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The production of vector mesons in the fragmentation process of polarized quarks is studied within the

recursive string + 3P, model, improving a previous version of the model in which the production of
pseudoscalar mesons only was considered. Two types of couplings of the vector meson to quarks are
introduced, their coupling constants being the additional free parameters of the model. The angular

distribution of the decay products of the polarized vector meson is deduced from the spin density matrix of
the meson and the spin information is propagated along the fragmentation chain taking into account the
entanglement of spin states. The new model is implemented in a stand alone Monte Carlo program utilized

to investigate in detail kinematic distributions and transverse spin asymmetries. The sensitivity of these
observables to the new free parameters is discussed and the Monte Carlo results are compared with

experimental data on transverse spin asymmetries.
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I. INTRODUCTION

The quark (and gluon) fragmentation process is one
of the most intriguing and interesting phenomenon of
quantum chromodynamics. It belongs to the soft (long-
distance), nonperturbative domain and it is usually encoded
in fragmentation functions (FFs). FFs are thought to be
universal functions, i.e., common to all high energy
collision processes producing jets of hadrons (for a review
see Ref. [1]). The most studied FF is Di'q(z,pT) which

describes the fragmentation of an unpolarized quark ¢ in a
not analyzed hadron /. The variable z is the fraction of the
quark energy carried by the hadron and pr is the transverse
momentum of the hadron with respect to the quark
momentum. The Q? dependence of the fragmentation
functions is not considered in this work.

Particularly interesting is the spin-dependent fragmenta-
tion function H ’f;(z, pr) which describes the Collins effect

in the fragmentation of a transversely polarized quark ¢ in a
not analyzed hadron [2]. The effect is an azimuthal
distribution of the form
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The angles ¢, and ¢ are, respectively, the azimuthal angles
of the hadron transverse momentum and of the fragmenting
quark transverse polarization St around the quark momen-
tum. The combination ¢ = ¢, — ¢ is the Collins angle
of the hadron and the amplitude a?'="*X of the sin ¢,
modulation for a fully polarized quark is the Collins
analyzing power. It is conventionally written as a9 ~/X =
—prHY;/(zMD?},), M being the hadrons mass.

The Collins FF appears, coupled to the transversity
parton distribution function (transversity PDF) A7, in the
so-called Collins asymmetry in semi-inclusive deep inelas-
tic scattering (SIDIS) off transversely polarized nucleons.
Neglecting the intrinsic quark transverse momentum, the
asymmetry can be written as

o« 1+ a?t=" XS] sin(gy — ¢s). (1)

21,4 gt —=h+X nh
> .eqhi xa DY,
2 rq h ’
quqfl X qu

where ¢ = u,d, s, it,d or 5, and f7 is the unpolarized PDF.
The Collins asymmetry has been measured by HERMES
[3] on protons, by COMPASS on deuterons [4] and on
protons [5], and at Jefferson Lab on *He [6] and found
different from zero for the proton target. The Collins effect
can be directly accessed in eTe™ annihilation to hadrons,
assuming that one knows the directions of the fragmenting
quark and antiquark, by measuring the asymmetry [7]

(2)

AColl =
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PO AL Dy, xa Di;
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where /1, and h, are two back-to-back hadrons, and ayy is
the elementary quark double transverse spin asymmetry
[8]. By combining in phenomenological analyses SIDIS
and eTe” data it has been possible to extract both the
Collins FF and the transversity PDF [9-11].

It is important to have a simulation model of quark
fragmentation, implemented in a Monte Carlo (MC) pro-
gram, reproducing the Collins effect as well as other effects
like the dihadron asymmetry [12—14] in the fragmentation
of transversely polarized quarks and the jet handedness
[15-17] in the fragmentation of longitudinally polarized
quarks. A promising model for the polarized quark frag-
mentation is the recursive string + 3P, model [18-22]. This
model extends the Lund model of string fragmentation [23]
with the inclusion of the quark spin degree of freedom. It
respects confinement, it is left-right (LR) symmetric1 [23]
and is based on quantum amplitudes instead of probabil-
ities. The basic assumption which explains the spin effects
is that at each string breaking the quark-antiquark pairs
are produced in the 3P, state [24], namely with total spin
S =1, relative orbital angular momentum L = 1 and total
angular momentum J = 0. Two slightly different versions
of the string + 3P, model have been proposed, M18 [21]
and M19 [22], the difference being the choice of an input
function. Both of them are restricted to the production of
pseudoscalar mesons (PS) and have been implemented in
stand alone MC programs which gave similar results. In
particular, they both provide a satisfactory description of
the main properties of the measured Collins and dihadron
asymmetries and produce also the jet-handedness effect.
While M18 is more general than M19, the latter is more
simple and more suitable for further developments. It has
been interfaced to the hadronization part of the PYTHIAS
event generator [25] to fully exploit its predictive power
and to have a more complete description of the polarized
SIDIS process [26].

For a more complete description of the fragmentation
process, vector meson (VM) production must be consid-
ered. Hadrons coming from VM decays in fact give an
important contribution to the sample of the observed
hadrons. The VM production was first included in the
string + 3P, model for the process pp!' — pX [27] limited
to the production of leading vector mesons which were
treated as unpolarized. The main difficulty of including
polarized VMs in the polarized quark fragmentation proc-
ess is to take properly into account the spin correlations
among the initial quark, the VM and the leftover quark in
the recurring process g' — h' + ¢'T.

'LR symmetry should better mean [quark] line reversal
symmetry, namely the reversal of the quark fragmentation chain.

In this paper we present the new string + *P, model
(M20), extending M 19, in which the production of VMs in
the polarized quark fragmentation chain is taken into
account. The new model has been first presented in
Ref. [28] and it is partly based on the work of Ref. [18].
It is assumed that vector mesons are coupled to quarks
with coupling constants Gy, and Gy for longitudinally and
transversely polarized vector mesons, respectively. Besides
the ratio fyyps = |Gy|* + 2|Gr|? between the abundances
of vector and pseudoscalar mesons, we have essentially two
new free parameters for the spin effects, |Gy /Gy| gov-
erning the relative fraction of longitudinal and transverse
vector mesons and 6 = arg |G /Gr| governing the
oblique polarizations, namely the interference between
longitudinal and transverse polarizations. The model is
formulated at the amplitude level which automatically
preserves positivity and allows to propagate the spin
information along the fragmentation chain respecting
quantum entanglement following the prescriptions of
Refs. [29,30]. At present M20 has been implemented in
a stand alone MC program which allows us to study in
depth the model predictions.

The article is organized as follows. The theoretical aspects
of the new model are described in Sec. II. Section III
describes the stand alone MC implementation of M20. The
results of the simulations including the sensitivity to the free
parameters are presented in Sec. IV. New dihadron asym-
metries arising from the possible oblique polarization of
VMs are presented in Sec. V. The comparison with the
existing SIDIS and e™ e~ data are presented in Sec. VI. The
conclusions are given in Sec. VIIL

II. Vector meson production
in the String +3P, model

The fragmentation process g g — hihy...h,...hy,
where g, is a quark, g either an antiquark in ete”
annihilation or the target remnant in SIDIS and
hihy...h,...hy the primary produced hadrons, is phenom-
enologically described as the decay of a relativistic string,
stretched between ¢, and gp [23,31]. The string decay
appears, in the infinite momentum frame, as a recursive
series of elementary splittings ¢ — h + ¢/, ¢ is the recur-
ring splitted quark, & = ¢g’ the emitted hadron in the
splitting and ¢’ the leftover quark. The label r indicates the
rank and the rank one hadron contains ¢g,. We denote by &,
p, and k' the four-momenta of ¢, 4 and ¢’. We will use the
null-plane components p* = p® & p* and k* = k° £ k%,
The 7 axis or string axis points towards the direction of the
initial quark ¢, in the string rest frame. The hadron
momentum can then be expressed in terms of the longi-
tudinal splitting variable Z = p* /k* and the hadron trans-
verse momentum pr = k1 — k/, with respect to the string
axis, kt and k’; being the transverse momenta of ¢ and ¢/,
respectively. The mass shell condition writes p*p~ = €’
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where €2 = M? + p3 is the transverse energy squared of
the hadron and M its mass. The quark spin information is
encoded in 2 x 2 density matrices p(q) = (1+6-S,)/2
where S, is the quark polarization vector.

The general formalism of the string + 3P, model pre-
sented in Ref. [21] can include the production of mesons of
arbitrary spin. The spin variable s, of the meson enters the
quark-meson-quark vertex I ;. (K, Kt), which is a 2 x 2
matrix in quark spin space. s, refers to the helicity, the spin
along a chosen transverse axis or, for spin 1, specifies a
linearly polarized state. To make a full Monte Carlo
simulation of quark fragmentation with PS and VM
production, we must add two items to the prescriptions
of M18 or M19, namely

(i) the generation of M from a continuous resonant

mass spectrum and

(ii) the simulation of the decay process.

The second point deserves special attention, because the
spin state of the (hq’) system is generally entangled. One
cannot simulate separately the decay of & and the frag-
mentation of the leftover quark ¢’.

A. The gt — VM1 +¢' splitting function

1. General formula

Let us start by including the emission of VMs in the
formalism of M19 without treating the subsequent decay.
To label the VM spin state, we replace s;, by the 3-vector V,
which is the space part of the covariant amplitude A* in
the VM rest frame, as specified in Sec. [IA2. V is real
for linear polarization, complex for vector polarization
and normalized by V - V* = 1. The probability density of
emitting 4 in the elementary splitting is given by the
splitting function, which, when summing over the spin
states of ¢’, writes [cf. Eq. (36) of [21]]

dN(qt —ht+4q')
dM?dPprdZ)Z

= Tr[T(q/7 f)’ q)p(Q)TT (q/’ [)’ q)]
(4)

The gothic letter Y= {h, p,s,} = {hadron species, 4-
momentum, spin state} represents the meson state, whereas
q = {q, k} = {quark flavor, quark momentum} represents
the quark state, spin excluded. T is the 2 x 2 splitting
matrix, given by

Fq',h,q(M7V’Z’pT;kTaSq)

T(q'.9.9) = Cyp Dy (M)3(e?)[(1 - Z) /2]
x exp[~bpe?/(2Z)] Ay (k)T vitg* (K3).
(5)

The coefficient C,/, , is proportional to the (7'q) wave
function in flavor space; a and b; correspond to the

parameters a and b of the Lund Model. g(€?) is a model
input function which, like in M19, we take

F(e?) = 1/N,(e?),

vie) = ['Z(*5E) ewinerz. o)

The 2 x 2 matrix

Ay (k) = (4 + 0.6 - k1) fr(kT) (7)

contains the spin and kt dependence of the quark propa-
gator in the string + 3P, model, u being a complex mass
parameter and fr(k3) a fast decreasing function of k3,
mainly responsible for the transverse momentum cutoff.
We take fr(k3) = exp (—brk3/2), with by a free param-
eter already present in the Lund model.

