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Two hadrons with exotic quark content Zþ
b ≃ b̄bd̄u were discovered by Belle. We present a lattice study

of the b̄bd̄u systems with various quantum numbers using static bottom quarks. Only one set of quantum
numbers that couples to Zb and ϒπ was explored on the lattice before; these studies found an attractive
potential between B and B̄� resulting in a bound state below the threshold. The present study considers the
other three sets of quantum numbers. Eigenenergies of the b̄bd̄u system are extracted as a function of
separation between b and b̄. The resulting eigenenergies do not show any sizable deviation from
noninteracting energies of the systems b̄bþ d̄u and b̄uþ d̄b, so no significant attraction or repulsion is
found. A slight exception is a small attraction between B and B̄� at small distance for the quantum number
that couples to Zb and ηbρ.

DOI: 10.1103/PhysRevD.104.114503

I. INTRODUCTION

The Belle experiment discovered two tetraquarks
Zbð10610Þ and Zbð10650Þ with JP ¼ 1þ and I ¼ 1 in
2011 [1,2]. Both resonances were first observed in decays
to Z�

b → ϒðnSÞπ� and Z�
b → hbðmPÞπ�, which indicates

the exotic flavor content Zþ
b ∼ b̄bd̄u. The neutral isospin

partnerZ0
bð10610Þ ∼ b̄bq̄q ∼ b̄bðūu − d̄dÞwas also discov-

ered [3]. Later, Belle established that Zbð10610Þ and
Zbð10650Þ predominantly decay to BB̄� and B�B̄�, respec-
tively [4]. Their masses are slightly above these two thresh-
olds.Many phenomenological studies have been performed,
for example, [5–18], and the majority indicate that the
Bð�ÞB̄� molecular Fock component is essential for Zb.
No lattice studies of the b̄bq̄q resonances via the

rigorous Lüscher formalism are available. This is too
challenging at present since one would have to determine
a scattering matrix of at least seven coupled channels from a
very dense spectrum of eigenenergies.
We perform a lattice QCD simulation of the system

b̄bq̄1q2 with isospin one, where b and b̄ quarks are static and
fixed at distance r (see Fig. 1(a)). Systems containing
q̄1q2 ∝ d̄u; ūu − d̄d; ūd are equivalent in our simulation
—with mu ¼ md—that neglects the electromagnetic

interaction. Therefore, we present the simulation for the
neutral system b̄bq̄q ∝ b̄bðūu − d̄dÞ where the charge
conjugation for q̄q is a good quantum number. The goal
is to determine the eigenenergies of this system EnðrÞ as a
function of the separation r for various quantum numbers.
The resulting energies are then compared to the noninter-
acting (n.i.) energies En:i:ðrÞ of subsystems ½b̄b�½q̄q� and
½b̄q�½q̄b�, where [::] denotes a color-singlet meson of a given
flavor. The eigenenergies represent lattice input to study this
system within the Born-Oppenheimer approximation via
static potentials, according to the general strategy outlined in
[19–24]. This approximation is valuable when the b-quark
mass ismuch larger than the energy scale of the light degrees
of freedom. The gluon and light-quark fields respond almost
instantaneously to the motion of the b and b̄. Their
instantaneous configurations are determined by the posi-
tions of the b and b̄, which are approximated as static color
sources. The energy of stationary configurations of light-
quark and gluon fields defines the static potential VðrÞ,
which depends on the separation r and the quantumnumbers
for the system.
Let us consider which quantum numbers of the system

b̄bq̄q are most relevant for the Zb resonances. The total
spin of heavy quarks (Sh) and the angular momentum of the
light degrees of freedom (Jl) are separately conserved in the
static limit mb → ∞. The Zb with JP ¼ 1þ corresponds in
the molecular Bð�ÞB̄� picture to the linear combination of
two quantum channels

BB̄�
kþB�

kB̄∝ ðSh¼0ÞðJl¼1ÞþðSh¼1ÞðJl¼0Þ;
B�
i B̄

�
j −B�

j B̄
�
i ∝ ðSh¼0ÞðJl¼1Þ−ðSh¼1ÞðJl¼0Þ: ð1Þ
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Zb within a diquark-antidiquark ðb̄ q̄Þ3cðbqÞ3̄c picture is
also a linear combination of these two quantum channels.
Lattice simulations of Zb [25,26] have been done only for

the quantum number Jl ¼ 0, where Zb couples to ϒπ and to
the second component of Bð�ÞB̄� on the right-hand side
of (1).1 Throughout this paper we refer to any combination
of Bð�ÞB̄ð�Þ as BB̄�.2 Both available studies found that
the eigenstate dominated by BB̄� has energy significantly
belowmB þmB� at small r. This rendered the static potential
with sizable attraction between B and B̄� at small r. The
Schrödinger equation for BB̄� leads to a bound state below
the BB̄� threshold, which could be related to Zb.
The present lattice study considers another three sets of

quantum numbers for the b̄bq̄q system. These quantum
numbers have not been studied before, with exception
of [27] which considered the ground state of one channel as
detailed in Sec. VI. We investigate the quantum number
which contains Jl ¼ 1 and is relevant for Zb, where this
resonance couples to ηbρ and to the first component of
BB̄� (1). In addition, we study two other sets of quantum

numbers which do not couple to BB̄� but only to ½b̄b�½q̄q� in
the explored energy region.

