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We evaluate the hadronic contribution to the g − 2 of the muon by deriving the low-energy limit of QCD
and computing in this way the hadronic vacuum polarization. The low-energy limit is a nonlocal Nambu-
Jona-Lasinio model that has all the parameters fixed from QCD, and the only experimental input used is the
confinement scale that is known from measurements of hadronic physics. Our estimations provide a novel
analytical alternative to the current lattice computations and we find that our result is close to the similar
computation performed from experimental data. We also comment on how this analytical approach
technique, in general, may provide prospective estimates for hadronic computations from dark sectors and
its implication in beyond Standard Model building in future.
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I. INTRODUCTION

Since the original computation for the electron from first
principles [1], originating from Dirac equation, the lepton
anomalous magnetic moments continue to be very impor-
tant observables for precision tests of the Standard Model
(SM) [2]. Recent data seem to indicate a tension with the
theoretical prediction for the anomalous magnetic moment
of the muon with the recent experimental value for the
anomalous magnetic moment of the muon being [3,4]

gμ=2 ¼ 1þ aμ ¼ 1.001 165 920 8ð6Þ: ð1Þ

The Particle Data Group (PDG) gives an updated value for
the muon anomaly in the form [5]

aexpμ ¼ 116 592 091ð54Þð33Þ × 10−11: ð2Þ

This precision clearly is a challenge for the theoretical side
to increase the precision of the prediction [4].
The theoretical results for the muon anomalous magnetic

moment in the SM are traditionally represented as a sum of
three parts,

aSMμ ¼ aQEDμ þ aEWμ þ ahadμ ; ð3Þ

with aQEDμ , aEWμ being the leptonic and electroweak parts,
respectively, and ahadμ is the contribution involving the
electromagnetic currents of quarks.
The leptonic part is computed in perturbation theory and

reads [5]

aQEDμ ¼ 116 584 718.95ð0.08Þ × 10−11: ð4Þ

The electroweak part is known to two loops and reads [5]

aEWμ ¼ 153.6ð1.0Þ × 10−11: ð5Þ

The hadronic part ahadμ in the SM is related to quark
contributions to the electromagnetic currents.
The current total SM prediction reads [5]

aSMμ ¼ 116 591 823ð1Þð34Þð26Þ × 10−11: ð6Þ

The difference

Δaμ ¼ aexpμ − aSMμ ¼ 268ð63Þð43Þ × 10−11 ð7Þ

could be due to new unknown physics beyond the SM, but
it is not statistically significant off yet [6], the main idea
behind this being that contributions from unknown virtual
particles not part of the SM might enter the calculations.
In general, theoretical estimates are very precise for what

one should expect from quantum electrodynamics (QED),
but fall short in the case of the hadronic contributions, due
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to the known difficulties to treat quantum chromodynamics
(QCD) at low energies. The general accepted technique is
to use experimental results from eþe− scattering into
hadrons measured in collider experiments [6]. Two key
ingredients of this contribution are the hadronic vacuum
polarization (HVP) and the high-order hadronic light-by-
light scattering. Of these two contributions, the former is
the most critical one, due to the current inability to compute
this contribution starting right from the Lagrangian of
QCD. Some recent evaluation of the HVP from experi-
mental data is given in Refs. [7–9] for the ππ part, which is
the most relevant contribution. The value of the HVP
contribution determines in a critical way whether there is
room for beyond Standard Model (BSM) physics or not in
the context of observed values for muon g − 2.
The only independent technique for calculations in QCD

is by using large computer facilities to solve the equations, a
technique known as lattice QCD. Still, the Muon g − 2
Theory Initiative [6] decided to not use this technique,
as there are large differences between the results of different
collaborations, disclosing the technique not to be yet trust-
worthy. For instance, the Budapest-Marseille-Wuppertal
Collaboration has put forward their latest results [10],
showing that the HVP correction they obtain moves the
ballpark of the muon g − 2 value back into the SM field. In
turn, this would imply that the technique using experimental
values from the colliders probably underestimates this
contribution.
Working on QCD, one generally makes the use of

effective models. However, it is often unknown if such
models could be straightforwardly obtained from the
original Lagrangian. Still, successful results have been
obtained from some of these models. In the very early days
of the study of the muon g − 2 problem, attempts were
made to derive the HVP contribution from such effective

