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It has been shown that non-Abelian vortex string supported in four-dimensional (4D) N ¼ 2

supersymmetric QCD (SQCD) with the U(2) gauge group and Nf ¼ 4 quark flavors becomes a critical
superstring. This string propagates in the ten-dimensional space formed by a product of the flat 4D space
and an internal space given by a Calabi-Yau noncompact threefold, namely, the conifold. The spectrum of
closed string states of the associated string theory was obtained using the equivalence between the critical
string on the conifold and the noncritical string on the semi-infinite cigar described by the SLð2;RÞ=Uð1Þ
Wess-Zumino-Novikov-Witten model. This spectrum was identified with the spectrum of hadrons in 4D
N ¼ 2 SQCD. In order to describe effective interactions of these 4D hadrons in this paper, we study
correlation functions of normalizable vertex operators localized near the tip of the SLð2;RÞ=Uð1Þ cigar. We
also compare our solitonic string approach to the gauge-string duality to the AdS/CFT-type holography for
little string theories. The latter relates off mass-shell correlation functions on the field theory side to
correlation functions of non-normalizable vertex operators on the cigar. We show that in most channels the
holographic approach works in our theory because normalizable and non-normalizable vertex operators
with the same conformal dimension are related due to the reflection from the tip of the cigar. However, we
find that holography does not work for lightest hadrons with given baryonic charge.

DOI: 10.1103/PhysRevD.104.114033

I. INTRODUCTION

Non-Abelian vortices were first found in four-dimen-
sional (4D)N ¼ 2 supersymmetric QCD (SQCD) with the
gauge group UðNÞ and Nf ≥ N flavors of quark hyper-
multiplets [1–4]. The non-Abelian vortex string is 1=2
Bogomol’nyi-Prasad-Sommerfield (BPS) saturated and,
therefore, has N ¼ ð2; 2Þ supersymmetry on its world
sheet. In addition to the four translational moduli character-
istic of the Abrikosov-Nielsen-Olesen strings [5], the non-
Abelian string carries orientational moduli, as well as the
size moduli if Nf > N [1–4] (see [6–9] for reviews).
Recently, it was discovered that the non-Abelian soli-

tonic vortex string in 4D N ¼ 2 supersymmetric QCD at
strong coupling can become a critical superstring [10]. This
was shown to happen in the theory with the U(2) gauge
group, four quark flavors, and the Fayet-Iliopoulos (FI)

[11] parameter ξ. Due to the extended supersymmetry, the
gauge coupling in the 4D SQCD could be renormalized
only at one loop. With the judicial choice of the matter
sector, the one-loop renormalization cancels. No dynamical
scale parameter Λ is generated in 4D SQCD.1

The dynamics of the internal (orientational and size)
moduli of the non-Abelian vortex string in the case at hand
(N ¼ 2, Nf ¼ 4) is described by the so-called two-dimen-
sional (2D) weighted CP sigma model, which we denote as
WCPð2; 2Þ, see Sec. II B below. Its β function vanishes, and
the dimension of the target space of theWCPð2; 2Þmodel is
equal to six [10]. Thus, in this case, the target space of the
world-sheet theory of the non-Abelian vortex string is ten
dimensional (10D)as required for a superstring to become
critical. It has a structureR4 × Y6, whereY6 is a noncompact
six-dimensional Calabi-Yau manifold, the resolved conifold
[12,13]. This allows one to apply the string theory for the
calculation of the spectrum of closed string states [14]. This
spectrum was interpreted as a spectrum of hadrons in 4D
N ¼ 2SQCD.Thevortex string at handwas identified as the
superstring theory of type IIA [14].
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1However, conformal invariance of 4D SQCD is broken by the
Fayet-Iliopoulos term.
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A version of the string-gauge duality for 4D SQCD was
proposed [10]; at weak coupling, this theory is in the Higgs
phase and can be described in terms of quarks and Higgsed
gauge bosons, while at strong coupling hadrons of this
theory can be understood as string states formed by the
non-Abelian vortex string. Below, we call this approach
“solitonic string-gauge duality.”
The study of the above vortex string from the standpoint of

string theory, with the focus on massless states in four
dimensions has been started in [14,15]. Generically, most of
the massless modes have non-normalizable wave functions
over the conifold Y6; i.e., they are not localized in 4D and,
hence, cannot be interpreted as dynamical states in 4D
SQCD. In particular, no massless 4D gravitons or vector
fields were found in the physical spectrum in [14]. However,
a single massless BPS hypermultiplet in the 4D SQCD was
detected at a self-dual point (at strong coupling). It is
associated with deformations of a complex structure of the
conifold and was interpreted as a composite 4D “baryon”.2

Later, the existence of this massless hypermultiplet was
confirmed using purely field theoretical methods [16].
The low lyingmassive string stateswere found in [17], and

the corresponding multipet structure with respect to
the 4D N ¼ 2 supersymmetry was identified in [18]. To
analyze the massive states, a different approach was applied,
similar to the one used for little string theories (LSTs), see
[19] for a review. This is the equivalence between the critical
string on the conifold and noncritical c ¼ 1 string which
contains the Liouville field and a compact scalar at the self-
dual radius [20,21]. Generically, the above equivalence is
formulated between the critical string onnoncompactCalabi-
Yau spaces with isolated singularity on the one hand and
noncritical c ¼ 1 string with the additional Ginzburg-
Landau N ¼ 2 superconformal system [21] on the other
hand. In the conifold case, this extra Ginzburg-Landau
conformal field theory (CFT) is absent [22].
The above c ¼ 1 Liouville theory has a mirror description