II. QUANTUM NUMBERS AND OPERATORS

In the static approximation mb → ∞, the conserved
quantum numbers differ from those when b and b̄ have
finite mass. Here are the quantum numbers that characterize
the b̄bq̄q system in Fig. 1(a) where b and b̄ are separated
along the z-axis:
(a) I ¼ 1 and I3 ¼ 0: isospin and its third component.
(b) Angular momentum (Jlz ¼ 0): The static quarks can

not flip spin via interactions with gluons. Therefore the
total spin of the heavy quarks (Sh) and the angular
momentum of light degrees of freedom (Jl) are
separately conserved. The observables do not depend
on Sh due to the heavy quark symmetry, so the
resulting eigenenergies apply to both Sh ¼ 1 and
Sh ¼ 0. The only conserved rotational symmetry are
the rotations around the separation axis z, so only the
z-component of Jl is conserved.

(c) C · P ¼ �1: The product of parity (space inversion
with respect to the midpoint between b and b̄) and
charge conjugation for light degrees of freedom is a
good symmetry in the case of a neutral system b̄bq̄q.

FIG. 1. (a) The system studied with static b and b̄; (b,c,d) The states of this system with various quantum numbers captured by the
operators in (4), (5), (6).

1This is the quantum channel denoted by Σ−
u in Table I.

2One should note that in the static limit B and B� mesons are
degenerate and with B, B� we refer to B-mesons with negative
parity.
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(d) ϵ ¼ �1: This is an eigenvalue related to the reflection
of the light degrees of freedom over yz plane. It is a
good quantum number for Jlz ¼ 0.

We study the four-quark system b̄bq̄q with

I ¼ 1; I3 ¼ 0; Jlz ¼ 0; ð2Þ

where the operators are written for I3 ¼ 0 due to consid-
erations related to the charge conjugation. Table I lists the
three sets of quantum numbers considered here and one set
considered in the previous studies [25,26]. To show the
connection between the Zb in the molecular picture and the
quantum channels we consider, let us write Eq. (1) more
rigorously using Fierz transformations,

BB̄�
k þ B�

kB̄ ∝ ðSh ¼ 0ÞðJl ¼ 1; C · P ¼ ϵ ¼ þ1Þ þ ðSh ¼ 1ÞðJl ¼ 0; C · P ¼ ϵ ¼ −1Þ
½b̄P−γ5q�½q̄γzPþb� þ ½b̄P−γzq�½q̄γ5Pþb� ¼ ðb̄aγ5PþbbÞðq̄bP−γzqaÞ þ ðb̄aγzPþbbÞðq̄bP−γ5qaÞ;

B�
i B̄

�
j − B�

j B̄
�
i ∝ ðSh ¼ 0ÞðJl ¼ 1; C · P ¼ ϵ ¼ þ1Þ − ðSh ¼ 1ÞðJl ¼ 0; C · P ¼ ϵ ¼ −1Þ

½b̄P−γxq�½q̄γyPþb� − ½b̄P−γyq�½q̄γxPþb� ¼ ðb̄aγ5PþbbÞðq̄bP−γzqaÞ − ðb̄aγzPþbbÞðq̄bP−γ5qaÞ; ð3Þ

where color indices a, b are summed over and P� ¼
ð1� γtÞ=2. The right-hand side is a linear combination of
two terms; the first one is the quantum channel we consider
and the second one was considered in [25,26]. The Zb in
diquark-antidiquark picture ðb̄P−Cγ5q̄TÞ3cðbTPþγzCqÞ3̄c −
ðb̄P−Cγzq̄TÞ3cðbTPþγ5CqÞ3̄c is also a linear combination of
these two quantum channels.

