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We present a numerical study of the spectrum of an asymptotically nonfree SU(2) gauge theory with
Nf ¼ 24 massive fermion flavors. For such a large number of flavors, asymptotic freedom is lost and the
massless theory is governed by a Gaussian fixed point at long distances. If fermions are massive they
decouple at low energy scales and the theory is confining. We present a scaling law for the masses of the
hadrons, glueballs and string tension as functions of fermion mass. The hadrons become effectively heavy
quark systems, with masses approximately twice the fermion mass, whereas the energy scale of the
confinement, probed by e.g., the string tension, is much smaller and vanishes asymptotically as m2.18

fermion.
Our results from lattice simulations are compatible with this behavior.

DOI: 10.1103/PhysRevD.104.114504

I. INTRODUCTION

Asymptotically free non-Abelian gauge-fermion theories
are a cornerstone of our theoretical understanding of the
elementary particle interactions of ordinary matter. The first
principle methodologies of lattice field theory to solve
these theories where perturbative methods are inapplicable
are well established. Recently much effort has been devoted
to studies of gauge-fermion theories whose matter content
facilitates the existence of an infrared fixed point [1] as
such theories are of interest for beyond-Standard-Model
phenomenology [2–4]. On the lattice the properties of
these types of theory have been studied for SU(2) gauge
theory with matter fields in the fundamental [5–9] or
adjoint [10–18] representation. For related studies in the
SU(3) case, see e.g., [19–28] for fundamental representa-
tion fermions and [29–33] for two-index symmetric rep-
resentation. Analyses have been extended also to the SU(4)
gauge group with fermions in fundamental and higher
representations [34,35].
However, less is known of the precise dynamics of gauge

theories with many fermion flavors so that the theory is no
longer asymptotically free. While such a particle content is
not directly relevant for the Standard Model of elementary

particle interactions, it poses an interesting challenge for
the general understanding of gauge theory dynamics on one
hand and on the development of computational methods on
the other.
Broadly, the nonasymptotically free theories can be

categorized as trivial or asymptotically safe. The former
means that the theory develops an ultraviolet (UV) cutoff
and can be interpreted consistently as a fundamental theory
only as a free theory at short distances, while the latter
means that a nonperturbative UV fixed point emerges and
controls the short distance behavior of the theory.
In an earlier study [36], we analyzed this question in

SU(2) gauge theory with 24 and 48 massless Dirac
fermions by measuring the evolution of the coupling
constant. Our results suggested that SU(2) gauge theory
at these large numbers of fermions does not have an UV
fixed point but is in the category of trivial theories. The
results on the running coupling were seen to match well
with the perturbative running in the infrared (IR).
In this paper we continue the lattice investigation of

SU(2) gauge theory with 24 flavors. The aim is to comple-
ment our earlier results on the measurement of the coupling
by a computation of the spectrum of the theory, i.e., the
determination of long distance or IR behavior, as the quark1

mass mq is varied. When the quark mass is nonvanishing
the infrared behavior of the theory changes: at energy scales
smaller than the quark mass mq, the quarks decouple and
the physics is effectively that of confining SU(2) gauge
theory with heavy quarks. The spectrum of the theory
includes two-quark baryons, quark-antiquark mesons and
glueballs, and the string tension is nonvanishing. In terms
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of the renormalization group flow, the point ðg2¼0;mq¼0Þ
is an infrared fixed point, and g2 and mq are irrelevant and
relevant parameters, respectively.
We introduce scaling laws for the hadron masses and

quantities probing confinement (string tension, glueballs)
as the quark mass is reduced. Our main result is that the
hadrons behave as heavy quark systems, with masses close
to 2mq, whereas the energy scale characterizing confine-
ment is much smaller, and asymptotically vanishes propor-
tional to m2.18

q . Our lattice measurements agree with these
predictions, although the confinement scale turns out to be
so small that we can only give upper limits to it. Together
with our earlier work, the present paper establishes a
consistent picture for the nonperturbative behaviors in this
theory from IR to UV scales.
The paper is organized as follows: in Sec. II we introduce

the expected scaling of the relevant mass scales of the
theory. In Sec. III we briefly describe the lattice formulation
and in Sec. IV we describe the lattice measurements and the
results. In Sec. V we conclude and outline possibilities for
further work.

