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We construct and analyze the phase diagram of a self-interacting matrix field in two dimensions coupled
to the curvature of the noncommutative truncated Heisenberg space. In the infinite size limit, the model
reduces to the renormalizable Grosse-Wulkenhaar model. The curvature term proves crucial for the
diagram’s structure. When turned off, the triple point collapses into the origin as matrices grow larger; when
turned on, the triple point recedes from the origin proportionally to the coupling strength and the matrix
size. The coupling attenuation that turns the Grosse-Wulkenhaar model into a renormalizable version of the
ϕ4⋆ model cannot stop the triple point recession. As a result, the stripe phase escapes to infinity, removing
the problems with UV/IR mixing.
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I. INTRODUCTION

Noncommutativity (NC) of space-time coordinates was
initially proposed in the 1940s in the hope of resolving the
confusion about the infinities in the nascent quantum field
theory [1]. The first promising results in this regard were,
however, achieved by the technique of renormalization.
Since then, NC occasionally reemerged, both in the
fundamental and the effective form, from condensed matter
physics to quantum gravity [2,3]. Finally, when NC was
discovered in the low energy sector of string theory at
the turn of the millennium [4], various new NC models
followed.
Contrary to the expected better-than-commutative

behavior, NC models experience more difficulties
with renormalizability. Generically, their nonplanar
Feynman diagrams entangle small and large length
scales, which prevents a successful absorption of
divergences into the action terms [5–8]. It was shown
that this UV/IR mixing could be resolved by the proper
balancing of the scales provided by the Langman-Szabo
duality [9].
The Grosse-Wulkenhaar (GW) model [10–12],

SGW ¼
Z

1

2
ð∂ϕÞ2 þ Ω2

2
ððθ−1xÞϕÞ2 þm2

2
ϕ2 þ λ

4!
ϕ4; ð1Þ

managed to evade the UV/IR mixing problem. It features a
self-interacting real scalar field on the Moyal space
equipped with a ⋆ product,

f⋆g ¼ fei=2 ∂⃖θ∂⃗g ⇒ ½xμ; xν�⋆ ¼ iθμν: ð2Þ

Its potential is enhanced by the external harmonic oscillator
term of a possible gravitational origin. Namely, the model
can be reinterpreted [13] as that of a scalar field in a curved
NC space of the truncated Heisenberg algebra htr,

Sh ¼
Z ffiffiffi

g
p �

1

2
ð∂ϕÞ2 − ξ

2
Rhϕ

2 þm2
h

2
ϕ2 þ λh

4!
ϕ4

�
: ð3Þ

The oscillator Ω term, which holds the key to renormaliz-
ability, is now seen as a coupling to the coordinate-
dependant curvature Rh. More details on the htr and Sh
are provided later in the text. Another possible source of the
oscillator term was presented in [14], where it elegantly
appears in the expansion of the kinetic term of the free
scalar field situated in the Snyder-de Sitter space. This
model also predicts the running of the curvature coupling,
which is an essential ingredient of the GW-mediated ϕ4⋆
renormalizability. It would be interesting to see if similar
conclusions could be reached in the fuzzy de Sitter
space [15,16].
UV/IR mixing still poses a problem for gauge fields on

NC spaces [17]. Hoping to build on the GW model’s
success, [18,19] tried to adapt it to a gauge field on htr. Still,
after extensive treatment, we found nonrenormalizability
lurking in the form of divergent nonlocal derivative
counterterms [20]. It turned out that, apart from the trivial
vacuum, this model contains another, which breaks the
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translational invariance. This echoes the translational
symmetry-breaking stripe phase that seems to be at the root
of UV/IR mixing. Its “stripes” refer to patterns of spatially
nonuniform magnetization, which appear when the field
oscillates around different values at different points in space
[21–23]. They also seem to shatter the symmetry between
large and small scales that keeps the UV/IR mixing in check.
Locally, the vacuum appears ordered, but globally, watched
through the lenses of spatial averaging, it looks smudged into
a disordered zero. It would be interesting to find out what
happens with the stripe phase in the GW model. We would
like to see how its renormalizability plays out from the phase
transition point of view.
Phase diagrams on NC spaces have been extensively

