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In this work we investigate the lattice Landau gauge photon propagator together with the average
number of Dirac strings in the compact formulation of QED for the pure gauge version of the theory as a
function of the coupling constant. Their β dependence show that these two quantities can be used to identify
the confinement-deconfinement transition and that the nature of this transition is first order. Our results
show that in the confined phase the propagator is always finite, the theory has a mass gap and the number of
Dirac strings present in a configuration is two orders of magnitude larger than in the deconfined phase.
Furthermore, in the deconfined phase where β ≥ 1.0125 the theory becomes massless, there are essentially
no Dirac strings and the photon propagator diverges when the limit p → 0þ is taken. Our results illustrate
the importance of the topological structures in the dynamics of the two phases.
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I. INTRODUCTION AND MOTIVATION

The regularization of QED using a hypercubic lattice [1]
takes as fundamental fields the link variables

UμðxÞ≡ expfieaAμðxþ aêμ=2Þg; ð1Þ

where Aμ is the bare continuum photon field, a is the lattice
spacing, e is the bare coupling constant and êμ is the unit
vector along direction μ. The link variables UμðxÞ are
defined on a compact manifold, they cover the unit circle
centered around the origin of the complex plane. On the
other hand, the continuum photon field spans the real
numbers. The phase diagram of the regularized compact
formulation of QED has two phases [2] that are distin-
guished by the value of the bare coupling constant or,
equivalently, by β ¼ 1=e2.
For low values of β, i.e., in the strong coupling limit, the

static potential between fermion fields grows linearly with
the distance between the fermion sources and the theory is
confining. For β ≳ 1, i.e., in the weak coupling limit, the
static potential becomes essentially constant at large dis-
tance separations, the theory is no longer confining, and the

results of the lattice formulation of QED approach those of
the perturbative solution of the continuum theory after
taking the thermodynamic limit [3–18].
The confinement mechanism seems to be related to the

topological structure of the Abelian gauge group Uð1Þ that,
for the 3D case, is associated with the presence of Dirac
monopoles. These classical configurations are absent in the
deconfined phase but are observed in the confined phase
[19–23]. Furthermore, in four dimensions, the confined
phase has a mass gap [14]. In the strong coupling limit
compact QED has a mechanism that generates a photon
mass gap1 and the theory is confining.
The presence of a mass gap is also observed in the

simulation of non-Abelian gauge theories. Indeed, the
generation of mass scales was observed in non-Abelian
gauge theories as in QCD and in the pure Yang-Mills SU(2)
gauge theory [24–47].
The understanding of the confinement mechanism for

non-Abelian gauge theories and its possible connection
with the generation of mass gaps is still a fundamental open
problem for particle physics. Hopefully, the comparison of
the compact QED formulation with the non-Abelian case
will bring further insight into the confinement problem.
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1The photon propagator being finite in the confined phase
means that its functional form should be of the type Zðp2Þ=ðp2 þ
M2ðp2ÞÞ and that the running photon mass M2ðp2Þ does not
vanish in the infrared region. In the main text when we do refer to
a photon mass we have in mind the functionMðp2Þ. Recall that in
the deconfined phase the propagator is compatible with a
divergent behaviour that implies a vanishing M2ðp2Þ at zero
momentum. It is in this sense that the deconfined phase is
understood as being a massless theory.
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The dynamical properties of compact QED depend on
the value of β. This dependence translates into deep
changes in the properties of the QED Green functions,
i.e., in the propagators and vertices of the theory. Indeed,
the computation of the photon propagator in the Landau
gauge for pure gauge lattice compact QED at low β and at
high β illustrates those differences [10,14,18,48,49]. For
the confined low β phase, the photon propagator seems to
be described by a Yukawa-type of propagator. The theory
has a mass gap and the topological structures, measured by
the average number of Dirac strings that are observed in the
gauge configurations, are orders of magnitude higher than
in the large β phase where confinement is not present.
Furthermore, in the deconfined high β phase the photon
propagator seems to approach the continuum like 1=p2

