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We perform a tensor network simulation of the (1þ 1)-dimensional Oð3Þ nonlinear σ-model with θ ¼ π
term. Within the Hamiltonian formulation, this field theory emerges as the finite-temperature partition
function of a modified quantum rotor model decorated with magnetic monopoles. Using the monopole
harmonics basis, we derive the matrix representation for this modified quantum rotor model, which enables
tensor network simulations. We employ our recently developed continuous matrix product operator method
[Tang et al., Phys. Rev. Lett. 125, 170604 (2020)] to study the finite-temperature properties of this model
and reveal its massless nature. The central charge as a function of the coupling constant is directly extracted
in our calculations and compared with field theory predictions.
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I. INTRODUCTION

The (1þ 1)-dimensional nonlinear σ-model (NLSM) has
played important roles in both high energy and condensed
matter physics. The NLSM shares various common fea-
tures with the (3þ 1)-dimensional non-Abelian gauge
theories, such as the asymptotic freedom [1], dynamical
generation of mass gap [2], solitons [3,4], and nontrivial θ
vacua. The NLSM can be further generalized to the 1=N
expandable CPN−1 model [5,6] which is believed to be
relevant to the study of the strongCP problem [7]. Hence, a
thorough understanding of the nature of the NLSM can
undoubtedly give much insight into the study of the non-
Abelian gauge theories in 3þ 1 dimensions.
From the condensed matter side, the (1þ 1)-dimensional

NLSM arises in the context of the Haldane’s conjecture
[8,9]: the (1þ 1)-dimensional Oð3Þ NLSM with θ ¼ 0
(θ ¼ π) is the low-energy, long-wavelength effective theory
for the quantum antiferromagnetic Heisenberg chain with
integer (half-integer) spin S. Since the NLSM with θ ¼ 0 is
known to have exponentially decaying correlations [2], the
integer-spin antiferromagnetic (AF) Heisenberg chain is

conjectured to be gapped. Meanwhile, based on known
results for the spin-1=2 AF Heisenberg chain, Haldane
conjectured [9] that the Oð3Þ NLSM with θ ¼ π topologi-
cal term is a massless theory. Later, by mapping the NLSM
with θ ¼ π term to a modified quantum rotor model,
Shankar and Read [10] claimed that this model should
be massless for all values of the coupling constant. In the
strong-coupling limit, as pointed out by Affleck and
Haldane [11,12], the Oð3Þ NLSM with θ ¼ π is equivalent
to the SUð2Þ1 Wess-Zumino-Novikov-Witten (WZNW)
conformal field theory (CFT) [13–15], whose central
charge is c ¼ 1. In the weak-coupling limit, this model
corresponds to two massless bosons, thus has a central
charge c ¼ 2. In the renormalization group framework, the
NLSM with θ ¼ π flows from the unstable fixed point at
the weak-coupling limit to the stable fixed point at the
strong-coupling limit, and, according to c-theorem, the
central charge varies monotonically between these two
limiting cases.
From the numerical side, in the study of lattice field

theories, the Monte Carlo algorithm has been a standard
approach since the beginning of this field. However, in
many cases, the Monte Carlo approach is hindered by the
sign problem—more specifically, for example, in the case
of NLSM, the straightforward Monte Carlo simulation
encounters the sign problem when the θ-term is nonzero.
Although several approaches, such as the Meron-cluster
Monte Carlo algorithm [16–18] and the analytic continu-
ation approach based on imaginary θ simulation data
[19–22], have been successfully developed to overcome
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the sign problem for this specific case, these methods are
rather specific and cannot be easily extended and applied to
other systems. On the other hand, in recent years, the tensor
network algorithms have achieved rapid development, and
have been increasingly applied to the numerical simulation
of lattice field theories [23,24]. Unlike the Monte Carlo
approach, the tensor network methods are free from the
sign problem, and thus can hopefully be applied to many
problems where the Monte Carlo simulation are hindered or
even prohibited. It is then meaningful to develop and test
tensor network algorithms for the NLSM with θ-terms.
In this work, we perform a tensor network simulation of

the NLSM with θ ¼ π topological term. Inspired by
Ref. [10], we work in the Hamiltonian formulation and
map the NLSM with θ ¼ π term to a modified quantum
rotor model where the quantum rotors are decorated with
magnetic monopoles. By representing the modified quan-
tum rotor model in the basis of magnetic monopoles, we
obtain its matrix representation which automatically ena-
bles MPS-based simulations of this model. Making use of
the recently proposed continuous matrix product operator
(cMPO) method [25], we simulate the finite-temperature
properties of the modified quantum rotor model and present
clear numerical evidence for its massless nature. Moreover,
we also obtain the central charge as a function of the
coupling constant, and compare the result with the field
theoretical predictions.
This paper is organized as follows. In Sec. II, we

introduce the Hamiltonian formalism, i.e., the quantum
rotor model for the NLSM, respectively for θ ¼ 0 and θ ¼
π cases. We also introduce the matrix representation for the
quantum rotor models. In Sec. III, we introduce the cMPO
approach and its application in the quantum rotor model. In
Sec. IV, we show the numerical results which prove the
massless nature of the NLSM with θ ¼ π. Finally, Sec. V
summarizes the results and provides some outlook. In
Appendix A, we discuss the matrix representation of the
modified quantum rotor model introduced by Sec. II in
detail. In Appendix B, we present a proof for the mapping
between NLSM and quantum rotor models for both θ ¼ 0
and θ ¼ π cases. Appendix C includes some details in the
numerical simulation.

II. HAMILTONIAN FORMULATION

In (1þ 1) dimensions, the Euclidean action of the Oð3Þ
NLSM is given by

S0 ¼
1

2g2

Z
dxdτð∂nÞ2; ð1Þ

where n is a unit vector that rotates in the three-dimensional
space, g is the dimensionless bare coupling constant, and x,
τ represent the Euclidean space coordinates. Due to the
possible existence of instantons in this model, one can
extend the action by adding a θ-term

S ¼ S0 þ i
θ

4π

Z
dxdτn · ð∂xn × ∂τnÞ; ð2Þ

where θ is periodic in 2π. The partition function of this
model is written in the path integral formulation as
Z ¼ R

Dn expð−S½n�Þ, where, throughout this work, the
functional integration Dn is defined with respect to the
real unit vector field. In this section, we will briefly review
the Hamiltonian formulation of the NLSM with θ ¼ 0
and θ ¼ π.

