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We have studied analytically the longitudinally boost-invariant motion of a relativistic dissipative fluid
with spin. We have derived the analytic solutions of spin density and spin chemical potential as a function
of proper time τ in the presence of the viscous tensor and the second order relaxation time corrections for
spin. Interestingly, analogous to the ordinary particle number density and chemical potential, we find that
the spin density and spin chemical potential decay as ∼τ−1 and ∼τ−1=3, respectively. These solutions can
serve both to gain insight on the dynamics of spin polarization in relativistic heavy-ion collisions and as test
beds for further numerical codes.

DOI: 10.1103/PhysRevD.104.114043

I. INTRODUCTION

In the noncentral relativistic heavy-ion collisions, huge
orbital angular momenta are generated and polarize the
particles in the quark gluon plasma (QGP) through the spin-
orbital couplings [1,2]. In 2017, the global polarization ofΛ
and Λ̄ hyperons led by the initial huge orbital angular
momentum has been measured by STAR experiments and
been well understood by various phenomenological models
[3–15]. The experimental results also indicate that QGP is
the most vortical fluid [16] so far.
The experimental data in Auþ Au collisions at 200 GeV

for the local spin polarization, which is the azimuthal angle
dependent spin polarization of the Λ and Λ̄ hyperons along
the beam and the out-plane directions [17], disagree with
many phenomenological models, e.g., the relativistic hydro-
dynamics model [14,18] and transport models [4,12,19].
Later on, people find that this disagreement cannot be solved
by considering the feed-down effects [20,21]. Although the
kinetic theory of massless fermions in Ref. [22] and results
from a simple phenomenological model in Ref. [23] can
show the similar azimuthal angle dependence as experimen-
tal data, it is still a puzzle in the relativistic heavy-ion
community.
Solving this puzzle requires a deeper understanding of spin

effects in the QGP from both microscopic and macroscopic
theories. One microscopic theory for massive fermions is the
quantum kinetic theory for massive fermions, which is a
natural extension of the chiral kinetic theory for massless
fermions [24–38]. Recently, the quantum kinetic theory for
massive fermions with the collisional kernel has been

developed [39–47]. Also, see the early works on the statistical
model for the relativistic particles with spin [48–50] and
Ref. [51] for a microscopic model for spin polarization
through particle collisions.
Very recently, many studies have shown that the polari-

zation can also been induced by the shear viscous tensor,
e.g., from early studies of massless fermions [52], the recent
studies for massive fermions [53,54], and the statistic model
[55]. Those studies [55–57] show quantitative agreement
with experimental data by adding the shear induced polari-
zation to the original studies [50,58].
The macroscopic theory for the spinness particles is the

relativistic spin hydrodynamics, which is a theory with the
relativistic hydrodynamics equations coupled to the con-
servation equation of total angular momentum. The expres-
sion of spin hydrodynamics has been derived from the
entropy principle [59–63], the Lagrangian effective theory
[64,65], kinetic approaches [9,11,66–69], and the general
discussion from field theory [70]. The ideal spin hydro-
dynamics has been discussed in Refs. [9,11,59,62,64–69]
and also see the early works on spin hydrodynamics in
Refs. [5,6,9–11,71,72]. In the gradient expansion, the dis-
sipative spin hydrodynamics are derived in canonical
[59,69,73–75] and Belinfante forms [60–62]. Also, see
recent reviews [76–80] and the references therein.
Analogous to works on the relativistic magnetohydrody-

namics [81–86], it is necessary to derive the analytic solutions
for the dissipative spin dynamics. These analytic solutions
provide the power law behavior of the quantities related to the
spin as a function of proper time τ, such as the spin density
and spin chemical potential. On the other hand, the numerical
codes for the dissipative spin hydrodynamics have not been
developed yet in our community. It is worthwhile to search
for analytic solutions for spin hydrodynamics in some simple,
but nevertheless realistic, test cases.
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In this work, we study analytically the canonical rela-
tivistic spin hydrodynamics in the time-honored longi-
tudinal boost-invariant Bjorken flow [87]. We also consider
the viscous effects coupled to the spin hydrodynamics.
Since relativistic hydrodynamics in the first order of the
gradient expansion are unstable and violate the causality
[88–94], we solve the equations of spin hydrodynamics
coupled to the simplest relaxation time corrections for the
spin dynamics. To see the spin corrections to the ordinary
terms, we take the pseudogauge transformation and check
the results in the Belinfante form of spin dynamics.
We emphasize that in the current work we are searching

