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We perform an analytic calculation of the color fields in heavy-ion collisions by considering the collision
of longitudinally extended nuclei in the dilute limit of the color glass condensate effective field theory of
high-energy QCD. Based on general analytic expressions for the color fields in the future light cone, we
evaluate the rapidity profile of the transverse pressure within a simple specific model of the nuclear
collision geometry and compare our results to ð3þ 1ÞD classical Yang-Mills simulations.
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I. INTRODUCTION

The space-time evolution of the quark gluon plasma
(QGP), produced in high-energy heavy-ion collisions
(HIC) at the Large Hadron Collider (LHC) and
Relativistic Heavy Ion Collider (RHIC), can be accurately
described by relativistic viscous hydrodynamics [1,2].
However, the early stage of HICs, which provides the
initial conditions for the subsequent hydrodynamic evolu-
tion, still requires a comprehensive understanding. Over the
course of years, sophisticated preequilibrium models incor-
porating fluctuations at nucleonic and subnucleonic level
[3–7] and frameworks including intermediate kinetic theory
evolution [8,9] have been developed in order to obtain a
complete theoretical description in quantitative agreement
with the experimental observations. Even though these
models have played a significant role to improve the
understanding of the initial state and properly characterize
the subsequent QGP dynamics [10–12], the current state of
the art modeling is often carried out at the level of an
effectively ð2þ 1ÞD boost-invariant description and tends
to ignore the longitudinal dynamics of heavy-ion collisions.
The development of initial state models has benefited

from first principles insights into the initial stage of heavy-
ion collisions provided by the color glass condensate

(CGC) effective theory of high-energy QCD [13,14],
where small x partons in high energy nuclei are described
by classical gluon fields, whose dynamics is governed by
the classical Yang-Mills equations. On the one hand, the
CGC framework has lead to the development of various
initial state models such as IP-glasma [6,15] and MC-
KLN [4,16], which along with relativistic viscous hydro-
dynamics have been successful in describing azimuthal
anisotropies and charged hadron multiplicity [6,17–20].
On the other hand, a plethora of (semi)analytic calcu-
lations have been carried out within the CGC framework
using expansions in color source densities [21–24] or
near-field expansions [25–29] in the boost-invariant
limit, which have been further exploited to study the
correlation function of the initial energy-momentum
tensor [23,27,30–33] and jet momentum broadening in
the early stages [34,35]. Such numerical and (semi)
analytical results have also been important to guide the
development of simple parametric initial state models
such as IP-jazma [36] or TrENTo [11,37], and to the
development of a comprehensive understanding of the
transverse dynamics of the fireball near midrapidity.
Beyond the boost-invariant description of heavy-ion

collisions, recent experimental studies, e.g., of rapidity-
dependent factorization breakdown [38–40], urge us to
understand the dynamics of heavy-ion collisions beyond
midrapidity, and have triggered an increased interest in the
longitudinal structure of the initial state [41–45] and
corrections to the eikonal limit [46,47]. While various
implementations of ð3þ 1ÞD classical Yang-Mills equa-
tions have been developed either by varying the strengths of
the classical sources [48], by generalizing the IP-glasma
model to ð3þ 1ÞD using JIMWLK rapidity evolution
[49,50], or by taking finite thickness of colliding nuclei
into account [51–55], we are not aware of any analytical
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calculation of the energy deposition in heavy-ion collision
beyond the boost-invariant high-energy limit.
In this paper, we present the first analytical calculation of

the initial energy deposition in heavy-ion collisions by
solving the ð3þ 1ÞD classical Yang-Mills equations within
the dilute limit of the color glass condensate effective field
theory of high-energy QCD. Similar to the previous studies
[51–55], the longitudinal dynamics of the Glasma is
analyzed by taking the finite extent of the colliding nuclei
into account, while other corrections, such as the offset
of the beam trajectory from the light cone, are neglected.
We solve the linearized Yang-Mills equations and obtain
analytic expressions for the perturbative gauge fields in the
future light cone (analogous to the results of [23,24,56] for
the boost-invariant case). Subsequently, we derive an
analytic expression for the transverse pressure beyond the
high-energy boost-invariant limit, for a specific realization
of nuclear collision geometry.We establish the effectiveness
of our perturbative calculation by comparing it to non-
perturbative 3þ 1D classical Yang-Mills simulations
[53,55] for various thicknesses of the colliding nuclei.
This work is organized as follows: Starting in Sec. II, we

set up the formalism to study ð3þ 1ÞD collisions in the
dilute limit and develop an auxiliary field approach to
obtain the analytic expressions for the color fields produced
in the future light cone. We then employ a simple model of
nuclear collision geometry to derive analytic expressions
for the transverse pressure in Sec. III and compare our
(semi)analytic results to ð3þ 1ÞD classical Yang-Mills
simulation in Sec. IV. We conclude with Sec. V.

II. GENERAL FORMALISM

The color glass condensate (CGC) framework provides
an effective description of nucleus-nucleus collisions
at high energies in terms of Yang-Mills theory. In the
CGC formalism, hard partons of nuclei are modeled as
color charges, which source soft partons in the form
of classical color fields. Using light cone coordinates
x� ¼ ðx0 � x3Þ= ffiffiffi

2
p

, the color current of a nucleus moving
along the negative x3 direction (denoted as “A”) is given by

J μ
Aðxþ;x⊥Þ ¼ δμ−ρ

a
Aðxþ;x⊥Þta; ð1Þ

where ρaA denotes the color charge density per unit trans-
verse area, x⊥ ¼ ðx1; x2Þ denotes the transverse coordi-
nates, δμ− is the Kronecker delta of the “−” light cone
component and ta are the generators of the SUðNcÞ gauge
group. The color current depends only on one of the two
light cone coordinates (in this case xþ) and is assumed to be
localized around xþ ¼ 0. The color field Aμ sourced by
Eq. (1) is a solution to the Yang-Mills equations

DμF μνðxþ; x−;x⊥Þ ¼ J ν
Aðxþ;x⊥Þ; ð2Þ

with the gauge covariant derivative

DμF μν ¼ ∂μF μν − ig½Aμ;F μν�; ð3Þ

and the non-Abelian field strength tensor given by

F μν ¼ ∂μAν − ∂νAμ − ig½Aμ;Aν�: ð4Þ

In covariant gauge, ∂μAμ ¼ 0, and using appropriate
boundary conditions in the asymptotic past x0 → −∞,
Eq. (2) is solved by

A−
Aðxþ;x⊥Þ ¼ ϕAðxþ;x⊥Þ ¼ −ð∇2⊥Þ−1ρAðxþ;x⊥Þ; ð5Þ

with all other components ofAμ vanishing. The current and
color field in Eqs. (1) and (5) solve the gauge covariant
continuity equation