A. Hamiltonian formulation for NLSM with θ = 0

For the NLSM with θ ¼ 0, it has been well established
that the Hamiltonian formulation is given by the one-
dimensional quantum Oð3Þ rotor model on the lattice
[10,26–29]

aĤ ¼
X
j

L̂2
j

2K
− K

X
hi;ji

n̂i · n̂j; ð3Þ

where L̂j and n̂j respectively represent the angular momen-
tum operator and rotor operator on site j, a is the lattice
spacing, and K > 0 is a constant. The operators satisfy the
following commutation relations:

½L̂μ
j ;L̂

ν
l �¼ iεμνλL̂λ

jδjl; ½L̂μ
j ;n̂

ν
l �¼ iεμνλn̂λjδjl; ½n̂μj ;n̂νl �¼0;

ð4Þ

where μ; ν; λ ¼ x; y; z. In the low-energy, long-wavelength
limit, the field theoretical description of this rotor model is
just the Oð3Þ NLSM with θ ¼ 0 and 1=g2 ¼ K.
The eigenstate of the rotor operator n̂ is parametrized by

continuous angle variables, which is not convenient
for tensor network simulations. Instead, a discrete basis
is preferred, for which the eigenbasis of the angular
momentum operators serves as a natural choice: L̂2jl; mi ¼
lðlþ 1Þjl; mi and L̂zjl; mi ¼ mjl; mi. The quantum num-
bers l and m take integer values, l ¼ 0; 1; 2… and
m ¼ −l;−lþ 1;…; l. In this basis, the kinetic term in
the Hamiltonian (3) becomes diagonal. The rotor couplings
can be rewritten as n̂i · n̂j ¼

P
ν∈f0;�g n̂νi n̂

−ν
j with n̂� ¼

ðn̂x � in̂yÞ= ffiffiffi
2

p
and n̂0 ¼ n̂z, whose matrix representation

in the angular momentum basis can be obtained by taking
n̂ν as spherical tensor operators [29]. With the matrix
representation of the Hamiltonian, it is then straightforward
to represent the partition function as a tensor network or
perform ground/excited state calculations via MPS-based
methods.

B. Hamiltonian formulation for NLSM with θ= π

In the presence of a nonvanishing θ-term, it is a non-
trivial task to incorporate it in the quantum rotor model
formulation. As pointed out in Ref. [10], by adding a
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magnetic monopole with magnetic charge q ¼ 1=2 at the
center of the rotor and setting nearest-neighbor couplings
to be antiferromagnetic, the low-energy effective theory
becomes a NLSM with θ ¼ π. In the Hamiltonian formu-
lation, the presence of the magnetic monopole modifies the
definition of the angular momentum operator L̂, and the
Hamiltonian becomes [10]

aĤ ¼
X
j

ðL̂0
jÞ2

2K
þ K

X
hi;ji

n̂i · n̂j: ð5Þ

In spatial coordinates, the modified angular momentum
operator is defined by L̂0 ¼ n × ð−i∇ − AÞ − n, where n is
the unit vector pointing at the direction of the rotor, and A is
the vector potential describing the magnetic field generated
by the magnetic monopole (see, e.g., Ref. [30] for more
details). The low-energy physics of this model is described
by the NLSM with θ ¼ π, whose coupling constant
satisfies 1=g2 ¼ K.
To find the matrix representation of the Hamiltonian (5),

we make use of the eigenbasis of the modified angular
momentum operator—the monopole harmonics [30,31]. It
is known that L̂0 still satisfies the angular momentum
commutation relations [30], and the eigenbasis of monop-
ole harmonics can be labeled by well-defined angular
momentum quantum numbers ðl; mÞ, which satisfies
ðL̂0Þ2jq; l; mi ¼ lðlþ 1Þjq; l; mi and ðL̂0Þz ¼ mjq; l; mi.
Here, the quantum number q denotes the magnetic charge
at the center of the rotor and hence takes the value q ¼ 1=2,
which distinguishes itself from the ordinary spherical
harmonics with q ¼ 0. In the presence of the magnetic
charge q ¼ 1=2, l and m can only take half-integer values,
l ¼ 1=2; 3=2; 5=2;… and m ¼ −l;−lþ 1;…; l. Making
use of this angular momentum eigenbasis, the matrix
representation of the Hamiltonian in Eq. (5) is similar to
the case with θ ¼ 0—the kinetic term is diagonal, and
the matrix representation for the rotor coupling term
can be evaluated by using the properties of spherical tensor
operators, the details of which are included in Appendix A.
Based on the properties of the monopole harmonics, we
also provide a proof for the mapping between the lattice
Hamiltonian and the continuous theory of the NLSM with
θ ¼ π in Appendix B.
In practical simulations, we need to truncate the physical

Hilbert space at each site. The most natural choice is to
choose a maximally allowed angular momentum quantum
number lmax and drop the states with l > lmax. For the
Hamiltonian in Eq. (5), one can infer that this truncation
scheme is effective only when the constant K is small, i.e.,
near the strong coupling limit. An interesting limit is
K → 0, where one can choose lmax ¼ 1=2, and the modi-
fied quantum rotor model reduces to the S ¼ 1=2 anti-
ferromagnetic Heisenberg chain. For large values of K, in

principle, one has to use large enough lmax to obtain
quantitatively accurate results.

III. TENSOR NETWORK APPROACH TO THE
MODIFIED QUANTUM ROTOR MODEL

From the numerical side, we make use of the recently
developed cMPO method [25] to study the finite temper-
ature properties of the (modified) quantum rotor model in
Eq. (5). The reason for using this approach is twofold. First,
since the theory is expected to be massless for all choices of
the coupling constant, working at the finite temperature can
help reduce the requirement on the bond dimensions
compared to ground-state simulations in the thermody-
namic limit [32,33]. It also allows us to adjust the temper-
ature for different choices of the coupling constant. Second,
the cMPO approach works in the continuous time limit,
which automatically eliminates the discretization error in
the imaginary time direction.
In this section, we will briefly review the cMPO

approach, and introduce the cMPO formulation for the
modified quantum rotor model defined in Eq. (5). We will
also discuss two key properties of the cMPO for this model:
(i) Hermiticity, which enables a direct global optimization
during the simulation; (ii) Symmetry, which is inherited
from the Hamiltonian and allows us to reduce the computa-
tional cost in numerical simulations.

A. Brief review of the cMPO approach

The cMPO approach is based on the observation that
there exists a compact MPO representation for the infini-
tesimal time evolution operator expð−ϵĤÞ when we only
consider up to the first order in ϵ [34]. The neglected higher
order terms of ϵ will not incur any errors since we will take
the ϵ → 0 limit. From this MPO one can build the tensor
network representation for the partition function Z ¼
Tre−βĤ (see Fig. 1). The local tensor T in the MPO can
be expressed as

T ¼
�
I þ ϵQ

ffiffiffi
ϵ

p
Rffiffiffi

ϵ
p

L P

�
; ð6Þ

where Q is an operator-valued scalar, I is the identity
operator, L and R are operator-valued vectors (not to be
confused with the angular momentum operator L̂), and P is
a matrix consisting of operators. The operators contained in
Q, L, R, and P are operators acting on the physical Hilbert
space, which all come from the Hamiltonian: Q corre-
sponds to local terms, L and R encode nearest-neighbor
interactions, and P comes from longer-range interactions.
The physical dimension is thus the dimension of the
physical Hilbert space at each site. The virtual bond
dimension D ¼ dþ 1, where d is the dimension of vectors
L and R.
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Next, as shown in Fig. 1, the tensor network for the
partition function Z can be formed by stacking β=ϵ layers
of the MPOs together. In the thermodynamic limit, i.e.,
L → ∞, this tensor network can be efficiently contracted
using the idea of transfer matrix [35–37]. The transfer
matrix T refers to the column of tensors in the tensor
network, which is also anMPO, and we can approximate its
dominant eigenvector with an MPS, which is referred to as
the boundary MPS (see Fig. 1). More specifically, here, as
we take the continuous time limit ϵ → 0, the MPO
representation for the transfer matrix becomes continuous
(hence the name cMPO), and the corresponding boundary
MPS becomes a continuous MPS (cMPS). Since the cMPO
is uniform with the periodic boundary condition (PBC)
(along the imaginary time direction), it is natural to use a
uniform cMPS jψi, parametrized by the local tensor