behavior of a free field theory as we go towards higher
volumes.
In the current work we revisit the Landau gauge photon

propagator computed using the lattice formulation of pure
gauge compact QED in four dimensions and study its β
dependence. The investigations reported here complement
the recently published paper [14] that illustrates how
different the photon propagator is in the confined and
deconfined phases.
Our study shows that in the confined phase the photon

propagator is finite over the full range of momenta (i.e., it
has a mass gap), while in the deconfined phase it seems to
diverge as p → 0. For the deconfined phase the zero
momentum propagator increases with β. The average
number of Dirac strings present in the gauge configurations
is also phase dependent. The number of Dirac strings is
much larger in the confined phase, in comparison with the
deconfined phase where the Dirac strings are almost
nonexistent. Moreover, the average number of Dirac strings
is strongly correlated with the properties of the photon
propagator and this correlation suggests that the origin of
the photon mass observed in the confined phase is due to
these topological structures. Although we do not compute
the photon mass as a function of the coupling constant, as
this would require modelling the propagator, in the con-
fined phase the propagator is finite for all momenta, a result
that can be viewed as due to the generation of a finite
nonvanishing running mass for the photon field. In the
same sense, the divergence of the photon propagator at zero
momentum in the deconfined phase can be read as an
indication that the theory becomes massless.
Our results show that the transitionbetween the twophases

can be clearly identified by looking either at the photon
propagator data or at the average number of Dirac strings.
From either of these two quantities it is possible to estimate
the corresponding critical value of βc where the phase
transition occurs. In this sense, the analysis of the propagator
and/or thenumber ofDirac strings shows that these quantities
can be used as order parameters for the confinement-
deconfinement transition for pure gauge compact QED.

Further, the photon propagator and the Dirac strings data
show that the transition to the deconfined phase is of first
order in good agreement with the literature [5,7–9,11,50].
The understanding of the phase diagram of compact

QED is important per se. Historically QED is the first
quantum field theory to be studied and has furnished a
number of results and methods that were later generalized
to other types of theories. Also QED is a part of the
Standard Model of particle physics and the interplay of
electrodynamics with strong interactions is currently a
subject of research. Furthermore, it is essential to have a
good theoretical understanding of QED to perceive the
Higgs sector of the Standard Model and of Abelian Higgs
models, that are also relevant for condensed matter systems.
QED has a fundamental role in condensed matter physics
and atomic physics and Uð1Þ gauge theories are also being
used to explore the possibility of performing realistic
simulations with quantum computers.
The paper is organized as follows. In Sec. II we define

the theoretical setup of our study, giving details on the
gauge fixing and on the computation of the photon
propagator. In Sec. III we report on the photon propagator
results for various β and how the propagator evolves with β.
In Sec. IV the Dirac string content and distributions in the
different phases of the theory is analyzed. The correlation
of these topological structures with the photon propagator
data is also discussed there. Issues related to the perfor-
mance of the sampling with the hybrid Monte Carlo
method are also touched. Finally, in Sec. V we summarize
and conclude.

II. PURE GAUGE COMPACT QED

The simulations considered herein refer to the compact
version of QED defined on an hypercubic lattice and
described by the Wilson action. In Euclidean space the
Wilson action reads

SWðUÞ ¼ β
X
x

X
1≤μ;ν≤4

f1 −ℜ½UμνðxÞ�g; ð2Þ

where the plaquette operator is given by

UμνðxÞ ¼ UμðxÞUνðxþ aêμÞU†
μðxþ aêνÞU†

νðxÞ ð3Þ

that, in the continuum limit, is

UμνðxÞ ¼ exp

�
ie
I
C
AμðzÞdzμ

�
; ð4Þ

with C being any closed curve that contains in its interior
the point x and whose points are infinitesimally close to x.
On an hypercubic lattice whose lattice spacing is a, the link
variables are related to the photon field Aμ by Eq. (1).
It follows from the definition given in Eq. (3) that the
exponential term is the change of the photon field around a
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plaquette centered at xþ aðêμ þ êνÞ=2. Indeed, writing for
the plaquette