DμJ μðxÞ ¼ 0: ð6Þ

Similarly, we can consider a nucleus moving along x−

(denoted as “B”) with the analogous current and color field

J μ
Bðx−;x⊥Þ ¼ δμþρaBðx−;x⊥Þta; ð7Þ

Aþ
B ðx−;x⊥Þ ¼ ϕBðx−;x⊥Þ ¼ −ð∇2⊥Þ−1ρBðx−;x⊥Þ: ð8Þ

In order to describe a collision of two nuclei using
the Yang-Mills equations we need to solve the collision
problem given by

DμFμνðxÞ ¼ JμAðxÞ þ JμBðxÞ; ð9Þ

DμJ
μ
AðxÞ ¼ 0; ð10Þ

DμJ
μ
BðxÞ ¼ 0; ð11Þ

with initial conditions specified in the asymptotic past

lim
x0→−∞

AμðxÞ ¼ Aμ
Aðxþ;x⊥Þ þAμ

Bðx−;x⊥Þ

¼ δμ−ϕAðxþ;x⊥Þ þ δμþϕBðx−;x⊥Þ; ð12Þ

lim
x0→−∞

JμAðxÞ ¼ J μ
Aðxþ;x⊥Þ ¼ δμ−ρAðxþ;x⊥Þ; ð13Þ

lim
x0→−∞

JμBðxÞ ¼ J μ
Bðx−;x⊥Þ ¼ δμþρBðx−;x⊥Þ; ð14Þ

where we use calligraphic letters ðA;J Þ for the single
nuclei solutions, while noncalligraphic letters ðA; JÞ denote
the solution for the collision problem [cf. discussion around
Eq. (21)]. In general, there are no closed form solutions for
Eq. (9). However, in the ultrarelativistic limit where nuclei
become infinitesimally thin, i.e.,

ρA=Bðx�;x⊥Þ ¼ δðx�Þρ̄A=Bðx⊥Þ; ð15Þ
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the solution to Eq. (9) becomes invariant under boosts
along z ¼ x3 and a partial analytic solution is feasible. In
this case one finds an analytic solution at the boundary of
the future light cone (xþ > 0 with x− ¼ 0 or x− > 0 with
xþ ¼ 0) [56], which provides the initial conditions for the
subsequent evolution of the glasma inside the future light
cone. The glasma initial (or boundary) conditions are most
conveniently expressed in terms of proper time τ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffi
2xþx−

p
and space-time rapidity η ¼ lnðxþ=x−Þ=2 coor-

dinates adapting the Fock-Schwinger ðAτ ¼ 0Þ gauge. At
the boundary of the future light cone, the gauge fields are
then given by [56]

Aiðτ ¼ 0þ;x⊥Þ ¼ αiAðx⊥Þ þ αiBðx⊥Þ; ð16Þ

Aηðτ ¼ 0þ;x⊥Þ ¼
ig
2
½αiAðx⊥Þ; αiBðx⊥Þ�; ð17Þ

where the color fields αiA=B are given by

αiA=Bðx⊥Þ ¼
−i
g
VA=Bðx⊥Þ∂iV†

A=Bðx⊥Þ; ð18Þ

with the lightlike Wilson lines

V†
Aðx⊥Þ ¼ lim

xþ→∞
P exp

�
ig
Z

xþ

−∞
dx0þϕAðx0þ;x⊥Þ

�
; ð19Þ

V†
Bðx⊥Þ ¼ lim

x−→∞
P exp

�
ig
Z

x−

−∞
dx0−ϕBðx0−;x⊥Þ

�
: ð20Þ

Equations (16) and (17) serve as initial conditions at τ ¼ 0þ
for the Yang-Mills equations in the future light cone for
τ > 0, which are typically solved numerically on a lattice
[15,57–59] or through other approximations such as a
Taylor expansion in proper time τ [25–29]. By construc-
tion, solutions in the boost-invariant high-energy limit do
not depend on the space-time rapidity η.
To model collisions at finite energies, it is necessary to

go beyond the boost-invariant approximation given by
Eq. (15) and allow for a more general structure of the
color charge densities ρA=Bðx�;x⊥Þ which exhibit a non-
trivial dependence on the light cone coordinates. Numerical
solution methods using (3þ 1)-dimensional real-time lat-
tice simulations have been previously developed by the
authors either based on the colored particle-in-cell method
[51–54] or based on dynamically updated color currents
[55]. Such methods rely on a direct solution of Eqs. (9)–
(11) in the ðt; zÞ coordinate frame and allow one to
numerically determine fully nonperturbative solutions for
the glasma in (3þ 1) dimensions. However, due to the
large lattice sizes required for stable and accurate simu-
lations, exploring realistic heavy ion collision scenarios
using these methods is highly computationally demanding.

In this work we explore a different approach based on
the weak field approximation to obtain semianalytical
approximations to Eqs. (9)–(11) beyond the boost-invariant
limit. The weak field (or dilute) approximation is a
perturbative expansion in the color charge densities
ρA=Bðx�;x⊥Þ of the projectile and target. It relies on an
explicit split of the gauge field Aμ into background fields
Aμ and perturbations aμ

AμðxÞ ¼ Aμ
AðxÞ þAμ

BðxÞ þ aμðxÞ;
JμðxÞ ¼ J μ

AðxÞ þ J μ
BðxÞ þ jμðxÞ; ð21Þ

where the background fieldsAμ
A=B and background currents

J μ
A=B are given by the single nuclei solutions Eqs. (1), (5)

and Eqs. (7), (8). Evidently, the details of this perturbative
expansion depend on the choice of gauge and we adapt
covariant gauge

∂μAμ ¼ ∂μA
μ
A þ ∂μA

μ
B þ ∂μaμ ¼ 0 ð22Þ

throughout this paper. Since the background fields in
Eqs. (5) and (8) readily satisfy ∂μA

μ
A ¼ ∂μA

μ
B ¼ 0 this

implies ∂μaμ ¼ 0. We further note, that this gauge choice
simplifies our calculation, because the covariant gauge
background fields Aμ

A=B ¼ OðρA=BÞ are linear functionals
of the background currents J μ

A=B ¼ OðρA=BÞ. These solu-
tions are nonperturbative solutions of the single nucleus
problem in the sense that they exactly solve the nonlinear
Yang-Mills equations [to all orders OðρnAÞ and OðρnBÞ]
before the collision takes place, i.e., before the currents of
the left- and right-moving nuclei start to overlap with each
other. Conversely, the perturbative fields aμ and jμ capture
all higher order corrections OðρnAρmB Þ with both n, m ≥ 1,
induced by the interaction of the colliding nuclei.
Furthermore, as shown in Eq. (32), the perturbative field
equations for aμ also simplify in covariant gauge. While the
color field aμ describes the (dilute) glasma itself, the
currents jμ represent perturbations of the color currents
J μ