We determine the eigenenergies En of the system in
Fig. 1(a) from the correlation functions hOiðtÞO†

jð0Þi. Our
operators resemble Fock components ½b̄q�½q̄b� and ½b̄b�½q̄q�,
schematically shown in Fig. 1 with quantum numbers
represented in Table I. Employed annihilation operators
for each set of quantum numbers are listed below, followed
by comments on the notation and various constructions,

Jlz ¼ 0; C · P ¼ þ1; ϵ ¼ þ1; Shz ¼ 0; Sh ¼ 0 or 1;

O1 ¼ OBB̄� ∝
X
a;b

X
A;B;C;D

ΓBAΓ̃CDb̄aCð0ÞqaAð0Þq̄bBðrÞbbDðrÞ

∝ ð½b̄ð0ÞP−γ5qð0Þ�½q̄ðrÞγzPþbðrÞ� þ fγ5 ↔ γzgÞ − ð½b̄ð0ÞP−γyqð0Þ�½q̄ðrÞγxPþbðrÞ� þ fγy ↔ γxgÞ;
O2 ¼ OðBB̄�Þ0 ;

O3 ¼ O½b̄b�ρð0Þ ∝ ½b̄ð0ÞUΓðHÞbðrÞ�½q̄γzq�p⃗¼0⃗
;

O4 ¼ O½b̄b�ρð1Þ ∝ ½b̄ð0ÞUΓðHÞbðrÞ�ð½q̄γzq�p⃗¼e⃗z þ ½q̄γzq�p⃗¼−e⃗zÞ;
O5 ¼ O½b̄b�ρð2Þ ∝ ½b̄ð0ÞUΓðHÞbðrÞ�ð½q̄γzq�p⃗¼2e⃗z þ ½q̄γzq�p⃗¼−2e⃗zÞ; ð4Þ

Jlz ¼ 0; C · P ¼ þ1; ϵ ¼ −1; Shz ¼ 0; Sh ¼ 0 or 1;

O1 ¼ O½b̄b�πð1Þ ∝ ½b̄ð0ÞUΓðHÞbðrÞ�ð½q̄γ5q�p⃗¼e⃗z − ½q̄γ5q�p⃗¼−e⃗zÞ;
O2 ¼ O½b̄b�πð2Þ ∝ ½b̄ð0ÞUΓðHÞbðrÞ�ð½q̄γ5q�p⃗¼2e⃗z − ½q̄γ5q�p⃗¼−2e⃗zÞ;
O3 ¼ O½b̄b�b1ð1Þ ∝ ½b̄ð0ÞUΓðHÞbðrÞ�ð½q̄γxγyq�p⃗¼e⃗z − ½q̄γxγyq�p⃗¼−e⃗zÞ;
O4 ¼ O½b̄b�a1ð0Þ ∝ ½b̄ð0ÞUΓðHÞbðrÞ�½q̄γ5γzq�p⃗¼0⃗

;

O5 ¼ O½b̄b�a1ð1Þ ∝ ½b̄ð0ÞUΓðHÞbðrÞ�ð½q̄γ5γzq�p⃗¼e⃗z þ ½q̄γ5γzq�p⃗¼−e⃗zÞ; ð5Þ

TABLE I. Four sets of quantum numbers for the system b̄bq̄q:
the first one was studied in [25,26], whereas we study the other
three. The system is invariant under the rotations of the heavy
quark spins, so the results are independent of Sh. Λϵ

η¼CP is written
according to the convention in [28].

Quantum numbers

I I3 Jlz C · P ϵ Λϵ
CP Sh Shz Lattice studies

1 0 0

−1 −1 Σ−
u

0,1 0

[25,26]
þ1 þ1 Σþ

g This work
þ1 −1 Σ−

g This work
−1 þ1 Σþ

u This work
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Jlz ¼ 0; C · P ¼ −1; ϵ ¼ þ1; Shz ¼ 0; Sh ¼ 0 or 1;

O1 ¼ O½b̄b�ρð1Þ ∝ ½b̄ð0ÞUΓðHÞbðrÞ�ð½q̄γzq�p⃗¼e⃗z − ½q̄γzq�p⃗¼−e⃗zÞ;
O2 ¼ O½b̄b�ρð2Þ ∝ ½b̄ð0ÞUΓðHÞbðrÞ�ð½q̄γzq�p⃗¼2e⃗z − ½q̄γzq�p⃗¼−2e⃗zÞ;
O3 ¼ O½b̄b�a0ð1Þ ∝ ½b̄ð0ÞUΓðHÞbðrÞ�ð½q̄1q�p⃗¼e⃗z − ½q̄1q�p⃗¼−e⃗zÞ. ð6Þ

