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Analytic solutions of relativistic dissipative spin hydrodynamics with
Bjorken expansion
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We have studied analytically the longitudinally boost-invariant motion of a relativistic dissipative fluid
with spin. We have derived the analytic solutions of spin density and spin chemical potential as a function
of proper time 7 in the presence of the viscous tensor and the second order relaxation time corrections for
spin. Interestingly, analogous to the ordinary particle number density and chemical potential, we find that
the spin density and spin chemical potential decay as ~z~' and ~z~!/3, respectively. These solutions can
serve both to gain insight on the dynamics of spin polarization in relativistic heavy-ion collisions and as test

beds for further numerical codes.
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I. INTRODUCTION

In the noncentral relativistic heavy-ion collisions, huge
orbital angular momenta are generated and polarize the
particles in the quark gluon plasma (QGP) through the spin-
orbital couplings [1,2]. In 2017, the global polarization of A
and A hyperons led by the initial huge orbital angular
momentum has been measured by STAR experiments and
been well understood by various phenomenological models
[3—15]. The experimental results also indicate that QGP is
the most vortical fluid [16] so far.

The experimental data in Au + Au collisions at 200 GeV
for the local spin polarization, which is the azimuthal angle
dependent spin polarization of the A and A hyperons along
the beam and the out-plane directions [17], disagree with
many phenomenological models, e.g., the relativistic hydro-
dynamics model [14,18] and transport models [4,12,19].
Later on, people find that this disagreement cannot be solved
by considering the feed-down effects [20,21]. Although the
kinetic theory of massless fermions in Ref. [22] and results
from a simple phenomenological model in Ref. [23] can
show the similar azimuthal angle dependence as experimen-
tal data, it is still a puzzle in the relativistic heavy-ion
community.

Solving this puzzle requires a deeper understanding of spin
effects in the QGP from both microscopic and macroscopic
theories. One microscopic theory for massive fermions is the
quantum kinetic theory for massive fermions, which is a
natural extension of the chiral kinetic theory for massless
fermions [24-38]. Recently, the quantum kinetic theory for
massive fermions with the collisional kernel has been
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developed [39-47]. Also, see the early works on the statistical
model for the relativistic particles with spin [48-50] and
Ref. [51] for a microscopic model for spin polarization
through particle collisions.

Very recently, many studies have shown that the polari-
zation can also been induced by the shear viscous tensor,
e.g., from early studies of massless fermions [52], the recent
studies for massive fermions [53,54], and the statistic model
[55]. Those studies [55-57] show quantitative agreement
with experimental data by adding the shear induced polari-
zation to the original studies [50,58].

The macroscopic theory for the spinness particles is the
relativistic spin hydrodynamics, which is a theory with the
relativistic hydrodynamics equations coupled to the con-
servation equation of total angular momentum. The expres-
sion of spin hydrodynamics has been derived from the
entropy principle [59-63], the Lagrangian effective theory
[64,65], kinetic approaches [9,11,66—69], and the general
discussion from field theory [70]. The ideal spin hydro-
dynamics has been discussed in Refs. [9,11,59,62,64-69]
and also see the early works on spin hydrodynamics in
Refs. [5,6,9—-11,71,72]. In the gradient expansion, the dis-
sipative spin hydrodynamics are derived in canonical
[59,69,73-75] and Belinfante forms [60-62]. Also, see
recent reviews [76-80] and the references therein.

Analogous to works on the relativistic magnetohydrody-
namics [81-86], it is necessary to derive the analytic solutions
for the dissipative spin dynamics. These analytic solutions
provide the power law behavior of the quantities related to the
spin as a function of proper time 7, such as the spin density
and spin chemical potential. On the other hand, the numerical
codes for the dissipative spin hydrodynamics have not been
developed yet in our community. It is worthwhile to search
for analytic solutions for spin hydrodynamics in some simple,
but nevertheless realistic, test cases.