II. EXPECTED MASS SPECTRUM

The solution of the 1-loop β-function for SU(2) gauge
theory with Nf massless quarks is

g2ðμ; NfÞ ¼
1

2β
ðNfÞ
0 logðμ=ΛÞ

: ð1Þ

Let us consider the caseNf ¼ 24. Now Λ ¼ ΛUV is the UV

Landau pole, μ < ΛUV and βð24Þ0 ≈ −0.0549. Thus, when
the energy scale μ → 0 the coupling constant g2 vanishes,
and the system is free in the infrared: there are no bound
states, and the string tension vanishes.
However, if the quarks are massive the situation changes

dramatically: when μ ≪ mq, the quarks decouple and the
system effectively becomes confining pure gauge SU(2)
theory. String tension is nonvanishing, and the mass
spectrum includes glueballs, quark-antiquark mesons and
two-quark baryons.
The energy scale of the confinement of SU(2) gauge

theory sets the mass scale of glueballs and string tension.
We can make a rough estimate of the confinement scale
with the 1-loop running of the coupling in Nf ¼ 24 and
Nf ¼ 0 theories, and setting the couplings equal at μ ¼ mq:

g2ðμ ¼ mq;Nf ¼ 24Þ ¼ g2ðμ ¼ mq;Nf ¼ 0Þ: ð2Þ

Let us call the Λ-parameter of the Nf ¼ 0 theory ΛIR. It is
analogous to “ΛQCD” of the pure gauge theory and is a
proxy for the confinement energy scale. Alternatively, we
could use a fixed large value of g2ðμÞ to set the scale, and
conclusions would remain unchanged.

Solving for ΛIR in terms of the quark mass and the UV
scale ΛUV, we obtain

ΛIR

ΛUV
¼

�
mq

ΛUV

�
1−βð24Þ

0
=βð0Þ

0

≈
�

mq

ΛUV

�
2.18

: ð3Þ

Thus, the confinement scale, and hence the glueball masses
and the square root of the string tension, are proportional to
m2.18

q at small quark masses. While the approximation (3) is
based on 1-loop running and an abrupt mass threshold, it
should become accurate in the limit mq=ΛUV → 0 because
the coupling near μ ¼ mq will be small, and the small
coupling region dominates the evolution of the scale.
On the other hand, becausemq=ΛIR ≳ 1 and grows asmq

decreases, the two-quark hadrons are effectively “heavy
quark” systems, with masses

mHadron ≈ 2mq: ð4Þ

The size of the heavy quark system is proportional to its
“Bohr radius,” ½mqg2ðmqÞ�−1.
A more accurate estimation of the confinement scale can

be obtained with the massive 2-loop β-function [37]. In this
case the mass threshold is automatically taken care of by
the β- and γ-functions:

μ
dg2

dμ
¼ βðg2; mq=μÞ; ð5aÞ

μ

mq

dmq

dμ
¼ −γðg2; mq=μÞ: ð5bÞ

Because the quark mass is also running, we set the physical
quark mass at the initial scale μ0 ¼ 2mq;0, give a range of
initial values to g2ðμ0Þ and evolve the equations to UV and
IR until the coupling diverges. The result ΛIR=ΛUV is
shown in Fig. 1 as functions of mq;0=ΛUV. We observe that
this result agrees with the approximation (3) at small mq,
but deviates from it substantially at larger mq when the
mass threshold effects and higher order corrections affect
the result significantly. Our goal is to observe how well this
behavior is reproduced on the lattice.

III. LATTICE FORMULATION

On the lattice the theory is defined by the action

S ¼ SGðUÞ þ SFðVÞ þ cSWSSWðVÞ; ð6Þ
where U is a SU(2) gauge link matrix in the fundamental
representation, V is a corresponding smeared gauge link,
defined by hypercubic truncated stout smearing (HEX
smearing) [38], SG is the Wilson gauge action, and SF
and SSW are, respectively, the Wilson fermion action and
the clover term. The parameters of the action are the bare
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lattice gauge coupling βL ≡ 4=g20, appearing in SG, the
“hopping parameter” κ in SF, and the Sheikholeslami-
Wohlert coefficient cSW. We set cSW ¼ 1, as is often used
for HEX smeared fermions [17].
We simulate Nf ¼ 24 massive but mass-degenerate

Wilson flavors on hypercubic, toroidal lattices of sizes
V ¼ N3

s × Nt, where Ns and Nt refer to the number of
lattice sites in spatial and temporal direction. These cover
the values Nt ∈ f32; 40; 48g and Ns ∈ fNt=2; 3Nt=4; Ntg.
The boundary conditions for the gauge field are periodic in
all directions, whereas for the fermion fields, they are
periodic only in spatial but antiperiodic in temporal direc-
tion, as usual.
Simulations are carried out using a hybrid Monte Carlo

(HMC) algorithm with a leapfrog integrator and chrono-
logical initial values for the fermion matrix inversion [39].
The HMC trajectories have unit-length and the number of
leapfrog steps is tuned to yield acceptance rates above 80%
(with a few exceptions).
The physical quark mass is determined by the lattice