D, (M) has the denominator of the vector meson
propagator. We take the Breit-Wigner form

VNp

D,(M) = )
h( ) M2—ﬁ1,21+irhhyh

(8)

where m,, is the position of the resonance peak and y,,
the resonance width, both set to the values in PDG [32].
Np is the normalization constant of the mass distribution
|D,(M)|? of the resonance.

The 2 x 2 matrix I';y sets the coupling of the vector
meson to the quark line. Its most simple form is [18]

'y = Gror-Vie, + G V; x 1. 9)

Gy and Gt are the coupling constants for longitudinal and
transverse linear polarizations of the VM. This decom-
position is analogous to that in Gy; and Gg of the nucleon
form factor and that in 3S, and 3D, of the deuteron wave
function. In a covariant quark-multiperipheral model the
analog couplings would be y# and ¢** p,. We allow G /Gt
to be complex, as a result of different quantum actions of
the initial string for the L and T polarizations. In the
following we will use as parameters

|GL/Grl, O = arg(GL/Gr). (10)
which are the new free parameters of M20. A relevant
quantity is the fraction

Gy |?

=517 1~
- 2|Gr|* + |G

(11)
for S, =0 it is f; = py [see Eq. (33)], hence f| is the
fraction of the longitudinally polarized vector mesons.

i, is a2 x 2 matrix given by Eq. (47) of [21], which we
decompose as
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ity (ky) =Y g (Kr), (12)

h

yn(kr) = |Cynal / PR ()N ()

x ZF AT (kh)A

Sh

Ay (k). (13)

ity n(Kr) is the contribution of hadron species 4. For vector
mesons, s, = V and ) y is made over three orthonormal
basic vectors.” For pseudoscalar mesons it is s, =0
and I', = o,.

With our choice 7*(e*)N,(e?) = 1 (choice of M19) both
it,(kr) and i, ,(kr) become proportional to the unit
matrix and independent of kr:

g, =1 X |CypglP (Il + (k3)p,)

1 (PS case)
X . (14)
(2|Gr)? +|GL)?) (VM case)
with the notation

<k2>f _/dszk f3(k3) //dszfT (k3), (15)

where fr is the function appearing in Eq. (7). So, from
now ii, (k%) and @i, (k%) will be considered as constant
numbers and we will omit “1x” which appears in Eq. (14).
The relative probability of getting the hadron species £ in
the splitting ¢ — h + ¢’ is then

P(q - h+ C]’) = ﬁq.h/aq' (16)

It is independent of k1 and of the polarization of ¢, contrary
to other choices of the function §(e?).

2. Frame for the polarization vector V

V is obtained from the covariant 4-vector A* of the VM
wave function by bringing the VM at rest via two
successive Lorentz boosts: a longitudinal one By! which
suppresses p. and a transverse one B! which suppresses
pt, Where

Br = B(pr/e), By =
and the argument of B is the velocity vector of the
boost. The action of By and By is shown in Fig. 1.
Thus (0, V) = Bi'B;'A#. This transformation preserves
the longitudinal Lorentz invariance and the LR symmetry
[23] of the model. We call LR symmetric (rest) frame the

B(p.2/E) (17)

Due to the fluctuating mass of the VM, one should insert
J dM?|D;,(M)}* in Eq. (13) before the integral over Ki.

FIG. 1. Boost compositions involved in the definition of V and
the Wigner angle ayy, following Eqs. (17) and (18). v=p/E.
The dashed lines figure the p, — oo limit, Eq. (20).

resulting reference frame for V (also named PL frame
in Ref. [33]).
The VM could have been put at rest with the direct boost
~I(p/E), leading to a different vector Vy; (“hl” refers to
the so-called helicity frame). We have (0, V) = Rw/(0, V)
where Ry, = By'B{'B(p/E) is a Wigner rotation about
Z x p, of angle aw(p/E) given by

. VT
E)= _PePr )
aw(p/E) arcsm( . e)

T

20y poaein(H)

and represented in Fig. 1.> V,; and aw(p/E) are not
invariant under a longitudinal boost. In particular, in the
SIDIS process they change from the target frame to the
y*-nucleon frame. When p, — +oo (dashed lines of Fig. 1)
the helicity frame becomes the null plane (rest) frame and

Vh] g Vnpl' (19)

aw(p/E) ~ aye = arctan(py/M).  (20)

Vi is longitudinally Lorentz invariant but not LR
symmetric.

The above transformations also serve to adjust the
individual momenta pj,p3,... or the relative momenta
of the decay products in the rest frame of the VM. For a
2-body decay, the relative 4-momentum pk, = (E}p/ —

Eip5)/M [with Ej =P-p;/M and M>=P>=(p, +p,)’]
transforms like A#;

I'_prel pl - p; (21)

is the analog of V and

Other expressions are ay = N - Je(p x dp)/(E* + mE) =
M [ [, d’p/E?, where C is the closed path run by the vector p in
the successive boosts B(p/E), Bf!, B;', and A is the area
enclosed by C, and N is defined in Eq. (23).
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R — (RT> _ 1 (ZzplT—lezT> (22)

RZ 21 + 22 E;Zl - ETZZ
is the analog of V.. R is obtained from r in the LR
symmetric frame by the rotation of angle —aw, about
Z X pt. R is the relative transverse momentum involved in
the dihadron asymmetry, whether or not 4; and &, come

from a resonance. It was introduced and named k,
in Ref. [34].

3. Coordinates in the rest frame

Independently of the choice of frame (LR symmetric
or null plane) we need three basic vectors to define the
coordinates of S, V, p}, or R. A natural basis, {L., M, N},

is linked to the meson transverse momentum pr:

L =12,

M = pr/|pr1l, N=zxM. (23)

We will also use the {l, m, n} basis linked to the antiquark
momentum —KF,

1=12, m = —k%/|Kk}[, n=2zxm, (24)

and the {X,Y,Z} basis linked to the quark transverse
polarization,

Y=5,/IS Z=2 X=YxZ. (25

gl

These bases are simply related by rotations about Z. From
now on, Sq, Sq -n, Sq - X etc., will shortly be written S, S,,,
Sy etc. To a vector V is associated the pure spin state of the
vector meson

V) = VLIL) + Vy[M) + Vy|N),
=Vl) +V,|m)+ V,|n),etc. (26)

Note that |V) and | — V) are the same state.

4. Splitting function for pseudoscalar mesons

Before studying the splitting function for vector mesons,
let us first recall the one for pseudoscalar mesons
[cf. Eq. (26) of [22]]. Removing the argument V in
Eq. (4) and using Egs. (5)—(7) and (9)—(16), one gets

F g n(ps).q(Z, pri Kk, S,)

_i\t‘%h f%‘(kllg) N_1(€2> 1
oA 2 k2> a
Ug |/"| +< T/ fr

< (Jul* + KF)[1 +as,). (27)

_22> “exp (—by.¢2/2)

€

with

2Im(u)K'r

a=
|ul*> + k'3

(28)
The square bracket of Eq. (27) is responsible for the Collins
effect, since n is correlated with N. In particular, n = N for
a rank one hadron.

5. Splitting function for vector mesons
In the case of vector mesons, selecting one polarization
of the {l,m,n} basis, we obtain from Egs. (4)—(7),
Egs. (9)-(16), and Eq. (28)

Fql,l’l,q(M5 V9 Z’ pTa kT’ Sq)

u

) (uf + K3)
2 Dy (M) £ (K) !
q

ul? + (k3) £,

— Z> ’ exp (—=b €?/Z)

€
(1—=as,)fL for V=1
(1—=a$,)(1-=fL)/2 forV=m

“Y (1 +4aS,)(1-f)/2 forV=n
1 - fLas, for the sum over V

(29)

The last line after the brace is for the case where the VM
polarization is not analyzed. Equation (29) with this choice
and Eq. (27) are used in simulations to generate first
the vector or pseudoscalar meson species of the emitted
particle, then its transverse momentum pr = kp — k7. and
then its Z.

Global Collins effect.—It is the Collins effect of the
vector meson and it comes from the §,, term of Eq. (29). It
is to be distinguished from the dihadron asymmetry (or
relative Collins effect) of the decay products. These have
individual Collins effects resulting from both the global and
the relative one.

For a rank one meson, —k’. = pr and n = N. Then the
analyzing power a9 1="+X(z p.) is equal to the coefficient
of §,, in Eq. (27) for PS mesons or (29) for VM. Itis maximum
for |pr| = |u|. For the VM, it depends on the linear
polarization, as pictured in Fig. 2, which gives a semiclassical
description of PS and VM production in the model. If the VM
polarization is normal to the production plane as in Fig. 2(a),
then the Collins asymmetry equals that of a pion of the
same |pr|. If the polarization is in the production plane as in
Fig. 2(b), then the asymmetry is opposite to that of a pion.