© 2021 American Physical Society
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In this work, we study analytically the canonical rela-
tivistic spin hydrodynamics in the time-honored longi-
tudinal boost-invariant Bjorken flow [87]. We also consider
the viscous effects coupled to the spin hydrodynamics.
Since relativistic hydrodynamics in the first order of the
gradient expansion are unstable and violate the causality
[88-94], we solve the equations of spin hydrodynamics
coupled to the simplest relaxation time corrections for the
spin dynamics. To see the spin corrections to the ordinary
terms, we take the pseudogauge transformation and check
the results in the Belinfante form of spin dynamics.

We emphasize that in the current work we are searching
for the self-consistent analytic solutions of dissipative spin
hydrodynamics, which are different from the studies of spin
hydrodynamics in Bjorken [71,95,96] and Gubser [97]
expanding backgrounds.

The structure of this work is as follows. In Sec. II, we will
briefly review the conservation equations of dissipative spin
hydrodynamics in both canonical and Belinfante forms. In
Sec. IIT A, we study the canonical spin hydrodynamics with
the nonvanishing viscous tensor in a longitudinally boost-
invariant fluid and obtain the analytic solutions. Next, we
consider the relaxation time equations for spin dynamics
and derive the analytic solutions in the gradient expansion
in Sec. III B. We also take the pseudogauge transformation
and compute the Belinfante form spin hydrodynamics
in Sec. IIIC and discuss our results in Sec. IIID. We
summarize in Sec. IV.

Throughout this work, we adopt the metric ¢" =
diag{+,—,—,—} and the fluid velocity u* satisfying
u>=1. We define the projector A* = g — utu”.
For simplicity, for an arbitrary tensor A*Y, we introduce
the symmetric, antisymmetric, and traceless parts as
AW = (AR AW) /2, A = (AW — A1) /2, and AW) =

L[ARAY 4 AP APIA Ly — L AR(APOA ).

II. MAIN EQUATIONS IN RELATIVISTIC
DISSIPATIVE SPIN HYDRODYNAMICS

In this section, we briefly review the main equations of
dissipative spin hydrodynamics in both canonical and
Belinfante forms. In the canonical form of relativistic spin
hydrodynamics, the conserved total angular momentum
(TAM) can be decomposed as

J(lﬂl/ — x[lTllI/ — xl/Taﬂ + Zaﬂl/’ (1)
where 7" is the canonical energy momentum tensor
(EMT) and 2** is a rank-three spin tensor corresponding
to the classical spin part of TAM. Up to O(d') in the

gradient expansion, the canonical EMT can be further
decomposed as [59,60,62]

T" = eutu® — pA** + 2hHy) + 2(][” ! + 4 P, (2)

where e, p, u*, i*, and 7** denote energy density, pressure,
fluid velocity, heat flow, and viscous tensor, respectively.
The g* and ¢** are the antisymmetric EMT parts. Note that
h, g", ", and ¢* are perpendicular to the fluid veloc-
ity ut.

Both EMT and TAM are conserved, i.e.,

5‘” T" =0,
0 J™M =0, (3)
which lead to
D M = 2T, (4)

It means the antisymmetric part of EMT acts as a source or
absorption term for spin current. Then we make a tensor
decomposition for X,

Tow = yas 4 T, (5)

where $#¥ is named as spin density and Z((’{‘)” refers to the

0. Inserting Egs. (2)

auy

higher order correction with uaZm =

and (5) into Eq. (4) yields
0u(uS™) = =2 =g + ). (0

There are two different types of X**. For example, if
we implement the Nother theorem to the Lagrangian density
of the noninteracting Dirac field, £ =y (iy -0 —m)y,
we will get L* = yi(y*x*0" —y*x*0F)y and TH =
rwirtly*, y*ly. This 2%, corresponding to Eq. (5), refers
to a non-anti-symmetric gauge which has been used in
Refs. [6,59,61-63,65,70] and also in spin hydrodynamics
for massless fermions [98]. On the other hand, one can also
use the symmetrized Lagrangian L :%y‘/(iy-é—m)y/
— 2w (iy - d— m)y, and get a total antisymmetric spin tensor
v = 2i{y*, [y*, y*] }w. This kind of choice has been used
in Refs. [68,75].

