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We present here a novel and testable mechanism for leptogenesis, which is characterized by a purely
thermal generation of lepton asymmetry via scalar decay. Guided by the thermal mass matrix
diagonalization in the finite-temperature regime, we propose a scenario in which the baryon asymmetry
is formulated in terms of the masses and mixing from hierarchical Dirac neutrinos, as well as a vacuum
scale accountable for the sub-eV neutrino masses. This allows a natural and direct link between the high-
scale CP asymmetry and the low-energy Dirac CP-violating phase without involved model structures, and
thus circumvents the haunting problem encountered in general leptogenesis scenarios. The mechanism can
also be applied as a prototype for solving the baryon asymmetry problem to a broad class of well-motivated
model buildings.
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I. INTRODUCTION

The baryon asymmetry in the Universe (BAU) represents
one of the biggest conundrums brought to the Standard
Model (SM) of particle physics. As the mainstream to
explain the BAU, the leptogenesis [1] exhibits, however, a
haunting problem in establishing a direct link to the low-
energy leptonic CP violation [2–4]. Thus far, an unam-
biguous connection is still missing because not all the
participated Yukawa couplings can be uniquely fixed by
the observed lepton masses and the Pontecorvo-Maki-
Nakagawa-Sakata (PMNS) matrix.
This well-known obstacle has triggered many attempts in

the popular seesaw-based leptogenesis [1,5–7] to source the
baryon asymmetry uniquely from the CP-violating phase in
the PMNS matrix (we call this connection the unique phase
source hereafter), where assumptions and/or parametriza-
tions of the neutrino Dirac-Yukawa structure are generically
made, such as the widely used Casas-Ibarra parametrization
[8]; see also some earlier and recent considerations [9–15].
Concerning the unique phase source problem, similar sit-
uations are also expected in the Dirac leptogenesis [16],
where the desired link can only be realized by making
assumptions and/or parametrizations of unknown Yukawa

structures [17–20]. A more comprehensive review in this
context can also be found in Ref. [21]. Such an obstacle has
prompted a notorious conclusion: leptogenesis cannot unam-
biguously declare a successful BAU resolution in light of the
leptonic CP violation to be confirmed at low-energy experi-
ments [3,21,22].
Without further high-energy assumptions or explicit

Yukawa structures, it is quite challenging to realize the
unique phase source in leptogenesis scenarios. Despite the
known obstacles, the significance to establish a direct link
between the BAU mystery and the Dirac CP-violating
phase in the PMNS matrix is dramatic and can at least be
manifested in a threefold way. First of all, such a direct
connection indicates that, without resorting to the unknown
ultraviolet phases and sophisticated model structures, the
to-be-determined Dirac CP phase in neutrino oscillation
experiments can entirely source the BAU. Given that a
CP-violating signal in the leptonic sector is hinted by the
recent T2K observation [23], a successful link is now
becoming even more appealing. In addition, the simple
formulation can be readily tested in light of neutrino
oscillation experiments. Finally, the link to Dirac rather
than Majorana CP-violating phase may also help us to infer
the neutrino properties.
In this article, we will apply the thermal field theory [24]

to the idea of Dirac leptogenesis, and present for the first
time a scenario to realize the unique phase source without
bothering high-energy flavor-model buildings on the
unknown Yukawa structures. Under the purely thermal
Dirac leptogenesis, we will show in the scenario that it is
able to formulate the baryon asymmetry generation in terms
of the detectable neutrino oscillation observables, as well as
a restricted vacuum scale that can partially explain the
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smallness of Dirac neutrino masses via a seesaw-like
relation. Therefore, the scenario can closely connect the
Dirac nature of neutrinos with the BAU problem in an
experimentally testable way.
It should be pointed out that the accumulation of lepton

asymmetry and the sphaleron reprocessing to baryon
asymmetry share the basic idea of the canonical Dirac
leptogenesis [16]. Explicitly, the CP asymmetry is gen-
erated by an out-of-equilibrium scalar decay, where feeble
Dirac neutrino Yukawa couplings, being smaller than the
charged lepton ones, ensure a late left-right equilibration
(LRE) after sphaleron freezes out, and the final baryon
asymmetry is free from significant flavor effects, since it is
predominantly determined by the asymmetry stored in the
right-handed neutrino species at the sphaleron decoupling
regime. However, the mechanism presented here is based
on purely thermal effects [7,25]. Particularly, the one-loop
self-energy diagram can produce kinetic phase with the
thermal cutting rules, which would otherwise vanish in the
zero-temperature quantum field theory with the usual on-
shell cut. It is the purely thermal effects in the Dirac
leptogenesis that make us free from unknown Yukawa
couplings, specific flavor structures, and/or new degrees of
freedom at the scale of possible grand unified theories, and
finally lead us to realize the unique phase source in a
natural way.