Let us first provide general comments on all operators,
followed by comments specific to both operator types.
Color singlets are denoted by [::]. The gamma matrices
sandwiched between static quarks are Γ̃;ΓðHÞ ¼ γ5Pþ or
γzPþ for Sh ¼ 0 or 1, respectively. The heavy quark
symmetry implies that the correlators and En are the same
for both, so our results apply to both cases. The pair q̄q
indicates the combination ūu − d̄d with I ¼ 1 and I3 ¼ 0.
All light quarks qðxÞ are smeared around the position x
using the full distillation [29] of a radius about 0.3 fm,
while the heavy quarks are pointlike. Additional arguments
concerning quantum numbers of analogous operators are
given in the appendix of [26].
The operators OBB̄� resembling ½b̄q�½q̄b� are constructed

with Γ ¼ P−γz that satisfies Jlz ¼ 0. The small and capital
letters denote color and Dirac indices, respectively. The
second and third line in (4) are obtained via the Fierz
transformation, where we take Γ̃ ¼ γ5Pþ. This decompo-
sition clarifies that this quantum channel is a linear super-
position of BB̄�, B�B̄, and B�B̄�. For all three sets of
quantum numbers more operators of this kind could be
constructed, but we will limit ourselves to those where both
B-mesons have negative parity, since they correspond to the
ground states.3 OðBB̄�Þ0 is obtained from OBB̄� by replacing
all qðxÞ with ∇2qðxÞ.
The operators resembling ½b̄b�½q̄q� are formed from a

color-singlet bottomonium and color-singlet light-
meson current. The static quarks are connected by the
product of gauge-links U between 0 and r. The light
degrees of freedom ½q̄Γ0q�p⃗ ≡ 1

V

P
x⃗ q̄ðx⃗ÞΓ0qðx⃗Þeip⃗ x⃗

with I ¼ 1 are projected to definite momenta p⃗ ¼ n⃗ 2π
L

(given in units of 2π=L), which can be different since
momentum is not conserved in the presence of static
quarks. The signs between the two terms ensure the right
C · P and the momenta are in the z-direction due to Jlz ¼ 0.
The light current ½q̄Γ0q� with Γ0 ¼ γ5 couples in the low-
energy region to a pion, l ¼ π. The currents for other Γ0
couple to resonances l ¼ ρ; b1a1; a0 that are not strongly
stable on our lattice. So, these currents in principle also
couple to the allowed strong decay products ππ, ωπ, πππ,
and πη0, respectively (we listed just few examples relevant
for the simulation with Nf ¼ 2). The reliable and rigorous
extraction of eigenenergies would require implementation

of multihadron operators in the light sector which is
beyond the scope of the present study. In practice, the
employed operator ½q̄Γ0q�p⃗ couples to one finite-volume
energy level with energy Elðp⃗Þ in the low-energy region.
We refer to this level as l ¼ ρ; b1; a1; a0; however, this
level is a mixture of resonant and multihadron eigenstates
in practice. Our main purpose is to find out whether there
is some interaction between bottomonium ½b̄b� and the
light degrees of freedom l for given quantum numbers.
Therefore we will compare the sum of the separate
energies Vb̄b þ Elðp⃗Þ with the eigenenergy En of the whole
system ½b̄b�½q̄q�, where the light degrees of freedom arise
from the same current ½q̄Γ0q�p⃗ in both cases. This strategy
will not lead to the complete spectrum of eigenenergies,
but it will still indicate whether the energy of the light
degrees of freedom is affected in the presence of the
bottomonium.
This choice of operators captures all states with

noninteracting energy below 2mB � 50 MeV. This holds
for all three quantum channels with a subtlety for
C · P ¼ ϵ ¼ þ1, where operators ½b̄b�a0(p ¼ 1, 2) are
implemented but not used in the analysis due to the noisy
plateaus.

III. LATTICE DETAILS

Simulation is performed on an ensemble with
dynamical Wilson-clover u=d quarks, mπ ≃ 266ð5Þ MeV,
a ≃ 0.1239ð13Þ fm, and 281 configurations [30,31].
We employ an ensemble with small NL ¼ 16 and
L ≃ 2 fm, since larger L would require more operators
with higher p⃗ to study the same energy region. The
lattice temporal extent NT ¼ 32 is effectively doubled
by summing the light-quark propagators with periodic
and antiperiodic boundary conditions in time [31].

IV. CALCULATION OF EIGENENERGIES
AND OVERLAPS

For the evaluation of correlation matrices CijðtÞ ¼
hOiðtÞO†

jð0Þi, the full distillation method [29] is used.
The dimensions of Cij with operators (4), (5), and (6) is
5 × 5, 5 × 5, and 3 × 3, respectively. The b̄b annihilation
Wick contraction is not present in the static limit considered
here. Cij that contain OBB̄� , OðBB̄�Þ0 are averaged over 83

space coordinate starting points of b̄, while all other matrix
3Only operators where exactly one B-meson carries positive

parity could contribute to last two quantum channels.
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elements are averaged over 163 space positions, over all
source time slices, over all three possible directions of
momenta, and all three possible polarizations of gamma
matrices. We extract eigenenergies En and overlaps hOijni
from the matrices CijðtÞ ¼

P
nhOijnie−EnthnjO†

ji using
the generalized eigenvalue problem (GEVP) [32–34]
and t0=a ¼ 2.

