
Finite-size scaling around the critical point in the
heavy quark region of QCD

Atsushi Kiyohara,1 Masakiyo Kitazawa ,1,2 Shinji Ejiri ,3 and Kazuyuki Kanaya 4

1Department of Physics, Osaka University, Toyonaka, Osaka 560-0043, Japan
2J-PARC Branch, KEK Theory Center, Institute of Particle and Nuclear Studies, KEK,

203-1, Shirakata, Tokai, Ibaraki 319-1106, Japan
3Department of Physics, Niigata University, Niigata 950-2181, Japan

4Tomonaga Center for the History of the Universe, University of Tsukuba,
Tsukuba, Ibaraki 305-8571, Japan

(Received 3 August 2021; accepted 1 November 2021; published 22 December 2021)

Finite-size scaling is investigated in detail around the critical point in the heavy quark region of nonzero
temperature QCD. Numerical simulations are performed with large spatial volumes up to the aspect ratio
Ns=Nt ¼ 12 at a fixed lattice spacing with Nt ¼ 4. We show that the Binder cumulant and the distribution
function of the Polyakov loop follow the finite-size scaling in the Zð2Þ universality class for large spatial
volumes with Ns=Nt ≥ 9, while, for Ns=Nt ≤ 8, the Binder cumulant becomes inconsistent with the Zð2Þ
scaling. To realize the large-volume simulations in the heavy quark region, we adopt the hopping parameter
expansion for the quark determinant: We generate gauge configurations using the leading-order action
including the Polyakov loop term for Nt ¼ 4, and incorporate the next-to-leading order effects in the
measurements by the multipoint-reweighting method. We find that the use of the leading-order
configurations is crucially effective in suppressing the overlapping problem in the reweighting and thus
in reducing the statistical errors.

DOI: 10.1103/PhysRevD.104.114509

I. INTRODUCTION

One of the interesting features of the medium described
by quantum chromodynamics (QCD) is the existence of
phase transitions of various orders. While the finite-temper-
ature QCD transition is an analytic crossover at zero-quark
chemical potential μq [1,2], this phase transition is expected
to become first order in a dense medium with large μq [3].
The end point of the first-order transition is called the
critical point (CP) at which the transition is of second order.
The singularity in thermodynamic observables associated
with the second order CP are believed to be useful in
detecting the CP in heavy-ion collision experiments [4,5].
Accordingly, researches called the beam-energy scan
are actively performed in experimental facilities all over
the world to search for the critical fluctuations around the
CP [5–7].
The order of the finite temperature QCD transition

changes also with variation of quark masses [8]. For the
(2þ 1)-flavor QCD, it is known that the crossover at the

physical quark masses becomes of first order both in the
light- and heavy-quark limits; the phase diagram represent-
ing this feature is known as the Columbia plot [9,10].
Revealing the nature of the phase transitions with the
variation of quark masses is an important subject of QCD at
nonzero temperature since it provides us with various
insights into the transition at the physical quark masses.
Pinning down the boundaries of the first-order transitions

in (2þ 1)-flavor QCD in the light [11–23] and heavy
[24–31] quark regions is a longstanding subject in lattice
QCD simulations. However, it has been found that the
location of the boundaries are strongly dependent on the
lattice cutoff of the simulations [22,23,31], and their
quantitative determination in the continuum limit has not
been established yet.
One of the difficulties in these analyses is that observ-

ables near the CP are strongly dependent on the spatial
volume of the system. The spatial volume dependence is in
part described by the finite-size scaling (FSS) [32].
However, the FSS is applicable only for describing the
singular part of thermodynamic quantities that dominates
over the nonsingular part only in the vicinity of the CP for
sufficiently large spatial volumes. When the spatial volume
is not large enough the FSS of observables is violated due
to the contributions of the nonsingular part and this makes
their analysis based on the FSS problematic. In fact,
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although the CP of QCD is believed to belong to the three-
dimensional Zð2Þ universality class [8], a clear FSS in this
universality class has not been observed in the latest
numerical study around the CP in the light quark mass
region [23]. In the heavy quark region, on lattices ofNt ¼ 6
and 8 with the aspect ratio Ns=Nt ¼ 6 and 8, the Binder
cumulant B4 is reported to be consistent with the Zð2Þ FSS
using data mostly in the crossover side, while data in the
first order side as well as that on Nt ¼ 10 lattice show a
deviation from the Zð2Þ FSS [31]. These results suggest the
necessity of performing numerical analyses with even
larger spatial volumes and with high statistics.
In the present study we focus on the CP in the heavy

quark region and study the behavior of observables with
large spatial volumes corresponding to the aspect ratios up
to Ns=Nt ¼ 12 using numeical simulations. To carry out
analyses on the large spatial volumes with high precision,
we fix the temporal lattice extent to be Nt ¼ 4 in this study.
We also employ the hopping parameter expansion (HPE)

to deal with the quark determinant. In this study, we
generate gauge configurations using the leading order
(LO) action of the HPE including the Polyakov-loop term
for Nt ¼ 4, and then incorporate the next-to-leading order
(NLO) effects by a multipoint-reweighting method [33]. In
our previous study we generated the configurations in
quenched QCD (zeroth order of the HPE) and reweighted
them to incorporate LO and NLO effects [27,29,30]. We
show that the use of the LO action to generate configu-
rations is quite effective in suppressing the overlapping
problem of the reweighting method. This is essential for
carrying out simulations with large system volumes as
studied in the present paper. We also verify the convergence
of the HPE by comparing the LO and NLO results.
We perform the Binder cumulant analysis of the

Polyakov loop around the CP and find that the numerical
results for Ns=Nt ≥ 9 follow the FSS in the Zð2Þ univer-
sality class well. On the other hand, inclusion of the data at
Ns=Nt ≤ 8 in the analysis gives rise to a statistically-
significant deviation from the scaling behavior. We further
investigate the scaling behavior of the distribution function
of the Polyakov loop. We find that the distribution function
follows the FSS in the Zð2Þ universality class for
Ns=Nt ≥ 8. From the deviation pattern of the distribution
function for Ns=Nt ¼ 6 from the Zð2Þ FSS, we discuss that
the violation of the scaling behavior in the Binder cumulant
is caused by the deviation in the tails of the distribution for
small Ns=Nt. In this paper we consider the case of
degenerated Nf flavors with Nf ¼ 1, 2, 3. Generalization
of the formalism to nondegenerate cases is straightforward.
This paper is organized as follows. In the next section we

give a brief review on the FSS. We then explain the setup of
our lattice simulation and analyses using the HPE in
Sec. III. In Sec. IV, we determine the transition line and
perform the Binder cumulant analysis to determine the
location of the CP and the critical exponent. In Sec. V, we

investigate the FSS of the distribution function of the
Polyakov loop. The last section, Sec. VI, is devoted to a
summary. In Appendix A, we give definition of cumulants.
In Appendix B, we examine the effect of the smearing
width used in the calculation of distribution functions. In
Appendix C, the HPE of the quark determinant is calcu-
lated up to the NLO. In Appendix D, the convergence of the
HPE is examined by comparing the Binder cumulants at the
LO and the NLO.

II. FINITE-SIZE SCALING

Let us first give a brief review on the FSS and its
application to the CP in the heavy quark region of QCD.
The heavy-quark limit of QCD corresponds to the SUð3Þ

Yang-Mills theory (quenched QCD). This theory has a first-
order deconfinement phase transition at nonzero temper-
ature T. When the quark mass mq is finite (throughout this
section we assume that the quark masses are degenerate)
with increasing 1=mq, this first-order transition becomes
weaker and eventually terminates at the CP, as schemati-
cally shown in the phase diagram on the ðT; 1=mqÞ plane in
Fig. 1(a). This CP, as well as that in the light quark region,
is believed to belong to the Zð2Þ universality class, i.e., the
universality class of the three-dimensional Ising model [8].
Near the CP of the three-dimensional Ising model, the

relevant scaling parameters are the reduced temperature t
and external magnetic field h; extensive variables which
conjugate to these parameters are the energy and the
magnetization, respectively. As shown in Fig. 1(b), the
CP is located at ðt; hÞ ¼ ð0; 0Þ and the first-order transition
exists on the t axis for t < 0. The singular part of
thermodynamic quantities near the CP is described by
the scaling function of t and h. According to the univer-
sality, the singular part of thermodynamic quantities near
the CP of heavy quark QCD is described by the same
scaling function, where the scaling parameters t and h are
encoded into the ðT; 1=mqÞ plane as schematically shown
in Fig. 1(a); the t axis is parallel to the first-order line at the
CP while the direction of the h axis is not constrained from
the universality.