studied in various matrix models, since they regularize
corresponding continuum theories in a numerical simula-
tion-friendly fashion [24–44]. They generically feature
three phases that meet at a triple point. Two of these are
readily present in commutative theories; in the disordered
phase, field eigenvalues clump around zero and in the
ordered phase around one of the mirror-image minima of
the potential. The third one is a matrix counterpart of the
NC stripe phase; eigenvalues there gather both around
positive and negative minima at the same time.
In [42], we started a numerical comparison of the two-

dimensional GW-model matrix regularization with (R-on)
and without (R-off) the curvature term, focusing mainly
on the latter. Here, we present more details on the former
and inspect how it bares under the oscillator term switching

off procedure that ensures the ϕ4⋆ model’s renormalizability
[10]. Moreover, since the triple point controls the extension
of the problematic stripe phase, we try to pinpoint its
location.
The paper is organized as follows. We first reintroduce

the model and present its detailed N ¼ 24 phase diagrams.
Then, we track the R-off triple point as we increase the
matrix size. Finally, we present the effects of the curvature
coupling variation on the phase diagram, look at the
coupled model as we turn the coupling off, and compare
its limit with the uncoupled one.

II. MATRIX MODEL

We here continue inspection of the matrix regularization
SN of (3) started in [42]. Let us reintroduce the model and
walk through its main features.
The coordinates x, y, and z of the underlying htr algebra

satisfy

½μx; μy� ¼ iϵð1 − μzÞ; ð4aÞ

½x; z� ¼ þiϵfy; zg; ½y; z� ¼ −iϵfx; zg; ð4bÞ

where μ represents the mass scale and ϵ the strength of NC.
If we set ϵ ¼ 1, μx and μy can be represented by finitely
truncated matrices of the Heisenberg algebra in the energy
basis of the harmonic oscillator,

X ¼ 1ffiffiffi
2

p

0BB@
ffiffiffi
1

pffiffiffi
1

p ffiffiffi
2

p
ffiffiffi
2

p . .
.

1CCA
N×N

; Y ¼ iffiffiffi
2

p

0BB@
− ffiffiffi

1
pffiffiffi

1
p − ffiffiffi

2
p

ffiffiffi
2

p . .
.

1CCA
N×N

; ð5Þ

Identification [13] of SGW and Sh requires restriction to
subspace z ¼ 0, which happens in a weak N → ∞ limit of
the matrix representation. This turns (4a) and (4b) into the
Moyal space commutation relations.
The space htr has a curvature,

Rh ¼
15μ2

2
− 4ϵμ3z − 8ϵ2μ4ðx2 þ y2Þ; ð6Þ

which is represented (on z ¼ 0) by a negative diagonal
matrix R with elements,

Rii ¼
31

2
−
�
16i; i < N

8N; i ¼ N
: ð7Þ

In its eigenvalues, we recognize energy levels of the
harmonic oscillator. The quadratic dependence of Rh on
coordinates is precisely what we have in the Ω term in (1).

Derivatives in model (3), analyzed in the frame formalism,
are realized as commutators ∂μ ¼ ½pμ; · � with momenta pμ,

ϵp1

iμ
¼ þμy;

ϵp2

iμ
¼ −μx;

ϵp3

iμ
¼ μz −

1

2
; ð8Þ

hence, their matrix counterparts are

P1 ¼ −Y; P2 ¼ X; P3 ¼
1
2
: ð9Þ

The numbered identifications associate (3) with the
matrix model,

SN ¼ TrðΦKΦ − crRΦ2 − c2Φ2 þ c4Φ4Þ; ð10Þ

in which the fieldΦ is a N × N Hermitian matrix andK the
kinetic operator,
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KΦ ¼ ½Pα; ½Pα;Φ��: ð11Þ

All originally dimensionful quantities are now expressed in
units of μ. We chose the minus sign of the mass term to
enable positive c2 to parametrize the relevant portion of the
phase diagram, while positive c4 ensures that SN is
bounded from below. They are accompanied by the
rescaled model parameters,

ec2 ¼ c2
N
; ec4 ¼ c4

N
: ð12Þ

We performed parallel hybrid Monte Carlo simulations
to measure various thermodynamic observables, most
important being as follows:

(i) heat capacity, C ¼ Var S=N2,
(ii) magnetic susceptibility, χ ¼ Var jTr Φj=N,

(iii) distributions of eigenvalues and traces of Φ,

where expectation value hOi and variance Var O of the
observable O are given by

hOi ¼
R
dΦOe−SR
dΦe−S

; Var O ¼ hO2i − hO2i: ð13Þ

Phase transitions in finite systems form smeared finite peaks
and edges in profiles of free energy derivatives. Different
quantities yield slightly different estimates of transition
points, but they ultimately converge for large enough
matrices. To locate them, we scanned through parameter
space by varying c2 at fixed c4—which played the role of the
temperature—and searched for peaks in C and χ.
The classical equation of motion for SN,

2KΦ − crfR;Φg þΦð−2c2 þ 4c4Φ2Þ ¼ 0; ð14Þ

gives us an idea what kind of phases to expect. Its kinetic,
curvature, and pure potential parts are, respectively,
solved by

Φ∝1; Φ¼0; Φ2¼
(
0; c2≤0

c2=2c41; c2>0
; ð15Þ

corresponding to three phases depicted1 in Fig. 1:
(i) disordered ↕ phase: hΦi↕ ¼ 0,
(ii) uniformly ordered ↑↑ phase: hΦi↑↑ ∝ 1,
(iii) nonuniformly ordered ↑↓ phase: hΦi↑↓ ∝ U1�U†,

where UU† ¼ U†U ¼ 1, 12� ¼ 1 and jTr 1�j < N.
The ↑↓ phase is a matrix equivalent of the stripe phase. A
large mass parameter lives in the ↑↑ phase and large quartic
coupling in the ↕ phase, with the ↑↓ phase nested in
between. The phases meet at a triple point.

When the kinetic term is negligible (e.g., field near ∝ 1)
and c2 ≥ maxifcrjRiijg, a diagonal solution exists that
combines the effects of the curvature and the potential and
which deforms the vacuum of the ordered phases,

Φ2 ¼ c21þ crR
2c4

: ð16Þ

Both transitions out of the stripe phase in the R-off case
(top plot in Fig. 1) follow the square root behavior for larger

FIG. 1. Contour plots ofN ¼ 24 phase diagram for cr ¼ 0 (top)
and for cr ¼ 0.2 (bottom). Darker colors depict lower values and
lighter colors higher values of specific heat, bright stripes being the
transition lines. The dotted line on the bottom plot indicates a
diagram shift relative to the R-off case. Phases are denoted by
semitransparent arrows in the corners of the plot:↕ phase occupies
the bottom right, ↑↑ phase the upper left, while the ↑↓ phase is
sandwiched in between, extending toward the upper right corner.
Diagrams are constructed based on more than 5500 points.

1Throughout this text, we use Wolfram Mathematica bluish
StarryNightColors scheme for R-off plots and reddish Sunset-
Colors scheme for R-on plots.
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quartic coupling. For N ¼ 24 and ec4 > 1, they are well
approximated by

↕ →↑↓ ∶ ec2 ¼ 2.67ð5Þ
ffiffiffiffiffiec4p

− 0.55ð7Þ; ð17aÞ

↑↓→↑↑ ∶ ec2 ¼ 3.99ð4Þ
ffiffiffiffiffiec4p

− 0.90ð5Þ: ð17bÞ

For comparison, a pure potential model would show only
a ↕ →↑↓ transition line ec2 ¼ 2

ffiffiffiffiffiec4p
in the infinite N limit.

In [42], we presented a simple argument that, due to
diagonality, curvature acts as a quasimass term and should
shift transition lines by δc2 relative to the R-off case.
The shift δc2 is proportional to the cr, and their ratio is
bounded by

1

2N
≤
δec2
cr

≤ 16 −
63

2N
: ð18Þ

We previously demonstrated this by numerical simulation
at a token value of quartic coupling and with the absent
kinetic term; here, we expose this effect in full in Fig. 1.
Similar shifting is in the meantime also reported on the
fuzzy sphere after adding a modification to the kinetic term
[44]. The detailed analysis of the curvature’s effects on the
phase diagram is ongoing. It is presented elsewhere, while
here we concentrate only on the aspects relevant to the
position of the triple point.
We simultaneously inspect two finite limits of our matrix

model, which zoom in on different portions of the param-
eter space,

Sðc2; c4; crÞ ¼ lim
N→∞

hSNðc2; c4; crÞi
N2

; ð19aÞ

eSðec2;ec4; crÞ ¼ lim
N→∞

hSNðec2;ec4; crÞi
N2

: ð19bÞ

In a way, phase diagram of eS describes the structure of
the infinity of the phase diagram of S. S0 and eS0 refer to
cr ¼ 0. We analyze S because it closely relates to SGW up
to a light adjustment of coefficients (Appendix A). We also
complete the analysis of the eS0 started in [42], which tells
us about the scaling properties of the third order ↕ →↑↓
transition line. Notice that parameters’mass dimensions are