[23]. In this formulation, it is given by supersymmetric
version of Witten’s 2D black hole with a semi-infinite cigar
target space [24], which is the SLð2; RÞ=Uð1Þ coset Wess-
Zumino-Novikov-Witten (WZNW) theory [20,21,25,26]. It
can be analyzed by virtue of algebraic methods, and the
spectrum of primary operators was computed exactly
[25,27–30]. These exact results were used in [17] to obtain
a low lying spectrum of hadrons inN ¼ 2 4D SQCD. In the
string description, 4D SQCD hadrons are associated with
normalizable vertex operators localized near the tip of
the cigar.
In this paper, we make a next step and apply string theory

description to study interactions of 4D hadrons. To this end,

we calculate correlation functions of normalizable vertex
operators in the WZNW SLð2; RÞ=Uð1Þ coset model.
These correlation functions were studied by many authors
(see, e.g., [31–35] and a review [36]), and we apply already
known results to our case.
Another purpose of this paper is to compare the solitonic

string-gauge duality to the AdS/CFT approach. The former
identify closed string states of the string theory for the
solitonic non-Abelian vortex with hadrons of 4D N ¼ 2
SQCD. The latter developed for much broader class of
theories relates the open string description of a field theory
on the world volume of Nb parallel D-branes and observ-
ables in a theory of a closed string propagating in the
background of these branes, see, for example, [37] for a
review. We summarize the distinctions of two approaches
and suggest that our solitonic string-gauge duality can be
thought of as a “no branes” limit of AdS/CFT-type
correspondence, Nb → 0,3 for the cigar background.
However, holography seems to be a distinctive feature of
AdS/CFT correspondence not present in the solitonic
string-gauge duality.
To clarify this issue, we compare our solitonic string-

gauge duality to the AdS/CFT-type holography for LSTs.
In [21,22,38], it was argued that noncritical string theories
with the dilaton linear in the Liouville coordinate ϕ are
holographic. The main example of this behavior is non-
gravitational LST in the flat six-dimensional space formed
by the world volume of Nb parallel NS5 branes. The string
coupling exponentially goes to zero in the bulk of the
space-time (at large ϕ), and nontrivial dynamics (LST) is
localized near the branes. Much in the same way as in the
AdS/CFT, holography off mass-shell correlation functions
on the field theory side (in LST) correspond to string theory
correlation functions on the “boundary” at ϕ → ∞. More
precisely, off-shell correlation functions in LST correspond
to correlation functions of non-normalizable vertex oper-
ators on the cigar, see [19] for a review.
In this paper, we test this holography for the string theory

of our non-Abelian vortex. We find that in most channels
the holographic approach works because normalizable and
non-normalizable vertex operators with the same conformal
dimension are related due to the reflection from the tip of
the cigar.
This relation was already established in [39] in the

context of the six-dimensional LST in the background of
parallel NS5 branes. Near the pole associated with a
physical state with mass M, the non-normalizable vertex
operator Vnon-norm behaves as

Vnon-norm ∼
1

p2
μ þM2

Vnorm; ð1:1Þ
2If the gauge group is U(2), as is our case, there are no bona

fide baryons. We still use the term baryon because of a particular
value of its charge QBðbaryonÞ ¼ 2 with respect to the global
unbroken Uð1ÞB, see Sec. III C.

3The validity of our approximation is not related to the large
Nb limit, see Sec. III A.
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where pμ is the momentum of the field theory state (4D
momentum in our case), while Vnorm is the normalizable
vertex operator of the state with mass M. The authors of
[39] call these poles Lehmann-Symanzik-Zimmermann
(LSZ) poles.
We test the holography relation (1.1) in our theory. First,

we confirm that LSZ poles of two-point correlation
functions of non-normalizable vertex operators match the
mass spectrum found previously [17,18]. Next, we consider
three-point correlation functions and confirm the hologra-
phy relation (1.1). The only exceptions are correlation
functions of vertex operators which are on the borderline
between normalizable and non-normalizable states. These
operators correspond to logarithmically normalizable wave
functions in our theory and are associated with physical
states in 4D SQCD, namely, lightest baryons with given
baryon charge. Correlation functions of these operators
give scattering amplitudes of the above-mentioned baryons.
Although these operators have non-normalizable “partners”
with same conformal dimensions, correlation functions of
latter operators do not have required LSZ pole structure.
The paper is organized as follows. In Sec. II, we review

the non-Abelian string, and its relation to the critical
superstring on the conifold. Next, in Sec. III, we review
the noncritical c ¼ 1 string theory and the spectrum of
stringy hadrons in 4D SQCD. In Sec. IV, we discuss
general features of our solitonic string-gauge duality versus
holographic dualities. In Sec. V, we consider two-point
correlation functions for operators corresponding to bary-
ons of the underlying 4D N ¼ 2 SQCD. Three-point
correlation functions for such operators are studied in
Sec. VI. We consider these correlation functions with
normalizable as well as non-normalizable operators and
test the holography relation. In Sec. VII, we study corre-
lation functions of operators from continuous representa-
tions and discuss an interpretation of such states in terms
of the 4D N ¼ 2 SQCD. Section VIII presents our con-
clusions. In Appendix A, we cite the three-point func-
tion formula in the supersymmetric Liouville theory and
apply it for the case of the continuous representations. In
Appendix B, we make a comparison of the supersymmetric
and nonsupersymmetric Liouville theories, present an
idea of factorization, and apply it to the supersymmetric
Liouville theory. In Appendix C, we make a consistency
check of the two-point correlation function formula.
Appendix D contains some useful formulas.

II. NON-ABELIAN VORTICES

A. Four-dimensional N = 2 SQCD

As was already mentioned above, non-Abelian vortex
strings were first found in 4DN ¼ 2 SQCD with the gauge
group UðNÞ and Nf ≥ N quark flavors (i.e., hypermultip-
lets) supplemented by the FI D term ξ [1–4], see, for
example, [8] for a detailed review of this theory. Here, we

just mention that at weak coupling, g2 ≪ 1, this theory is in
the Higgs phase in which the scalar components of the
quark multiplets (squarks) develop vacuum expectation
values (VEVs). These VEVs breaks the UðNÞ gauge group
Higgsing all gauge bosons. The Higgsed gauge bosons
combine with the screened quarks to form long N ¼ 2

multiplets with mass m ∼ g
ffiffiffi
ξ

p
.