for the self-consistent analytic solutions of dissipative spin
hydrodynamics, which are different from the studies of spin
hydrodynamics in Bjorken [71,95,96] and Gubser [97]
expanding backgrounds.
The structure of this work is as follows. In Sec. II, we will

briefly review the conservation equations of dissipative spin
hydrodynamics in both canonical and Belinfante forms. In
Sec. III A, we study the canonical spin hydrodynamics with
the nonvanishing viscous tensor in a longitudinally boost-
invariant fluid and obtain the analytic solutions. Next, we
consider the relaxation time equations for spin dynamics
and derive the analytic solutions in the gradient expansion
in Sec. III B. We also take the pseudogauge transformation
and compute the Belinfante form spin hydrodynamics
in Sec. III C and discuss our results in Sec. III D. We
summarize in Sec. IV.
Throughout this work, we adopt the metric gμν ¼

diagfþ;−;−;−g and the fluid velocity uμ satisfying
u2 ¼ 1. We define the projector Δμν ¼ gμν − uμuν.
For simplicity, for an arbitrary tensor Aμν, we introduce
the symmetric, antisymmetric, and traceless parts as
AðμνÞ ¼ ðAμν þ AνμÞ=2, A½μν� ¼ ðAμν − AνμÞ=2, and Ahμνi ¼
1
2
½ΔμαΔνβ þ ΔναΔμβ�Aαβ − 1

3
ΔμνðAρσΔρσÞ.

II. MAIN EQUATIONS IN RELATIVISTIC
DISSIPATIVE SPIN HYDRODYNAMICS

In this section, we briefly review the main equations of
dissipative spin hydrodynamics in both canonical and
Belinfante forms. In the canonical form of relativistic spin
hydrodynamics, the conserved total angular momentum
(TAM) can be decomposed as

Jαμν ¼ xμTαν − xνTαμ þ Σαμν; ð1Þ

where Tμν is the canonical energy momentum tensor
(EMT) and Σαμν is a rank-three spin tensor corresponding
to the classical spin part of TAM. Up to Oð∂1Þ in the
gradient expansion, the canonical EMT can be further
decomposed as [59,60,62]

Tμν ¼ euμuν −pΔμνþ 2hðμuνÞ þ 2q½μuν� þ πμνþϕμν; ð2Þ

where e; p; uμ; hμ, and πμν denote energy density, pressure,
fluid velocity, heat flow, and viscous tensor, respectively.
The qμ and ϕμν are the antisymmetric EMT parts. Note that
hμ; qμ; πμν, and ϕμν are perpendicular to the fluid veloc-
ity uμ.
Both EMT and TAM are conserved, i.e.,

∂μTμν ¼ 0;

∂αJαμν ¼ 0; ð3Þ

which lead to

∂αΣαμν ¼ −2T ½μν�: ð4Þ

It means the antisymmetric part of EMT acts as a source or
absorption term for spin current. Then we make a tensor
decomposition for Σαμν,

Σαμν ¼ uαSμν þ Σαμν
ð1Þ ; ð5Þ

where Sμν is named as spin density and Σαμν
ð1Þ refers to the

higher order correction with uαΣ
αμν
ð1Þ ¼ 0. Inserting Eqs. (2)

and (5) into Eq. (4) yields

∂αðuαSμνÞ ¼ −2ðqμuν − qνuμ þ ϕμνÞ: ð6Þ

There are two different types of Σαμν. For example, if
we implement the Nöther theorem to the Lagrangian density
of the noninteracting Dirac field, L ¼ ψ̄ðiγ · ∂ −mÞψ ,
we will get Lλμν ¼ ψ̄ iðγλxμ∂ν − γλxν∂μÞψ and Σλμν ¼
1
4
ψ̄iγλ½γμ; γν�ψ . This Σαμν, corresponding to Eq. (5), refers

