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We present analytical results for master integrals emerging in the computation of differential rates for
inclusive weak decays of heavy flavors at next-to-leading order (NLO) in QCD. As an immediate physical
application, these master integrals allow for a calculation of the spectra of the leptonic invariant mass in
inclusive semileptonic decays in the framework of the heavy quark expansion, including the NLO QCD
corrections to power-suppressed terms.

DOI: 10.1103/PhysRevD.104.114035

I. INTRODUCTION

The heavy quark expansion (HQE) [1–5] provides a solid
framework for the computation of observables for hadrons
containing a heavy quark. For this reason it has become the
standard tool to analyze inclusive heavy hadron decays,
which has been refined over the past three decades by
detailed calculations of higher order perturbative contribu-
tions, as well as by inclusion of nonperturbative contribu-
tions. The techniques for the computation of inclusive
semileptonic widths and distributions have been developed
long ago [6–9]. However, the fully differential width at order
αswas obtained only 15 years ago [10–12], including double
and triple differential rates and spectral moments, some of
which could be computed even analytically.
From the phenomenological side, inclusive decays are of

great interest for the precise extraction of Cabibbo-
Kobayashi-Maskawa (CKM) matrix elements [13,14],
which play a central role for testing the flavor sector of
the Standard Model of particle physics (SM) and for the
search for flavor and CP violation beyond the SM.
In this paper we describe a useful setup for the

computation of αs corrections to differential rates in some
specific kinematic invariants. In particular, this setup is
designed such that it can easily be extended to the
calculation of next-to-leading order (NLO) QCD correc-
tions to power-suppressed terms within the HQE. To this
end, it opens the road for analytical NLO calculations for
differential rates for power-suppressed terms, which is
phenomenologically important, since this allows us to
implement phase-space cuts in an easy way.

The approach makes use of modern tools for the
computation of multiloop Feynman integrals, in particular
the program LITERED [15,16]. That allows one to write the
Feynman diagram amplitudes as a combination of master
integrals, which are our key ingredients. These are up to
two loop integrals with two scales which we compute
analytically, meaning in terms of well-known and well-
studied special functions.
Even though inclusive semileptonic decays are the main

target for phenomenological applications, the master inte-
grals we compute here can be applied to other inclusive
decays, such as nonleptonic or exotic decays.
In particular, our formulation allows us to calculate the

total rate with final states with three different masses even
for the power-suppressed terms. At leading power the result
is known [17], and we use this result as a check of our
calculation.
As an application, we compute for the first time the

inclusive semileptonic differential width in the lepton pair
invariant mass square with massive charm and massless
leptons analytically at the leading power to OðαsÞ.
We use standard renormalization and dimensional regu-

larization (D ¼ 4 − 2ϵ) [18] with anticommuting γ5
[19,20]. Therefore, the Dirac algebra of γ matrices usually
defined in D ¼ 4 needs to be extended to D-dimensional
spacetime [21–24]. The Dirac and Lorentz algebra is
manipulated using TRACER [25] and the ϵ expansion of
hypergeometric functions is computed with the help of
HYPEXP [26,27].
The paper is organized as follows. In Sec. II we explain

the approach used for the computation of the differential
decay width. In Sec. III we compute the necessary master
integrals. In Sec. IV we apply the results of Sec. III to the
computation of the semileptonic width differential in the
lepton pair invariant mass square, as well as the total
semileptonic width. Finally, we present the results for the
HQE coefficients of the differential and total semileptonic
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decay width in Sec. V. We also give some technical results
in Appendix.

II. FORMULATION OF THE METHOD

We consider the inclusive decay of a heavy flavored
hadron, which is induced by the quark-level transition

QðMÞ → qðmÞp1ðm1Þ � � �pnðmnÞ; ð1Þ

whereQ is a heavy quark of massM, q is a lighter quark of
mass m, and pi stands for any type of particles with mass
mi. In typical SM processes the pi are either quarks or
leptons, but in fact they can be of any type (fermions,
scalars,…); i.e., our results are very general.
Using the optical theorem the decay width of a heavy-

flavored hadron can be computed from the discontinuity of
the forward scattering matrix element, for which the HQE
can be employed, yielding a systematic expansion in
powers of ΛQCD=M ≪ 1:

ΓðQ → qp1 � � �pnÞ ¼
1

MHQ

hHQðpHQ
ÞjImT̂jHQðpHQ

Þi

¼ Γ0ðC0ðρ; ηiÞ þOð1=MÞÞ; ð2Þ

where jHQðpHQ
Þi stands for the full hadronic states with

four-momentum pHQ
and mass MHQ

, the transition oper-

ator T̂ is related to the scattering operator Ŝ by Ŝ ¼ 1þ iT̂,
the normalization factor Γ0 contains all trivial information
such as phase-space factors and dimensionful scales and
couplings, and C0 is the leading order matching coefficient
in the HQE, which depends on the dimensionless param-
eters ρ ¼ m2=M2 and ηi ¼ m2

i =M
2 (i ¼ 1;…; n). Note that

we assume that ρ and ηi are treated as parameters of
order unity.
The typical Feynman diagram one faces in the compu-

tation of the total width at LO-QCD is the n-loop graph
shown in Fig. 1 (left). At NLO-QCD, the required Feynman

diagrams are (nþ 1)-loop graphs which can be obtained
from the one in Fig. 1 (left) by taking one gluon exchange
(massless line exchanges) between two massive lines. An
example of such diagrams is shown in Fig. 1 (right). To
keep the following discussion simple, let us consider
colorless particles pi, such that the gluon couples only
to the quarks Q and q. At NLO, this is no restriction of
generality.
However, our goal is not the computation of the total

width, but the width differential in some kinematic invari-
ant, which we chose to be the invariant mass square of the n
p-particles. Technically, one can achieve this by factorizing
the n massive p-particle propagators in a single massive
propagator using a dispersion representation

1

i

Z Yn
j¼1

�
dDkj
ð2πÞD

1

k2j −m2
j

�
δð4Þ

�
q2 −

Xn
i¼1

kn

�

¼
Z

∞

ð
P

n
i¼1

miÞ2
ρðn−1ÞLSðχ2; m1;…; mnÞ

χ2 − q22 − iη
dðχ2Þ; ð3Þ

where ρðn−1ÞLS is the spectral density for the (n − 1)-loop
generalized sunset diagram. For example, at one-loop it is
given by Eq. (A2). Note that the (n − 1)-loop integral in
Eq. (3) has become an integral over the mass of an
“effective massive propagator” of mass χ, and that the
dependence on the mi is completely factorized in the
spectral density. This fact is diagrammatically represented
in Fig. 2. This representation serves as a powerful tool for
both, the computation of the total width and the compu-
tation of the decay width differential in the n p-particle
invariant mass square q22 ¼ ðPn

i¼1 kiÞ2. The (n − 1)-loop in
Eq. (3) is always cut, so q22 is forced to be on-shell q

2
2 ¼ χ2,

corresponding to the q22 pole on the right-hand side of
Eq. (3). Therefore, the integrand is differential in the
n p-particle invariant mass square χ2.

FIG. 1. Examples of Feynman diagrams entering in the calculation of the coefficient of the total width C0 at LO-QCD (left) and NLO-
QCD (right).
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In this setup, the decay width can be written as

ΓðQ → qp1 � � �pnÞ

¼ Γ0

Z ð1− ffiffi
ρ

p Þ2

ð
P

n
i¼1

ffiffiffi
ηi

p Þ2
drρsðr; ηiÞðC0ðr; ρÞ þOð1=MÞÞ

≡
Z ð1− ffiffi

ρ
p Þ2

ð
P

n
i¼1

ffiffiffi
ηi

p Þ2
dr

dΓðr; ρ; ηiÞ
dr

; ð4Þ

where r ¼ χ2=M2 is the dimensionless invariant mass
square of the n p-particles, ρs is the spectral density,
which depends on the structure of the interactions, and C0 is
the leading matching coefficient in the HQE of the differ-
ential width dΓ=dr ¼ Γ0ρsC0.
Note that, whereas the computation of the coefficient of

the total width requires computing n-loop and (nþ 1)-loop
diagrams with scales (ρ, ηi) at LO-QCD and at NLO-QCD,
respectively (see Fig. 1), the computation of the coefficient
of the differential width requires computing one-loop and
two-loop diagrams with two scales (r, ρ) at LO-QCD and at
NLO-QCD, respectively (see Fig. 3). However, for the
complete determination of the differential width one has to
deal with (n − 1)-loop integrals with scales (ηi) to obtain
the spectral density ρs.

