @2;0y) = 0. Hence one finds [39]

Vet (0. T)
—22(4ﬂ2ﬂ/ dyyzlnpa(\/y +a>f,9H> (3.6)

In RS space, spectrum-determining functions p(z;0y)
involve Bessel functions so that the y-integral in (3.6)
for each Matsubara mode demands some time to find the
accurate 6y dependence of Vg (0y). For this reason we
employ the first method using (3.2) and (3.5) to evaluate
Vit (0, T) below. Vg (0y,0) has been already obtained
in Ref. [17].

IV. ELECTROWEAK PHASE TRANSITION

At zero temperature the EW symmetry is dynamically
broken by the Hosotani mechanism in GHU. Dominant
contributions to the 8y-dependent part of V ¢ (0, 0) come
from gauge-field multiplets, top-quark multiplets, and dark
fermion multiplets at the one-loop level. In phenomeno-
logically interesting cases V.(0y,0) has a global mini-
mum around 0y ~ 0.1 and the KK mass scale mgg turns
out to be around 10 TeV to 15 TeV. In this section we
address the question of when and how the EW symmetry is
restored at finite temperature.

In the SM the EW symmetry is spontaneously broken at the
tree level, and is restored at finite temperature. In perturbation
theory the transition occurs at TEW ~ 160GeV, and is weakly

" dx 22 In(1 — (=1)"e”

)+~ ln(l - (—1)”e‘ﬂw(P))} + m-independent terms,  (3.4)

B

Vet (On. 0) + Aveff(gHv T),

)y, (3.5)

|

first order [23,24]. In the lattice simulation the transition is
observed to be smoother [26]. Although the EW symmetry
breaking mechanism at 7 = 0 in GHU is quite different from
that in the SM, the behavior of the EW symmetry restoration
at the weak scale is expected to be similar. In GHU,
TEV < mgy, so that only SM particles are expected to give
relevant contributions to AV (0, T) in (3.5) at T < TEV.

Recall that only KK towers with y-dependent m,,(0)
are relevant to AV g (6y, T) in (3.5). They are W towers, Z
towers, A, (Higgs) towers, top-quark towers, bottom-
quark towers, dark-fermion Wy (darkF) towers, and
dark-fermion ¥y, (darkV) towers. The spectrum-determin-
ing p(z;0y) functions are tabulated in Appendix A of
Ref. [17]. Other quark and lepton multiplets have 0y-
dependent spectra m,, (6 ), but the magnitude of their 6-
dependence is small and almost irrelevant to AV (6, T).
The spectra {m&(0)} for W, top, darkF, and darkV towers
are displayed in Fig. 1.

The mass spectrum of the top quark has the largest 6y
dependence. The spectrum of the darkF has the second
largest 0y dependence. As opposed to the top-quark case,
the darkF is massive at 8 = 0 while it becomes massless at
0y = n. The spectrum of the darkV tower has much weaker

BH = 01, Mmgg = 13 TeV

m(6)/TeV
30
25 - ————— W
20F top
T ——
o — e darkV
5 E
| T L 0
0 % b 3 27T

2

FIG. 1. Mass spectra for W boson (W, W<">), top ™ and
¢™), darkF, and darkV towers when V. (8y,0) has a global
minimum at @5 = 0.1, and other parameters are given by
mgg = 13 TeV and (np, ny, cy) = (2,4,0.2). For the W series
levels from the bottom are W@, W w®) W@ w® ... while
for the top series they are 1@, /(1) (1) ¢ 2 ...
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Veff
1.5%108f

1.0x108}
5.0x107}

4

— T=0
— T =100 GeV
— T =150 GeV
n n eH
.05 0.10 0.15

— T =165 GeV
-5.0x107}

— T =180 GeV

-1.0x 108}

FIG. 2. Behavior of V4 (0y,T) in units of GeV* for
T =0-180 GeV. At T = 0 V4 has a minimum at 85" = 0.1.

0y dependence. Although it is important at zero temper-
ature, it gives little effect for the behavior of V (0, T) at
finite temperature.

We insert those mass spectra {m%(6)} into (3.5) to find
Ve (0y, T). Tts behavior for 0 GeV < T < 180 GeV and
0 <0y <0.15 is depicted in Fig. 2. Here and below,
Veir(0n, T) — Ve (0,T) has been plotted in the figures.
For T < 300 GeV, only contributions from the SM fields,
namely W, Z, Higgs, and top-quark fields, are relevant to
AV (0y,T). The EW symmetry is restored around
163 GeV. Near the critical temperature one needs careful
evaluation. As in the SM a small bump develops for small
Oy as a result of T|¢p|*-type contributions from bosons.
When V (6, 0) has a global minimum at 8 = %" =
0.1 and other parameters are given by mygg = 13 TeV,
np =2, ny =4 and cy = 0.2, the critical temperature is
found to be TEW =163.2 GeV. V 4(0y, TEVY) for 0 <
0y < 0.013 is evaluated numerically and is depicted in
Fig. 3. The degenerate minimum is located at 85, = 0.0104
and v, = 605 fy = 25.54 GeV. The ratio v./TEW is 0.156.
The transition is weakly first order. It is known in
the SM that TEVM ~ 1634 GeV, v3M ~24.3 GeV, and
M/ TEWSM ~ 0.15 in the one-loop approximation [24].
Although the EW symmetry breaking mechanism in GHU
is quite different from that in the SM, the behavior at finite

Veff
1000}

800}
600
400}

200}

On

0.002 0.004 0.006 0.008 0.010 0.012

FIG.3. V(0. TEV) in units of GeV* is plotted at T = TEW =
163.2 GeV for (0%, ng,ny,cy) = (0.1,2,4,0.2). Degenerate
minima are located at 8y = 0 and 65, = 0.0104. v, =05, fy =
25.54 GeV so that v,/TEW = 0.156.

temperature (7 < 300 GeV) in GHU is almost the same as
in the SM.

We remark that this behavior does not depend on detailed
values of various parameters in the model. As mentioned
above, there are a few parameters in the dark fermion sector
which can be taken differently. One finds that TEW =
163.2 GeV for (6% ng,ny,cy) = (0.1,2,4,0.2), and
TEW = 163.3 GeV for (0.1,5,2,0.2). The @) universality
remains valid for the quantity 75V; TEW depends on @5
very little, too. One finds, for instance, that TEW =
163.3 GeV for (60" ng,ny,cy) = (0.11,2,4,0.2). All
evaluations of the critical temperature in this section have
been carried out at the one-loop level. Higher-order
corrections may affect the values just as in the SM.

V. LEFT-RIGHT PHASE TRANSITION

As the temperature is raised further, a new feature emerges
in the global behavior of V (0y,T). 8y = 7 becomes a
local minimum of V4 (6y,T) at T = T-X ~ 2.3 TeV, and
becomes a global minimum at 7 = TLR ~ myy. Its behavior
is plotted in Fig. 4.

In expression (3.5) of V(0y, T) the contributions from
W, Z, Higgs, and darkV towers are periodic in 8y with a
period 7, giving the same amount of contributions at 8y = 0
and 7. On the other hand, contributions from top-quark and
darkF towers have periodicity with a period 27, giving rise to
a difference between 8y = 0 and z. Furthermore, the top
quark is massless and the darkF is massive at 8y = 0,
whereas the top quark is massive and darkF is massless at
0y = n. In effect, the role of top quark and darkF is
interchanged.

As T is increased further above mygg, it is expected from
(3.6) that contributions from boson fields dominate over
those from fermion fields. For fermions, the Matsubara
frequency |w,| is equal to or larger than zT, whereas for
bosons there exist zero frequency modes, @, = 0. Fermion
contributions are suppressed compared to boson contribu-
tions, which in turn implies, in the current case, that 05 = 0
and 0y = 7= phases become almost degenerate at suffi-
ciently high temperature.

This leads to an important consequence in the history of
the evolution of the early Universe. As the Universe

Veff
1.5x10"3} T=0
——— T=2TeV
1.0x10Bf /S NN - mmm- T=3T:V
T=4TeV
5.0x10"2} e T:12.:58Tev
----- T=18TeV

FIG. 4. Behavior of V(0y,T) in the unit of GeV* for
T =0-18 TeV. 0" = 0.1, mgg = 13 TeV, and (ngp,ny,cy) =
(2,4,02).
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Vim-V(o) where the sum )/ extends over top quark and darkF
4x107} towers.