to a non-anti-symmetric gauge which has been used in
Refs. [6,59,61–63,65,70] and also in spin hydrodynamics
for massless fermions [98]. On the other hand, one can also

use the symmetrized Lagrangian L ¼ 1
2
ψ̄ðiγ · ∂⃗ −mÞψ

− 1
2
ψ̄ðiγ · ∂⃖ −mÞψ , and get a total antisymmetric spin tensor

Σλμν ¼ 1
8
ψ̄ifγλ; ½γμ; γν�gψ . This kind of choice has been used

in Refs. [68,75].
After introducing the spin degree of freedom, it is

necessary to modify the thermodynamic relations. We treat
spin density Sμν as the particle number density; then, we
also need to introduce the spin potential ωμν ¼ −ωνμ. Now,
the new thermodynamic relations become

eþ p ¼ Tsþ ωμνSμν;

de ¼ Tdsþ ωμνdSμν;

dp ¼ sdT þ Sμνdωμν; ð7Þ

where s is the entropy density and T is the temperature. In
general, we can also have the charge currents in a system.
For simplicity, we neglect these currents throughout this
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work. For more general discussions, one can also see
Refs. [59,60,62].
The second law of thermodynamics requires that the

entropy production rate should always be positive definite.
It gives the general expression for those dissipative terms.
The qμ and ϕμν are given by

qμ ¼ λ

�
1

T
Δμα∂αT þ ðu · ∂Þuμ − 4ωμνuν

�
;

ϕμν ¼ −γ
�
Ωμν − 2

1

T
ΔμαΔνβωαβ

�
; ð8Þ

where Ωμν ¼ −ΔμρΔνσ 1
2
½∂ρðuσT Þ − ∂σðuρT Þ� is related to the

thermal vorticity [50,58] and λ, γ ≥ 0 are the transport
coefficients. The ordinary viscous tensor πμν is given by

πμν ¼ ηs∂hμuνi − ΠΔμν;

Π ¼ −ζð∂ · uÞ; ð9Þ

where ηs and ζ are the shear and bulk viscosities,
respectively.
Note that all of the above results based on the

assumption that the ωμν and/or Sμν are at Oð∂1Þ. If both
ωμν and Sμν are at the leading order of the gradient
expansion, then the decomposition of EMT can be very
different; also see Ref. [63].
The canonical EMT is gauge dependent at the operator

level and not symmetric. One can choose the Belinfante
form EMT T μν, which is gauge invariant and symmetric,
through the following pseudogauge transformation:

T μν ¼ Tμν þ ∂λKλμν; ð10Þ

with

Kλμν ¼ 1

2
ðΣλμν − Σμλν þ ΣνμλÞ: ð11Þ

According to Ref. [61], up to Oð∂1Þ we get

T μν ¼ euμuν − pΔμν þ 1

2
∂λðuμSνλ þ uνSμλÞ

¼ ðeþ δeÞuμuν − pΔμν þ 2ðhðμ þ δhðμÞuνÞ
þ ðπμν þ δπμνÞ; ð12Þ

Here we have introduced the spin corrections to the energy
density, δe, the heat flow, δhμ, and the viscous tensor, δπμν,

δe ¼ uμ∂λSμλ;

δhμ ¼ 1

2
ðΔμ

β∂λSβλ þ uβSβλ∂λuμÞ;

δπμν ¼ ∂λðuhμSνiλÞ þ
1

3
Δρσ∂λðuρSσλÞΔμν: ð13Þ

The Belinfante TAM becomes

J αμν¼Jαμνþ∂ρðxμKραν−xνKραμÞ¼xμT αν−xνT αμ: ð14Þ

Both Belinfante TAM and EMT are conserved. Also see
Refs. [60,61] for the discussion about the connection
between canonical and Belinfante form spin hydrodynamics.

III. ANALYTIC SOLUTIONS IN BJORKEN
EXPANSION

In this section, we consider the time-honored Bjorken
expansion of ordinary relativistic hydrodynamics to the
dissipative spin hydrodynamics. The basic idea of Bjorken
expansion is as follows. The fluid velocity is given by [87]

uμ ¼
�
t
τ
; 0; 0;

z
τ

�
; ð15Þ

where τ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffi
t2 − z2

p
is the proper time. The system is

assumed to be homogenous in the transverse plane. As a
consequence, all of the macroscopic quantities only depend
on the proper time τ and are independent of the space
rapidity η ¼ 1

2
ln½ðtþ zÞ=ðt − zÞ�.