½c2� ¼ ½c4� ¼ 2; ½cr� ¼ 0; ð20Þ

therefore, both c2 and c4 in eS are chosen to scale the same
way with the momentum cutoff Λ ∼

ffiffiffiffi
N

p
μ, whereas cr does

not scale at all.

III. R-OFF TRIPLE POINT

In the spirit of Bayesian probability notation, we write
the coordinates ci of the triple point T in the R-on and R-off
case as ciðTjrÞ and ciðTjrÞ, respectively.
In [42], we found that the triple point of eS0 lies

at ec4ðTjrÞ≲ 0.005 [alternatively, c4ðTjrÞ≲ 0.14 from
N ¼ 28 data] and established the descending trend ofec4ðTjrÞ with an increase in matrix size. In the meantime,
we collected more data for matrix sizes up to N ¼ 70,
allowing us to track the shrinking rate of the ↕ →↑↑
transition line. Unexpectedly, this transition disappears
entirely, and the triple point collapses into the origin (Fig. 2).
Appendix B provides details on locating the triple point

from raw data and different attempted data fits (Table I). We
modeled small aberrations from the linear trend set by
larger matrices by quadratic and power-law functions of
1=N. All the estimates agree with the triple point lying at
the origin in the large N limit, and the best one bounds its
coordinates to

ðc2; c4ÞT ≤ ð0.16; 0.018Þ; ð21Þ
with a 95% confidence level each, which is an order of
magnitude improvement in precision.

FIG. 2. Coordinates of the triple point in the R-off case as a
function of the inverse matrix size. (Top) Linear fit of
the c2 coordinate: c2ðTj=rÞ ¼ þ0.07ð5Þ þ 37ð2Þ=N. (Bottom)
Quadratic fit of the c4 coordinate: c4ðTj=rÞ ¼ −0.000ð12Þ þ
4.9ð7Þ=N þ 20ð10Þ=N2. Data gathered from susceptibility χ
for N ≤ 70. The ↕ →↑↑ transition line ending in T shrinks with
an increase in matrix size and eventually disappears.
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In addition, linear extrapolation of the slopes of tran-
sition lines for N ¼ 24, 32, 40, 50 shows that they radiate
from the triple point/origin as

↕ →↑↓ ∶ c2 ¼ 7.1ð8Þc4; ð22aÞ

↑↓→↑↑ ∶ c2 ¼ 17ð1Þc4: ð22bÞ

This is also how the phase diagram of eS0 looks like close
to the origin, while away from it, its transition lines bend
into ∼

ffiffiffiffiffiec4p
.

It is important to notice that even if the triple point of S0

does not lie precisely at the origin, the triple point of eS0

will, due to eciðTÞ ¼ ciðTÞ=N. In fact, this holds for any
alternate parameter rescaling ci=Nνi by the positive power
of the cutoff. This is in contrast with the ϕ4 model on the
fuzzy sphere [39,41]. The culprit could be in differing
forms of the kinetic term, whose presence allows the
↕ →↑↑ transition to develop in the first place.

IV. R-ON SHIFT AND RENORMALIZATION

Coupling with curvature pushes the triple point—and
with it the stripe phase—away from the origin proportion-
ally to its strength (Fig. 3). The simulated shift of the triple
point in the N ¼ 24, R-on case,

ec2ðTjrÞ ¼ 0.18ð8Þ þ 15.5ð7Þcr; ð23Þ

relative to the R-off value,

ec2ðTjrÞ ¼ 0.14ð5Þ; ð24Þ

agrees well with the maximal prediction allowed by (18)

max δec2 ¼ �
16 −

63

2N

�
cr ≈ 14.7cr: ð25Þ

The slight overshoot is discussed in Appendix B. Figure 2
shows that the small intercept of the ec2ðTjrÞ line in Fig. 3
goes to zero with the increase in matrix size, so it is safe to
assume that proportionality to cr becomes exact in the
infinite size limit.
In the GW approach [10], renormalizability of the two-

dimensional ϕ4⋆ model is assured by defining it as a Ω → 0
limit of the series of superrenormalizable models in which
Ω itself does not renormalize and serves as a series label
[45]. It is chosen as