(a) (b)

FIG. 1. Phase diagrams of (a) QCD in heavy-quark region, and
(b) three-dimensional Ising model.
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According to the FSS argument [32] the singular part of
the dimensionless free energy Fðt; h; L−1Þ around the CP
obtained at a finite volume V ¼ L3 has a scaling

Fðt; h; L−1Þ ¼ Fðtbyt ; hbyh; L−1bÞ; ð1Þ

for the arbitrary scale factor b. The values of the exponents
yt and yh are specific for each universality class. In the Zð2Þ
universality class these parameters are numerically
obtained as [32]

yt ¼ 1.588; yh ¼ −2.482: ð2Þ

By setting b ¼ L one has

Fðt; h; L−1Þ ¼ FðtLyt ; hLyh ; 1Þ≡ F̃ðtLyt ; hLyhÞ: ð3Þ

Derivatives of Fðt; h; L−1Þ with respect to t and h define
the cumulants of the corresponding extensive variables. For
example, cumulants of the magnetization M are given by

hMðt; h; L−1Þnic ¼ ∂n
hFðt; h; L−1Þ; ð4Þ

with ∂h ¼ ∂=∂h. From Eq. (3), L dependence of the
cumulants hMnic near the CP are written as

hMðt; h; L−1Þnic ¼ ∂n
hFðt; h; L−1Þ

¼ Lnyh∂n
hF̃ðtLyt ; hLyhÞ: ð5Þ

In Ref. [34], it is suggested that the so-called (fourth-
order) Binder cumulant

B4ðt; h; L−1Þ ¼ hMðt; h; L−1Þ4ic
ðhMðt; h; L−1Þ2icÞ2

þ 3 ð6Þ

plays a useful role to determine the location of the CP from
numerical results obtained at finite L. When the distribution
of M obeys the Gauss distribution or the distribution
composed of two delta functions with an equal weight,
we have

B4 ¼
�
3 Gauss distribution;

1 two delta functions;
ð7Þ

respectively. Since the distribution of M approaches these
functions in the L → ∞ limit on the crossover and first-
order lines at h ¼ 0, respectively, B4 should approach
Eq. (7) on these lines in the L → ∞ limit. Moreover, from
Eq. (4), B4 at h ¼ 0 behaves as a function of t and L as

B4ðt; 0; L−1Þ ¼ ∂4
hFðt; 0; L−1Þ

ð∂2
hFðt; 0; L−1ÞÞ2 þ 3

¼ ∂4
hF̃ðtLyt ; 0Þ

ð∂2
hF̃ðtLyt ; 0ÞÞ2 þ 3

¼ b4 þ ctL1=ν þOðt2Þ; ð8Þ

for small t, where b4 ¼ ∂4
hF̃ð0; 0Þ=ð∂2

hF̃ð0; 0ÞÞ2 þ 3,
ν ¼ 1=yt, and c is a constant. Equation (8) shows that
B4ðt; 0; L−1Þ obtained for various L at h ¼ 0 has a crossing
at t ¼ 0. The parameter b4 is given only from F̃ðt; hÞ and
thus are specific for each universality class. For the Zð2Þ
universality class, the value is known to be [32]

b4 ¼ 1.604: ð9Þ

Equation (4) means that Fðt; h; L−1Þ is the cumulant
generating function of M up to an additive constant. Then,
as shown in Eqs. (A2) and (A4) in Appendix A, this
function is related to the probability distribution function
pMðM; t; h; L−1Þ of M as

eFðt;h0−h;L−1Þ ¼ cF

Z
dMeh

0MpMðM; t; h; L−1Þ; ð10Þ

where cF is a constant determined from the normalization
condition

R
dMpMðMÞ ¼ 1. Here, let us define another

probability distribution p̃MðM; tÞ as

eF̃ðt;h0Þ ¼ cF̃

Z
dMeh

0mp̃MðM; tÞ: ð11Þ

From Eq. (3), one finds

pMðM; t; 0; L−1Þ ¼ Lyhp̃MðML−yh ; tLytÞ: ð12Þ

When we consider magnetization per unit volume
m ¼ M=V, the probability distribution of m is given by

pmðm; t; 0; L−1Þ ¼ Lyh−3p̃MðmL3−yh ; tLytÞ: ð13Þ

At the CP, ðt; hÞ ¼ ð0; 0Þ, one finds from Eq. (13) that

pmðm; 0; 0; L−1Þ ¼ Lyh−3p̃MðmL3−yh ; 0Þ: ð14Þ

Equation (13) also suggests that, when p̃MðM; tÞ has a local
extremum at M ¼ M̃ðtÞ, pmðm; t; 0; L−1Þ has correspond-
ing local extremum at

m ¼ Lyh−3M̃ðtLytÞ: ð15Þ

This implies that the t and L dependences of the maximum
of pmðm; t; 0; L−1Þ are described by a single function M̃ðtÞ.
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III. SETUP

A. Lattice action and basic observables

In this study we investigate the four-dimensional system
described by the lattice action of QCD

S ¼ Sg þ Sq; ð16Þ

with Sg and Sq being the gauge and quark actions. For Sg
we employ the plaquette action

Sg ¼ −6NsiteβP̂; ð17Þ

with the gauge-coupling parameter β ¼ 2Nc=g2 and the
space-time lattice volume Nsite ¼ N3

s × Nt. The plaquette
operator P̂ is given by

P̂ ¼ 1

6NcNsite

X
x;μ<ν

Re trC½Ux;μUxþμ̂;νU
†
xþν̂;μU

†
x;ν�; ð18Þ

where Ux;μ is the link variable in the μ direction at site x,
xþ μ̂ is the next site in the μ direction from x, Nc ¼ 3, and
trC is the trace over color index.
For Sq, we adopt the Wilson quark action

Sq ¼
XNf

f¼1

X
x;y

ψ̄ ðfÞ
x MxyðκfÞψ ðfÞ

y ; ð19Þ

with the Wilson quark kernel

MxyðκfÞ ¼ δxy − κfBxy; ð20Þ

Bxy ¼
X4
μ¼1

½ð1 − γμÞUx;μδy;xþμ̂ þ ð1þ γμÞU†
y;μδy;x−μ̂�; ð21Þ

where x, y represent lattice sites. The color and Dirac-
spinor indices are suppressed for simplicity. κf is the
hopping parameter for the fth flavor. The bare quark mass
mf is related to κf as

κf ¼ 1

2amf þ 8
; ð22Þ

with the lattice spacing a. The matrix Bxy has nonzero
values only when lattice sites x and y are located in adjacent
sites. Therefore, this term represents the “hopping”
of a quark between adjacent sites. The heavy quark limit
mf → ∞ corresponds to κf → 0.
In the following, we consider degenerated Nf flavors

with a common hopping parameter κ ¼ κf corresponding
to a common quark mass mq—generalization to non-
degenerate cases is straightforward. In this case, the
expectation value of a gauge operator ÔðUÞ is calculated as

hÔðUÞi ¼ 1

Z

Z
DUDψDψ̄ ÔðUÞe−Sg−Sq

¼ 1

Z

Z
DU ÔðUÞ½detMðκÞ�Nfe−Sg

¼ 1

Z

Z
DU ÔðUÞe−SgþNf ln detMðκÞ; ð23Þ

with the partition function Z ¼ R
DUe−SgþNf ln detMðκÞ.