To close the system, the equations of state (EOS) are
essential. We choose the energy density e and ωμν as two
kinds of thermodynamic variables. In this work, we follow
the simplest EOS for the relativistic fluid in the high
temperature limit,

e ¼ 3p: ð16Þ

Although Eq. (16) looks like an EOS for an ideal fluid or
ideal gas, it does not mean the fluid must be conformal. We
emphasize that it is a widely used simplest EOS for both
hydrodynamic simulations and theoretical studies. One can
also consider the EOS (16) as the leading order term in the
high temperature limit.
In analogy to number density and chemical potential in

the high temperature limit, we assume the EOS for Sμν is

Sμν ¼ a1T2ωμν; ð17Þ

where a1 is constant.
Similar to our previous works on searching for the

analytic solutions of relativistic magnetohydrodynamics
[81–86], our strategy is as follows. As initial conditions,
we assume that the initial fluid velocity is given by Eq. (15)
and all the thermodynamic quantities are independent on x, y
and η. Next, we will compute the dynamical evolution
equations for fluid velocity uμ, energy density e, and spin
density Sμν. At last, we search for the special configurations
of e and ωμν, which can hold the initial Bjorken velocity
(15). To keep the whole system boost invariant, we therefore
assume that only ωxy is nonzero initially. Then the EOS (17)
reduces to
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Sxy ¼ a1T2ωxy: ð18Þ

In general, one can also consider other components of ωij,
e.g., as discussed in Ref. [71]. Here, we emphasize that the
main point of the current work is to search for the simplest
self-consistent solutions for the relativistic dissipative spin
hydrodynamics in a Bjorken flow. We need to solve all the
differential equations in a self-consistent way instead of
taking the Bjorken flow as a background field. In this sense,
following the similar strategy used in the relativistic mag-
netohydrodynamics [81–86], we have to reduce our varia-
bles as much as possible. In fact, we also have found that all
other components ofωij will break the Bjorken flow [i.e., the
acceleration equation (19) cannot be satisfied].
Furthermore, to simplify the calculations and to highlight

the spin effect, we choose the Landau frame in which heat
flow hμ is always zero.

A. Canonical form spin hydrodynamics in the Bjorken
flow

Now, we discuss the canonical EMTand the correspond-
ing conservation equations for the Bjorken flow. The main
equations are Eqs. (3) and (6).
First, let us consider the acceleration equation

Δνα∂μTμν ¼ 0, which provides the dynamical evolution
of fluid velocity,

ðu · ∂Þuα ¼ 1

ðeþ pÞ ½Δ
μ
α∂μp − ðq · ∂Þuα þ qαð∂ · uÞ

þ Δναðu · ∂Þqν − Δνα∂μϕ
μν − Δνα∂μπ

μν�: ð19Þ

If ωxy depends on the proper time τ only, with the Bjorken
velocity (15), the qμ and ϕμν become

qμ ¼ −4λωμνuν;

ϕμν ¼ 2γ

T
½ωμν þ 2u½μων�βuβ�: ð20Þ

Inserting Eq. (20) into Eq. (19), we find that the Bjorken
velocity (15) will not be modified under our assumption.
Next, let us consider the energy conservation equation

uν∂μTμν ¼ 0, i.e.,

ðu · ∂Þeþ ðeþ pÞ∂ · uþ ∂ · qþ qνðu · ∂Þuν
þ uν∂μϕ

μν − πμν∂μuν ¼ 0: ð21Þ

Using Eq. (20), the above equation becomes

d
dτ

eþ 4

3
e
1

τ
− s

�
2

3

ηs
s
þ ζ

s

�
1

τ2
¼ 0; ð22Þ

where the s is the entropy. Note that we assume that the
dimensionless quantities ηs=s and ζ=s are constant.
Third, from Eq. (20), the spin density in Eq. (6) reads