Tψ ¼
� Iψ þ ϵQψffiffiffi

ϵ
p

Rψ

�
ð7Þ

as the boundary cMPS. Similar to Eq. (6), Qψ and Rψ in
Eq. (7) correspond to an operator and a vector of operators,
respectively. The operators contained in Tψ are parame-
trized by matrices, whose dimension is the bond dimension
of the cMPS. From the boundary cMPS, one can further
extract the thermodynamic properties of the system.
To obtain the boundary cMPS jψi, one can directly

minimize the free energy density

f ¼ −
1

β
lnðhψ jT jψi=hψ jψiÞ ð8Þ

if the cMPO T is Hermitian. In general, T is non-Hermitian,
and jψi has to be optimized by the power method, i.e.,
by repeatedly acting T on a trial solution for jψi and

compressing its bond dimension. At each iteration step, the
compression of T jψi into the cMPS jϕi (with a smaller
bond dimension) is again a variational optimization process
that maximizes the fidelity F ¼ hϕjT jψi= ffiffiffiffiffiffiffiffiffiffiffiffihϕjϕip

, where

we have dropped a constant factor 1=
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
hψ jT†T jψi

p
for

simplicity.

B. cMPO formulation for the modified
quantum rotor model

For the modified quantum rotor Hamiltonian in Eq. (5),
the local tensor T is given by

0
BBBBBB@

I þ ϵðL̂0Þ2=2K ffiffiffiffiffiffi
ϵK

p
n̂þ

ffiffiffiffiffiffi
ϵK

p
n̂−

ffiffiffiffiffiffi
ϵK

p
n̂0

−
ffiffiffiffiffiffi
ϵK

p
n̂−

−
ffiffiffiffiffiffi
ϵK

p
n̂þ

−
ffiffiffiffiffiffi
ϵK

p
n̂0

1
CCCCCCA
: ð9Þ

One can easily identify the contents of Q, L, R, and P in
Eq. (6). It is worth mentioning that this cMPO is Hermitian.
To see this, we can perform a unitary transformation
described by Û ¼ exp½iπðL̂0Þy� to all the operators con-
tained in the local tensor T. Using the commutation
relations between L̂0 and n̂, we find

ÛðL̂0Þ2Û†¼ðL̂0Þ2; Ûn̂0Û† ¼−n̂0; Ûn̂�Û†¼−n̂∓:
ð10Þ

On the one hand, according to Eq. (10), Û switches the
contents of L and R, and since P is empty, it effectively
switches the left and right bonds of the local tensor T [see
Eq. (6) and Fig. 1]. When viewed as a large matrix, the
cMPO T becomes its own transpose (and also its own
Hermitian conjugate, as T is a real matrix) after this unitary
transformation. On the other hand, since the physical bonds
of the local tensors in cMPO are all contracted (see Fig. 1),
this unitary transformation is merely a gauge transforma-
tion and leaves the cMPO unchanged. Therefore, the cMPO
T is Hermitian, which allows us to directly optimize the
boundary cMPS by variationally minimizing the free
energy in Eq. (8).
In our calculations, before variationally minimizing the

free energy, we perform a few power method steps to obtain
a good initialization for the variational optimization. To
help stabilize the power method procedure, we apply the
unitary transformation exp½iπðL̂0Þz� on every second site,
such that the rotor couplings in x and y directions in the
Hamiltonian (5) become ferromagnetic [38],

Ĥ ¼
X
j

ðL̂0
jÞ2

2K
þ K

X
hi;ji

ð−n̂þi n̂−j − n̂−i n̂
þ
j þ n̂0i n̂

0
jÞ: ð11Þ

FIG. 1. The tensor network representation for the partition
function Z ¼ Tre−βĤ and the (right) boundary MPS. The blue
blocks represent the local tensor T, whose vertical and horizontal
legs are respectively referred to as physical and virtual bonds. The
red blocks represent the local tensor Tψ of the boundary cMPS.
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For this “rotated” Hamiltonian, the local tensor now reads

0
BBBBB@

I þ ϵðL̂0Þ2=2K ffiffiffiffiffiffi
ϵK

p
n̂þ

ffiffiffiffiffiffi
ϵK

p
n̂−

ffiffiffiffiffiffi
ϵK

p
n̂0ffiffiffiffiffiffi

ϵK
p

n̂−ffiffiffiffiffiffi
ϵK

p
n̂þ

−
ffiffiffiffiffiffi
ϵK

p
n̂0

1
CCCCCA
:

ð12Þ

The Hermiticity of the cMPO can be proven in an
analogous way.

C. Uð1Þ symmetry of the cMPO

Although the Hamiltonian in Eq. (11) is SO(3) sym-
metric, we shall just use its Uð1Þ subgroup (i.e., rota-
tional invariance around the z axis) in our tensor
network simulations. Mathematically, the Uð1Þ symmetry
is generated by ÛðθÞ ¼ exp½iθðL̂0Þz�, with the operators
transforming as

ÛðθÞðL̂0Þ2ÛðθÞ†¼ðL̂0Þ2; ÛðθÞn̂νÛðθÞ†¼ eiνθn̂ν; ð13Þ

where ν ¼ 0;�. Equation (13) not only proves the Uð1Þ
invariance of the Hamiltonian, but also indicates that the
Uð1Þ symmetry can be encoded into the cMPO. Combining
Eqs. (12) and (13), we get

ð14Þ

where, the same as Fig. 1, the vertical and horizontal lines
respectively correspond to the physical and virtual indices
of the local tensor T. UðθÞ is the matrix representation
of ÛðθÞ. On the virtual bonds, VðθÞ ¼ expðiθZÞ, where
Z ¼ diagð0; 1;−1; 0Þ. As shown in Fig. 1, the physical
indices of local tensors in the cMPO are all contracted, and
the left-hand side of Eq. (14) is thus a gauge transformation
that leaves the cMPO invariant. Meanwhile, the right-hand
side of Eq. (14) gives rise to a global Uð1Þ rotation, which
is described by VðθÞ on each virtual bond. Therefore, we
can take VðθÞ as a symmetry transformation of the cMPO.
Based on this fact, we can correspondingly construct a
Uð1Þ-symmetric boundary cMPS, which contains block
structures and helps lower down the computational cost.
The construction of the Uð1Þ-invariant boundary cMPS
follows the general rules to construct symmetric MPS
[39–42]. More specifically, we build the boundary cMPS
from the local tensors satisfying

ð15Þ

up to a phase factor. Here, Tψ represents the cMPS local
tensor, and UψðθÞ denotes the Uð1Þ rotation acting on the
internal indices of the cMPS. The degeneracy sectors on the
cMPS vertical bond are determined dynamically, the details
of which are included in Appendix C 1.