UμνðxÞ ¼ exp fieaðΔAμνðxÞÞg; ð5Þ

given that −π ≤ eaAμ ≤ π and that −π ≤ eaΔAμνðxÞ ≤ π,
it follows that

ΔAμνðxÞ ¼ Aμ

�
xþ a

2
êμ

�
þ Aν

�
xþ aêμ þ

a
2
êν

�

− Aμ

�
xþ aêν þ

a
2
êμ

�
− Aν

�
xþ a

2
êν

�

þ 2πmμνðxÞ
ea

; ð6Þ

where the integer field mμνðxÞ measures the number of
Dirac strings that cross the plaquette associated with
UμνðxÞ. In a simulation, for a given gauge configuration,
the field mμνðxÞ can be computed by combining links and
plaquettes as described in [14,51]. As was shown in [14],
the confined and deconfined phases can be distinguished by
looking at mμνðxÞ or to its average over the lattice.
In the simulations reported below, the links were

sampled with the Wilson action (2), relying on the hybrid
Monte Carlo method (HMC) [52] that was implemented
with the Chroma library that requires the QDP++ library
[53]. It is well known that the HMC has problems
simulating compact QED [54,55], as the various topologi-
cal sectors are not properly sampled. The topological
freezing of the HMC becomes more important close to
the transition between the confined and deconfined region
and also in the deconfined phase.
In an effort to estimate the bias introduced by the

sampling method, close and above the transition between
the two phases, i.e., for β ≥ βc, several simulations were
performed using the same β and taking different starting
points to initiate the Monte Carlo. We also considered long
runs for some of the βs. Our results show that for β ≤ βc the
different Markov chains result in the same photon propa-
gator. However, for β ≥ βc the photon propagators differ
between the different simulations. A correlation between
the photon propagator and the average value of Dirac
strings is observed; see the results of Sec. IVA for details.
For β ≥ βc the propagators for the different simulations
with the same β value overlap in the UV region but show
different functional forms in the infrared region. We also
find that for β ≥ βc and for the different simulations with
the same β, the photon propagator resulting from the
configurations with the smaller number of Dirac strings
is closer to the perturbative propagator. The deconfined
high β phase the photon propagator obtained with the
hybrid Monte Carlo method shows a dependence on the
initial configuration in the infrared region. The overall
analysis of the β dependence is robust and does not change

qualitatively by taking either of the photon propagators
computed for β > βc. On the other hand, for the confined
low β phase our results suggest that the HMC is robust. For
the deconfined high β phase our simulations confirm the
sampling problems of the hybrid Monte Carlo method
previously identified in the literature.
After importance sampling, the links were rotated

towards the Landau gauge as in [14]. On a first stage,
we rely on the linear definition for the photon field given by

eaAμ

�
xþ a

2
êμ

�
¼ UμðxÞ −U†

μðxÞ
2i

ð7Þ

and maximize the functional

F½U; g� ¼ 1

VD

X
x;μ

ℜ½gðxÞUμðxÞg†ðxþ aêμÞ� ð8Þ

over the gauge orbit. In Eq. (8) gðxÞ ∈ Uð1Þ, V is the total
number of lattice points and D the Euclidean spacetime
dimension. In a second stage, the photon field is computed
with the logarithmic definition

eaAμ

�
xþ a

2
êμ

�
¼ −i lnðUμðxÞÞ; ð9Þ

which provides an exact definition, up to machine pre-
cision, and does not rely on the use of a small lattice
spacing. Then, the Landau gauge condition is achieved by
maximizing, over the gauge orbits, the functional [56]