For the computation, we use LITERED to write the
amplitudes to a combination of a small set of master
integrals. The main task of this paper, which we address in
Secs. III B and III C, is the analytical computation of the
necessary master integrals for the determination of C0ðr; ρÞ
at NLO in αs. That requires dealing with up to two-loop
integrals with two scales r and ρ. These master integrals are
universal to any diagrams of the type shown in Fig. 1. As a
check, in Secs. III D and III E, we independently compute
the master integrals in the case where the quark q is
massless (m ¼ 0) and compare to the massive case in the
limit ρ → 0. From now on, we will refer to the calculation
with m ≠ 0 as the massive case and the calculation with
m ¼ 0 as the massless case.
The coefficient of the differential width is related to the

coefficient of the total width through

C0ðρ; ηiÞ ¼
Z ð1− ffiffi

ρ
p Þ2

ð
P

n
i¼1

ffiffiffi
ηi

p Þ2
drρsðr; ηiÞC0ðr; ρÞ: ð5Þ

Finally, we emphasize that the differential rate is of great
importance since it allows us to implement cuts on the
moments which are unavoidable for the comparison with
the experiment. The (not yet normalized) moments with a
lower cut rmin and upper cut rmax are defined as

FIG. 2. Factorization of the n-loop sunset with all massive lines (left) in a single “effective massive propagator” with spectral density,
mass χ, and integration over the n p-particle invariant mass square (right).

FIG. 3. Examples of Feynman diagrams entering in the calculation of the coefficient of the differential width C0 at LO-QCD (left) and
NLO-QCD (right).
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Mnðρ; ηi; rmin; rmaxÞ ¼
Z

rmax

rmin

drrn
dΓðr; ρ; ηiÞ

dr
; ð6Þ

with ðPn
i¼1

ffiffiffiffi
ηi

p Þ2 < rmin < rmax < ð1 − ffiffiffi
ρ

p Þ2. Obviously,
having the expression for the differential width is more
powerful than having particular moments of the distribu-
tion, since it is more general.
Note that the coefficient of the differential width can

always be computed analytically. If ρs can be computed
analytically, then the differential width is known analyti-
cally as well, and the final integration over r to obtain the
total width or moments (with or without cuts) can always
be performed, at least numerically. Numerical evaluation, if
reliable, is practical for comparison to experimental data
(see e.g., [28] where four-loop integrals with masses have
been computed).
Let us stress that the master integrals computed in this

paper may have several physical applications. They can be
used for the computation of the differential and total
semileptonic and nonleptonic decay widths with any
number of different masses. For semileptonic and non-
leptonic decays the spectral density can always be obtained
analytically. Therefore, the total width and moments can be
computed straightforwardly, at least numerically. This also
applies to power corrections.
While we will formulate the setup and the calculation in

a very general language, the main motivation (and probably
also the main application) are semileptonic decays into
light massless leptons or τ leptons. The relevant observ-
ables are in this case the cut moments of the leptonic
invariant mass spectrum, which can be used to extract the
value of Vcb from the data on inclusive b → clν̄ transi-
tions. In fact, it has been shown in [29] that observables
based on the leptonic invariant mass spectrum depend only
on a reduced set of nonperturbative parameters and thus an
even more precise determination of Vcb becomes possible.
In the case of decays into tau leptons an account for the

lepton mass is a must. That can be straightforwardly
accounted within our setup and requires the change of
the spectral density only, while the quark part is untouched.
The mass of the muon can be included as well if it is
necessary for future phenomenological analysis.

III. MASTER INTEGRALS

In this section, we perform the analytical computation of
the master integrals necessary for the determination of the
coefficient of the differential width C0. The key ingredient
is a specific choice of variables which is introduced in the
next section. Based on this we will compute the master
integrals for the massive and the massless cases.

A. Choice of variables

In the massive case, computing the differential width at
NLO in αs requires the evaluation of two-loop integrals with

three masses (two scales). That makes the problem of an
analytic computation of the master integrals rather involved.
However, the calculation is facilitated once a proper choice
of thevariables ismade,which ismotivated by the physics of
the system. It is remarkable that such a choice of variables
allows us to compute analytically the master integrals
including also the full dependence on ϵ, with only a single
exception, where we can give an analytic result only as an ϵ-
expansion to the necessary order. However, that is sufficient
for the phenomenological applications.
Furthermore, in order to arrive at an analytical expres-

sion for the total rate, an integration over the n p-particle
invariant mass square has to be performed. This step is also
greatly facilitated by a proper choice of variables.
The naive choice would be to use r and ρ as the most

natural variables, but when trying to compute two-loop
sunset type integrals with two massive lines one quickly
learns that this choice is not appropriate, since it is not
adapted to the physics of the problem. In turn, the analytical
dependence on r and ρ is complicated; in fact it is too
complicated for any known tool to be able to perform the
integration analytically.
Rather we suggest a different set of variables (x�) which

is motivated by the zeros of the function which develops the
cut and which defines the integration region in the
imaginary part of the one-loop topology with two propa-
gators. To see this, it is enough to take the left-hand side of
Eq. (A1), introduce standard Feynman parametrization,
integrate over the loop-momentum and take the imaginary
part. One then gets an integral of the form

Im
1

i

Z
dDk
ð2πÞD

1

ðk2 −m2Þððp − kÞ2 − χ2Þ
∼
Z

xþ

x−

dx½−ðx − xþÞðx − x−Þ�−ϵ; ð7Þ

with D ¼ 4 − 2ϵ. This has a simple form in terms of the
new variables x� which are related to r and ρ through

x−¼
1

2

�
1−rþρ−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ð ffiffiffi

r
p

−
ffiffiffi
ρ

p Þ2Þð1−ð ffiffiffi
r

p þ ffiffiffi
ρ

p Þ2Þ
q �

;

ð8Þ

xþ¼1

2

�
1−rþρþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1−ð ffiffiffi

r
p

−
ffiffiffi
ρ

p Þ2Þð1−ð ffiffiffi
r

p þ ffiffiffi
ρ

p Þ2Þ
q �

:

ð9Þ

Note that x� are real, 0 < x− < xþ < 1, and

xþ − x− ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð1 − ð ffiffiffi

r
p

−
ffiffiffi
ρ

p Þ2Þð1 − ð ffiffiffi
r

p þ ffiffiffi
ρ

p Þ2Þ
q

; ð10Þ

xþ þ x− ¼ 1 − rþ ρ; ð11Þ

while the Jacobian is determined from the derivatives
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dxþ
dr

¼ −
xþ

xþ − x−
;

dxþ
dρ

¼ −
1 − xþ
xþ − x−

; ð12Þ

dx−
dr

¼ x−
xþ − x−

;
dx−
dρ

¼ 1 − x−
xþ − x−

: ð13Þ

It is remarkable that the inverse transformation is extremely
simple,

ρ ¼ xþx−; ð14Þ

r ¼ð1 − xþÞð1 − x−Þ; ð15Þ

compared to Eqs. (8) and (9). This makes the trans-
formation of an expression in terms of r and ρ to
expressions in terms of x� very easy, while the reverse
is much more complicated. We are now ready to compute
the relevant master integrals.

B. LO-QCD (Massive channel)

At LO-QCD the differential decay width for the massive
channel can be written as a combination of one-loop two-
propagator integrals with two different massesm, χ and on-
shell external momenta p2 ¼ M2 of the form

Mðn1;n2Þ

≡ Imμ̄2ϵ
1

i

Z
dDq
ð2πÞD

1

ðq2−χ2Þn1ððp−qÞ2−m2Þn2 ; ð16Þ

where μ̄2 ¼ μ2ðeγE=4πÞ is the MS renormalization scale.
By using LITERED we reduce every integral above as a
combination of the three master integrals Mð0; 1Þ,
Mð1; 0Þ, and Mð1; 1Þ. The master integrals Mð0; 1Þ
and Mð1; 0Þ are closed massive loops and their imaginary
part is zero. The master integral Mð1; 1Þ is a one-loop
sunset integral with two massive lines of different masses,
whose associated graph is displayed in Fig. 4(a). It can
easily be computed by using the dispersion representation
given in Eq. (A1). It reads

FIG. 4. Master integral topologies stemming from the massive decay channel contributing to the differential decay width up to NLO-
QCD. Continuous and dashed lines stand for massive and massless propagators, respectively. The gray dot stands for iteration of the
corresponding propagator, and the vertical dotted line represents a cut.
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Mð1; 1Þ ¼
�
4πμ̄2

M2

�
ϵ 1

16π

Γð1 − ϵÞ
Γð2 − 2ϵÞ ðxþ − x−Þ1−2ϵ

× Θð1 − ffiffiffi
r

p
−

ffiffiffi
ρ

p Þ: ð17Þ

Finally, we have explicitly checked that our results for
the master integrals reproduce the ones in the massless
case, which are computed in Sec. III D.

