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We present a lattice analysis of the light pseudoscalar mesons with consideration for the mixing between
the flavor-neutral states π0, η and η0. We extract the masses and flavor compositions of the pseudoscalar
meson nonet in nf ¼ 1þ 1þ 1 lattice QCD þ QED around an SU(3)-flavor symmetric point, and observe
flavor-symmetry features of the extracted data, along with preliminary extrapolation results for the flavor
compositions at the physical point. A key result of this work is the observed mass splitting between the π0

and η on our ensembles, which is found to exhibit behavior that is simply related to the corresponding
flavor compositions.
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The quark flavor compositions of the π0, η and η0 mesons
are most familiar to us in the limit of exact SU(3)-flavor
symmetry where the up, down, and strange quarks are
degenerate. In this limit the π0 and η belong to an octet,
whilst the η0 is pure flavor singlet. However, the breaking of
SU(3)-flavor symmetry in nature permits the flavor com-
positions of these flavor-neutral (FN) pseudoscalar (PS)
mesons to differ from their SU(3) octet-singlet forms.
Understanding and quantifying this difference for the
physical states is important for theoretical and phenom-
enological studies where interpolating operators are used to
project onto the physical states. Furthermore, this type of
mixing is directly tied to our understanding of the extent of
quark-flavor symmetry breaking in nature, as can be seen
explicitly from χPT [1] or flavor-breaking [2] expansions.
It is understood that the π0 mixes weakly with the other

FN pseudoscalars {Oð1°Þ [3]}; an effect due solely to

broken isospin symmetry, which is itself driven by
differences in the up and down quark charges and masses.
The mixing between the η and η0 is understood to be
considerably larger (of the order 10°–20° [4]) and proceeds
due to broken SU(3) flavor symmetry even in the isospin
limit. The magnitude of the mixing between the π0 and
η=η0, as well as the influence of broken isospin on the η–η0
mixing, is yet to be determined.
Past lattice QCD studies [5–9] have worked in the

isospin limit, hence excluding π0 admixture, and pre-
sented results for the η–η0 mixing with reasonable
consensus and agreement with phenomenology [4]. It is
important to note that the majority of these existing η–η0
mixing studies, lattice and otherwise, have focused on the
mixing of decay constants (defined through the couplings
of the mesons to axial-vector currents), either under the
assumption that their mixing behavior is mirrored in the
state mixing or without reference to the mixing of the
states. The decay constant picture has many interesting
aspects, not least of which being its proximity to the axial
anomaly [10], but it is understood that in general, the
mixing of FN PS states through the coupling to pseu-
doscalar operators will not follow that observed in the
decay constants [11].
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The FN mesons present a particular challenge to lattice
QCDþ QED in the calculation of their quark-loop con-
tributions, which require determinations of self-to-self
quark propagators. Direct calculation of the self-to-self
propagator bears the same computational expense as the
all-to-all propagator, which is prohibitively high, and
necessitates methods of approximation which typically
rely on the cancellation of introduced stochastic noise.
Since the nontrivial π0–η–η0 mixing proceeds entirely
through disconnected loop diagrams [5], achieving a good
self-to-self propagator signal while controlling computa-
tional cost is a necessity for this study. We address this
difficulty using a combination of Z2-noise wall sources,
dilution, and both source and sink gauge-covariant
Gaussian smearing.
In this work we extract the masses and flavor compo-

sitions of the PS mesons near an SU(3)-flavor symmetric
point using nf ¼ 1þ 1þ 1 lattice QCDþ QED for the
first time, including resolving the π0–η mass splitting. We
present and fit flavor-breaking expansions to our lattice
results which are shown to perform well around the mass
region where we have simulations, and present preliminary
extrapolation results for the meson flavor compositions at
the physical quark masses. We do not presently perform
extrapolations to the continuum or infinite volume, which is
instead reserved for future work.