A “hidden spin” effect.—Figure 3 is the analog of Fig. 2
for a meson of rank >2. It shows that the quark and the
antiquark transverse momenta are on the same side for a
PS meson [Fig. 3(a)]. The same occurs for a VM with
probability (1 — f;)/2. In the case of Fig. 3(b), which
occurs with probability (1 + f;)/2, the ¢ and g’ momenta
are on the opposite sides. So, (pr?) is expected to be
larger for PS mesons than for VMs. This prediction is

114038-5
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(@)
9.0
"

FIG. 2. Production mechanism of a first-rank meson in the
string + 3P, model. (a) PS meson or VM of linear polarization
perpendicular to the figure plane (the z, pt plane). (b) VM of
linear polarization in this plane. Straight simple arrows represent
quark or antiquark momenta. Circular arrows represent quark
spins or gg relative orbital momenta. Linearly polarized VMs are
represented by ellipsoids. (c) Correlations between the ellipsoid
major axis, the g spin and the g spin.

<a)—’fq4 LJ M 3T_
4

~ Q3
(b) q4m q4T—l m qs

FIG. 3. Production mechanism of a rank >2 meson, here the
¢3g, meson. Same notations as in Fig. 2.

independent on the polarization of the initial quark and
specific of the 3P, mechanism. It could be tested in
unpolarized experiments, looking at ‘“unfavored” quark
fragmentation or at the central rapidity region.

B. The density matrix of the vector meson
Rewriting 7(q',9,q), defined in Eq. (5), as T, (q',9,q)V

the relative probability to find the VM in a state |V) is of
the form

(VIp(h)IV) = Vipaw (R)V (30)
where @ and o € {L,M,N} or {l,m,n} or {X,Y,Z},
depending on the basis, and

Te{Tup(9)T }
> Tr{Typ(a)T))
Tre{(p+ 0.0 K@), (4 +6 - Kio.)}
(Ul + K'3)N(S) ’
(31)

ﬁaa/(h) -

with

N(S) =2|Gz* + |GL|* = |GL[*as,,. (32)
Dac (1) is the polarization matrix or (spin) density matrix of
the VM, normalized to Trp(h) = 1.

The real part of p is the tensor, or linear polarization.4 It
is convenient to represent it by a polarization ellipsoid as in
Figs. 2-5. The axes of this ellipsoid are parallel to the
eigenvectors of Rep and their half-lengths are equal to the
square roots of the eigenvalues (see Appendix A). Rep
governs the angular distribution of the decay product.
Thus, in the VM — h; h, decay, the relative /i, momen-
tum tends to be aligned with the major axis (but without
preferred sense).

In the (1, m, n) basis Rep,, (h) writes the following:

pn = (1-as,)|GLI*/N(S),
Pum = (1= aS$,)|Gr[*/N(S),
Pun = (1+aS$,)|Gr|*/N(S),
Repy, = aS,|Gr/N(S).
Repy = (a - S,) sinOpr|GLGr|/N(S),
Rep, = (acos 1S, —sin0;1S,,)|GLGr|/N(S),  (33)

together with Rep,y = Reﬁo,ro,.5 These are in accordance
with Eq. (29) and satisfy automatically the positivity
conditions.

The imaginary, antisymmetric part of p(h) is the vector
or circular polarization. It plays no role in the decay
processes considered here. The complete matrix elements
are given in Appendix A.

Aligned and transverse linear polarizations.—The element
i = Py is related to the alignment parameter (3p; — 1)/2.
The elements prym, Puns and Py, define the transverse linear
polarization, whereas p,,,; and p,; depend on 6; t and describe
oblique polarizations. Note, however, that our separation in
aligned, transverse and oblique is linked to our choice of the
Lorentz transformations bringing the meson at rest.

Figure 4 represents, for a first-rank VM and various
orientations of pr with respect to St, the transverse linear
polarization defined by the 2 x 2 restricted matrix Reﬁg} =
Rep,, for a and o # z. The ellipses are the projections of
the polarization ellipsoids Their axes are parallel to the
eigenvectors of p(T) and have lengths equal to the square
roots of the eigenvalues (1 + &|St|)|G1[>/N(S) of p(T
Note that for a 2-body decay and ¢(pr) = = (case of ellipse
E,), the left-moving decay hadron gets a large transverse
momentum and the same Collins effect as the VM itself.

*A general descﬁption of the density matrix for spin 1 particles
can be found in Ref. [35].

Equation (27) of [18] is in agreement with Eq. (33) except for
its wrong sign in front of 2Im(u)(Vy - tVy-S + Vi - tV, - S).
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FIG. 4. Transverse polarization of a first-rank vector meson, for
azimuths ¢(pr) = jz/2 (j =0,...3) of pt in the (X,Y) frame.
The ellipses are projections of the polarization ellipsoids. The
darknesses of E; figure the depths o (p7,)!/? of the ellipsoids in
the Z direction. Ellipse E is for an ordinary azimuth. Its major axis
(dashed) is parallel to the bisector of St and N.

Oblique polarizations.—They are interferences between
transverse and longitudinal amplitudes, therefore depend
on |Gy G| and 6, 1 and correspond to the elements p,,; and
Pn- We analyze it in the basis {X,Y,Z} introduced in
Eq. (25). Let us consider separately, in Eq. (33) or (B2), the
effects of the terms asin @y 1, a cos 6 1S,, and sin 6 St in
ﬁml and ﬁnl‘

The term asin@;t in p,; is independent of the quark
polarization and gives an oblique polarization in the 1, m
plane, projected on the (X, Z) plane in Fig. 5(a). For the
2-body decay VM — hh, it acts upon the dependence of
(pr?) on z;: at large z;, pj, is likely positive and, for rank
one, Fig. 5(a) indicates a larger (p3;) for positive than for
negative sin @ 1. It comes from the pt composition law

Pir = Pir + [Ef +Pr-Pir(e + M)|pr/M  (34)

and the fact that the sign of pr - pjr is most likely that of
pj. x sinf 1. The term a cos O 1S, in p,; gives an oblique
polarization in the (I,n) plane. This is a jet handedness
effect like the one with only direct pions treated in Sec. VI
of [21]. For the decay of a first-rank VM in two mesons /4,
h, we have at fixed p7,

pi.((P1 X P2).) = —(2/5)Repupi Il (35)

The terms in sin @) 1St, gathered in one term of (B2), are
independent of Imu and produce an oblique polarization in
the (X, Z) plane [Fig. 5(b)]. In a 2-body decay it contrib-
utes to the individual Collins asymmetry of the decay
products. Considering Eq. (34), we see that at fixed z; this

E‘f\ N Eo(00Y
0 \ )

FIG. 5. Oblique polarization in the (Z, X) plane of a first-rank
vector meson, corresponding to cases E, and E, of Fig. 4. (a) with
only the asinf;t term in Rep,,; in Eq. (33). (b) with only the
sin @ Sy term in Repxy in Eq. (B2). The continuous (dashed)
contours are for positive (negative) Sy sin @ 7. Ellipsoid E, is
drawn darker to figure its larger depth o (pyy)/? in the Y
direction. The bent arrows indicate the Wigner rotation when
passing from the LR symmetric to the null-plane frame, accord-
ing to Egs. (19) and (20).

obliquity adds to or subtracts from the part inherited from
the global Collins effect. This effect will be studied in more
detail in Sec. IV C2.

The oblique polarization is also a source of dihadron
asymmetry, which bears on the variable Rt defined in
Eq. (22). The asymmetry sign is not simply deduced from
the orientation of the ellipses in Fig. 5, due to the Wigner
rotation. In Eq. (22) the distinction between 4; and /4, must
not be done according to their charges (like h, =z,
h, = n~) but between “fast” and “slow,” for instance, by
71 > 7. A distinction by the charges gives no dihadron
asymmetry because of the pj <> p; invariance of the decay
angular distribution. This dihadron asymmetry is not the
result of an interference with a nonresonant amplitude. It is
related to the fragmentation function H,;it of Ref. [36].
The asymmetry will be discussed in more detail in Sec. V.

C. The decay of a polarized VM

Decay in two pseudoscalar mesons.—We suppose that,
by the Monte Carlo method, we have generated the species
h of the VM, its running mass M, its momentum p and
calculated its density matrix p,, in the {1, m, n} basis, for
instance, with Eq. (33).

First, one chooses the 4, and h, species, e.g., K™ z° for a
K**, following the known branching ratio. This fixes the
modulus of the relative momentum r = p} = —p3 in the
VM rest frame,

Ir| = (M) [M2 = m ]2 [M2 = m2] V2, (36)
where my =m; £m,. It remains
direction . The decay amplitude is

to generate its
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M(VM = hhy) = ghhlth”(m - Pz)ﬂ = —2Gpnn,V - I.
(37)

Then, the resonant ¢ — h; + h, + ¢’ amplitude is propor-
tional to

> TV Vs =Tur,. (38)

V=Lmn

and the angular distribution takes the form
dN (£)/dQ = 3(47) ' P oD (h) Py (39)

reminiscent of Eq. (30). A corresponding formula is found
in Eq. (B10) of Ref. [36].
Decay w — n'y—The decay amplitude is

M(w - 7)) xV,, - (V, xr), (40)

where V, Lr is the vector amplitude of the photon and
r = p;. Averaging over V,, we have to replace in Eq. (39)
PoF by the tensor (1/2)(6py — Foly)-

Decay o or ¢p — nt 7~ n°.—Due to parity conservation
the invariant decay amplitude in three pseudoscalars is of
the form

M(VM - h1h2h3) X .F(Sl, S2,S3)V T, (41)

where 7 = p} x p; is normal to the decay plane, s;=
(p;+pi)?and {i, j, k} is a cyclic permutations of {1,2,3}.
From energy-momentum conservation, pj + p; +p3 =0
and E} + E5 + E5 = M, which is the variable mass of the
resonance. The E} are linearly related to the s; by

E; = [p; +mi]'? = (M +m} —5;)/(2M).  (42)

Taking into account energy-momentum conservation, the
3-body phase space element reduces to

do(p},p;) o« dQ(z)dy dETdES, (43)

where ¢y, is the azimuth of pj about 7. In the (E7, E3)
plane (Dalitz plot) the physical phase space is limited to the
domain

o =piPps’ — (1/4)(pi* + p5* —p5>)> 2 0. (44)

The form factor F (s, s,, s3) depends on the dynamics, in
particular on final state 2-body interactions. Following
the isobar model, we assume that the VM decay occurs in
two steps, h — n' + p', then p' — n/ + z¥, where now
{+,0, =} replace {1,2,3}. So, we take

Gnpini 9pi ) o 45
welir (45)
§; — mp[ + imyiy

F(si.s-.50) = Z

i=+,0,—

By isospin symmetry the coupling constants g;,, and g,,,
do not depend on the charge of the intermediate p meson:
Gnpta = Ghp~at = Gnpa® and 9ot = Ypa " = 9p'ntn

To generate the pion momenta p;, we proceed in three
steps. First we draw E] and E3 according to the (not
normalized) distribution

w(Ey. E3) = T|F(s1.52.53) . (46)

and calculate |p;|, p; - P2, and |z|.