A and J μ
B of nuclei A and B, due to non-Abelian color

rotation. Expanding to the first nontrivial order OðρAρBÞ in
the color charge densities, the background field equations
remain of the same form

DA=B
μ F μν

A=BðxÞ ¼ J ν
A=BðxÞ; ð23Þ

DA=B
μ J μ

A=BðxÞ ¼ 0; ð24Þ

absorbing all terms of OðρnAρ0BÞ and respectively Oðρ0AρnBÞ,
while the perturbative field equations that account for the
interaction of the nuclei read
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∂μfμνðxÞ− ig½AA
μ ðxÞ;F μν

B ðxÞ�− ig½AB
μ ðxÞ;F μν

A ðxÞ� ¼ jνðxÞ;
ð25Þ

∂μjμðxÞ ¼ þig½AA
μ ðxÞ;J μ

BðxÞ� þ ig½AB
μ ðxÞ;J μ

AðxÞ�; ð26Þ

with

fμνðxÞ ¼ ∂μaνðxÞ − ∂νaμðxÞ − ig½Aμ
AðxÞ;Aν

BðxÞ�
− ig½Aμ

BðxÞ;Aν
AðxÞ�: ð27Þ

Since the perturbations represent the glasma created from
the collision of the two nuclei, we assume that both
perturbative fields and currents vanish in the asymptotic
past

lim
x0→−∞

aμðxÞ ¼ 0; ð28Þ

lim
x0→−∞

jμðxÞ ¼ 0: ð29Þ

Assuming that the color charges of the colliding nuclei
do not change their trajectories and considering the
initial conditions in Eq. (29), the solution to Eq. (26) is
straightforward:

jþðxþ; x−;x⊥Þ ¼ ig
Z

xþ

−∞
dzþ½ϕAðzþ;x⊥Þ; ρBðx−;x⊥Þ�;

ð30Þ

j−ðxþ; x−;x⊥Þ ¼ ig
Z

x−

−∞
dz−½ϕBðz−;x⊥Þ; ρAðxþ;x⊥Þ�:

ð31Þ

In covariant gauge, ∂μaμ ¼ 0, Eq. (25) simplifies to

∂2aμðxÞ ¼ SμðxÞ; ð32Þ

where SμðxÞ are aμ-independent source terms given by

Sþðxþ; x−;x⊥Þ ¼ þig

�
∂−½ϕAðxþ;x⊥Þ;ϕBðx−;x⊥Þ� þ

Z
þ
½ϕAðxþ;x⊥Þ; ρBðx−;x⊥Þ�

�
; ð33Þ

S−ðxþ; x−;x⊥Þ ¼ −ig
�
∂þ½ϕAðxþ;x⊥Þ;ϕBðx−;x⊥Þ� þ

Z
−
½ρAðxþ;x⊥Þ;ϕBðx−;x⊥Þ�

�
; ð34Þ

Siðxþ; x−;x⊥Þ ¼ −igð½ϕAðxþ;x⊥Þ; ∂iϕBðx−;x⊥Þ� − ½∂iϕAðxþ;x⊥Þ;ϕBðx−;x⊥Þ�Þ: ð35Þ

Here, we have introduced a slightly unusual but very useful
shorthand

Z
�
fðx�Þ≡

Z
x�

−∞
dz�fðz�Þ: ð36Þ

Due to the choice of covariant gauge, we can independently
solve for the four independent components of aμ in
Eq. (32). Analyzing the x� dependence of the source terms
in Eqs. (33)–(35), we find that S�ðxÞ are only nonzero
along the boundaries of the future light cone, whereas SiðxÞ
only has support in the vicinity of the collision center
xþ ¼ x− ¼ 0. Based on the initial conditions in Eq. (28),
we can then formally solve the field equations in Eq. (32) as

aμðxÞ ¼
Z
y
Gretðx − yÞSμðyÞ; ð37Þ

where GretðzÞ denotes the retarded propagator

GretðzÞ ¼ −
1

2π
Θðz0ÞδðzμzμÞ; ð38Þ

ensuring causality in compliance with the initial conditions.

A. Gauge field solutions in the future light cone

We now focus on carrying out the integration in Eq. (37)
as far as possible to find simple expressions for the gauge
field aμ in terms of color potentials ϕa

A=B of the colliding
nuclei. We start by noting that the source terms in
Eqs. (33)–(35) can be stated in a more unified way by
performing a partial Fourier transform over transverse
coordinates. We use

ρaAðxþ;x⊥Þ ¼
Z
p⊥

ρ̃aAðxþ;p⊥Þe−ip⊥·x⊥ ; ð39Þ

with
R
p⊥ ¼ R d2p⊥

ð2πÞ2 and rewrite the charge densities in terms

of potentials via ρ̃aðxþ;p⊥Þ ¼ p2⊥ϕ̃aðxþ;p⊥Þ. Here, we use
p⊥ · x⊥ ¼ pixi and p2⊥ ¼ pipi. The source terms are then
simply
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SþðxÞ ¼
Z
p⊥

Z
q⊥

�
þ∂− þ q2⊥

Z
þ

�
Sdðxþ; x−;p⊥;q⊥Þe−iðpþqÞ⊥·x⊥ ; ð40Þ

S−ðxÞ ¼
Z
p⊥

Z
q⊥

�
−∂þ − p2⊥

Z
−

�
Sdðxþ; x−;p⊥;q⊥Þe−iðpþqÞ⊥·x⊥ ; ð41Þ

SiðxÞ ¼
Z
p⊥

Z
q⊥

iðpi⊥ − qi⊥ÞSdðxþ; x−;p⊥;q⊥Þe−iðpþqÞ⊥·x⊥ ; ð42Þ

where we defined the auxiliary source term Sd as

Sdðxþ; x−;p⊥;q⊥Þ ¼ −gfabctcϕ̃a
Aðxþ;p⊥Þϕ̃b

Bðx−;q⊥Þ: ð43Þ

Our strategy for performing integrations in Eq. (37) is most easily demonstrated using the transverse gauge field ai, where it
is easy to see that the transverse integration only acts on the phase factor:

aiðxÞ ¼
Z
y
Gretðx − yÞSiðyÞ

¼
Z þ∞

−∞
dyþ

Z þ∞

−∞
dy−

Z
d2y⊥Gretðxþ − yþ; x− − y−;x⊥ − y⊥ÞSiðyþ; y−; y⊥Þ

¼
Z þ∞

−∞
dyþ

Z þ∞

−∞
dy−

Z
p⊥

Z
q⊥

iðpi⊥ − qi⊥ÞSdðyþ; y−;p⊥;q⊥Þ
Z

d2y⊥Gretðx − yÞe−iðpþqÞ⊥·y⊥ : ð44Þ

By performing a change of variables zμ ¼ xμ − yμ we can then solve the integral over y⊥ as