C. NLO-QCD (Massive channel)

At NLO-QCD the differential decay width for the
massive channel can be written as a combination of two-
loop five-propagator integrals with three different masses
m, χ, M and on-shell external momenta p2 ¼ M2 of the
form

J ðn1; n2; n3; n4; n5Þ

≡ Imμ̄4ϵ
Z

dDq1
ð2πÞD

dDq2
ð2πÞD

1

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

; ð18Þ

where

D1 ¼ q21; D2 ¼ q22− χ2; D3 ¼ ðp−q1Þ2−M2;

D4 ¼ ðp−q2Þ2 −m2; D5 ¼ ðp−q1−q2Þ2−m2: ð19Þ

By using LITERED we reduce every integral above as a
combination of the following 13 master integrals:

J ð0; 0; 0; 1; 1Þ; J ð0; 1; 0; 1; 1Þ;
J ð0; 0; 1; 0; 1Þ; J ð0; 1; 1; 1; 0Þ;
J ð0; 0; 1; 1; 1Þ; J ð0; 1; 1; 1; 1Þ;
J ð0; 0; 2; 1; 1Þ; J ð1; 1; 0; 0; 1Þ;
J ð0; 1; 0; 0; 1Þ; J ð1; 2; 0; 0; 1Þ;
J ð0; 1; 1; 0; 0Þ; J ð2; 1; 0; 0; 1Þ;
J ð0; 1; 1; 0; 1Þ: ð20Þ

The integrals in the left column are either massive tadpole
or two-loop sunset-type diagrams. However, taking the cut

procedure (i.e., taking the imaginary part) these diagrams
turn out to be zero. This is, on the one hand, due to the fact
that tadpole diagrams have no imaginary part and, on the
other hand, due to the cut procedure puts the lines on-shell;
the diagrams vanish since no phase space is available. We
have checked these statements also by explicit calculation.
The master integrals J ð0; 1; 0; 1; 1Þ and J ð0; 1; 1; 1; 0Þ

are factorizable into a product of the cut one-loop two-
propagator diagram with two massive lines m and χ,
computed in Sec. III B, and a closed massive loop with
mass m and M, respectively. No other cut is possible. The
corresponding topologies are shown in Fig. 4(b). They read

J ð0; 1; 0; 1; 1Þ ¼
�
4πμ̄2

M2

�
2ϵ M2

256π3
Γð−1þ ϵÞΓð1 − ϵÞ

Γð2 − 2ϵÞ
× ðxþx−Þ1−ϵðxþ − x−Þ1−2ϵ
× Θð1 − ffiffiffi

r
p

−
ffiffiffi
ρ

p Þ; ð21Þ

J ð0; 1; 1; 1; 0Þ ¼
�
4πμ̄2

M2

�
2ϵ M2

256π3
Γð−1þ ϵÞΓð1 − ϵÞ

Γð2 − 2ϵÞ
× ðxþ − x−Þ1−2ϵΘð1 −

ffiffiffi
r

p
−

ffiffiffi
ρ

p Þ: ð22Þ

Note that J ð0; 1; 0; 1; 1Þ does not contribute to the mass-
less case, since x−xþ ¼ ρ ¼ 0.
The Feynman graph representing the master integral

J ð0; 1; 1; 1; 1Þ, which is a two-loop four-massive propa-
gator integral with three different masses, is shown in
Fig. 4(c). The only way to get a nonzero imaginary part is
by cutting the m and χ propagators. Cutting more lines
results in a vanishing contribution by the same phase-space
argument discussed above. Since only two propagators
are cut, the computation is drastically simplified and
the integral can be evaluated analytically in its full ϵ
dependence.
For the explicit computation we can first integrate the

loop without cut while taking the “external” χ-propagator
momentum to be on-shell q22 ¼ χ2, since we eventually will
cut this line. The corresponding integral can be expressed in
terms of hypergeometric functions of the kind 2F1. Finally,
we can take the imaginary part of the remaining loop
integral by using Eq. (A1). The result reads

J ð0; 1; 1; 1; 1Þ ¼
�
4πμ̄2

M2

�
2ϵ 1

128π3
Γð1 − ϵÞΓðϵÞ
Γð3 − 2ϵÞ

ðxþ − x−Þ1−3ϵð−1þ xþÞϵ
1 − xþ

×

�
x1−ϵþ 2F1

�
1 − ϵ; ϵ; 2 − ϵ;

xþð1 − x−Þ
xþ − x−

�
− 2F1

�
1 − ϵ; ϵ; 2 − ϵ;

1 − x−
xþ − x−

��
Θð1 − ffiffiffi

r
p

−
ffiffiffi
ρ

p Þ: ð23Þ

Finally, the Feynman graphs representing the master inte-
gralsJ ð1; 1; 0; 0; 1Þ,J ð1; 2; 0; 0; 1Þ, andJ ð2; 1; 0; 0; 1Þ are
shown in Figs. 4(d)–4(f), respectively. These are two-loop
integrals of the sunset type with one massless line and two

massive lines of different masses, χ and m. They differ by
the powers of the denominators. The master integrals
J ð1; 2; 0; 0; 1Þ and J ð2; 1; 0; 0; 1Þ can be related to deriv-
atives of J ð1; 1; 0; 0; 1Þ with respect to the masses
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J ð1; 2; 0; 0; 1Þ ¼ d
dχ2

J ð1; 1; 0; 0; 1Þ; ð24Þ

J ð2; 1; 0; 0; 1Þ ¼ 1

M4ϵðr2 þ ð−1þ ρÞ2 − 2rð1þ ρÞÞ
�
2ð−1þ ϵÞ2J ð0; 1; 0; 0; 1Þ

−M2ð−1þ 2ϵÞ
�
ð−2þ 3ϵÞð−1þ rþ ρÞJ ð1; 1; 0; 0; 1Þ

þ 2M2

�
ð−1þ ρÞρ d

dm2
J ð1; 1; 0; 0; 1Þ þ ð−1þ rÞr d

dχ2
J ð1; 1; 0; 0; 1Þ

���
; ð25Þ

where Eq. (24) has been obtained by writing J ð1; 1; 0; 0; 2Þ as a combination of the master integrals in Eq. (20) by using
LITERED and solving for J ð2; 1; 0; 0; 1Þ. Alternatively, in terms of x�, the relations to J ð1; 1; 0; 0; 1Þ read

J ð1; 2; 0; 0; 1Þ ¼ 1

M2

1

xþ − x−

�
x−

∂
∂x− − xþ

∂
∂xþ

�
J ð1; 1; 0; 0; 1Þ; ð26Þ

J ð2; 1; 0; 0; 1Þ ¼ 2ð1 − 2ϵÞ
M2ϵðxþ − x−Þ2

�
1

2
ð2 − 3ϵÞðxþ þ x− − 2xþx−ÞJ ð1; 1; 0; 0; 1Þ

þ xþð1 − xþÞ
xþ − x−

ðð1 − xþx−Þx− þ ðxþ þ x− − xþx−Þð1 − x−ÞÞ
∂

∂xþ J ð1; 1; 0; 0; 1Þ

−
x−ð1 − x−Þ
xþ − x−

ðð1 − xþx−Þxþ þ ðxþ þ x− − xþx−Þð1 − xþÞÞ
∂

∂x− J ð1; 1; 0; 0; 1Þ
�
: ð27Þ

Therefore, the main problem is the computation ofJ ð1; 1; 0; 0; 1Þ. This integral is the most complicated one, since it requires
cutting one massless line and twomassive lines of different masses. In this particular case, making use of x� instead of r and ρ
makes a crucial difference, allowing us to compute this contribution also analytically, however, only in an ϵ-expansion.
For the computation we first introduce Feynman parametrization in the massive loop and integrate over the loop

momenta. Next we make use of the generalized spectral function with one massive line [30,31]