PCAC [40] relation

amqðx4Þ ¼
ð∂�

4 þ ∂4ÞfAðx4Þ
4fPðx4Þ

; ð7Þ

where ∂4 and ∂�
4 are, respectively, forward and backward

lattice time-derivative operators, and

fAðx4Þ ¼ −
1

N3
sNt

X
x;y;a

hAa
μðy; y4ÞAa

μðx; x4 þ y4Þi;

fPðx4Þ ¼
1

N3
sNt

X
x;y;a

hPaðy; y4ÞPaðx; x4 þ y4Þi

are the axial current and pseudoscalar density correlation
functions with point sources:

Aa
μðxÞ ¼ ψ̄ðxÞγμγ5

1

2
τaψðxÞ;

PaðxÞ ¼ ψ̄ðxÞγ5
1

2
τaψðxÞ:

For each value of the bare gauge coupling βL ≡ 4=g20, the
hopping parameter κ in the Wilson fermion action is tuned
to cover a range of PCAC fermion masses for which we
study the behavior of the spectrum from the chiral limit to
heavy quarks. The masses of color singlet meson states are
then determined by fitting the time sliced average corre-
lation functions with Coulomb gauge fixed wall sources:

ðwÞΓaðx4Þ ¼
X
x;y

ψ̄ðx; x4ÞΓ
1

2
τaψðy; x4Þ;

with Γ representing an element of the Dirac algebra.

IV. RESULTS

Let us now turn to the details of the simulations and the
results we have obtained on the spectrum of physical states.
The simulation parameters and corresponding PCAC quark
masses, pseudoscalar (“π”) and vector (“ρ”) meson masses,
together with the acceptance rates and accumulated sta-
tistics, are given in the Appendix in Tables II–IX.

A. Phase diagram

For the bare gauge coupling we use values
βL ¼ 4=g20 ∈ f−0.25; 0.001; 0.25g. The small values of
βL might at first seem to imply that the gauge field is
deep in an unphysical strong coupling “bulk phase.” This is
in general, however, not the case, as the Wilson fermions
induce an effective positive shift in βL [41,42]. This is to
leading order proportional to the number of flavors
and therefore substantial for Nf ¼ 24. Indeed, the above
values of βL were successfully used in the measurement of
the coupling constant evolution at vanishing fermion
masses [36]. A similar effect has been reported in [43]
for staggered fermions.
The value of the βL affects the lattice spacing, but to the

opposite direction than in lattice QCD: the lattice spacing is
made smaller when βL is decreased. Because of the Landau
pole the theory on the lattice does not have a continuum
limit. Nevertheless, we anticipate that the theory has a
scaling window where the physical results are independent
of the actual cutoff scale.
In Fig. 2(a) we show the measured PCAC quark masses

mq as functions of the hopping parameter κ. It is evident
that the system has an abrupt phase transition into the
unphysical “bulk phase” at small values of κ. The approxi-
mate location of the bulk transition is shown with vertical

FIG. 1. The expected scaling of meson/baryon masses
mHadron ≈ 2mq and the confinement scale ΛIR, which is propor-
tional to the glueball masses and square root of the string tension,
as functions of quark mass mq. The long-dashed red line is
obtained using the 2-loop massive quark β-function (5b) and the
short-dashed black line is the approximation (3).
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shaded bands for each value of βL. On the large-κ side of
the transition there is a range of κ-values where mq

decreases from 0.8–0.9 down to 0 as κ is increased (here,
and in what follows, dimensionful quantities are given in
units of the lattice spacing a, unless specified otherwise).
This is the range where physics can be extracted. The bulk
transition is also visible in other observables, for example
the pseudoscalar mass [Fig. 2(b)] and plaquette expectation
value [Fig. 2(c)]. As expected, the pseudoscalar mass is
close to 2mq.
The ðβL; κÞ-plane phase diagram is shown in Fig. 2(d).

The physically relevant domain is between the bulk
transition and the critical line κcrðβLÞ, where mq ¼ 0.
The values of the critical κcrðβLÞ have been obtained by
linear extrapolation of the measured mqðκÞ at smallest
quark masses. The numerical values of κcr and the bulk
transition κbulk are shown in Table I.

B. Finite size effects

As discussed in Sec. II, the size of the hadrons grow as
mq → 0, and we can expect large finite size effects in this
limit. This is evident in Fig. 3(a), where we show the
pseudoscalar “pion”massesmπ measured from volumesN3

s

from 123 up to 323 at different values of βL. At small

(a) (b)

(c) (d)

FIG. 2. (a) The PCAC quark masses mq as functions of κ, measured at βL ¼ −0.25, 0.001, 0.25 and lattice sizes V ¼ N3
s × Nt with

Nt ¼ 32, Ns ¼ 16, 24, 32. Here, and in what follows, different colors indicate the βL-values and a plot symbol shapes the volume. The
vertical shaded bands show the approximate locations of the bulk phase transitions at different βL. The dashed lines are linear fits to three
smallest mq-values for each βL, used to determine the critical value κcr. (b) The pseudoscalar meson (“pion”) mass mπ . (c) Plaquette as
functions ofmq. In (b) the dashed line ismπ ¼ 2mq-line. (d) The phase diagram of the system. The physical domain is between the bulk
transition and critical (mq ¼ 0) lines.