models like for instance the Nambu-Jona-Lasinio (NJL)
model [11], detailed by de Rafael in Ref. [12] and more
recently [13]. However, due to the large set of undeter-
mined parameters entering in such effective theories, this
kind of approach in this early, primitive stage was aban-
doned in favor of the use of experimental data and lattice
QCD calculations.
Inspired by such an approach, in this article we will show

how an effective field theory can be derived from QCD,
starting directly from the Lagrangian level. The model is a
nonlocal Nambu-Jona-Lasinio model, having all the para-
meters properly fixed. A first attempt in this direction was
given in Ref. [14] in order to determine the proper low-
energy limit of the theory.1 In this work, we fix an error in
this publication and show how the effective NJL model
comes out naturally from QCD. Based on these first
principles, we will evaluate the HVP contribution to the
muon (g − 2).

II. BASIC EQUATIONS FOR NJL MODEL

Our starting point is the well-known QCD Lagrangian

LQCD¼
X
i

q̄iðiγμDμþmÞqi−
1

4
Fμν
a Fa

μν−
1

2ξ
ð∂μA

μ
aÞð∂νAν

aÞ;

ð8Þ

with a covariant derivativeDμ ¼ ∂μ þ igTaAa
μ and the field

strength tensor components Fa
μν defined by igTaFa

μν ¼
½Dμ; Dν�. The sum over i is understood to run over the
quark flavors and colors. Throughout this paper we work
with the Minkowskian metric gμν ¼ diagð1;−1;−1;−1Þ.
Calculating the Euler-Lagrange equations, one obtains

0 ¼ ∂LQCD

∂Aa
ν

− ∂μ
∂LQCD

∂ð∂μAa
νÞ

¼ ∂μð∂μAν
a − ∂νAμ

aÞ þ 1

ξ
∂νð∂μA

μ
aÞ þ gfabc∂μðAμ

bA
ν
cÞ þ gfabcð∂μAν

b − ∂νAμ
bÞAc

μ þ g2fabcfcdeA
μ
bA

ν
dA

e
μ − g

X
i

q̄iγνTaqi;

0 ¼ ∂LQCD

∂q̄i − ∂μ
LQCD

∂ð∂q̄iÞ ¼ ðiγμDμ þmÞqi: ð9Þ

These classical equations of motion are the starting point for
a tower of Dyson-Schwinger equations. In order to study
these equations, we use the method proposed by Bender,
Milton, and Savage [15], details of which can found in
Refs. [14,16–19]. For the purpose of this publication we
sketch the main steps here, skipping contributions from
Becchi-Rouet-Stora-Tyutin ghosts for simplicity.
Enlarging the Lagrangian of the classical action by adding

corresponding source terms Aa
μJ

μ
a, q̄iηi, and η̄iqi, one obtains

the exponential of the generating functional. Functional
derivatives of this generating functional lead to the Dyson-
Schwinger analog of the Euler-Lagrange equations, expressed
in terms of Green functions for the fields. The set of equations
in Landau gauge ξ ¼ 0 we start with is given by

1Unfortunately, this publication contained a mistake that made
the conclusions unreliable.
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∂2A1a
ν ðxÞ þ gfabcð∂μA2bc

μν ðx; xÞ þ ∂μA1b
μ ðxÞA1c

ν ðxÞ − ∂νA2bc
μν ðx; xÞ − ∂νA1b

μ ðxÞA1μ
c ðxÞÞ þ gfabc∂μA2bc

μν ðx; xÞ
þ gfabc∂μðA1b

μ ðxÞA1c
ν ðxÞÞ þ g2fabcfcdeðgμρA3bde

μνρ ðx; x; xÞ þ A2bd
μν ðx; xÞA1μ

e ðxÞ þ A2eb
νρ ðx; xÞA1ρ

d ðxÞ
þ A2de

μν ðx; xÞA1μ
b ðxÞ þ A1μ

b ðxÞA1d
μ ðxÞA1e

ν ðxÞÞ
¼ g

X
i

γνTaq2iiðx; xÞ þ g
X
i

q̄1i ðxÞγνTaq1i ðxÞ; ði=∂ −mqÞq1i ðxÞ þ gγμA1a
μ ðxÞTaq1i ðxÞ ¼ 0; ð10Þ

where the one-, two- and three-point Green functions are
given by A1a

μ ðxÞ ¼ hAa
μðxÞi, A2ab

μν ðx; yÞ ¼ hAa
μðxÞAb

νðyÞi,
A3abc
μνρ ðx; y; zÞ ¼ hAa

μðxÞAb
νðxÞAc

ρðxÞi, q1i ðxÞ ¼ hqiðxÞi, and
q2ijðx; yÞ ¼ hqiðxÞqjðyÞi. The expected solutions can be
written in the form