2x107t — T=12TeV For T > mgg a large number of KK modes contribute.
— To13TeV As seen from the spectrum depicted in Fig. 1, the behavior
T7 20 45—50—55—60—65 70 "™ of the 6y dependence of m¢(@y) alternates as n. There
-2x107} / — TRV results partial cancellation between the nth mode and
_ax107} / (n+ 1th mode in Eq. (5.1). VI®(T) in (5.1) is plotted
in Fig. 5 with an even integer n,,,, varied. One can see that
Nmax = 50 1s necessary near the critical temperature to reach

FIG. 5. Vgi(T) in (5.1) in units of GeV* is plotted with  apn asymptotic value.

varying an even integer n,,. mgg = 13 TeV, 3" = 0.1, and
(np,ny,cy) = (2,4,0.2).

expands and the temperature drops to 7' ~ myy, the 0y = 0
and Oy = 7 states are almost degenerate so that the
Universe would settle in the domain structure. As is seen
below, the 8 = 7 state remains stable until 7" drops further

to T,y ~ 2.6 TeV at which time tunneling from 6y = #

to Oy = 0 rapidly takes place.

We shall see in Sec. VI that the role of SU(2), and
SU(2)g is interchanged in the 8y = 0 and 8y = 7 states.
For this reason the 8 = 0 <> 7 transition is called the left-
right transition.

A. Critical temperatures T5® and TLR

There is a critical temperature 7L} at which
Veit (0,T5) =Vegy (n, TER). For T>TLR, Ve(0,T) >
Vege(7,T). It should be remembered that V. (0,7T) —
Veit(n,T) < Ve (37, T) = Vege (=, T) for T > TLR. There
is another critical temperature 7-R. While the 8 = 7 state
remains as a local minimum for 7LR < 7 < TLR the 6y =
 state becomes a maximum of Vg (0y, T) for T < TR,
hence becoming absolutely unstable.

To find the values of TLR and T} one need to
sum over the contributions from a large number
of KK modes in (3.5). Since only top quark and darkF
towers are relevant for this quantity, one can write, for

VIR(T) = Vg (7, T) = Vgt (0, T),

Vet (T) = Vet (0) + 8V (T),
0 1 4 eV +pmiOF

Mmax — 1

SVIR(T) :Z; ZW
n=1

The critical temperature 75 turns out to be very close to
myx, and has little dependence on @9, The other critical
temperature T'X turns out to be around 2.3 TeV. It is
tabulated in Table II with various choices of the parameters.

; LR
B. Bounce solutions and Tg,,,

Although V(0,T) < Vg(n,T) for T < T-R, the tran-
sition from the 8 = & phase to the 85 = 0 phase does not
proceed immediately. The temperature must drop further
before a rapid transition takes place. We need to evaluate
bounce solutions at the finite temperature to estimate the
tunneling rate.

As shown in Fig. 4 in the case of @n" =0.1,
mgx = 13 TeV, and (ng,ny,cy) = (2,4,0.2); the 0y =
7 state is at a local minimum of Vi (0y,T) at T = 4 TeV.
The tunneling rate per unit time per unit volume is given in
the form A(T)e /T where S is the three-dimensional
action of a bounce solution [23]

5= | d3x{%<V¢>2 Ve (J%,T) Vel T)},

A 2dp 1 1y ¢ B
th;z—f—[ivef»f»(f—H,T) ~0,

lim¢(r) = .

9

| =o. (5.2)

r=0

In terms of dimensionless quantities 8 = ¢/fy, t = fyr,
and U(0,T) = —f7'Ve(0,T), we have

(5.1)
TABLE II. TR and T'R. (05", mgx, np,ny. cy) are input parameters.
elr.l}in mgg nr ny Cy Cr mv/k T{‘F T%;
0.1 13 TeV 2 4 0.2 0.358042 0.086414 12.86 TeV 2.348 TeV
5 2 0.2 0.456079 0.071245 12.85 TeV 2.238 TeV
11 TeV 2 4 0.2 0.236826 0.106592 10.88 TeV 2.277 TeV
0.11 13 TeV 2 4 0.2 0.392398 0.075104 12.86 TeV 2.215 TeV
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2]
3.0
25¢
— T=25TeV
20
— T=26TeV
15¢F
— T=3TeV
1.0
051
1 1 1 1 1 t
0 10 20 30 40 50

FIG. 6. Bounce solutions 6(t), where 7= fyr, for
T =2.5TeV, 2.6 TeV, and 3 TeV in the case of 62“1 =0.1,
mgg = 13 TeV, and (}’lp,nv,Cv) = (2, 4, 02)

Sy = 4nfy /)w dttz{% <§>2 —~U(6.T) + U(x, T)},

0 2d0 dU

o4t =, 53
dl2+tdt do (5:3)

with conditions d0/dt|,_, = 0 and 0|,_,, = =. The prob-
lem is reduced to determining the motion of a particle in a
potential U.

Bounce solutions can be easily found. Solutions for
T=25TeV, T=2.6TeV, and 3 TeV are displayed in
Fig. 6. For higher temperatures, say, T = 4 TeV, 6(0) must
be very close to O, in which case the thin-wall approxi-
mation becomes legitimate.

For the tunneling rate the most relevant quantity is Sz /7.
The result is summarized in Table III. Bubble nucleation
rate becomes sufficiently large so that the LR transition
from the 0y = = state to the 8y = 0 state rapidly proceeds

at T = Tyk,, when S3/T becomes O(130-140) [40-43]. It

is seen that in the case of myyx = 13 TeV, T%, ~ 2.6 TeV

TABLE MI. S;/T for bounce solutions. (ng,ny,cy) =
(2,4,0.2). Initial values 6(0) are tuned to yield bounce solutions.

for OB =0.1 and T.R

decay
respectively.
The 0y = n state corresponds to v, = zfy = 7.71 TeV

~2.45 TeV for &%n =0.11,

for O%" =0.1 and mgg = 13 TeV, which gives
ve/ Tiiay ~2.97. One might wonder whether or not gravi-

tational waves (GWs) generated in the LR phase transition
can be detected in future GW observations. There are two
relevant quantities denoted as a and f in the literature for
describing dynamics of a first-order phase transition in
association with generations of GWs [44-46]. a is the ratio
between the false vacuum energy (latent heat) density and

the thermal energy density at TIJ(;Rcay’ which gives a measure

of the transition strength. £ is the rate of time variation of
the nucleation rate at the transition. The number g, of

relativistic degrees of freedom at Tﬁj}cay is 96.25 + 42np

(180.25 for ny = 2). We have found that a ~ 0.004 and
B/H, ~ 2100 in the case O5" = 0.1, mgx = 13 TeV, and
(np,ny,cy) = (2,4,0.2), where H, is the Hubble param-
eter at the transition. The amount of energy released in the
LR transition is small, giving a tiny value of a. A GW
signal from the LR transition is far below the reach of the
sensitivity of, say, LISA.

Before closing this section we summarize the cosmo-
logical history of the Universe in Table IV after the
temperature drops around T = mgyg. As remarked in the
introduction, the scenario is valid as long as the RS warped
space is stable around 74X, . If the Universe is in a
decompactified phase discussed in Refs. [34,35] at
T < mgg, the scenario may need to be modified
accordingly.

VI. GAUGE SYMMETRY AND
COUPLINGS AT 65=0 AND =«

In the previous section we have seen that the Universe

forms domain structure above T = Tlgiay in which the

TABLE IV. Schematic view of the history of the Universe is
shown.

o mgg T 6(0) S3/T  Temperature Phase of the Universe
0.1 13 TeV 3 Tev 0.0379 616 mgg ~ 13 TeV : Domain structure of 8, =0
325 Tev 822;; 128 and Oy = 7 phases is formed.
.6 TeV . 1 . i
3 domains consisting of
2.55 TeV 0.9094 112 0y=0:SU(2), xU(1), phase
2.5 TeV 1.2490 77 Op=n:SU(2)gxU(1),s phase
11 TeV 3 Tev 0.0791 1107 TiRay ~ 2.5 TeV : LR first-order transition
%ZST;VV (1)8828 }?(3) from @y = = phase to 0y = 0 phase
. € . Q-
2.4 TeV 1.4246 71 iEW On = 0:5U(2), < U(1)y phase
0.11 13 TeV 3 TeV 0.0864 840 T ~ 163 GeV : EW weakly first-order transition
2.55 TeV 0.3490 212 to Oy #0
2.5 TeV 0.4875 - Oy # 0:5U(2), x U(1)y
2.45 TeV 0.6802 133 is broken to U(1)gy
2.4 TeV 0.9488 98 T~0 : The present universe
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0y = 0 and 0y = 7 states coexist. The 8y = O state is the
SU(2);, x U(1)y symmetric phase. It is important to
understand what the 8y = 7 state is.