In the heavy quark limit κ ¼ 0 (mq ¼ ∞), the deconfine-
ment phase transition at nonzero temperature is charac-
terized by the spontaneous symmetry breaking of the global
Zð3Þ center symmetry of the SUð3Þ gauge symmetry. The
most conventional choice for the order parameter of this
phase transition is the Polyakov loop

Ω̂¼ 1

NcN3
s

X
x⃗

trC½Ux⃗;4Ux⃗þ4̂;4Ux⃗þ2·4̂;4 � � �Ux⃗þðNt−1Þ·4̂;4�; ð24Þ

where the summation
P

x⃗ is over the spatial lattice sites on
one time slice. In the heavy quark limit, hΩ̂i ¼ 0 below the
critical temperature Tc, while hΩ̂i takes a nonzero value at
T > Tc. For finite mq, the Zð3Þ symmetry is explicitly
broken by the quark term, and thus hΩ̂i becomes non-
vanishing for all T. Even in this case, when mq is
sufficiently large, hΩ̂i jumps discontinuously at the first-
order transition and thus can be used to detect the first-order
transition line and its CP [27,29,30].
In Sec. V we study the scaling property of the distribu-

tion function of the real part of the Polyakov loop

Ω̂R ¼ ReΩ̂; ð25Þ

defined by

pðΩRÞ ¼ hδðΩR − Ω̂RÞi: ð26Þ
In Sec. III E, we also calculate the double-distribution
function of P̂ and Ω̂R defined by

pðP;ΩRÞ ¼ hδðP − P̂ÞδðΩR − Ω̂RÞi: ð27Þ

In numerical calculation of these distribution functions,
because the statistics of the data is finite, we have to replace
the delta functions by smeared ones with finite width. A
conventional choice for this is the normalized Gauss
function, δðxÞ ≃ exp½−ðx=ΔÞ2�=ðΔ ffiffiffi

π
p Þ [27,29]. The width

Δ should be large enough to have a statistically meaningful
number of data at each point within the width, and
simultaneously small enough to resolve the functional
shape of the distribution function. Examining the resolution
and the statistical error of distribution functions, we
adopt ΔΩR

¼ 0.002 and ΔP ¼ 0.0001 in this study. In
Appendix B, we confirm that the resulting distribution
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functions as well as other results of observables discussed
in this study are stable under variations of the widths
around these values.

B. Hopping parameter expansion

To calculate Eq. (23) around the heavy quark limit in the
present study, we adopt the hopping parameter expansion
(HPE) for ln detMðκÞ,

ln

�
detMðκÞ
detMð0Þ

�
¼ −

X∞
n¼1

1

n
Tr½Bn�κn; ð28Þ

where the matrix Bxy is defined by Eq. (21) and Tr is the
trace over all indices. In Eq. (28), the contribution at κ ¼ 0
is subtracted for convenience. Since Bxy takes nonzero
values only for adjacent lattice sites x and y, Bn is
graphically represented by trajectories of n links [35].
Because of the trace in Eq. (28), nonvanishing contribu-
tions are given by closed trajectories. The lowest-order
contributions of Eq. (28) start from n ¼ 4, and all con-
tributions for odd n vanish when Nt is even. By writing

− ln

�
detMðκÞ
detMð0Þ

�
¼ SLO þ SNLO þOðκ8Þ; ð29Þ

one finds for Nt ¼ 4 that the LO contribution is given by
the plaquette and the Polyakov loop as

SLO ¼ −2Ncð48NsiteP̂þ 32N3
sΩ̂RÞκ4: ð30Þ

The NLO term SNLO consists of the six-step Wilson loops
and bent Polyakov loops as

SNLO ¼ −2Ncð384Ŵrec þ 768Ŵchair þ 256Ŵcrown

þ 192ReΩ̂1 þ 96ReΩ̂2ÞNsiteκ
6: ð31Þ

Here, Ŵrec, Ŵchair, and Ŵcrown represent the six-step Wilson
loops of the rectangular, chair, and crown types, respec-
tively, as illustrated in Fig. 2. Ω̂n are the bent Polyakov
loops illustrated in Fig. 3, which run one step in a spatial
direction, n steps in the temporal direction, and return to the
original line. All the Wilson loops and Polyakov loop-type
loops are normalized such that Ŵrec¼ Ŵchair¼ Ŵcrown¼1

and Ω̂n ¼ 1 in the weak coupling limit, Ux;μ ¼ 1. Explicit
definitions of these operators as well as the derivation of
Eqs. (30) and (31) are given in Appendix C.

C. Numerical implementation with HPE

In this study, we generate the gauge configurations with
respect to the action at the LO in the HPE, i.e.,

Sgþ LO ¼ Sg þ NfSLO

¼ −6Nsiteðβ þ 16NcNfκ
4ÞP̂ − 64NcNfN3

sκ
4Ω̂R

¼ −6Nsiteβ
�P̂ − λN3

sΩ̂R; ð32Þ

with

β� ¼ β þ 16NcNfκ
4; λ ¼ 64NcNfκ

4: ð33Þ

We then perform the measurements at the NLO by
incorporating the effect of SNLO by the multipoint-
reweighting method [29,33,36]. In this subsection we
discuss the numerical implementation of these analyses.
In the Monte Carlo simulations of pure gauge theory,

thanks to the locality of the action Sg, it is possible to
adopt the pseudoheat-bath (PHB) and over-relaxation (OR)
algorithms for updating gauge configurations. Focusing on
a link variable UμðxÞ, the dependence of Sg on UμðxÞ is
given by

ΔSgðUμðxÞÞ ¼ −
β

Nc
Re trC½UμðxÞXμðxÞ�; ð34Þ

where the staple

XμðxÞ ¼
X
ν≠μ

X
s¼�1

Uxþμ̂;sνU
†
xþsν̂;μU

†
x;sν; ð35Þ

with Ux;−μ ¼ U†
x−μ̂;μ for μ > 0, is graphically shown in

Fig. 4(a). In the PHB and OR algorithms, the link variable
UμðxÞ is updated according to the probability determined
by Eq. (34). The fact that Eq. (34) is represented only
by local variables near UμðxÞ makes this procedure
efficient especially on the memory-distributed parallel
computing.

(a) rectangle (b) chair (c) crown

FIG. 2. Six-step Wilson loops; rectangle (a), chair type (b), and
crown type (c).

FIG. 3. Bent Polyakov loops, Ω1 (left) and Ω2 (right) for
Nt ¼ 4.
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When the LO term, Eq. (30), is included into the action,
the contribution of a temporal link U0ðxÞ to SgþLO is
modified as

ΔSgþLOðUμðxÞÞ

¼ −
β�

Nc
Re trC

�
U0ðxÞ

�
X0ðxÞ þ

λ

β�
Y0ðxÞ

��
; ð36Þ

with

Y0ðxÞ ¼ U0ðxþ 0̂ÞU0ðxþ 2 · 0̂ÞU0ðxþ 3 · 0̂Þ; ð37Þ

which is schematically shown in Fig. 4(b). For Nt > 4,
Y0ðxÞ is given by the product of Nt − 1 link variables along
the temporal direction. The contribution of a spatial link to
SgþLO is unchanged from Eq. (34).
These results on ΔSgþLOðUμðxÞÞ suggest that the

Monte Carlo updates of UμðxÞ can be performed by the
PHB and OR efficiently even for SgþLO, provided that
the temporal direction is not separated into different parallel
nodes and Y0ðxÞ can be calculated efficiently. Satisfying
this condition is not difficult to attain for large-volume
simulations. Using this to our advantage, we perform
updates of gauge fields at the LO by combining PHB
and OR in this study.1 Compared with the pure-gauge
simulation, the increase of the numerical cost to deal with
SgþLO in this method is small since the additional multi-
plications of SUð3Þmatrices required for an update are only
Nt − 2 times for the temporal links and the cost to update
the spatial links is unchanged.
In the measurement of observables, we include all the

contribution of SNLO using the multipoint-reweighting
method.2 The expectation value of a gauge observable
ÔðUÞ at the NLO at the parameter set ðβ; κÞ is given from
the LO simulations at ðβ̃; κ̃Þ as

hÔðUÞiNLOβ;κ ¼
R
DUÔðUÞe−SgþLOðβ;κÞ−SNLOðβ;κÞR

DUe−SgþLOðβ;κÞ−SNLOðβ;κÞ

¼
R
DUÔðUÞe−δSgþLO−SNLOðβ;κÞe−SgþLOðβ̃;κ̃ÞR

DUe−δSgþLO−SNLOðβ;κÞe−SgþLOðβ̃;κ̃Þ

¼
hÔðUÞe−δSgþLO−SNLOðβ;κÞiLO

β̃;κ̃

he−δSgþLO−SNLOðβ;κÞiLO
β̃;κ̃

; ð38Þ

with

δSgþ LO ¼Sgþ LOðβ; κÞ − Sgþ LOðβ̃; κ̃Þ
¼ − 6Nsiteðβ − β̃ þ 16NcNfðκ4 − κ̃4ÞÞP̂
þ 64NcNfN3

sðκ4 − κ̃4ÞΩ̂R; ð39Þ

and h·iLOβ;κ is the expectation value taken with the action
SgþLOðβ; κÞ. We generate gauge configurations for the LO
action SgþLO at several values of ðβ̃; κ̃Þ, and evaluate the
expectation values to the NLO at various ðβ; κÞ by the
multipoint-reweighting method.