F̃½U; g� ¼ 1

VD

X
x;μ

�
1 − a2e2

�
AðgÞ
μ

�
xþ a

2
êμ

��
2
�
; ð10Þ

where the field eaAðgÞ is the photon field as given by Eq. (9)
using the links UμðxÞ gauge transformed by gðxÞ. The
gauge fixing towards the Landau gauge is, in all cases,
monitored computing the lattice version of ∂ · A and, for
each stage, the gauge fixing was stopped for an averaged
value over the lattice of j∂ · Aj2 < 10−15. Further details on
the gauge fixing can be found in [14].
The optimizing functions that define the Landau gauge

on the lattice have multiple maxima that lead to different
Landau gauge configurations, the Gribov copies. In all the
simulations we ignored the various maxima and the Landau
gauge fixing was performed starting the iterative process
with gðxÞ ¼ 1 and performing a single maximization for
each gauge configuration obtained with the Monte Carlo
sampling of the Wilson action.
From the link variables, the momentum space photon

field is computed [57] with the definition

AμðpÞ ¼
X
x

e−ip·ðxþa
2
êμÞAμ

�
xþ a

2
êμ

�
; ð11Þ
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using the spacetime photon field given in (9). The Landau
gauge propagator is defined as

hAμðp1ÞAνðp2Þi ¼ Vδðp1 þ p2ÞDμνðp1Þ; ð12Þ

where h� � �i stands for the average over the gauge fields.
The analysis of the propagator is performed assuming that
the propagator has the same tensor structure as in the
continuum

DμνðpÞ ¼
�
δμν −

pμpν

p2

�
Dðp̂Þ: ð13Þ

The form factor Dðp̂Þ is a function of the tree level
improved momenta

p̂ ¼ 2

a
sin

�
π

L
nμ

�
;

nμ ¼ −
L
2
;−

L
2
þ 1;…; 0; 1;…;

L
2
− 1; ð14Þ

where L is the number of lattice points in each side of the
hypercubic lattice. The rationale for using p̂ instead of
the naïve lattice momenta p ¼ 2πnμ=aL is to reduce the
finite space effects in the propagator [58,59], a procedure
developed for asymptotically free field theories. The lattice
data for the propagator shown here satisfies the conical and
cylindrical momentum cuts [58] for ap̂ > ΛIR. These
momentum selections were set to further suppress the
finite space effects and to produce a well defined curve
from the lattice data. For ap̂ ≤ ΛIR we follow [24] and
consider all the momenta accessed in the simulations. In all
cases we use ΛIR ¼ 0.4.
Assuming that the propagator tensor structure is as given

in Eq. (13), then

Dðp̂Þ ¼
(

1
3

P
4
μ¼1DμμðpÞ; p̂ ≠ 0

1
4

P
4
μ¼1DμμðpÞ; p̂ ¼ 0

: ð15Þ

The propagators for the different β values were com-
puted on a 484 hypercubic lattice using the last (in the
Markov chain) 200 gauge configurations. The statistical
errors are evaluated with the bootstrap method for a
confidence level of 67.5%, except for the fits where we
use Gaussian error propagation.

III. THE PHOTON PROPAGATOR
FOR VARIOUS β

In this work we measure the photon propagator for β
ranging from 0.2 up to 2.0, covering in detail the region
β ≈ 1, where the transition between the two phases is
expected to occur.
The bare photon propagator form factorDðp̂Þ is reported

in Fig. 1 as a function of the dimensionless improved

momentum. The various plots have different vertical scales
and, in particular, for the higher β the vertical scale is
logarithmic. In Fig. 2 (upper plot) the bareDð0Þ is shown as
a function of β. For the deconfined phase the plots also
include the results of different simulations that were
performed starting the Markov chain differently. The data
just referenced is bare lattice data and, therefore, its
comparison should be done with care. The bottom plot
in Fig. 2 refers to renormalized propagators; there is more
on renormalization later. This bottom plot reports only
the data associated with the orange points in the upper
(unrenormalized) plot.
As Fig. 2 shows, for large β there is some dependence of