II. DIAGONAL THERMAL MASS BASIS

Let us illustrate the underlying ingredients leading to the
direct BAU-PMNS connection from a minimal Lagrangian
density:

−L ¼ ỸlL̄ϕeR þ ỸνL̄ Φ̃ νR þ H:c:; ð1Þ
where ϕ is the SM-like Higgs doublet, and Φ̃≡ iσ2Φ� with
Φ being a new Higgs doublet. The Dirac neutrinos become
massive after Φ develops a smaller vacuum expectation
value, hΦi ¼ ð0; vΦ=

ffiffiffi
2

p ÞT . Note that, to generate the sub-
eV Dirac neutrino masses while satisfying at the same time
the proper LRE condition Ỹν ≲Oðme=vϕÞ [16], we expect
vΦ ∼OðkeVÞ ≪ vϕ ≃ 246 GeV. Such a vacuum hierarchy
can be nicely explained if the Higgs potential exhibits a soft
symmetry breaking term, ϕ†Φþ H:c: With the soft-break-
ing dimensional parameter μ being smaller than vϕ, a
seesaw-like relation vΦvϕ ≃ μ2 can be induced for an
electroweak scale Φ, or vΦ ≃ μ2vϕ=M2

Φ ≪ vϕ for a much
heavier Φ [26]. Explicitly, the scalar potential satisfying
these requirements can be constructed with a global Uð1Þ
symmetry in the νR−Φ sector, and is given by [26]

Vðϕ;ΦÞ ¼ m2
11ϕ

†ϕþm2
22Φ†Φ − ½μ2ϕ†Φþ H:c:�

þ λ1
2
ðϕ†ϕ2Þ þ λ2

2
ðΦ†ΦÞ2

þ λ3ðϕ†ϕÞðΦ†ΦÞ þ λ4ðϕ†ΦÞðΦ†ϕÞ; ð2Þ

which is softly broken by the μ2 term. The parameter μ2 can
also be made real by rephasing Φ, such that the CP phase
necessary for the BAU problem comes exclusively from the
lepton Yukawa sector. Besides, Eq. (2) induces a degen-
erate mass in the neutral component of Φ,

m2
H;A ¼ m2

Hþ þ λ4
2
v2ϕ; ð3Þ

while the mass of charged Higgs, m2
Hþ ¼ m2

22 þ λ3v2ϕ=2,
can also be made comparable to that of the neutral
component if the parameter λ4 is small. Such a mass
degenerate pattern, together with the absence of CP
violation in the scalar sector, will remove possible strongly
first-order phase transition and hence the electroweak
baryogenesis [27], ensuring our purely thermal Dirac
leptogenesis the very mechanism for the BAU problem.
In the finite-temperature domain where the lepton

doublet (L) participates in the generation of leptonic CP
asymmetry, the thermal mass m2

LðTÞ can be formally
written as [28]

m2
LðTÞ ¼ I1ðgÞ þ I2ðỸlÞ þ I3ðỸνÞ; ð4Þ

where I1ðgÞ ¼ ð3g22=32þ g21=32ÞT2, with g2 (g1) being the
SUð2ÞL (Uð1ÞY) gauge coupling, comes from the gauge
interactions and is diagonal, while in the flavor basis of
Eq. (1), the corrections I2ðỸlÞ and I3ðỸνÞ, which arise,
respectively, from the right-handed charged leptons eR and
neutrinos νR running in the L self-energy loop, are
generically nondiagonal matrices. For thermally distributed
eR and νR with a common temperature, we have

Ieq
2 ¼ ỸlỸ

†
l

16
T2; Ieq

3 ¼ ỸνỸ
†
ν

16
T2: ð5Þ

In realistic situation, however, the right-handed Dirac
neutrinos accumulate only slowly their abundances via
Eq. (1) due to the feeble Ỹν under the LRE condition. This
condition further induces a fact that, unlike the three eR that
remain thermalized via gauge interactions, νR would carry
a much suppressed phase-space distribution fνRðpÞ ≪
feqνRðpÞ in the early Universe. These consequences drive
a doubly suppressed contribution from I3ðỸνÞ. As a result,
m2