Then we generate # = 7/|z| according to Eq. (39) with
t — 7. Indeed, 7 plays the same role as t in the two-
body decay.

Then we draw at random ¢, in [0, 27] and build

pT = |pT|Rix1(6:)(COS ¢l\rv sin d)l\ra O)Tv (47)

where 67 is the polar angle of 7.
Finally we build p; and p5 = —p] — p;, using

p; = [p;[7%[(p1 - P2)P} + 7 x Pl (48)

Boosting the decay mesons.—Once (E}, p;) have been
generated, the momenta (E;,p;) in the string frame are
obtained by the inverse of the boosts which serve to define
V in Sec. ITA2:

(E;,pi) = BLBr(E}, p;), (49)
where B and By are the boosts defined in Eq. (17). The

effect of these boosts on the momenta of the decay pions
from a p is illustrated in Fig. 6.

D. Spin density matrix of ¢’

When a VM has been generated by the splitting
g = VM + ¢/, the information about the spin state of ¢,
encoded in its density matrix p(q’) =(1+4+6-S,)/2,
depends on the information about the decay products of
the VM.

1. Case without information about the decay products

Suppose that the VM is not analyzed (only p is recorded,
not the momenta of the decay products). Then

Md) = [ S 7.5 (@) T (a5 a)| /el .
V=l.m,n
_ (u+ 0.6 KTy up(q)T) (0" + 6 - ko)
- (WP + KDNGS,) .+ (50)
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P2

>

R

FIG. 6. Boosts transforming the pion momenta of p decay, from
the LR symmetric frame (pj = r and p5 = —r) to the string frame
(p; and p,). Also shown is the relative momentum R in the null-
plane frame, related to r by a Wigner rotation of angle ay.,. The
line “....5 ....” represents the move of the extremity of a vector p
during the boosts By and Bj. The figure is calculated for
[pr|/M, = 8/15, P /e(p) =35/12, and p; and p, in the
(z,pr) plane.

where [- - | repeats the numerator. The second expression
looks like in Eq. (31), but summing over a =« and
removing the symbol Tr in the numerator.

For the emission of a pseudoscalar meson, the spin
density matrix of ¢’ can be calculated using Eq. (50) with
I', =0, as in M19 [22].

Depolarization of the recurring quark.—As in the model
with only pseudoscalar mesons [cf. Egs. (31)—(32) of [22]],
the recurring quark becomes less and less polarized as its
rank increases, if the transverse momenta of the emitted
hadrons are integrated over. The depolarization coefficients
DY =S,1/S,r and DYM = S, /S, following the emis-
sion of a VM are obtained by replacing the numerator and
the denominator of Eq. (50) by their averages on k
weighted by f2(k%):

DY = fi(1+ <k%>fT/|/“’|2)_l = —fLD%,

|/4|2 - <k%‘>fT _

FiEnT el IEDL N

DIt = (2fL—1)

where DTS and DI} are given in Egs. (31)—(32) of [22].
Note that these coefficients are smaller for VM than for PS.
This is due to the loss of information when the momenta of
the decay products are not measured. Note also the opposite
signs of DYM and DF3.

2. Case where the momenta of decay products are known

The VM decay matrix.—As already said, p(q’) depends
on the information about the decay products of the VM.
This information is encoded in a matrix p(h) called the
decay matrix (also indicated with D in literature) [29,30]
or acceptance (density) matrix [35]. p(h) can be seen as
the density matrix of the VM running backward in time,
contrary to the emittance density matrix p(h) studied in

Sec. IIB. For a definite state |pj,p;---) of the decay
products,
Z’a’a(m = MZ/(Phl’z o ')Ma(Pth o ) (52)

writing the decay amplitude as M, (py, p, - --)V,. For the
decays that we consider,

Paa(h) (53)

[T L)

We write “” instead of “="" because we do not fix the trace
of p(h). The angular distribution in Eq. (39) or in Eq. (43) is
proportional to Tr{p(h)p(h)}. In the third line of Eq. (53),
the decay state is an incoherent superposition of the states
with photon helicities 1. The last line is for the case where
I or 1 is not recorded. In lines 1 and 2, p(h) is the density
matrix of a pure state, instead in lines 3 and 4 it is that of a
statistical mixture.

Combining p(h) and p(q).—Taking into account the
information encoded in j(h), we replace Eq. (50) by

ﬁ(q/) & Tap(q>Ti’ﬁ0/a(h)
x (p +0:6 - k1)l 0P(q)
T} yPaa(h) (W +0-Kro,).  (54)
Compared to Eq. (50), there are two indices @ and o', which

we contract with those of py,(h). Again the use of “x”
instead of “=" means that we have not yet fixed the trace
of p(q').

Note.—Carrying information “backward in time” with
p(h) is necessary to generate the correct correlations
between the spin of ¢’ and the momenta of the decay
products when the joint density matrix

(al ® (sglp(h.q)Is}y) ® la) = (s |TuP(@)T s, (55)
is entangled. This is the general case: for instance, if ¢ is in

the pure spin state |[S, = +§), the VM + ¢’ system is in the
entangled (nonseparable) state

Y la) ®T,IS,) xGr[|x) ®0[§) +y) @0, 9)]

+GL|z) ®[3) =Grlx) ®[-§) +[Grly) + GL|2)| ®9).
(56)

III. MONTE CARLO IMPLEMENTATION

The structure of the stand alone MC implementation of
M20 is the same as that of M19 [22]. First the flavor u, d,
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or s, the four-momentum and the spin density matrix of the
fragmenting quark ¢, are defined. In the simulations of the
fragmentation process in a SIDIS event the initial quark
energy has been taken from a sample of SIDIS events
collected by the COMPASS experiment with a 160 GeV /¢
muon beam, and having Q%> > 1 (GeV/c)? and the invari-
ant mass of the final hadronic system larger than 5 GeV /c?,
as in Ref. [22]. For the comparison with e*e™ data a fixed
center of mass energy /s = 10 GeV has been used to
compare with the BELLE experiment. Once the initial
quark state has been set up, the fragmentation chain is
simulated by repeating recursively the elementary splitting
g — h+ ¢ until the condition for the termination of the
fragmentation chain is reached. The hadron 4 is assigned
to the vector or pseudoscalar multiplet according to the
relative probability fyn/ps. This parameter is fixed and
taken as in PYTHIAS, namely for light mesons containing
only u and d quarks it is fyy/ps = 0.62 whereas for
mesons containing at least one strange quark it is
Sfvmyps = 0.725.

The simulation of the elementary splittings in M20

proceeds in the following steps:

(1) Generate a new ¢'g’ pair with ¢’ = u, d, s taking into
account the suppression of s quarks according to
the relative probabilities P(uit):P(dd):P(s3) =
3/7:3/7:1/7 as in [22] with M19.

(2) Form h = gg and choose the VM multiplet with
probability fyn/ps/ (1 + fymyes). If (¢g') is flavor
neutral, then choose the meson species i with
probability proportional to |[Cy . 2, according to
Egs. (13) and (16). If & is PS, then assign the
corresponding mass. If / is a VM, then generate its
mass M with the |D;,(M)|? distribution, according to
Eq. (29) summed over V and integrated over Z
and K.

(3) According to Egs. (27) and (29) generate k’ % with
the distribution f3(k'3)(|ul* + k'3)/(|ul> + K'7) ;..
and the azimuthal angle ¢ (k) following the factor
(1+as,) for a PS, (1 - fas,) for a VM. Con-
struct pr = ky — k. (with kp = 0 for g = g,).

(4) Generate Z with the distribution given in the second
line of Eq. (27) or third line of Eq. (29).

(5) Calculate p™ = Zk™, p~ imposing the mass shell
condition p*p~ = €2 and k't = kT — p*.

(6) Test the exit condition (see below) on the remaining
mass squared My = (k' + kp)?. If it is not satisfied,
then continue with the next step, otherwise the
current hadron is removed and the fragmentation
chain ends. We do not treat the decay of the
remaining string piece.

(7) Construct the hadron four-momentum p =
(E,pt,p.) by calculating E= (p™ 4 p~)/2 and
p. = (p" —p7)/2. Store the hadron in the event
record.

(8) If i is a PS calculate the spin density matrix of ¢’

using Eq. (50) with I', = ¢, and return to step (1). If

h is a VM, then do the following:

(i) Calculate the spin density matrix p(h) of h
using Eq. (31).

(i) Chose the decay channel (if more than one) as
specified below. Construct the momenta of the
decay hadrons using p(h) to generate the angles
as explained in Sec. II C.

(iii) Boost the decay products according to Eq. (49).
Store the decay hadrons in the event record.

(iv) Build the acceptance matrix p(h) of Eq. (53).

(v) Calculate the spin density matrix of ¢’ using
Eq. (54). Go to step 1.

The probabilities used to determine the PS meson species at
step (2) are the same as in M19. The probabilities of the
VM species are obtained from the corresponding wave
functions in flavor space. Unlike the PS case, for VM
production there is no suppression factor among flavor
neutral states, e.g., a spin-1uii or dd pair is assigned to a p°
or to an @ with the same probability (see also Ref. [28]).

The exit condition in step 6 is satisfied when not enough
remaining mass squared is left in the string to produce at
least one resonance (baryonic in SIDIS, mesonic in eTe™)
as in M19.