A1a
ν ðxÞ ¼ ηaνϕðxÞ;

A2ab
μν ðx; yÞ ¼

�
gμν −

∂μ∂ν

∂2

�
δabΔðx − yÞ; ð11Þ

where ηaμ are the coefficients of the polarization vector,
ηaμη

μ
b ¼ δab, ϕðxÞ is a scalar field, and Δðx − yÞ is the

propagator of the scalar field. The three-point function can
be set to zero. For the one-point functions we obtain

ηaν∂2ϕðxÞ þ 2Ncg2Δð0ÞηaνϕðxÞ þ Ncg2ηaνϕ3ðxÞ
¼ g

X
i

γνTaq2iiðx; xÞ þ g
X
i

q̄1i ðxÞγνTaq1i ðxÞ;

ðiγμ∂μ −mqÞq1i ðxÞ þ gγμηaμTaϕðxÞq1i ðxÞ ¼ 0: ð12Þ

Using ηaμη
μ
a ¼ N2

c − 1 and
P

i q
2
iiðx; xÞ ¼ NcNfSð0Þ, the

first differential equation (12) takes the form

∂2ϕðxÞ þ 2Ncg2Δð0ÞϕðxÞ þ Ncg2ϕ3ðxÞ

¼ g
N2

c − 1

�
NcNfγ

νηaνTaSð0Þ þ
X
i

q̄1i ðxÞγνηaνTaq1i ðxÞ
�
:

ð13Þ

In the ’t Hooft limit Nc → ∞, λ ≔ Ncg2 ≫ 1 finite but
large, this set of equations yields a Nambu-Jona-Lasinio
model in a straightforward way. Indeed, for this case, we
can perform a perturbation series expansion ϕðxÞ ¼
ϕ0ðxÞ þ ϕ1ðxÞ þOðg2Þ in g, obtaining at leading order

∂2ϕ0ðxÞ þ 2λΔð0Þϕ0ðxÞ þ λϕ3
0ðxÞ ¼ 0; ð14Þ

while the next-to-leading order yields

∂2ϕ1ðxÞ þ 2λΔð0Þϕ1ðxÞ þ 3λϕ2
0ðxÞϕ1ðxÞ

¼ g
N2

c − 1

�
NcNfγ

νηaνTaSð0Þ þ
X
i

q̄1i ðxÞγνηaνTaq1i ðxÞ
�
:

ð15Þ

A. Zeroth order solution and Green function

Note that Δð0Þ is a constant. Therefore, m2 ¼ 2λΔð0Þ
can be considered as the mass square of the scalar field. The
leading order differential equation ∂2ϕ0ðxÞ þm2ϕ0ðxÞ þ
λϕ3

0ðxÞ ¼ 0 is nonlinear, but a solution in terms of Jacobi’s
elliptic functions exists,

ϕ0ðxÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ðp2 −m2Þ

λ

r
sn ðp · xþ θjκÞ ð16Þ

with

p2 ¼ 1

2

� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m4 þ 2λμ4

q
þm2

�
and κ ¼ m2 − p2

p2
; ð17Þ

where μ and θ are integration constants. snðzjκÞ is Jacobi’s
elliptic function of the first kind. Given this solution, the
second differential equation can be solved by noting that

ð∂2 þm2 þ 3λϕ2
0ðxÞÞΔðx − yÞ ¼ iδ4ðx − yÞ ð18Þ

is solved by a Green function written in momentum
space as

Δ̃ðpÞ ¼ Ẑðp2; m2Þ 2π3

K3ðκÞ
X∞
n¼0

ð−1Þn

×
e−ðnþ1=2ÞφðκÞ

1 − e−ð2nþ1ÞφðκÞ
ð2nþ 1Þ2

p2 −m2
n þ iϵ

; ð19Þ

with

φðκÞ ¼ K�ðκÞ
KðκÞ π; K�ðzÞ ¼ Kð1 − zÞ; ð20Þ

and
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Ẑðp2; m2Þ ¼ 2p8
ffiffiffiffiffi
p2