Since the N ¼ 2 SQCD is in the Higgs phase, non-
Abelian vortex strings confine monopoles. In the N ¼ 2
4D theory, these strings are 1=2 BPS saturated; hence, their
tension is determined exactly by the FI parameter,

T ¼ 2πξ: ð2:1Þ

However, non-Abelian vortices in UðNÞ theories are
topologically stable and cannot be broken. Therefore, the
finite-length strings are closed. In particular, the monopoles
cannot be attached to the string end points. In fact, in the
UðNÞ theories, confined monopoles are junctions of two
distinct elementary non-Abelian strings [3,4,40] (see [8]
for a review). As a result, in 4D N ¼ 2 SQCD, we have
monopole-antimonopole mesons in which the monopole
and antimonopole are connected by two confining strings.
In addition, in the UðNÞ gauge theory, we can have baryons
appearing as a closed “necklace” configurations of N ×
ðintegerÞ monopoles [8].
Squark VEVs lead to the color-flavor locking phenome-

non. The global flavor symmetry group SUðNfÞ and the
gauge group U(N) are broken down, and the resulting
global symmetry is

SUðNÞCþF × SUðNf − NÞ × Uð1ÞB; ð2:2Þ

see Ref. [8] for more details.
The unbroken global Uð1ÞB factor above is identified

with a baryonic symmetry. Note that what is usually
identified as the baryonic U(1) charge is a part of our
4D theory gauge group. “Our” Uð1ÞB is an unbroken by
squark VEVs combination of two U(1) symmetries. The
first is a subgroup of the flavor SUðNfÞ, and the second is
the global U(1) subgroup of UðNÞ gauge symmetry.
The stringy monopole-antimonopole mesons as well as

monopole baryons with spins J ∼ 1 are massive. Their
masses are determined by the string tension, ∼

ffiffiffi
ξ

p
. They are

heavy at weak coupling and decay into perturbative quarks
and gauge bosons, which have mass m ∼ g

ffiffiffi
ξ

p
. Instead at

strong coupling, N ¼ 2 SQCD is in the “instead-of-
confinement” phase [16,41], where perturbative states
evolve into hadrons formed by the closed string states.
All hadrons found from string theory of the non-Abelian
vortex as closed string states turn out to be baryons and
look like monopole “necklaces” [17].
To conclude this section, we note that our 4D N ¼ 2

SQCD has a Higgs branch formed by massless quarks
which are in the bifundamental representation of the global
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group (2.2) and carry baryonic charge, see [14] for more
details. This Higgs branch is hyper-Kählerian [42,43];
therefore, its metric cannot be modified by quantum
corrections [43]. In particular, once the Higgs branch is
present at weak coupling, we can continue it all the way
into strong coupling. Thus, at strong coupling, in the
“instead-of-confinement” phase besides stringy hadrons,
we also have massless perturbative states: bifundamental
quarks. It is argued in [17] that they play an important role
in the stringy dynamics, see Sec. VII.

B. World-sheet sigma model

The presence of non-Abelian subgroup SUðNÞCþF in
(2.2) is the reason for the formation of the non-Abelian
vortex strings [1–4] in the 4D SQCD. The most important
feature of these vortices is the presence of the so-called
orientational zero modes. In this subsection, we are going
to briefly review the sigma model emerging on the world
sheet of the non-Abelian critical string supported inN ¼ 2
SQCD with N ¼ 2, Nf ¼ 4 [10,14,15].
If Nf ¼ N, the dynamics of the orientational zero modes

of the non-Abelian vortex, which become orientational
moduli fields on the world sheet, is described by the 2D
N ¼ ð2; 2Þ supersymmetric CPðN − 1Þ model [8].
Upon adding extra quark flavors, non-Abelian vortices

become semilocal. They acquire so-called size moduli [44].
In particular, for the non-Abelian semilocal vortex at hand
with Nf ¼ 4, in addition to the orientational zero modes nP

(P ¼ 1, 2), there are size moduli which we denote as ρK

(K ¼ 1, 2) [1,4,44–47].
The target space of the resulting weighted CP sigma

model [WCPð2; 2Þ for short] is a symplectic quotient
C4==Uð1Þ, or in other words, the U(1) D-term condition

jnPj2 − jρKj2 ¼ β; ð2:3Þ

plus U(1) gauge invariance. This quotient has complex
dimension three.
Apart from these internal modes, the string under

consideration has of course the usual translational modes
corresponding to the R4 space that the string lives in. In
total, the number of real bosonic degrees of freedom in this
model is ten (four translational plus six internal). These
degrees of freedom form a 10D space needed for super-
string to be critical.
Since non-Abelian vortex string is 1=2 BPS, it preserves

N ¼ ð2; 2Þ in the world-sheet sigma model necessary for
the N ¼ 2 space-time supersymmetry [48,49]. Moreover,
as was shown in [14], the string theory of the non-Abelian
critical vortex is of type IIA.
The world-sheet coupling constant β in (2.3) is related to

the bulk gauge coupling constant g2. At weak coupling, the
relation is given by [8]

β ≈
4π

g2
: ð2:4Þ

Note that the first (and the only) coefficient of the beta
function is the same for the 4D SQCD and the world-
sheet model. Both vanish at Nf ¼ 2N. This ensures that
our world-sheet theory is conformal. Therefore, its target
space is Ricci flat and [being Kahler due to N ¼ ð2; 2Þ
supersymmetry] represents a noncompact Calabi-Yau
manifold, namely, the conifold Y6, see Ref. [13] for a
review.
The global symmetry of the world-sheet sigma model is

SUð2Þ × SUð2Þ × Uð1Þ; ð2:5Þ

i.e., exactly the same as the unbroken global group in
the 4D theory, cf. (2.2), at N ¼ 2 and Nf ¼ 4. The fields
n and ρ transform in the following representations:

n∶ ð2; 0; 0Þ; ρ∶ ð0; 2; 1Þ: ð2:6Þ

C. Thin string regime

The coupling constant of 4D SQCD can be complexi-
fied,

τ≡ i
4π

g2
þ θ4D

2π
; ð2:7Þ

where θ4D is the 4D θ angle. Note that the SUðNÞ
version of the 4D SQCD at hand possesses a strong-weak
coupling (S) duality, namely, τ → − 1