Im
1

i

Z
dDk

ðm2
0 − k2Það−ðp − kÞ2Þb ¼

π1þD=2ΓðD=2 − bÞ
ΓðaÞΓðbÞΓðD − a − 2bþ 1Þ

�
1 −

m2
0

M2

�
D−a−2b

MD−2a−2b

× 2F1

�
D=2 − b; 1 − b;D − a − 2bþ 1; 1 −

m2
0

M2

�
ð28Þ

to compute the imaginary part, where in our case

m2
0 ¼

m2

1 − x
þ χ2

x
ð29Þ

is a function of m, χ, and a single Feynman parameter x.
The branch cut appears always that M2 > m2

0ðm; χ; xÞ,
which constrains the integration limits of the Feynman
parameter integral from x− to xþ, instead of from zero to
one. Finally, we end up with an integral of the form

J ð1;1;0;0;1Þ

∝
Z

xþ

x−

dxðxð1−xÞÞ−2þ2ϵð−ðx−xþÞðx−x−ÞÞ2−3ϵ; ð30Þ

which cannot be expressed in terms of the usual

2F1-hypergeometric functions. It requires further study

if it can be expressed in terms of generalized
pFq-hypergeometric functions or if it requires the intro-
duction of the class of functions called elliptic polylogar-
ithms, which are known to appear in two-loop sunset
diagrams with three massive lines [32].
However, the integral can be computed as an ϵ expansion

to the necessary order, the reason is related to the fact that
one of the lines is massless. In general, we need the master
integrals expanded to OðϵÞ, because the coefficients in
front of the master integrals can be proportional to 1=ϵ.
We first note that the integral is finite. The Oðϵ0Þ term is

trivial since it is the integral of a rational function and can
be directly computed. The OðϵÞ term is an integral of the
form RðxÞ lnðPðxÞÞ, where RðxÞ is a rational function and
PðxÞ a polynomial, and thus the integral can be expressed
in terms of dilogarithms [33]. The resulting expression
reads
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J ð1; 1; 0; 0; 1Þ ¼ M2

512π3

	�
1þ ϵ

2

�
9þ 8 ln

�
μ

M

����
ðxþ − x−Þð2 − xþ − x− þ 2xþx−Þ

− 2x−xþðxþ þ x− − xþx−Þ ln
�
xþ
x−

�
− 2ð1 − xþÞð1 − x−Þð1 − x−xþÞ ln

�
1 − x−
1 − xþ

��

þ ϵ

�
2ðxþ − x−Þð2 − x− − xþ þ 2x−xþÞð1 − 3 lnðxþ − x−ÞÞ

þ ð1 − xþÞðxþx−ð1 − 4x−Þ − 4þ xþ þ x− þ x2−Þ lnð1 − xþÞ
− ð1 − x−Þðxþx−ð1 − 4xþÞ − 4þ xþ þ x− þ x2þÞ lnð1 − x−Þ
− x−ðxþx−ð7 − 4xþÞ þ 4 − 2x− − 4xþ þ 3x2þÞ lnðx−Þ
þ xþðxþx−ð7 − 4x−Þ þ 4 − 2xþ − 4x− þ 3x2−Þ lnðxþÞ
þ 4ð−2xþx−ðx− þ xþ − xþx−Þ þ x− þ xþ − 1ÞðLi2ðx−Þ − Li2ðxþÞÞ

− 2ð1 − x−Þð1 − xþÞð1 − xþx−Þ
�
3Li2

�
x− − xþ
x− − 1

�
− 3Li2

�
xþ − x−
xþ − 1

�
þ ln2ð1 − x−Þ

− ln2ð1 − xþÞ þ 2 lnð1 − x−Þ lnðx−Þ − 2 lnð1 − xþÞ lnðxþÞ þ 6 ln

�
1 − xþ
1 − x−

�
lnðxþ − x−ÞÞ

− 2xþx−ðxþ þ x− − xþx−Þ
�
3Li2

�
1 −

x−
xþ

�
− 3Li2

�
1 −

xþ
x−

�
− ln2ðx−Þ þ ln2ðxþÞ

þ 6 ln

�
x−
xþ

�
lnðxþ − x−ÞÞ

�
þOðϵ2Þ



Θð1 − ffiffiffi

r
p

−
ffiffiffi
ρ

p Þ: ð31Þ

Once J ð1; 1; 0; 0; 1Þ is known we can compute J ð1; 2; 0; 0; 1Þ and J ð2; 1; 0; 0; 1Þ by using Eqs. (26) and (27). Explicitly,
they read

J ð1;2;0;0;1Þ ¼ 1

256π3

	�
1þ 4ϵ ln

�
μ

M

���
xþ − x−þ xþx− ln

�
xþ
x−

�
þð1− xþx−Þ ln

�
1− xþ
1− x−

��

þ ϵ

�
ðxþ − x−Þð5− 6 lnðxþ − x−ÞÞ− ð1þ x−Þð1− xþÞ lnð1− x−Þþ ð1− x−Þð1þ xþÞ lnð1− xþÞ

− x−ðxþ þ 2Þ lnðx−Þþ xþðx−þ 2Þ lnðxþÞ− 2ð1− 2xþx−ÞðLi2ðx−Þ−Li2ðxþÞÞ

þ xþx−

�
3Li2

�
1−

x−
xþ

�
− 3Li2

�
1−

xþ
x−

�
þ ln2ðxþÞ− ln2ðx−Þþ 6 ln

�
x−
xþ

�
lnðxþ − x−Þ

�

− ð1− xþx−Þ
�
3Li2

�
x− − xþ
x− − 1

�
− 3Li2

�
xþ− x−
xþ− 1

�
þ 6 ln

�
1− xþ
1− x−

�
lnðxþ − x−Þþ ln2ð1− x−Þ− ln2ð1− xþÞ

þ 2 lnð1− x−Þ lnðx−Þ− 2 lnð1− xþÞ lnðxþÞ
��

þOðϵ2Þ


Θð1− ffiffiffi

r
p

−
ffiffiffi
ρ

p Þ; ð32Þ

J ð2; 1; 0; 0; 1Þ ¼ 1

256π3

	
ðxþ − x−Þ

�
1

ϵ
þ 4 ln

�
μ

M

�
− 6 lnðxþ − x−Þ þ 3

�

þ ð1 − x−Þð1þ xþÞ lnð1 − x−Þ − ð1 − xþÞð1þ x−Þ lnð1 − xþÞ

þ x−ðxþ − 2Þ lnðx−Þ − xþðx− − 2Þ lnðxþÞ þOðϵÞ


Θð1 − ffiffiffi

r
p

−
ffiffiffi
ρ

p Þ: ð33Þ

Note that J ð2; 1; 0; 0; 1Þ ∼ ð1=ϵÞJ ð1; 1; 0; 0; 1Þ. Therefore, in order to compute J ð2; 1; 0; 0; 1Þ to OðϵÞ we need
J ð1; 1; 0; 0; 1Þ to Oðϵ2Þ, whose computation can be rather cumbersome but possible. Due to the length of the resulting
expression we do not present it explicitly but we provide it upon request.
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However, for the particular applications we will discuss
in Sec. IV the coefficient in front of J ð2; 1; 0; 0; 1Þ coming
from the integration by parts reduction is Oðϵ0Þ, so the
integral is only needed to Oðϵ0Þ, and thus knowing
J ð1; 1; 0; 0; 1Þ to OðϵÞ is actually enough.
Note that some of the master integrals are divergent as

ϵ → 0, so in principle there can even be 1=ϵ2 terms.
However, in the expressions for physical quantities such
as the differential widths the master integrals must combine
in such a way that the 1=ϵ2 term cancels. This is to be
expected since after taking cut we face one-loop integrals,
so 1=ϵ2 terms should never appear. A different way of
seeing this is that at OðαsÞ poles must cancel with the one-
loop renormalization factors of the fields and masses
which, to this order, contain a simple pole in ϵ at most.
The explicit cancellation of 1=ϵ2 terms in the applications
discussed in Sec. IV is thus a check of our calculation.
Let us mention that there is a peculiarity related to the

1=ϵ2 terms. In a one-loop calculation it is usually enough to
take only the finite piece which involves only logarithms.
However, since our original integrals contain 1=ϵ2, which is
a two-loop feature, the finite piece contains also dilogar-
ithms and factors of π2. Even though in general the 1=ϵ2

cancels in the width, a combination of dilogarithms and
factors of π2 survive. These surviving terms are a remnant
of the extra divergences which appeared in intermediate
steps. These extra divergences are related to the fact that the
q quark is on-shell. A similar mechanism is at work in the
matching of heavy-light currents in soft collinear effective
theory and collinear divergences [34].
Finally, we have explicitly checked that our results for

the master integrals reproduce the ones in the massless
case, which are computed below in Sec. III E.