The decay channels considered in (8.2) are p — zr,
K s Kn,o—-nn 0=, 0—an,¢p > KK,
¢ — KSKY, ¢ > ntn 2% ¢ —ny, and ¢ — n%. The
corresponding branching ratios are taken from the PDG
[32]. In the case of the K* — Kz decay, we take the
branching ratios given by isospin symmetry, e.g., K* —
K*z~ with branching ratio 2/3 and K** - K°z° with
branching ratio 1/3. Concerning K° and K° we keep the
quantum state as it is immediately after emission without
evolving with mixing and oscillations.

IV. RESULTS OF SIDIS SIMULATIONS

This section is dedicated to the results obtained from the
Monte Carlo simulations of the fragmentation of u quarks
with full transverse polarization along the Y axis (hence
IS,, 1| = 1). Results for d quarks can be deduced from
isospin and charge conjugation arguments. The primordial
transverse momentum of the fragmenting quark has been
switched off. Its effect on transverse spin asymmetries was
studied for M18 in Ref. [21].

Concerning the free parameters of the model a, bp,
bt, and p, the same values as in M19 are used, namely
a=09, b, =0.5(GeV/c*)™?), br=517(GeV/c)2,
and u = (0.42 +i0.76) GeV/c?. For the two new free
parameters, we take first |G /G| = 1 (i.e., fi = 1/3) and
Ot = 0, in agreement with Ref. [27] (see the text con-
cerning Fig. 10). The sensitivity of the observables on the
values of the new parameters is then discussed in Sec. IV C.
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A. Kinematic distributions

In the study of the distributions of the hadrons fractional
energy z and transverse momentum pt we apply the cuts
pr > 0.1 GeV/c when looking at the z distribution, and
z > 0.2 when looking at the pt distribution, in analogy
with real data analyses.

In the top row of Fig. 7 we compare the z (left plots) and
pr (right plots) distributions for the primary z*, the p™ and
the z* produced in p* decays. The analog distributions for
z~ and p~ are given in the bottom row.

As can be seen, vector mesons carry typically larger
fractions of the initial quark energy than primary pseudo-
scalar mesons. It is due to the exponential factor in Eq. (27)
which favors large Z for large M.

Concerning the pr distributions, VMs have typically
smaller transverse momenta than primary PS mesons.
This is due to the hidden spin effect described in Fig. 3:
for rank r>2 in the string + 3P, model the transverse
momenta of the quarks that constitute the vector meson have
on the average opposite directions while in the pseudoscalar
case where they lay along the same direction. We have then
(P3)vm < 2(k%) < (p3)ps- This is at variance with PYTHIA,
where the Z-integrated splitting function is the same for
vector mesons and for primary pseudoscalar mesons.

Coming to PS mesons from a VM decay, they carry
smaller fractional energies and comparable transverse
momenta with respect to their parent. They inherit only
part of the parent transverse momentum, but to this is added
a contribution from the PS momentum p}; in the VM rest
frame, following Eq. (34).
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FIG. 7. Upper row: comparison between the z (left) and pr
(right) distributions for primary z" (continuous histogram), p™
(dashed histogram) and ™ from the p* decay (dotted histogram).
Lower row: same distributions for z~ and p~. G}, = Gt case.
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FIG. 8. Left panel: {p%) as function of z for positive (circles)
and negative (triangles) hadrons. Right panel: same for primary

(closed markers) and secondary (open markers) positive (circles)
and negative (triangles) hadrons. Gy = Gy case.

The hierarchy among the transverse momenta of the
different final hadrons is more clearly seen in Fig. 8. The
left panel shows (p2), namely the mean of the p2 distribution,
as function of z for positive and negative hadrons. The same
quantity for primary and secondary (from VM decay) mesons
is shown in the right panel. Among the primary mesons,
the negative ones have larger transverse momenta than the
positive ones, as expected from recursive fragmentation
models and discussed in Ref. [22]. Positive and negative
secondary mesons, instead, have nearly the same (p?), thus
the large difference between the positive and negative hadrons
at large z is reduced when looking at all hadrons but it is still
there, at variance with the experimental data [37].

Figure 9 shows the fraction of secondary charged
hadrons as function of z and of prp in the final sample.
Again, the contribution of VM decay decreases with z.
Also, the fraction of the secondary mesons is large at
pr < 0.5 (GeV/c), rising up to 0.8 for negative hadrons at
small transverse momenta.

B. Transverse spin asymmetries

1. Collins asymmetry

In the fragmentation process of transversely polarized
quarks, the final state hadrons are produced with an

oLt
0.8 Foa
AL .
0.6r A - A
g ° ta A o ®
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e *a e
0.2f ‘et 2
®. } 4 “oy
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FIG. 9. Fraction of secondary positive (circles) and negative
(triangles) hadrons produced in decays of vector mesons as
function of z (left panel) and py (right panel). G = Gt case.
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azimuthal distribution given in Eq. (1). When looking at the
simulated events, the Collins analyzing power a?1="+X s
extracted as

(sin(¢py — ¢qu)>

anT—>h+X(Z’ pT) =2
|SqAT|

(57)

It has been studied as function of the hadron rank r, of the
fractional energy z and of the transverse momentum pr
for primary and secondary PS and for VM. Also, we apply
the kinematic cuts z > 0.2 (when looking at pr) and
pr > 0.1 GeV/c. We remind that for these simulations
the values |Gy /Gr| = 1 and 6,1 = 0 have been used and
that other choices give different Collins analyzing powers,
as will be shown in Sec. IV C.

Figure 10 shows the rank dependence of the Collins
analyzing power for primary z™ and for p™. It is compared
with the analyzing power for z from M19. Rank one p*
have a Collins analyzing power of opposite sign with
respect to rank one z* and a factor of 3 smaller. This is
expected when combining Eq. (27) with (29), which gives
for the rank 1 the relation q*1=VM+X/qui=PS+X — _f,
For |Gy /Gy| = 1 this ratio is —1/3 [27]. For r > 2 the p™
analyzing power has the same sign as the z" analyzing
power but is smaller. Indeed, both for VM and PS with
r > 2, pr is more likely on the same side as kr, but it is
reduced by k’. for a VM polarized in the (Z, py) plane.
Also, the analyzing power of z mesons decays faster with
the rank as compared to M19. This is expected from the
opposite signs of the Dyr depolarization factors and from
the fact that, for a given rank, the number of antecedent PS
mesons is not fixed.

Coming back to the observable quantities, Fig. 11 shows
the rank-averaged Collins analyzing power as function of z
(left panel) and as a function of py (right panel) for p™ and
7" produced in the p™ decay. The p™ analyzing power is
positive as expected from Fig. 10. The analyzing power of
the decay n™, inherited from the p*, exceeds the p* one at
large z. This is due to the fact that large z decay pions come

F e mM20, prima
r o ntMI19 P o} Y
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[ m p*M20
05

au’r—> h+X

rank

FIG. 10. Comparison between the Collins analyzing power as
function of rank for z* from M19 (open circles), primary z from
M20 (closed circles) and p* (squares). Gy = G case.
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FIG. 11. Comparison between the Collins analyzing power as

function of z (left panel) and as function of p (right panel) for p*
(closed points) and the analyzing power of z produced in the
decay p* — 2t2% (open points). G| = Gy case.

mostly from longitudinally polarized vector mesons, which
have an analyzing power three times larger than the not
analyzed ones, according to Eq. (29) with f; =1/3.
Looking at the py dependence, decay n™ have negative
analyzing power at low pr that becomes positive at large
pr- This is due to the fact that decay ™ with large pr can
be produced from a rank one p™ polarized along M or from
rank >2 p*t polarized along N. In the former case, the
transverse momentum that the pion acquires in the decay
adds constructively [see Eq. (34)] to the transverse momen-
tum inherited from the p*, which has positive analyzing
power. In the latter case, the p* has a large transverse
momentum and the same Collins analyzing power as a PS
meson [see Eq. (29)]. The negative analyzing power of the
decay n at low pr is interesting. It is probably due to pions
which have a transverse velocity in the p™ rest frame larger
than, but opposite to, the transverse velocity of the p™ in the
string rest frame.

The #° produced in the same decay has the same
analyzing power as the positive pion because of parity
invariance. With the present choice of parameters, the p° and
p~ mesons have a similar analyzing power as p™ and the
same features are seen also in the decay of p~ and p° mesons.

The effects of the decays of different VMs have been
investigated separately. The results are summarized in
Table I where the integrated analyzing power for positive
and negative pions is given for all decays switched off, after
switching on the p meson decays separately or at the same
time, and after switching on VM decays. The correspond-
ing values of the analyzing power as obtained with the
model M19 are also given. From Table I one can see that
primary 7z in M20 have larger analyzing power than 7™ in
M19 while the reverse is true for z~. This is due to the fact
that rank two primary pions in M20 have smaller analyzing
power than in M19, as shown in Fig. 10. The largest
reduction of the analyzing power comes from decays of p
mesons while switching on w, K*, and ¢ decays does not
have a large impact. All things considered, after switching
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TABLE 1. Average values of Collins analyzing power for
charged pions obtained with M20 and M19. For each hadron
the cuts z > 0.2 and pr > 0.1 GeV/c have been applied. G| =
G case.

M20 <auT—>n++X> <auT—>ﬂ’+X>

No VM decay —0.308 £ 0.003 0.218 £ 0.005
With p* decays —0.178 £ 0.003 0.216 £ 0.005
With p~ decays —0.307 £ 0.003 0.172 £ 0.004
With p° decays —0.210 £ 0.003 0.151 +0.004
With p=0 decays —0.136 4+ 0.003 0.140 £ 0.004
With all VM decays —0.124 £+ 0.003 0.124 £ 0.003
M19 —0.251 £ 0.004 0.257 £ 0.006

on decays of all VMs the analyzing power of charged pions
is reduced by a factor of two compared to M19. It is also
important to note that in this model the absolute values of
the analyzing power of z and z~ are different if restricted
to primary mesons, but after switching on vector meson
decays they become the same, as it is the case also in M19
and as seen in the experimental data [38].

The effect of vector mesons on the zt and z~ Collins
analyzing power is shown in Fig. 12 where the analyzing
powers for charged pions obtained with M20, when the
decays of all VMs are simulated, and with M19 are
compared. The effect is large for both charges and as
function of z and of pp. The z dependence of the z™
analyzing power is not linear any longer, at variance
with M19.