1 −Ω2

1þ Ω2
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 −

1

ð1þ logðΛ=ΛRÞÞ2
s

; ð26Þ

which for large cutoff Λ ∼
ffiffiffiffi
N

p
switches off as

Ω ∼
1

logN
: ð27Þ

Since Appendix A connects Ω and cr as

cr ¼
Ω2=8

1 −Ω2=2
; ð28Þ

we consider the limit where cr decreases as

cr ∼
1

log2N
: ð29Þ

Combining this with δec2 ∝ cr (that is, δc2 ∝ Ncr) would
effectively swipe the stripe phase off to infinity as

c2ðTÞ ∼
N

log2N
; ð30Þ

leaving the limiting model with a completely different
phase diagram from the one obtained by simply set-
ting cr ¼ 0.
Looking back at the equation of motion (14) and its

solutions (15), we see that the curvature term prefers the
trivial over striped vacuum. The action (10) also shows that
the curvature itself compensates for the attenuation of the
coupling. Namely, for nearly ordered field configurations

FIG. 3. Coordinates of the triple point in the R-on case
as a function of the curvature coupling: c̃2ðTjrÞ ¼ 0.18ð8Þþ
15.5ð7Þcr, c̃4ðTjrÞ ¼ 0.014ð6Þ þ 1.19ð8Þcr. Data gathered from
specific heat C for N ¼ 24.
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Φ2 ∝ 1, the curvature term dominates the potential by the
factor

TrRΦ2

TrΦ2n ≈
TrR
Tr 1

¼ −8N
�
1 −

31

16N

�
∼ N; ð31Þ

which multiplied by the coupling leads once more to ratio

N
log2N

: ð32Þ

It is instructive to also track the behavior of the
renormalized mass parameter as we turn off the curvature
coupling. In [46], the divergent part of the mass renorm-
alization in the R-on case is found to be

δm2
ren ¼

λ

12πð1þΩ2Þ log
Λ2θ

Ω
; ð33Þ

which, adapted to our notation, gives the leading logarith-
mic mass divergence,

δcren2 ∼ − logN: ð34Þ

Bare c2 has to compensate for this, increasing by jδcren2 j.
Since this grows slower than (30), the bare c2 required for
the renormalization is located outside of the stripe phase—
apparently, in the disordered phase.
This differs from the R-off case with T at the origin.

Although we cannot directly setΩ ¼ 0 in (33), we could try
to turn off Ω much faster than in the GWapproach. Taking,
for example,

Ω ∼ e−N; ð35Þ

would give the leading divergence,

δm2
ren ∼ λN; ð36Þ

and

δc2ðTÞ ∼ Ne−2N → 0; ð37Þ

as expected in the R-off case. Thus, a suitably chosen
infinitesimal λ ∼ 1=N would make the renormalization
finite, leaving the bare mass inside the near-origin portion
of the stripe phase for a range of physical mass choices in
the perturbative regime.

V. CONCLUDING REMARKS

This paper aimed to see if the renormalizable GW
redefinition of the ϕ4⋆ model is reflected in its correspond-
ing phase diagram and if it affects the extent of the stripe
phase connected to the UV/IR mixing. With that in mind,
we tracked the triple point position; this is where the stripe

phase starts, spreading toward larger values of the mass and
quartic parameters. We compared the matrix regularization
of the ϕ4⋆ model with the disappearing curvature term to the
one without one, since its inclusion is crucial for the
renormalizability.
We first refined the estimate [42] of the triple point

position when the curvature term is turned off and con-
cluded that it collapses into the origin in the infinite matrix
size limit, completely removing the ↕ →↑↑ transition line.
As the curvature coupling turns on, it shifts the triple point
toward larger values of the mass parameter, proportionally
to its strength and the matrix size. GW coupling attenuation
does not reverse this effect. Instead, the triple point moves
to infinity, erasing the stripe phase.
This leads to different phase diagrams for the renorma-