After introducing the spin degree of freedom, it is
necessary to modify the thermodynamic relations. We treat
spin density S* as the particle number density; then, we
also need to introduce the spin potential w,, = —®,,,. Now,
the new thermodynamic relations become

etp=Ts+w,S",
de =Tds + w,,dS",
dp = sdT + $*dw,,, (7)
where s is the entropy density and 7 is the temperature. In

general, we can also have the charge currents in a system.
For simplicity, we neglect these currents throughout this
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work. For more general discussions, one can also see
Refs. [59,60,62].

The second law of thermodynamics requires that the
entropy production rate should always be positive definite.
It gives the general expression for those dissipative terms.
The ¢* and ¢*¥ are given by

1
gt =2 {? A9, T + (u- O)ut — 4co””u,,] ,
1
P =~ (sw -2 M“A“”waﬁ) , (8)

where Q' = —A" A L1 (%) — 0,(%2)] is related to the

thermal vorticity [50,58] and A, y > 0 are the transport
coefficients. The ordinary viscous tensor z** is given by
o = 0%ur) —TIA®,
=-{(0-u), 9)
where 7, and { are the shear and bulk viscosities,
respectively.

Note that all of the above results based on the
assumption that the @ and/or S* are at O(d"). If both
o and S* are at the leading order of the gradient
expansion, then the decomposition of EMT can be very
different; also see Ref. [63].

The canonical EMT is gauge dependent at the operator
level and not symmetric. One can choose the Belinfante

form EMT 7, which is gauge invariant and symmetric,
through the following pseudogauge transformation:

Tw = Tw 4 9, KM, (10)

with

1
K = 5 (Thw — v -zt (11)

According to Ref. [61], up to O(9') we get

1
TH = eu'u” — pA* + z@(u"S’”1 + u¥ S*)
= (e + de)u'u* — pA* + 2(h(” + 5h(”)u”)
+ (2" + 521), (12)

Here we have introduced the spin corrections to the energy
density, de, the heat flow, 67#, and the viscous tensor, 67/,

Se = u,ﬁ,{S’”,
1
Sht = 3 (A’/ja,lS/“ + uﬁS/“alu”),

1
o = 0,(u¥SV*) + gApg(?,l(upS”‘)A"”. (13)

The Belinfante TAM becomes
JOY = Jouv 4 8p (XHKPO —xVKPOH) = xH T — xv T4, (14)

Both Belinfante TAM and EMT are conserved. Also see
Refs. [60,61] for the discussion about the connection
between canonical and Belinfante form spin hydrodynamics.

ITII. ANALYTIC SOLUTIONS IN BJORKEN
EXPANSION

In this section, we consider the time-honored Bjorken
expansion of ordinary relativistic hydrodynamics to the
dissipative spin hydrodynamics. The basic idea of Bjorken
expansion is as follows. The fluid velocity is given by [87]

t
u'u: <90109Z>1 (15)
T T

where 7= /1> — 7% is the proper time. The system is
assumed to be homogenous in the transverse plane. As a
consequence, all of the macroscopic quantities only depend
on the proper time 7 and are independent of the space
rapidity n = $In[(r + z) /(1 — 2)].

To close the system, the equations of state (EOS) are
essential. We choose the energy density e and @w** as two
kinds of thermodynamic variables. In this work, we follow
the simplest EOS for the relativistic fluid in the high
temperature limit,

e =3p. (16)

Although Eq. (16) looks like an EOS for an ideal fluid or
ideal gas, it does not mean the fluid must be conformal. We
emphasize that it is a widely used simplest EOS for both
hydrodynamic simulations and theoretical studies. One can
also consider the EOS (16) as the leading order term in the
high temperature limit.

In analogy to number density and chemical potential in
the high temperature limit, we assume the EOS for $* is

S = a, T2, (17)

where a; is constant.