The same considerations hold for the analyzing power of
charged kaons. In this case, the effect of vector mesons is
smaller than for pions.

2. Dihadron asymmetry

Dihadron transverse spin asymmetries are studied look-
ing at hadron pairs h;h,, where 1 (2) refer to the positive
(negative) charged hadron. The azimuthal angle ¢z of Ry
is distributed according to

AT~ MI19 A
0.5F am~M20 AAf;+-
A A L AANAAA
% AD A AAAffAA%@@
oAt r LSS i
< é&"'o 0_o0%0
S Cogy o4 oe o
+M19OOO. O0poO
—0.5F OF ot
o+ M20 ¢

0 02 04 06 08 02040608 I 12
z P (GeV/o)

FIG. 12. The Collins analyzing power of positive (circles) and
negative (triangle) pions as function of z (left panel) and of pt
(right panel). The closed (open) markers are obtained with M20
M19). G = Gy case.
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FIG. 13. Dihadron analyzing power for charged pions as

function of z;, (left panel) and M, (right panel), as obtained
with M19 (open markers) and with M20 (closed markers). Gy =
G case.

d*N,,,

m x 1 + aqT—>h1hz+X|SqAT| Sin(¢R _ (bs

).
(58)

qA

The dihadron analyzing power a?!=/12%X is calculated
as 2(sin(¢g — s, ))/|S4,r| averaged on [Rq|. It has

been evaluated as functions of the fractional energy z;, =
71 + z, and the invariant mass M, of the pair. In addition
for each hadron of the pair we apply the kinematic cuts
z>0.1, xg > 0.1 and we ask for Ry > 0.07 GeV/c, in
analogy with the COMPASS analysis [39]. The Feynman
xg variable is defined as xgp = 2p%,,/+/s, with pZ,, being the
hadron longitudinal momentum in the string rest frame.
The result for is shown in Fig. 13 as function of z;, and
M, when switching on the decays of all vector mesons.
The comparison with the dihadron analyzing power
obtained by M19 is shown there and summarized in
Table II. We see that the introduction of VMs reduces
the analyzing power obtained with only PS mesons in M19
by more than a factor of two. One reason is that the
dihadron asymmetry is strongly linked to the Collins effect
[38] and the latter is smaller for M20 than for M19 (see
Fig. 12). The other reason is that the VM decay process
is invariant by R — —R, thus secondary mesons do not
contribute to this dihadron analyzing power. Instead, they
dilute it. We note also that both in M19 and in M20 the
average values of the dihadron and the Collins analyzing
powers are comparable, like in the experimental result [38].
Still it must be reminded that these results are obtained
without primordial transverse momentum, which reduces

TABLE II. Average values of dihadron analyzing power for
charged pions obtained with M19 and with M20. G| = G case.

Model ( aqT—m*n‘+X)
M19 —0.246 £ 0.005
M20 —0.111 £ 0.005
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the Collins analyzing power but does not affect the
dihadron analyzing power [21].

C. Case of |G| # |Gy| and Gy # 0

In this subsection and in Sec. V we show the effect of
changing the values of the parameters |G; /G| and 6, 1 on
the relevant observables, namely kinematic distributions
and spin asymmetries. We have selected three values for
|G /Gr|: 5, 1, and 1/5, corresponding to f; = 0.93,
fL=1/3, and f =0.02. For each value of |Gy /Gr]
we set Oy = —n/2, 0+ = 0, and 6; 1 = +x/2. The values
6,1 = £x/2 maximize the oblique polarization, whereas
6.1 = 0 gives no oblique polarization (in the LR symmetric
frame) as can be seen from Eq. (33). The values of the other
parameters are the same as given in the previous section.

1. Effect on the kinematic distributions

The effect of changing the values of |Gy /G| and 6 1 on
the z and pr distributions of the produced hadrons is small
and is not shown here. More sizeable effects can be seen in
the kinematic distributions of hadron pairs.

Figure 14 shows the M, distribution for hadrons coming
from decays of vector mesons (left panel) and for all
hadrons (right panel), for the parameter values |Gy /G| =
5,1,1/5. The parameter 0; 1 has a weaker influence and it
is set to zero. The peaks corresponding to the decays
P’ = am, ¢ - KK, and K* — Kr can be seen. The
shoulder visible on the left of the p® peak is due to the
decay @ — zzm. In the left panel, it is clearly seen that
the peaks corresponding to p°, K*, and ¢ decrease by
increasing |Gy /Gr|. This is due to the py and z cuts applied
to the decay products which make the *“acceptance” for
VMs depend on its polarization, therefore on these param-
eters. In fact, in the 2-body decay of a longitudinally
polarized vector meson one of the decay products has a low
z and can easily be rejected when applying the cut z > 0.1.
One the contrary, the @ shoulder increases with |Gy /G,
due to the fact that the decay pions of a @ are emitted

3

x10 x10
oF ~1G, /G, =5 af ~1G, /G, 1=5
~IG, /G,l=1 ~IG, /G, =1
IG, /GI=1/5 3k N IG, /GI=1/5
2 2 5
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T " 0 I I I
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FIG. 14. Distributions of M, for h* h~ produced in VM decays
(left panel) and for all pairs (right panel), for |G, /Gr| =35
(dashed line), |Gy /Gr| =1 (continuous line) and |Gy /G| =
1/5 (dotted line), and 6;1 = 0.

preferentially perpendicular, instead of parallel, to the
linear polarization of the w [see Eq. (41)].

These effects can be seen also in the invariant mass
distribution of all hadron pairs, shown in the right panel of
Fig. 14. In this case, another contribution to the increase of
the shoulder on the left of the p° region for |Gy /G| = 5 is
given by pairs of hadrons from the combinatorial back-
ground. Indeed, the decay pions of a longitudinal p are
separated in rapidity from their parent by typically more
than one unit and can be easily associated with other pions
to form low mass pairs. For |Gy /G| =1 the invariant
mass distribution is similar to that obtained with PYTHIA.
Instead, comparing with the distribution measured in SIDIS
(see, e.g., Ref. [39]), the combinatorial background is lower
than in the data.

From these examples it is clear that the VM polarization
has a non negligible role in the “spin-independent” kin-
ematic distributions of the observed hadron pairs, when the
experimental cuts are applied, and should be taken into
account in the description of all fragmentation processes,
the quark being polarized or not.

2. Effect on the transverse spin asymmetries

In this paragraph we consider the Collins effects for the
VMs (“global Collins effect”) and for their decay products.
The effects on the dihadron asymmetries are illustrated
in Sec. V.

The effect of varying the value of |Gy /G| on the Collins
analyzing power of p*, p°, and p~ mesons is shown in
Fig. 15. The parameter 6;1 does not affect the global
Collins analyzing power of vector mesons and is set to zero.
In each row the analyzing power is given as function of z
(left plot) and of pt (right plot). To interpret these results it
is useful to look at the production of rank 1 and 2 VMs in
the classical string + 3P, model illustrated in Fig. 16 for
|Gy /Gr| > 1 (upper part) and |Gy /G| < 1 (lower part).
Each diagram shows the application of the 3P, mechanism
to the production of VMs polarized along Z (upper part),
and X or Y (lower part) for an initial quark polarized
along Y.

As it can be seen in Fig. 15, varying |Gy /G| produces
large effects for all p mesons. In particular for |Gy /G1| =5
the Collins analyzing power of p™ mesons as function of z
is large rising up to 0.5. It is then dominated by the rank one
diagram (1) in Fig. 16. Rank one longitudinally polarized
p T have opposite but equal in magnitude analyzing power
compared to rank 1 PS meson [compare Egs. (27) and
(29)]. For low values of |Gy /G| the analyzing power of p™
mesons is reduced due to the presence of two transverse
polarization states with opposite analyzing powers [dia-
grams (2) and (3) in Fig. 16].

Concerning p~, its analyzing power is small at large
|G /G| and it increases at small |Gy /G|, becoming
larger than p* and p° for |G /Gr| = 1/5. For |G, /G1| =5
the analyzing power is in fact dominated by diagrams (4)
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FIG. 15. Collins analyzing power for p* (circles), p° (squares),

and p~ (triangles) as function of z (left plots) and of py (right
plot). The upper row is obtained with |Gy /G| = 5, the middle
row with |Gy /G| = 1 and the lower row with |G /G| = 1/5.
The parameter 6yt is taken zero.

and (5) in Fig. 16, which have opposite signs. For
|GL/Gr| = 1/5 the asymmetry is essentially given by
diagrams (7) and (6) associated to rank one PS. When
associated to rank one VM, (6) and (7) are canceled by (8)
and (9). For |G, /Gy| =1 the analyzing power of all p
mesons are very similar, as already mentioned. Also the
analyzing power for p° mesons is the weighted average of
the analyzing powers for p™ and p~ due to isospin
invariance of the production amplitude.

The effect as function of py is also strong for p* and p°,
which for |Gy /G1| = 5 behave similarly to PS mesons but
with opposite analyzing power. Decreasing |Gy /G|, trans-
verse polarization states become dominant and the shape of
the analyzing power is changed. At large p p mesons are
mostly rank 2 polarized along N and the analyzing power is
essentially given, in Fig. 16, by the diagram (7) associated
to a rank one PS. When associated to a rank one VM,
diagrams (7) and (9) cancel each other, only contributing to
dilute the effect.

The parameter @)1 has little influence on the global
Collins effect of the resonance, as said before, but a strong
influence on the Collins effects of the decay products.

rank 2 VM

4 ___ i___ll .
@ 3 Twm@] e

5) - - __f vm(Z) vm(Z)

rank 1 VM

G > G;

vm(Z)
 --—34 [

G << Gt

vm(X) ps or
pum) @ <= 3——‘ )

@ ---

o - __t vm(Y) ps or
) ] i vm(X) $ 1 vm(¥)
X X

@ 4 mX) ‘Vm( )

(S
Y@LZ q o g tvm(Y)f fﬂx.