D. Simulation parameters

In this study, we perform Monte Carlo simulations with
fixed temporal lattice size Nt ¼ 4, while the spatial extent
Ns is changed from 24 to 48. This allows us to perform
simulations with large aspect ratio Ns=Nt ¼ LT up to 12,
where L is the lattice size along the spatial direction in
physical units. For each Ns, the gauge configurations are
generated for 3 to 5 sets of ðβ�; λÞ shown in Table I, which
are chosen so that β� is close to the transition line at the LO.
All numerical results shown in Secs. IVand Vare generated
by the multipoint-reweighting method from these
configurations.
The gauge configurations are updated with the LO action

SgþLO using the PHB and OR algorithms as discussed in
Sec. III C. Gauge configurations are updated by five OR
steps after each PHB step. We measure observables every
two sets of the PHBþ OR updates, i.e., totally ten OR steps
and two PHB steps. For all parameters we have performed
6 × 105 measurements in this way. In the following, we set
Nf ¼ 2 to show the numerical results unless otherwise
stated.
In Monte Carlo simulations near a first-order transition,

because the transition between the coexisting two phases
becomes rare when the spatial volume of the system is
large, observables averaged over the two phases tend to
have quite long autocorrelations. In Fig. 5 we show the
Monte Carlo time history of Ω̂R for Ns=Nt ¼ LT ¼ 10 and
12 at the smallest λ, at which the autocorrelation is the
longest. The horizontal axis represents the Monte Carlo
time in the unit of measurements. To estimate the auto-
correlation time, in Fig. 6, we plot the integrated autocor-
relation time of ΩR defined as

(a) (b)

FIG. 4. Staple XμðxÞ and the operator Y0ðxÞ in Eq. (37)
corresponding to the link variable UμðxÞ shown by the blue line.

1After finishing our numerical analyses, we discovered that a
similar idea is suggested in Ref. [37]. We thank F. Karsch for
notifying us of this literature.

2In Ref. [30], the effect of SNLO is included in part effectively
by the effective NLO method. In this study, we deal with it
exactly.
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τint ¼
1

2
þ
Xτmax

τ¼1

hΩRðτÞΩRð0Þi
hΩRð0ÞΩRð0Þi

; ð40Þ

as a function of τmax for the two Monte Carlo trajectories
shown in Fig. 5, where τ represents the Monte Carlo time.
We estimate the autocorrelation time from the value of τint
at τmax ≃ 4τint, i.e., the crossing point between τint and the
dashed line in Fig. 6, at which the τmax dependence is well
saturated. The values of τint thus determined on each lattice
are listed in Table I.
Throughout this study, we estimate the statistical errors

of observables by the jackknife method unless otherwise
stated, adopting the binsize of 10,000 measurements which
is sufficiently larger than the estimated autocorrelation
lengths. We checked that the statistical errors thus esti-
mated are roughly stable within a variation of the binsize
from 5,000 to 30,000 measurements.

E. Overlapping problem

Our main objective in using the LO action for configu-
ration generation is to avoid the overlapping problem in the
reweighting. In Fig. 7 we show the contour plot for the
probability distribution function pðP;ΩRÞ defined by
Eq. (27), obtained at λ ¼ 0.003 (red) and 0.007 (blue) on
403 × 4 lattices adopting ΔΩR

¼ 0.002 and ΔP ¼ 0.0001
for the smearing widths. We checked that pðP;ΩRÞ hardly
changes under variation of ΔΩR

and ΔP around this choice.

The solid lines are the contours for the distributionmeasured
on the LO configurations generated with SgþLO. Each
contour curve is drawn such that the probability inside
the contour is 0.9, 0.7, � � �, and 0.1.
In Fig. 7, we also show by the dotted lines the contours

of pðP;ΩRÞ at the NLO, which is obtained by reweighting
the LO data at the same ðβ�; λÞ. The meaning of the
contours is the same as the solid lines. We find that the
deviation of the NLO distribution from the original one at
the LO is not significant, suggesting that the effects of the
NLO contribution are not large. The large overlap of the LO

TABLE I. Simulation parameters; lattice size N3
s × Nt, β�, and

λ. The value of κ corresponding to each λ is also listed for the case
Nf ¼ 2. The last column is for the integrated autocorrelation time
estimated using ΩR.

Lattice size β� λ κNf¼2 τint

483 × 4 5.6869 0.004 0.0568 642(150)
5.6861 0.005 0.0601 837(75)
5.6849 0.006 0.0629 537(49)

403 × 4 5.6885 0.003 0.0529 1448(160)
5.6869 0.004 0.0568 685(113)
5.6861 0.005 0.0601 630(60)
5.6849 0.006 0.0629 416(33)
5.6837 0.007 0.0653 310(24)

363 × 4 5.6885 0.003 0.0529 936(113)
5.6869 0.004 0.0568 459(49)
5.6861 0.005 0.0601 511(46)
5.6849 0.006 0.0629 364(23)
5.6837 0.007 0.0653 278(16)

323 × 4 5.6885 0.003 0.0529 646(62)
5.6865 0.004 0.0568 307(34)
5.6861 0.005 0.0601 401(32)
5.6845 0.006 0.0629 270(18)
5.6837 0.007 0.0653 225(15)

243 × 4 5.6870 0.0038 0.0561 464(32)
5.6820 0.0077 0.0669 250(18)
5.6780 0.0115 0.0740 160(10)

FIG. 5. Monte Carlo time history of Ω̂R at the smallest λ for
LT ¼ 12 and LT ¼ 10. Horizontal axis represents the
Monte Carlo time in the unit of measurements which are made
every two sets of PHBþ OR updates.

FIG. 6. Integrated autocorrelation time τint of Ω̂R as a function
of τmax on the lattices shown in Fig. 5. The dashed line shows
τmax ¼ 4τint.
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and NLO distributions ensures that, for observables con-
structed from P̂ and Ω̂R, the NLO results obtained by
reweighting the LO data at the same β� and λ are
statistically reliable. In the analysis of the CP, the over-
lapping of the distributions is even more improved after
adjusting the parameters to the transition line.
On the other hand, from this figure, we find that the

overlapping of the distributions at λ ¼ 0.003 and 0.007 is
quite poor—the regions with probability larger than 0.7 are
not overlapping at all with each other. This means that, if we
were to calculate observables at λ ¼ 0.007 by reweighting
data obtained at λ ¼ 0.003, or vice versa, the statistical
quality of the results would be quite low. In Refs. [27,29,30],
the CP in heavy quark region was investigated on lattices
with Ns=Nt ¼ 4–6, by reweighting from pure gauge con-
figurations, i.e., those obtained at λ ¼ 0. Because the over-
lapping problem becomes quickly severe as the system
volume becomes large, the same strategy is not applicable to

the present study inwhichmuch larger systemvolumes up to
Ns=Nt ¼ LT ¼ 12 are simulated. Figure 7 shows that, to
incorporate the NLO effects by reweighting, the use of the
LO action for configuration generation is sufficiently
effective in suppressing the overlapping problem. The
smallness of the NLO effects in Fig. 7 further suggests that
the effects of dynamical quarks are dominated by the LO
term for these values of λ.

IV. BINDER CUMULANT ANALYSIS

A. Transition line

We first determine the location of the transition line that
corresponds to h ¼ 0 in terms of the Ising parameters; see
Fig. 1. In the coupling parameter space ðβ�; λÞ, we denote
the transition line as β�trðλÞ. In this study, we determine β�tr at
each λ adopting the following three conventional choices:

(i) Maximum of hΩ2
Ric

(ii) Zero point of hΩ3
Ric

(iii) Minimum of BΩ
4 ¼ hΩ4

Ric=hΩ2
Ri2c þ 3

In Fig. 8 we show the LT dependence of β�tr determined
by these definitions for several values of λ. The figure
shows that the maximum of hΩ2

Ric has a visible LT
dependence. On the other hand, the zero point of hΩ3

Ric
and the minimum of BΩ

4 do not have statistically-significant
LT dependence for LT ≥ 8. This result shows that the zero
point of hΩ3

Ric and minimum of BΩ
4 are sufficiently close to

the β�tr in the L → ∞ limit in this range of LT. In the
following, we employ the minimum of BΩ

4 for the definition
of the transition line β�tr for each Nt. In Fig. 9, we show the
transition line on the ðβ�; λÞ and ðβ; λÞ planes obtained
at LT ¼ 10.
In Fig. 10, we show the distribution function of ΩR,

Eq. (26), on the transition line for several values of λ, where
the delta function in Eq. (26) is smeared by the Gauss
function as before with the width ΔΩR

¼ 0.002. As dis-
cussed in Appendix B, dependence of these results on ΔΩR

is well suppressed around this ΔΩR
. The shaded bands

represent the statistical errors. At λ ¼ 0.003, we see a clear
two-peak structure in pðΩRÞ and find that the peaks
become sharper as LT becomes larger. This behavior

FIG. 7. Probability distribution pðP;ΩRÞ of the gauge con-
figurations on the 403 × 4 lattice for the simulation points at λ ¼
0.003 and 0.007. Solid lines represent the contours of pðP;ΩRÞ
obtained with the LO action. The label on each contour shows the
probability inside the contour. Dotted lines represents the contour
lines of pðP;ΩRÞ with the NLO action at the same parameters
obtained by reweighting the LO data.