Similar to our previous works on searching for the
analytic solutions of relativistic magnetohydrodynamics
[81-86], our strategy is as follows. As initial conditions,
we assume that the initial fluid velocity is given by Eq. (15)
and all the thermodynamic quantities are independent on x, y
and 5. Next, we will compute the dynamical evolution
equations for fluid velocity u*, energy density e, and spin
density S#*. At last, we search for the special configurations
of e and @, which can hold the initial Bjorken velocity
(15). To keep the whole system boost invariant, we therefore
assume that only @* is nonzero initially. Then the EOS (17)
reduces to
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Y = a, T2 0™ . (18)

In general, one can also consider other components of @'/,
e.g., as discussed in Ref. [71]. Here, we emphasize that the
main point of the current work is to search for the simplest
self-consistent solutions for the relativistic dissipative spin
hydrodynamics in a Bjorken flow. We need to solve all the
differential equations in a self-consistent way instead of
taking the Bjorken flow as a background field. In this sense,
following the similar strategy used in the relativistic mag-
netohydrodynamics [81-86], we have to reduce our varia-
bles as much as possible. In fact, we also have found that all
other components of @/ will break the Bjorken flow [i.e., the
acceleration equation (19) cannot be satisfied].

Furthermore, to simplify the calculations and to highlight
the spin effect, we choose the Landau frame in which heat
flow A* is always zero.

A. Canonical form spin hydrodynamics in the Bjorken
flow

Now, we discuss the canonical EMT and the correspond-
ing conservation equations for the Bjorken flow. The main
equations are Egs. (3) and (6).

First, let us consider the acceleration equation
A,,0,T" = 0, which provides the dynamical evolution
of fluid velocity,

1
(u-O)ug = m [Agaﬂp —(q-0)ug + qo(0 - u)
+ Aya(u : a)qy - Ayaayd)’w - Apaaﬂ”ﬂy]' (19)

If @™ depends on the proper time 7 only, with the Bjorken
velocity (15), the ¢* and ¢** become

q" = 410" u,,

2
P = % [ + 2ult P uy). (20)

Inserting Eq. (20) into Eq. (19), we find that the Bjorken
velocity (15) will not be modified under our assumption.

Next, let us consider the energy conservation equation
u,0,T" =0, i.e.,

(u-0)e+(e+p)0-u+0-q+q*(u-0)u,

Using Eq. (20), the above equation becomes
d 4 1 2 1
—e—|——e——s<—ﬁ—|—§>——0, (22)

where the s is the entropy. Note that we assume that the
dimensionless quantities #,/s and {/s are constant.
Third, from Eq. (20), the spin density in Eq. (6) reads

as™ 1 4y
S§YV—=——w". 23
dr + T T @ (23)

Note that, in this case, the g# does not contribute to the S*.

To solve Egs. (22) and (23), we can express the s and e as
functions of T and @™ by using EOS (16) and (18) and the
thermodynamic relations (7),

e(T,w?) = ¢ T* 4 3a,T*w3,,

4
s(T,0™) = §clT3 + 2a,Tw?,, (24)

where the constant c¢; can be determined by the initial

conditions, i.e.,
XY\ 2
€n CI)O
=|—=-3 —_— , 25
“ {Té al(T0>} 25)

with ey = e(7y), To = T(z0), and wy’ being the energy
density, temperature, and spin chemical potential at the
initial proper time 7, respectively.

After inserting Eq. (24) into Eq. (22), we find that the
solutions cannot be written into a compact form. On the
other hand, as mentioned in Sec. II, we have always assume
that the @™ ~O(d") in the gradient expansion in the
current formalism and it implies that

V)T < 1. (26)

Therefore, we can consider a power expansion of @™ /T,
which is equivalent to the gradient expansion. Equations (22)

+ u, 0, " — 7 0,u, = 0. (1) and (23) with Eq. (24) becomes
|
d_ AT 1/2n, ¢\1
— T4+ _———_ (22 IT)?) =
dr +31 3(3s+s>12+0((w”/ ))=0.
d d 1 4y
T—w™ 20" —T T — Xy T2 =0. 27
dr +iw dr o T+a1T2w +O((@x,/T)7) =0 (27)

The solutions are
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o\1/3 1 [2n,
7.0 ___[Z1s
0<1> 27 3s+

1o\ /3 2yt
¥ (1) = 0 (2 exp |——-2
(T) 20 ( T p a, T(:";

()-)-

+O((@g’/To)?. (ns/5)*. (/)% (ns/s%)

where for @ (z), we only keep the linear terms of 7,/s
and {/s.