Z
d2y⊥Gretðx − yÞe−iðpþqÞ⊥·y⊥ ¼ −e−iðpþqÞ⊥·x⊥

Z
∞

0

djz⊥jjz⊥j
Z

2π

0

dϕ
1

2π
Θðz0Þδð2zþz− − jz⊥j2Þeþijpþqjjz⊥j cosϕ; ð45Þ

where cosϕ ¼ z⊥·ðp⊥þq⊥Þ
jz⊥jjp⊥þq⊥j is the azimuthal angle between z⊥ and p⊥ þ q⊥ and we denote jpþ qj ¼ jðpþ qÞ⊥j. Evaluating

the ϕ and jz⊥j integrals, we then obtain

Z
d2y⊥Gretðx − yÞe−iðpþqÞ⊥·y⊥ ¼ −e−iðpþqÞ⊥·x⊥Θðz0Þ

Z
∞

0

djz⊥jjz⊥jδð2zþz− − jz⊥j2ÞJ0ðjpþ qjjz⊥jÞ

¼ −
1

2
Θðz0ÞΘðτzÞJ0ðjpþ qjτzÞe−iðpþqÞ⊥·x⊥ ; ð46Þ

where τz ¼
ffiffiffiffiffiffiffiffiffiffiffiffi
2zþz−

p
and the two Heaviside functions imply that this term only contributes in the future light cone. By

inserting this result into Eq. (44), we obtain

aiðxÞ ¼ −
1

2

Z
p⊥

Z
q⊥

iðpi⊥ − qi⊥Þ
Z

∞

0

dzþ
Z

∞

0

dz−Sdðxþ − zþ; x− − z−;p⊥;q⊥ÞJ0ðjpþ qjτzÞe−iðpþqÞ⊥·x⊥ ; ð47Þ

which is more compactly written as

aiðxÞ ¼
Z
p⊥

Z
q⊥

iðpi⊥ − qi⊥Þadðxþ; x−;p⊥;q⊥Þe−iðpþqÞ⊥·x⊥ ; ð48Þ

with the auxiliary field ad given by

adðxþ; x−;p⊥;q⊥Þ ¼
g
2
fabctc

Z
∞

0

dzþ
Z

∞

0

dz−ϕ̃a
Aðxþ − zþ;p⊥Þϕ̃b

Bðx− − z−;q⊥ÞJ0ðjpþ qjτzÞ: ð49Þ

Carrying out the same steps for aþ and a−, we find analogous expressions
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aþðxÞ ¼
Z
p⊥

Z
q⊥

�
þ∂− þ q2⊥

Z
þ

�
adðxþ; x−;p⊥;q⊥Þe−iðpþqÞ⊥·x⊥ ; ð50Þ

a−ðxÞ ¼
Z
p⊥

Z
q⊥

�
−∂þ − p2⊥

Z
−

�
adðxþ; x−;p⊥;q⊥Þe−iðpþqÞ⊥·x⊥ ; ð51Þ

and it is straightforward to check that Eqs. (48)–(51) satisfy the gauge condition

∂μaμ ¼ ∂þaþ þ ∂−a− þ ∂iai ¼ 0: ð52Þ

We can further simplify the expressions for aþ and a− by explicitly computing the derivatives and integrals with respect
to x� in Eqs. (50) and (51). Starting with the derivative term in Eq. (50), we use integration by parts to find

∂ðxÞ
− ad ¼

g
2
fabctc

Z
∞

0

dzþ
Z

∞

0

dz−ϕ̃a
Aðxþ − zþ;p⊥Þϕ̃b

Bðx− − z−;q⊥Þ∂ðzÞ
− J0ðjpþ qjτzÞ

þ g
2
fabctc

Z
∞

0

dzþϕ̃a
Aðxþ − zþ;p⊥Þϕ̃b

Bðx−;q⊥Þ: ð53Þ

The second line in the above expression is the boundary term for z− → 0, which generally does not vanish in contrast to the
z− → ∞ boundary. However, it is proportional to the color potential ϕ̃b

Bðx−;q⊥Þ, which vanishes inside the future light
cone. If we are only interested in far field solutions, we can safely ignore this term. By use of the following relations

∂�τz ¼ z∓=τz; ð54Þ

∂�J0ðjpþ qjτzÞ ¼ −J1ðjpþ qjτzÞjpþ qj z
∓
τz

; ð55Þ

we then find

∂ðxÞ
− ad ≃ −

g
2
fabctc

Z
∞

0

dzþ
Z

∞

0

dz−ϕ̃a
Aðxþ − zþ;p⊥Þϕ̃b

Bðx− − z−;q⊥Þjpþ qj z
þ

τz
J1ðjpþ qjτzÞ; ð56Þ

where we use ≃ to denote that, due to the fact that we have ignored the boundary terms in the second line of Eq. (53), this
expression is only strictly valid inside the future light cone. The term involving an integration in Eq. (50) is given by

Z
þ
adðxþ; x−;p⊥;q⊥Þ ¼

Z
xþ

−∞
dx̃þadðx̃þ; x−;p⊥;q⊥Þ

¼ g
2
fabctc

Z
xþ

−∞
dx̃þ

Z þ∞

0

dz̃þ
Z þ∞

0

dz−ϕ̃a
Aðx̃þ − z̃þ;p⊥Þϕ̃b

Bðx− − z−;q⊥ÞJ0ðjpþ qj
ffiffiffiffiffiffiffiffiffiffiffiffi
2z̃þz−

p
Þ

¼ g
2
fabctc

Z þ∞

0

dzþ
Z þ∞

0

dz−ϕ̃a
Aðxþ − zþ;p⊥Þϕ̃b

Bðx− − z−;q⊥Þ
Z

zþ

0

dz̃þJ0ðjpþ qj
ffiffiffiffiffiffiffiffiffiffiffiffi
2z̃þz−

p
Þ;

ð57Þ

where we have performed a change of variables from x̃þ to zþ ¼ xþ − x̃þ þ z̃þ to isolate the integration over z̃þ in the last
line.1 The integral over the Bessel function is given by

Z
zþ

0

dz̃þJ0ðjpþ qj
ffiffiffiffiffiffiffiffiffiffiffiffi
2z̃þz−

p
Þ ¼ 1

jpþ qj
τz
z−

J1ðjpþ qjτzÞ; ð58Þ

1It is instructive to express the terms in the second line of Eq. (57) with two placeholder functions fðx̃þ − z̃þÞ and gðz̃þÞ and
reformulate the integral bounds in terms of Heaviside functions as