TABLE I. The table lists for a system of size V ¼ N3
s × Nt with

Ns ¼ Nt ¼ 32 and different β-values; the values of κcr and κbulk,
being, respectively, the values of κ for which the PCAC quark
mass mq vanishes, and at which the bulk transition occurs.

Nt Ns βL κcr κbulk

32 32 −0.25 0.131327(4) 0.1215(12)
32 32 0.001 0.130296(2) 0.1186(12)
32 32 0.25 0.129297(2) 0.1140(10)
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volumes the mass plateaus roughly at mπ ≈ 1=ðNsaÞ as mq

is lowered. Interestingly, there is very little dependence on
the value of the lattice gauge coupling βL, indicating that it
is the quark mass which is important for finite size effects.
In Fig. 3(b) we show the expectation values of the spatial

Polyakov loop hPi as functions of the quark mass. A
nonzero value indicates that the system becomes spatially
deconfined, i.e., the volume is too small to contain the
confinement physics. The negative expectation value is due
to the periodic boundary conditions for fermions to spatial
directions. Clearly, at small volumes the magnitude of the
expectation values of the Polyakov lines grow as the quark
mass is decreased. The magnitude of hPi is expected to
decrease exponentially with the length of the line, Ns.
Nevertheless, the behavior changes qualitatively as the
volume is increased: hPi remains zero down to progres-
sively smaller values of mq. At Ns ¼ 32, hPi remains zero
at all mq, within our statistical accuracy.

C. Meson spectrum

The spectrum of pseudoscalar and vector mesons is
shown in detail in Fig. 4 for the range of mq away from the
bulk phase as discussed above. The pion masses as a
function of the quark mass are shown in panels (a) and (c),
and the vector meson masses in panels (b) and (d). The
results corresponding to βL-values, −0.25, 0.001 and 0.25,
are shown and different values are indicated by colors
black, blue and red respectively. In (a) and (b) the results
are shown for system sizes Nt ¼ Ns ¼ L with L ¼ 32
(circles), L ¼ 40 triangles and L ¼ 48 (diamonds), while in
(c) and (d) the results are shown for Nt ¼ 48 with Ns ¼ 24
(circles), Ns ¼ 36 (triangles) and Ns ¼ 48 (diamonds).

Both the quark mass mq and the hadron masses are in
units of the inverse lattice spacing.
As expected, the hadron masses very closely follow the

2mq-line, slightly above it, and significant deviations
appear only when mhadron ≲ 1=L, the inverse spatial size
of the lattice. There is also no significant difference
between pseudoscalar and vector mesons within the accu-
racy of our measurements. This demonstrates the heavy
quark nature of the mesons.
The results are independent of the bare lattice coupling

βL in the sense that the results fall on a universal line on the
ðmq;mHadronÞ-plane. We remind the reader that the lattice
spacing becomes smaller as βL is decreased (bare coupling
grows when lattice spacing is decreased), but the theory has
no continuum limit because of the UV Landau pole.
Nevertheless, the observed universal behavior in βL indi-
cates that the theory has a scaling window where the
physical results remain independent of the cutoff scale.

D. String tension and glueballs

In Sec. II it was predicted that the confinement scale,
which determines the string tension and the glueball
masses, scales as ðmq=ΛUVÞ2.18 at small mq, with devia-
tions expected at larger mq (see Fig. 1). We measure the
string tension σ by constructing Wilson loops using
spatially smeared gauge fields, with five different APE
smearing levels [44] with up to 32 smearings [45]. We
measure Wilson loops Wðr; tÞ, where r is an integer
multiple of one of the spatial vectors (1, 0, 0), (1, 1, 0),
(1, 1, 1), (2, 1, 0), (2, 1, 1) þ reflections and permutations.
The large-t behavior of the Wilson loops is fitted with an
effective potential

(a) (b)

FIG. 3. The figure shows for three different values of βL ¼ −0.25, 0.001, 0.25 and lattice sizes V ¼ N3
s × Nt with Ns ¼ 16, 24, 32 at