I. DIAGONALIZATION ON THE LATTICE

To study the FN PS mesons on the lattice one must
choose a set of interpolating operators which couple to
them. If the up, down, and strange quarks are degenerate,
then the familiar SU(3) octet-singlet operators

Oπ3 ¼
1ffiffiffi
2

p ðūγ5u − d̄γ5dÞ;

Oη8 ¼
1ffiffiffi
6

p ðūγ5uþ d̄γ5d − 2s̄γ5sÞ;

Oη1 ¼
1ffiffiffi
3

p ðūγ5uþ d̄γ5dþ s̄γ5sÞ; ð1Þ

here defined with isospin symmetry, couple diagonally to
the FN PS mesons. However, if the quarks are no longer
degenerate due to the inclusion of QED or nondegenerate
bare masses, in general these operators will have nontrivial
overlap with each of the FN PS states.
In this work we have made the assumption that the set of

states coupled to by the octet-singlet basis operators above,
or some other set of operators (e.g., the quark-flavor basis)
related by a simple change of basis, are a complete set of
states with respect to the low-lying mass eigenstates π0, η
and η0. Additionally, for the lattice volumes and large quark
masses used in this study we need not consider contami-
nation by other low-lying states, such as 2γ and 3π
channels, due to their relatively high energies. Although

in principle there can be mixing between our states of
interest and glueball or heavy quark operators, we expect
our interpretation of the flavor compositions herein to be a
good approximation of the low-energy physics, as these
additional states are understood to have negligible overlap
with the FN PS mesons at our level of precision [12].

A. Operator basis and correlation functions

We employ a variational basis of six interpolating
operators; the three quark-flavor basis states

Ou ¼ ūγ5u; Od ¼ d̄γ5d; Os ¼ s̄γ5s; ð2Þ

with two different levels of gauge-covariant Gaussian
smearing each. Using these operators we construct a 6 × 6
matrix of correlation functions (correlation matrix) with
elements

CijðtÞ ¼
X
x⃗;y⃗

hOjðy⃗; tÞO†
i ðx⃗; 0Þi; ð3Þ

where i, j enumerate the six aforementioned interpolating
operators.
The Wick contractions for the above correlation func-

tions of two FN PS Dirac bilinears [Eq. (2)] lead to two
general combinations of quark propagator traces,

CðtÞdisc ¼
X
x⃗;y⃗

Tr ½Sfðy⃗; t; y⃗; tÞγ5� Tr ½Sf0 ðx⃗; 0; x⃗; 0Þγ5�; ð4Þ

is a disconnected contribution corresponding to quark loops
of flavors f and f0, and

CðtÞcon ¼ −
X
x⃗;y⃗

Tr ½Sfðy⃗; t; x⃗; 0Þγ5Sfðx⃗; 0; y⃗; tÞγ5�; ð5Þ

for a connected contribution from a quark flavor f. The
traces are over both spin and color degrees of freedom
(d.o.f.). Where the flavors of the source and sink operators
differ, such as for the off-diagonal components of our
correlation matrix, the corresponding correlation function
is given by CðtÞdisc. For source and sink operators of the
same flavor, the diagonal components of our correlation
matrix are given by CðtÞdisc þ CðtÞcon.

B. Stochastic wall source methods

The quark propagators required in this study are calcu-
lated using stochastic Z2 noise sources with spin, color and
time dilution [13]. Dilution of a noise source in a particular
d.o.f. means that each wall source is separated into disjoint
sources that are only nonzero for a single value of the
diluted d.o.f., i.e., for spin, color, and time dilution we can
write
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ηrðx⃗; t; t0Þabμν ¼ ξrðx⃗Þδtt0δabδμν; ð6Þ

where Latin and Greek indices correspond to color and spin
degrees of freedom, respectively. The spatial sources ξrðx⃗Þ
are randomly generated from a uniform Z2 ≅ f−1; 1g
distribution, and hence exhibit the key property

lim
Nr→∞

1

Nr

XNr

r¼1

ξrðx⃗Þξrðy⃗Þ ¼ δx⃗ y⃗; ð7Þ

where the index r enumerates independently generated
sources.
Using these diluted noise sources, the solution vectors

are obtained by numerically solving

ψ rðy⃗; t; t0Þabμν ¼
X
z⃗

M−1ðy⃗; t; z⃗; t0Þabμνξrðz⃗Þ: ð8Þ

The all-to-all propagator can hence be approximated from
an ensemble of Nr independent noise sources as