FIG. 16. Classical string + 3P, picture applied to the produc-
tion of rank 1 (left diagrams) and 2 (right diagrams) vector
mesons for |Gy /Gy| > 1 (upper part) and |G, /Gy| < 1 (lower
part). The quark g4 is polarized along Y; vm(X), for instance,
indicates a VM polarized along X.

This is seen in Fig. 17, which shows the analyzing power
of #t produced in p* — 22" decays, for O 1 =
—/2,0,+x/2 and |G, /Gyt|=1. For sinf 1 <0 the
decay process acts as a source of a negative (positive)
Collins effect for the fastest (slowest) decay product, as
illustrated by the dashed contours in Fig. 5(b). For the
fastest decay pion this contribution adds destructively
with the Collins effect inherited from the p and gains
over it, giving an overall negative analyzing power. The
inverse is true for siné;t > 0 (continuous contour
in Fig. 5).

Concerning the pt dependence (right panel of Fig. 17)
the largest effects can be seen for pr < 0.5 (GeV/c).

decay m*
i lf 0,,=-1/2
A mo,,=0
05F A ﬁ - 4 0,,=+1/2
- L] A A
X A AAmE i
£ ,_m™ 2
1 H [ ] [ 1
4 O RS [ """" R r-1
S 21
—05[ I [ -
Ll

e b b e b b e b b b b By
0 02 04 06 08 02040608 1 1.2
z pT(GeV/c)
FIG. 17. Collins analyzing power for # mesons produced in

pT decays with 0, = —z/2 (full circles), O = 0 (squares), and
Ot = +x/2 (triangles). We have taken |Gy /G| = 1.
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Decay pions of this domain are mostly emitted with relative
transverse momenta opposite to that of the p mesons.
Besides the cut z > 0.2 selects mainly pions of positive p}.
Then, for sin&;r < 0, looking at the orientations of the
dotted ellipses in Fig. 5(b), one guesses that the pion
momentum p7. in the p rest frame is most often on the side
opposite to the p one. Assuming the dominance of the first
term in Eq. (34), pr(x) also is on the side opposite to pr(p).
This explains the negative analyzing power of z ™ at not too
large pt. As for large pr, they are mainly obtained when py
and pr(p) are on the same side, thus producing a positive
analyzing power. The Wigner rotation increases this effect
by making the major axis of the dashed ellipse nearly
perpendicular to the Z axis. For sin ;1 > 0, according to
Fig. 5, the cut z > 0.2 mainly rejects the py, which are
opposite to pr(p), explaining the positive analyzing power
at all pr(z).

The sensitivity to |Gy /Gy| and 6 1 of the Collins
analyzing power for all the final pions, with all VMs
decays, is shown in Fig. 18. As can be seen the overall
effect of vector meson is stronger for favored fragmentation
and weaker for unfavored fragmentation. In particular the z
dependence of the z* analyzing power is no more linear for
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FIG. 18. Collins analyzing power for z* and z~ mesons as
function of z (left panel) and of pt (right panel) for 6 1 = —z/2
(upper row), Ot =0 (middle row), and ;1 = +x/2 (lower
row). For each value of 6;  the analyzing power is calculated for
|GL/Gr| =5, |GL/Gr| =1 and |GL/Gr| = 1/5.

both z and z~ as it was in M19. The positive value of
sin@; 1 strongly decreases the size of the n" analyzing
power and increases the size of the z~ analyzing power. As
function of pr the effect of changing the parameters is large
for z7 in the small py region, as expected from Fig. 17,
whereas for z~ only small differences can be seen.

Summarizing, variations in the free parameters |G; /G|
and 60,1 produce large effects on the Collins analyzing
power of the observed pions, and changes in |Gy /Gy| can
be competed by different choices of ) 1. Precise measure-
ments would allow us to fix their values.

V. A NEW DIHADRON TRANSVERSE SPIN
ASYMMETRY

As mentioned in Sec. II B, vector meson decays do not
contribute to the dihadron asymmetry if in Eq. (58) A is
taken as the h* of a h*th™ pair (or the 4* of a h*h® pair)
due to parity invariance. This is not true when 4, is taken to
be the fastest hadron of the pair, namely the hadron such
that z; > z,. In this case a dihadron asymmetry may
appear, related to the oblique polarization of the vector
meson, more precisely to the element ﬁ;’&l of the density
matrix in the {X, Y, Z} basis of the null plane frame. We
refer to this asymmetry as to the z-ordered dihadron
asymmetry. p"P! deduces from the density matrix in the
LR symmetric frame by the Wigner rotation p"?! =
Ra(—we)PRN(Awe ). The angular distribution of R is
given by Eq. (39), replacing # by R = R/|R| and p by p"?’.
The z-ordered dihadron asymmetry is measured by
2(sin(¢p _¢SqA)>/|SqAT| with the restriction R, > 0. It

occurs between the primary mesons as well.

The simulated asymmetry is shown in Fig. 19 for pions
produced in p® decay as function of the fractional energy
of the pair z;,. The same cuts as in the standard dihadron
asymmetry have been applied. For sin@; 1 # 0, the large
negative and positive asymmetries shown in the left and
right panels are mainly due to the oblique polarization term
sin @, Sy in Repyy, [see Eq. (B2)]. When going to Rep™?!
the Wigner rotation is, on average, not strong enough to
change the sign of the XZ component. As can be seen the

hh,
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FIG. 19. Results for the analyzing power of the z-ordered
dihadron asymmetry as function of the fractional energy z;, of

the 7"z~ pair produced in p° decay for the different values of 6 1
and |GL / GT | .
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largest positive asymmetry is obtained for |Gy /G| =1
and 6y p = +x/2. The combination |Gy /Gr|=5 and
O 1 = —n/2 gives also an asymmetry of the same size
but with opposite sign.

The small dihadron asymmetry shown in the middle
panel of Fig. 19 for 8+ =0 and |G /Gy| = 1 requires
another explanation. Indeed, with this choice of parameters
it can be seen from Eq. (33) that there is no oblique
polarization in the LR symmetric rest frame. There is
however a nonvanishing p,,, element which, after the

Wigner rotation, produces ﬁg&l < 0 in the null-plane frame.
Combined with R, > 0 this produces the small positive
asymmetry at large z shown in Fig. 19 for ;1 =0 and
|G1 /G| = 1. The change of sign of the asymmetry at
small z is instead due to the cuts z; > 0.1 and z, > 0.1.

For |Gy /G| # 1 butsin 6, 1 = 0 the matrix element j32/
receives, by the Wigner rotation, a contribution from
Pmm — P < |GL|> = |Gr|* responsible for the negative
(positive) asymmetry for |Gy /G| =5 (1/5).

It has been checked that the sensitivity to the free
parameters as well as the size of the asymmetry remains
still large when the z-ordered dihadron asymmetry is
evaluated by using all final state hadron pairs in the p°
mass region. Thus the z-ordered dihadron asymmetry
depends strongly on the free parameters. The measurement
of this asymmetry in SIDIS or ee™ annihilation would
help to understand whether vector mesons produced in
polarized fragmentation processes possess oblique polari-
zation and to determine the values of the free parameters
|GL/Gr| and Opr.

VI. COMPARISON WITH EXISTING DATA

In order to get hints on the values of the free parameters
|GL/Gr| and ;1 we have compared the model results for
fully polarized u quarks with the transverse spin asymme-
tries measured in SIDIS and in e"e” annihilation. In
particular we compare the simulated asymmetries with
the COMPASS results of Refs. [5,39], which are also in
good agreement with the HERMES results [3,40].
Concerning the ete™ measurements we compare with
the Collins asymmetries measured for oppositely charged
back-to-back pions in ete~ annihilation to hadrons at
BELLE [7], which are similar to the measurements per-
formed by BABAR [41] and BESIII [42].

A. SIDIS

Figure 20 shows the comparison between the Collins
analyzing power for charged pions as obtained from sim-
ulations with the Collins asymmetries measured by
COMPASS [5]. In experiments, quarks are only partially
polarized, following the transversity distribution [see
Eq. (2)]. To take into account this fact, for each combination
of the free parameters the MC results have been scaled by a
constant factor A estimated by a y> minimization procedure

M2t/ w COMPASS
—|G,/G,| =5 N
0.05F - |G, /G4| =1 - T .
G,/G [ =1/5 am” 4

3¢ )
—0.05}F9,7 = +n/2 NS

0 0204 06 08 05 1 15
z pT(GeV/c)

FIG. 20. Comparison between the scaled simulated Collins
analyzing power for z and 7~ mesons (curves) and the Collins
asymmetry as measured by COMPASS [5] (points) as function of
z (left panel) and of pr (right panel) for different combinations of
|GL/Gr| and Oyr.

using the simulated and measured asymmetries for 7~ as
function of pp. The factor A is similar for the different
combinations of the free parameters and generally larger (up
to a factor of two) than the value used for M18 in Ref. [21],
due to the fact that in M20 the average Collins analyzing
power is decreased as a consequence of the introduction of
vector mesons. This difference can be recovered by increas-
ing Imy by a factor of two while keeping |u|?> constant.

All in all, given the small differences of the analyzing
power for different parameter settings as compared to the
experimental precision, no pair of values could be chosen.
To exclude some combinations, a y? test at 5% significance
level considering the z and 7z~ asymmetries as function
of z, and the z asymmetry as function of pr has been
performed. For the test, the last two z bins have been
excluded since the trend at large z is expected to change
in simulations of SIDIS events where a realistic mixture of
the fragmenting quark flavors is considered [43]. We find
that the test is passed by only three combinations of
|G /G| and Oy 1: |GL/Gr| =5 with O = —7/2 or 0
and |Gy /G| =1 with 6.+ = 0.