lizable and nonrenormalizable version of the ϕ4⋆ model. The
former seems to be stripe phase free, while in the latter the
stripe phase is tethered to the origin of the parameter space.
This demonstrates that GW construction affects both
renormalizability and phase structure.
We are currently completing the exploration of the R-on

model, and we also plan to further inspect the R-off triple
point forN > 70 to make sure it lies at the origin. Although
we observed the convincing curvature-mediated linear shift
forN ¼ 24 in the R-on case, it would be prudent to confirm
the effect for larger matrices as well. We would also like to
simultaneously decrease the coupling and increase the
matrix size since their combined effect was here indirectly
deduced.
Additionally, we mean to revisit the GW-inspired gauge

model [20] in the hope of uncovering the reverse effect:
nonrenormalizability due to retention of the stripe phase.
After fixing the NC strength and scale, the model is left
with only one adjustable parameter—the field strength
coupling. Its additional stripelike vacuum transforms into a
trivial one for the infinite coupling, implying the phase
diagram’s possible structure: stripe phase for weak inter-
action and disordered phase for strong interaction. This
agrees with the phase diagrams in Fig. 1, where ordered
phases lie at smaller quartic coupling compared to the
disordered phase.
Another possible line of investigation could be the phase

diagram of the renormalizable spinor model on htr [47] in
the context of fermionic matrix models [48,49].
If this correspondence between renormalizability and

phase structure proves to hold across models, it might be
helpful when constructing new ones. For example, one
could search numerically for early signatures of (non)
renormalizability in their phase diagrams, assessing the
new model’s renormalizability potential, even before the
involved and time-consuming analytical exploration.
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APPENDIX A: MODEL CORRESPONDENCE

According to [37], mapping

ϕ ↔ Φ;
Z

↔
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
det 2πθ

p
Tr ðA1Þ

connects field theory on Moyal space and matrix field
theory with the same parameters. Also, [13] provides a
correspondence between SGW and Sh,

SGW ¼
�
1 −

Ω2

2

�
Sh; ðA2aÞ

m2 ¼
�
1 −

Ω2

2

��
m2

h −
15

2
ξμ2

�
; ðA2bÞ

λ ¼
�
1 −

Ω2

2

�
λh; ðA2cÞ

Ω2 ¼ 8ϵ2
�
1 −

Ω2

2

�
ξ: ðA2dÞ

From these, by comparing (3) and (10), it is easy to
conclude that SGW and SN are connected by

SGW ¼ π

�
1 −

Ω2

2

�
SN; ðA3aÞ

m2 ¼ −
�
1 −

Ω2

2

��
c2 þ

15

2
cr

�
; ðA3bÞ

λ ¼ 12

�
1 −

Ω2

2

�
c4; ðA3cÞ

Ω2 ¼ 8

�
1 −

Ω2

2

�
cr; ðA3dÞ

in the large N limit (θ12 ¼ 1=μ2, units: μ ¼ 1).
Furthermore, an action multiplier can be absorbed into

the field during expectation value integration and will affect
only c4,

hκSðc2; c4; crÞiκS ¼ hSðc2; c4=κ; crÞiS; ðA4aÞffiffiffi
κ

p hΦiκSðc2; c4; crÞ ¼ hΦiSðc2; c4=κ; crÞ; ðA4bÞ

yielding

CκSðc2; c4; crÞ ¼ CSðc2; c4=κ; crÞ; ðA5aÞ

κχκSðc2; c4; crÞ ¼ χSðc2; c4=κ; crÞ: ðA5bÞ

Since we are interested in the position of peaks of C and
χ, this means that phase transition diagrams for κS and S
will be the same up to a reparametrization,

ðc2; c4; crÞ ↔ ðc2; c4=κ; crÞ: ðA6Þ
For phase diagrams of SGW and S in the Ω → 0 limit
(cr → 0), this means

ðm2; λÞ ↔ ð−c2; 12c4=πÞ: ðA7Þ

APPENDIX B: TRIPLE POINT
PROXIES AND FITS

We here discuss triple point proxies used for Figs. 2
and 3.
The split of the profile of χ into two separate peaks as the