D. LO-QCD (Massless channel)

At LO-QCD the differential decay width for the massless
(ρ ¼ 0) channel can be written as a combination of one-
loop two-propagator integrals with a single mass χ and on-
shell external momenta p2 ¼ M2 of the form

Mðn1; n2Þ≡ Imμ̄2ϵ
1

i

Z
dDq
ð2πÞD

1

ðq2 − χ2Þn1ððp − qÞ2Þn2 :

ð34Þ

By using LITERED we reduce every integral above as a
combination of the two master integrals Mð1; 0Þ and
Mð1; 1Þ. The master integral Mð1; 0Þ is a closed massive
loop and its imaginary part is zero. The master integral
Mð1; 1Þ is a one-loop integral with one massive and one
massless line, whose associated graph is displayed in
Fig. 5(a). It can easily be computed by using the dispersion
representation given in Eq. (A1). It reads

Mð1; 1Þ

¼
�
4πμ̄2

M2

�
ϵ 1

16π

Γð1 − ϵÞ
Γð2 − 2ϵÞ ð1 − rÞ1−2ϵΘð1 − rÞ: ð35Þ

E. NLO-QCD (Massless channel)

At NLO-QCD the differential decay width for the
massless (ρ ¼ 0) channel can be written as a combination
of two-loop five-propagator integrals with two different
masses χ and M and on-shell external momenta p2 ¼ M2

of the form

J ðn1; n2; n3; n4; n5Þ

≡ Imμ̄4ϵ
Z

dDq1
ð2πÞD

dDq2
ð2πÞD

1

Dn1
1 Dn2

2 Dn3
3 Dn4

4 Dn5
5

; ð36Þ

where

D1 ¼ q21; D2 ¼ q22 − χ2; D3 ¼ ðp − q1Þ2 −M2;

D4 ¼ ðp − q2Þ2; D5 ¼ ðp − q1 − q2Þ2: ð37Þ

By using LITERED we reduce every integral above as a
combination of the following seven master integrals

J ð0; 1; 1; 1; 0Þ; J ð0; 0; 1; 1; 1Þ; ð38Þ

J ð0; 1; 1; 1; 1Þ; J ð0; 1; 1; 0; 0Þ; ð39Þ

J ð1; 1; 0; 0; 1Þ; J ð0; 1; 1; 0; 1Þ; ð40Þ

J ð2; 1; 0; 0; 1Þ: ð41Þ

The master integrals in the right column are either closed
loops or two-loop sunset type diagrams which—after
taking the cut—vanish by the same arguments as for the
massive case. They are either massive tadpoles (which are
real) or there is no phase space. Again, we have checked
this statement by explicit calculation as well.
The master integral J ð0; 1; 1; 1; 0Þ is factorizable in the

product of the cut one-loop sunset integral with one
massive line χ, computed in Sec. III D, times a closed
massive loop with mass M. Any other cut is not possible.
The corresponding topology is shown in Fig. 5(b). The
result reads

J ð0; 1; 1; 1; 0Þ ¼
�
4πμ̄2

M2

�
2ϵ M2

256π3
Γð−1þ ϵÞΓð1 − ϵÞ

Γð2 − 2ϵÞ
× ð1 − rÞ1−2ϵΘð1 − rÞ: ð42Þ

The Feynman graph representing the master integral
J ð0; 1; 1; 1; 1Þ, which is a two-loop two-massless and
two-massive propagator integral with two different masses,
is shown in Fig. 5(c). For the computation we can proceed
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exactly as in the completely massive case. The only way to
get a nonzero imaginary part is by cutting the massless and
χ propagators. Otherwise, there is not enough energy in the
initial state to produce the final state particles (one particle
of mass M and two massless quarks). Again, the cut
involves only two propagators. Since the loop involving
the particle of mass M and one massless particle is not cut,
we can first integrate it while taking the “external” χ-
propagator momentum to be on-shell due to the cut on it.
Finally, we can take the imaginary part of the remaining
loop integral by using Eq. (A1). The result reads

J ð0; 1; 1; 1; 1Þ ¼ −
�
4πμ̄2

M2

�
2ϵ 1

128π3
Γð1 − ϵÞΓðϵÞ
Γð3 − 2ϵÞ

× ð1 − rÞ1−2ϵ2F1ð1; ϵ; 2 − ϵ; rÞ
× Θð1 − rÞ: ð43Þ

Finally, the Feynman graphs representing the master
integrals J ð1; 1; 0; 0; 1Þ and J ð2; 1; 0; 0; 1Þ are shown in

Figs. 5(d) and 5(e). These are two-loop integrals of the
sunset type with two massless lines and one massive line of
mass χ. They differ by the powers of the denominators.
The master integral J ð2; 1; 0; 0; 1Þ can be related to
J ð1; 1; 0; 0; 1Þ and derivatives of it with respect to the
mass χ. Explicitly

J ð2; 1; 0; 0; 1Þ

¼ ð−3þDÞ
ð−4þDÞðM2 − χ2Þ

�
ð8 − 3DÞJ ð1; 1; 0; 0; 1Þ

þ 4χ2
d
dχ2

J ð1; 1; 0; 0; 1Þ
�
: ð44Þ

To obtain the relation above we reduce the integral
J ð1; 2; 0; 0; 1Þ ¼ d

dχ2 J ð1; 1; 0; 0; 1Þ using LITERED and

invert the relation to find J ð2; 1; 0; 0; 1Þ in terms of
J ð1; 2; 0; 0; 1Þ and J ð1; 1; 0; 0; 1Þ.

FIG. 5. Master integral topologies stemming from the massless decay channel contributing to the differential decay width up to NLO-
QCD. Continuous and dashed lines stand for massive and massless propagators, respectively. The gray dot stands for iteration of the
corresponding propagator, and the vertical dotted line represents a cut.
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Therefore, the problem is reduced to the computation of J ð1; 1; 0; 0; 1Þ. It requires taking a cut across two massless lines
and one massive line. For the computation we can proceed analogously to the massive case. Since there is only one massive
line, the integration can be performed to all orders in ϵ, unlike in the massive case. The result reads

J ð1; 1; 0; 0; 1Þ ¼
�
4πμ̄2

M2

�
2ϵ M2

256π3
Γ2ð1 − ϵÞ
Γð4 − 4ϵÞ ð1 − rÞ3−4ϵ2F1ð2 − 2ϵ; 1 − ϵ; 4 − 4ϵ; 1 − rÞΘð1 − rÞ: ð45Þ

Once J ð1; 1; 0; 0; 1Þ is known, we can compute J ð2; 1; 0; 0; 1Þ by using Eq. (44). It reads

J ð2; 1; 0; 0; 1Þ ¼
�
4πμ̄2

M2

�
2ϵ 1

256π3
Γð2ϵÞΓð2 − ϵÞΓð−1þ ϵÞΓð1 − ϵÞ
Γð1þ ϵÞΓð4 − 4ϵÞΓð−1þ 2ϵÞ

× ð1 − rÞ1−4ϵ½ð2 − 3ϵþ rð4 − 5ϵÞÞ2F1ð2 − 2ϵ; 1 − ϵ; 4 − 4ϵ; 1 − rÞ
þ ð1 − ϵÞrð1 − rÞ2F1ð3 − 2ϵ; 2 − ϵ; 5 − 4ϵ; 1 − rÞ�Θð1 − rÞ: ð46Þ

Unlike in the massive channel case, we are able to get all master integrals in their full ϵ dependence.