IV. RESULTS

In this section, we describe our numerical results, which
provide numerical evidence of the massless nature of the
NLSM with θ ¼ π. More specifically, we demonstrate the
results for the free energy density and the bipartite
entanglement entropy of the boundary cMPS and compare
them with the predictions of CFT.
In our numerical simulation, we calculate the finite

temperature properties of the modified quantum rotor
model. We perform simulations from K ¼ 1.0 to K ¼
6.0 in order to cover a fairly large range of values for the
coupling constant. The range of temperatures varies with
K. For each choice of K, the temperature T ranges from
K=300 to K=60, since the energy scale increases with K.
The maximal angular momentums are chosen to be
lmax ¼ 1=2; 3=2; 5=2. The bond dimension of the boundary
cMPS ranges among χ ¼ 12, 18, 24, 30, and we extrapolate
the results to an infinite bond dimension (see Appendix C 2
for details).
Our code implementation is publicly available at [43].

A. Universal correction to free energy

For one-dimensional quantum systems described by
CFT, a universal finite-size correction to the free energy
appears at low temperature [44,45]

F=L ¼ f0 −
πcT2

6v
; ð16Þ

where f0 is the free energy density at zero temperature, c is
the central charge, and v is the effective “velocity of light”
in the theory. Equation (16) predicts that the specific heat is
linear in T. This property is in sharp contrast to that of
gapped systems, where the free energy manifests an
exponential scaling at low temperatures.
From our calculation results, we verify the massless

nature of the system by comparing with Eq. (16). Figure 2
shows the free energy density as a function of ðT=KÞ2 for
different choices of K and the linear fitting of the data to
Eq. (16). The linear fitting is performed within the range
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K=300 ≤ T ≤ K=100, the detailed results of which are
shown in Table I. For all values of K that we consider, we
observe a clear linear dependence of the free energies on
T2, which perfectly coincides with the prediction of
Eq. (16). For small values of K, the results quickly
converge with respect to lmax. As K increases, the results
for different lmax’s gradually deviate from each other,
since the angular momentum basis becomes less effective
as the system approaches the weak coupling limit.
Nonetheless, they show a tendency of convergence and
still serve as qualitative evidence for the massless nature
of this model.

B. Temporal entanglement entropy

For systems described by CFT, the temporal direction
and the spatial direction are equivalent, and the boundary
cMPS can be viewed as the ground state of the “temporal
Hamiltonian” which is described by the same CFT.
Therefore, the bipartite entanglement entropy of the boun-
dary cMPS is another important indicator of the massless
nature of the system, as it satisfies [46–49]

S ¼ c
3
ln β þ S0; ð17Þ

where c is the central charge, and S0 is a nonuniversal term.
By fitting the entanglement entropy with respect to the
inverse temperature β, we can extract the central charge of
the system.
The bipartite entanglement entropy in the uniform tem-

poral cMPS is calculated as follows.We divide the cMPS by
an equal bipartition, and calculate the vonNeumann entropy
between the two subsystems A and B (see Fig. 3),

S ¼ −TrðρA ln ρAÞ; where ρA ¼ TrBjψihψ j: ð18Þ

From the bipartition, the boundary cMPS can naturally be
written as

jψi ¼
X
m;n

jϕA
mnijϕB

mni; ð19Þ

FIG. 2. The free energy density with respect to ðT=KÞ2 for the
modified quantum rotor model from K ¼ 1.0 to K ¼ 6.0. Results
obtained with different lmax are marked with different colors. The
error bars come from the uncertainty in the extrapolation to the
infinite bond dimension. The linear fitting is performed for
100 ≤ K=T ≤ 300.

TABLE I. Fitting results of the free energy data. For each K and
lmax, we list the estimation and the error for the slope −πcK2=6v
and the intercept f0. The errors originate from both the un-
certainty in the extrapolation of the original data to infinite bond
dimension and the uncertainty in the linear fitting. The intercept
f0 results also serve as estimations of the ground state energies.

K ¼ 1.0
lmax −πcK2=6v f0
1=2 −3.03879� 0.00063 0.32576� 5.86395 × 10−8

3=2 −3.00617� 0.19215 0.32291� 1.58070 × 10−5

5=2 −3.00531� 0.20338 0.32291� 1.68733 × 10−5

K ¼ 2.0
lmax −πcK2=6v f0
1=2 −1.51970� 0.00032 0.08903� 1.16654 × 10−7

3=2 −1.59886� 0.08748 0.06955� 3.23684 × 10−5

5=2 −1.62788� 0.10347 0.06948� 3.03028 × 10−5

K ¼ 3.0
lmax −πcK2=6v f0
1=2 −1.01339� 0.00019 −0.02271� 1.59098 × 10−7

3=2 −1.28895� 0.05683 −0.07466� 4.34769 × 10−5

5=2 −1.31000� 0.09805 −0.07541� 6.34446 × 10−5

K ¼ 4.0
lmax −πcK2=6v f0
1=2 −0.75967� 0.00014 −0.10320� 2.10380 × 10−7

3=2 −1.19251� 0.05365 −0.19685� 7.11228 × 10−5

5=2 −1.24382� 0.10488 −0.19956� 1.28900 × 10−4

K ¼ 5.0
lmax −πcK2=6v f0
1=2 −0.60774� 0.00011 −0.17119� 2.49746 × 10−7

3=2 −1.11522� 0.05148 −0.30964� 1.05917 × 10−4

5=2 −1.21338� 0.11224 −0.31553� 2.14151 × 10−4

K ¼ 6.0
lmax −πcK2=6v f0
1=2 −0.50583� 0.00010 −0.23293� 3.57072 × 10−7

3=2 −1.02611� 0.04977 −0.41645� 1.46535 × 10−4

5=2 −1.15988� 0.09968 −0.42632� 2.86595 × 10−4
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where m, n denote virtual indices through the cuts.

To transform fjϕAðBÞ
mn ig to an orthonormal basis, we

consider the matrixMAðBÞ
m0n0;mn ¼ hϕAðBÞ

m0n0 jϕAðBÞ
mn i and its eigen-

decomposition

MAðBÞ ¼ ðUAðBÞÞ†ΛAðBÞUAðBÞ: ð20Þ

One can easily verify that

jψAðBÞ
i i ¼

X
mn

ðUAðBÞ
i;mn Þ�ffiffiffiffiffiffiffiffiffiffiffi
ΛAðBÞ
i

q jϕAðBÞ
mn i ð21Þ

satisfies hψAðBÞ
i jψAðBÞ

j i ¼ δij. In this new basis, the cMPS
expresses as

jψi ¼
X
i;j

h ffiffiffiffiffiffi
ΛA

p
UAðUBÞT

ffiffiffiffiffiffi
ΛB

p i
i;j
jψA

i ijψB
j i; ð22Þ

and the reduced density matrix is given by

ρA ¼
ffiffiffiffiffiffi
ΛA

p
UAðMBÞ�ðUAÞ†

ffiffiffiffiffiffi
ΛA

p
: ð23Þ

Combining this equation with Eq. (18), one can evaluate the
entanglement entropy.
In Fig. 4, for different values of K and lmax, we show the

bipartite entanglement entropy of the boundary cMPS as a
function of lnðKβÞ and the linear fitting of the data to
Eq. (17). The linear fitting results are shown in Table II. As
the parameter K increases, results for different lmax gradu-
ally deviate from each other, which is similar to the results
of the free energy. Nonetheless, these results still show a
tendency to converge as lmax increases, and, at least
qualitatively, from these results we can confirm the linear
relation between the bipartite entanglement entropy and
ln β, which verifies Eq. (17).