In this section it is shown that the 8y = n state
corresponds to a state with SU(2)g x U(1),, symmetry,
which becomes manifest in the twisted gauge. In SO(5) x
U(1)y GHU the SU(2); x U(1)y and SU2)r x U(1)y
phases are connected smoothly by 8. Mass spectrum and
gauge couplings of quarks and leptons continuously change
as Oy varies from O to z. To find those gauge couplings,
wave functions of gauge fields and fermion fields in the
fifth dimension must be first determined. Details of wave
functions are given in the Appendixes.

A. Twisted gauge

When V. 4(0y, T = 0) is minimized at 05 # 0, the EW
symmetry is spontaneously broken to U(1)g,, in general. It
has been known that gauge couplings and other physical
quantities in the vacuum with 6y # 0 can be most con-
veniently evaluated in the twisted gauge. This remains valid
at T # 0.

In GHU one can make a large gauge transformation such
that the AB phase 8y defined in (2.6) becomes zero in a
new gauge [38,47]. To be more explicit, consider an SO(5)
gauge transformation

AM = QAMQ_] + LQ({?MQ_I,
9a

2 2
Q=T ) =0, L. (6.1)
77— 1

As (A,) = (A,) +gA18’( )T%, the AB phase in the new
gauge becomes 0y = 0. This gauge is called the twisted
gauge. Quantities in the twisted gauge are denoted with a
tilde in this section and in the Appendixes. Although the AB
phase vanishes, orbifold boundary conditions are changed to

1

Py = 1 ,

cos26y —sin20y

—sin26y —cos20y

Pye= 1 ,

Py =0"® (cosbyo’ +sinfyo?), PFP=6"®c%.  (6.2)
Here PVeC and P P represent orbifold boundary condition

matnces in the Vectorlal and spinorial representations,

respectively. In the twisted gauge, boundary conditions at
z = 1 becomes nontrivial and #y dependent, but equations
and wave functions of various fields in the bulk (1 < z < z;)
become simple as the background field 8, vanishes. Physics
does not depend on the gauge.

SO(5) gauge fields are decomposed as

1 (K)o
Ay=—7= Ay T,
ﬂlﬁ;ﬁ
[Tk, T7m) = i(§/° T — 5imT — s Tim + s TI7). (6.3)

Four-dimensional components in the twisted gauge are
given by

(k) ik _ -
A =— A T/ QAQ

Generators of SU(2), and SU(2)y are

T 1/1
< > _ E <§€abchc + Ta4> . a,b,c=1-3. (65)

T

(6.4)

To investigate the relation between the original and twisted
gauges, let us define 77/¢(z) = QT/*Q~". 1t follows that

{T““(z)] _ [cosH(z) —sin@(z)} {T‘l“

T%(2) sinf(z) cosé(z) Ta5:|’ (a=1,2,3)

(6.6)

and other components remain unchanged. Recall
that 6(1) = 0y and 0(z;) = 0. In particular for 6y = ,
Te(1) = =T, and T%(z,) = +T%. In the basis of
{T/*(z)} the role of T% and T“ is interchanged as z
varies from z =1 to z;. Indeed this property becomes
crucial in discussing gauge symmetry in the 8y = 7 state.

B. Gauge symmetry and couplings

Wave functions of KK towers of gauge fields in the
twisted gauge are given in Appendix B. With A,"* =
2712(Leabe AP + ALY and AZ = A4, aset (ALE, Af;R,Af;)
(b=1, 2) forms charged gauge- ﬁeld towers, which
are decomposed into W, W, and Wp towers. Mass eigen-
values are given by {k4,} in each KK tower. They are
determined by

W tower: 2SC'(15 Ay ) + Ay
W tower: 28C'(15 Agm) + A
Wy tower: C(1;1 W ) =0,

»sin?@y = 0,
»sin?@y = 0,
(6.7)

where functions C(z;4), S(z;4), etc. are defined in (Al).
The spectra of the W and W towers for sin 8 = 0 reduce to
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those determined by C'(1;4,m) =0 and S(1; Ay
respectively. The W tower has a zero mode Ay
sin@y = 0, whereas the W tower does not. As depicted in
Fig. 1 the spectra of the W and W towers alternate. The
lowest level [W(®)] corresponds to W boson.

For 0y = 0 and =, the W boson becomes massless, but
the property of the W boson at 8y = 7 is quite different
from that at 8 = 0. The W boson at fy = 0 is a purely
SU((2), gauge boson. As is manifest from the expression in
(B1), Wﬂ (x) fields are purely SU(2), at 8y = 7 in the
twisted gauge.

In the sector of neutral gauge bosons, (A,3f , A;R , Az, ”)

n) =0,
o for

there are Z, Z, Zg, and y towers. (A neutral tower from A4
does not couple with quarks and leptons.) Mass elgenvalues
in each KK tower are determined by

Z tower: 2SC'(1;2,m) + (1 +s¢)/1 w sin? @y = 0,
Z tower: 25C'(1;25m) + (1 + s3)Azw sin® Oy = 0,
Zy tower: C(l;’lzﬁy)) =0,

y tower: C’(l;/ly@,)) =0, (6.8)

The spectra of the Z and Z towers for sin @y = 0 reduce to
those determined by C'(1;4,m) =0 and S(1;45m) =0,
respectively. The Z tower has zero mode /1 o for
sin@y = 0, whereas the Z tower does not. As in the case
of W and W towers, the spectra of the Z and 7 towers
alternate. The lowest level [Z(0)] corresponds to Z boson.

A photon is always massless; 4,0 = 0.

The bare weak mixing angle 6, is defined by

S{/, 1
/ 2’ / 2
l—i—s(/) l—l—sd)

It has been shown that in the case of @%" = 0.1 and
mgg = 13 TeV, for instance, sin?6, = 0.2305 yields
nearly the same phenomenology at low energies as that
of the SM with sin? 8y, = 0.2312. In particular, it gives the
forward-backward ~ asymmetry Apz(e”et - uut) =
0.01693 at /s = m, [16,18].

The Z boson becomes massless in the ; =0 and =
state. As is seen from (B3), the wave function of Z boson in
the twisted gauge is nonvanishing in the 73¢ and U(1)gy,

s {ARTe +

sin@9, = cos 8, = (6.10)

components for 5 = 7. Note that ;\” =

where 3 oo -
AuFT® + ALT®} + AT and gus, = gpey. Inserting (B1)
cp= ga 5p = 9B . 6.9) and (B3) into gAAM + gpQxB,, one finds that the gauge
Vi + 9 Vit 95 couplings of W\, Z\”, and A7*) are given by
|
for 8y = 0;
gf{wﬂ (T - i1%) 4 W (T =0T} 90 Z0(T% — sin6%, Qpyy) + QAL
= g AW OT L WO T2+ W OTY 4 g, tan 69, B, (T + Qy),
for Oy = x;
gTW{W/(JO)(TlR +iT%) + WLO)-I-(le —iT%)} + gwgo Zf(‘ )(T3R sin’6Y Qpm) + eQEMAZ(O)
= g WO T % + WO T2 4 WO T3} 4 g, tan 69, B, (T3 + Qx), (6.11)
where
— A e = g, siné Oem =T + T+ Q
9w = \/Z’ = 9w w» EM — X
1 cos®® —sing® 1 Tw©
W = — (w9 — w2, [ (0>] — [ . OW] [ " } (6.12)
V2 AL sind,  cos®), B,

In the 0y = 7 state, there exists SU(2), x U(1),, gauge symmetry in the twisted gauge where the U(1),, charge is given by

Y = T3 + Qy.