Dð0Þ on the starting configuration used to start the Markov
chain; see the points marked with different colors for the
same β. However, the overall result, i.e., the sharp transition
from a low Dð0Þ to a large Dð0Þ, is not spoiled by the
problems that can be ascribed to the sampling method.
The data in Fig. 1 includes only the results of the runs

that are reported in Fig. 2 in orange. The bare data in Fig. 1
suggest that the photon propagator is enhanced at low
momenta, when compared to the higher momenta, for all β
values, with the enhancement of Dð0Þ increasing with β.
Moreover, comparing the various plots there seems to be a
change in the functional form of Dðp̂Þ at β ≈ 1.0125, with
Dðp̂Þ becoming much steeper in the low momentum region
for larger β. For β ≳ 1.0125 the propagator becomes steeper
and steeper as β increases. This behavior hints that above
this β value, the photon propagator is divergent in the
thermodynamical limit and, hopefully, recovers the 1=p2

perturbative behavior of a free field theory. The analysis of
the volume dependence of the β ¼ 1.2 Landau gauge
photon propagator data of [14] supports this claim.
The bare lattice data forDð0Þ in Fig. 2 also shows a sharp

variation when β goes from ∼0.8 to ∼1.1 that is associated
with the transition to the deconfined continuumlike phase.
It is possible to identify two baselines for Dð0Þ in this
figure for β ≲ 0.8 and for β ≳ 1.1. Note however, that for
large β the curve associated with Dð0Þ does not seem to be
so well defined due to problems with the sampling method.
Despite these problems the presence of a much higher
typical value for Dð0Þ for β > βc survives to the tests that
were performed.
In order to compare the propagators for the different β

values, one should renormalize the lattice data. The
problem for pure gauge QED being that there is no clear
way to set the scale for its lattice formulation, which makes
it impossible to choose a given momentum scale to
renormalize the photon field and, therefore, one has to
look for alternatives. As a tentative method to overcome the
problem of the scale setting, we choose to fix the high
momentum behavior of the photon propagator to renorm-
alize the theory assuming that Dðp̂Þ is independent of β in
the ultraviolet region. In order to use such a procedure one
has to assume that in all the simulations the asymptotic
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ultraviolet region is accessed for all β values. As the results
show, see the insertions in Fig. 1, this assumption seems to
be validated by the lattice data.
As a first step towards renormalizing the lattice data, for

each β value the data for momenta in the range ap̂ ∈
½3.5; 4� is fitted to the following functional form

DFitðxÞ ¼ aþ b
x2

: ð16Þ

Typical values for the χ2=d:o:f: for the fits are below 1.6,
with 0.62 and 2.2 being the smallest and highest observed
figures, respectively. Then, for each β, the corresponding fit
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FIG. 1. Dimensionless photon propagator as a function of β for the momenta selected by the cuts. Note the differences in the vertical
scale. In the bottom plots the vertical scale is logarithmic. The left graphs report the bare photon propagator, while the right graphs show
the renormalized photon propagator as described in the main text. For the renormalized propagator the inserted plots include only the
high momenta, with the exception of the bottom one that also shows the low momenta propagator for the larger β values considered.
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is used to set DðaμÞ ¼ 1 at aμ ¼ 3.8. Recall that ap̂ ¼ 4
is the highest dimensionless momentum accessed in the
simulation and our choice of aμ is the middle point of the
fitting range.
Similarly as observed for the bare lattice data, the

renormalized propagators show a drastic change in the
low momentum region for β ≳ 1.0125. The data in Fig. 2
shows a transition from low β and low Dð0Þ, that starts at
β ≈ 0.8 and ends at β ≈ 1.1, with Dð0Þ taking relatively
large values for β ≳ 1.1 (note the log scale on the vertical
axis). Note also that again for β ≈ 1.1 and above there
seems to be some dispersion on the values of Dð0Þ that are,
in principle, due to the use of the hybrid Monte Carlo
method as a sampling method.
The photon propagator data shows that this two point

correlation function, through the form factor Dðp̂Þ, can be
used to distinguish the phases of pure gauge compact QED.
It follows that the dynamics of the gauge fields in the
confined and deconfined phases are rather different.