Nt ¼ 32 and Ns ¼ 12 at Nt ¼ 24 (a) the pion mass mπ and (b) the expectation value of spatial Polyakov loop hPsi as functions of the
PCAC quark massmq. Note that colors (black, purple, green) are used to distinguish between different values of βL and symbols (circle,
triangle, diamond) are used to distinguish the different system sizes. For comparison, the black, dashed, diagonal line in (a) shows the
free quark case, mπ ¼ 2mq.
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log
Wðr; tþ 1Þ
Wðr; tÞ ¼ A

r
þ σrþ B; ð8Þ

where r ¼ jrj and A, B and σ are fit parameters.
However, it turns out that the string tension is too small

to be reliably measured using our lattice sizes and statistics.
We can only present upper limits for the string tension,
measured from the largest t-distance before the statistical
errors make the measurement meaningless. Nevertheless,
the measurements have not yet stabilized as t is changed.
This is shown in Fig. 5. We also attempted to do a
generalized eigenvalue analysis of the Wilson loops
between different smearing levels, but this did not stabilize
either, presumably because the spacing between eigenval-
ues is too small.
The upper limits of the square root of the string tension

are shown in Fig. 6. To guide the expectation, the simple
scaling ansatz (3) is shown by the dashed line, with
arbitrary scaling.

Finally, we attempt to measure glueball correlation
functions using spatially smeared gauge links, with up to
100 APE smearing steps. From the smeared gauge fields
we construct operators coupling to scalar JPC ¼ 0þþ and
tensor 2þþ glueballs. On the lattice the operators transform
under cubic group representations [46,47], and we measure
operators under six different representations. Considering
the difficulties in measuring the string tension, it is perhaps
not surprising that we were not able to reliably measure
glueball masses. The correlation functions coupling to the
Oþþ state are very noisy due to the disconnected contri-
bution. Correlation functions of operators in the cubic
group representations Eþþ and Tþþ

2 , which couple to the
continuum 2þþ state, do not have a disconnected part and
are somewhat better behaved. Nevertheless, we were not
able to obtain the asymptotic state in these channels.
We assign the failure of the glueball mass measurement

to the (expected) small value of the masses. This implies
that the numerous excited states coupling to the same

(a) (b)

(c) (d)

FIG. 4. The pseudoscalar meson massmπ (a, c) and the vector meson massmρ (b, d) as functions of the PCAC quark massmq for three
values of βL ¼ −0.25, 0.001, 0.25 and system sizes V ¼ N3

s × Nt, where in (a, b) Nt ¼ Ns ¼ L, L ¼ 32, 40, 48, and in (c, d) Nt ¼ 48,
Ns ¼ 24, 36, 48. The colors (black, purple, green) are used to distinguish between different values of βL and symbols (circle, triangle,
diamond) are used to distinguish the different system sizes. For comparison, the black, dashed, diagonal lines show the pion mass in the
case of free quarks, mπ ¼ 2mq.
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operators also have small masses, and it becomes very
difficult to find the ground state. We attempted to use
generalized eigenvalue analysis of operators with different
numbers of smearing steps, but the small mass gaps
between states rendered the procedure unstable.

In Fig. 7 we plot together the pseudoscalar mass and the
upper limit of the square root of the string tension,
measured from 484 lattices. mπ is more than an order of
magnitude larger than the upper limit of σ1=2, and at the
smaller end of the mπ-range the true hierarchy is expected
to become much larger. Compared with Fig. 1, we can
conclude that the physics on our lattices correspond to the
case where quark masses are substantially below the
Landau pole, mq=ΛUV ≪ 1. Because in the lattice units
mqa≲ 1 this implies that the Landau pole is effectively at
considerably larger scale than the inverse lattice spacing,
ΛUV ≫ 1=a. This was also observed in our earlier study of
the running coupling at massless theory [36].
It is difficult to reach larger values of mq=ΛUV with

lattice simulations; trying to make the bare coupling
stronger and the quarks heavier moves us towards the
direction of strong lattice artifacts. With our choice of the
lattice action the bulk transition prevents us from using
heavier quarks.

V. CONCLUSIONS

We have studied the mass spectrum of SU(2) gauge
theory with Nf ¼ 24 Dirac fermions on the lattice, com-
plementing our earlier analysis [36] on the running cou-
pling in this theory. The massless theory is free in the
infrared, without bound states. When the quark mass mq is
nonzero the behavior is different: in the infrared the theory
is confining, and its spectrum includes mesons, two-quark
baryons and glueballs, and the string tension is nonvanish-
ing. We have presented scaling relations for the hadron
masses and for the confinement scale as functions of the
quark mass. The hadrons behave effectively as heavy quark

FIG. 5. Examples of fitting the effective potential while the
t-distance of the Wilson loops, tw, is varied. The result does not
settle to an asymptotic value, and the result is only an
upper bound.

FIG. 6. The upper limit of the square root of the string tension
σ1=2 as function of the quark mass amq. The dashed line shows
the confinement scale ΛIR from Fig. 1, assuming (arbitrarily) that
aΛUV ∼ 24.