Sðy⃗; t; x⃗; t0Þabμν ≈
1

Nr

XNr

r¼1

ψ rðy⃗; t; t0Þabμνξrðx⃗Þ; ð9Þ

by computing a solution vector for each diluted source (i.e.,
each value of t0, b, and ν). The ‘self-to-self’ quark
propagator required for the calculation of CðtÞdisc is then
recovered by setting y⃗ ¼ x⃗ and t ¼ t0.
We calculate the self-to-self propagator using the above

method on each of the Nt time slices of the lattice (each
value of t0), which allows us to make a further improve-
ment of the disconnected signal by averaging over the
source times

CðδtÞdisc ¼
1

Nt

X
t

X
x⃗;y⃗

Tr ½Sfðy⃗; tþ δt; y⃗; tþ δtÞγ5�…

× Tr ½Sf0 ðx⃗; t; x⃗; tÞγ5�: ð10Þ

The one-end trick is utilized in the calculation of the
connected contributions to the correlation functions
CðtÞcon, where the solution vectors [Eq. (8) for a single
value of t0] are used in place of the full propagators,
granting a ‘free’ sum over spatial source locations in the
large Nr limit (see, for example, [14]).
Each correlation function is calculated using three noise

sources on each configuration and Oð1000Þ configurations
on each ensemble. This configuration of diluted noise
sources was found to deliver a sufficient signal for our
operators, having tested various levels of noise reduction,
however the number of inversions required per self-to-self

propagator is 3Nt times that of a typical point-to-all
propagator. Fortunately, different source smearings of the
self-to-self propagator come at no additional cost since they
are applied to the source after inversion and before
construction of the full propagator (see, e.g., [9]).

C. Diagonalization

Since in this work we consider a total of six operators,
we are able to resolve no more than six states in our
simulations. Hence we assume that after a sufficient amount
of time our correlation functions will receive contributions
from the six lowest-energy states in the system, and so at
large times the elements of the correlation matrix, Eq. (3),
can be written as

CijðtÞ ¼
X6
n¼1

h0jOjjnihnjO†
i j0ie−Mnt; ð11Þ

where the states jni are the mass eigenstates of the
Hamiltonian, j0i is the physical vacuum, and there exist
time-independent vectors v⃗m and u⃗m with the properties
[15]

X
j

h0jOjjnivj;m ¼ δnm;
X
j

uj;mhnjO†
j j0i ¼ δnm: ð12Þ

These vectors can be calculated as the solutions to the
generalized eigenvalue problem (GEVP)

Cðt0Þ−1Cðt0 þ δtÞv⃗n ¼ e−Mnδtv⃗n; ð13Þ

and similarly for the left eigenvectors u⃗n. We solve this
GEVP and diagonalize the correlation matrix at large times
as u⃗nCðtÞv⃗n ∝ e−Mnt, from which the massesMn can easily
be determined. The three lowest energies correspond to the
FN PS mesons of interest here, while the other three
eigenvalues are discarded. Note that the correlation matrix
is real and symmetric and hence the left and right
generalized eigenvectors are each other’s transpose. It is
also noteworthy that the GEVP eigenvectors are also
eigenvectors of the correlation matrix CðtÞ.
Once the masses have been determined we can extract

the overlaps which encode the flavor compositions of the
energy eigenstates by fitting

eMnt
X6
j¼1

CijðtÞvj;n ¼ hnjO†
i j0i; ð14Þ

to a constant at sufficiently large t, for each n ≤ 3 and i.
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We now wish to contrast the overlaps of operators with
different amounts of quark smearing, and to that end we