Inserting solutions (28) into Eq. (24) and EOS (17)
yields

79\ /3 eoto (215 ¢ T\
ew=a(?) 2pa (e[ (G

+ O((wy" /To)?, (ns/5)%, (&/5)%, (nC/s%),  (29)
and
, . T 2yt [T
oS 25(5)

2n, ¢\ 3y 7?2 7\3
Ao () mm G () 1)

+O0((@y"/To)* (ns/5)%.(C/5)*. (0,8/5%)). (30)

The dissipative effects from ¢** contribute an extra
factor exp[—2y(* — 73)/(a;Taty)] to Eqs. (28) and (30).
Both @™ and $* decay more rapidity in a finite ¢** system
than in a vanishing ¢** system. Note that the factor related
to y looks similar to the factor ~ exp[—o (7 — 7,)] caused by
the electric conducting flow in magnetohydrodynamics
with o the electric conductivity [85]. From Eq. (30), we
find that the viscous corrections to $(z) are always
positive when 7/75 > 1 and increase when 7, grows. It
means that the viscous effects accelerate the decay of spin
density.

B. Corrections from relaxation time for the spin
transport

In this section, we compute the higher order effects for
the spin transport. For simplicity, we neglect 7z*¥ and
concentrate on the spin effects. It is well known that the
relativistic dissipative hydrodynamics in O(9') violate
causality and are unstable; e.g., see Refs. [88-94] and
the references therein. Therefore, one needs to introduce
the second order corrections. In this work, we only consider
a standard second order correction to the dissipative terms
in Eq. (8),

7 06 -
)

- ()] +otarrmom,

SO

2n, G\ 1
<§:+s> T3

&)l

, (28)

[

d 1
T¢%¢MD+¢lw:—7<Qﬂy—2?AﬂaAbﬂ(l)aﬂ>, (31)

where 7, is the relaxation time for ¢**. The relaxation time 7,
describes how fast the system could reach to the equilibrium
again after taking some perturbations ¢** to an equilibrium
system. It is similar to the relaxation time equations for
viscous terms. Also see Refs. [62,63,70,99] for other possible
second order corrections of spin hydrodynamics.

In this case, the conservation equations become

d 4 1
—e+-e—= 2
=137 0 (32)
and
(u-0)u, = ! [ARD,p — A D, p"™].  (33)
a (6 + p) au va- u
The evolution equations for the spin density become
ds® 1
+ 59— = =24,
dr T
d 2
T¢E¢Xy + ¢Xy = %w"y. (34)

We find that the fluid velocity will not be modified when
¢ only depends on the 7. It is straightforward to get the
solution for Eq. (32),

e(r) = e <’?°> v

10 =1(2) "+ op /). 69

Then, we can solve the ¢, §*, and @,
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PV (z) = e () + O((w/To)?).

oy (1) To |1 4yt \*
0= () 5 5o - () o)

+O((wg'/To)?), |
i (&)l ()]
+O((wg'/Ty)?). (36)

where f(z) and g(z) are shown in the Appendix.

In the 74, — O limit, we prove that the solutions (36)
reduce to Egs. (28) and (30). In the 7, — oo limit, the
solutions (36) become

lim 0*(7) = oy (z0/7)"/3,

lim $¥(7) = a, Ty (7o/7). (37)

T(/)—700

Therefore, the new term proportional to 7, in Eq. (31) slows
down the decay caused by the ¢** as expected.

C. Results for the Belinfante form EMT

By using the pseudogauge transformation (11), we can
obtain the Belinfante form EMT 7#*. With the solutions
(30) in Sec. III A and solutions (36) in Sec. III B, we find
that

%8,1(14”8” + u'SH) = 0(8%), (38)

up to the order of O(9?). Therefore, the Belinfante EMT
reduces to the ordinary EMT without spin effects. We have
checked these spin corrections in Eq. (13) and found that all
of them vanish under our assumption.