τ [43,50]. There is
also a symmetry with respect to the shift θ4D → θ4D þ 2π
(T duality).
The 2D coupling constant β can be naturally complexi-

fied too if we include the 2D θ term,

β → β þ i
θ2D
2π

: ð2:8Þ

The exact relation between the complexified 4D and 2D
couplings was derived in Ref. [16],

e−2πβ ¼ λð2τ þ 1Þ; ð2:9Þ

where λ is the elliptic modular lambda function. It can
be expressed in terms of standard Jacobi θ functions
[Ref. [51], p. 108] as

λðτÞ ¼ θ41ðτÞ
θ43ðτÞ

: ð2:10Þ

Equation (2.9) generalizes the quasiclassical relation (2.4).
It was derived using 2D-4D correspondence, namely, the
match of the BPS spectra of the 4D theory at ξ ¼ 0 and the
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world-sheet theory on the non-Abelian string [3,4,52,53].
Note that our result (2.9) differs from that obtained in [54]
by the shift of θ4D by π.
According to the hypothesis formulated in [10], our

critical non-Abelian string becomes infinitely thin at strong
coupling at the critical point τc. Moreover, in [14], it was
conjectured that τc corresponds to β ¼ 0 in the world-sheet
theory via relation (2.9). The vortex transverse size is given
by 1=m, where m is the mass of 4D SQCD perturbative
states. Thus, we assume that the mass of the 4D perturba-
tive statesm → ∞ at β ¼ 0, which corresponds to τ ¼ τc in
4D SQCD.
At the point β ¼ 0, the non-Abelian string becomes

infinitely thin, and higher derivative terms can be neglected.
Also, the world-sheet theory of the non-Abelian string
reduces to the WCPð2; 2Þ model. The point β ¼ 0 is a
natural choice because at this point we have a regime
change in the 2D sigma model. This is the point where the
resolved conifold defined by the D term constraint (2.3)
develops a conical singularity [13]. Recently, it was shown
in [16] that the point τc, where our non-Abelian vortex
string becomes thin, is τc ¼ 1, which corresponds to β ¼ 0
via (2.9).4 This point is self-dual under a combination of S
and T dualities.
When the parameter β vanishes, the conifold singularity

can be smoothened by a complex structure deformation. It
was shown in [14] that the complex parameter b of this
deformation corresponds to a massless particle: a baryon
with the baryon charge QB ¼ 2. This baryon can be
represented as a “necklace” of four monopoles [16].

III. NONCRITICAL c= 1 STRING

As was mentioned in Sec. I, the spectrum of massive
string modes on the conifold was found in [17] (see also
[18]) using an alternative formulation in terms of the c ¼ 1
string theory. This theory contains the Liouville field and a
compact scalar at the self-dual radius and is argued to be
equivalent to the string theory on the conifold in the so
called double scaling limit [20–22]. In this section, we
briefly review this theory and spectrum of physical string
states obtained in [17].
The authors of [21,22] considered the above alternative

formulation as a kind of AdS/CFT-type duality.5 Here, we
follow the logic of Ref. [20]6 and consider it as an
equivalence of two string theories: the critical string on
the conifold and noncritical c ¼ 1 string with Liouville
field, see also discussion in Sec. IV for more details.

A. Liouville theory

Relevant noncritical c ¼ 1 string theory is formulated on
the target space

R4 × Rϕ × S1; ð3:1Þ

whereRϕ is a real line associated with the Liouville field ϕ,
and the theory has a linear in ϕ dilaton, such that string
coupling is given by

gs ¼ e−
Q
2
ϕ: ð3:2Þ

In [21], the authors proposed a more general equivalence
between the critical string on noncompact Calabi-Yau
spaces with isolated singularity on the one hand and
noncritical c ¼ 1 string with the additional Ginzburg-
Landau N ¼ 2 superconformal system on the other hand.
In our conifold case, this extra Ginzburg-Landau factor is
absent from (3.1), see Ref. [22].
The bosonic stress tensor of the c ¼ 1 matter coupled to

2D gravity is given by [cf. the linear dilaton (3.2)],

T−− ¼ −
1

2
½ð∂zϕÞ2 þQ∂2

zϕþ ð∂zYÞ2�: ð3:3Þ

The compact scalar Y represents c ¼ 1 matter and satisfies
the periodicity condition

Y ∼ Y þ 2πQ: ð3:4Þ

The scalars are normalized so that their propagators are

hϕðzÞ;ϕð0Þi ¼ − log zz̄; hYðzÞ; Yð0Þi ¼ − log zz̄:

ð3:5Þ

The central charge of the supersymmetric version of this
c ¼ 1 theory is

cSUSYϕþY ¼ 3þ 3Q2: ð3:6Þ

In order for the string on (3.1) to be critical, this central
charge should be equal to 9. This gives

Q ¼
ffiffiffi
2

p
: ð3:7Þ

Deformation of the conifold (complex structure defor-
mation) mentioned above translates into adding the
Liouville interaction to the world-sheet sigma model [21],

δL ¼ b
Z

d2θe−
ϕþiY
Q : ð3:8Þ

Here, b is the deformation parameter. The conifold singu-
larity at b ¼ 0 corresponds to the string coupling constant
becoming infinitely large at ϕ → −∞, see (3.2). At b ≠ 0,

4This corrects the value τ ¼ i suggested earlier in [14,15].
5Below in this paper, we clarify the relation of our approach to

AdS/CFT-type holography.
6In this paper, the equivalence was shown for topological

versions of two string theories.
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the Liouville interaction regularizes the behavior of the
string coupling preventing the string from propagating to
the region of large negative ϕ.
The mirror description of the Liouville c ¼ 1 noncritical

string theory [23] is in terms of 2D black hole [24], which is
the SLð2;RÞ=Uð1Þ coset WZNW theory [20,21,25,26] at
the level

k ¼ 2

Q2
: ð3:9Þ

In the case of the conifold (Q ¼ ffiffiffi
2

p
) this gives

k ¼ 1; ð3:10Þ

where k is the total level of the Kaĉ-Moody algebra in the
supersymmetric version (the level of the bosonic part of the
algebra is then kb ¼ kþ 2 ¼ 3). The target space of this
theory has the form of a semi-infinite cigar; the field ϕ
associated with the motion along the cigar cannot take large
negative values due to semi-infinite geometry.
In this description, the string coupling constant is largest

at the tip of the cigar, gs ∼ 1=b. We assume that parameter b
is large so the string coupling at the tip of the cigar is small,
and the string perturbation theory becomes reliable. In
particular, we can use the tree-level approximation to obtain
the spring spectrum. Note also that, as we already men-
tioned in the Introduction, the SLð2;RÞ=Uð1Þ WZNW
model is exactly solvable, so we do not need to keep the
level of the Kaĉ-Moody algebra k large and can go to the
strong coupling at k ¼ 1, see (3.10).