Gauge couplings of quarks, leptons, and dark fermions in the 8y = 7 state are quite different from those in the 5 = 0
state. For a fermion field W(x, z) it is most convenient to express its KK expansion as ¥(x,z) = z72%(x, z).
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For up-type quarks in ‘I’?‘s. 4 in Table I the KK expansion {A,m,A,m} at Oy = x is different from that at 05 = 0. In
is given, for the first generation pair (u, ') for instance, by ~ particular 4, |y, o = 0 but 4,0y, —, > 0.
Mass eigenstates of down-type quarks are more
0 © S involved, the details of which have been given in
[fﬂ} = ‘/%{”(0) + Z ut + Z ”/W}' (6.13)  Refs. [15,16]. Down- -type quarks in W{; ;) and ‘Pi”’) fields
n=1 - in Table I mix with each other by brane interactions, which
in the most general case induce the CKM mass-mixing

Wave functions are given in Appendix Sec. C1. The .04y 45 well. For the sake of simplicity we consider the

spectrum is determined by case in which brane interactions are diagonal in the
generation space. The spectrum for the first generation
u tower: S;Sp(1:2,0.¢,) + sin ‘971'1 =0, (d, d and D* towers) is determined by
0
u' tower: S;Sp(1;4,m,c,) + sin? 2H 0, (6.14) <SQSQ + sin® H> (8P, 8B, — SP,SR,)

29 ¢0 (gD oD D oD\ _
where functions S; /g, and Cy /g are given in (A2). We note + [ [FCr SR (ST CLy — STHC) = 0, (6.15)

S1Sg(132,¢) 4+ sin?10y = C, Cr(1; 4, ¢) — cos* 16y The
(0)

lowest zero modes, it(LO) (x) and @1, (x) have chiral struc-
ture. They are massless (1,0 = 0) for 9y = 0. Their wave
functions behave differentlgf from those of the n > 1 modes. the bulk  mass parameter of - the \Pg{l) field, and
The spectrum-determining equation for the u tower for  7ip, = mp,/k. p parametrizes the strength of a brane
¢, <0 reduces to Sg(l;4,m,c,) =0 at @y =0 and interaction among lP((ls,4)’ ‘P(3 e and @, which is relevant
Cr(1;4,m.c,) =0 at @y = z, while for the u’ tower it  to reproduce a mass of each down-type quark. There are
reduces to Sy (l;4,m.,c,) =0 at 6y =0 and four KK towers,d = (d,d’, D", D™). Their KK expansion
Cr(1;,m,c,) =0 at 6‘H = n. We note that the spectrum  can be written as
|

where Sg/R =S k(L34 ¢,), 8P = S1j(1:4,¢p,. p,),
etc. Functions Sy /g;, and Cy /g, are given in (A3). cp_is

G« &(1 aLa

{ZdnJer'”Jer Z <>}. (6.16)
5-

Details of wave functions of all KK modes are given in Appendix Sec. C 1. For §;; = 0 there appears a massless mode d©)
with chiral wave functions, which is identified with a down quark. For 6y = 7 there is no zero mode.
W and Z couplings of quarks are easily found with the use of (6.11). We note that A,y = A, at @y = 0and Ay = A0

at 6y = . Couplings with W(O), Z,(,O), and A,’:m) are given by

for 8, = 0;

e {w}}” <u Opa® 3G <n>yﬂ21<ﬂ>) W (Ez O 3 d <n>m<n>> }

2cos @, " — cos 69,
for Oy = x;
9w (0) N 7 /() () O)F N F1(n) () 9w (0) N~ (7 1(n) () _ 1) )
—1 W E “d W g d"\"Myt Z E H —d"\"Mytd
\/E{ ! n=1 ! g " g n=1 r +2C0598V g n:l<u r ! )
sin6), (o)
0. Z0 4 el Lyn 6.17
+ { I o8 7 + EM (6.17)
where
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- gﬁ )y ) _ %f) —(")}/MD—(”)> . (6.18)
At 0y = 0 couplings of massless modes are chiral, but
those of all massive modes are vectorlike. At 6y = 7, W,(,0>

couplings to ft(LO)yﬂfl(LO) and @t ;0) y”giﬁeo) vanish, and for Z,(,0>

couplings of #(”) and %, the T3¢ part vanishes with only
the U(1)gy part surviving. All modes are massive and their
gauge couplings are vectorlike. We also note that a top
quark becomes very heavy at 8y = z, but all other quarks
and leptons remain light. For 05" = 0.1, mgg = 13 TeV,
for instance, m; =4.14TeV and m,=12.4 GeV
at 9H =T.

The gauge couplings in (6.17) can be clearly and neatly
understood from quantum numbers in the 8y = 0 and #
phases as summarized in Table V.

Gauge couplings in the lepton sector are found in the
same manner. Details are given in Appendix Sec. C2. We
note that the gauge couplings in the lepton sector, given by
(C23), can be summarized as in Table V for the quark
sector. One needs to replace (u,d,u’,d’) by (v,,e,v,,¢'),
and (¢,3,—-1) in U(1), and U(1), charges by
(=1.0,-1) there.

Dark fermions in the spinor representation ‘I’@ (darkF
fermions) are denoted, in the twisted gauge, as

@

1

Ea
Ty«

F(x,2) = (6.19)

@

2
l
1
!
2

@

The spectrum of F and F’ towers, {Adzw, Apm }, is deter-
mined by

o f [ (FiRprsy + S i) e
n=1

TABLE V. Charge assignment of u, «’, d, and d’' towers under
SU(2), x U(1)y in the 85 = 0 phase and SU(2)g x U(1), in
the 6y = = phase. The index n runs as n = 1,2, 3, .... Only the
zero modes u(©) and d© in the 6;; = 0 phase are chiral.

60y = 0 phase 0y = m phase
SUQ2), U(l)y SUQ2)x U(l)y
uy, dy 2 i 1 2.-%
O CHR S A T
u® g 2 % 1 % _%
u/(n)‘ 4 1 %7 _% 2 é

0 0
SLSR(I;/ln,CF)+COS27H:CLCR(1;}W,CF) _SiHZTHZO.

(6.20)

Massless modes appear at 8y = z. The spectrum-determin-
ing equation for the F tower reduces to C; (1; Az, cp) =0
at Oy = 0 and Sg(1; Az, cp) = 0 at Oy = &, while for the
F' tower it reduces to Cg(1; A, cp) =0 at Oy = 0 and
S(L;Apw,cp) =0 at 6y = z. For ¢p > 0 zero modes
appear in the F’ tower, and the KK expansion is given by

[Se]

- ﬂ{z Fi 4 i F;(")}. (6.21)
n=1

n=0

F;
<

F;

Wave functions of each mode are given in Appendix
Sec. C3. For ¢y < 0 zero modes appear in the F tower,
and the KK expansion is given by

ﬁ' 0 0
il _ (n) /(n)
Y _\/%{E%Fj +Z:1Fj } (6.22)

J

We stress that massless modes appear at 5 = 7 in the
darkF sector. Gauge couplings at 8y = z are given, for
cr >0, by

Gw 0) J 10) , /(0 £100) , #(0 = E () g n £ 1(n) 34(n
2 ){F/I<R>qu'1<R) LR S FOp D B >)}

+ o 0 Lu
2 cos 69,

sy o), 0\ [ E 0 E0) FON & s 2 F
+ {—QWCOSQ(V)VZM + eAy }{Z(Fl F )}’MQEM(F(n)> +Z(F1 o )}’MQEM(F;(n))}-
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TABLE VI. Charge assignment of Fy, F,, F, and F), towers
under SU(2), x U(1)y in the 6y =0 phase and SU(2)g x
U(1)y in the 8y = = phase for ¢z > 0. The index n runs as
n=1,2,3,.... Only the zero modes F'1<0) and F,Z(O) inthe Oy =n
phase are chiral.

0y = 0 phase 0y = = phase

SU@),  U()y  SUR Uy

Fy" Fy) 2 6 5.3

O T N L S
O R N é
AT & N R

The gauge couplings in (6.23) at 8y = x, as well as those at
0y = 0, can be understood from quantum numbers in each
phase (summarized in Table VI).

Formulas for ¢ < 0 are obtained by replacing F /)-(0) by
F 5-0). One can flip the orbifold boundary conditions for i,
too. By reversing the parity assignment for ‘I‘/,i in Table I,
the role of the left-handed and the right-handed compo-
nents are interchanged.

Formulas for SU(3) -singlet darkF, (‘I’f,f) fields take the
same form as for SU(3).-triplet darkF fields. The KK
expansions are the same. The only change is in their U(1)
charges. As in the lepton case, (3.3, —3%) in U(1)y and
U(1)y charges should be replaced by (—%,0,-1).

It is observed that all modes of the darkF tower are
massive and their gauge couplings are vectorlike at
0y =0, but there appear chiral massless modes at
0y = n. In other words a theory with ‘I’/; but no ‘P[;f
would become anomalous at 6y = z. The anomaly
cancellation is achieved with a set (‘P@‘Pﬁ/) just as in
the cancellation in the quark-lepton sector at 0y = 0.
We would like to stress that the appearance of a set
(W, ‘Pﬂpf) is a natural consequence from the viewpoint
of grand unification. One set is contained in the 32
representation in SO(11) gauge-Higgs grand unifica-
tion [48,49].