Furthermore, with Eq. (17), we can obtain the central
charge c from the linear regression of the bipartite
entanglement data. As pointed out in Refs. [10,11], in
the renormalization group framework, the NLSM with θ ¼
π flows from the unstable fixed point at the weak-coupling
limit (g ¼ 0 and central charge c ¼ 2) to the stable WZNW
fixed point at the strong-coupling limit (g ¼ ∞ and c ¼ 1),
and the central charge varies monotonically between the

FIG. 3. Dividing the cMPS jψi into two parts with equal length
A and B.

FIG. 4. The bipartite entanglement entropy with respect to
lnðKβÞ for different values of K. Results with different choices of
lmax are marked with different colors. The error bars come from
the uncertainty in the extrapolation to infinite bond dimension.
The linear fitting is performed for 100 ≤ Kβ ≤ 300.

TABLE II. Linear fitting results of the bipartite entanglement
entropy data. For each K and lmax, we list the estimation and the
error for the central charge c (from the slope) and the intercept S0.
The errors originate from both the uncertainty in the extrapolation
of the original data to infinite bond dimension and the uncertainty
in the linear fitting.

K ¼ 1.0
lmax c S0
1=2 1.02355� 0.00018 −0.26806� 0.00028
3=2 1.01731� 0.01709 −0.24520� 0.02682
5=2 1.01684� 0.01935 −0.24454� 0.03019

K ¼ 2.0
lmax c S0
1=2 1.02346� 0.00015 −0.26791� 0.00024
3=2 1.02650� 0.01485 −0.16209� 0.02337
5=2 1.02711� 0.01699 −0.16200� 0.02710

(Table continued)
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two fixed points according to the c-theorem. Figure 5
shows the numerical results of the central charge. For the
special case of lmax ¼ 1=2, the system reduced to the
antiferromagnetic Heisenberg model, which is well known
to be described by the SUð2Þ1 WZNW model [11,50]. As
shown in Fig. 5, for lmax ¼ 1=2, and for all values of K, the
numerical result indeed gives c ≈ 1, and it can get closer to
c ¼ 1 if one pushes the calculation to lower temperatures.
For lmax ¼ 3=2; 5=2, the numerical result for central charge
shows a monotonic tendency with respect to K and
approaches c ≈ 1 as K becomes small. As is similar to
the previous results, the result reaches good convergence at

lmax ¼ 5=2 when K is small (K ≤ 3.0), but only serves as
qualitative evidence for larger values of K.

V. SUMMARY AND OUTLOOK

In summary, we have numerically studied the (1þ 1)-
dimensional Oð3Þ nonlinear σ-model with θ ¼ π term
using our recently developed cMPO method. We work
in the Hamiltonian formulation—the modified quantum
rotor model decorated with magnetic monopoles, and
derive its matrix presentation in the monopole harmonics
basis. From this matrix representation, we obtain the cMPO
representation of the modified quantum rotor model, and
study its finite-temperature properties with the cMPO
method. We calculate the free energy density of the system
and the bipartite entanglement entropy of the boundary
cMPS, and compare their scaling with the predictions
of CFT, from which we confirm the massless nature of
the system and obtain the central charge as a function of the
coupling constant. The Hamiltonian formalism and the
corresponding matrix representation for NLSM with θ ¼ π
also enables further studies related to this model, such as
the effect of nonzero chemical potential and the real-time
dynamics.
For tensor network simulations, we have to truncate the

monopole harmonics basis and only consider the states
with relatively small angular momentum. This truncation
scheme works well near the strong coupling limit since the
high angular momentum sectors are suppressed, and the
result can easily get converged with the maximal angular
momentum lmax. However, as the system goes toward the
weak coupling limit, the angular momentum is no longer
suppressed, and the monopole harmonics basis becomes
less effective and moderate values of lmax often do not lead
to a converged result. An intermediate improvement based
on our formalism is to implement the non-Abelian sym-
metry in tensor network simulations [51–53] so that one
can push the calculation to larger lmax. For future inves-
tigations, it is also important to look for a better basis near
the weak coupling limit in order to truncate the local
physical Hilbert space in a more effective way.
Another interesting direction is to consider the possibil-

ity of a Hamiltonian formulation for the NLSM with θ ≠ 0
or π. The current formulation relies on the monopole
harmonics basis, which is tied to the quantization of the
magnetic monopole charge and does not seem to have a
straightforward generalization to θ ∈ ð0; πÞ cases.
Undoubtedly, the capability to efficiently simulate the
(1þ 1)-dimensional NLSM with a full range of θ will
open a broad way to better understand this paradigmatic
field theory.
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APPENDIX A: MATRIX REPRESENTATION FOR
THE MODIFIED QUANTUM ROTOR MODELS IN

THE ANGULAR MOMENTUM EIGENBASIS

In this Appendix, we derive the matrix representation for
the modified quantum rotor model in Eq. (5). Apparently,
the kinetic term is diagonal in the angular momentum basis

hq; l; mj ðL̂
0Þ2

2K
jq; l; mi ¼ l2

2K
; ðA1Þ

and we only need to focus on the coupling term between
neighboring rotors. The n̂i · n̂j term can be represented as

n̂i · n̂j ¼
1

2
ðn̂þi n̂−j þ n̂−i n̂

þ
j Þ þ n̂zi n̂

z
j; ðA2Þ

where n̂� ¼ ðn̂x � n̂yÞ= ffiffiffi
2

p
. The matrix representation of

n̂� and n̂z can be evaluated by noticing their relations with
the spherical tensor operators [29]. More specifically, we
have

n̂z ¼
ffiffiffiffiffiffi
4π

3

r
Ŷ1;0; ðA3Þ

1ffiffiffi
2

p n̂þ ¼ −
ffiffiffiffiffiffi
4π

3

r
Ŷ1;1; ðA4Þ

1ffiffiffi
2

p n̂− ¼
ffiffiffiffiffiffi
4π

3

r
Ŷ1;−1; ðA5Þ

where Ŷ1;M (M ¼ 0;�1) is the spherical tensor operator of
rank 1. The matrix elements of these operators can be
computed as integrals over monopole harmonics [31]

hq; l1; m1jŶ1;Mjq; l2; m2i

¼ ð−1Þqþm1

Z
dnY−q;l1;−m1

ðnÞY1;MðnÞYq;l2;m2
ðnÞ

¼ ð−1Þl1þl2þ1ð−1Þqþm1

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
3ð2l1 þ 1Þð2l2 þ 2Þ

4π

r

×

�
l1 1 l2

−m1 M m2

��
l1 1 l2

−1=2 0 1=2

�
; ðA6Þ

where ð j1m1

j2
m2

j3
m3
Þ is the Wigner-3j symbol.

APPENDIX B: PROOF FOR THE MAPPING
BETWEEN THE QUANTUM ROTOR

MODEL AND NLSM

In this Appendix, we present a proof for the mapping
between the quantum rotor model and the NLSM based on
the path-integral formalism. Our proof covers both θ ¼ 0
and θ ¼ π cases.