relabel our operators Oi → OðlÞ
f , where the index f labels

the quark flavor and l the smearing level explicitly.
Given a fixed smearing level l, we identify the relative

weight of flavor f in eigenstate jni by

h0jÕðlÞ
f jni≡ h0jOðlÞ

f jniffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiP
f0¼u;d;sjh0jOðlÞ

f0 jnij2
q ; f ¼ u; d; s: ð15Þ

In solving the GEVP we have chosen δt ¼ 1, and the
generalized eigenvectors are calculated at both timeslices
t0 ¼ 4 and t0 ¼ 5, and the resulting overlaps and masses
calculated from diagonalization by each eigenvector are

averaged in order to capture some of the uncertainty
associated with the choice of eigenvector.

D. Lattice details

All correlation functions are calculated on 243 × 48,
nf ¼ 1þ 1þ 1, dynamical QCDþ QED lattice gauge
field ensembles around a U-spin symmetric point
(md ¼ ms) with mu tuned to approximate SU(3) symmetry,
as detailed in [16]. These ensembles are confined to
a plane of constant average (bare) quark mass, m̄ ¼
ðmu þmd þmsÞ=3 ¼ m0 ¼ constant. The quark hopping
parameters and the extracted PS meson masses for each
ensemble can be found in Table I. Ensembles 1–3 were
chosen to exhibit interesting mixing behavior based on the
approximate iso- (or T-), U- and V-spin symmetry observed
in purely connected pseudoscalar meson masses along the
δmd ¼ 0 trajectory. Ensembles 4–6 were generated sec-
ondarily in order to better constrain our parametrizations
through a variation in the down quark mass. Our ensembles
are depicted on the plane of constant m̄ in Fig. 1, along with
the physical point. Lines of constant md which our
ensembles lie on are denoted by the red dashed lines while
the U-spin symmetric line is shown by the blue dashed line.
The gauge actions used are the tree-level Symanzik

improved SU(3) gauge action and the noncompact U(1)
QED gauge action (further details in [16–18]). The fer-
mions are described by an OðaÞ-improved stout link
nonperturbative clover (SLiNC) action [19]. The couplings
used and lattice spacing are

βQCD ¼ 5.5; βQED ¼ 0.8; a ¼ 0.068ð2Þ fm; ð16Þ

which gives a QED coupling αQED ≃ 0.1, roughly 10×
larger than the physical value.

II. RESULTS AND ANALYSIS

Our extrapolation scheme uses leading order (LO)
flavor-breaking expansions in mass and charge parameters
[16,20] for the FN mesons (in the flavor basis) and the octet
outer ring,

FIG. 1. A visualisation of our six ensembles on the plane of
constant average bare quark mass, including a close-up view of
the ensemble locations, along with the physical point indicated by
a red star. The red dashed lines indicate paths of constant md,
whilst the blue dashed line shows where the down and strange
quarks are degenerate and thus U-spin symmetry is exact. The
ensembles are 1 (triangle), 2 (square), 3 (pentagon), 4 (cross
mark), 5 (plus), and 6 (diamond).

TABLE I. The ensemble number labels, κ values and extracted PS masses for each of our six nf ¼ 1þ 1þ 1QCDþ QED ensembles.

Lattice ensembles and masses (MeV)

# κu κd κs Mπ0 Mη Mη −Mπ0 Mη0 Mπþ MKþ MK0

1 0.124362 0.121713 0.121713 457(5) 473(5) 15(1) 1234(51) 485(4) 485(4) 459(5)
2 0.124374 0.121713 0.121701 475(4) 483(4) 10(1) 1219(118) 491(4) 498(4) 477(4)
3 0.124400 0.121713 0.121677 446(9) 476(7) 28(1) 1165(54) 461(8) 478(8) 474(7)
4 0.124281 0.121752 0.121752 430(11) 521(9) 86(3) 1519(127) 519(7) 519(7) 429(10)
5 0.124338 0.121760 0.121689 405(8) 448(5) 50(3) 1156(70) 437(5) 464(4) 413(6)
6 0.124430 0.121760 0.121601 404(7) 503(5) 97(2) 1058(50) 421(6) 499(4) 482(4)
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M2
FN ¼ ½M2