FIG. 8. Transition line β�trðλÞ as function of the aspect ratio LT ¼ Ns=Nt, determined through three definitions: (1) minimum of BΩ
4 ,

(2) zero of hΩ3
Ric, and (3) maximum of hΩ2

Ric. The results for λ ¼ 0.003, 0.005, 0.007 are shown from left to right.
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suggests the first-order phase transition at λ ¼ 0.003. At
λ ¼ 0.007, on the other hand, while two peaks are observed
for LT ≤ 9, the two peaks cease to exist as LT becomes
large. This suggests the crossover transition in the L → ∞
limit at this λ.

B. Binder cumulant

Next, let us determine the position of theCP on the ðβ; κÞ
plane. As discussed in Sec. II, it is convenient to employ the
Binder cumulant B4 of ΩR

BΩ
4 ¼ hΩ4

Ric
hΩ2

Ri2c
þ 3: ð41Þ

This quantity approaches the known values given in Eq. (7)
in the L → ∞ limit depending on the order of the transition.
Furthermore, provided that ΩR corresponds to m ¼ M=V
of the Ising model, BΩ

4 should obey Eq. (8) near the CP.

In the upper panel of Fig. 11, we show BΩ
4 along the

transition line as a function of λ for five values of LT. λ is
varied continuously by the multipoint-reweighting method.
The lower panel is an enlargement of the upper panel
around the crossing point. The figure shows that BΩ

4 has a
crossing at λ ¼ λc ≃ 0.005 and is an increasing (decreasing)
function of LT for λ > λc (λ < λc). The existence of the CP
at λ ≃ 0.005 is suggested from this result.
To determine λc and the critical exponent ν quantita-

tively, we fit the numerical results of BΩ
4 using a fitting

function motivated by Eq. (8),

BΩ
4 ðλ; LTÞ ¼ b4 þ cðλ − λcÞðLTÞ1=ν; ð42Þ

where b4, λc, ν, and c are the fit parameters. In this study, we
can vary λ continuously using the multipoint-reweighting
method. However, because data at different λ on the same
volume are correlated, it is not meaningful to use too many λ
values. Using the data at three largest volumes,LT ¼ 12, 10,
9, two or three λ values (6 or 9 data points, respectively)
should be sufficient for the four parameter fit of Eq. (42). We
thus repeat the fit for several choices of λ values, taking the
covariance between data at different λ into account in the
calculation of χ2.
In Table II, we summarize the results of the fit using the

data at three largest volumes, LT ¼ 12, 10, 9, and at λ
values listed in the left column of the table. The statistical
error in the table is estimated by the standard chi-square
analysis. The table shows that the value of χ2=dof
(dof = degrees of freedom) are smaller than unity in the
fits with two λ values, but χ2=dof is unacceptably large with
three λ values, while all the results for the fitting parameters
are consistent within errors. We choose the fit result for
λ ¼ ð0.0048; 0.0053Þ depicted by bold characters in
Table II as the central value and include the uncertainty
in the fits with two λ values as the systematic error.
We repeat the analysis also with other sets of system

volumes. The results of the fits with four and five largest
volumes, LT ¼ 12–8 and 12–6, together with the fit with
three largest volumes, are summarized in Table III. For the
fit with four and five largest volumes, we now have 8 and

FIG. 9. Transition line β�tr on the ðβ; λÞ and ðβ�; λÞ plane
obtained at LT ¼ 10. The points with the error bar are the
results obtained on each measurement. The shaded areas show the
result obtained by the multipoint-reweighting method with the
error band representing the statistical error. The dotted vertical
line shows the value of λc determined by the analysis in Sec. IV B.

FIG. 10. Distribution of ΩR at λ ¼ 0.003, 0.005 and 0.007.
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10 data points for the four-parameter fit with two λ values.
For these fits, we choose λ ¼ ð0.0048; 0.0053Þ as the
central value again.

The results of b4 and λc obtained by these fits are shown
in the lower panel of Fig. 11. The thick symbols show the
central value, and thin symbols with light colors show the
results obtained by the variation of λ in Table II. The results
with the three largest volumes are shown by black triangles,
while those with four and five largest volumes are shown by
blue squares and green pentagons, respectively. In the
figure, b4 expected from the Zð2Þ universality, Eq. (9), is
shown by the dashed horizontal line.
From Table III and Fig. 11, we find that when we adopt

the fit with the three largest volumes, LT ≥ 9, the fit result
of b4 is consistent with the Zð2Þ value within about 1σ. On
the other hand, when we include smaller volumes, LT ≥ 8

or LT ≥ 6, b4 from the fits show a statistically significant
deviation from the Zð2Þ value. In Table III, we also
summarize the results for the critical exponent ν. From
the Zð2Þ universality class, we expect ν ¼ 1=yt ≈ 0.630.
We find that the result of the fit with LT ≥ 9 is consistent
with the Zð2Þ value within the error, while the result of the
fit with LT ≥ 6 has a significant deviation from the Zð2Þ
value, though the values of χ2=dof are all smaller than
unity.
We thus conclude that the FSS in the Zð2Þ universality

class is confirmed when the system volume is large enough,
LT ≥ 9—lattices with LT ≤ 8 are not large enough to
apply an FSS analysis for BΩ

4 . The value of λc thus
determined is also shown in Fig. 9.
In Appendix D, we perform the analysis of BΩ

4 at the LO
of the HPE and compare the results with those at the NLO
discussed in this section. We find that the LO result for λc is
about 2.6% larger than the NLO value. This small differ-
ence suggests that the truncation error of the HPE is well
under control at the NLO around λc.

C. Mixing with energylike observable

So far we have performed the analyses of BΩ
4 assuming

that ΩR corresponds to the magnetization m ¼ M=V of
the Ising model. Although our numerical results thus far
are in good agreement with this assumption, a possible
mixing with the energylike observable [14,22] in ΩR is
not excluded in general. In this case, the behavior of BΩ

4

near the CP is modified from Eq. (8) as [22]

FIG. 11. Binder cumulant BΩ
4 as a function of λ obtained at five

LT ¼ Ns=Nt. The statistical errors are shown by the shaded area.
The lower panel is an enlargement of the upper panel around the
crossing point, where the dotted rectangle in the upper panel
represents the region of the lower panel. The points in the lower
panel with error bars show the results of the four parameter fit
with Eq. (42). See text for details.

TABLE II. Results of the four parameter fits of BΩ
4 with

Eq. (42). Three largest volumes with LT ¼ Ns=Nt ¼ 12, 10, 9
are used for the fits. The left column shows the values of λ used
for the fit.

Fit λ (×104) b4 λc ν χ2=dof

49, 52 1.631(24) 0.00503(14) 0.614(49) 0.45
48, 53 1.630ð24Þ 0.00503ð14Þ 0.614ð48Þ 0.46
45, 55 1.629(24) 0.00502(14) 0.622(48) 0.46
45, 50 1.630(24) 0.00503(15) 0.634(47) 0.48
50, 55 1.631(24) 0.00504(14) 0.610(51) 0.38
45, 50, 55 1.620(23) 0.00494(14) 0.626(41) 7.9

TABLE III. Results of the four-parameter fit of BΩ
4 using the

data points at three and four largest and all volumes. The first
parentheses are for statistical errors estimated by the jackknife
method, and the second parentheses are for systematic errors due
to the choice of λ values for the fit. See Sec. IV B for details.