Rþ∞
0 dz̃þ

R
xþ
−∞ dx̃þfðx̃þ − z̃þÞgðz̃þÞ ¼ Rþ∞

−∞ dz̃þ
Rþ∞
−∞ dx̃þ×

fðx̃þ − z̃þÞgðz̃þÞΘðz̃þÞΘðxþ − x̃þÞ. By performing a change of variables, expressing zþ ¼ xþ − x̃þ þ z̃þ such that
fðx̃þ − z̃þÞ ¼ fðxþ − zþÞ, one then finds that the Heaviside functions constrain the integration domain to 0 < z̃þ < zþ.
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which leads to

Z
xþ

−∞
dx̃þadðx̃þ; x−;p⊥;q⊥Þ ¼

g
2
fabctc

Z þ∞

0

dzþ
Z þ∞

0

dz−ϕ̃a
Aðxþ − zþ;p⊥Þϕ̃b

Bðx− − z−;q⊥Þ
1

jpþ qj
τz
z−

J1ðjpþ qjτzÞ:

ð59Þ

Inserting the results in Eqs. (56) and (59) into the expression Eq. (50), we finally obtain

aþðxÞ ≃ g
2
fabctc

Z
p⊥;q⊥

Z þ∞

0

dzþ
Z þ∞

0

dz−ϕ̃a
Aðxþ − zþ;p⊥Þϕ̃b

Bðx− − z−;q⊥Þ

×
ð−ðp⊥ þ q⊥Þ2 þ 2q2⊥Þzþ

jp⊥ þ q⊥jτz
J1ðjp⊥ þ q⊥jτzÞe−iðpþqÞ⊥·x⊥ : ð60Þ

By repeating the same analogous steps for the calculation of a−, we obtain

a−ðxÞ ≃ g
2
fabctc

Z
p⊥;q⊥

Z þ∞

0

dzþ
Z þ∞

0

dz−ϕ̃a
Aðxþ − zþ;p⊥Þϕ̃b

Bðx− − z−;q⊥Þ

×
ðþðp⊥ þ q⊥Þ2 − 2p2⊥Þz−

jp⊥ þ q⊥jτz
J1ðjp⊥ þ q⊥jτzÞe−iðpþqÞ⊥·x⊥ ; ð61Þ

which together with the transverse components of the gauge fields in Eqs. (48) and (49),

aiðxÞ ¼ g
2
fabctc

Z
p⊥;q⊥

Z þ∞

0

dzþ
Z þ∞

0

dz−ϕ̃a
Aðxþ − zþ;p⊥Þϕ̃b

Bðx− − z−;q⊥Þ

× iðpi⊥ − qi⊥ÞJ0ðjp⊥ þ q⊥jτzÞe−iðpþqÞ⊥·x⊥ ; ð62Þ

provide our final expressions for the glasma fields in the future light cone.

III. NUCLEAR MODEL AND TRANSVERSE PRESSURE

Based on the previous analytical calculation, the longitudinal structure of the glasma at late times can be obtained by
considering a specific model for the color charge distribution inside a nucleus. Within this study, we consider a simple
McLerran-Venugopalan type model [60,61] of a transversally homogeneous nucleus, where fluctuations of the color charge
density are given by

hρaA=Bðx�;x⊥ÞρbA=Bðx0�;x0⊥Þi ¼ g2μ2A=Bδ
abTR

�
x� þ x0�

2

�
Uξðx� − x0�ÞGðx⊥ − x0⊥Þ: ð63Þ

The constant g2μA=B denotes the color density per unit transverse area which is related to saturation momentum Qs, while
the function G characterizes the transverse correlation of color charges inside the nucleus. Similarly, the functions TR and
Uξ describe the longitudinal profile and correlations of color charges, and are taken as normalized Gaussians with widths R
and ξ identified as the Lorentz contracted size of the nucleus and longitudinal correlation length respectively. In order to
enforce color neutrality on average, the one-point function is assumed to be zero.
Using this model, we can use our previous results to investigate a wide range of observables. In particular, we are

interested in the various components of the energy-momentum tensor given by

Tμν ¼ −Fa;μρFa;ν
ρ þ

1

4
gμνFa;ρσFa

ρσ

¼ 2Tr

�
−F μρF ν

ρ þ
1

4
gμνF ρσF ρσ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Background

− ðF μρfνρ þ fμρF ν
ρÞ þ

1

2
gμνfρσF ρσ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Mixed term

− fμρfνρ þ
1

4
gμνfρσfρσ|fflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflfflfflfflfflfflffl}

Perturbative

�
; ð64Þ
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where we have made the split into background, mixed and
perturbative terms explicit. For the purposes of this paper,
we only consider the perturbative part of the energy-
momentum tensor. We have derived the perturbative field
aμ up to quadratic order, OðρAρBÞ, which yields the
perturbative energy-momentum tensor up to quartic order,
Oðρ2Aρ2BÞ. In principle, the mixed terms could also contain
quartic contributions; however, the background field
strengths F μν are only nonzero along the light cone.
Consequently, the mixed terms vanish inside the future
light cone to all orders. Since we are only interested in the
glasma, we can safely ignore the mixed terms. In the
following we focus on the transverse pressure which is
solely generated during the collision and hence has no
contribution from the background and the mixed part
outside the space-time region where the colliding nuclei
overlap. The transverse pressure is given by

pT ¼ Tii

2
¼ εE;L þ εB;L; ð65Þ

where εE;L and εB;L are the contributions from the
longitudinal electric and longitudinal magnetic field
given by

εE;L ¼ hTrfþ−fþ−i; ð66Þ

εB;L ¼ 1

2
hTrfijfiji: ð67Þ

A. Longitudinal magnetic field

To get the longitudinal magnetic field, we first calculate
the corresponding field strength fij with Eq. (48)

fij ¼ ∂iaj − ∂jai ¼ 2

Z
p⊥;q⊥

ðpiqj − qipjÞadðxþ; x−;p⊥;q⊥Þe−iðp⊥þq⊥Þ·x⊥ : ð68Þ

The square of the above expression contains integrals over four color potentials, arising from the auxiliary fields ad. Since it
is quite convenient to solve such integrals in Fourier space, we write the correlation function in Eq. (63) as

hρ̃aA=Bðxþ;p⊥Þρ̃bA=Bðx0þ;q⊥Þi ¼ ð2πÞ2g2μ2A=BδabTR

�
xþ þ x0þ

2

�
Uξðxþ − x0þÞδð2Þðp⊥ þ q⊥ÞG̃

�
p⊥ − q⊥

2

�
: ð69Þ

Exploiting the fact that the nuclear model is diagonal in momentum space, we have