0 þ βEM0 ðe2u þ e2d þ e2sÞ� · I þ A

2
64
1 1 1

1 1 1

1 1 1

3
75þ b0

2
64

2δmu δmu þ δmd δmu þ δms

δmu þ δmd 2δmd δmd þ δms

δmu þ δms δmd þ δms 2δms

3
75

þ 2βEM1

2
64
e2u 0 0

0 e2d 0

0 0 e2s

3
75þ 2α

2
64
δmu 0 0

0 δmd 0

0 0 δms

3
75þ aEM1

2
64

e2u eued eues
eued e2d edes
eues edes e2s

3
75; ð17Þ

M2
πþ ¼ M2

0 þ βEM0 ðe2u þ e2d þ e2sÞ þ αðδmu þ δmdÞ þ βEM2 ðeu − edÞ2; ð18Þ

M2
Kþ ¼ M2

0 þ βEM0 ðe2u þ e2d þ e2sÞ þ αðδmu þ δmsÞ þ βEM2 ðeu − esÞ2; ð19Þ

M2
K0 ¼ M2

0 þ βEM0 ðe2u þ e2d þ e2sÞ þ αðδmd þ δmsÞ; ð20Þ

where the mass parameters δmi ¼ mi −m0 denote the
deviation of the ith quark flavor’s mass from its SU(3)
symmetric starting point mass. In [16] we considered an
8 × 8 mass matrix for the PS meson octet which we herein
extend to include the flavor singlet. We now have a 9 × 9
mass matrix, with a 3 × 3 block for the FN mesons. In
addition to the terms in 8 ⊗ 8 considered in [16], we also
have terms with the symmetries 1 ⊗ 1, 1 ⊗ 8, and 8 ⊗ 1,
which are (trivially) decomposed as

1 ⊗ 1 ¼ 1; 1 ⊗ 8 ¼ 8; 8 ⊗ 1 ¼ 8: ð21Þ

The 1 ⊗ 1 term gives the A term of Eq. (17), whilst the
1 ⊗ 8 and 8 ⊗ 1 terms give the b0 term. Alternatively, in
the language of the expansion employed in [2], the A and b0
terms arise as zeroth and first-order mass terms in the
Taylor expansion of the disconnected components of the
FN correlation functions.
The fact our ensembles share a constant average quark

mass implies that δm̄ ¼ 0. Since we are not varying the
quark charges in our ensembles, we have no way of
constraining the relative magnitudes of the M0 and βEM0
terms in our expansions, and they are hence absorbed into
one term. As a result of this we cannot fully distinguish
distinct QCD and QED contributions to our mass
expansions.
The masses of the eigenstates π0, η, and η0, presented in

Table I, are fit to the eigenvalues of the matrix expansion
Eq. (17), while the outer ring PS mesons are simultaneously
fit to Eqs. (18)–(20). We label the diagonalized states by
their mass ordering, consistent with the orderings appearing
in the physical spectrum rather than their flavor content.
Also included in the fits are determinations of the mass

difference Mη −Mπ0 , obtained from effective mass fits of
the ratio of the relevant correlation functions calculated from
the GEVP diagonalization. An example of the diagonalized
PS meson correlation functions and theMη −Mπ0 effective
mass for Ensemble 1 can be seen in Fig. 2, wherewe observe
a clear π0–η mass splitting of 14(2) MeV.