B. Vertex operators

Vertex operators for the string theory on (3.1) are
constructed in [21], see also [22,25]. Primaries of the c ¼
1 part for large positive ϕ (where the target space becomes a
cylinder Rϕ × S1) take the form

Vj;mL;mR
≈ expfð

ffiffiffi
2

p
jϕþ i

ffiffiffi
2

p
ðmLYL þmRYRÞÞg; ð3:11Þ

where we split Y into left- and right-moving parts. For the
self-dual radius (3.7) (or k ¼ 1), the parameter 2m in
Eq. (3.11) is the integer. For the left-moving sector, 2mL ≡
2m is the total momentum plus the winding number along
the compact dimension Y. For the right-moving sector, we
introduce 2mR which is the momentum minus the winding
number. For our case, the type IIA string mR ¼ −m, while
for the type IIB string mR ¼ m [18].
The primary operator (3.11) is related to the wave

function over “extra dimensions” as follows:

Vj;mL;mR
¼ gsΨj;mL;mR

ðϕ; YÞ:

The string coupling (3.2) depends on ϕ. Thus,

Ψj;mL;mR
ðϕ; YÞ ∼ e

ffiffi
2

p ðjþ1
2
Þϕþi

ffiffi
2

p ðmLYLþmRYRÞ: ð3:12Þ

We look for string states with normalizable wave functions
over the “extra dimensions” which we interpret as hadrons
in 4D N ¼ 2 SQCD. The condition for the string states to
have normalizable wave functions reduces to

j ≤ −
1

2
: ð3:13Þ

The scaling dimension of the primary operator (3.11) is

Δj;m ¼ 1

k
fm2 − jðjþ 1Þgjk¼1 ¼ m2 − jðjþ 1Þ: ð3:14Þ

We include the case j ¼ − 1
2
which is at the borderline

between normalizable and non-normalizable states. In
Ref. [17], it is shown that j ¼ − 1

2
corresponds to the norm

logarithmically divergent in the infrared in terms of the
radial coordinate of the conifold. In particular, the massless
baryon b belongs to states with j ¼ − 1

2
, see the next

subsection.
Unitarity implies that the conformal dimension (3.14)

should be positive,

Δj;m > 0: ð3:15Þ

Moreover, to ensure that conformal dimensions of left- and
right-moving parts of the vertex operator (3.11) are the
same, we impose that mR ¼ �mL.
The spectrum of the allowed values of j and m in

(3.11) was exactly determined by using the Kaĉ-Moody
algebra for the coset SLð2; RÞ=Uð1Þ in [25,27–30], see
Ref. [55] for a review. Both discrete and continuous
representations were found. Parameters j and m determine
the global quadratic Casimir operator and the projection of
the spin on the third axis,

J2jj;mi ¼ −jðjþ 1Þjj; mi; J3jj; mi ¼ mjj; mi;
ð3:16Þ

where Ja (a ¼ 1, 2, 3) are the global SLð2; RÞ currents.
We have
(i) Discrete representations with

j ¼ −
1

2
;−1;−

3

2
;…; m ¼ �fj; j − 1; j − 2;…g:

ð3:17Þ
(ii) Principal continuous representations with

j ¼ −
1

2
þ is; m ¼ integer or m ¼ half-integer;

ð3:18Þ
where s is a real parameter.
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(iii) Exceptional continuous representations with

−
1

2
≤ j < 0; m ¼ integer: ð3:19Þ

We see that discrete representations include the normal-
izable states localized near the tip of the cigar, while
the continuous representations contain non-normalizable
states,7 see (3.13). This nicely matches our qualitative
expectations.
Discrete representations contain states with negative

norms. To exclude the ghost states, a restriction for spin
j is imposed [27–30,55],

−
kþ 2

2
< j < 0: ð3:20Þ

Thus, for our value k ¼ 1, we are left with only two
allowed values of j,

j ¼ −
1

2
; m ¼ �

�
1

2
;
3

2
;…

�
; ð3:21Þ

and

j ¼ −1; m ¼ �f1; 2;…g: ð3:22Þ

C. Scalar and spin-2 states

Four-dimensional spin-0 and spin-2 states were found in
[17] using vertex operators (3.11). The 4D scalar vertices
VS in the ð−1;−1Þ picture have the form [21]

VS
j;m;−m ¼ e−φL−φReipμxμVj;m;−m; ð3:23Þ

where superscript S stands for scalar, φL;R represent
bosonised ghosts in the left- and right-moving sectors,
while pμ is the 4D momentum of the string state.
The condition for the state (3.23) to be physical is

1

2
þ pμpμ

8πT
þm2 − jðjþ 1Þ ¼ 1; ð3:24Þ

where (3.14) was used. The first term on the lhs comes from
ghosts [recall that the conformal dimension of the ghost
operator eqφ is equal to −ðqþ q2=2Þ in the picture q].
The GSO projection restricts the integer 2m for the

operator in (3.23) to be odd [21,56],

m ¼ 1

2
þ Z: ð3:25Þ

For half-integer m, we have only one possibility j ¼ − 1
2
,

see (3.21). This determines the masses of the 4D scalars,

ðMS
mÞ2

8πT
¼ −

pμpμ

8πT
¼ m2 −

1

4
; ð3:26Þ

where the Minkowski 4D metric of the signature
ð−1; 1; 1; 1Þ is used. It is shown in [17] that the state
with m ¼ �1=2 is the massless baryon b, associated with
deformations of the conifold complex structure [14]. It
consists of four monopoles in a “necklace” formed by a
closed string [16]. Higher states with m ¼ �ð3=2; 5=2;…Þ
are massive 4D scalars.
At the next level, we consider 4D spin-2 states. The

corresponding vertex operators are given by

ðVj;m;−mðpμÞÞspin−2 ¼ ξμνψ
μ
Lψ

ν
Re

−φL−φReipμxμVj;m;−m;