LðTÞ is essentially given by

m2
L;ijðTÞ
T2

¼
�
3

32
g22 þ

1

32
g21

�
δij þ

1

16
ðỸlỸ

†
lÞij; ð6Þ

while the thermal masses of eR and νR, both of which
receive finite-temperature corrections from lepton and
Higgs doublets via Eq. (1), are given by [28]
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m2
eR;ij

ðTÞ
T2

¼ 1

8
g21δij þ

1

8
ðỸ†

lỸlÞij; ð7Þ

m2
νR;ij

ðTÞ
T2

¼ 1

8
ðỸ†

νỸνÞij: ð8Þ

All the thermal masses are generically nondiagonal due
to the possible non-trivial structures of Ỹl and Ỹν. Since
these thermal masses appear in Greenâs function of finite-
temperature field theory, especially in the lepton-doublet
thermal propagator element [25],

GLðpÞ ¼
i

p2 −m2
L;ijðTÞ þ iϵ

− 2πfLðjp0jÞδðp2 −m2
L;ijðTÞÞ; ð9Þ

as well as in the approximate dispersion relation
p2 ¼ m2ðTÞ, we should first go to the diagonal thermal
mass basis so as to make the finite-temperature calculation
well behaved with definite external states. This can be
achieved by performing the field redefinition, L → V†

LL̂,
eR → Ve;†

R êR, and νR → Vν;†
R ν̂R, leading then to the follow-

ing transformed Yukawa matrices:

Ỹl → VLỸlV
e;†
R ¼ Ŷl; Ỹν → VLỸνV

ν;†
R ≡ Yν; ð10Þ

with (non-)diagonal ŶlðYνÞ. The above equivalently uni-
tary basis transformation can ensure that all the thermal
fermion mass matrices in Eqs. (6)–(8) are consistently
diagonal in the thermal mass basis. Especially, to visualize
the diagonal form of Eq. (8), we can express Ỹ†

νỸν as
Y†
νYν ¼ Vν

RðỸ†
νỸνÞVν;†

R under the unitary basis transforma-
tion specified by Eq. (10). Now, it is clear that the
Hermitian matrix Ỹ†

νỸν can always be diagonalized by
the unitary matrix Vν

R, and thus Eq. (8) is also diagonal once
expressed in terms of the product Y†

νYν in the trans-
formed basis.
After gauge symmetry breaking, since êL;R and ν̂R are

already in the diagonal vacuum mass basis, one only needs
to transform the left-handed Dirac neutrinos to the vacuum
mass basis. To this end, we can formally parametrize the
diagonalization as

Ŷν ≡ ðUνVLÞỸνV
ν;†
R ¼ UνYν; ð11Þ

whereUν is unitary, and the productUνVL plays the role of
left-unitary rotation. By simple parameter counting, the
diagonalization in Eq. (11) is always possible via three
independent unitary matrices Uν, VL, and Vν

R. It is then
clear from Eq. (11) thatUν serves as the desired rotation for
the left-handed Dirac neutrinos. Finally, the physical
PMNS matrix is simply given by UPMNS ¼ U†

ν, and thus

Yν ¼
ffiffiffi
2

p
UPMNSmν=vΦ: ð12Þ

It should be emphasized that, unlike the common practice
of assuming specific Yukawa structures, Eq. (12) is a
natural consequence of unitary transformations from the
original basis in Eq. (1) to the diagonal thermal and vacuum
mass bases. In particular, it is the diagonal thermal mass
basis that guides the fermion field redefinition and decides
which Yukawa set (i.e., Ỹl) should be diagonalized in the
finite-temperature regime. If we instead rotate Ỹν in Eq. (1)
to the diagonal basis, the thermal mass matricesm2

L;ijðTÞ in
Eq. (6) would be nondiagonal and the subsequentm2

L;ijðTÞ-
dependent calculation would necessarily involve the non-
commutative and complicated matrix algebra, although the
thermal basis in Eq. (10) and the one introduced to
diagonalize Ỹν are unitarily equivalent. Thus, the impor-
tance of diagonal thermal mass basis is that it just assists us,
in a much clearer way, to understand the connection
between the finite-temperature Yukawa interactions and
the low-energy lepton masses and mixing.