LT ¼ Ns=Nt b4 λc ν χ2=dof

12, 10, 9 1.630(24)(2) 0.00503(14)(2) 0.614(48)(3) 0.46
12, 10, 9, 8 1.643(15)(2) 0.00510(10)(2) 0.614(29)(3) 0.37
12, 10, 9, 8, 6 1.645(11)(2) 0.00511(8)(2) 0.593(18)(3) 0.67
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BΩ
4 ðλ; LTÞ ¼ ðb4 þ cðλ − λcÞðLTÞ1=νÞð1þ dðLTÞyt−yhÞ:

ð43Þ

To investigate the effect of this possible mixing, we try fits
of BΩ

4 based on Eq. (43). We use the values of BΩ
4 at three λ

for the fits to increase the number of data points. We find
that the six-parameter fits with Eq. (43) with the fitting
parameters b4, λc, ν, c, d, yt − yh are quite unstable,
suggesting that χ2 has many local minima. The model
space of Eq. (43) would be too large against the data. As a
next trial, we perform five-parameter fits with Eq. (43) by
fixing yt − yh ¼ −0.894. In this case, we find that χ2 still
has many local minima, and χ2=dof becomes larger
compared with the four-parameter fit. It is also found that
the value of d is consistent with zero within the error for all
trials with the variation of λ values. This suggests that the
mixing of the energylike observable in ΩR is negligible
around the CP in the heavy quark region.

D. Nf dependence

In Table IV, we summarize our final results for the
location of the CP, ðβc; κcÞ. In the table, we also show the
results forNf ¼ 1 and 3. We note that theNf dependence of
the HPE is trivial at the LO in the sense that Nf enters the
action Eq. (32) at this order only through the combination
λ ¼ 64NcNfκ

4 after the replacement β → β�. Therefore, λc
does not depend on Nf . At the LO, this allows us to obtain
the value of κc for various Nf from the value of κc at Nf ¼ 2
[29]. Because such a simple scaling is no longer applicable
at the NLO, we made individual numerical analyses at
Nf ¼ 1 and 3. From Table IV, we find that the results of λc
are almost insensitive to Nf . This means that the NLO
effects on λc are small.

V. DISTRIBUTION FUNCTION OF ΩR

In this section, we study the scaling behavior of the
distribution function pðΩRÞ to further investigate the
consistency with the Zð2Þ universality class around the CP.

A. Scaling of distribution function

Let us first focus on the LT dependence of pðΩRÞ at the
CP. In the following, instead of pðΩRÞ itself, we study the
effective potential defined from pðΩRÞ,

VðΩR; λ; LTÞ ¼ − lnpðΩRÞλ;LT; ð44Þ

as this quantity is more convenient in comparing the results
at different LT [27,29]. From Eq. (14), the LT dependence
of VðΩR; λ; LTÞ at the CP will be described by a single
function ṼðxÞ as

VðΩR; λc; LTÞ ¼ ṼððΩR − hΩRiÞðLTÞ3−yhÞ; ð45Þ

up to an additive constant, where hΩRi is subtracted from
ΩR to adjust the center of the distribution.
To see if the scaling behavior of Eq. (45) is satisfied,

we show in Fig. 12 the effective potential VðΩR; λc; LTÞ
at the CP obtained at five values of LT, as a function
of ðΩR − hΩRiÞðLTÞ3−yh , where we set 3 − yh ¼ 0.518.
For the figure, we adjust the arbitrary constant

TABLE IV. Location of the critical point ðβc; κcÞ for variousNf .
For λc, the first parentheses are for statistical errors and the second
parentheses are for systematic errors from the fit as discussed in
Sec. IV B. The errors for βc and κc include the systematic errors.

Nf βc κc λc

1 5.68446(22) 0.0714(5) 0.00498(14)(2)
2 5.68453(22) 0.0602(4) 0.00503(14)(2)
3 5.68456(21) 0.0544(4) 0.00505(14)(2)

FIG. 12. Effective potential VðΩRÞ ¼ − lnpðΩRÞ. Bottom
panel is an enlargement of the region enclosed by a dotted
rectangle in the top panel.
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term of VðΩR; λc; LTÞ such that VðΩð1Þ; λc; LTÞþ
VðΩð2Þ; λc; LTÞ ¼ 0, where Ωð1Þ and Ωð2Þ (> Ωð1Þ) are
the values of ΩR at the two local minima of
VðΩR; λc; LTÞ. No further adjustments are made in the
figure. The error bands do not include the uncertainty of the
additive constant. The lower panel is an enlargement of the
region indicated by the dotted rectangle in the upper panel.
From Fig. 12, we find that the numerical results for LT ¼
8–12 agree almost completely within the errors with
the scaling relation Eq. (45). This result nicely supports
the FSS in the Zð2Þ universality class at the CP. From the
upper panel of Fig. 12, we note that the effective potential
for LT ¼ 6 shows a clear deviation from the results for
larger volumes at ΩR ≪ Ωð1Þ and ΩR ≫ Ωð2Þ, while it
agrees well with them in the range Ωð1Þ ≲ ΩR ≲ Ωð2Þ. This
suggests that the deviation from the Zð2Þ FSS by lattices
with small LT, discussed in Sec. IV B, is due to that in the
tails of the distribution pðΩRÞ for small LT.

B. Gap between the two minima

Using Eq. (13), the argument of Sec. VA on the effective
potential can be extended away from the CP along the
transition line. In this subsection, we study the gap between
the two local minima of VðΩR; λc; LTÞ,

ΔΩ ¼ Ωð2Þ − Ωð1Þ: ð46Þ

According to Eq. (15), this quantity should behave around
the CP as

ΔΩðλ; LTÞ ¼ ðLTÞyh−3ΔΩ̃ððλ − λcÞðLTÞ1=νÞ; ð47Þ

provided that pðΩRÞ obeys the FSS.
In Fig. 13 we show the λ dependence ofΩð1Þ andΩð2Þ. As

seen from Fig. 10, a clear two-peak structure of pðΩRÞ
disappears when λ exceeds some value depending on LT.
Even before the disappearance of the two peaks, identi-
fication of local maxima of pðΩRÞ becomes unstable
because of statistical fluctuations. In Fig. 13 we thus
truncate the plots for Ωð1Þ and Ωð2Þ at finite λ. The shaded
areas in the figure represent statistical errors estimated by
the jackknife method, for which we repeat the analysis of
Ωð1;2Þ for pðΩRÞ obtained in each jackknife sample with
the smearing width of ΔΩR

¼ 0.002.3 As shown in
Appendix B, ΔΩR

dependence of these results is well
suppressed at this ΔΩR

.

From Fig. 13 we extract ΔΩ as a function of λ. In Fig. 14
we show ΔΩ for five different volumes. To see the FSS, the
vertical and horizontal axes are adjusted according to
Eq. (47), where the Zð2Þ values 3 − yh ¼ 0.518 and
ν ¼ 0.630, and λc ¼ 0.00503 determined in the previous
section are used. The figure shows that, for a wide range of
λ − λc and LT, the results of ΔΩ obtained on different
volumes are on top of each other within the errors. This
supports the FSS of pðΩRÞ around the peak positions over a
wide range of LT and λ.
It is interesting to note that the scaling behavior of ΔΩ is

observed even at LT ¼ 6, although the FSS of BΩ
4 is

violated already at LT ¼ 8. As discussed in the previous
subsection, we may understand this when the violation of
the FSS for BΩ

4 is due to the violation in the tails of the
distribution function pðΩRÞ. As seen in Fig. 12, VðΩRÞ at
various volumes agrees well for Ωð1Þ ≲ Ω≲ Ωð2Þ, even for
small values of LT. As the higher-order cumulants are

FIG. 13. Positions of peaks of the distribution function pðΩRÞ
measured on the transition line.

FIG. 14. Scaling of the gap ΔΩ around Tc.