Our conclusion for the photon propagator is inline with
similar studies for QCD where the gluon propagator was
studied as a function of the temperature [60,61]. Indeed,
these studies shows that the gluon propagator can be used
to distinguish the confined and deconfined phases and
some authors suggested that Dð0Þ can be used as an order
parameter for the deconfinement transition. Furthermore,
for the deconfined region the gluon propagator can also be
used to distinguish the topological sectors that are asso-
ciated with the center symmetry in the pure gauge Yang-
Mills theory [62].

IV. DIRAC STRINGS AND THE CONFINEMENT
AND DECONFINEMENT PHASES

The integer field mμνðxÞ is related to the topology of the
gauge fields as it measures the presence of Dirac strings in
the gauge configurations. For the two classes of gauge
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FIG. 2. Dimensionless zero momentum bare (upper plot) and
renormalized (lower plot) photon propagator for various β. Note
the logarithmic scale for the vertical axis. The points associated
with the same β but different color are the outcome of different
sampling histories (see text for further details).
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FIG. 3. Dirac string distribution on a 324 lattice for the confined
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configurations considered in [14], those in the confined
phase (β ¼ 0.8) and those in the deconfined phase
(β ¼ 1.2), mμνðxÞ was measured, and in Fig. 9 of [14]
the average value over the lattice of jmμνj for the Landau
gauge configurations for β ¼ 0.8 and β ¼ 1.2 is illustrated.
For these βs the average value over the lattice of jmμνj
differs by two orders of magnitude, with the larger value
being associated with the configurations in the confined
phase (β ¼ 0.8). This was taken as an indication that Dirac
strings play a major role in the dynamics of the confined
phase and are at the origin of the observed mass gap.
In Fig. 3 we report the typical distribution of the integer

field mμν for 324 gauge configurations in either of the
phases. The upper plot refers to a configuration in the
confined phase, while the lower plot is for a configuration
in the deconfined phase. In both cases the averages over the
lattice of mμν are compatible with zero. In Fig. 3 we do not
show the bar associated with mμν ¼ 0 that clearly domi-
nates the distribution. Indeed, for the configuration in the
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FIG. 4. Ensemble average of the mean density of Dirac strings
as a function of β.
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confined (β ¼ 0.8) phase the number of vanishing mμν is
about 16 times the number of mμν ¼ �1, while for
deconfined phase this ratio increases to about 695. In
the deconfined phase, the number of vanishing m is larger
by a factor of ∼43 relative to the confined case and the
distribution of m ≠ 0 becomes asymmetric. These obser-
vations explains the pattern of the nongauge invariant
quantity

m ¼ 1

6V

X
x;μ<ν

jmμνðxÞj ð17Þ

reported in [14], see their Fig. 9, and why m decreases
drastically in the deconfined phase in comparison with the
confined phase.
Our new simulations offer an opportunity to monitor

how the number of Dirac strings evolves with β and
its connection with the generation of the photon mass
gap. We remind the reader that the mass gap is identified

with a finite Dð0Þ but no attempt is made to measure
its value.
Figure 4 reports on the ensemble averages of m, named

hmi, as a function of β. This quantity takes larger values in
the confined phase and smaller β values, it has a sudden
drop around β ∼ 1 and fluctuates at rather small values for
β ≳ 1. To illustrate its quantitative behavior, the quantity
hmi goes from 0.1764749(47) at β ¼ 0.2 to 1.206ð18Þ ×
10−3 for β ¼ 1.2 that represents a reduction by a factor
of ∼146.
The comparison of Figs. 4 and 2 establishes a correlation

between Dð0Þ and hmi. Indeed, Dð0Þ follows the opposite
behavior of hmi with a fast change and an almost infinite
slope, taking place at the same β values. The sudden
increase of Dð0Þ, which can be translated into a sudden
decrease of the photon mass gap, occurs exactly when hmi
drops and becomes close to zero. This behavior suggests,
once more, that the Dirac strings have a primordial role in
the confined phase. The correlation between the evolution
with β of Dð0Þ and hmi suggests that the Dirac strings are
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FIG. 6. Bare dimensionless data for p2Dðp2Þ and for several β from simulations using a different starting point in the Markov chain.
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also at the origin of the photon mass that is nonvanishing
only in the confined phase.