We emphasize that it does not mean that there are no the
spin effects in the Belinfante form of dissipative spin
hydrodynamics. In order to observe these spin corrections
in Eq. (13), we have to consider the inhomogeneity in the
transverse plane.

D. Discussion
Let us take a close look to the leading order of @* and
S* in Egs. (28) and (30). We find that »*” and S$* decay as
~771/3 and ~1/z, respectively. From Refs. [50,58], one can
compute the spin polarization of A hyperons caused by the
thermal vorticity by the modified Cooper-Frye formula,

SR p (1= D p, [0, () + -+

(p) 8y [dx - pf ’

(39)

where the m, is the mass of A hyperon, X# is the freeze-out
hypersurface, f = f(x, p) is the distribution functions of

particles, and ... denotes the other possible corrections
from the shear viscous tensor and others [33,53-57].

In general, the spin density $*¥ and @*” can contribute to
the distribution function f(x, p) and play a role as dis-
sipative corrections like 0, (u/T) in S*(p). Here, we refer
the recent studies alone this direction by Refs. [54,69,74].
Our results (28) and (30) imply that the initial spin density
decays rapidly. So far, we cannot conclude that the correc-
tions from S* and w* in S#(p) are negligible. Therefore,
the systematical studies from spin hydrodynamics are
essential to clarify it.

IV. CONCLUSION

In this work, we have derived the analytic solutions of a
longitudinally boost-invariant dissipative spinness fluid
with the finite viscous tensor and second order relaxation
time corrections for the spin. Our main results are shown in
Eqgs. (28), (30), and (36).

We find that the spin density and spin chemical potential
decay as ~z~! and 77!/3, respectively. Although the huge
initial orbital angular momentum could transfer to the spin, it
may be difficult to accumulate the net spin density in such an
expanding system. Therefore, the systematical studies from
spin hydrodynamics are necessary to clarify the contribu-
tions from $* and @** to the spin polarization vector S*(p).

We have also computed the Belinfante EMT and have not
found any corrections from spin in this work. To observe
the possible spin corrections to the ordinary terms in
Eq. (13), one needs to consider the inhomogeneity in the
transverse plane, e.g., similar to the Ref. [83] for the
magnetohydrodynamics.

ACKNOWLEDGMENTS

D.L. W. and S. F. are grateful to the School of Science in
Huzhou University for its hospitality during the completion
of this work. This work is supported by National Nature
Science Foundation of China (NSFC) under Grants
No. 12075235 and No. 12135011.

APPENDIX: EXPRESSION FOR EQ. (36)
The f(z) and g¢(r) in Eq. (36) are

f(z) = CIAi[H(7)] + CBi[H(7)],
g(z) = C1AIH(7)] + CBITH(7)], (A1)

where

1 4yt 4 =
H(z) =273 —5 — - .
(T) ’ <4Té alT07¢T(3)> ( CZ]TngT(/,)

The Ai(z) and Bi(z) are named as Airy functions, which are
the solutions of the differential equation y”(x) £+ xy(x) = 0,
respectively. Note that here both Ai(z) and Bi(z) are entire

(A2)
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Airy functions of z with no branch cut discontinuities.
We also use the notations Ai'(x)=<Ai(x) and
. d .
Bi'(x) = £ Bi(x).
The coefficients C;, are determined by the initial
conditions ¢ (zg) = ¢ and @™ (7) = wy’,

Ci = A @ BIU)C — $OBI(U)].
Cy = AL HIAT UG - AT, (A3)

where

A= Ai'(U)Bi(U) — Ai(U)BY' (U).

C . a]ToTS % 1 xy 2}/ xy
o\ 4y 270 _?wo ’
) 0

(llTng % 1 4 4}/ _1
U= (220 (25 25,
( 4y ) 4T¢ 41T<3)T¢

Wl

(A4)

Note that here we only take the real solutions and neglect
imaginary solutions.
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