3We see that the errors in Fig. 13 become occasionally large.
We find that this is due to statistical oscillations in the shape of
pðΩRÞ around the peak: Though the oscillations are within the
statistical errors, the peak position in each jackknife sample can
jump discontinuously when oscillation appears just at the peak
position as we vary λ. This makes the resulting jackknife error
large there. From this observation, we think that these large errors
are overestimated.
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sensitive to the whole structure of the distribution, BΩ
4 will

be more sensitive to the violation of FSS at the tails of the
distribution. On the other hand, ΔΩ is insensitive to them
by definition. We also note that the statistical error of ΔΩ is
naturally small because it is defined by the peaks of the
distribution. Therefore, ΔΩ is useful in seeing the FSS
around the CP.
From Eq. (47), ΔΩ should behave linearly as a function

of ðLTÞyh−3 at the CP, λ ¼ λc. In Fig. 15, we show ΔΩ on
the transition line at various values of λ, as a function of
ðLTÞyh−3. In the same figure, the dashed lines show linear
functions ΔΩ ¼ kðLTÞyh−3 for various values of k.
Figure 15 suggests that the linear behavior is realized at
λ ≃ 0.005, which is consistent with our estimation λc ¼
0.00503ð14Þð2Þ from the analysis of BΩ

4 .

C. Discussions

Let us comment on the relation of the present results with
those given in Refs. [27,29,30]. In these studies, the CP is
defined as the point at which the two-peak structure of
pðΩRÞ disappears. On the lattice with finite LT, this leads
to λwhich is larger than our value of λc in the L → ∞ limit.
In fact, in Ref. [27], the location of the CP is estimated as
κc ¼ 0.0658ð3Þðþ4

−11Þ for Nf ¼ 2 and Nt ¼ 4, which is
about 10% larger than that given in Table IV. Values of
λc (κc) which are smaller than Ref. [30] for each Nt are also
reported by a recent study of the CP in the heavy quark
region on fine lattices (Nt ¼ 6–10) using the Binder
cumulant method [31]. Though the difference may be
removed in the L → ∞ limit, a careful extrapolation will
be required. Because the FSS is clearly identified in this
study, we think that the extrapolation to the large volume
limit is stably performed with the present analysis.
We also note that the latent heat at the deconfinement

transition in the SUð3Þ Yang-Mills theory (κ ¼ 0) has been

measured in Ref. [38] recently. It was found that the latent
heat becomes larger with increasing the spatial volume.
This may be attributed to a remnant of the FSS around the
Zð2Þ CP, like ΔΩ studied in the present study.

VI. CONCLUSIONS

In this paper, we studied the distribution function of the
Polyakov loop and its cumulants around the CP in the
heavy quark region of QCD. Large volume simulations up
to the aspect ratio Ns=Nt ¼ LT ¼ 12 have been carried out
to see the finite-size scaling, while the lattice spacing is
fixed to Nt ¼ 4. We have performed the measurement of
observables using the hopping parameter expansion for the
quark determinant; the measurement has been performed at
the next-to-leading order of the hopping parameter expan-
sion by the multipoint-reweighting method evaluated on the
gauge configurations generated for the action at the leading
order. We found that this analysis is quite effective in
reducing statistical errors by avoiding the overlapping
problem of the reweighting method, while the numerical
cost hardly changes from the pure Yang-Mills simulations.
The convergence of the hopping parameter expansion at the
next-to-leading order at the critical point is also verified by
the comparison with the leading order result.
Using the data on pðΩRÞ thus obtained, we have

performed the Binder cumulant analysis for determining
the location of the critical point and evaluating the critical
exponent. We found that the critical exponent ν and the
value of the Polyakov-loop Binder cumulant BΩ

4 at the
critical point is consistent with the Zð2Þ universality class
when LT ≥ 9 data are used for the analysis. On the other
hand, statistically-significant deviation from the Zð2Þ
scaling is observed when the data at LT ¼ 8 is included,
which suggests that this spatial volume is not large enough
to apply the finite-size scaling.
The scaling behavior near the critical point is further

studied using the structure of the distribution function of
the real part of the Polyakov loop, pðΩRÞ. We found that
the structure of pðΩRÞ for various LT obeys the finite-size
scaling well especially near the peaks of pðΩRÞ. We have
also proposed the use of the gap ΔΩ between the peaks of
pðΩRÞ for the finite-size scaling analysis. We showed that
the λ and LT dependence of ΔΩ is in good agreement with
the Zð2Þ scaling over a wide range of λ and LT. On the
other hand, the deviation of pðΩRÞ around the tails of the
distribution is observed on small lattices, which would give
rise to the violation of the finite-size scaling of BΩ

4 in small
volumes.

ACKNOWLEDGMENTS

The authors thank Frithjof Karsch, Macoto Kikuchi,
Yoshifumi Nakamura, and the members of the WHOT-
QCD Collaboration for useful discussions. This work
was supported by in part JSPS KAKENHI (Grants

FIG. 15. Gap ΔΩ around Tc as a function of ðLTÞ3−yh . The
Zð2Þ value 3 − yh ¼ 0.518 is assumed.

FINITE-SIZE SCALING AROUND THE CRITICAL POINT IN … PHYS. REV. D 104, 114509 (2021)

114509-13



No. JP17K05442, No. JP18K03607, No. JP19H05598,
No. JP19K03819, No. JP19H05146, and No.
JP21K03550), the Uchida Energy Science Promotion
Foundation, the HPCI (High Performance Computing
Infrastructure) System Research project (Projects
No. hp170208, No. hp190036, No. hp200089, and
No. hp210039), and Joint Usage/Research Center for
Interdisciplinary Large-scale Information Infrastructures
in Japan (JHPCN) (Projects No. jh190003, No.
jh190035, No. jh190063, and No. jh200049). This research
used computational resources of OCTPUS of the large-
scale computation program at the Cybermedia Center,
Osaka University, and ITO of the JHPCN Start-Up
Projects at the Research Institute for Information
Technology, Kyushu University.

APPENDIX A: CUMULANTS

Let us consider a probability distribution function pðxÞ
of a stochastic variable x. Since pðxÞ represents probability,
it satisfies the normalization condition

R
dxpðxÞ ¼ 1.

The mth-order moment hxmi of pðxÞ is defined by

hxmi ¼
Z

dxxmpðxÞ: ðA1Þ

Using the moment-generating function

GðθÞ ¼
Z

dxexθpðxÞ ¼ hexθi; ðA2Þ

the moments are also given by

hxmi ¼ ∂m
θ GðθÞjθ¼0; ðA3Þ

with ∂θ ¼ ∂=∂θ.
The cumulants are defined from the cumulant-generating

function

KðθÞ ¼ lnGðθÞ ¼ lnhexθi; ðA4Þ

as

hxmic ¼ ∂m
θ KðθÞjθ¼0: ðA5Þ

From Eqs. (A3) and (A5), one easily finds that the
cumulants are related to the moments as

hxic ¼ hxi; ðA6Þ

hx2ic ¼ hx2i − hxi2 ¼ hδx2i; ðA7Þ

hx3ic ¼ hδx3i; ðA8Þ

hx4ic ¼ hδx4i − 3hδx2i2; ðA9Þ

and etc. with δx ¼ x − hxi. The cumulants are useful in
representing properties of pðxÞ than the moments for
various purposes. In particular, in statistical mechanics
the cumulants of an extensive variable are extensive
variables; see, for example, Ref. [5].

APPENDIX B: EFFECT OF SMEARING WIDTH
ON THE DISTRIBUTION FUNCTION

In Secs. IV and V, we calculate the distribution function
pðΩRÞ with smearing the delta function in Eq. (26) by the
normalized Gauss function with the width ΔΩR

. With the
statistics of this study, we choose ΔΩR

¼ 0.002 from an
examination of the statistical error and resolution of pðΩRÞ.
In this Appendix, we examine theΔΩR

dependence of the
numerical results, picking up the middle panel of Fig. 10,
13, and 14 as representative results. In Fig. 16, we compare
these results with those obtained with ΔΩR

¼ 0.001 and
0.004. In Fig. 16, the results with ΔΩR

¼ 0.001 and 0.004
are shown by the dashed and dotted lines, while the solid
lines show the results with ΔΩR

¼ 0.002. From this figure,
we find that ΔΩR

dependence is very small around ΔΩR
¼

0.002 and does not affect our conclusions.