dSxy

dτ
þ Sxy

1

τ
¼ −

4γ

T
ωxy: ð23Þ

Note that, in this case, the qμ does not contribute to the Sxy.
To solve Eqs. (22) and (23), we can express the s and e as

functions of T and ωxy by using EOS (16) and (18) and the
thermodynamic relations (7),

eðT;ωxyÞ ¼ c1T4 þ 3a1T2ω2
xy;

sðT;ωxyÞ ¼ 4

3
c1T3 þ 2a1Tω2

xy; ð24Þ

where the constant c1 can be determined by the initial
conditions, i.e.,

c1 ¼
�
e0
T4
0

− 3a1

�
ωxy
0

T0

�
2
�
; ð25Þ

with e0 ¼ eðτ0Þ, T0 ¼ Tðτ0Þ, and ωxy
0 being the energy

density, temperature, and spin chemical potential at the
initial proper time τ0, respectively.
After inserting Eq. (24) into Eq. (22), we find that the

solutions cannot be written into a compact form. On the
other hand, as mentioned in Sec. II, we have always assume
that the ωxy ∼Oð∂1Þ in the gradient expansion in the
current formalism and it implies that

ωxy=T ≪ 1: ð26Þ

Therefore, we can consider a power expansion of ωxy=T,
which is equivalent to the gradient expansion. Equations (22)
and (23) with Eq. (24) becomes

d
dτ

T þ 1

3

T
τ
−
1

3

�
2

3

ηs
s
þ ζ

s

�
1

τ2
þOððωxy=TÞ2Þ ¼ 0;

T
d
dτ

ωxy þ 2ωxy d
dτ

T þ Tωxy 1

τ
þ 4γ

a1T2
ωxy þOððωxy=TÞ2Þ ¼ 0: ð27Þ

The solutions are
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TðτÞ ¼ T0

�
τ0
τ

�
1=3

−
1

2τ

�
2

3

ηs
s
þ ζ

s

��
1 −

�
τ

τ0

�
2=3

�
þOððωxy

0 =T0Þ2Þ;

ωxyðτÞ ¼ ωxy
0

�
τ0
τ

�
1=3

exp

�
−
2γτ0
a1T3

0

�
τ2

τ20
− 1

���
1þ

�
2

3

ηs
s
þ ζ

s

�
1

T4
0

×

�
T3
0

τ0

��
τ0
τ

�
2=3

− 1

�
þ γ

a1

�
3

�
τ

τ0

�
2

−
9

2

�
τ

τ0

�
4=3

þ 3

2

���

þOððωxy
0 =T0Þ2; ðηs=sÞ2; ðζ=sÞ2; ðηsζ=s2ÞÞ; ð28Þ

where for ωxyðτÞ, we only keep the linear terms of ηs=s
and ζ=s.
Inserting solutions (28) into Eq. (24) and EOS (17)

yields

eðτÞ ¼ e0

�
τ0
τ

�
4=3

− 2
e0τ0
T0τ

2

�
2

3

ηs
s
þ ζ

s

��
1 −

�
τ

τ0

�
2=3

�

þOððωxy
0 =T0Þ2; ðηs=sÞ2; ðζ=sÞ2; ðηsζ=s2ÞÞ; ð29Þ

and

SxyðτÞ¼a1ω
xy
0 T2

0

�
τ0
τ

�
exp

�
−
2γτ0
a1T3

0

�
τ2

τ20
−1

��

×

�
1þ

�
2

3

ηs
s
þζ

s

�
3γ

2a1T4
0

�
2

�
τ

τ0

�
2

−3

�
τ

τ0

�4
3þ1

��

þOððωxy
0 =T0Þ2;ðηs=sÞ2;ðζ=sÞ2;ðηsζ=s2ÞÞ: ð30Þ

The dissipative effects from ϕμν contribute an extra
factor exp½−2γðτ2 − τ20Þ=ða1T3

0τ0Þ� to Eqs. (28) and (30).
Both ωxy and Sxy decay more rapidity in a finite ϕμν system
than in a vanishing ϕμν system. Note that the factor related
to γ looks similar to the factor ∼ exp½−σðτ − τ0Þ� caused by
the electric conducting flow in magnetohydrodynamics
with σ the electric conductivity [85]. From Eq. (30), we
find that the viscous corrections to SxyðτÞ are always
positive when τ=τ0 ≥ 1 and increase when τ0 grows. It
means that the viscous effects accelerate the decay of spin
density.