V. EIGENENERGIES OF b̄bq̄q SYSTEM WITH I = 1
AS A FUNCTION OF r

The central results of our study are the eigenenergies of
the b̄bq̄q system with I ¼ 1 [Fig. 1(a)] with static b and b̄
separated by r. Eigenenergies are presented by symbols in
Figs. 2–4 for the three sets of quantum numbers shown
in Table I. The colors of symbols indicate which
Fock component (see Table II) dominates an eigenstate,
as determined from the normalized overlaps of an eigen-
state jni to operators Oi. The normalized overlap
Z̃n
i ≡ hOijni=maxmhOijmi is normalized so that its maxi-

mal value for a given Oi across all eigenstates is equal
to one.
The lines in Figs. 2–4 provide the related noninteracting

energies En of two-hadron states shown in Table II

En:i:
BB̄� ¼2mB; En:i:

½b̄ð0ÞbðrÞ�lð0Þ ¼Vb̄bðrÞþml;

En:i:
½b̄ð0ÞbðrÞ�lðp⃗Þ ¼Vb̄bðrÞþElðp⃗Þ; l¼π;ρ;b1;a1;a0; ð7Þ

where b̄b static potential Vb̄bðrÞ, ml and mB ¼ mB� ¼
0.5201ð19Þ (mass of Bð�Þ for mb → ∞ without b rest mass)
are determined on the same lattice. The energy Elðp⃗Þ
denotes the measured finite-volume energy that arises from

the light current ½q̄Γ0q�p⃗, which turns out to be Elðp⃗Þ ≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

l þ p⃗2
q

although some of the light hadrons l are

resonances.
All observed eigenenergies En of the b̄bq̄q system

(symbols) are very close to noninteracting energies En:i:

FIG. 4. This figure shows the eigenenergies En (symbols) and
the two-hadron noninteracting energies En:i. (lines) similarly as in
Fig. 2, but for quantum numbers I ¼ 1, Jlz ¼ 0, C · P ¼ −1,
ϵ ¼ þ1.

FIG. 3. This figure shows the eigenenergies En (symbols) and
the two-hadron noninteracting energies En:i: (lines) similarly as in
Fig. 2, but for quantum numbers I¼1, Jlz¼0, C · P ¼ þ1,
ϵ ¼ −1.

FIG. 2. Results for the system b̄bq̄q with quantum numbers
I ¼ 1, Jlz ¼ 0, C · P ¼ þ1, ϵ ¼ þ1. Eigenenergies are shown by
symbols for separations between static quarks b and b̄ up to
r ¼ 6a. The labels indicate which two-hadron component domi-
nates each eigenstate. The lines represent related two-hadron
energies En:i: (7) when two hadrons (see Table II) do not interact.
The width of their bands shows the uncertainty. The violet dashed
line represents the static potential Vb̄bðrÞ between b and b̄. Lattice
spacing is a ≃ 0.124 fm.

TETRAQUARK SYSTEMS b̄bd̄u IN … PHYS. REV. D 104, 114503 (2021)

114503-5



of ½b̄b�½q̄q� or ½b̄q�½q̄b� (lines). This represents the most
important conclusion of the present study. In particular,
eigenstates dominated by ½b̄b�½q̄q� operators have energies
consistent with the sum of energies for ½b̄bðrÞ� and ½q̄q�.
Given our precision, we therefore do not observe attraction
or repulsion between bottomonium and light hadrons for
the considered separations r between b and b̄. The absence
of a sizable interaction is expected, since they do not share
any valence quarks.
The eigenstate dominated by BB̄� is present only for the

quantum number C · P ¼ ϵ ¼ þ1 that couples to Zb. Its
energy EBB̄�ðrÞ is represented by the red circles in Fig. 2
and is close to mB þmB� . This suggests that the inter-
action between B and B̄� is small in this quantum channel.
For the remainder of the discussion, we assume that this
eigenstate couples only to the BB̄� Fock component and
does not contain other Fock components, which is
supported by the extracted normalized overlaps shown
in Appendix A. The energy of this eigenstate represents
the total energy without the kinetic energy of heavy
degrees of freedom. The difference VðrÞ ¼ EBB̄� ðrÞ −
mB −mB� therefore represents the potential felt by the
heavy degrees of freedom—in this case between B and B̄�
mesons. The extracted potential is shown in Fig. 5(a).
It is consistent with zero for r ≥ 0.2 fm (r=a ≥ 2),
which implies that we do not find any significant attrac-
tion or repulsion between B and B̄� for these r.4 The
potential is slightly negative and therefore attractive at
r ¼ a ≃ 0.12 fm5

Vðr ¼ aÞa ¼ ðEBB̄�ðr ¼ aÞ −mB −mB�Þa
¼ −0.049� 0.017; ð8Þ

which could hint at a small attraction between B and B̄�
at small r. Possible implications for Zb are discussed
below. All these conclusions were verified considering the
so-called ratio method, discussed in Appendix B.