ð3:27Þ
where ψμ

L;R are the world-sheet superpartners to 4D
coordinates xμ, while ξμν is the polarization tensor. For
these states to be physical, one should impose a condition

pμpμ

8πT
þm2 − jðjþ 1Þ ¼ 0: ð3:28Þ

The GSO projection selects now 2m to be even, jmj ¼
0; 1; 2;… [21]; thus, we are left with only one allowed
value of j, j ¼ −1 in Eq. (3.22). Moreover, the valuem ¼ 0
is excluded. This leads to the following expression for the
masses of spin-2 states:

ðMspin−2
m Þ2 ¼ 8πTm2; jmj ¼ 1; 2;…: ð3:29Þ

All spin-2 states are massive, and no massless 4D graviton
appears in our theory. It matches the fact that our 4DN ¼ 2
QCD is defined in flat space without gravity.
The momentum m in the compact dimension is related

to the baryonic charge. It was shown in [17,18] that the
baryon charge of the vertex operators (3.23) and (3.27) is
given by

QB ¼ 4m: ð3:30Þ
All closed string states are baryons.

IV. SOLITONIC STRING-GAUGE DUALITY
VERSUS HOLOGRAPHY

As we already mentioned in the Introduction, a version
of the string-gauge duality for 4DN ¼ 2 SQCDwithNf ¼
2N ¼ 4was proposed in [10]; at weak coupling, this theory
is in the Higgs phase and can be described in terms of (s)
quarks and Higgsed gauge bosons, while at strong coupling
hadrons of this theory can be understood as closed string
states formed by the non-Abelian vortex string. This duality
was further explored by studying the string theory for the
critical non-Abelian vortex in [14,15,17].

7We discuss the case j ¼ − 1
2
which is on the borderline

between normalizable and non-normalizable states in the next
subsection.
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We call this duality a solitonic string-gauge duality and
would like to compare it with AdS/CFT-type holography.
Of course, there is a conceptual difference. In our approach
10D space is an artificial construction formed by 4D “real”
space where SQCD lives and six-dimensional conifold
associated with orientational and size moduli of the non-
Abelian vortex. Instead, in AdS/CFT correspondence, the
fundamental superstring propagates in the 10D space from
the very beginning.
Also the scales of the string tension are dramatically

different in two approaches. The scale of the squire root of
the fundamental string tension is determined roughly
speaking by the Plank scale, while for the solitonic non-
Abelian vortex

ffiffiffiffi
T

p
is fixed at the SQCD scale set by the FI

parameter, see (2.1).
However, we can take a more pragmatic point of view

“forgetting” for a minute where the 10D space comes from
and think of our solitonic string-gauge duality as a duality
which associates a given 4D SQCD with a string theory on
the conifold. Then, we can summarize the main distinctions
of our approach as follows:

(i) AdS/CFT correspondence is typically based on the
presence of Nb parallel D-branes, see, for example,
[37] for a review.Moreover, the validity of the gravity
approximation requires a large Nb limit. In our string
theory on the conifold, there are no branes. The
validity of our approximation is based on the large
value of the parameter of the conifold complex
structure deformation b. Large b ensures the validity
of the gravity approximation because the curvature
of the conifold remains everywhere small, see, for
example, [57]. Moreover, as we already mentioned,
largeb ensures small gs in the string theory formulated
on the cigar.

(ii) AdS/CFT correspondence assumes holography.
Off-shell correlation functions on the field theory
side correspond to string theory correlation func-
tions on the “boundary,” infinitely far away from the
branes. Instead, in our solitonic string-gauge duality,
all nontrivial “real” physics should be localized
exclusively near the tip of the cigar. We consider
only normalizable vertex operators with j ≤ − 1

2
[see

(3.13)] and identify them with hadrons of 4D SQCD.
The first distinction above suggests that we can think

of our solitonic string-gauge duality as of Nb ¼ 0 limit of
AdS/CFT correspondence. The simplest example is the
Klebanov-Witten’s construction [58] of Nb D3-branes
filling the R4 space near the conifold singularity in a type
IIB superstring. The presence of the five-form flux sourced
by branes makes a direct product of R4 and Y6 a warped
product with anti–de Sitter (AdS5) geometry. In the limit
Nb ¼ 0, the warped factor disappears, and we get our
background R4 × Y6.
However, the second distinction seems to be a crucial

one. To clarify this issue, below in this paper, we compare
our theory with the most close example of the AdS/CFT

holography: nongravitational six-dimensional LST on the
world volume of k NS5-branes [21,38,39]. This theory is
holographically dual to the noncritical string theory on
R6 × SLð2;RÞk=Uð1Þ × SUð2Þk=Uð1Þ, where k is the level
of the Kac-Moody algebra of WZNW model.8 The duality
ensures that off-shell correlation functions in LST corre-
sponds to correlation functions of non-normalizable vertex
operators on the cigar, see Ref. [19] for a review.
Below, we test this type of holography for the string

theory of our non-Abelian vortex. In particular, we test the
LSZ relation (1.1) found in [39] for the theory on NS5-
branes. First, we find the poles of two-point correlation
functions of non-normalizable vertex operators and com-
pare results to the hadron spectrum found previously
[17,18], see Eqs. (3.26) and (3.29). The poles must directly
correspond to hadron masses. Second, we consider the
correlation functions of normalizable vs. non-normalizable
operators and see how they are related to each other.
To conclude this section, we note that in [21,22] the

above holographic duality for LST on NS5-branes was
generalized to the correspondence between the critical
string on noncompact Calabi-Yau spaces with isolated
singularity in the double scaling limit on the one hand
and noncritical c ¼ 1 string with the additional Ginzburg-
Landau N ¼ 2 superconformal system on the other hand.
The equivalence of the critical string on the conifold and
noncritical c ¼ 1 string we use here is a particular case of
this correspondence. However, this correspondence looks
more like equivalence of two closed string theories rather
then duality between open and closed string descriptions
typical for AdS/CFT-type holography. Therefore, as we
already mentioned, we follow the logic of Ref. [20] and
consider this correspondence as an equivalence of two
string theories rather than the AdS/CFT-type duality. One
of the important directions of future work is to demonstrate
this equivalence more directly.