IV. APPLICATIONS

As a sample application, we compute the differential and
total B-hadron (Q ¼ b,M ¼ mb) semileptonic decay width
to leading order in the 1=mb expansion. There are two
decay channels that contribute. On the one hand, there is a
Cabibbo favored transition b → clν̄l, where we identify
q ¼ c and m ¼ mc. On the other hand, there is a Cabibbo
suppressed transition b → ulν̄l, where we identify q ¼ u
and m ¼ 0. They correspond to the massive and massless
cases, respectively, which have been discussed in Secs. II
and III. In both channels n ¼ 2 with p1 ¼ l and p2 ¼ ν̄l
being massless leptons, m1 ¼ m2 ¼ 0. Again, we use the
massless case as a check of the computation for the massive
case in the limit ρ → 0.
The effective electroweak Lagrangian describing the

flavor changing transition b → qlν̄l reads [35]

LEW;eff ¼ −
4GFffiffiffi

2
p

X
q¼c;u

ðVqbðb̄ΓμqÞðν̄lΓμlÞ

þ V†
qbðq̄ΓμbÞðl̄ΓμνlÞÞ; ð47Þ

where GF is the Fermi constant, VqQ is the corresponding
CKM matrix element describing weak mixing of quark
generations, and Γμ ¼ γμPL with PL ¼ 1

2
ð1 − γ5Þ being

the left-handed projector. In the cases under study Γ0 ¼
G2

Fm
5
bjVqbj2=ð192π3Þ.

Before going to the technical details we need to discuss
how renormalization will be performed. For light-quark
masses and the strong coupling αsðμÞ we adopt the MS
renormalization scheme [36]. The bottom and charm
quarks will be renormalized on-shell. In practice, that is
bB ¼ ðZOS

2 Þ1=2b and mc;B ¼ ZOS
mc
mpole

c , where quantities
with omitted indices stand for renormalized ones, and

ZOS
mq

¼ 1 − CF
αsðμÞ
4π

�
3

ϵ
þ 6 ln

�
μ

mq

�
þ 4

�
; ð48Þ

with ZOS
2 ¼ ZOS

mb
to this order. Also g2s;B ¼ 4πZ2

gαsðμÞμ̄2ϵ.
For the precision of the calculation the renormalization
factor of the strong coupling is only needed at tree level
(Zg ¼ 1). The quantity CF ¼ 4=3 is a color factor.
Note that for the charm quark it is still not so clear if it is

better to perform the renormalization in the on-shell or the
MS scheme. We have chosen the former because results
become slightly more compact in that scheme. However,
since mc is better known in the MS scheme, it might be
useful to have the results with mc in that scheme. This can
easily be achieved by using the relation between the MS
and pole masses at one-loop order,

mpole
c ¼ mM̄S

c ðμÞ
�
1þ CF

αs
4π

�
6 ln

�
μ

mc

�
þ 4

��
: ð49Þ

Note that LO-QCD diagrams not only contribute to this
order, but also to NLO-QCD after replacing the bare
bottom field and charm quark mass by their renormalized
counterparts.
The Feynman diagrams that contribute to the total

semileptonic width at LO-QCD and NLO-QCD are the
two-loop and three-loop diagrams shown in Fig. 6.
Following Eq. (3), we use the dispersion representation
of the one-loop sunset topology given in Eqs. (A1) and
(A2) to write the lepton-neutrino loop represented in Fig. 7
as an integral differential in the lepton pair invariant mass
square χ2. That is, if both leptons are massless

Z
dDk
ð2πÞD

−TrðΓσið=kþ =q2ÞΓρi=kÞ
k2ðkþ q2Þ2

¼ i
Z

∞

0

dðχ2Þ ρsðχ2Þ
χ2 − q22 − iη

ðq22gρσ − qρ2q
σ
2Þ; ð50Þ
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where the spectral density ρs reads

ρs ¼
D − 2

D − 1
ρ1LSðχ2; 0; 0Þ ¼

2

3

1

16π2
þOðϵÞ: ð51Þ

Since renormalization can be performed at the differential
level, the integrand is finite, and it is enough to keep the
Oðϵ0Þ term in ρs. A nice feature of the semileptonic width is
that the purely leptonic part is not affected by QCD
corrections, which keeps the spectral density very simple.
Note that the “effective massive propagator” of mass χ is
transverse due to the leptons are massless. After writing the
leptonic loop in this form, we can compute the width

differential in the dilepton pair invariant mass square by
leaving the integral over χ2 undone.
The Feynman diagrams contributing to the semileptonic

differential width are shown in Fig. 8. The corresponding
amplitude is reduced to a combination of the master
integrals computed in Sec. III by using LITERED. In the
b → clν̄l channel, the amplitude at LO-QCD and NLO-
QCD is written as a combination of the master integrals
given in Secs. III B and III C, respectively. In the b → ulν̄l
channel, the amplitude at LO-QCD and NLO-QCD is
written as a combination of the master integrals given in
Secs. III D and III E, respectively. Whereas the master
integrals are universal objects, the particular combination

FIG. 6. LO-QCD and NLO-QCD diagrams contributing to the total semileptonic decay width.

FIG. 7. Graphs representing the leptonic loop appearing in the forward scattering matrix element of the B-hadron in usual (left) and
dispersion (right) representation.
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that gives the semileptonic width depends on the structure
of the interaction.
The topology of the graphs is such that the NLO

contribution can be proportional only to the color factorCF.
The computation is done in a general covariant gauge

with gauge fixing parameter a. The coefficients of the
differential width are independent of the gauge fixing
parameter, which is a strong check of the calculation.
Whereas the computation of αs corrections to the semi-

leptonic decay width stemming from the massive channel
requires computing three loop integrals with one scale (ρ),
the computation of the differential width requires one to
evaluate two-loop integrals with two scales (r, ρ). That
makes the analytical structure of the differential width more
involved. Integrating over the additional scale r one obtains
the total width. Clearly, the additional integration makes the
analytical structure of the total width simpler compared to
its differential counterpart, since it is a function of one less
parameter.

V. RESULTS

In this section we summarize the analytical results for the
HQE coefficients of the differential and total (integrated)
semileptonic decay width stemming from both the b →
clν̄l and the b → ulν̄l decay channels with massless
leptons. Since we neglect the lepton masses, all ηi vanish,
so the differential rate is a function of ρ and r, where r is the
invariant mass of the leptons. Integrating over r yields the
total rate, which then depends on ρ only.
For presentation, we split the LO and NLO contributions.

We define the coefficients of the differential width to be

C0ðρ; rÞ ¼ CLO0 ðρ; rÞ þ CF
αs
π
CNLO0 ðρ; rÞ; ð52Þ

and the coefficients of the total (integrated) width to be

C0ðρÞ ¼ CLO
0 ðρÞ þ CF

αs
π
CNLO
0 ðρÞ: ð53Þ

A. Differential decay width

For the b → clν̄l channel the LO and NLO coefficients are most conveniently expressed in the variables x� and read

CLO0 ¼ 48π2ðxþ − x−Þðx−xþð3x− þ 3xþ − 8Þ þ x−ð3 − 2x−Þ þ xþð3 − 2xþÞÞ; ð54Þ

FIG. 8. LO-QCD and NLO-QCD diagrams contributing to the differential semileptonic decay width.
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CNLO0 ¼ −24π2
	
1

2
ðx− − xþÞðx−xþð8x−xþ þ 3x− þ 3xþ − 28Þ þ 3x−ð1 − 2x−Þ þ 3xþð1 − 2xþÞ þ 8Þ

þ 2ðx−xþð3x− þ 3xþ − 8Þ þ x−ð3 − 2x−Þ þ xþð3 − 2xþÞÞ

×

�
ðx− þ xþÞ

�
2Li2

�
1 −

x−
xþ

�
− 2Li2

�
1 −

xþ
x−

�
þ 2Li2ðx−Þ − 2Li2ðxþÞ

þ 2 lnðx−Þ lnðxþ − x−Þ − 2 lnðxþÞ lnðxþ − x−Þ − ln2ðx−Þ þ ln2ðxþÞ

þ lnð1 − x−Þ lnðx−Þ − lnð1 − xþÞ lnðxþÞ
�
− 4ðx− − xþÞ lnðxþ − x−Þ

�

þ x−ðx2−x2þð4xþ − 14Þ þ x−xþð−14x2þ þ 34xþ þ 26x− − 40Þ
þ x−ð15 − 12x−Þ þ xþð5x2þ − 4xþ þ 6ÞÞ lnðx−Þ
− xþðx2−x2þð4x− − 14Þ þ x−xþð−14x2− þ 34x− þ 26xþ − 40Þ
þ xþð15 − 12xþÞ þ x−ð5x2− − 4x− þ 6ÞÞ lnðxþÞ
− ð4x3−x3þ − x2−x2þð14x− þ 14xþ − 28Þ þ x−xþð14x2þ − 12xþ þ 2x2− þ 12x− − 28Þ
þ x−ð4x2− − 14x− þ 14Þ þ xþð−4x2þ − 2xþ þ 14Þ − 4Þ lnð1 − x−Þ
þ ð4x3−x3þ − x2−x2þð14x− þ 14xþ − 28Þ þ x−xþð14x2− − 12x− þ 2x2þ þ 12xþ − 28Þ