III. ν1 LEPTOGENESIS

We are now working in the finite-temperature field
theory, where the scalar-fermion interactions of Eq. (1)
are determined in the diagonal thermal mass basis. In
general, the leptonic CP asymmetry (ϵCP) can be generated
by thermal cuts on the self-energy diagrams of νR and/or L
from the scalar decay Φ̄ → Lν̄R [7,20,25]. However, after a
careful analysis of all the possible diagrams and thermal
cuts (see, e.g., Ref. [20] for further technical details), we
find the following observations: (i) For the contribution
from the neutrino self-energy diagram, we find that the
resulting ϵCP exhibits a very weak dependence on the flavor
indices of L propagators and outgoing states. The final
leptonic CP asymmetry is then obtained trivially by
summing over all the L-flavor indices from the Yukawa
matrices, yielding therefore ϵCP ∝ Imðdiag½H�Þ ¼ 0, where
H denotes a Hermitian matrix function of Yν. (ii) For the
self-energy correction in the lepton-doublet line, the right-
handed neutrinos (but not charged leptons, since Ŷl is
already diagonal) propagating in the loop could generate a
nonvanishing leptonic CP asymmetry. However, if all the
three Dirac neutrinos establish the late LRE after the
sphaleron process freezes out, which means that the final
resulting ϵCP should be summed over all the three neutrino
flavors, we find that ϵCP will be of OðY2

ν=Ŷ
2
lÞ, implying

consequently a numerically negligible amount since all the
eigenvalues of Yν are much smaller than that of Ŷl in this
case. Therefore, (iii) a purely thermal Dirac leptogenesis
can become significant only when the leptonic CP asym-
metry is generated with νR running in the L self-energy
loop and at most two of the three Dirac neutrinos are
allowed to establish the late LRE after the sphaleron
process freezes out.
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As a benchmark scenario, it is sufficient to make the
lightest Dirac neutrino (denoted by ν1 and will be explained
later) out of equilibrium throughout the sphaleron-active
epoch. In this setup, we can immediately obtain a restricted
range of the vacuum scale vΦ at the sphaleron decoupling
temperature Tsph ¼ 131.7 GeV via the LRE conditions for
the thermal decay rates:

hΓðΦ → L̄ν1RÞi≲HðTsphÞ≲ hΓðΦ → L̄ν2ð3ÞRÞi; ð13Þ

where the Hubble expansion is given by HðTÞ ¼ T2=M�
Pl,

withM�
Pl ≡MPl=1.66

ffiffiffiffiffi
gρ�

p
≈ 1018 GeV. A successful accu-

mulation of leptonic CP asymmetry then arises from the
decay Φ̄ → Lν̄1R, as shown in Fig. 1.
To calculate ϵCP, we adopt the real-time formalism with

retarded propagators in thermal field theory [20,25,29,30],
and obtain

ϵCP ≡ ΓðΦ → L̄ν1RÞ − ΓðΦ̄ → Lν̄1RÞ
ΓðΦ → L̄ν1RÞ þ ΓðΦ̄ → Lν̄1RÞ

¼ 1

4π

P
i≠kIm½Y�

ν;i1Yν;k1ðYνY
†
νÞik�F ikP

jjYν;j1j2ðM2
Φ −M2

L;jÞ
; ð14Þ

with the self-energy loop function F ik given by

F ik ¼
Z

ωmax

ωmin

dω
M2

Φ½fFð−ωÞ þ fBðEi − ωÞ�
ðM2

Φ −M2
L;iÞðM2

L;i −M2
L;kÞ

× ½ðM2
L;i −M2

ΦÞMΦ − 2M2
L;iω�; ð15Þ

where ωmin¼MΦðM2
L;i−M2

ΦÞ=2M2
L;i, ωmax¼ðM2

L;i−M2
ΦÞ=

2MΦ, and fFðBÞðxÞ ¼ ðex=T � 1Þ−1 is the Fermi-Dirac
(Bose-Einstein) distribution. Remarkably, Eq. (14) exhibits
a fresh dependence on the flavor species, such that the CP
information is now encoded in the Dirac CP phase δCP.
This can be seen from the fact that, in the diagonal thermal
mass basis, Yν connects the Dirac neutrino masses (mν)
with the PMNS matrix via Eq. (12). From Eq. (14), we can
also infer that the resulting CP asymmetry exhibits a

scaling ϵCP ∼ Y2
ν=Ŷ

2
l. However, the purely thermal Dirac

ν1 leptogenesis proposed here dramatically differs from the
case—corresponding to (ii) observed above—where all the
three neutrinos establish the LRE after the sphaleron
decoupling. The key point here is that our mechanism
predicts relatively larger eigenvalues of Yν to partially
enhance the scaling Y2