εB;L ¼ 1

2
hTrf2iji

¼ 4

Z
p⊥;q⊥

ðp2⊥q2⊥ − ðp · qÞ2⊥ÞhTr½adðxþ; x−;p⊥;q⊥Þadðxþ; x−;−p⊥;−q⊥Þ�i

¼ g2

2
NcðN2

c − 1Þ
Z
p⊥;q⊥

Z
z�

Z
z̄�
ðp2⊥q2⊥ − ðp · qÞ2⊥Þhϕ̃Aðxþ − zþ;p⊥Þϕ̃Aðxþ − z̄þ;−p⊥Þi

× hϕ̃Bðx− − z−;q⊥Þϕ̃Bðx− − z̄−;−q⊥ÞiJ0ðjpþ qjτzÞJ0ðjpþ qjτz̄Þ

¼ g2

2
NcðN2

c − 1Þ
Z
p⊥;q⊥

Z
z�

Z
z̄�
J0ðjpþ qjτzÞJ0ðjpþ qjτz̄Þðp2⊥q2⊥ − ðp · qÞ2⊥ÞCAðp⊥Þ

× CBðq⊥ÞTA

�
xþ −

zþ þ z̄þ

2

�
TB

�
x− −

z− þ z̄−

2

�
UAðz̄þ − zþÞUBðz̄− − z−Þ; ð70Þ

where we have evaluated the color factors as fabcfabc ¼
NcðN2

c − 1Þ. To obtain the last equality, we have used
Eqs. (5) and (8), and replaced the gauge field correlators
with our nuclear model such that the overall transverse
dependence is characterized by

CA=Bðp⊥Þ ¼
g2μ2A=BG̃ðp⊥Þ

p4⊥
; ð71Þ

which we take as

CA=Bðp⊥Þ ¼
g2μ2

ðp2⊥ þm2Þ2 e
−
p2⊥
Λ2 ð72Þ

for both nuclei A and B, where, adopting the same
conventions as in [55], m and Λ regulate the infrared
and ultraviolet modes respectively. Inspecting the coordi-
nate dependence of Eq. (70), it is convenient to perform a
change of variables from z�; z̄� to mean and relative
coordinates Z�; δz�
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Z� ¼ z� þ z̄�

2
; ð73Þ

δz� ¼ z� − z̄�: ð74Þ

Since T and U are both Gaussian functions, we can change the limits of integration to

Z
∞

0

dzþdz−dz̄þz̄− ¼
Z

∞

0

dZþ
Z þ2Zþ

−2Zþ
dδzþ

Z
∞

0

dZ−
Z þ2Z−

−2Z−
dδz−: ð75Þ

The resulting expression for the longitudinal magnetic field is then given by

εB;L ¼ g2

2
NcðN2

c − 1Þ
Z
p⊥;q⊥

Z
∞

0

dZþ
Z

∞

0

dZ−
Z þ2Zþ

−2Zþ
dδzþ

Z þ2Z−

−2Z−
dδz−ðp2⊥q2⊥ − ðp · qÞ2⊥Þ

× CAðp⊥ÞCBðq⊥ÞTAðxþ − ZþÞTBðx− − Z−ÞUAðδzþÞUBðδz−Þ
× J0ðjpþ qjτzÞJ0ðjpþ qjτz̄Þ; ð76Þ

with τz ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðZþ þ δzþ=2ÞðZ− þ δz−=2Þp

and τz̄ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðZþ − δzþ=2ÞðZ− − δz−=2Þp

.

B. Longitudinal electric field

Similarly, in order to calculate the longitudinal electric field, we start again with the associated field strength fþ− by using
Eqs. (50) and (51)

fþ− ¼ ∂þaþ − ∂−a−

¼
Z
p⊥;q⊥

ð2∂þ∂−adðxþ; x−;p⊥;q⊥Þ þ ðp2⊥ þ q2⊥Þadðxþ; x−;p⊥;q⊥ÞÞe−iðpþqÞ⊥·x⊥ : ð77Þ

Since we have already found the derivative of the auxiliary field ad in Eq. (56), we differentiate it again with respect to xþ to
get the first term of fþ−. We find

2∂þ∂−ad ≃ −gfabctc
Z

∞

0

dzþ
Z

∞

0

dz−∂ðxÞ
þ ϕ̃a

Aðxþ − zþ;p⊥Þϕ̃b
Bðx− − z−;q⊥Þjpþ qj z

þ

τz
J1ðjpþ qjτzÞ

¼ −gfabctc
Z

∞

0

dzþ
Z

∞

0

dz−ϕ̃a
Aðxþ − zþ;p⊥Þϕ̃b

Bðx− − z−;q⊥Þjpþ qj∂ðzÞ
þ

�
zþ

τz
J1ðjpþ qjτzÞ

�

¼ −
g
2
fabctc

Z
∞

0

dzþ
Z

∞

0

dz−ϕ̃a
Aðxþ − zþ;p⊥Þϕ̃b

Bðx− − z−;q⊥Þjpþ qj2J0ðjpþ qjτzÞ; ð78Þ

where the ≃ in the first line denotes the omission of boundary terms that are not relevant within the future light cone, and we
used the Bessel identity

2

x
J1ðxÞ ¼ J0ðxÞ þ J2ðxÞ ð79Þ

to obtain the final equality. Using the Eq. (78) together with Eq. (49), we obtain

fþ− ¼ −gfabctc
Z
p⊥;q⊥

Z
∞

0

dzþ
Z

∞

0

dz−ϕ̃a
Aðxþ − zþ;p⊥Þϕ̃b

Bðx− − z−;q⊥Þðp · qÞ⊥J0ðjpþ qjτzÞe−iðpþqÞ⊥·x⊥ : ð80Þ

With this, the expression for the longitudinal electric field takes the following form:
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εE;L ¼ hTr½f2þ−�i