Dark fermions in the vector representation ‘Pi}’ (darkV
fermions) are, as depicted in Fig. 1, always massive and
very heavy, and therefore they do not affect the behavior
of the model at the finite temperature T < Tgs,, very
much. Their gauge couplings are summarized in
Appendix Sec. C4. It is shown there that all couplings
are vectorlike.

C. Chiral fermions, anomaly,
and nontopological solitons

In the above we have shown how the 8y = 0 phase is
smoothly connected to the 6y = 7 phase in GHU, and
have clarified gauge couplings of fermions in each phase.

It is remarkable and intriguing that chiral fermions
(quark and lepton multiplets) in the 8y = 0 phase are
continuously transformed to vectorlike fermions in the
0y = n phase. The situation is reversed for dark fermions
in the spinor representation (darkF fermions). They are
massive and vectorlike in the 8y = 0 phase, becoming
chiral in the 8y = & phase. This fact immediately leads to
an important question about anomalies. What is the fate of
anomalies in the 6y = 0 phase when 0y is continuously
changed to 8y = #? More generally we need to under-
stand what kinds of anomalies arise in general 6y states
in GHU.

Another point of interest is the possibility of having
0y = m solitons—nontopologoical solitons similar to
Fermi balls [50]. The lowest modes of darkF fermions
are very heavy both in the 8y = 0 phase and in the 0y =
Hgi“ state (the current Universe) at 7 = 0, whereas they
become massless in the 0y = 7z phase. There can be a
nontopological soliton such that in its inside 8y = 7 and
massless darkF fermions are filled, but its outside is in the
0y = 0 or @5 state. Although the energy density of the
0y = r state is larger than that of the OB state, darkF
fermions inside the ball cannot freely go outside as their
masses in the 07" state are large. The phase 8 cannot
changes from 7z to @F" either for the same reason.
Pair annihilation processes are involved as well. As shown
in the preceding subsections, some of dark fermion pairs
can annihilate to virtual gauge bosons, which sub-
sequently annihilate to quark-lepton pairs. Gauge
bosons need to tunnel out from the inside to the outside
of the soliton as quarks/leptons are heavy inside the
soliton. It would make more difficult for an object to
decay, if the total darkF number is nonvanishing. As a
whole such an object can become stable; its size can be
large. There may be important cosmological conse-
quences of such solitons.

We would like to leave these intriguing questions for
future investigation. The existence of the 8 = & state in
GHU may have profound implications.

VII. SUMMARY AND DISCUSSIONS

In the present paper we have investigated the behavior
of the GUT inspired SO(5) x U(1) x SU(3) GHU model
at finite temperature. At zero temperature the EW sym-
metry SU(2), x U(1), is dynamically broken to U(1)gy
by the Hosotani mechanism. As the temperature is raised,
the EW symmetry is restored around 7' = 163 GeV. We
have shown that the transition is weakly first order just as
in the SM in perturbation theory. Although the EW
symmetry breaking mechanism at 7 = 0 is quite different
from that in the SM, the behavior at finite temperature
T <1 TeV is almost the same as in the SM. This is due to
the fact that the particle spectrum at low energies is the
same as in the SM.
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As the temperature is increased further, a new feature
emerges in GHU. Above TLR ~ myy the 0 = 0 and Oy =
7 states become almost degenerate. In the effective poten-
tial V(0 T) these two states are separated by a barrier so
that domain structure will be formed as the Universe
expands and the temperature drops to ~TLR. Eventually
the 6Oy =n state becomes totally unstable for
T < TR ~2.3 TeV. We have shown that the transition
from the 0y = & state to the Oy = 0 state takes place
rapidly around 7 = TR~ 2.6 TeV.

decay
The 8y = 0 and 0y = =& states are characterized as the

SU(2), xU(1)y and SU(2)g x U(1), phases, respec-
tively. W bosons, Z bosons, and photons become gauge
bosons of SU(2), x U(1)y symmetry in the 0 = 7 state.
The transition from the 8y = # state to the 8y = 0 state is
called the left-right transition. Gauge couplings of quarks,
leptons, and dark fermions in the SU(2), x U(1),. phase
differ from those in the SU(2), x U(1), phase. We
showed, for instance, that quarks do not couple to W
bosons, and their couplings to Z bosons come solely from
the U(1)gy part in the 8y = 7 state.

In the history of the early Universe the LR transition is a
first-order phase transition, taking place by tunneling
through bubble nucleation. GWs are produced in this
transition, the amount of which, however, turns out small.
A GW signal from the LR transition is far below the reach
of the sensitivity of LISA, etc.

The 4D Higgs boson corresponds to the 4D fluctuation
mode of the AB phase 8y in the fifth dimension in GHU.
There is only one Higgs boson in the GHU model under
investigation. This single boson connects the U(1)g,, phase
at T =0, the SU(2), x U(1), phase and the SU(2), x
U(1)y, phase. It would be of great interest to know the
physical consequences of the existence of the SU(2)g x
U(1),s phase in the context of the history of the evolution
of the early Universe.
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APPENDIX A: BASIS FUNCTIONS

Wave functions of gauge fields and fermions are
expressed in terms of the following basis functions. For
gauge fields we introduce

C(z;:4) = gﬂzzLFl,o(/lz,lZL),
S(z;4) = —g/leM(lz,/lzL),
C'(z:4) = 222 Fog(dz.221).
S'(z: 1) = —g/lzzFo,l(lz,ﬂzL),
= J,(u)Y5(v) = Yo (u)J 5(v),

where J,(u) and Y, (u) are Bessel functions of the first and
second kind. A relation CS’ — SC' = Az holds. For fermion
fields with a bulk mass parameter ¢, we define

Fop(u,v) (A1)

CL T
( s, )(z;ﬂ, c)= iEA\/ZZLFcJ,-%,C:F%(/lZvAZL)’

C
() @ae = F5amromiain).  (a2)
R
These functions satisfy C;Cr—S;Sg=1, C;(z;4,—¢c) =

Cr(z;4,¢), and S;(z;4, —c) = =Sg(z; 4, ¢). Also note that
SL/R(z; 0,c) = 0and Cy g(z:;0,c) # 0. To treat down-type
quarks and dark fermions we also use

Cri(zsd,c,m) = Cr(z; A, ¢ +1m) + Cr(z;4, ¢ — i),
Cia(z:4, ¢, m) = Sp(z34, ¢ + ) — Sp(z;4, ¢ — i),
Spi(zdeom) = Sp(zd ¢+ m) + Sp(z;4, ¢ — ),
Sia(zid, ¢, m) = Cp(z; 4, ¢ + ) — Cp(z; 4, ¢ — i),
Cri(z:4,¢,m) = Cr(z; 4, ¢ + ) + Cr(z: 4, ¢ — ),
Cro(z3 4, ¢, ) = Sp(z34, ¢ + 1) — Sg(z: 4, ¢ — i),
Sri(z: 4, ¢, ) = Sg(z; 4, ¢ + i) + Sg(z; 4, ¢ — i),
Sra(z: 4, ¢,im) = Cr(z; 4, ¢ + 1) — Cr(z; 4, ¢ — ). (A3)

APPENDIX B: GAUGE FIELDS

Wave functions of KK towers of gauge fields in the
twisted gauge can be summarized in simple forms. With
AR = 2"/2(le“bcA,(¢hc) + ALY and Al =AMt a set
(AZL , Aﬁ",Aﬁ ) (b = 1, 2) forms charged gauge field towers,

W, W, and Wy towers,
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Al — iA2 (L4+cy)W, su(l+cy)W, (1= i)W,
%1 .52 ° b o
A"f B lA’fR | O=ec)W, | T | su(1 - ca)W, + —(1 4 cy)Wg,
Al —iA2 oS oS
w = —\2sy W 7 0
_ \/_SH u \/EW”
W, (x,2) ] _ ﬁiWﬁ")u) 1 F(MWW)}
ﬁ/j(x 2) g VTwo L S(z5 Ayw)
Wix.o)] ﬁi y () | [?(Z,JWW)}
2 S p Ty L S(z3 Agm)
W, (x,z)-
0 . 1
Wi (x.2) = VY We(x) - UC(Z”W;"”’
n=1 W;
i dz 2 . 2, 2. 2
Py = : ?{(1 + CH)C(Z,/IWW) +SHS(Z,/1W<,1)) },
adz o, 2 2% 2
T = 1 ?{SH(I + ) C(z5 Aym ) + S(z5 Aym )* 1
ZLdZ
rwgl) = [ ?(1 + C%)C(Z;ﬂwg))z,
" C(1;4) . 2C(1;4)C(1;2)
S(z;A) = S(z;4), S(z;d) = —————=8(z;4). B1