p
ðp6 þ 2p4m2 − 3p2m4 þm6Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

2p2 −m2
p

ð2p12ð2p2 −m2Þ − 5p2m8ð2p2 −m2Þðp2 −m2Þ −m14Þ
: ð21Þ

The mass spectrum is given by

mn ¼
ð2nþ 1Þπ
2KðκÞ

ffiffiffiffiffiffiffiffi
2p2

q
≕ ð2nþ 1ÞmGðκÞ: ð22Þ

At this point the circle for the mass of the scalar field is
closed. Inserting back the Fourier transform of the propa-
gator (19) into m2 ¼ 2λΔð0Þ results in

m2 ¼ 2λ

Z
d4p
ð2πÞ4 Ẑðp

2; m2Þ 2π3

K3ðκÞ
X∞
n¼0

ð−1Þn

×
e−ðnþ1=2ÞφðκÞ

1 − e−ð2nþ1ÞφðκÞ
ð2nþ 1Þ2

p2 − ð2nþ 1Þ2m2
GðκÞ þ iϵ

: ð23Þ

This self-consistency equation provides the proper spec-
trum of a Yang-Mills theory with no fermions [19], in very
close agreement with lattice data.

B. First order solution

The convolution of the propagator Δ with the right-hand
side of Eq. (15) leads to

ϕ1ðxÞ ¼
g

N2
c − 1

Z
d4yΔðx − yÞ

�
NcNfγ

νηaνTaSð0Þ

þ
X
i

q̄1i ðyÞγνηaνTaq1i ðyÞ
�
: ð24Þ

The first term renormalizes the fermion mass and can taken
to be zero by choosing the renormalization condition
Sð0Þ ¼ 0. The second term yields a NJL interaction in
the equation of motion of the quark.
Inserting ϕðxÞ into the Dirac equation [13], in the ’t

Hooft limit the term ϕ0 is negligible small compared to the
NJL interaction term ϕ1. This can be realized by noting that
ϕ0 ∼ λ1=4 while ϕ1 ∼ λ. In the strong coupling limit λ ≫ 1,

for the quark one-point function we have to retain only the
NJL term. Therefore, we obtain

ðiγμ∂μ−mqÞq1i ðxÞþ
g2

N2
c−1

X
η

Z
d4yΔðx−yÞγμηaμTaq1i ðxÞ

×
X
j

½q̄1jðyÞγνηbνTbq1jðyÞ�¼0: ð25Þ

The equation turns out to be the Euler-Lagrange equation
with respect to the one-point function of the quark,
obtained for the Nambu-Jona-Lasinio model with a non-
local Lagrangian [20,21]

L00
NJL ¼

X
i

q̄1i ðxÞðiγμ∂μ −mqÞq1i ðxÞ

þ g2

N2
c − 1

X
η

X
i

½q̄1i ðxÞγμηaμTaq1i ðxÞ�

×
Z

d4yΔðx − yÞ
X
j

½q̄1jðyÞγνηbνTbq1jðyÞ�: ð26Þ

Note that
P

η η
a
μη

b
ν ¼ δabgμν, where η symbolizes the

polarizations. In addition, one traces out the color degrees
of freedomwith trðTaTaÞ ¼ NcCF,CF ¼ ðN2

c − 1Þ=ð2NcÞ,
and

P
i q̄

1
i ðxÞγμq1i ðxÞ ¼ Nc

P
i ψ̄ iðxÞγμψ iðxÞ, where ψ iðxÞ

are spinors in Dirac and flavor space, only. This leads us to
the NJL Lagrangian

L0
NJL ¼

X
i

ψ̄ iðxÞðiγμ∂μ −mqÞqiðxÞ

þ Ncg2

2

X
i

½ψ̄ iðxÞγμψ iðxÞ�

×
Z

d4yΔðx − yÞ
X
j

½ψ̄ jðyÞγμψ jðyÞ�: ð27Þ

The Fierz rearrangement of the quark fields yields

L0
NJL ¼

X
i

ψ̄ iðxÞðiγμ∂μ −mqÞψ iðxÞ þ
Ncg2

2

Z
d4yΔðx − yÞ

X
i;j

ψ̄ iðxÞψ jðyÞψ̄ jðyÞψ iðxÞ

þ Ncg2

2

Z
d4yΔðx − yÞ

X
i;j

ψ̄ iðxÞiγ5ψ jðyÞψ̄ jðyÞiγ5ψ iðxÞ

−
Ncg2

4

Z
d4yΔðx − yÞ

X
i;j

ψ̄ iðxÞγμψ jðyÞψ̄ jðyÞγμψ iðxÞ

−
Ncg2

4

Z
d4yΔðx − yÞ

X
i;j

ψ̄ iðxÞγμγ5ψ jðyÞψ̄ jðyÞγμγ5ψ iðxÞ: ð28Þ
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C. Bosonization