1. θ= 0 case

For the θ ¼ 0 case, we write the partition function of the
ordinary quantum rotor model in Eq. (3) as a path integral

Z ¼ Trðe−βĤÞ ¼
Z �YN−1

k¼0

dnðkÞ
��YN−1

k¼0

hnðkþ1Þje−ΔτĤjnðkÞi
�
;

ðB1Þ

where the imaginary time τ ∈ ½0; β� is divided into N

intervals, i.e., Δτ ¼ β=N, and nðkÞ ≡ ðnðkÞ1 ; nðkÞ2 ;…; nðkÞL Þ
represents the rotor configuration at the kth time interval.
The PBC nðNÞ ¼ nð0Þ along the imaginary time direction is
imposed. Substituting the explicit form of Ĥ into Eq. (B1),
we obtain

hnðkþ1Þje−ΔτĤjnðkÞi ¼
�Y

j

hnðkþ1Þ
j je−ΔτL̂2

j =2KajnðkÞj i
�

× eΔτK=a
P

L
j¼1

nðkÞj ·nðkÞjþ1 : ðB2Þ

Within Eq. (B2), we look at hnðkþ1Þ
j je−ΔτL̂2

j =2KajnðkÞj i first.
By inserting a complete set of angular momentum basis
into it, we get

hnðkþ1Þ
j je−ΔτL̂2

j =2KajnðkÞj i

¼
X∞
l¼0

Xl

m¼−l
hnðkþ1Þ

j jl; mihl; mjnðkÞj ie−Δτlðlþ1Þ=2Ka: ðB3Þ

The summation over m can be handled by the addition
formula of the spherical harmonics,

Plðcos γðkÞj Þ ¼ 4π

2lþ 1

Xl

m¼−l
hnðkþ1Þ

j jl; mihl; mjnðkÞj i; ðB4Þ

where Pl is the Legendre polynomial, and γðkÞj represents

the angle between nðkÞj and nðkþ1Þ
j . In the Δτ → 0 limit, γðkÞj

becomes infinitesimal, and

PlðcosγðkÞj Þ≈1−
1

4
lðlþ1ÞðγðkÞj Þ2≈ exp

�
1

4
lðlþ1ÞðγðkÞj Þ2

�
:

ðB5Þ
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Therefore,

hnðkþ1Þ
j je−ΔτL̂2

j =2KjnðkÞj i

¼
X∞
l¼0

2lþ 1

4π
exp

�
−lðlþ 1Þ

�
γðkÞj Þ2
4

þ Δτ
2Ka

��
ðB6Þ

≈
1

4π

1

Δτ
2Ka þ

ðγðkÞj Þ2
4

ðB7Þ

≈
Ka
2πΔτ

exp

�
−
KaΔτ
2

ð∂τn
ðkÞ
j Þ2

�
; ðB8Þ

where we have introduced ∂τn
ðkÞ
j ¼ γðkÞj =Δτ. From

Eqs. (B6) to (B7), the summation over l is carried out
by the Euler-MacLaurin formula.
Next, we evaluate exp½ΔτðK=aÞPL

j¼1 n
ðkÞ
j · nðkÞjþ1� in

Eq. (B2). Here we assume that the lattice spacing a is

small, and nðkÞj · nðkÞjþ1 ¼ cosðδðkÞj Þ ≈ 1 − ð1=2ÞðδðkÞj Þ2, where
δðkÞj represents the angle between nðkÞj and nðkÞjþ1. Along this
line, we get

exp

�
ΔτK
a

XL
j¼1

nðkÞj · nðkÞjþ1

�

¼ eΔτKL=a exp

�
−
ΔτKa
2

XL
j¼1

ð∂xn
ðkÞ
j Þ2

�
; ðB9Þ

where we have introduced ∂xn
ðkÞ
j ¼ δðkÞj =a.

Combining Eqs. (B2), (B8), and (B9), we get

hnðkþ1Þje−ΔτĤjnðkÞi

¼
�
KaeΔτK=a

2πΔτ

�L

exp
�
−
KΔτa
2

X
j;k

½ð∂τn
ðkÞ
j Þ2

þ ð∂xn
ðkÞ
j Þ2�

�
: ðB10Þ

Substituting this equation into Eq. (B1), and taking the limit
a;Δτ → 0, we find

Z ¼
Z

Dnðx; τÞ exp
�
−
Z

L

0

dx
Z

β

0

dτLðx; τÞ
�
; ðB11Þ

where Dnðx; τÞ≡ lima→0 limΔτ→0

Q
j;kðKaeΔτK=a=2πΔτÞ,

and the Lagrangian density L is given by

L ¼ K
2

�
ð∂τnðx; τÞÞ2 þ ð∂xnðx; τÞÞ2

�
: ðB12Þ

2. θ= π case

For the NLSM with θ ¼ π term, similarly as Eq. (B1),
we write the partition function of Eq. (5) as

Z ¼ Trðe−βĤÞ ¼
Z �YN−1

k¼0

dnðkÞ
��YN−1

k¼0

hnðkþ1Þje−ΔτĤjnðkÞi
�
;

ðB13Þ

where nðkÞ ≡ ðnðkÞ1 ; nðkÞ2 ;…; nðkÞL Þ denotes the kth configu-
rations of the quantum rotors, and nðNÞ ¼ nð0Þ. At each time
slice, we have

hnðkþ1Þje−ΔτĤjnðkÞi

¼
�Y

j

hnðkþ1Þ
j je−ΔτðL̂0

jÞ2=2KajnðkÞj i
�

×exp

�
ΔτK
a

XL
j

nðkÞj ·nðkÞjþ1

�
; ðB14Þ

which is similar to Eq. (B2) except the modified angular
momentum operator and the antiferromagnetic coupling
between the neighboring rotors.
In Eq. (B14), we first focus on the kinetic terms

hnðkþ1Þ
j je−ΔτðL̂0

jÞ2=2KajnðkÞj i, which can be evaluated as

hnðkþ1Þ
j je−ΔτðL̂0

jÞ2=2KajnðkÞj i

¼
X∞
l¼1=2

Xl

m¼−l
hnðkþ1Þ

j jq; l; mihq; l; mjnðkÞj i

× exp

�
−
Δτlðlþ 1Þ

2Ka

�
; ðB15Þ

where jq; l; mi represents the eigenbasis of the modified
angular momentum operator, where q ¼ 1=2. Using the
addition formula of the monopole harmonics [30,31], the
summation over m can be carried out, and we get

Xl

m¼−l
hnðkþ1Þ

j jq;l;mihq;l;mjnðkÞj i

¼ 2lþ1

4
ffiffiffi
2

p
π

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ cosγðkÞj

q
P0;1
l−1=2ðcosγðkÞj ÞÞe−iΩðkÞ

j =2; ðB16Þ

where Pμ;ν
n is the Jacobi polynomial, γðkÞj represents the

angle between njðkÞ and njðkþ 1Þ. ΩðkÞ
j is the area of

the spherical triangular formed by njðkÞ, njðkþ 1Þ, and the
north-pole axis on the unit sphere. As γðkÞj ≪ 1, we have

cos γðkÞj ≈ 1 − ð1=2ÞðγðkÞj Þ2, and Eq. (B16) can be further
simplified as
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Xl

m¼−l
hnðkþ1Þ

j jq; l; mihq; l; mjnðkÞj i

≈
2lþ 1

4π
exp

�ðγðkÞj Þ2
4

�
l2 þ l −

1

4

�
−
iΩðkÞ

j

2

�
: ðB17Þ

Substituting Eq. (B17) into Eq. (B14), and performing the
summation over l with the Euler-MacLaurin formula, we
arrive at

hnðkþ1Þ
j je−ΔτĤjnðkþ1Þ

j i

≈
Ka
2πΔ

exp

�
−
KaΔτ
2

ð∂τn
ðkÞ
j Þ2 − iΩðkÞ

j

2

�
; ðB18Þ

where have introduced ∂τn
ðkÞ
j ≡ γðkÞj =Δτ.