V. TWO-POINT CORRELATION FUNCTIONS AND
(NON-)NORMALIZABLE OPERATORS

A. Reflection property

As we already mentioned, SLð2;RÞ=Uð1Þ primary fields
were constructed in [21], see also Refs. [22,25] and [33,34].
Primaries of the c ¼ 1 part can be expanded at ϕ → ∞
where the target space becomes a cylinder Rϕ × S1. In
(3.11), we presented the leading at large ϕ term for values
of j associated with discrete series (3.17). For generic j, the
asymptotic expansion can be written as follows9 [34]:

8In our string theory, the last factor [compact SU(2)/U(1) CFT]
is absent.

9Similar formulas have appeared also in [39], but in this paper,
we use the normalization of [34], see Eqs. (13)–(14) and (16)–
(20) in the latter paper. Also, our notation for mR, mL modes is
related to the notation m; m̄ of [21,39] as m ¼ mL, m̄ ¼ −mR.
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Vj;mL;mR
¼ eiQðmLYLþmRYRÞ½eQjϕ

þ Rðj; mL;mR; kÞe−Qðjþ1Þϕ þ � � ��; ð5:1Þ

where the ellipses stand for terms that are subleading at
large positive ϕ. The background charge Q is related to
the level k via (3.9) as k ¼ 2=Q2. We keep k arbitrary and
put it to the value k ¼ 1 [see Eq. (3.10)] at the last step.
The so-called reflection coefficient Rðj; mL;mR; kÞ is given
by Ref. [39]

Rðj; mL;mR; kÞ

¼
�
1

π

Γð1þ 1
kÞ

Γð1 − 1
kÞ
�
2jþ1

×
Γð1 − 2jþ1

k ÞΓðmL þ jþ 1ÞΓðmR þ jþ 1ÞΓð−2j − 1Þ
Γð1þ 2jþ1

k ÞΓðmL − jÞΓðmR − jÞΓð2jþ 1Þ :

ð5:2Þ

Physically, the presence of the two exponentials written in
the expansion (5.1) represents a reflection from the tip of
the cigar. Note that these two exponentials have the same
conformal dimension, see Eq. (3.14). For our case of a type
IIA string, we take mL ¼ −mR ¼ m.
The reflection coefficient (5.2) is defined up to an

arbitrary factor of the form ðAÞ2jþ1, where A is a constant.
It can be absorbed into a redefinition of the operators

Vj;mL;mR
↦ ðAÞjVj;mL;mR

; ð5:3Þ

see Ref. [39]. We use the normalization of [33,34,39].
The primaries under consideration obey the so-called

reflection property [39],

Vj;mL;mR
¼ Rðj; mL;mR; kÞV−j−1;mL;mR

: ð5:4Þ

Note a useful relation

Rðj; mL;mR; kÞ · Rð−j − 1; mL;mR; kÞ ¼ 1: ð5:5Þ

The reflection property (5.4) can be easily checked on the
level of expansion (5.1). We have

Vj;mL;mR
≈ eiQðmLYLþmRYRÞ½eQjϕ þ Rðj; mL;mR; kÞe−Qðjþ1Þϕ�
¼ Rðj; mL;mR; kÞeiQðmLYLþmRYRÞ

× ½Rð−j − 1; mL;mR; kÞeQjϕ þ e−Qðjþ1Þϕ�
≈ Rðj; mL;mR; kÞV−j−1;mL;mR

; ð5:6Þ

where we use Eq. (5.5).

For generic values of j, one exponential in Eq. (5.1) is
normalizable, while the other one is non-normalizable, see
Eq. (3.13), which stays intact for generic values of k.
However, at special values of j;mL;mR, these operators can
become normalizable. This can happen in one of the
following cases:
(1) If j < −1=2 and the reflection coefficient

Rðj; mL;mR; kÞ vanishes.
(2) If j > −1=2 and the reflection coefficient

Rðj; mL;mR; kÞ has a pole.
(3) If j ¼ −1=2.

To see this, consider an operator Vj;mL;mR
with j < −1=2.

When j and mL, mR approach the values of the discrete
series (3.17), the reflection coefficient vanishes. Techni-
cally it happens because some gamma functions in Eq. (5.2)
develop poles; for more details. see below. Using the
expansion (5.1). we find

Vj;mL;mR
∼ eiQðmLYLþmRYRÞ

× ðeQjϕ þ Rðj; mL;mR; kÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}
→0

e−Qðjþ1ÞϕÞ →

→ eQjϕþiQðmLYLþmRYRÞ; ð5:7Þ

which is the leading term in the expansion of a normal-
izable operator.
For an operator Vj̃ with j̃ ¼ −1 − j > −1=2. we have

similarly

Vj̃;mL;mR
∼ eiQðmLYLþmRYRÞðeQj̃ϕ þ Rðj̃; mL;mR; kÞ|fflfflfflfflfflfflfflfflfflfflffl{zfflfflfflfflfflfflfflfflfflfflffl}

has a pole

eQjϕÞ →

→ Rðj̃; mL;mR; kÞeQjϕþiQðmLYLþmRYRÞ; ð5:8Þ

[cf. (5.5)]. This expression contains a pole. The residue at
this pole is again a normalizable operator (see below for
more details).
As for j ¼ − 1

2
, it is a borderline case when the two

exponentials in Eq. (5.1) are the same. As we already
mentioned, it is a state with the norm logarithmically
divergent in the infrared. As was argued in [17], this state
should be included into the physical spectrum.
Thus, we can have normalizable as well as non-normal-

izable operators.
In the following, we are interested in correlation func-

tions of operators corresponding to hadronic states of 4D
SQCD. Strictly speaking, these are given by “dressed”
vertex operators (3.23) and (3.27), and apart from the
SLð2; RÞ=Uð1Þ part, they include ghost and R4 factors.
However these “extra” factors contribute to the correlation
functions trivially. Below, we focus on the “internal”
ðϕ; YÞ-dependent SLð2; RÞ=Uð1Þ part in the correlation
functions. The latter will contain all the relevant pole
structures, and only this ðϕ; YÞ-dependent part is relevant
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for studying normalizable and non-normalizable operators
in the sense discussed above.