Let Γα be a set of Dirac and flavor matrices containing
not only the Dirac structures 1, iγ5, γμ and γμγ5 from the
Fierz rearrangement but also the flavor matrices 1 and 1

2
λα

relating quarks of equal and different flavor i and j in
adjoint representation. Γα obeys the conjugation rule
γ0Γ†

αγ0 ¼ Γα, where α denotes the components of the
adjoint flavor representation. Accordingly, the spinor
ψðxÞ spans over all these spaces. The most prominent
degrees of freedom are the scalar-isoscalar and pseudosca-
lar-isovector degrees that can formally be combined as a
four vector. As the coefficients of these two contributions
are the same, one can reinterpret the sum over these 1þ
3 ¼ 4 degrees of freedom as a sum over four-vector
components. The next step is to apply the bosonization
procedure exemplified in Ref. [22] by adding scalar-
isoscalar and pseudoscalar-isovector mesonic fields as
auxiliary fields MαðwÞ ¼ ðσðwÞ; π⃗ðwÞÞ at an intermediate
space-time location w ¼ ðxþ yÞ=2, coupled to the non-
local fermionic currents. The result of the Fierz rearrange-
ment can be expressed as NJL action

SNJL ¼ −
Ncg2

2G2

Z
d4zΔðzÞ

Z
d4wM�

αðwÞMαðwÞ

þ
Z

d4x
�
ψ̄ðxÞðiγμ∂μ −mqÞψðxÞ

þ Ncg2

2

Z
d4yΔðx − yÞψ̄ðxÞΓαψðyÞψ̄ðyÞΓαψðxÞ

�

ð29Þ

(G ¼ 2
R
d4zΔðzÞ). By performing a nonlocal functional

shift,

Mα

�
xþ y
2

�
→ Mα

�
xþ y
2

�
þGψ̄ðxÞΓαψðyÞ; ð30Þ

the nonlocal quartic fermionic interaction can be removed.
Instead, the fermion field starts to interact nonlocally with
the mesonic fields,

SNJL ¼ −
Ncg2

2G2

Z
d4zΔðzÞ

Z
d4wM�

αðwÞMαðwÞ

þ
Z

d4xψ̄ðxÞðiγμ∂μ −mqÞψðxÞþ

−
Ncg2

2G

Z
d4x

Z
d4yψ̄ðxÞΔðx − yÞ

�
Mα

�
xþ y
2

�

þM�
α

�
xþ y
2

��
ΓαψðyÞ: ð31Þ

After a Fourier transform, in momentum space one obtains

SNJL ¼ −
Ncg2

4G

Z
d4q
ð2πÞ4 M̃

�
αðqÞM̃αðqÞ

þ
Z

d4p
ð2πÞ4

¯̃ψðpÞð=p −mqÞψ̃ðpÞ

−
Ncg2

2G

Z
d4p
ð2πÞ4

Z
d4p0

ð2πÞ4
¯̃ψðpÞΔ̃

×

�
pþ p0

2

�
ðM̃αðp − p0Þ þ M̃�

αðp − p0ÞÞΓαψ̃ðp0Þ;

ð32Þ

where the symbols with a tilde are used for the Fourier
transformed quantities. The final step in the bosonization is
to integrate out the fermionic fields, in the general case
leading to [22]

Sbos¼−
Ncg2

4G

Z
d4q
ð2πÞ4M̃

�
αðqÞM̃αðqÞ

− ln det

�
ð2πÞ4δ4ðp−p0Þð=p−mqÞ

−
Ncg2

2G
Δ̃
�
pþp0

2

�
ðM̃αðp−p0ÞþM̃�

αðp−p0ÞÞΓα

�
;

ð33Þ

where det denotes the direct product of a functional and an
analytical determinant, the former in the Fock space
transition between space-time points x and y, the latter
in the Dirac and flavor indices.