ν=Ŷ
2
l. In addition, the smallest entries

encoded in Yν;i1 are canceled out in Eq. (14). This is a
realization of the parameter enhancement mechanism
(hierarchy of couplings) illustrated in Ref. [31].
Before the sphaleron freezes out, all the charged leptons

and the two heavier Dirac neutrinos have already estab-
lished LRE through their Yukawa interactions. Thus, the
lepton asymmetry stored in these species would undergo
rapid washout processes, resulting therefore in negligible
amount of final baryon asymmetry. Nevertheless, a suc-
cessive accumulation of lepton asymmetry can be stored in
the lightest νR part due to its much smaller Yukawa
coupling, with the evolution dominated by the simplified
freeze-in Boltzmann equation

dYΔν1R
dT

¼ −
gΦM2

Φ
sHπ2

ϵCPK1ðMΦ=TÞΓðΦ̄ → Lν̄1RÞ; ð16Þ

where gΦ ¼ 2 results from the two gauge components ofΦ,
and the SM entropy density is given by s ≈ 48.6T3, while
K1 denotes the first modified Bessel function of the second
kind. After the sphaleron freezes out, the final baryon
asymmetry is fixed by the conversion [16]

YΔB ¼ cYΔν1R ; ð17Þ

with c ¼ 8=23 [32].
In order to obtain the numerical value of YΔB via

Eq. (17), we simply apply the thermal mass MΦðTÞ ≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3g22 þ g21

p
=4T ≃ 0.3T [33] to replace the mass parameter

MΦ in the formulas derived above. Such a treatment can be
regarded as an approximation where the mass term from
m2

22Φ†Φ in Eq. (2) is small or even vanishes (say, due to
some classical scale symmetry). Note that, even with a
small m22, the physical masses of the Φ components at the
electroweak scale can still be generated by the SM-like
Higgs vacuum via the λ3 term in Eq. (2), as can be seen
from Eq. (3) and the discussion below it.
In our numerical setup, the vacuum scale satisfying

Eq. (13) with a normal-ordering neutrino mass spectrum
m1 < m2 < m3 [34] is predicted to be

�
m1

meV

�
≲
�

vΦ
1.31 keV

�
≲

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m1

meV

�
2

þ 73.90

s
: ð18Þ

Note that, as dYΔν1R=dT ∝ 1=T2, the temperature integra-
tion is insensitive to the initial value Ti when the sphaleron
comes into thermalization around Ti ¼ 1012 GeV. On the

FIG. 1. Purely thermal leptonic CP asymmetry arising from the
thermal cut in Φ̄ → Lν̄1R decay.
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other hand, we apply the critical temperature of gauge
symmetry breaking, Tc ≈ 160 GeV, as the lower integra-
tion limit. This is reasonable because the generation rate of
lepton asymmetry quickly becomes Boltzmann suppressed
after the scalar obtains an electroweak vacuum mass from
phase transition. In this context, integrating Eq. (16) over
the temperature will result in a simple expression of the
baryon asymmetry:

YΔB ≈ Yexp
ΔB

�
m1

meV

�
2
�

vΦ
5.18 keV

�
−4
�
sin δCP
0.64

�
; ð19Þ

where Yexp
ΔB ≈ 8.75 × 10−11 corresponds to the currently

observed baryon asymmetry [35], and the best-fit mixing
angles of UPMNS as well as the normal-ordering neutrino
mass-squared differences have been used [34].
Equation (19) displays a clear connection between the

finite-temperature generated baryon asymmetry and the
low-energy leptonic CP violation. A confirming detection
of the Dirac CP phase with δCP ≠ 0; π in the upcoming
experiments can therefore unambiguously support the
purely thermal Dirac ν1 leptogenesis proposed here. In
the particular case where the bound in Eq. (18) is saturated
(i.e., either the lightest or the second lightest Dirac neutrino
happens to establish LRE around Tsph), the amount of
baryon asymmetry can then be estimated by the lightest
neutrino mass and the Dirac CP phase. Noticeably in this
case, a small CP-violating phase of Oð10−3Þ can still
account for the observed baryon asymmetry as long as the
lightest neutrino mass is of Oð1Þ meV, which is well
compatible with the cosmological bound