Combining Eq. (B18) with Eqs. (B13) and (B14), we get

Z¼
Z �Y

j;k

dnðkÞj

��
Ka
2πΔ

�
L

×exp

�X
j;k

�
−
KaΔτ
2

ð∂τn
ðkÞ
j Þ2þΔτK

a
nðkÞj ·nðkÞjþ1−

iΩðkÞ
j

2

��
:

ðB19Þ

The continuum in the imaginary time direction can be
straightforwardly taken. To take the continuum limit in the
spatial direction, we split the nðkÞj into the slowly varying

part mðkÞ
j and the rapidly varying part lðkÞj ,

nðkÞj ¼ ð−1ÞjmðkÞ
j þ alðkÞj ; ðB20Þ

where a is the lattice spacing. Substituting Eq. (B20) into
terms in Eq. (B19), we get

ð∂τn
ðkÞ
j Þ2 ¼ ð∂τm

ðkÞ
j Þ2 þ 2að−1Þj∂τm

ðkÞ
m · ∂τl

ðkÞ
j ; ðB21Þ

nðkÞj · nðkÞjþ1 ¼ −mðkÞ
j ·mðkÞ

jþ1 þ ð−1ÞjaðmðkÞ
j · lðkÞjþ1 −mðkÞ

jþ1 · l
ðkÞ
j Þ

¼ −1þ a2

2
ð∂xm

ðkÞ
j Þ2 þ ð−1ÞjaðmðkÞ

j · lðkÞjþ1

−mðkÞ
jþ1 · l

ðkÞ
j Þ; ðB22Þ

where we have introduced ∂xm
ðkÞ
j ¼ ðmðkÞ

j −mðkÞ
j−1Þ=a, and

the higher-order of a are neglected. The surface term ΩðkÞ
j

requires a more careful treatment. Since the neighboring
rotors tend to have an antiparallel alignment, we separate
the summation of surface terms in pairs. We look at each of
these pairs

ΔSð2rÞ ¼
X
k

ðΩðkÞ
2r þΩðkÞ

2r−1Þ; ðB23Þ

which corresponds to the surface area of the ribbon formed

by the trajectories of nðkÞ2r and −nðkÞ2r−1 on the unit sphere. We
calculate ΔSð2rÞ as

ΔSð2rÞ¼Δτ
XN−1

k¼0

ðnðkÞ2r þnðkÞ2r−1Þ · ðnðkÞ2r ×∂τn
ðkÞ
2r Þ

¼Δτa
XN−1

k¼0

ð∂xm
ðlÞ
2r þ lðkÞ2r þ lðkÞ2r−1Þ · ðmðkÞ

2r ×∂τm
ðkÞ
2r Þ:

ðB24Þ

Substituting Eqs. (B21), (B22), (B24) into Eq. (B19), and

integrating out the fast fields lðkÞj , we get

Z ¼
Z �Y

j;k

dmðkÞ
j

�

× exp

�
−
KaΔτ
2

X
j;k

ðð∂τm
ðkÞ
j Þ2 þ ð∂xm

ðkÞ
j Þ2Þ

�

× exp

�
−
iaΔτ
4

X
j;k

mðkÞ
j · ð∂τm

ðkÞ
j × ∂xm

ðkÞ
j Þ

�
: ðB25Þ

Finally, taking the continuum limit, we arrive at

Z ¼
Z

Dmðx; τÞ exp
�
−
Z

L

0

dx
Z

β

0

dτLðx; τÞ
�
; ðB26Þ

where the Lagrangian density is given by

L¼K
2

Z
dxdτ½ð∂xmðx;τÞÞ2þð∂τmðx;τÞÞ2�

þ iθ
4π

Z
dxdτmðx;τÞ · ð∂τmðx;τÞ×∂xmðx;τÞÞ ðB27Þ

with θ ¼ π.

APPENDIX C: NUMERICAL DETAILS

1. Determination of degeneracy sectors
in Uð1Þ-symmetric boundary cMPS

In the cMPO approach, the boundary cMPS is uniform,
and has PBC. For the Uð1Þ-symmetric boundary cMPS,
one has to determine the degeneracy sectors on the vertical
bonds, which further determines the block structures in the
cMPS local tensors. However, unlike the open-boundary
MPS simulations, it is difficult to determine an optimal
choice for these degeneracy sectors. In our simulation,
we dynamically determine the degeneracy sectors during a
power method process.
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As is discussed in Sec. III B, we initialize the variational
optimization of the boundary cMPS by a few steps of power
method process. To start with, we construct an initial cMPS
by using the cMPO tensors at the boundary sites. Using the

right boundary cMPS as an example, the local tensor Tð0Þ
ψ of

the initial cMPS jψ ð0Þi can be obtained from the local
tensor T [see Eqs. (6) and (7)],

T ¼
�
I þ ϵQ

ffiffiffi
ϵ

p
Rffiffiffi

ϵ
p

L P

�
→ Tð0Þ

ψ ¼
�
I þ ϵQffiffiffi

ϵ
p

L

�
: ðC1Þ

The Uð1Þ degeneracy sectors for jψ ð0Þi are simply derived
from those for the cMPO. Next, we repeatedly act the
cMPO T on the cMPS, and compress the cMPS variation-
ally if the bond dimension exceeds the target bond
dimension χ. By considering the truncation scheme illus-
trated in Fig. 6, we initialize the variational compression
process and determines the degeneracy sectors. Suppose we
are at the nth power method step, and we act the cMPO T
on the cMPS jψ ðnÞi. We construct a reduced density matrix
ρðnÞ by cutting one horizontal bond of T jψ ðnÞi in the tensor
network corresponding to hψ ðnÞjT †T jψ ðnÞi, as shown in
Fig. 6(a) and (b). The reduced density matrix ρðnÞ also has a
block-diagonalized structure due to the Uð1Þ symmetry,
and it shares the same degeneracy structure with T jψ ðnÞi.

After diagonalizing ρðnÞ, by keeping χ eigenvalues with the
largest abstract values, we can obtain an isometry and insert
it into T jψ ðnÞi, which can be used as the starting point for
the variational compression [see Fig. 6(c) and (d)]. The
degeneracy sectors for ψ ðnþ1Þ can be automatically deter-
mined during this process.
Finally, after a few power steps described above, we can

further optimize the boundary cMPS by variationally
minimizing the free energy globally.

2. Extrapolation to the infinite bond dimension

For each set of parameters, the bond dimension for the
boundary cMPS ranges among χ ¼ 12; 18; 24; 30. We
eliminate the bias brought by the finite χ and extrapolate
the data to the infinite bond dimension.
Our extrapolation procedure follows that given in

Ref. [29]. First, we perform a linear fitting with respect
to 1=χ for the data corresponding to the largest three bond
dimensions χ ¼ 18; 24; 30 (see Fig. 7). The estimation for
the extrapolation to infinite bond dimension is obtained by
taking the average of the linear extrapolation result and the
result corresponding to the largest bond dimension χ ¼ 30.
The error for this estimation is given by half of the
difference between the linear extrapolation result and the
χ ¼ 30 result.