The Zb resonance is a linear superposition of two
quantum channels listed in (3) within the molecular picture;
these two channels have different quantum numbers for
light degrees of freedom, so their properties are not related
by heavy quark spin symmetry:
(a) Jl ¼ 0 & C · P ¼ ϵ ¼ −1: The potential with sizable

attraction between B and B̄� at small r has been found
[25,26]. The result from [26], which is obtained on
the same ensemble as employed here, is shown in
Fig. 5(b). This potential has been also obtained
assuming that the eigenstate dominated by BB̄� does
not contain other Fock components. The motion of B
and B̄� with experimental masses in this potential
leads to one BB̄� bound state below the threshold,
whose binding energy depends on the parametriza-
tion of the potential; assuming the nonsingular
potential VðrÞ ¼ −Ar−ðr=dÞF leads to the range of
binding energies M −mB −mB� ¼ −48þ41

−108 MeV
[26]. Some parametrizations among those lead to a
bound state closely below threshold (≃20 MeV) and
sharp peak in the BB̄� rate above threshold—a feature
that could be related to the observed experimental Zb
peak. Most of the parametrizations in [26] lead to a
binding energy larger than 20 MeV and a less
significant peak in the rate above the threshold, since
the size of the peak decreases as the binding energy
increases. The singular form of the potential VðrÞ ¼
− A

r r
−ðr=dÞF would also lead to one bound state, but

with a larger binding energy.6 This component is
therefore significantly attractive; it is possible that
this component alone is to attractive and leads to a
binding energy that is too large in comparison with
the experimental Zb.

(b) Jl ¼ 1 & C · P ¼ ϵ ¼ þ1: The potential for this
component in Fig. 5(a) shows no observable attraction
or repulsion between B and B̄� at r ≥ 0.2 and a very
mild attraction at r ≃ 0.1 fm (8).

(c) Linear combination: The Zb is a linear combination of
those two quantum numbers (3). The BB̄� and B�B̄�
channels are coupled in this system via the strongly
attractive potential for component C · P ¼ ϵ ¼ −1 and
very mildly attractive potential for C · P ¼ ϵ ¼ þ1,
both shown in Fig. 5. It is not possible to establish
implications concerning Zb at present since neither of
these potentials is known from the lattice simulations
in detail. However, it is conceivable that a mutual
effect of a significantly attractive and a very mildly
attractive potential could lead to a bound state closely
below BB̄� threshold, which could be related to
experimental Zb. Further lattice and analytical studies
listed in Sec. VII are required to reach conclusions
along these lines.

TABLE II. The relevant states of the b̄bq̄q system with I ¼ 1
captured by the operators in (4), (5), and (6), respectively.

Jlz 0 0 0
C · P þ1 þ1 −1
ϵ þ1 −1 þ1

½b̄ð0ÞbðrÞ�

πðp⃗ ¼ e⃗zÞ
Bð0ÞB̄�ðrÞ πðp⃗ ¼ 2e⃗zÞ

½b̄ð0ÞbðrÞ�
ρðp⃗ ¼ e⃗zÞ

½b̄ð0ÞbðrÞ�
ρðp⃗ ¼ 0⃗Þ b1ðp⃗ ¼ e⃗zÞ ρðp⃗ ¼ 2e⃗zÞ
ρðp⃗ ¼ e⃗zÞ a1ðp⃗ ¼ 0⃗Þ a0ðp⃗ ¼ e⃗zÞ
ρðp⃗ ¼ 2e⃗zÞ a1ðp⃗ ¼ e⃗zÞ

4The potential for r=a ≥ 2 is consistent with zero within
slightly more than 1σ.

5This slightly attractive potential agrees also with the result
−0.054� 0.017 based on the ratio method in Appendix B. 6This has not been considered in [26].
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Let us note that the Zbð10610Þwas found as a virtual bound
state slightly below the threshold by the reanalysis
of the experimental data [5].7 In [5,35] Zbð10610Þ and
Zbð10650Þ are dominated by BB̄� and B�B̄�, respectively,
which suggests that potentials for components Jl ¼ 0 and
Jl ¼ 1 are of similar size.8 This conclusion is somewhat
different to the conclusion of our simulation which
suggests that Jl ¼ 0 component is more attractive than
Jl ¼ 1, as shown in Fig. 5. Let us point out that the
lattice potentials were extracted assuming that the eigen-
state dominated by BB̄� couples only to this Fock compo-
nent and does not contain other Fock components. It
remains to be explored in the future if both potentials
would be of a more similar size once this assumption is
relaxed.