FIG. 7. The pseudoscalar mass mπ and the upper limit of the
square root of the string tension σ1=2 as functions of mq. The data
is measured from lattices of size 484. The diagonal, black, dashed
line corresponds to E ¼ 2mq. The vertical, red, dashed line
indicates E ¼ 0.
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systems with masses close to 2mq, whereas the confine-
ment scale decreases faster, at small mq proportional
to m2.18

q .
The scaling relations imply that glueball masses and the

square root of the string tension σ1=2 are much smaller than
hadron masses unless quarks are very heavy, with masses of
the order of the Landau pole of the theory. The results from
lattice simulations confirm this behavior: σ1=2 is more than
an order of magnitude smaller than the hadron masses.
However, we were only able to give an upper limit for σ1=2

in the range of quark masses studied, and we expect the true
result to be substantially below the upper limit at small mq.
To fully verify the behavior of the confinement scale as

mq is varied we would need to use much heavier quarks and
stronger lattice coupling, so that the quark mass should be
close to the Landau pole, mq=ΛUV ≲ 1. However, lattice
bulk transition and increased lattice artifacts prevent us
from moving significantly to that direction. Furthermore,
because the theory is only defined up to the UV cutoff

scale, moving quark masses close to it makes the
relevant physics sensitive to the details of the UV regu-
larization used.
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APPENDIX: TABLES OF SIMULATION
PARAMETERS AND RESULTS

A summary of the simulation parameters and corre-
sponding PCAC quark masses, pion and rho-meson
masses, as well as the acceptance rates and accumulated
statistics (after subtraction of nonthermalized configura-
tions), is given in Tables II–IX.

TABLE II. The table shows for systems of size V ¼ N3
s × Nt with Nt ¼ 24 and Ns ¼ 12 the simulated values of βL and κ, the

corresponding PCAC quark mass,mq, pion and ρ-meson masses,mπ ,mρ, the acceptance rate of the HMC trajectories, and the number of
usable configurations (after thermalization).

Nt Ns βL κ mq mπ mρ acceptance rate statistics

24 12 −0.25 0.1309 0.037(2) 0.84(5) 0.91(5) 0.98 8.8k
24 12 −0.25 0.129 0.133(5) 0.79(5) 0.80(7) 0.98 9k
24 12 −0.25 0.128 0.194(5) 0.86(3) 0.87(4) 0.99 9.3k
24 12 −0.25 0.127 0.263(5) 0.91(3) 0.93(3) 0.99 9.5k
24 12 −0.25 0.126 0.337(8) 0.98(4) 0.99(4) 0.99 9.7k
24 12 −0.25 0.125 0.40(2) 1.00(4) 1.00(5) 0.99 9.7k
24 12 −0.25 0.124 0.49(2) 1.08(3) 1.09(4) 0.99 9.5k
24 12 −0.25 0.123 0.58(2) 1.13(3) 1.14(3) 0.99 9.8k
24 12 0.001 0.1299 0.029(1) 0.77(4) 0.76(6) 0.99 9.2k
24 12 0.001 0.129 0.077(3) 0.86(4) 0.88(5) 0.99 9.4k
24 12 0.001 0.128 0.129(3) 0.85(3) 0.84(4) 0.99 9.5k
24 12 0.001 0.1265 0.202(6) 0.85(4) 0.87(4) 0.99 9.5k
24 12 0.001 0.125 0.288(9) 0.93(4) 0.95(4) 0.99 9.6k
24 12 0.001 0.123 0.411(8) 1.03(3) 1.03(3) 0.99 10.2k
24 12 0.001 0.1215 0.50(2) 1.06(3) 1.07(3) 0.99 10.1k
24 12 0.001 0.12 0.66(1) 1.22(2) 1.22(2) 0.99 10.2k
24 12 0.25 0.129 0.0270(8) 0.81(4) 0.79(5) 0.99 9.6k
24 12 0.25 0.127 0.121(3) 0.82(3) 0.85(4) 0.99 9.9k
24 12 0.25 0.125 0.231(6) 0.93(3) 0.96(3) 0.99 10.1k
24 12 0.25 0.123 0.33(1) 0.98(4) 0.99(4) 0.99 10.6k
24 12 0.25 0.1215 0.392(9) 0.98(4) 1.00(4) 0.99 10.5k
24 12 0.25 0.12 0.50(1) 1.10(3) 1.11(3) 0.99 10.3k
24 12 0.25 0.1175 0.64(2) 1.16(4) 1.16(4) 0.99 6k
24 12 0.25 0.115 0.92(2) 1.41(2) 1.41(2) 0.99 11.5k
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TABLE IV. Same as Table II for Nt ¼ 40, Ns ¼ 20.