FIG. 6. The initialization of the variational compression by
inserting isometries into the cMPS. (a) The tensor network
representation of the reduced density matrix. The red and blue
tensors represent the cMPS and cMPO tensors respectively.
(b) The reduced density matrix. (c) The truncation of the reduced
density matrix which gives the isometry. (d) Truncation by
inserting the isometries into the cMPS.

FIG. 7. Examples for the linear extrapolation with respect to
1=χ using the data with the three largest χ’s for K ¼ 2; lmax ¼
5=2; Kβ ¼ 200 [Figs. (a), (c)] and K ¼ 5; lmax ¼ 5=2; Kβ ¼ 200
[Figs. (b), (d)]. Figures (a), (b) and (c), (d) respectively show the
linear extrapolation of the free energy and bipartite entanglement
entropy. In each figure, the circle-shaped dots represent the data
points used for the linear regression, and the square-shaped dots
represent the unused data. The red solid lines denote the linear
fitting of the data.
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[40] M. Sanz, M. M. Wolf, D. Pérez-García, and J. I. Cirac, Phys.
Rev. A 79, 042308 (2009).

[41] S. Singh, R. N. C. Pfeifer, and G. Vidal, Phys. Rev. A 82,
050301 (2010).

[42] S. Singh, R. N. C. Pfeifer, and G. Vidal, Phys. Rev. B 83,
115125 (2011).

[43] See https://github.com/tensorBFS/U1cMPO for code imple-
mentation in Julia.

[44] I. Affleck, Phys. Rev. Lett. 56, 746 (1986).
[45] H.W. J. Blöte, J. L. Cardy, and M. P. Nightingale, Phys.

Rev. Lett. 56, 742 (1986).
[46] C. Holzhey, F. Larsen, and F. Wilczek, Nucl. Phys. B424,

443 (1994).
[47] G. Vidal, J. I. Latorre, E. Rico, and A. Kitaev, Phys. Rev.

Lett. 90, 227902 (2003).
[48] P. Calabrese and J. Cardy, J. Stat. Mech. Theor. Exp. 2004,

P06002 (2004).
[49] P. Calabrese and J. Cardy, J. Phys. A Math. Theor. 42,

504005 (2009).
[50] I. Affleck, D. Gepner, H. J. Schulz, and T. Ziman, J. Phys. A

22, 511 (1989).
[51] S. Singh and G. Vidal, Phys. Rev. B 86, 195114 (2012).
[52] A. Weichselbaum, Ann. Phys. (Amsterdam) 327, 2972

(2012).
[53] P. Schmoll, S. Singh, M. Rizzi, and R. Orús, Ann. Phys.

(Amsterdam) 419, 168232 (2020).

TENSOR NETWORK SIMULATION OF THE (1þ 1)- … PHYS. REV. D 104, 114513 (2021)

114513-13

https://doi.org/10.1016/0370-2693(77)90707-9
https://doi.org/10.1016/0370-2693(75)90161-6
https://doi.org/10.1098/rspa.1961.0018
https://doi.org/10.1016/0550-3213(78)90439-X
https://doi.org/10.1016/0550-3213(78)90432-7
https://doi.org/10.1016/0550-3213(78)90432-7
https://doi.org/10.1016/0920-5632(94)90751-X
https://doi.org/10.1103/PhysRevLett.50.1153
https://doi.org/10.1016/0375-9601(83)90631-X
https://doi.org/10.1016/0550-3213(90)90437-I
https://doi.org/10.1103/PhysRevB.36.5291
https://doi.org/10.1103/PhysRevB.36.5291
https://doi.org/10.1088/0953-8984/1/19/001
https://doi.org/10.1016/0370-2693(71)90582-X
https://doi.org/10.1007/BF01215276
https://doi.org/10.1103/PhysRevLett.75.4524
https://doi.org/10.1103/PhysRevLett.75.4524
https://doi.org/10.1007/JHEP04(2012)117
https://doi.org/10.1103/PhysRevD.86.075006
https://doi.org/10.1103/PhysRevD.86.075006
https://doi.org/10.1103/PhysRevLett.98.257203
https://doi.org/10.1103/PhysRevLett.98.257203
https://doi.org/10.1103/PhysRevD.77.056008
https://doi.org/10.1103/PhysRevD.86.096009
https://doi.org/10.1103/PhysRevD.86.096009
https://doi.org/10.1103/PhysRevB.90.184421
https://doi.org/10.1103/PhysRevB.90.184421
https://doi.org/10.1088/1361-6633/ab6311
https://doi.org/10.1088/1361-6633/ab6311
https://arXiv.org/abs/2010.06539
https://arXiv.org/abs/2010.06539
https://doi.org/10.1103/PhysRevLett.125.170604
https://doi.org/10.1103/PhysRevLett.125.170604
https://doi.org/10.1103/PhysRevLett.41.1337
https://doi.org/10.1103/PhysRevLett.41.1337
https://doi.org/10.1103/PhysRevD.19.3091
https://doi.org/10.1103/PhysRevD.19.3091
https://doi.org/10.1103/PhysRevD.93.085012
https://doi.org/10.1103/PhysRevD.99.074501
https://doi.org/10.1103/PhysRevD.99.074501
https://doi.org/10.1016/0550-3213(76)90143-7
https://doi.org/10.1103/PhysRevD.16.1018
https://doi.org/10.1103/PhysRevA.78.022103
https://doi.org/10.1103/PhysRevA.78.022103
https://arXiv.org/abs/1708.09349
https://doi.org/10.1103/PhysRevB.91.165112
https://doi.org/10.1088/0953-8984/8/40/003
https://doi.org/10.1088/0953-8984/8/40/003
https://doi.org/10.1103/PhysRevB.56.5061
https://doi.org/10.1103/PhysRevB.58.9142
https://doi.org/10.1103/PhysRevLett.100.167202
https://doi.org/10.1103/PhysRevA.79.042308
https://doi.org/10.1103/PhysRevA.79.042308
https://doi.org/10.1103/PhysRevA.82.050301
https://doi.org/10.1103/PhysRevA.82.050301
https://doi.org/10.1103/PhysRevB.83.115125
https://doi.org/10.1103/PhysRevB.83.115125
https://github.com/tensorBFS/U1cMPO
https://github.com/tensorBFS/U1cMPO
https://doi.org/10.1103/PhysRevLett.56.746
https://doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1103/PhysRevLett.56.742
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1016/0550-3213(94)90402-2
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1103/PhysRevLett.90.227902
https://doi.org/10.1088/1742-5468/2004/06/p06002
https://doi.org/10.1088/1742-5468/2004/06/p06002
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/1751-8113/42/50/504005
https://doi.org/10.1088/0305-4470/22/5/015
https://doi.org/10.1088/0305-4470/22/5/015
https://doi.org/10.1103/PhysRevB.86.195114
https://doi.org/10.1016/j.aop.2012.07.009
https://doi.org/10.1016/j.aop.2012.07.009
https://doi.org/10.1016/j.aop.2020.168232
https://doi.org/10.1016/j.aop.2020.168232