B. Corrections from relaxation time for the spin
transport

In this section, we compute the higher order effects for
the spin transport. For simplicity, we neglect πμν and
concentrate on the spin effects. It is well known that the
relativistic dissipative hydrodynamics in Oð∂1Þ violate
causality and are unstable; e.g., see Refs. [88–94] and
the references therein. Therefore, one needs to introduce
the second order corrections. In this work, we only consider
a standard second order correction to the dissipative terms
in Eq. (8),

τϕ
d
dτ

ϕμν þ ϕμν ¼ −γ
�
Ωμν − 2

1

T
ΔμαΔνβωαβ

�
; ð31Þ

where τϕ is the relaxation time for ϕμν. The relaxation time τϕ
describes how fast the system could reach to the equilibrium
again after taking some perturbations ϕμν to an equilibrium
system. It is similar to the relaxation time equations for
viscous terms. Also see Refs. [62,63,70,99] for other possible
second order corrections of spin hydrodynamics.
In this case, the conservation equations become

d
dτ

eþ 4

3
e
1

τ
¼ 0; ð32Þ

and

ðu · ∂Þuα ¼ 1

ðeþ pÞ ½Δ
μ
α∂μp − Δνα∂μϕ

μν�: ð33Þ

The evolution equations for the spin density become

dSxy

dτ
þ Sxy

1

τ
¼ −2ϕxy;

τϕ
d
dτ

ϕxy þ ϕxy ¼ 2γ

T
ωxy: ð34Þ

We find that the fluid velocity will not be modified when
ϕxy only depends on the τ. It is straightforward to get the
solution for Eq. (32),

eðτÞ ¼ e0

�
τ0
τ

�
4=3

;

TðτÞ ¼ T0

�
τ0
τ

�
1=3

þOððωxy
0 =T0Þ2Þ: ð35Þ

Then, we can solve the ϕxy; Sxy, and ωxy,
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ϕxyðτÞ ¼ e
− τ
2τϕfðτÞ þOððωxy

0 =T0Þ2Þ;

ωxyðτÞ ¼
�
τ0
τ

�1
3 T0

2γ
e
− τ
2τϕ

�
1

2
fðτÞ −

�
4γτ2ϕ
a1τ0T3

0

�1
3

gðτÞ
�

þOððωxy
0 =T0Þ2Þ;

SxyðτÞ ¼ a1

�
τ0
τ

�
T3
0

2γ
e
− τ
2τϕ

�
1

2
fðτÞ −

�
4γτ2ϕ
a1τ0T3

0

�1
3

gðτÞ
�

þOððωxy
0 =T0Þ2Þ; ð36Þ

where fðτÞ and gðτÞ are shown in the Appendix.
In the τϕ → 0 limit, we prove that the solutions (36)

reduce to Eqs. (28) and (30). In the τϕ → ∞ limit, the
solutions (36) become

lim
τϕ→∞

ωxyðτÞ ¼ ωxy
0 ðτ0=τÞ1=3;

lim
τϕ→∞

SxyðτÞ ¼ a1T2
0ω

xy
0 ðτ0=τÞ: ð37Þ

Therefore, the new term proportional to τϕ in Eq. (31) slows
down the decay caused by the ϕμν as expected.

C. Results for the Belinfante form EMT

By using the pseudogauge transformation (11), we can
obtain the Belinfante form EMT T μν. With the solutions
(30) in Sec. III A and solutions (36) in Sec. III B, we find
that

1

2
∂λðuμSνλ þ uνSμλÞ ¼ Oð∂2Þ; ð38Þ

up to the order of Oð∂2Þ. Therefore, the Belinfante EMT
reduces to the ordinary EMTwithout spin effects. We have
checked these spin corrections in Eq. (13) and found that all
of them vanish under our assumption.
We emphasize that it does not mean that there are no the

spin effects in the Belinfante form of dissipative spin
hydrodynamics. In order to observe these spin corrections
in Eq. (13), we have to consider the inhomogeneity in the
transverse plane.