þ xþð4x2þ − 14xþ þ 14Þ þ x−ð−4x2− − 2x− þ 14Þ − 4Þ lnð1 − xþÞ


: ð55Þ

Indeed, the terms involving Li2ðxÞ and ln2ðxÞ can be written more compactly using that

2Li2

�
1 −

x−
xþ

�
− 2Li2

�
1 −

xþ
x−

�
þ 2Li2ðx−Þ − 2Li2ðxþÞ þ 2 lnðx−Þ lnðxþ − x−Þ

− 2 lnðxþÞ lnðxþ − x−Þ − ln2ðx−Þ þ ln2ðxþÞ þ lnð1 − x−Þ lnðx−Þ − lnð1 − xþÞ lnðxþÞ

¼ π2

3
þ 2Li2

�
1 −

x−
xþ

�
− 2Li2

�
x−
xþ

�
þ Li2ðx−Þ − Li2ð1 − x−Þ − Li2ðxþÞ þ Li2ð1 − xþÞ

¼ 4LR

�
1 −

x−
xþ

�
þ 2LRðx−Þ − 2LRðxþÞ; ð56Þ

where LRðxÞ is Roger’s dilogarithm [33]

LRðxÞ ¼ Li2ðxÞ þ
1

2
lnðxÞ lnð1 − xÞ ¼ 1

2

�
π2

6
þ Li2ðxÞ − Li2ð1 − xÞ

�
; 0 < x < 1: ð57Þ

The second equality in Eq. (56) displays an explicit π2 term which highlights the close relationship between π2 terms and
dilogarithms. For example, Li2ð1Þ ¼ π2=6. As we will see throughout this section, we can always hide the explicit π2 terms
by choosing a proper set of dilogarithms to express the results.
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In terms of Roger’s dilogarithm the CNLO0 coefficient reads

CNLO0 ¼ −24π2
	
1

2
ðx− − xþÞðx−xþð8x−xþ þ 3x− þ 3xþ − 28Þ þ 3x−ð1 − 2x−Þ þ 3xþð1 − 2xþÞ þ 8Þ

þ 4ðx−xþð3x− þ 3xþ − 8Þ þ x−ð3 − 2x−Þ þ xþð3 − 2xþÞÞ

×

�
ðx− þ xþÞ

�
2LR

�
1 −

x−
xþ

�
þ LRðx−Þ − LRðxþÞ

�
− 2ðx− − xþÞ lnðxþ − x−Þ

�

þ x−ðx2−x2þð4xþ − 14Þ þ x−xþð−14x2þ þ 34xþ þ 26x− − 40Þ
þ x−ð15 − 12x−Þ þ xþð5x2þ − 4xþ þ 6ÞÞ lnðx−Þ
− xþðx2−x2þð4x− − 14Þ þ x−xþð−14x2− þ 34x− þ 26xþ − 40Þ
þ xþð15 − 12xþÞ þ x−ð5x2− − 4x− þ 6ÞÞ lnðxþÞ
− ð4x3−x3þ − x2−x2þð14x− þ 14xþ − 28Þ þ x−xþð14x2þ − 12xþ þ 2x2− þ 12x− − 28Þ
þ x−ð4x2− − 14x− þ 14Þ þ xþð−4x2þ − 2xþ þ 14Þ − 4Þ lnð1 − x−Þ
þ ð4x3−x3þ − x2−x2þð14x− þ 14xþ − 28Þ þ x−xþð14x2− − 12x− þ 2x2þ þ 12xþ − 28Þ

þ xþð4x2þ − 14xþ þ 14Þ þ x−ð−4x2− − 2x− þ 14Þ − 4Þ lnð1 − xþÞ


: ð58Þ

Note that, in terms of x�, the coefficient of the differential
width can be expressed as a function of simple structures
which are polynomials or polynomials multiplied by log-
arithms, square logarithms, and dilogarithms. Alternatively,
we can replace the dependence in square logarithms and
dilogarithms in favor of Roger’s dilogarithms.
It is also interesting to note the remarkable xþ ↔ x−

asymmetry. More precisely, we observe that the quan-
tity Re½C0ðxþ; x−Þ þ C0ðx−; xþÞ� ¼ 0.
The coefficients for the b → ulν̄l channel can be

obtained from the expressions for the b → clν̄l channel
by just taking ρ ¼ 0. In terms of the variables x�, that
corresponds to taking xþ ¼ 1 − r and x− ¼ 0. We check
our results by doing both, taking the massless limit and
computing them from scratch by using the master integrals
in Secs. III D and III E. They read

CLO0 ¼ 48π2ð1 − rÞ2ð1þ 2rÞ; ð59Þ

CNLO0 ¼ −4π2
�
3ð1− rÞð6r2 − 9r− 5Þ

þ 12rð1þ rÞð1− 2rÞ lnðrÞ
þ 6ð1− rÞ2ð5þ 4rÞ lnð1− rÞ

þ 12ð1− rÞ2ð1þ 2rÞ
�
π2

2
þ Li2ðrÞ− Li2ð1− rÞ

��

ð60Þ

¼ −4π2½3ð1− rÞð6r2 − 9r− 5Þ þ 12rð1þ rÞð1− 2rÞ lnðrÞ
þ 6ð1− rÞ2ð5þ 4rÞ lnð1− rÞ
þ 24ð1− rÞ2ð1þ 2rÞð2LRðrÞ þLRð1− rÞÞ�: ð61Þ

Note that the combination Li2ðrÞ − Li2ð1 − rÞ does not
produce any factor of π2 after integration, so to the total
width. That means that the π2 term in the coefficient of the
total width comes only from the integration of the term with
explicit π2 in Eq. (60). In Eq. (61), the π2 terms are
completely hidden inside Roger’s dilogarithms.

B. Total (integrated) decay width

Once the coefficient of the differential semileptonic
decay width is obtained, we can compute the coefficient
of the total semileptonic decay width as a check. It is
obtained by solving the following integral:

C0ðρÞ ¼
1

24π2

Z ð1− ffiffi
ρ

p Þ2

0

drC0ðr; ρÞ: ð62Þ

Note that the expression above requires an integration over
r. However, our expression for C0ðr; ρÞ is written in terms
of x�ðr; ρÞ, which are more natural variables for describing
the system. As we previously discussed, these variables
keep the expressions for the coefficients rather compact and
in terms of simple structures which are polynomials in x�,
or polynomials multiplied by logarithms, square loga-
rithms, and dilogarithms. On the contrary, if we rewrite
the coefficient of the differential width in terms of r and ρ,
the structure turns out to be much more complicated and
integration becomes nonviable. Therefore, it is much better
to integrate over xþ or x− instead of r. First, we use xþ ¼
ρ=x− in order to write C0 in terms of a single variable x− (ρ
is constant). Then, dr ¼ ð−1þ ρ=x2−Þdx− and the integral
becomes
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C0ðρÞ ¼
1

24π2

Z
ρ

ffiffi
ρ

p dx−

�
1 −

ρ

x2−

�
C0

�
xþ ¼ ρ

x−
; x−

�
: ð63Þ

After integration we find the coefficients for the b → clν̄l channel

CLO
0 ¼ 1 − 8ρþ 8ρ3 − ρ4 − 12ρ2 lnðρÞ; ð64Þ

CNLO
0 ¼ 25

8
−
π2

2
−
239ρ

6
þ 16π2ρ3=2 − 8π2ρ2 þ 16π2ρ5=2 þ 239ρ3

6
−
25ρ4

8
−
π2ρ4

2

−
17

6
lnð1 − ρÞ þ 32

3
ρ lnð1 − ρÞ − 32

3
ρ3 lnð1 − ρÞ þ 17

6
ρ4 lnð1 − ρÞ

− 10ρ lnðρÞ − 45ρ2 lnðρÞ þ 2

3
ρ3 lnðρÞ − 17

6
ρ4 lnðρÞ

− 32ρ3=2 ln ð1 − ffiffiffi
ρ

p Þ lnðρÞ − 32ρ5=2 ln ð1 − ffiffiffi
ρ

p Þ lnðρÞ
þ 32ρ3=2 ln ð1þ ffiffiffi

ρ
p Þ lnðρÞ þ 32ρ5=2 ln ð1þ ffiffiffi

ρ
p Þ lnðρÞ

þ 2 lnð1 − ρÞ lnðρÞ þ 60ρ2 lnð1 − ρÞ lnðρÞ þ 2ρ4 lnð1 − ρÞ lnðρÞ − 18ρ2ln2ðρÞ − 1