Concerning dihadron asymmetries, the comparison
between the simulated dihadron analyzing power and the
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FIG. 21. Comparison between the scaled simulated dihadron

analyzing power for Ath~ pairs (curve) and the dihadron
asymmetry measured by COMPASS [39] (points), as function
of z;, (left panel) and of the invariant mass (right panel).
G, = Gy case.

corresponding asymmetries measured by COMPASS [39]
is given in Fig. 21. The asymmetries are shown as functions
of 7y, and of the invariant mass M;,. The sensitivity of
the dihadron analyzing power on the new parameters is
small compared to the uncertainties of data, and in the
figure only the results of the simulations obtained with
|GL/Gr| = 1 and ;1 = 0 have been used. Also the same
scale factor as for the Collins asymmetry has been taken.
The comparison is satisfactory apart from the invariant
mass dependence in the p° region where the trend of the
simulated analyzing power seems to be opposite to the
data. This could be due to the fact that in the current
model we have neglected the interference between
amplitudes for the resonant and direct productions of
oppositely charged hadron pairs [12,14,44,45].

Recent measurement of the Collins asymmetries for p°
mesons produced inclusively in SIDIS on protons has been
performed by COMPASS in Ref. [46]. The pr dependence
is similar to our simulated results for |G, /Gt| =5, up to
large statistical uncertainties coming from the combinato-
rial background under the p° invariant mass peak.

B.ete”

We consider now the AYf asymmetry as measured by
BELLE for back-to-back charged pions in the annihilation
process ete™ = gg — hyhy + X [7]. AYY asymmetry is
related to a5, introduced in Eq. (3), by A{JZL =a¥, —al,
where the superscript U refers to pairs of pions with unlike
charges (hyhy =xtz~ or hhy=n ") and L refers
to pairs of pions with like charges (hh, = 2Tzt or
hih, = n~7~). Experimentally, AV corresponds to the
amplitude of the cos(¢; + ¢,) modulation in the ratio
(1 +ah cos(hy + )/ (1 + abycos(hy + ) between
the normalized yields for unlike and like charge pion pairs,
and is practically equivalent to a¥, —ak,. ¢, and ¢, are
the azimuthal angles of s, and &, about the thrust axis,

annihilation

measured from the plane defined by this axis and the e~
beam (the thrust axis approximates the gg axis).

We restrict ourselves to the case z; =z, =z and
PiT = P21 = pr- The asymmetry can be written as

A{sz (z, pr) = {ann) ¥ |afaV(Z» PT)‘z
54502 +2a% Sa+ o? (59)
5+5ﬂ2+2ﬁ/2 Sﬂ +ﬁ/2 :

It includes the sum over the light quark flavors ¢ = u, d, s.
The quantities a = H{"/H®™, o = H{"/HY, p=
Dy /D, and p' = D" /D' depend on z and the trans-
verse momentum pr with respect to the thrust axis. By
using isospin and charge conjugation invariance the
favored FF (fav) is defined as D' = D7, = DT, = D7, =
D”j and similarly for the Collins function. Instead, the
unfavored FF (unf) is defined as D} = DT = D7, =
Dy, = D’f; =Dj, =
DT = D’]T3 for s quarks (and similarly for the unfavored
Collins function). a™ is the Collins analyzing power for
the favored fragmentation. (any) = (sin? ) /(1 + cos® 6)
[8] where the 0 is the angle between the e~ beam and the
thrust axis.

The AV} asymmetry measured by the BELLE collabo-
ration is shown in Fig. 22 as functions of z and of py. It has
been corrected for the charm contribution by using the
charm contamination factors provided by BELLE and
assuming vanishing Collins asymmetries in events initiated
by charm quarks [7]. In the figure, the curves are the result
of Eq. (59) evaluated using the fragmentation functions
obtained from the simulated fragmentations of fully trans-
versely polarized u and s quarks with |Gy /G| = 5,1,1/5,
Oyt = —x/2,0,+x/2, and the value (ayny) = 0.91 pro-
vided in Ref. [7]. The simulation results have not been
rescaled in this case. Each row refers to a different value of
01 1. In each row the curves show the asymmetries from the
simulations with different values of |Gy /Gr|. The kin-
ematic cut z > 0.1 has been applied when looking at
the asymmetry as function of z, and the cuts z > 0.2
and pt > 0.1 GeV/c have been applied when looking at
the asymmetry as function of pr, as in the BELLE analysis.
Also, following the BELLE analysis, the cut ay < 0.3 is
applied on the opening angle «, of the hadrons with respect
to the string axis. This cut is relevant for the pr dependence
of the asymmetry and has practically no effect when
looking at the asymmetry as function of z.

As can be seen from Fig. 22, the simulated asymmetries
are in satisfactory agreement with the BELLE measure-
ments as function of z and of pr for the combinations
|GL/Gr| =5 and 01 = —x/2, except for the last point
in z, and for |G; /G| = 1 and 0,1 = 0. This is consistent
with the comparison with SIDIS measurements of the
Collins asymmetries. For |Gy /G| =35 and 6,1 = —x/2

; for u or d quarks, and D} =
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z p. (GeV/e)

FIG.22. Comparison between the ete™ Collins asymmetry A,
as measured by BELLE [7] (full points) as function of z (left
panel) and of pr (right panel), and the calculated Collins
asymmetry from the simulation results for different values of
the free parameters 6, r and |Gy /Gr| (curves).

quarks would couple preferentially to vector mesons with
longitudinal polarization along the string axis but with
some oblique polarization. Instead, for |Gy /Gt| =1 and
0.1 = 0 there is no preference for transversely or longitu-
dinally polarized vector mesons and these would not have
oblique polarization in the LR symmetric frame.

VII. CONCLUSIONS

Vector meson production in the polarized quark frag-
mentation process has been studied within the recursive
string + 3P, model and the new model M20 has been
developed. It improves the previous version (M19) by
treating both vector and pseudoscalar meson emissions. It
preserves the LR symmetry and the quantum mechanical
properties like positivity and entanglement. The production
of longitudinally and transversely polarized vector mesons
in the LR symmetric frame has been implemented by
introducing two different couplings to quarks of complex
coupling constants Gy and Gt. To this aim, the new
parameters |Gy /Gp| and 6.y have been added to the
complex mass parameter y already present in the model
M19. Both |G, /G| and 0,1 enter the spin density matrix

of the vector mesons producing angular modulations in the
distribution of the decay products. The Wigner rotation
relating the LR symmetric frame and the null-plane frame,
where the decay products are recorded, has been studied.

M20 has been implemented in a stand alone Monte Carlo
program which allowed to perform detailed simulations of
the fragmentation process. We have found that the quark spin
degree of freedom enters both the kinematic distributions
(hidden-spin effects) and the spin dependent quantities like
the Collins and dihadron asymmetries. The Collins asym-
metries of vector mesons turns out to be opposite to their
pseudoscalar analogs for the favored fragmentation and
strongly dependent on the |Gy /G| parameter.

The contribution of the decay hadrons to the Collins
asymmetry has also been studied and found to depend on
the oblique polarization of the vector meson, which is
governed by the parameter 6; 1. The oblique polarization
has also a relevant role in the z-ordered dihadron asym-
metry, proposed here but not yet measured. Future precise
measurements of these asymmetries in SIDIS will allow a
better estimate of the free parameters of the model and more
safe predictions.

Finally, the simulation results on the Collins and the
dihadron asymmetries have been compared to the SIDIS
and ete” annihilation data finding an encouraging sim-
ilarity. The precision of the existing experimental data,
however, does not allow us to fix the values of the free
parameters but give some indication that the values
|G /Gr| > 1 and 0,1 <0 are the preferred ones, namely
that quarks may couple preferentially to longitudinally
polarized vector mesons with oblique polarization in the
LR symmetric frame.

To summarize, this new version of the string + 3P,
model with vector meson production is rich in the predicted
phenomena, like the oblique polarization and the hidden
spin effects, and it is successful in the description of the
experimental data.
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APPENDIX A: THE POLARIZATION ELLIPSOID

In the decay of a vector meson in two pseudoscalar
mesons, the angular distribution of the decay products is
given by

AN (§)/dQ = 43—7[A2(f'),

A2<f.) = ?aﬁaa’(h)?a” (Al)
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FIG. 23. Polarization ellipsoid of a vector meson.

where p, is the density matrix of the VM, r the relative
momentum of the decay mesons and £ = r/|r|. One can
replace p,, by the tensor polarization matrix Rep,,. From
this matrix on can build the polarization ellipsoid, whose
symmetry axes are along the eigenvectors, with half lengths
equal to the square roots of the eigenvalues. It is the dual of
the ellipsoid 7,p,y7ry = 1 in the polar reciprocal trans-
formation. This is the 3D generalization of the polarization
ellipse of photons.

A(T) is obtained geometrically as shown in Fig. 23: the
distance between two planes orthogonal to  and tangential
to the ellipsoid is 2A(F). The projection of the ellipsoid on,
for instance, the (x,y) plane is the polarization ellipse
associated to the 2 x 2 reduced matrix of elements Rep,,,
Rep,,, Rep,,, and Repy,,.

APPENDIX B: THE FULL VM DENSITY MATRIX

Including the imaginary, antisymmetric part of the VM
density matrix, Eq. (33) generalizes as

pu = (1-4as,)|GL[>/N(S).
Pom = (1 = aS,)|Gr*/N(S),

Pon = (1 +aS,)|Gr|*/N(S).

Pmi = i(=S, + @)G1G{ /N(S) = (Pim
Pan = (iS; = a$,,)|Gr[*/N(S) = (pn

Pu = (=iS,, + aS;)GrGi /N(S) = (Pi)"

)
m)"

(B1)

Note—If |S,| =1, then p is a matrix of rank 2 (ie.,
detp = 0). Indeed, its rank is bounded by the rank of p(gq),
which is 1, times the rank of the acceptance matrix p(q’),
which is 2 as long as the fragmentation of ¢’ has not yet
been performed by the simulation.

The real part of p in the {X,Y,Z} basis linked to the
quark transversity (i.e., Sy = 0) is

(1 + amySy)|GL|*/N(S),
(1 + &mXSy)|GT|2/N(S>,

Pzz
Pxx
Pyy = (1 = amySy)|Gr[*/N(8S),
Repxy = amySy|Gr[*/N(S),
Repxy = —[sin Oy 1(Sy + amy)

+ cos O ramySz||GLGz|/N(S),
Repyz = (—sin O ramy

+ COS eLTamez)|GLGT|/N(S) (BZ)
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