¼ g2

2
NcðN2

c − 1Þ
Z
p⊥;q⊥

Z
z�

Z
z̄�
hϕ̃Aðxþ − zþ;p⊥Þϕ̃Aðxþ − z̄þ;−p⊥Þi

× hϕ̃Bðx− − z−;q⊥Þϕ̃Bðx− − z̄−;−q⊥Þiðp · qÞ2⊥J0ðjpþ qjτzÞJ0ðjpþ qjτz̄Þ

¼ g2

2
NcðN2

c − 1Þ
Z
p⊥;q⊥

Z
∞

0

dZþ
Z

∞

0

dZ−
Z þ2Zþ

−2Zþ
dδzþ

Z þ2Z−

−2Z−
dδz−ðp · qÞ2⊥CAðp⊥ÞCBðq⊥Þ

× J0ðjpþ qjτzÞJ0ðjpþ qjτz̄ÞTAðxþ − ZþÞTBðx− − Z−ÞUAðδzþÞUBðδz−Þ: ð81Þ

By combining the results in Eqs. (76) and (81), the resulting expression for the transverse pressure is given by

pT ¼ g2

2
NcðN2

c − 1Þ
Z
p⊥;q⊥

Z
∞

0

dZþ
Z

∞

0

dZ−
Z þ2Zþ

−2Zþ
dδzþ

Z þ2Z−

−2Z−
dδz−p2⊥q2⊥CAðp⊥ÞCBðq⊥Þ

× TAðxþ − ZþÞTBðx− − Z−ÞUAðδzþÞUBðδz−ÞJ0ðjpþ qjτzÞJ0ðjpþ qjτz̄Þ: ð82Þ

This is the main result of this section which shows the dependence of the transverse pressure on the longitudinal structure of
the colliding nuclei. We also note that by regularizing the color potential in the auxiliary source terms [see Eq. (43)] as
ϕA=Bðx�;x⊥Þ≡ δðx�ÞϕA=Bðx⊥Þ, the result for ð3þ 1ÞD reduces to the result for ð2þ 1ÞD [23,24,56]

pT ¼ g2

2
NcðN2

c − 1Þ
Z
p⊥;q⊥

CAðp⊥ÞCBðq⊥ÞJ20ðjpþ qjτÞp2⊥q2⊥: ð83Þ

IV. NUMERICAL RESULTS AND COMPARISONS
TO ð3 + 1ÞD SIMULATIONS

Basic features of the reaction dynamics for ð3þ 1ÞD
collisions have already been examined in detail using real
time lattice simulations [53,55]. In this section we deter-
mine the effectiveness of our analytical calculation based
on the weak-field approximation by comparing them with
full ð3þ 1ÞD simulations. In the ð3þ 1ÞD simulations
performed in Ref. [55], we defined the color charge density
in Minkowski space as ρaðt; z;x⊥Þ ¼ ρað2DÞðx⊥ÞTRγ

ðtþ zÞ
(for a left moving nucleus), which, due to the factorized x⊥
and tþ z dependence, leads to a less general model for the
color charge densities

hρaðt; z;x⊥Þρbðt0; z0;x0⊥Þi3D
¼ g2μ̄2δabTRγ

ðtþ zÞTRγ
ðt0 þ z0ÞGðx⊥ − x0⊥Þ: ð84Þ

Since the color charges are assumed to be x− independent,
we can write the above two-point function in light cone
coordinates as

hρaðxþ;x⊥Þρbðx0þ;x0⊥Þi3D
¼ g2μ02δabTR0 ðxþÞTR0 ðx0þÞGðx⊥ − x0⊥Þ; ð85Þ

where

μ0 ¼ μ̄ffiffiffi
2

p ; ð86Þ

R0 ¼ Rγffiffiffi
2

p : ð87Þ

Now by comparing Eqs. (63) and (85), one finds that the
correlators can be matched by equating the factorized
longitudinal dependence as

μ2TR

�
xþ þ x0þ

2

�
Uξðxþ − x0þÞ ¼ μ02TR0 ðxþÞTR0 ðx0þÞ:

ð88Þ
By multiplying the two Gaussians on the left, we find that
for ξ ¼ 2R, the cross terms cancel and then the resulting
relations are given as

μ ¼ μ̄ffiffiffi
2

p ; ð89Þ

R ¼ Rγ

2
: ð90Þ

TABLE I. Parameters for comparing (semi)analytical results
with ð3þ 1ÞD simulations.

Dilute ð3þ 1ÞD CYM [55] ð3þ 1ÞD CPIC [52,53]

g2μ g2μ̄ffiffi
2

p g2μ

R Rγ

2

L
2

m=Λ m=Λ m=Λ
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We can perform an analogous matching for the nuclear
model used in Refs. [52,53]. Table I summarizes the
parameters for the analytical results obtained from our
perturbative expansion (Dilute) and two different ð3þ 1ÞD
simulation schemes [ð3þ 1ÞD CYM [55] and ð3þ 1ÞD
CPIC [52,53] ] with which we determine the extent to
which the results of our weak-field approximations agree
with the fully nonperturbative real time lattice simulations.
Note that ξ ¼ 2R, which we call the coherent limit, is the
upper physical limit for the correlation length of color
structures inside the nucleus.
We note that the nonlinearity, which measures the

strength of diluteness of a model, can be controlled by
the dimensionless ratio of the color charge density g2μ
and the infrared regulator m. We vary this dimensionless
parameter and compare the transverse pressure as obtained
from the analytical result and the result from ð3þ 1ÞD
simulations, for different longitudinal extents of the
colliding nuclei in Fig. 1. We choose the same transverse
lattice discretization for both schemes: ma⊥ ¼ 0.125 and
ma⊥N⊥ ¼ 16 with Λ=m ¼ 5. Since the two simulations
rely on completely different numerical schemes,2 the
longitudinal discretization of the lattice is different, with
Rγ=az ¼ 16 in all ð3þ 1ÞD CYM simulations and Rγ=az ∈
f8; 16; 32g in the case of ð3þ 1ÞD CPIC simulations.

In both cases, the discretization is chosen such that the
nuclei are properly resolvedRγ=az ≫ 1, and the longitudinal
extent Nzaz is large enough to allow for sufficiently long
simulation times, i.e., Nzaz ≫ Rγ . The results for the dilute
approximation are computed usingMonte Carlo integration.
We primarily focus our attention on coherent color fields

ξ ¼ 2R for which the nuclear model used for analytical
calculations and simulations is identical. Since we are
interested in late times, where in the boost-invariant limit
the transverse pressure per unit rapidity τpTðτÞ becomes
independent of the proper-time τ, we scale the transverse
pressure in Fig. 1 with proper time τ to eliminate the
leading time dependence. Numerical results in the dilute
approximation are evaluated atmτ ¼ 8, while the ð3þ 1ÞD
simulations are evaluated at g2μτ ¼ 2 for g2μR ¼ 1=2, 1
and all values of g2μ=m, whereas for g2μR ¼ 1=8; 1=4 we
set g2μτ ¼ 1 for all g2μ=m, except for g2μ=m ¼ 2, g2μR ¼
1=4 where we use g2μτ ¼ 2.3 Before discussing the results
of our weak field approximation, we emphasize that the
results of the two different ð3þ 1ÞD classical Yang-Mills
implementations [ð3þ 1ÞD CYM [55] and ð3þ 1ÞD CPIC
[52,53] ] are in excellent agreement with each other. We
find that, as per our expectation, the analytical calculation
works remarkably well in the dilute limit g2μ=m ¼ 0.5
as seen from the left panel of Fig. 1. By increasing
the nonlinearity of the model g2μ=m ≥ 1, we find that
the analytical results in the dilute limit overestimate the

FIG. 1. Transverse pressure as a function of rapidity for three different simulation parameters in the dilute limit: g2μ=m ¼ 0.5 (left),
g2μ=m ¼ 1.0 (middle) and g2μ=m ¼ 2.0 (right) compared to results from nonperturbative classical Yang-Mills simulations [ð3þ 1ÞD
CPIC [52,53] and 3þ 1D CYM [55] ].