Here ¢y = cos 0y, sy = sin Oy, and functions C(z; 1), S(z; ), etc. are defined in (A1). It is instructive to express the wave
functions of W, W, and Wy, towers in the original gauge by making use of (6.6). For 0 = =, A, (x, z) in the original gauge is

expanded as

24, (x,2) = Z W,(,") (x)
n=0

1
vV w

C(2: Ay ) {(1 =cosO(2)) (T +iT% ) + (1+cosO(z) ) (T +iT%) —sinO(z)V2(TT +iT?)}

0 A (n 1 N 1 A .
+ Z W (x) S(z5 400){c080(2) V2(T' +iT?) = sin@(z) (Tt 4 iT% —T'x —iT?)}
n=1

+ Z Wg;) (x)
n=1

+ (1 —cosf(z

Fwm

1
. C(z;/lw(n>){(1+cos6(z))(T'L +iT?)
wi K

D(T'% +iT) +sin6(2)vV2(TT +iT2)}. (B2)

For the W(= W) boson Ay = 0 and C(z; Ayw)/\/Fyo = 1/V/2kL. Tt is seen that W boson in the 6 = 7 state is
SU(2),-like at z = 1, continuously changes in the group space SO(5) in the bulk, and becomes SU(2)z-like at z = z; . The
Wr tower, on the other hand, is SU(2)g-like at z =1 and becomes SU(2),-like at z = z;. The brane interaction

spontaneously develops
(B2). W boson becomes

the brane scalar @ yields brane mass terms 6(y) 3 ga|w|?(Au*A' R 4 AzFA%#) after D

vacuum expectation value (@ ) = (0,w)" # 0. Notice that this affects only Wy tower in
massless in the 8, = 7 state.
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Similarly in the sector of neutral gauge bosons, (A,S,L,A,ER,AE,, ) one finds in the twisted gauge that

AI34L_ (1+CH)Z +SH(1+CH)Z (I—CH)C¢ S¢
At 1457 ; 1 [—(I+cy)ey| o 1 sy | o o °
e w2y +s(1=en)2, + ( 0”” Znit——=| o | (4= V254 t5u2,)).
A 135 y/1+s
Bﬂ _\/ESHZ”+\/§(1+S¢) Zy 2cys ’ c
H 0 H>¢ ¢
lzﬂ(x’z) :\/];izl(ln) (x) 1 [?(Z;AZ(”))}
Zi(x’ Z)_ n=0 Tz S<Z;AZ(”> )

/O\S — rA(") S ;A" n
Zﬂ(x,z) n=1 zZ (Z ZU)
Zra(x.2) =V Zp () ———C(zid,m).
n=1 i
oy o0 v(n
Aﬂ(x,z)z\/%ZAZ( (%) . C(z:4m).
n=0 )

2L dz
= / {63+ (14 )0 P (1453538 zdm
1

ZLdZ 2 ] v
= [ = 1 C(z:250m ) +——S(z:5m )% ¢
rao= [ E LG O S

2L dZ
o 2[ ?[Ci—i— (1 +sé)c%,]€(z;/lzgl>)2,

rw_[L@C(zz 2. (B3)

r Z
APPENDIX C: QUARKS, LEPTONS, AND DARK FERMIONS

Gauge couplings of quarks, leptons, and dark fermions in the 8 = 7 state are quite different from those in the 85 = 0
state. For a fermion field W(x, z) it is most convenient to express its KK expansion for ¥(x,z) = z72¥(x, z).

1. Quark sector

Wave functions of KK modes of up-type quarks in (6.13) are given by

L) — a2 (x) VHC: L(z:4 ,cu)] 19 (x) [inHSR(z;/IM(m,cu)}
Vo LisySi(z4,0,c,) VTo L eyCrlzsdocy)

um = ft(L")(x) |:EHCL< ) s u>:| itg” (x) { CuSr(z: dym, cy) }
Vi LisuSi(zA,m.c.) Vi LisgCr(zidym.c,) ]

o) — 2" (x) { i55Cp (2 lu/w, cu) } . iy (x) { i3 8r (2 Ay ) } 1)
VTn L eSp(zdpm. c,) VTn LeuCr(zsdym,c,)

where
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EH:COS§9H7 EH:SiHEHH,

SL(ZUL ¢) =Np(4c)SL(z54,¢), CR(Z;’L c) =Np(4c)Cg(z:4,¢),

Sg(z:4,¢) = Ng(4, ¢)Sg(z: 4, ¢), Cr(z34,¢) = Ng(4, ¢)Cp(z: A ¢),
Cr(1;4,¢) Cr(1;4,¢)
N, (A, ¢c) = Np(A,¢) = 22 2
A 7R R (VN 2

and a normalization factor r,, should be understood in each term as

o 2L 2 2 1 L fn(z)
o= [ de P + IR in m{gn@]' ()

Here i1} (x) and " (x) [} (x) and @" (x)] are the left-handed (right-handed) components of 4D fields 7" (x) and

'™ (x), respectively.
By making use of (6.14) the expansion (C1) can be written as

L) — 2% (x) [ 5uCL(z3 4,0, ¢4) ] N 2% (x) |:i§HSR(Z;/IM(0)7Cu>:|
Vo L=ieyS;(z 4,0, ¢,) Vi L epCr(zdoe,) |

o ﬁ(Ln)(x) [ 5uCL(z A,m, ¢,) ] +ﬁ§en)(x) { SuSr(z Am. cy) ]
VT —l'EHS‘L(ZMW%Cu) Vin L=ieyCrlz;dm.c,) ]

o _ @) { —ieyCr(z Am, ¢ } . " (x) [—iEH§R(z; Ayt €4) } 4
VT SuSL(z3 Aym, cy) VTn L 5uCr(z s cn) |

where

Si(z:4,¢) = Ng(4, )18 (z;4, ¢), Cr(z;4,¢) = Ng(4,¢)'Cr(z; 4, ¢),
Sr(z;4,¢) = Ny (4, ¢)7'Sg(z: 4, ¢), Cr(z;4,¢) =Ny (4, ¢)7'CL(z: 4, ¢). (C5)

The expression in (C4) is more suitable at @ = z than that in (C1). For the u tower, for instance, C; (154, , ¢,) = 0 so that
S‘L(z;/lu(n), c,) and C‘L (z;A,m,c,) also vanish there.

The spectrum alternates as 4,0 < 4,0 < 4,0 < 4,0 <A,2 <---. Wave functions are given, up to normalization
constants, by

[Cp(zs 4,0, ¢4) ] 0
for 0y = 0, ") (T 4,0, ¢4) , 20 { ]
L 0 ] CR(Z;/lu(O),Cu)
. [ Cr(zdym, c,)] . [Sr(z5A,m.c4)
u(L): 0 , u;):[ 0 , (n>1)
I 0 ] 0
~l(n) . ~l(n) .
iy , g : , (n>1) (Co6)
L _SL(Z;lu/(n),Cu)_ R |:CR(Z;/Iu/(;z),Cu):|

and
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~(0), [CL(Z;AM(O), Cu):| ~(0) . |:iSR(Z;/1u(O)v Cu):|

for Oy =, iy 0 g’ 0
~(n CL (Z;lu(”)7 cu) A(n SR(Z’ j’uo’)’ cu)
u(L):[ 0 ] uﬁe):{ 0 , (n>1)
0 0
S i(n) NOR
i, ' : , Up - , n>1). C7
g |:SL(Z;lLt/(">’CM>:| K |:C (Z/1 ’<")’Cu):| ( ) ( )

Wave functions of KK modes of the four KK towers, d = (d,d’, D", D), in (6.16) are given by

adCL(Z;ﬂd(n)) OldSR<Z;/1d(n))
R g S (z; Aq ln Ay Cr(z; Agn
4o :d(L”)(x) aS1(25 Aqm) +d§e)(x) 2 Cr(2Z: Agm) ’ ()
ayCra(z3Agm) + baCri(z; Agm ) agSpa (25 Agm) + baSri (T3 Agm )
a;Sp1(23 Aqm) + baS12(25 Agm) a Cri(z3 g ) + baCro (25 Aqen)

where Cy (2: 4qm) = Cp(2: 4qm . €u)» Crj (23 Aqm) = Cpj(23 Aqw . cp,. fitp, ), and so on. Coefficients (a,. ay, ay, by) in each
term satisfy

Z’HSg —i:VHCg 0 0 A

=isuCE  enSE mCh wCh || | (C9)
~iu5uSg pHienCrp ~Sp —Siy “
0 0 SP St ba

and an appropriate normalization condition, where Sg = Sx(1;4), SP = S1;(154), ete.