D. Mean field approximation

Expanding the bosonic fields σðxÞ ¼ σ̄ þ δσðxÞ and
π⃗ðxÞ ¼ δπ⃗ðxÞ about the vacuum expectation value
σ̄ ¼ hσi, the zeroth order expansion coefficient is the mean
field approximation, leading to the simplified NJL action

SNJL ¼ −
Ncg2σ̄2

4G
Vð4Þ þ

Z
d4xψ̄ðxÞðiγμ∂μ −mqÞψðxÞ

−
Ncg2σ̄
G

Z
d4x

Z
d4yψ̄ðxÞΔðx − yÞψðyÞ: ð34Þ

After Fourier transform, in momentum space one has

SNJL ¼ −
Ncg2σ̄2

4G
Vð4Þ þ

Z
d4p
ð2πÞ4

¯̃ψðpÞð=p −mqÞψ̃ðpÞ

−
Ncg2σ̄
G

Z
d4p
ð2πÞ4

¯̃ψðpÞΔ̃ðpÞψ̃ðpÞ

¼ −
Ncg2σ̄2

4G
Vð4Þ þ

Z
d4p
ð2πÞ4

¯̃ψðpÞð=p −MqðpÞÞψ̃ðpÞ;

ð35Þ
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with the unit space-time volume Vð4Þ, where (G ¼ 2Δ̃ð0Þ)

MqðpÞ ¼ mq þ
Ncg2

G
Δ̃ðpÞσ̄ ¼ mq þ

Ncg2Δ̃ðpÞ
2Δ̃ð0Þ σ̄ ð36Þ

is the dynamical mass of the quark. The bosonization
leads to

Sbos

Vð4Þ ¼ −
Ncg2σ̄2

4G
−
Z

d4p
ð2πÞ4 ln detð=p −MqðpÞÞ: ð37Þ

On the other hand, one has ln detð=p −MqðpÞÞ ¼ tr lnð=p−
MqðpÞÞ ¼ 1

2
4Nf lnðp2 −M2

qðpÞÞ. The quantity σ̄ can be
determined by variation of the action Sbos with respect to
this quantity. Taking into account the dependence ofMqðpÞ
on σ̄, one obtains

0 ¼ −
Ncg2σ̄
2G

þ 2Nf

Z
d4p
ð2πÞ4

2MqðpÞ
p2 −M2

qðpÞ
Ncg2

G
Δ̃ðpÞ ⇒

σ̄ ¼ 8Nf

Z
d4p
ð2πÞ4

Δ̃ðpÞMqðpÞ
p2 −M2

qðpÞ
: ð38Þ

Finally, this result can be reinserted to Eq. (36) to obtain the
dynamical mass equation

MqðpÞ ¼ mq þ 4NfNcg2
Δ̃ðpÞ
Δ̃ð0Þ

Z
d4p0

ð2πÞ4
Δ̃ðp0ÞMqðp0Þ
p02 −M2

qðp0Þ :

ð39Þ

A similar gap equation for the g − 2 problem was shown in
Ref. [13]. In this article, however, we derived the gap
equation directly from the QCD Lagrangian.

III. SOLVING THE GAP EQUATION

At this point we can insert Δ̃ðpÞ from Eq. (19) into
Eq. (39) in order to obtain the gap equation for the
dynamical quark mass—or to be more precise the couple
of gap equations, if taking into account Eq. (23) as well.
However, in order to make the calculation feasible, we
recognize that the dependence on the mass m of the scalar
field is subdominant, and this mass can be neglected
compared to the mass of the quark. For m ¼ 0 one has
κ ¼ −1, φðκ ¼ −1Þ ¼ ð1 − iÞπ and

Δ̃ðpÞ ¼
X∞
n¼0

iBn

p2 −m2
n þ iϵ

;

Bn ¼
ð2nþ 1Þ2π3
4Kð−1Þ3

e−ðnþ1=2Þπ

1þ e−ð2nþ1Þπ : ð40Þ

mn ¼ ð2nþ 1Þ
ffiffiffiffiffiffiffiffi
2p2

p
=2Kð−1Þ ¼ ð2nþ 1Þm0 is the glue

ball spectrum, with the ground state given by m0 ¼
mGð−1Þ ¼

ffiffiffiffiffiffiffiffi
2p2

p
=2Kð−1Þ and KðzÞ is the complete ellip-

tic integral of the first kind. As a further simplification we
calculate the dynamical quark mass at zero momentum,
p ¼ 0. In this case we obtain

Mq ¼ mq þ 4NfNcg2
X∞
n¼0

Z
d4p
ð2πÞ4

Bn

p2 þm2
n

Mq

p2 þM2
q
;

ð41Þ

where we have performed a Wick rotation to the Euclidean
domain. As this integral is UV singular, we integrate the
momentum upto a cut Λ to obtain