D. Discussion

Let us take a close look to the leading order of ωxy and
Sxy in Eqs. (28) and (30). We find that ωxy and Sxy decay as
∼τ−1=3 and ∼1=τ, respectively. From Refs. [50,58], one can
compute the spin polarization of Λ hyperons caused by the
thermal vorticity by the modified Cooper-Frye formula,

SμðpÞ ¼
R
dΣ · pfð1 − fÞϵμναβpν½∂αðuβT Þ þ � � ��

8mΛ
R
dΣ · pf

; ð39Þ

where themΛ is the mass of Λ hyperon, Σμ is the freeze-out
hypersurface, f ¼ fðx; pÞ is the distribution functions of

particles, and … denotes the other possible corrections
from the shear viscous tensor and others [33,53–57].
In general, the spin density Sμν and ωμν can contribute to

the distribution function fðx; pÞ and play a role as dis-
sipative corrections like ∂αðuβ=TÞ in SμðpÞ. Here, we refer
the recent studies alone this direction by Refs. [54,69,74].
Our results (28) and (30) imply that the initial spin density
decays rapidly. So far, we cannot conclude that the correc-
tions from Sμν and ωμν in SμðpÞ are negligible. Therefore,
the systematical studies from spin hydrodynamics are
essential to clarify it.

IV. CONCLUSION

In this work, we have derived the analytic solutions of a
longitudinally boost-invariant dissipative spinness fluid
with the finite viscous tensor and second order relaxation
time corrections for the spin. Our main results are shown in
Eqs. (28), (30), and (36).
We find that the spin density and spin chemical potential

decay as ∼τ−1 and τ−1=3, respectively. Although the huge
initial orbital angular momentum could transfer to the spin, it
may be difficult to accumulate the net spin density in such an
expanding system. Therefore, the systematical studies from
spin hydrodynamics are necessary to clarify the contribu-
tions from Sμν and ωμν to the spin polarization vector SμðpÞ.
We have also computed the Belinfante EMTand have not

found any corrections from spin in this work. To observe
the possible spin corrections to the ordinary terms in
Eq. (13), one needs to consider the inhomogeneity in the
transverse plane, e.g., similar to the Ref. [83] for the
magnetohydrodynamics.
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APPENDIX: EXPRESSION FOR EQ. (36)

The fðτÞ and gðτÞ in Eq. (36) are

fðτÞ ¼ C1Ai½HðτÞ� þ C2Bi½HðτÞ�;
gðτÞ ¼ C1Ai0½HðτÞ� þ C2Bi0½HðτÞ�; ðA1Þ

where

HðτÞ ¼ 2−
4
3

�
1

4τ2ϕ
−

4γτ

a1τ0τϕT3
0

��
−

γ

a1τ0T3
0τϕ

�
−2
3

: ðA2Þ

The AiðzÞ and BiðzÞ are named as Airy functions, which are
the solutions of the differential equation y00ðxÞ � xyðxÞ ¼ 0,
respectively. Note that here both AiðzÞ and BiðzÞ are entire
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Airy functions of z with no branch cut discontinuities.
We also use the notations Ai0ðxÞ ¼ d

dxAiðxÞ and
Bi0ðxÞ ¼ d

dxBiðxÞ.
The coefficients C1;2 are determined by the initial

conditions ϕxyðτ0Þ ¼ ϕxy
0 and ωxyðτ0Þ ¼ ωxy

0 ,

C1 ¼ A−1e
τ0
2τϕ ½BiðUÞC − ϕxy

0 Bi0ðUÞ�;
C2 ¼ A−1e

τ0
2τϕ ½Ai0ðUÞϕxy

0 − AiðUÞC�; ðA3Þ

where

A ¼ Ai0ðUÞBiðUÞ − AiðUÞBi0ðUÞ;

C ¼
�
a1τ0T3

0

4γτ2ϕ

�1
3

�
1

2
ϕxy
0 −

2γ

T0

ωxy
0

�
;

U ¼
�
a1τ0T3

0

4γ

�2
3

�
1

4
τ
−4
3

ϕ −
4γ

a1T3
0

τ
−1
3

ϕ

�
: ðA4Þ

Note that here we only take the real solutions and neglect
imaginary solutions.
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