2Essential differences regard the lattice discretization of the
color currents. Within the colored particle-in-cell formalism
[ð3þ 1ÞD CPIC] of [53], eikonal color currents are propagated
as colored particles and not subject to a lattice dispersion,
whereas in the ð3þ 1ÞD CYM formalism of [55] eikonal currents
are propagated based on the current conservation equations and
subject to the lattice dispersion.

3Note that for a proper comparison, we interpolate data on the
ðt; zÞ grids of the ð3þ 1ÞD simulations before switching to ðτ; ηÞ
coordinates. To reduce statistical fluctuations, we use rapidity
bins of width Δη ¼ 0.2.
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transverse pressure; nevertheless the rapidity profiles are
still reproduced rather well and the flattening of the rapidity
profiles with increasing g2μ=m is correctly predicted by the
(semi)analytic calculation.4 It is further interesting to note
that the ratio of the analytical to that of the simulation
results are roughly the same for different thicknesses of the

colliding nuclei, which suggests that the nonlinearity could
effectively be introduced by rescaling the pressure profile.
Besides the significantly smaller computational cost,
another enormous benefit of the semianalytic calculation
is that it is not bounded by lattice size, and therefore, we are
able to perform computations at larger rapidities, as is
clearly visible from Fig. 1.
Having established that our analytical expressions repro-

duce the full ð3þ 1ÞD numerical simulations in the dilute
limit, we consider the various limits of our nuclear model.
We start by looking at the coherence length ξ=R, which
accounts for the randomness of color charges across a fixed
longitudinal extent of the nucleus. Naturally, the longi-
tudinal extent of the nucleus (R) is greater than the size of a
correlated region within the nucleus (ξ) and hence for a
physical limit ξ=R≲ 1. In Fig. 2, we plot the transverse

FIG. 2. Transverse pressure corresponding to two different limits of coherence length: ξ=R ¼ 0.1 (left) and ξ=R → 0 (right), for
varying thickness of the incoming nuclei (top plots) and varying proper time (bottom plots).

4It should be noted that we use the dimensionless length scale
g2μR for the sake of comparing the weak field approximation to
our nonperturbative simulations. However in the dilute limit,
g2μR is in fact not a particularly useful scale, because g2μ only
enters as an overall normalization factor of Tμν. The more
appropriate length scale is given by mR, i.e., when mR and
m=Λ are fixed, the shape of the rapidity profile does not change
with the nonlinearity parameter g2μ=m. The widening of the
dilute rapidity profiles in Fig. 1 for fixed g2μR and increasing
g2μ=m should be interpreted as widening due to varying mR.
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pressure for different thicknesses of colliding nuclei while
considering two different values of ξ=R ¼ 0.1 (left panels),
which roughly corresponds to the ratio A−1=3 of the size of a
nucleon and a nucleus in large nuclei, and ξ=R → 0 (right
panels), which corresponds to the McLerran-Venugopalan
model ðA → ∞Þ. For these plots we use m ¼ g2μ and
Λ=m ¼ 5. The top plots show the profiles for different
g2μR at fixed time g2μτ ¼ 5, whereas the bottom plots are
evaluated for fixed g2μR ¼ 1=8 varying g2μτ. We further
include a comparison of the results of the ð3þ 1ÞD dilute
calculation to the corresponding result in the ð2þ 1ÞD
boost-invariant limit, which is obtained by integrating
Eq. (83). We observe that the profiles approach the same
boost-invariant plateau around midrapidity, whereas the
flanks at larger rapidities are different and depend on
the correlation length ξ=R. By decreasing the thickness
of the colliding nuclei g2μR → 0, one approaches the
boost-invariant limit, where the central plateau extends
across larger and larger rapidity intervals. With regard to
the proper time dependence, we find that in the limit ξ=R →
0 in Fig. 2 the profiles exhibit a significant time dependence
up to very late times, where the flanks continue to move
towards larger rapidities, while the central plateau remains
time independent. In contrast, we observe that the time
dependence is much milder for ξ=R ¼ 0.1 (Fig. 2 on the
bottom left), where a stable profile is reached quickly and
the double-peak structure vanishes entirely.
Finally, we investigate the dependence of the rapidity

profile on the UV and IR regulators. In Fig. 3 we plot
the transverse pressure normalized to its value at mid-
rapidity for different longitudinal extents g2μR and
ξ=R ¼ 0.1. In the left panel we fix the UV regulator to

Λ ¼ 5g2μ and vary the infrared regulator m to three
different values. Similarly, for the right panel the IR
regulator is set to constant m ¼ g2μ, and Λ takes three
different values. We observe that for a constant proper time
g2μτ ¼ 5, the profiles are largely insensitive to the variation
apart from small deviations in the shoulders and flanks.
Similar to Fig. 2, a boost-invariant plateau around mid-
rapidity emerges upon decreasing the thickness of the
colliding nuclei and the width of the plateau appears to
be insensitive to the UV and IR regulators.

V. CONCLUSIONS AND OUTLOOK

We performed the first analytic calculation of the longi-
tudinal profiles of the energy deposition in heavy-ion
collisions within the dilute limit of the color glass condensate
effective field theory of high-energy QCD. We obtained
general analytic expressions for the color fields of the glasma
produced in the future light cone [cf. Eqs. (60)–(62)], and
employed them to study the rapidity dependence of the
transverse pressure for a simplified nuclear model including
nontrivial longitudinal color correlations.
By comparing the (semi)analytic results in the dilute

approximation to nonperturbative ð3þ 1ÞD classical Yang-
Mills simulations, we confirm excellent agreement in the
dilute regime. Even beyond the dilute limit, our approxi-
mation appears to capture the rapidity profiles rather well,
while the overall magnitude of energy deposition is
overestimated, once nonlinear effects become important.
Since our analytic expressions allow for an efficient

numerical determination of the energy-momentum tensor
Tμν, the results presented in this paper provide new
opportunities to further explore the longitudinal structure

FIG. 3. Transverse pressure relative to its value at midrapidity for varying thickness of colliding nuclei along with fixed UV regulator
(left) and fixed infrared regulator (right).
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of matter produced in high-energy heavy-ion collisions, to
study e.g., the interplay of longitudinal and transverse
fluctuations and develop newMonte Carlo event generators
for the initial state of heavy-ion collisions.
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