Nt Ns βL κ mq mπ mρ acceptance rate statistics

40 20 −0.25 0.1309 0.0226(1) 0.50(2) 0.50(2) 0.95 2k
40 20 −0.25 0.1302 0.0509(1) 0.48(2) 0.51(2) 0.97 1.3k
40 20 −0.25 0.129 0.1045(2) 0.56(1) 0.54(2) 0.86 1k
40 20 −0.25 0.1277 0.1646(2) 0.51(2) 0.48(2) 0.85 0.6k
40 20 −0.25 0.1263 0.2292(3) 0.64(2) 0.65(2) 0.88 0.3k
40 20 −0.25 0.125 0.2978(5) 0.663(3) 0.663(3) 0.89 0.2k
40 20 −0.25 0.123 0.4538(4) 0.971(4) 0.972(4) 0.86 2k
40 20 0.001 0.1299 0.0189(1) 0.53(2) 0.57(2) 0.97 2k
40 20 0.001 0.129 0.0547(1) 0.52(2) 0.57(2) 0.88 1k
40 20 0.001 0.1278 0.1019(1) 0.56(2) 0.54(2) 0.96 1.4k
40 20 0.001 0.125 0.2223(2) 0.61(2) 0.63(2) 0.91 0.5k
40 20 0.001 0.12 0.5099(5) 1.10(2) 1.10(2) 0.9 1.5k
40 20 0.25 0.129 0.0168(1) 0.48(2) 0.50(3) 0.88 1k
40 20 0.25 0.1281 0.0523(1) 0.51(2) 0.53(3) 0.97 1.4k
40 20 0.25 0.1267 0.1032(1) 0.54(3) 0.57(3) 0.97 0.8k
40 20 0.25 0.125 0.1700(2) 0.55(2) 0.55(2) 0.92 0.8k
40 20 0.25 0.12 0.3823(2) 0.801(2) 0.801(2) 0.91 2k
40 20 0.25 0.115 0.7534(6) 1.373(7) 1.374(7) 0.92 2k

TABLE III. Same as Table II for Nt ¼ 32, Ns ¼ 32.

Nt Ns βL κ mq mπ mρ acceptance rate statistics

32 32 −0.25 0.1309 0.0207(2) 0.28(3) 0.24(3) 0.89 0.4k
32 32 −0.25 0.129 0.1008(2) 0.299(5) 0.284(5) 0.84 0.5k
32 32 −0.25 0.1277 0.1619(2) 0.403(6) 0.397(6) 0.84 1.2k
32 32 −0.25 0.1263 0.2282(2) 0.530(2) 0.530(2) 0.84 1.3k
32 32 −0.25 0.125 0.3043(2) 0.697(6) 0.695(7) 0.82 1.5k
32 32 −0.25 0.123 0.4595(5) 0.971(3) 0.971(3) 0.84 1.7k
32 32 0.001 0.1299 0.0176(1) 0.30(2) 0.26(2) 0.89 1.4k
32 32 0.001 0.129 0.0526(1) 0.33(3) 0.29(3) 0.83 0.9k
32 32 0.001 0.125 0.2201(2) 0.53(2) 0.52(2) 0.83 1.4k
32 32 0.001 0.12 0.5136(5) 1.036(2) 1.036(2) 0.85 1.7k
32 32 0.25 0.129 0.0155(1) 0.33(2) 0.29(2) 0.86 0.7k
32 32 0.25 0.125 0.1669(1) 0.398(2) 0.391(2) 0.89 1.1k
32 32 0.25 0.12 0.3894(2) 0.833(5) 0.832(5) 0.88 1.5k
32 32 0.25 0.115 0.762(2) 1.40(2) 1.40(2) 0.88 1.9k

TABLE V. Same as Table II for Nt ¼ 40, Ns ¼ 30.

Nt Ns βL κ mq mπ mρ acceptance rate statistics

40 30 −0.25 0.1309 0.0209(1) 0.32(2) 0.28(2) 0.91 1.9k
40 30 −0.25 0.1302 0.0489(1) 0.40(2) 0.39(2) 0.92 0.8k
40 30 −0.25 0.129 0.1015(2) 0.39(3) 0.38(3) 0.75 0.3k
40 30 −0.25 0.1277 0.1615(2) 0.401(3) 0.396(3) 0.74 0.2k
40 30 −0.25 0.1263 0.2270(2) 0.535(8) 0.535(8) 0.77 1k
40 30 −0.25 0.125 0.3018(2) 0.670(1) 0.670(1) 0.79 2k
40 30 −0.25 0.123 0.4557(6) 0.981(6) 0.981(6) 0.76 2k
40 30 0.001 0.1299 0.0176(1) 0.37(2) 0.38(2) 0.94 1.7k
40 30 0.001 0.129 0.0523(1) 0.32(2) 0.29(2) 0.79 1k
40 30 0.001 0.1278 0.0991(1) 0.40(2) 0.38(2) 0.94 1k

(Table continued)
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TABLE VI. Same as Table II for Nt ¼ 40, Ns ¼ 40.