In the present paper it suffices to know the wave functions in the KK expansion for 8; = 0 and . For 65 = 0 the
condition matrix in (C9) becomes block diagonal, and (6.15) and (C9) become

Sngo =0, K = 52(31?151?1 - 3225122) + |p |2Cg(51l_)1cfl - 5?26?2)’
Sg € miCry aa

SRag=0.| wicd -82, -8B || as | =0. (C10)
0 sh 8P, by

The KK tower specified by S,g =0, {4, }, contains a massless mode 1,0 = 0, which allows a,; # 0 and a nontrivial left-
handed mode. 4,0 = 0 implies K° =0 as well, and a nontrivial right-handed mode is contained in the (', D*,D‘)

components. The spectrum determined by Sg # 0 and K° = 0 consists of three KK towers. All modes are massive and
ay = 0. Their wave functions are contained in the (d’, D", D™) components. One finds that
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Oy = 0;
adCL(z) 0
. N a,Cgr(2) c?
d© — 49y +d(0)x d'“R ’ a,=u g,
L ( ) 0 ( ) i,Sm(2) d ﬂlSRl?z d
0 a,Cr(z)
a,Cr(z) a,Sg(z)
N 0 N 0
" = a" (x) + i (x) (n>1),
0 0
0 0

ford=d,D",D™

0 0
~ S ~ C
am — d(Ln) (x) ayS(z) I dgen) (x asCr(2)
a,Cr5(z) + b,Cpy(2) a;Spa(z) + bySgi(z2)
a;S11(z) + b,S15(2) a,Cri(2) + bCra(2)

For brevity 44w in Cp (z;/ld(n>), etc. has been suppressed in the above formulas.
For 8y = n the condition matrix in (C9) becomes, in place of (C10),

CgK” =0, K" = Cg(SEISILQ)l =SSk + |25g(32161?1 = S12CPh).

—ng mChy mCr g
Crag =0. —iniSy —Sp =Sk ag [ =0.
0 S S, by

(C11)

(C12)

There is no massless mode. The lowest mode d® is contained in one of the three KK towers determined by the conditions
Cg # 0 and K* = 0, for which a, = 0. (Recall that when y; = 0, the lowest mode satisfies Cg = 0 just as in the up-type
quark spectrum.) The spectrum of d’ tower is determined by Cg = 0 for which K” # 0 and a; = a; = b, = 0. One finds

that
GH =T,
0 0
A /S A /C
4 = /én)(x) Ay L(Z) ;gn) (x) g R(Z) ’
0 0
0 0
ford =d,D",D~
a,Cr(z) a,Sg(z)
R 0 R 0
d® = a" (x) +d(x)
¢ a4C1(2) + byCri (2) N 42 (2) + baSii ()
a;Sp1(2) +b4815(2) ayCri(2) + byCra(z)

(C13)

It is easy to find W and Z couplings of quarks. At 8y = 0 the spectrum of both u and d towers is determined by

0)

Sg(1:4,. ) = 0 so that A = A.. Couplings with W\, Z\”), and A/'* are obtained by inserting (C6) and (C11) into
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L o 9w (0 1, | 2 9w 1 OF 1, 0
dz | (&, d ”{—W T'v +iT"L) +—W T't —iT-
[z | @l { e )+ LW (re - im)

<

+ 90 Zﬂ (T3L — sin’é, Opnm) + eAﬂ QEM} <Zi>
i’
sinZ6Y, <, %, % < d’
+ {_gw 9(‘;‘/ Zfl) + eAy( }(i’? d’ D+’D_)}/MQEM D+ ’ (C14)
l")_

with the fact that wave functions of gauge bosons are constant. It leads to the expression in (6.17) for 8y = 0. The couplings
of the zero modes in (C14) are the same as in the SM with &9, replaced by 6y,
At0y = n, SU(2)g doublet components become relevant. Notice that the spectrum of both u and d towers is determined

by Cx(1,4,,¢,) = 0and A = A . Further SU(2), components of the wave functions of ") and d™ vanish. It follows
from (6.11) gauge couplings are obtained by inserting (C7) and (C13) into
L s 5 9w w0 (1 2 9w OF (pip _ w2
dz | (&'.d ”{ Wy (T'® +iT") + =W, " (T'* —iT*
[ a| @ e )+ Wl )
Gy ,0) i’
Y7, (T3 —sin’6) Al ¢
e A LA 16
it
sin?6%, 3% 3+ 3- d
+ {—g ondl, Lyt >+eA,Z<°)}(n,d,D D )7 Opn 5+ (C15)
l’J)_
| - -
It leads to the expression in (6.17) for 8y = =. 123 I
U= { ”+L+ —L)+Z }’
n=0
2. Lepton sector En
Charged lepton towers have the same form of KK [Dr ]
expansions as up-type quark towers. For the first generation 5| = \/*{ Z + Z 1(n) } . (C17)
¢ n=0
L7

The spectrum is determined by the same formula as (6.14)
where ¢, is replaced by c,. The expansions have the same
form as (C1), (C4), (C6), and (C7) where the replacement
(u,u’) — (e, €’) should be made.

In the neutrino sector brane fermion y satisfying the
Majorana condition couples to v and v/ through brane
interactions. In the two-component basis

where & = e%cg?E* and y = (1°,5). The spectrum is

determined by

0y
kA F M){ SESE + sin> 2 +—BSLch0 C18
2 R

k

for v, and v/, fields. Here Sk = Si(1, 4w, c,), etc., M is a
Majorana mass for y, and mp comes from a brane
interaction among v/, y, and ®g. For 65 #0 a tiny
neutrino mass is generated by gauge-Higgs seesaw mecha-
nism [36] similar to the inverse seesaw mechanism [37];
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m, ~m2M/(2|c,| — 1)m} for ¢, < —1 Moderate values  where & = ecg*¢*. Coefficients (a,, a,, ,) in each term

M ~5 GeV, mg~1 TeV yield m, ~1 meV.

Wave functions of each mode in the expansion (C17) in

the neutrino sector are given, with v = (v,1/),

a,Cp (Z, j-,,(*1) > Ce)
vy = f/(ifL) (x) ia,/SL (Z, /1,,(”)’ Ce) ’
ia, |k
a,Sg (Z, )lp(") s ce)

Wy =) | iy Crlzdyoe.) |,

satisfy
E'Hsk EHC§ 0 a,
—S’HC% E‘HS% mB/k ay =0, (CZO)
mBS'HS§ —mBZ'HCé qu:M an

which leads to the spectrum-determining equation (C18).
For 65 =0 the condition (C18) reduces to

F iay/VEk SE{(kA F M)St + k~'m%Ck} = 0. D tower with the spec-
A1)/ e ~(n) trum determined by Sk = 0 contains a massless left-handed
i (%) = HD R (%), (C19)  neutrino (A0 = 0).
|
Oy =0;
ayCL (Z)
0) _ A0 0
S=ehmf o |0 R=o
0
aUCL(Z) auSR(Z>
=l o | =] o (n21),
0 0
0 0
S =00 @ | iass@) | R =00 | G | Stay +mpkTla, =0, (n21). (C21)
iaq/\/% F ia;/\/%

For brevity A, and ¢, in C; (z, 4w, c,), etc., have been suppressed. There is no %9 mode. For #;; = x the condition (C18)
reduces to Ck{(kA F M)CE + k~'m%Sk} = 0. There is no massless mode. The spectrum of v/ tower is given by Ck = 0.