2
ρ4ln2ðρÞ

þ ð6þ 64ρ3=2 þ 96ρ2 þ 64ρ5=2 þ 6ρ4ÞLi2ð−
ffiffiffi
ρ

p Þ
þ ð6 − 64ρ3=2 þ 96ρ2 − 64ρ5=2 þ 6ρ4ÞLi2ð

ffiffiffi
ρ

p Þ; ð65Þ

which are in agreement with the previously known results given in Refs. [30,31,37]. Indeed, the expression above can be
written more compactly by choosing a different set of dilogarithms to express the result

CNLO
0 ¼ 128ρ3=2ðρþ 1ÞLi2ð1 −

ffiffiffi
ρ

p Þ − ð32ρ5=2 þ 32ρ3=2 þ 3ρ4 þ 48ρ2 þ 3ÞLi2ð1 − ρÞ

−
1

2
ρ2ðρ2 þ 36Þ ln2ðρÞ þ 1

24
ð−75ρ4 þ 956ρ3 − 956ρþ 75Þ

þ 1

6
ð17ρ4 − 64ρ3 þ 64ρ − 17Þ lnð1 − ρÞ − ðρ4 − 12ρ2 þ 1Þ lnð1 − ρÞ lnðρÞ

−
1

6
ρð17ρ3 − 4ρ2 þ 270ρþ 60Þ lnðρÞ; ð66Þ

or even in terms of Roger’s dilogarithm

CNLO
0 ¼ 128ρ3=2ðρþ 1ÞLRð1 −

ffiffiffi
ρ

p Þ − ð32ρ5=2 þ 32ρ3=2 þ 3ρ4 þ 48ρ2 þ 3ÞLRð1 − ρÞ

− 32ρ3=2ðρþ 1Þ ln ð1 − ffiffiffi
ρ

p Þ lnðρÞ − 1

2
ρ2ðρ2 þ 36Þ ln2ðρÞ

þ 1

24
ð−75ρ4 þ 956ρ3 − 956ρþ 75Þ þ 1

6
ð17ρ4 − 64ρ3 þ 64ρ − 17Þ lnð1 − ρÞ

−
1

6
ρð17ρ3 − 4ρ2 þ 270ρþ 60Þ lnðρÞ

þ 1

2
ð32ρ5=2 þ 32ρ3=2 þ ρ4 þ 72ρ2 þ 1Þ lnð1 − ρÞ lnðρÞ: ð67Þ

Note that in both cases explicit π2 terms are hidden inside dilogarithms.
For the b → ulν̄l channel, the integration of Eq. (63) over r can easily be performed since ρ ¼ 0. Alternatively, we can

take the massless limit in Eqs. (65)–(67). In both cases we obtain agreement with the known result

CLO
0 ¼ 1; CNLO

0 ¼ 1

8
ð25 − 4π2Þ: ð68Þ
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VI. CONCLUSIONS

We have presented an alternative method for the
computation of the decay width differential in the n
p-particle invariant mass square at NLO in the strong
coupling αs, assuming a general transition QðMÞ →
qðmÞp1ðm1Þ � � �pnðmnÞ. The approach is based on the
use of the optical theorem, the HQE, and dispersion
representations. The main result of the paper is the
computation of the associated master integrals analytically,
which are universal to this kind of processes. We have
observed that the key point for the analytical computation
of the master integrals in the massive case (m ≠ 0) is the
choice of appropriate variables for the description of
the system. We also compute the master integrals in the
massless (m ¼ 0) case as a check.
The coefficient of the differential width can always be

computed analytically. Being able to get a completely
analytical result or not will depend on the complexity of the
spectral density ρs. If ρs can be computed analytically,
then the differential width is known analytically and the
final integration over r to obtain the total width or moments
(with or without cuts) can always be performed, at least
numerically, which is enough for comparison to
experiment.
As an application, we have computed the leading HQE

coefficient of the semileptonic decay width differential in
the dilepton pair invariant mass square at NLO in αs. The
decay is mediated by the b → qlν̄l transition, where the
leptons are considered to be massless and q can be either
massive or massless. By a choice of variables, the differ-
ential width for the massive case can be expressed in terms
of simple structures which are polynomials and polyno-
mials multiplied by logarithms and Roger’s dilogarithms
(or alternatively polynomials multiplied by square loga-
rithms and dilogarithms). The differential width for the
massless case is computed as a check of our methods. We
compute it explicitly and compare with the massive case in
the limit m → 0. As an additional check, we integrate the
differential width to get the total semileptonic width and
compare with the known result.
The master integrals we have computed may have

several physical applications. They can be used for the
computation of the differential and total semileptonic and
nonleptonic decay widths with any number of different
masses, or to topologically analogous decays emerging
from new physics interactions.
The computation of the leptonic spectrum in B or D

weak decays is the main application of our results. Still it
would be interesting to explore if the method can also be
applied to different kinds of weak decays currently studied
in phenomenology such as B → Xslþl−, B → Xsγ, or the
decay of the top quark. The process B → sμþμ− has drawn
a lot of attention recently in relation to the observation
of flavor anomalies. For reliable conclusions about the
deviations from the SM, a high accuracy of theoretical

predictions is required, which also includes an account of
subleading terms in the large mb power expansion. To the
best of our knowledge, the NLO contributions of the
operators O9 and O10 of the effective Lagrangian (see
e.g., [38]) to the differential rate are unknown at present,
and can readily be computed using the master integrals
presented in this paper. The same applies to B → sτþτ−,
where the τ mass can readily be accounted in our setup. The
NLO contribution of the operator O7 to the total rate of
B → Xsγ can also be computed within our approach though
it was obtained earlier within different methods.
Another potential application is the top quark decay into

b-quark and W-boson. The state of the art is the evaluation
of the decay rate at NNLO for a massless b-quark with
some expansion in the W-boson mass [39,40]. The master
integrals of our paper can be used to compute the rate at
NLO for a massive b quark. Even though at this level the
results are already known, the techniques presented in the
paper are somewhat simpler than direct computations of
the decay width.
Finally, the master integrals obtained in the paper can

appear as a part of the computation of more complicated
processes with a larger number of loops and/or in the higher
orders of mass expansions.
As an immediate application of the master integrals

presented here we have computed analytically the 1=m3
b

power corrections to the HQE of the differential rate of
B → Xclν̄ at NLO-QCD [41].
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APPENDIX: DISPERSION REPRESENTATION
OF THE ONE-LOOP TWO-PROPAGATOR

DIAGRAM

Two-point functions obey dispersion relations which
follow from the analyticity properties of these functions
[42,43]. In particular, the dispersion representation of the
one-loop diagram with two propagators plays a key role
in this work. It is not only extremely useful for the
computation of master integrals, but most importantly it
allows one to write the expression for the semileptonic
width in such a way that the decay width differential in the
leptonic pair invariant mass can be identified. For this
reason, we present it here explicitly due to its relevance to
the paper.
In the case of two massive lines with different masses

the dispersion representation of the one-loop sunset
reads
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1

i

Z
dDq
ð2πÞD

1

q2 −m2
1

1

ðp − qÞ2 −m2
2

¼
Z

∞

ðm1þm2Þ2
ρ1LSðξ; m1; m2Þ
ξ − p2 − iη

dξ; ðA1Þ

where

ρ1LSðξ; m1; m2Þ ¼
1

ð4πÞλþ1

ΓðλÞ
Γð2λÞ ξ

λ−1
��

1 −
ðm1 þm2Þ2

ξ

��
1 −

ðm1 −m2Þ2
ξ

��
λ−1=2

; ðA2Þ

with D ¼ 2λþ 2 ¼ 4 − 2ϵ, is the spectral density.
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