VI. COMPARISON WITH PREVIOUS LATTICE
STUDIES OF b̄bq̄q WITH I = 1

The list of relevant quantum numbers is given in Table I.
The system with C · P ¼ ϵ ¼ −1 was already studied on
the lattice [25,26] and a sizable attraction between B and B̄�
was found, as detailed in Sec. V. The other three quantum
numbers have not been considered before, except for the
ground state for quantum channel C · P ¼ ϵ ¼ þ1 that was
extracted in [27]. This study explored the hadroquarkonium

picture, where the quarkonium could be bound inside the
core of a light hadron. They calculated the difference
ΔVlðrÞ between the potential of a heavy quark-antiquark
pair in the background of a light hadron l and the potential
in the vacuum. Their lattice setup enabled a better accuracy
OðMeVÞ on the energy for the ground state. Slightly
attractive potential, with the size up to few MeV was
found for the majority of light hadrons, while their result is
compatible with zero for l ¼ ρ. This is consistent with
our result, where no observable interaction is found
between b̄b and ρ.

VII. OUTLOOK

The presented simulations of b̄bq̄q system with I ¼ 1
represent only the first step towards exploring the energy
region near mZb ≃mB þmB�, where a number of severe
simplifications have been made. It would be valuable if the
future lattice simulation could determine the eigenenergies
of the considered channels with an improved accuracy. The
simulations with smaller lattice spacing would be needed
to extract static potentials at smaller separations between
static quarks. The simulations with larger volumes would
be more challenging since the discrete spectrum of ½b̄b�lðpÞ
states would be denser and more interpolators would be
needed to explore the same energy region. One could
extend the operator basis also with additional operator
types, for example those with diquark-antidiquark struc-
ture. A much more difficult challenge would be to take into
account the resonance nature of ρ; b1; a1, and a0 decaying
to multiple hadrons, which will require implementation of
multihadron operators O½b̄b�l1ðp1Þl2ðp2Þ…. We note that the
relation between the eigenenergies of three hadrons and
their scattering amplitude has been analytically derived

(a) (b)

FIG. 5. Static potentials between B and B̄� separated by r from lattice simulations [see Fig. 1(a)]. Quantum numbers (a) I ¼ 1, Jl ¼ 1,
Jlz ¼ 0, C · P ¼ ϵ ¼ þ1 are considered here, and (b) I ¼ 1, Jl ¼ 0, Jlz ¼ 0, C · P ¼ ϵ ¼ −1 were studied in [26]. The potential (a) is
consistent with zero for r=a ≥ 2within slightly more than one sigma errors, which are shown in the plot. Both simulations are performed
on the same ensemble with the lattice spacing a ≃ 0.124 fm.

7Virtual bound state is obtained in [5] when the coupling to
bottomonium light-meson channels was turned off. The position
of the pole is only slightly shifted when this small coupling is
taken into account.

8One can see this in the EFT potential for the Zb in Eq. (2.4) of
Ref. [36], which is written in the BB̄� and B�B̄� basis. The C1 and
C0
1 correspond to the potentials of the Jl ¼ 0 and Jl ¼ 1

components.
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(for example, in [37–39]) which would be helpful in these
considerations.
On the analytical side, the derivation of the form for the

static potential between Bð�Þ and B̄ð�Þ at very small r would
be valuable. It is still open as to how the conclusions could
be affected due to the small overlap between the eigenstate
dominated by BB̄� and ½b̄b�½q̄q� interpolators. The Zb is a
linear combination of two quantum channels (1) and the
current knowledge on their static potentials is shown in
Fig. 5. An analytic study that considers the dynamics of the
BB̄� and B�B̄� channels which are coupled via those
static potentials would be needed, particularly after those
potentials will be extracted with better accuracy in the
future.