Nt Ns βL κ mq mπ mρ acceptance rate statistics

40 40 −0.25 0.1309 0.0203(1) 0.25(3) 0.22(3) 0.91 0.9k
40 40 −0.25 0.129 0.1005(1) 0.262(1) 0.255(1) 0.88 0.8k
40 40 −0.25 0.1277 0.1610(1) 0.375(1) 0.374(1) 0.88 2k
40 40 −0.25 0.1263 0.2272(1) 0.523(2) 0.521(2) 0.9 2k
40 40 −0.25 0.125 0.3023(2) 0.672(1) 0.672(1) 0.89 2k
40 40 −0.25 0.123 0.4561(5) 0.974(2) 0.975(2) 0.88 2k
40 40 0.001 0.1299 0.0173(1) 0.25(2) 0.21(3) 0.9 0.8k
40 40 0.001 0.129 0.0521(1) 0.25(2) 0.23(2) 0.89 1.1k
40 40 0.001 0.125 0.2184(1) 0.492(1) 0.491(1) 0.9 2k
40 40 0.001 0.12 0.5100(4) 1.046(5) 1.045(5) 0.9 2k
40 40 0.25 0.129 0.0151(1) 0.20(2) 0.17(2) 0.91 0.9k
40 40 0.25 0.125 0.1662(1) 0.377(2) 0.376(2) 0.91 2k
40 40 0.25 0.12 0.3868(2) 0.807(2) 0.807(2) 0.92 2k
40 40 0.25 0.115 0.758(2) 1.41(1) 1.42(1) 0.92 2k

TABLE V. (Continued)

Nt Ns βL κ mq mπ mρ acceptance rate statistics

40 30 0.001 0.125 0.2185(2) 0.514(3) 0.509(3) 0.92 0.5k
40 30 0.001 0.12 0.5091(4) 1.040(5) 1.040(5) 0.8 2k
40 30 0.25 0.129 0.0155(1) 0.29(2) 0.25(2) 0.81 1k
40 30 0.25 0.1281 0.0503(1) 0.36(2) 0.34(3) 0.94 0.9k
40 30 0.25 0.1267 0.0994(1) 0.29(1) 0.27(1) 0.94 0.5k
40 30 0.25 0.125 0.1659(2) 0.393(2) 0.387(2) 0.81 0.4k
40 30 0.25 0.115 0.7552(8) 1.398(6) 1.398(6) 0.83 2k

TABLE VII. Same as Table II for Nt ¼ 48, Ns ¼ 24.

Nt Ns βL κ mq mπ mρ acceptance rate statistics

48 24 −0.25 0.1309 0.0214(1) 0.44(2) 0.45(2) 0.94 2k
48 24 −0.25 0.1302 0.0497(1) 0.43(2) 0.40(2) 0.95 1.6k
48 24 −0.25 0.129 0.1027(2) 0.41(2) 0.43(3) 0.82 2k
48 24 −0.25 0.1277 0.1608(1) 0.435(7) 0.443(7) 0.81 2k
48 24 −0.25 0.1263 0.2245(1) 0.515(1) 0.516(2) 0.81 2k
48 24 −0.25 0.125 0.2991(3) 0.674(3) 0.674(3) 0.83 2k
48 24 −0.25 0.123 0.4539(4) 0.990(8) 0.990(9) 0.82 2k
48 24 0.001 0.1299 0.0182(1) 0.41(2) 0.42(2) 0.95 2k
48 24 0.001 0.129 0.0535(2) 0.45(2) 0.41(2) 0.84 2k
48 24 0.001 0.1278 0.1003(1) 0.49(1) 0.47(2) 0.95 1.8k
48 24 0.001 0.125 0.2168(2) 0.508(2) 0.505(2) 0.84 2k
48 24 0.001 0.12 0.5063(4) 1.037(5) 1.037(5) 0.85 2k
48 24 0.25 0.129 0.0161(1) 0.42(2) 0.43(3) 0.86 2k
48 24 0.25 0.1281 0.0510(1) 0.42(2) 0.39(2) 0.95 1.8k
48 24 0.25 0.1267 0.1008(2) 0.385(7) 0.362(7) 0.95 1.8k
48 24 0.25 0.125 0.1648(1) 0.382(2) 0.384(2) 0.86 2k
48 24 0.25 0.12 0.3821(2) 0.798(1) 0.798(1) 0.87 2k
48 24 0.25 0.115 0.7508(8) 1.384(8) 1.385(8) 0.89 2k
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