In order to fit the normalized overlaps h0jÕðlÞ
i jni

[Eq. (15)] we notice that the relative couplings of each
flavor to a given eigenstate does not depend significantly on
the smearing for our ensembles. As an example of this, for
Ensemble 1, we compare relative up and down operator
overlaps with the η for each smearing,

h0jOð1Þ
u jηi

h0jOð1Þ
d jηi

¼ −2.097ð23Þ; h0jOð2Þ
u jηi

h0jOð2Þ
d jηi

¼ −2.080ð25Þ;

ð22Þ

which clearly agree within their uncertainties. This would
suggest that the operator diagonalization is largely selecting

FIG. 2. An example of the diagonalized meson nonet correla-
tion functions from our Ensemble 1 (top), as well as the effective
mass difference of the π0 and η obtained from the ratio of their
respective correlation functions (bottom).
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TABLE II. The extracted overlaps squared of the physical states with the flavor basis operators on each of our ensembles.

Flavor compositions

# jh0jÕujπ0ij2 jh0jÕdjπ0ij2 jh0jÕsjπ0ij2 jh0jÕujηij2 jh0jÕdjηij2 jh0jÕsjηij2 jh0jÕujη0ij2 jh0jÕdjη0ij2 jh0jÕsjη0ij2
1 0.000(0) 0.500(0) 0.500(0) 0.682(9) 0.159(5) 0.159(5) 0.380(56) 0.310(28) 0.310(28)
2 0.111(46) 0.641(12) 0.248(53) 0.590(49) 0.019(12) 0.391(58) 0.380(26) 0.312(14) 0.309(13)
3 0.622(17) 0.360(21) 0.018(5) 0.090(14) 0.278(22) 0.632(8) 0.329(28) 0.333(14) 0.339(18)
4 0.000(0) 0.500(0) 0.500(0) 0.656(18) 0.172(9) 0.172(9) 0.462(46) 0.269(23) 0.269(23)
5 0.094(10) 0.664(10) 0.242(17) 0.594(10) 0.014(3) 0.392(12) 0.356(52) 0.329(49) 0.314(17)
6 0.511(20) 0.488(19) 0.001(1) 0.225(36) 0.161(25) 0.614(27) 0.337(46) 0.278(41) 0.385(67)

FIG. 3. The overlaps (left column) and octet masses (right column) from each of our six ensembles with their respective global fits.
The top pair of plots display Ensembles 1–3 (right-to-left), which lie on the constant down quark mass trajectory δmd ¼ 0 (left-most
dashed red line of Fig. 1). The center plots depict Ensembles 1 and 4, which both exhibit U-spin symmetry (dashed blue line in Fig 1),
whilst the bottom pair of plots depict Ensembles 5 and 6, which lie on the constant down quark mass trajectory δmd ¼ −0.00159 (right-
most dashed red line of Fig. 1). For a complete discussion of the features of this figure refer to Sec. II.
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the flavor composition of the three low-lying states. In
principle, the excited states could have a flavor composition
that differs from the lowest-lying states, but we would be
unable to resolve these features in the present analysis.
While we cannot yet conclude anything about the excited
states, the two levels of smearing do help to improve the
ground state isolation at early times. Since flavor compo-
sition of the lowest states is essentially independent of the
smearing, we drop the explicit smearing index in the
following discussion.
Collapsing the smearing degree of freedom in our corre-

lation matrix and Taylor expanding about an SU(3) sym-
metric point yields a parametrization with the same
functional form as Eq. (17), and we hence fit the overlaps
h0jÕijni, presented in Table II, to the eigenvectors of an
expansion of this form. Since we are here treating the state
mixing as being distinct from the mixing of the mass matrix,
wedonot fit themasses andoverlaps simultaneously (i.e., the
fit parameters need not take the same values).
In Fig. 3 we present a visualization of the overlaps and

octet masses from each of our six ensembles, along with
their respective global fits. The χ2=d:o:f for the two global
fits are 2.4 (overlaps) and 2.1 (masses). Whilst these
χ2=d:o:f values are large, for the present preliminary
investigation we deem the fits acceptable for the purpose
of commenting on some general features of the extracted
data. Moreover, given the small lattice volumes and addi-
tional systematic uncertainties present, the quoted statis-
tical uncertainties for our lattice data likely underestimate
the true uncertainties. Simply adding an additional 2%
uncertainty to our data as a conservative estimate of the
systematic uncertainties lowers the χ2=d:o:f values to 1.1
and 0.6 for the overlap and mass fits respectively.
The top row of the plots depicts ensembles 1–3 (right-to-