Z
Λ d4p
ð2πÞ4

Bn

p2 þm2
n

Mq

p2 þM2
q
¼ π2

ð2πÞ4
Z

Λ2

0

BnMqp2dp2

ðp2 þm2
nÞðp2 þM2

qÞ

¼ 1

ð4πÞ2ðm2
n −M2

qÞ
�
m2

n ln

�
1þ Λ2

m2
n

�
−M2

q ln

�
1þ Λ2

M2
q

��

¼ 1

ð4πÞ2ðð2nþ 1Þx2 − y2Þ
�
ð2nþ 1Þ2x2 ln

�
1þ 1

ð2nþ 1Þ2x2
�
− y2 ln

�
1þ 1

y2

��
; ð42Þ

where we have used the dimensionless quantities x ¼ m0=Λ and y ¼ Mq=Λ, assuming that Mq ≪ Λ. Reinserting into
Eq. (41) leads to the gap equation

y ¼ mq

Λ
þ καs

X∞
n¼0

Bny
ð2nþ 1Þ2x2 − y2

�
ð2nþ 1Þ2x2 ln

�
1þ 1

ð2nþ 1Þ2x2
�
− y2 ln

�
1þ 1

y2

��
; ð43Þ

where κ ¼ NfNc=π and αs ¼ g2=4π. We note that the
cutoff completely disappeared except for the ratio mq=Λ
that, for the light quarks, is negligibly small.

For the QCD cutoff Λ ¼ 1 GeV, the average mass of the
u and d quarks is taken to bemq ¼ 0.003415ð48Þ GeV [5].
The ground state of the glue ball spectrum is given by the
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f0ð500Þ resonance, measured as m0 ¼ 0.512ð15Þ GeV
[23]. Using Nc ¼ 3, Nf ¼ 6, and αsð3.1 GeVÞ ¼
0.256506 we obtain Mq ¼ 0.427ð29Þ GeV.

IV. HADRONIC VACUUM POLARIZATION

Inspired by the approach in Ref. [12], next wewill evaluate
the contribution to the hadronic vacuum polarization, assum-
ing that a NJL approximation holds [14,17]. Looking at the
Fierz decomposition as shown in Eq. (28), one obtains

GS ¼ GP ¼ παG; GV ¼ GA ¼ −
1

2
παG; ð44Þ

where

G ¼ 2Δ̃ð0Þ ¼ −
X∞
n¼0

Bn

ð2nþ 1Þ2m2
0

; ð45Þ

which agrees well with the analysis in the preceding section,
provided we evaluate the gap equation as in Eq. (43). Using
Ref. [12], we evaluate

aμ ¼
�
α

π

�
2

m2
μ
4π2

3
P1: ð46Þ

The coefficient P1 determines the contribution called “had
1a.” It is defined by

P1 ¼ −
∂ΠðHÞ

R ðQ2Þ
∂Q2

����
Q2¼0

; ð47Þ

where ΠðHÞ
R ðQ2Þ ¼ 2

3
ðΠð1Þ

V ðQ2Þ − Πð1Þ
V ð0ÞÞ,

Πð1Þ
V ðQ2Þ ¼ Π̄ð1Þ

V ðQ2Þ
1þQ2ð8π2GV=NcΛχÞΠ̄ð1Þ

V ðQ2Þ
; ð48Þ

and

Π̄ð1Þ
V ðQ2Þ ¼ Nc

2π2

Z
1

0

dy yð1 − yÞΓ
�
0;
M2

q þQ2yð1 − yÞ
Λ2
χ

�
;