↕ →↑↑ line bifurcates into ↕ →↑↓ and ↑↓→↑↑ changes
the slope of the↑↑-phase border∂↑↑ in Fig. 4. Therefore, the
midpoint between the last point in the one-peak regime and
the first point in the two-peak regime served as the triple
point proxy for Fig. 2. We used the standard deviation of the
triangular distribution ending at these two points as the triple
point position uncertainty. ForN ≤ 24, the two peaks are not
completely separated in the triple point region, sowe instead
took the intersection of extrapolated transition lines.
For consistency, we also checked the C data, which has

less predictive power due to larger uncertainties and
distance from the triple point region. We there extrapolated
the ↕ →↑↓ transition line to its intersection with ∂↑↑. To
get 68% confidence intervals of the intersection point
coordinates, we used 83% confidence intervals of transition
line fits, since the probability of a triple point belonging to
their intersection is given by

Pð↕ →↑↓∩ ∂↑↑Þ ¼ Pð↕ →↑↓ÞPð∂↑↑Þ ðB1Þ

and 0.68 ≈ 0.832.
In the R-on case, we used contour diagrams (e.g., Fig. 1)

to detect the beginning of the ↑↓ phase from C data. We
looked at the bright triple point peak position and then
checked the neighboring raw data to pinpoint its exact
location. As it turns out, the peak resolves into two very
closely spaced convoluted peaks—which presumably
coincide when matrix size increases—joined by a wall
that separates phases (bottom of Fig. 5). For Fig. 3, we used
the position of the protruding peak shown in Fig. 5, which
gave a slightly higher estimate for the slope of the
c2ðTjrÞ ¼ fðcrÞ line than (25). The stationary point on
this wall seems a more realistic estimator of the triple point
position, but it is also more difficult to measure. A rough
estimate using the stationary point,
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ec2ðTjrÞ ¼ 13.2ð11Þcr þ 0.24ð9Þ; ðB2Þ

fits within the interval (18) and is close to its upper bound.
For comparison, the slope calculated from the smaller
peaks is around 12.
Looking at Fig. 1, we see a small oval local minimum

region with a bright triple point peak at its lower left edge.
Eigenvalue distribution there has the characteristics of the
↑↓ phase. We do not believe this to constitute a separate

phase but a finite-size effect that collapses into a triple point
as the matrix size increases. This should be, of course,
checked at larger N. In addition, between the triple point
and the origin in the R-on case, there is a transitional region
where curvature eigenvalues in (16) slowly activate as we
go from the ↕ to ↑↑ phase. This might constitute a separate
partially ordered phase but requires more data and further
analysis.
Different extrapolations of the triple point position as a

function of the inverse matrix size are collected in Table I.

FIG. 5. (Top) Triple point region for N ¼ 24, cr ¼ 0.2 at c̃4 ¼
0.25 resolved into two peaks. The stationary point at the plateau is
chosen as the triple point proxy. (Bottom) Plateau at c̃4 ¼ 0.25
mounts above plateaus at c̃4 ¼ 0.20 and c̃4 ¼ 0.30, building a
wall between phases.

FIG. 4. Phase diagrams for N ¼ 40 in the vicinity of the triple
point. (Top) Change in slope of the ↑↑-phase border indicates a
triple point. Arrows mark the last point on ↕ →↑↑ and the first
point on ↕ →↑↓ lines. Constructed from χ data. (Bottom)
Extrapolated transition lines with 83% confidence intervals.
Constructed from C data.

TABLE I. Different models of R-off triple point position fitting. All intercepts are consistent with the triple point located at the origin.
A linear fit is performed for data subsets with higher N, where nonlinearities are imperceptible.

Data Model c4ðTj=rÞ fit c2ðTj=rÞ fit
χ Linear c4 ¼ −0.008ð16Þ þ 5.7ð7Þ=N c2 ¼ þ0.07ð5Þ þ 37ð2Þ=N

Quadratic c4 ¼ −0.000ð11Þ þ 4.9ð7Þ=N þ 20ð10Þ=N2 c2 ¼ þ0.04ð8Þ þ 39ð5Þ=N − 42ð60Þ=N2

Power law c4 ¼ þ0.015ð15Þ þ 12ð4Þ=N1.24ð11Þ c2 ¼ −0.0ð2Þ þ 31ð10Þ=N0.93ð14Þ

C Linear c4 ¼ −0.12ð10Þ þ 16ð3Þ=N c2 ¼ þ0.9ð9Þ þ 93ð21Þ=N
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