left), which all lie on the constant downquarkmass trajectory
δmd ¼ 0. Ensemble 1 exhibits U-spin symmetry due to the
degeneracy of the down and strange quarks, and we can see
that the lightest FN PS meson exhibits the exact state
composition of a U-spin π3, πU3 ¼ ðd̄γ5d − s̄γ5sÞ= ffiffiffi

2
p

, with
its mass necessarily degenerate with that of the K0. The η
meson of Ensemble 2 has a state composition approaching
that of a V-spin π3, πV3 ¼ ðūγ5u − s̄γ5sÞ= ffiffiffi

2
p

. Ensemble 2
also appears to be very near the waist of an avoided level
crossing between theπ0 and ηmesons. BetweenEnsembles 2
and 3, as determined from the overlap fit, the π0 becomes a
pure isospin π3 at δmu ≈ −0.0008.
The two plots that occupy the center row of Fig. 3 show

the overlaps and octet masses of Ensembles 1 and 4 (left-to-
right), which lie along a quark mass trajectory where the
down and strange quarks have equal masses, as fixed by our
condition δm̄ ¼ 0. Along this trajectory we have hence
enforced U-spin symmetry, and one of either the π0 or η
exhibit the flavor structure of a πU3 throughout. A distinct
feature of these plots is the level crossing observed in the π0

and ηmasses at δmu ≈ −0.0004, and corresponding point in
the overlaps where the state compositions change labels
according to the mass ordering. Additionally, one can
observe that all three FN PS states approach their SU(3)-
symmetric flavor compositions at approximately the loca-
tion of Ensemble 1. The separation of the level crossing and
exact SU(3)-flavor-states points is an EM effect, as without
EM these two phenomena would always occur together at
pointswith equal light quarkmasses [i.e., exact SU(3)-flavor
symmetry]. Additionally the mass splitting of about 2.5%
between the charged and neutral octet mesons at the point of
Mπ0–Mη degeneracy is also a pure EM effect.
The plots occupying the bottom row of Fig. 3 depict the

overlaps and octet masses of Ensembles 5 and 6 (right-to-
left), which are situated on our lightest constant down quark
mass trajectory, δmd ¼ −0.0016. The flavor composition of
the η of Ensemble 5 can be seen to be near that of a πV3 , whilst
the π0 of Ensemble 6 is a very good approximation of an
isospin π3. Ensemble 6 exhibits the poorest overlap signal in
our set, likely since it also possesses the lightest up and down
quarks. The octet masses again exhibit an avoided level
crossing between the π0 and η, however with a much broader
waist than that observed around Ensemble 2.
It is interesting to note that across the range of quark

masses considered, the state compositions evolve between
the distinct SU(2) subgroups: T-spin, U-spin, and V-spin.
In particular, as highlighted above, as δmu changes in the
top-left panel of Figure 3, we observe three distinct
locations where one of the eigenstates appears as a pure
π3 state of a distinct SU(2) subgroup. Similarly, the lower-
left panel also identifies pure πT3 and πV3 at particular values
of δmu. Using the parametrized description of the state
composition we can trace out these distinct SU(2) sub-
groups in the quark mass plane, as shown in Fig. 4. Each of
the three lines corresponds to a trajectory where one of the
eigenstates is a pure π3. While the U-spin trajectory is
exact, the isospin and V-spin trajectories have slopes that
are roughly compatible with maintaining degeneracy of the
quark masses.
Figure 4 also suggests an improved definition of the