Γðn; εÞ ¼
Z

∞

ε

dz
z
e−zzn: ð49Þ

Γðn; εÞ is the incomplete gamma function, but Γð1; εÞ is an
analytic expression,

Γð1; εÞ ¼
Z

∞

ε
e−zdz ¼ ½−e−z�∞z¼ε ¼ e−ε: ð50Þ

Using these formulas, we obtain

P1 ¼ −
∂ΠðHÞ

R ðQ2Þ
∂Q2

����
Q2¼0

¼ −
2

3

∂Πð1Þ
V ðQ2Þ
∂Q2

����
Q2¼0

¼ −
2

3

�
1

1þQ2ð8π2GV=NcΛ2
χÞΠ̄ð1Þ

V ðQ2Þ
∂Π̄ð1Þ

V ðQ2Þ
∂Q2

−
Π̄ð1Þ

V ðQ2Þ
ð1þQ2ð8π2GV=NcΛ2

χÞΠ̄ð1Þ
V ðQ2ÞÞ2

8π2GV

NcΛ2
χ

×

�
Π̄ð1Þ

V ðQ2Þ þQ2
∂Π̄ð1Þ

V ðQ2Þ
∂Q2

��
Q2¼0

¼ −
2

3

�∂Π̄ð1Þ
V ðQ2Þ
∂Q2

−
8π2GV

NcΛ2
χ
Π̄ð1Þ

V ðQ2Þ2
�
Q2¼0

¼ −
2

3

�
−
Nc

2π2

Z
1

0

dy
y2ð1 − yÞ2

Λ2
χ

Λ2
χ

M2
q þQ2yð1 − yÞ e

−ðM2
qþQ2yð1−yÞÞ=Λ2

χ

����
Q2¼0

−
8π2GV

NcΛ2
χ

�
Nc

2π2

Z
1

0

dyyð1 − yÞΓ
�
0;
M2

q

Λ2
χ

��
2
�

¼ −
2

3

�
−

Nc

60π2M2
q
Γ
�
1;
M2

q

Λ2
χ

�
−

NcGV

18π2Λ2
χ
Γ
�
0;
M2

q

Λ2
χ

�
2
�

¼ Nc

3π2
1

30M2
q

�
Γ
�
1;
M2

q

Λ2
χ

�
þ 10GVM2

q

3Λ2
χ

Γ
�
0;
M2

q

Λ2
χ

�
2
�
: ð51Þ
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With the values given above, for the u and d quarks we obtain

au;dμ ðhad 1aÞ ¼ 452ð67Þ × 10−10: ð52Þ

This result is in close agreement with the evaluation given in
Eq. (3.3) in Ref. [7],Eq. (18) in Ref. [8] and Eq. (6) inRef. [9].
In order to have a clearer understanding of the meaning

of this result, we present also the strange quark contribu-
tion. This will yield

asμðhad 1aÞ ¼ 232ð34Þ × 10−10: ð53Þ

The overall is

aHVP
μ ¼ 684ð75Þ × 10−10: ð54Þ

The error bar is not yet competitive to decide if BSM
physics is needed but nevertheless in closed agreement with
the experimental value as obtained in [6–8] from experi-
ments in hadron physics.
Finally, we want to analyze the contribution to the

error due to the choice of the ’t Hooft limit: Ng2 constant
and N → ∞. There have been several studies on lattice to
estimate the error of such an approximation ([24,25] and
references therein). The main conclusion is that the next-to-
leading order correction to any observable goes like

A ¼ Að∞Þ þ c1
N2

þ � � � ; ð55Þ

being c1 ¼ Oð1Þ, a numerical factor. This same pattern is
seen in the spectrum of a Yang-Mills theory without quarks
where, for the ground state, one sees [26]

m0þþffiffiffi
σ

p ¼ 3.28ð8Þ þ 2.1ð1.1Þ
N2

; ð56Þ

where σ is a mass scale proper to strong interactions and
obtained by experiment. So, this can be estimated of the

same magnitude as the error we obtained from QCD data
at worst.

V. CONCLUSIONS AND OUTLOOK

To summarize, using technique devised by Bender,
Milton, and Savage, in Ref [15] the Dyson-Schwinger
equations for quantum chromodynamics in differential
form was revisited. Following Ref. [15], in this article
we discussed the hadronic contributions to the muon
anomalous magnetic moment following NJL model as
the low energy effective theory description of QCD, as
shown in Eq. (26). We provided a full derivation of the
HVP contribution to the anomalous magnetic moment a ¼
ðg − 2Þ=2 of the muon from first principles, starting from
the QCD partition function and the effective mass for the
quarks as shown in Eq. (39). Our result as obtained in
Eq. (52) is in close agreement with the Muon g − 2 Theory
Initiative [6], as obtained from experimental data in
Refs. [7–9]. In doing so, we have shown a possible new
analytical approach as an alternative to lattice calculations.
Our approach provides a theoretical framework for the
application of QCD to several other applications and the
opportunity to investigate future model building for BSM
physics in the dark sector just by using analytical methods.
The next step will be to include other quark flavors, which
is beyond the scope of the current paper. Moreover,
following the same approach and using NJL model as
the low energy EFT for QCD, we also can perform a
complete proof of confinement in QCD in our future
studies.
We hope to improve our computations in the near future

to reduce the error bar significantly.
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