FIG. 16. ΔΩR
dependence of the results given in Secs. IV and V. The left, middle, and right panels correspond to the middle panel of

Figs. 10, 13 and 14, respectively. The dashed and dotted lines in each panel shows the results with ΔΩR
¼ 0.001 and 0.004, respectively,

while the solid lines with ΔΩR
¼ 0.002 are the same as the original figures.
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APPENDIX C: LO AND NLO HOPPING
PARAMETER EXPANSION

In this Appendix we derive Eqs. (30) and (31).
Throughout this Appendix we assume a general value
for Nt.
As in Eq. (28), the HPE of ln½detMðκÞ� is given by

Tr½Bn�. Since the matrix B only has nonzero contributions
between neighboring lattice sites, Tr½Bn� are graphically
represented by the closed trajectories with n links [35].
However, trajectories including “appendixes” shown in
Fig. 17 do not contribute to the HPE because for such a
path the product of the matrix in Dirac space vanishes at the
tip of the appendix as ð1 − γμÞð1þ γμÞ ¼ 0 [35]. With this
exception, all possible closed trajectories composed of n
links contribute to the HPE at the order κn. In the following,
we calculate their contributions by classifying the trajecto-
ries by the shape.
Let us start from the plaquette, i.e., a 1 × 1 rectangle,

which gives the lowest-order contribution to Eq. (28) at the
order κ4. The plaquette operator P̂ in Eq. (18) is defined in
such a way that hP̂i ¼ 1 in the weak coupling limit with
UμðxÞ ¼ 1. To satisfy this condition Eq. (18) has a
coefficient 1=ðNcMplaqÞ ¼ 1=18, where Mplaq is the num-
ber of different plaquettes per lattice site;Mplaq ¼ 4C2 ¼ 6,
which is the number of combinations of axes ðμ; νÞ at
which the plaquettes are located.
The contribution from all plaquettes to Eq. (28) is

calculated to be

−2NcMplaqDplaqNsiteκ
4P̂: ðC1Þ

Here, Dplaq is the coefficient from the trace in the Dirac
space

Dplaq ¼ trD½ð1 − γμÞð1 − γνÞð1þ γμÞð1þ γμÞ� ¼ −8; ðC2Þ

where trD means the trace over the Dirac indices. The factor
2 in Eq. (C1) comes from two directions for each trajectory,
which have to be distinguished in the HPE. The factor 1=n
in Eq. (28) is canceled by the number of four starting points
of a trajectory; this cancellation occurs for all trajectories.
Next, let us consider the Wilson loops of length 6

without windings along the temporal direction. At this
order there are three types of trajectories; 1 × 2 rectangle,
chair, crown, which are shown in Fig. 2. We define the
operators, Ŵrect, Ŵchair, Ŵcrown, corresponding to these
trajectories as

Ŵrect ¼
1

NcMrectNsite

X
x

X
μ≠ν

Re trC½Ux;μUxþμ̂;μUxþ2·μ̂;νU
†
xþμ̂þν̂;μU

†
xþν̂;νU

†
x;ν�; ðC3Þ

Ŵchair ¼
1

NcMchairNsite

X
x

X
μ;ν<ρ;ν≠μ≠ρ

X
s;t¼�1

Re trC½Ux;sνUxþsν̂;μU
†
xþμ̂;sνUxþμ̂;tρU

†
xþtρ̂;μU

†
x;tρ�; ðC4Þ

Ŵcrown ¼
1

NcMcrownNsite

X
x

X
μ<ν<ρ

X
s;t¼�1

Re trC½Ux;μUxþμ̂;sνUxþμ̂þsν̂;tρU
†
xþsν̂þtρ̂;μU

†
xþtρ̂;sνU

†
x;tρ�; ðC5Þ

with Ux;−μ ¼ U†
x−μ̂;μ and U†

x;−μ ¼ Ux−μ̂;μ for μ > 0. Equa-
tions (C3)–(C5) are defined so that hŴrecti ¼ hŴchairi ¼
hŴcrowni ¼ 1 in the weak coupling limit again; to satisfy
this condition, the operators are divided by Mrect ¼ 12,
Mchair ¼ 48, and Mcrown ¼ 16, respectively, corresponding
to the number of trajectories per lattice site.
The contribution of these trajectories to the HPE of

ln detMðκÞ is given by

−2Nc

X
s

MsDsNsiteκ
6Ŵs; ðC6Þ

with s ¼ rect, chair, crown. Ds is the coefficient from the
trace in the Dirac space. For the 1 × 2 rectangle we have

Drect ¼ trD½ð1 − γμÞð1 − γμÞð1 − γνÞ
× ð1þ γμÞð1þ γμÞð1þ γνÞ� ¼ −32; ðC7Þ

and similar manipulations lead to Dchair ¼ Dcrown ¼ −16.
Next we consider the Polyakov-loop type operators

having a winding along the temporal direction. The low-
est-order contribution among them is the Polyakov loop,
i.e., the straight lines of length Nt. To calculate its
contribution, one needs to pay special attention to the fact

FIG. 17. “Appendix” structure of trajectories.
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that there is only one independent Polyakov loop for each
spatial coordinate on one time slice, not for each lattice site.
Therefore, their contribution to the HPE is given by

2NcDpolN3
sκ

NtΩ̂R; ðC8Þ

where the factor −1 is to be applied because of the
antiperiodic boundary condition of the quark determinant.
The real part of Ω̂ has to be taken after multiplying by the

factor two because two directions of a trajectory are
independently taken into account. The factor from the
Dirac trace for the Polyakov loop is calculated to be

Dpol ¼ trD½ð1 − γ4ÞNt � ¼ 2Ntþ1: ðC9Þ

Finally, we consider the contribution of the bent
Polyakov loops shown in Fig. 3, whose explicit definitions
are given by

Ω̂1 ¼
1

NcMbentNsite

X
x

X3
i¼1

X
s¼�1

trC½Ux;siUxþsî;4U
†
xþ4̂;si

Uxþ4̂;4Uxþ2·4̂;4 � � �UxþðNt−1Þ·4̂;4�; ðC10Þ

Ω̂2 ¼
1

NcMbentNsite

X
x

X3
i¼1

X
s¼�1

trC½Ux;siUxþsî;4Uxþsîþ4̂;4U
†
xþ2·4̂;si

Uxþ2·4̂;4 � � �UxþðNt−1Þ·4̂;4�; ðC11Þ

and so on. The factorMbent ¼ 6 is needed to make hΩ̂ni ¼ 1

in the weak coupling limit. From the definition of Ω̂n we
have Ω̂n ¼ Ω̂Nt−n. Also, whenNt is even Ω̂Nt=2 counts each
trajectory twice, and thus its contribution to the HPE should
be divided by 2. Bearing these facts inmind, the contribution
from Ω̂n to the HPE of ln detMðκÞ is given by

2NcMbentDbentNsiteκ
Ntþ2

� XNt=2−1

n¼1

ReΩ̂nþ
1

2
ReΩ̂Nt=2

�
;

ðC12Þ

where the last term ReΩ̂Nt=2 should be omitted for odd Nt.
The contribution of the Dirac trace is calculated to be
Dbent ¼ 2Ntþ1.
Combining these results gives Eqs. (30) and (31).

APPENDIX D: COMPARISON OF
LO AND NLO RESULTS

In this Appendix, to see the convergence of the HPE at
the NLO, we repeat the analyses in Sec. IV B at the LO and
compare its results with those at the NLO. In Fig. 18, we
show the Binder cumulant BΩ

4 obtained at the LO along the
transition line. In this figure, the NLO results of Fig. 11 are
also shown by the thin dashed lines. We find that, though
the difference between the LO and the NLO results grows
as λ becomes larger, the deviation is within a few percent
level around the crossing point λc.
In Fig. 18, we also show the result of the four-parameter

fit with Eq. (42) using data at the LO on LT ¼ 12, 10 and 9
lattices by the black square. The same result at the NLO is
shown by gray circle for comparison. We find that the
LO result of the fit is consistent with the NLO result

within statistical errors: The values of b4 ¼ 1.630ð24Þ and
ν ¼ 0.620ð47Þ at the LO are hardly changed from the
corresponding NLO values given in Table III. Though the
central value of λc ¼ 0.00516ð15Þ at the LO is about
2.6% larger than the NLO value, it is consistent with the
NLO result within errors, suggesting that the truncation
error of the HPE at the NLO is well suppressed in these
quantities.
The success of the BΩ

4 fit together with the consistency of
the fit results with the Zð2Þ values suggests that the Zð2Þ
scaling is also realized with the LO action when the system
volume is sufficiently large. This is reasonable since the
scaling properties near the CP are insensitive to detailed
structures of the theory.

FIG. 18. Binder cumulant B4 as a function of λ calculated at the
LO. The results at the NLO are also plotted by the thin dashed lines.
The squarewith errors shows the fit resultwith three largest volumes.
TheNLO result on the same fit result is also shown by the thin circle.
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