SU(3) symmetric point, where the three lines appear to
intersect together at a down quark mass slightly heavier
than that of the nominal SU(3) symmetric point. This
intersection point also coincides with the point where the π0

and η are degenerate along the U-spin symmetric line.
While the nominal symmetric point was chosen such that
the connected-only flavor neutrals are degenerate [17,18],
the location identified here uses only physical states in the
spectrum. In practice however, tuning lattice quark masses
with respect to the disconnected correlation functions
needed in this study would be unfeasible, and from the
point of view of an expansion about an approximate SU(3)
symmetric point, the consequence for any physical observ-
able will always be equivalent up to the order of an
expansion.
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Although we currently lack ensembles at large enough
jδmij to effectively resolve the physical point mixing, we
can assess our overlap extrapolation at the physical values
of the quark masses, δm�

i , the locations of which were
determined in [16], albeit on a 323 × 64 volume. We note
that in this preliminary work we make no attempt to
quantify the finite volume or lattice spacing effects in
our results. We scale the parameters in our expansion that
arise due to EM (note that βEM0 doesn’t contribute to the
mixing) as was done in [2] to approximately correct our
larger-than-physical EM coupling, and find

jπ0i ¼ 0.85ð14Þjπ3i − 0.27ð25Þjη8i þ 0.29ð22Þjη1i; ð23Þ

jηi ¼ −0.07ð10Þjπ3i þ 0.76ð16Þjη8i þ 0.56ð24Þjη1i; ð24Þ

jη0i ¼ −0.005ð2Þjπ3i − 0.26ð10Þjη8i þ 0.96ð3Þjη1i: ð25Þ

With our relatively low level of precision at the physical
point we cannot resolve much significant mixture of the π0

with either the η or η0, but we can see a small nonzero π3
content in the η0, although also too early to draw any
physical conclusions. We also observe some nontrivial
admixtures of the η8 and η1 occurring in the physical η and
η0, and since all four numbers are consistent with a
parametrization by a single mixing angle, we present a
determination of said angle as

θηη0 ¼ sin−1ð−0.26� 0.10Þ ¼ ð−15.1þ5.9
−6 Þ°; ð26Þ

which is consistent with existing results from lattice QCD
[5,6,8] and phenomenology [21,22].
While the extrapolation of the mixing angles to the

physical point is largely exploratory, we use the masses as a
benchmark to quantify the limitations of the present
extrapolation. Using the physical quark mass point from
[16], as above, we determine physical meson masses that
are within 10%–15% of observation. For instance, on the
present small volume and low-order chiral extrapolation we
obtain Mπþ ¼ 114ð17Þ MeV and MKþ ¼ 551ð2Þ MeV.
If however we choose to constrain the quark mass param-
eters to give the physical Mπþ and MKþ , the mixing angles
do not appreciably differ from those reported above. As an
example, with the retuned quark masses, the η–η0 mixing is
determined to be θηη0 ¼ ð−12.9þ7.5

−7.8Þ°, in agreement with the
number reported above.

III. CONCLUSION AND OUTLOOK

In this investigation we have, for the first time, computed
and resolved the broken-isospin induced π0–η mass split-
ting near an effective SU(3) symmetric point, as well as
observed the qualitative effects of electromagnetism (EM)
and broken isospin on the flavor compositions of the flavor-
neutral pseudoscalar mesons.
We have shown the efficacy of studying the FN PS

mesons through the use of stochastic noise sources in
combination with gauge-covariant Gaussian smearing and
the variational method. Further, we have presented what
appears to be a promising method for studying the overlaps
of the FN PS mesons with respect to the chosen interpolat-
ing operator basis, and shown that they can be further
understood and extrapolated by appropriate parametriza-
tion. It is clear that an understanding of the mixing behavior
of the FN states sheds light on the corresponding masses.
The results of this study give us confidence that a future

analysis following these methods and utilizing larger lattice
volumes and physical QED coupling should reproduce the
PS meson masses accurately, as well as resolve the EM and
isospin breaking effects on the flavor contents of the FN PS
mesons at physical pion mass.
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