P
i mi < 0.12 eV

[35] (see also Ref. [36]).
In Fig. 2, we show the correlation between the lightest

neutrino mass m1 and the vacuum scale vΦ in generating
the observed baryon asymmetry Yexp

ΔB ¼ 8.75 × 10−11 [35].
Here the magenta curve corresponds to the case with

maximal CP violation δCP ¼ π=2, and the region below
the red (orange) dashed curve signifies the LRE of the
lightest (the second lightest) Dirac neutrino at Tsph. As a
comparison, we have also considered the case with the 3σ
lower bound δCP ≥ 0.78π obtained by combining the
global fitting results of three-neutrino oscillation data
[34], which is shown by the blue solid curve. In this case,
the upper bound on the lightest Dirac neutrino mass is
constrained to be around 15 meV. It should be mentioned
that, with an Oð10Þ keV vacuum vΦ and an meV-scale ν1,
we can predict an Oð10−7Þ eigenvalue for the smallest
Dirac neutrino Yukawa, while an order of the electron
Yukawa, Ye ≃Oð10−6Þ, for the two larger ones. As a
consequence, the approximation based on Eq. (6) is
numerically justified.
Note that the discussion made thus far is based on a

normal-ordering neutrino mass spectrum. As the neutrino
mass ordering hinted so far has a close relation with the
range of the Dirac CP phase (see e.g., Refs. [23,37]), the
purely thermal Dirac ν1 leptogenesis can also help to infer
the neutrino mass ordering. In fact, if the currently averaged
3σ lower bound on the Dirac CP phase is considered [34],
the inverted-ordering pattern, m3 < m1 < m2, cannot cre-
ate a universe with matter dominating over antimatter,
because now δCP > π. Therefore, the baryogenesis from the
lightest Dirac neutrino favors a normal-ordering mass
spectrum in light of the current data, and this is the reason
why the benchmark model is dubbed ν1 leptogenesis.
Let us finally comment on some possible probes of the ν1

leptogenesis. Under the minimal setup with Eqs. (1) and
(2), the scenario mimics a neutrinophilic two-Higgs-dou-
blet model [26]. However, the ν1 leptogenesis predicts an
Oð10Þ keV vacuum vΦ, which is different from the earlier
studies where order-one Dirac neutrino Yukawa couplings
and eV-scale vacuum vΦ were focused on. Following the
studies made in Refs. [38,39] as well as the discussion in
Ref. [20], it can be found that constraints from the low-
energy flavor physics, such as the lepton-flavor violating
processes, and the collider physics, such as the quark-
associated and dilepton decay products, are diluted in the ν1
leptogenesis, due to the feeble Dirac neutrino Yukawa
couplings as well as the neutrinophilic non-SM Higgs
bosons. Nevertheless, the relativistic right-handed Dirac
neutrinos in the early Universe can act as extra radiation
beyond the standard cosmological model, and hence
potentially cause observable effects through cosmological
detection [40].

IV. CONCLUSION

In summary, we have applied in this article the thermal
field theory to the Dirac leptogenesis. Guided naturally by
the diagonal thermal mass basis in the finite-temperature
regime, we obtain a clear connection between the low-
energy observables and the quantities participating in the
finite-temperature baryon asymmetry generation. Under the

0 5 10 15
0

5

10

15

20

25

FIG. 2. Correlation between the lightest neutrino mass m1 and
the vacuum scale vΦ in generating the observed baryon asym-
metry Yexp

ΔB ¼ 8.75 × 10−11 [35]. See the text for details.
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finite-temperature circumstance, we have presented a
purely thermal Dirac ν1 leptogenesis that formulates the
baryon asymmetry in terms of the masses and mixing from
hierarchical Dirac neutrinos, together with a restricted
vacuum scale accountable for the smallness of Dirac
neutrino masses via a seesaw-like relation. The scenario
allows us to establish the unique phase source without
particular assumptions and/or flavor symmetries on the
unknown Yukawa structures. The minimal scenario pre-
sented here can be applied as a prototype to a broad class of
well-motivated model buildings, and it can also be tested by

future neutrino oscillation experiments and possible cos-
mological detection.
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