VIII. CONCLUSIONS

Two Zb resonances with JP ¼ 1þ were the first dis-
covered bottomoniumlike tetraquarks. They predominantly
decay to BB̄� and B�B̄� and lie slightly above these two
thresholds. They decay also to a bottomonium and a pion,
which implies the exotic quark content b̄bd̄u. Our aim is
to explore whether the interaction between Bð�Þ and B̄� is
responsible for the existence of Zb. The main challenge
is that Zb decays to b̄uþ d̄b as well as lower-lying
states b̄bþ d̄u.
We study the system b̄bd̄u9 with the static b̄b pair

separated by r on the lattice. Several quantum channels
are considered and operators of type ½b̄u�½d̄b� and ½b̄b�½d̄u�
are employed. We determine eigenenergies EnðrÞ and
compare them to the noninteracting energies of two-hadron
systems b̄uþ d̄b and b̄bþ d̄u. If the EnðrÞ is below
(above) noninteracting, then the state feels the attraction
(repulsion).
The Zb with finite mb can decay to ϒπ and ηbρ

(among others), while these two quantum channels are
decoupled for the static b quarks used in the simulation.
The simulation [26] considered the quantum number that
couples to ϒπ and found that the static potential between B
and B̄� is significantly attractive at r < 0.4 fm. The present
simulation considers the quantum number that couples to
ηcρ and finds that potential between B and B̄� is consistent
with zero, except for a slight attraction at r ≃ 0.1 fm. The
first attractive potential alone leads to a bound state below
mB þmB� that could be related to Zb [26], but it is likely
somewhat too deep. A future analytic study will be needed
to determine the mass of Zb that arises from the mutual
effect of both potentials. It is conceivable that the mutual
effect of both potentials could lead to a Zb state in the
vicinity of the mB þmB� threshold. Section VII lists the
improvements from the lattice and analytic studies that
would be valuable to obtain more solid conclusions
concerning Zb.

We explore also two quantum channels b̄bd̄u that
couple only to b̄bþ d̄u and we find negligible interaction
between bottomonium and the light hadrons. The inter-
action between bottomonium and light hadrons is also
found to be small for two quantum channels that do couple
to Zb.
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APPENDIX A: EFFECTIVE MASSES AND
OVERLAPS

The effective energies Eeff
n of the system in Fig. 1(a)

are shown in Figs. 6(a), 7(a), and 7(b) for the separation
r=a ¼ 2 and all eigenstates n ¼ 1;…; 5ð3Þ for all three
considered quantum channels. They are obtained from the
correlation matrices CijðtÞ with the variational approach
CðtÞunðtÞ ¼ λnðtÞCðt0ÞunðtÞ, where the effective energies
are given by the eigenvalues Eeff

n ðtÞ≡ ln½λnðtÞ=λnðtþ 1Þ�.
Results for t0=a ¼ 2 are shown. The effective energies
render eigenenergies En in the plateau region, indicated in
the plots.
The overlaps hOijni of each eigenstate n to employed

operators Oi [see Eq. (4)] of the quantum channel C · P ¼
ϵ ¼ þ1 are shown in terms of the normalized overlaps Z̃n

i
in Fig. 6(b). Here Z̃n

i ≡ hOijni=maxmhOijmi is normalized
so that its maximal value for givenOi across all eigenstates
is equal to one.
The effective energies, their fits and normalized

overlaps of the eigenstate dominated by BB̄� are presented
in Fig. 8.

APPENDIX B: RATIO METHOD

Our main result is the comparison of eigenenergies and
the noninteracting energies, where both are extracted using
the GEVP approach. Additionally, we made a cross-check
by considering the ratio

λðnÞ4q ðtÞ
λ2q;aðtÞλ2q;bðtÞ

∝ e−ðEn−En:i:Þt; ðB1Þ

where λðnÞ4q ðtÞ is the nth GEVP eigenvalue of the correlation
matrices constructed with (4), (5), (6), and λ2q;a;bðtÞ are the
eigenvalues of the noninteracting part, where we chose
operators with the largest overlap to the nth state. The
effective energies for the ratio with fits are shown in Fig. 99Our results for I ¼ 1 apply to isospin components I3 ¼ −1, 0, 1.
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(a) (b)

FIG. 6. (a) Effective energies Eeff
n of the system in Fig. 1(b) for separation r=a ¼ 2 and all eigenstates n ¼ 1;…; 5. They render

eigenenergies En in the plateau region. (b) Normalized overlaps Z̃n
i ∝ hOijni of each eigenstate n in (a) to the five operators (4). Shown

are absolute values of the overlaps for r=a ¼ 2.

(a) (b)

FIG. 7. Effective energies Eeff
n and the fitted plateau En at r=a ¼ 2.
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(a) (b)

FIG. 8. Eigenstate dominated by BB̄� (red circles in Fig. 2) in the quantum channel C · P ¼ ϵ ¼ þ1 for separations r=a ¼ 1;…; 4:
(a) effective energies EeffðtÞ and (b) normalized overlaps Z̃n

i ∝ hOijni, where the absolute value of the overlap is shown.

FIG. 9. Effective energies for the ratio method. Shown is the quantum channel C · P ¼ ϵ ¼ þ1 for r=a ¼ 1 and with the same color
coding as in Fig. 6. The plateau corresponds to the energy shift.
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