Oy = m;
%CL(Z) auSR(Z)
=efim| 0 |0 =0Gw| o |
ian/\/l; F ia;/\/%
- Cla, + mpk™'a, =0,
0 0
VO =00 | iaySie) | VR =00 | e Cr(a) |, (C22)
0 0

where n > 0 for v, and n > 1 for others.
We note that ’IJ”) = /ID(_n) (n > 1) for 8y = 0, and that ’ly“”) = /1”/_@) (n > 1) for 8y = . Couplings with W,(,O), Zf,o) and A,y,(o)
are given by "
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for Oy = 0;
\g/—% { W, (5 e + i: 56")y”é<">> +wt <é Oyl + 2 5 (n)Wgn)) }
205:9% fo”{(ﬁ arol) - ey + nf;(éﬁyﬂae”) 3 <n>yu@(n>)} [_ ! szzgvv 29 4 eal®| e
for Oy = ;

(C23)

3. Dark fermion (darkF 24 ,‘I‘ét,) sector

Wave functions of each mode in the KK expansion of darkF fermions with ¢ > 0, (6.21), are given by

Fi — AJ('Z)(X) |:5‘1-1CL(Z;/1F('1)’CF):| ﬁﬁ-’,?(x) [ uSr(2: Apwm, cF) }
j \/ﬁ \/E l.S'HéR(Z;/lF(”)’CF) ’

Fi'w [im(w), e ') [ifﬂwﬂw» i (c24)
\/7"; E‘HCR(Z;AF/(")’ CF)

l.gHSL (Z;ﬂF(n) s CF)

F/(") —

J \/7,;

Making use of (6.20), one can write the wave functions in (C24) as

Z’HSL(Z;/’{Fr(n), CF)

+

Ay;e)(x)[ EHSR(Z;AF(HMCF) :|

F(n) . AEZ)(X) |: EHCL(Z;AF(H),CF) :|
\/ﬁ _iEHéR(Z;/lF(n),CF)

o m

—iEHSL (Z; /1F(n) s CF)

7O _ F;(LO)(X) [iEHCL(ZV{F’(O)’CF)} F;(z(e))(x) [_iEHSR(Z;AF’(O)’CF)}
! \/% Z’HSL(ZJF'«», CF) \/% EHCR(Z;XF/«)), CF) ’
Fm F;(Ln) (x) _iZ'H(A:L<Z;/1F’(”)7 cr) F;(n) (x) —iZ’HSR(ZQ/IF“”)» cr)
o) — ) += (C25)
\/E SHSL(Z;AF’(")’ CF) \/E SHCR(Z;/lp/(")y CF)

where n > 1. The expression (C25) is appropriate to use at @ = z. In particular, notice that A = 0, Ny (Ap0), ¢ F)‘l =0,

and S; (z;Apo), cp) is finite there.
The spectrum alternates as Apwo) < Apm < Apo) < Ape) < Ape) < ---. Wave functions are given, up to normalization

constants, by
N Cr(zsdpm, ¢ aim | Sr(Z5Apm, €
for 0 = 0, Fﬁ?[ L(z g() F)] F():{ r(Z3 A F):| (n>1)

O ~Hn
}, F;<R>:

[ 0 ] (n>0) (C26)
SL(Z;/IFM),CF)

F;(L") :

and
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~(n -CL(Z;/l <n>,cF)
for 0y = , F;L) . F ’
L 0
0. [iCL(25 A0, CF) ]
jL - ,
0
[ 0
0 |
L EXEYIS

Remember that Az g, —o > 0 but Ay, —, = 0. Wave
functions of the massless (zero) modes at 8y = & are given,
up to normalization factors, by

FY (x)
l%F(va):> F;(S(;(x) iCr(z;0,cp),
0
0
0
FOG | CrE0cr) (C28)
R ()

For ¢ < 0, zero modes appear in the F tower, and the
KK expansion is given by (6.22). The zero mode Fﬁo) can
be written as

Aj‘g)(x){ 5uCL(zAp0, CF) }

—icyS;(z Apo). CF)

A 0 _ A
N ER)(x) [ cySr(z; Apo, CF) ] (C29)
\/76 l.S'HCR(Z;lF(O)aCF) ,
and at Oy =7
L (x)
v F(x)
Ve(x,z) = 2L0 Cr(z:0, ¢cp),
0
0
O .
N (l(;e) (x> iCp (Z, 0, CF)’ (C3O)
FR(x)

which takes the same form as (C28).

~ S (Z;i (n), C )
(n) . R F F
g [

| e

P70

jR * . ’
’ CR(Z9)~F’(0%CF)

p/(n) .

0
o , n>1).
" |:CR(Z; Apn, Cp) } ( )

(C27)

!/
1

~ry<l
Myl

Gauge couplings at 8y = & are given, for ¢, > 0, by
L ! Gw 1,0) frmls | s
dz =W, (T'r+iT*

+ 9w WISO)T<T1R _ l-TzR) +

V2
IT;_, /

+€A,};(O)QEM} (; 1,)
F,

sin%6’ 3 3 Ja
g WZ(O)+eA/y4<0)}(F1,F2)7”QEM( 1)},

Gw

0 .
WZL )(T3R — Slnzegv QEM)
w

+{_ " cosd,

which leads to (6.23).
4. Dark fermion (darkV ¥}) sector

DarkV field Wiy = (W, ..., V) is in the representation
(1,5),. Let us denote

V2 \ —wE 4wt
Ni

N*,N'*,S*, are neutral (Qpy = 0). ET and E'* have
charges Qpy = —1 and +1. Under SU(2), and SU(2)g

rotations
N:t El:t
SU?2),: <Ei> (N’i>’
Nli Eli
SUQ2)g: < £t ) <Ni)’

transform as doublets. S* fields are singlets. We assume
that bulk-mass parameters of W), and ¥;, are the same;

1 [ Wi 4wk
WE s

q%ﬂl?f)

_Eli

_N'* > ’ Y5 =S5 (C32)

(C33)

Cy+ = Cy- = Cy.
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The mass spectrum is determined by Wave functions of each KK mode in (C35) are given by
S), Sk —S),Sk, =0 for E* E™*,

EM (x)[ aCpa(z: g ) +bCpy (2345w

Fr LaSy (zpm) +bS1a(zi Ay ]
where Y, = S;1(1;4, ¢y, imy), iy = my/k, etc. There 1/(; u(@dpn) +b50(z
are no zero modes. As seen in Fig. 1, the lowest mode has a +ER (x) [C’SRZ(Z;’I )+ bSr1(23 A0 )]
mass ~3 TeV. For 8y = 0 and 7, the neutral and charged VTn LaCri(z325m) +bCro (25 Agm )
sectors become degenerate in masses. Coi(2Am) = Cpi(2Agen  Cya ity ), etc (

E* (E') fields couple to E~ (E'~) fields by Dirac mass LA 2ED A ”

terms. The KK expansions are given, with the notation E =
(E,E') and N = (N,N’), by

C36)

where S} a+ S),b = Sp,a+ Skb =0 in each term.

fi‘+ 0 Note that Agw = Agiw.
[ - _} =vk ZE (n) In the neutral sector all fields N*, N'*=,S*, couple
E = with each other for general 8y, but they split into pairs
A ® gt o (N*,N7), (N"",N'7), and (ST, S") for y = 0 and . The
[ - _} = \/%ZN("), [c _] = \/IEZS("). (C35)  spectrum becomes degenerate; Aywm = Ay = Ag) = A -
N n=1 S n=1 Wave functions are given by

N0 — N(Ln)(x) [aCLz(Z;/INo,)) + bCry (25 Aym) } . A%ﬂ)(x) [aSRz(z;lN(n)) + bSm(Z;/lN(n))}
aSp1(z; dyw) + bS12(z; Ay ) VTn LaCri(z; Ay ) + bCro (23 Aym)
) — §(x) {aSu (2; Agw) + bS5 (z; /Ison)] N $W () { aCri (23 Agm) + bCro (23 Agn)) }
aCrs(z; Agm) + bCpri(z; Agm) VTn LaSkra(z5Agm) + bSgi(z3Agm) ]’

(C37)

where S a + S},b = Sk,a + Sk b = 0 in each term.
Gauge couplings of darkV fields at #; = 0 and # are easily found. We note that the mass spectrum and wave functions of
E™ are the same as those of N . S* fields do not couple to W, Z, and A7 fields. One finds that

N5 () e Z(n) ,p Z (), n X in) o sin?6)),
Z,(,O> Z(N( )yﬂN(”) _E! )yﬂE(”> + EN )},ME/(”) _ N )yﬂN’(")) + {_gw o8 Hgv Z,(,O> + eA,y,(O)}J’éM,
14

X =z n A = (n A Z (n A sin2¢90
2SRy E i) 4 EO i) R )y”N(")H{—gw cosayz’(‘0>+eA’y‘(0>}J%M’
w

Ty = Z<‘ EW g0 4 By, (C38)

All couplings are vectorlike.
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