A. The hybrid Monte Carlo sampling
and the photon propagator

As mentioned previously, the hybrid Monte Carlo
method seems to have problems in sampling the Wilson
action for compact QED. To check for possible bias, for a
number of βs several simulations were run using different
gauge configurations to start the Markov chain, and then
compare the corresponding propagators and the associated
topological structures as measured by hmi.
In Fig. 5 we report on the photon propagator computed at

several β using the results of the Monte Carlo simulations
initiated with different starting points. For the smallest β
value, that is below the confinement-deconfinement tran-
sition, the photon propagators coming from the two
simulations are equal within one standard deviation, both
evaluations of the propagator are finite at zero momentum
and the corresponding hmi’s are compatible within errors.
This suggests that below the confinement-deconfinement
transition the hybrid Monte Carlo method is robust and
does a proper sampling of the compact QED action.
On the other hand, the simulations performed in the

deconfined phase, i.e., for β > 1, show that the evaluation
of the photon propagator with the hybrid Monte Carlo
method is (i) sensitive to the initialization of the Markov
chain, although in all cases the propagator increases and
seems to diverge as one approaches the p → 0þ limit and
(ii) for the ensembles with the same β those with smaller
average number of Dirac strings seem to have a propagator
that is closer to the free field propagator 1=p2 behavior in
the infrared region. This is better seen in Fig. 6 where the
photon dressing function p2Dðp2Þ is plotted. For a free
field type of propagator the dressing function should be
constant.
As Figs. 5 and 6 show, in the deconfined phase the

configurations with the smallest hmi have a dressing
function that is essentially flat and it is in this sense that
the propagator is closer to a free field theory propagator.
The deviations from a 1=p2 propagator are larger in the
infrared region. Furthermore, these figures also show that it
is closer to the confinement-deconfinement transition that
the hybrid Monte Carlo method performs worst, as this is
where the propagators differ the most. See, in particular,
the propagators computed from the various simulations at
β ¼ 1.0125.

V. SUMMARY AND CONCLUSIONS

In this work the lattice Landau gauge photon propagator
together with the average number of Dirac strings is studied
in the compact formulation of QED for the pure gauge
version of the theory. Following the procedure imple-
mented in [14], the confined phase and deconfined phase
propagators are computed. Our results show a correlation
between the two quantities that clearly identify the confine-
ment-deconfinement transition. The analysis of the propa-
gator data suggests that it is for β ≥ 1.0125 that the photon
propagator becomes closer to a free propagator.
The simulations also show that the functional form of

the photon propagator is different in each phase. In the
confined phase the propagator is finite over the full range of
momenta, an indication that the theory has a mass gap for
low β. For the deconfined phase the photon propagator
becomes compatible with a divergent propagator in the
infrared region, suggesting that it reproduces a free field
like propagator in the thermodynamic limit. Note that in the
present work we do not investigate the thermodynamic
limit of the theory but this conclusion comes from
combining the new results with those of [14].
The differences observed in the photon propagator as a

function of β correlated well with the average number of
Dirac strings present in the gauge configurations, i.e., with
the topological structure of the gauge group. Indeed, the
simulations show that the presence of a large number of
Dirac strings results in a theory with a mass gap that
vanishes in the deconfined phase. It is in the deconfined
phase where there are essentially no Dirac strings found in
the gauge configurations.
The results discussed here also show that both the photon

propagator and the number of Dirac strings can be used to
distinguish the two phases of the lattice compact QED
formulation. Furthermore, from the analysis of the data for
these two quantities, it seems that the transition between the
confined and deconfined phase is first order.
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