B. Poles of the two-point function and holography

AdS/CFT-type holography discussed in Sec. IV relates
correlation functions of non-normalizable operators with
j > −1=2 to correlation functions of normalizable operators
with j < −1=2, see Eqs. (1.1) and (5.8). The reflection
property (5.4) and the expansion (5.1) are the main technical
ingredients necessary for understanding this relation.
The two-point correlation function of the primary

operators was computed in [21] (see also Refs. [33,34]
and [39,59]). The exact formula reads10

hVj1;mL;mR
Vj2;−mL;−mR

i ¼ Rðj; mL;mR; kÞδðj1 − j2Þ; ð5:9Þ

with the quantity R (the reflection coefficient) given by
(5.2). A quasiclassical justification of this formula (5.9) is
presented in Appendix C. Note that here and below we
suppress the standard dependence of the world-sheet
coordinates.
First, we note that since the two-point correlation

function (5.9) equals the reflection coefficient (5.2), the
poles of the correlation function exactly correspond to
the values of j; mL;mR for which the operators inside the
correlation function become normalizable, see Sec. VA.
Second, when we consider correlation functions of normal-
izable operators with j ≤ −1=2, at special values of
j; mL;mR, they turn out to be finite, as we see below.
The non-normalizable operator with j > −1=2 at special

values of j, m reduces to a normalizable operator times
a reflection coefficient with a pole. This ensures the relation
(1.1) found in [39]. Therefore, we can expect that the two-
point correlation function of two such operators has a pole.
As we explain in Sec. IV, we can interpret this in the

spirit of AdS/CFT-type holography which assumes that off
mass-shell correlation functions in the 4D field theory are
given by string correlation functions of non-normalizable
operators. Poles are associated with propagation of a
physical state.
Let us reiterate. Correlation function hVj̃;mL;mR

; O1;
…; Oni with a non-normalizable operator Vj̃;mL;mR

with
j̃ > −1=2 corresponds to a correlation function hVj;mL;mR

;
O1;…; Oni with a normalizable operator Vj;mL;mR

with
j < −1=2 [see (5.8)]. Here O1;…; On denote other vertex
operators in a correlation function.

Specifically, j and j̃ for these two operators are related as

j̃|{z}
non-norm

¼ −1 − j|{z}
norm

: ð5:10Þ

As we already mentioned, these two vertex operators
Vj̃;mL;mR

and Vj;mL;mR
have the same conformal dimension,

and we expect that as ðj; mL;mRÞ approach values for the
discrete spectrum the reflection coefficient develops a pole.
Then, two vertex operators Vj̃;mL;mR

and Vj;mL;mR
satisfy the

LSZ relation (1.1) which can be called “the holography
relation”. The pole of the propagator of a 4D physical state
in this relation comes from the pole of the reflection
coefficient with respect to ðj; mL;mRÞ via relations
(3.24) or (3.28).

C. Poles of the two-point function and discrete
representations of SLð2;RÞ=Uð1Þ

Now let us look more closely at pole structures of
two-point correlation functions.
Poles of the correlation functions of operators living on

the covering space of SLð2;RÞ were analyzed in [39,59].
Because of the cover, the values of m ¼ mL in the vertex
operators (5.1) are not quantized in this setting. Moreover,
the SLð2;RÞ-spin j was not restricted to take discrete
values in [39,59].
In our setup, the field Y in (5.1) in the WZNW

formulation lives on a circle of radius Rsl ¼
ffiffiffiffiffi
2k

p
.11 It is

a periodic variable. We do not consider the covering
space. Instead, we require the primaries to be 2πRsl
periodic with respect to the field Y. This immediately
imposes a condition

2m ∈ Z; ð5:11Þ

for arbitrary k. In the following, we always assume that
(5.11) is true.
We are going to consider a two-point function (5.9) of

two non-normalizable operators with j̃ ¼ −1 − j > −1=2.
We are interested in poles of this two-point function that
depend on both j and m (in [39] they were called LSZ
poles). It turns out that the values of j, m corresponding
to these poles exactly correspond to discrete representa-
tions of SLð2;RÞ=Uð1Þ (3.17). Here, we show that the
physical poles of the two-point correlation functions of
non-normalizable operators give exactly the j ¼ −1 series.
The operators with j ¼ −1=2 are on the borderline between
normalizable and non-normalizable, and the corresponding
two-point function turns out to be finite.

10In this paper, we mostly do not write the dependence on the
world-sheet coordinates explicitly. Moreover, note the δðj1 − j2Þ
factor is absent in [39,59]. The authors of those papers argued that
this delta function cancels against the ghost zero mode that would
normally make the two-point amplitude vanish in string theory.
However according to recent work [60], the two-point string
amplitudes are nonvanishing after all. Therefore, we should keep
the delta function δðj1 − j2Þ.

11Note that the radius of a circle in the Liouville formulation is
given by (3.4), while the radius of a circle in the mirror WZNW
formulation is given by Rsl ¼

ffiffiffiffiffi
2k

p
, see [21]. To simplify the

notation, we use the same notation Y for this periodic field.
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Note that one should be careful when analyzing
potentially divergent quantities. From what has been said
so far, we can deduce the following rule: when inves-
tigating the poles of j, m, k-dependent quantities (e.g.,
correlation functions), we have to take the limits in the
following order:
(1) First, take m to be a half-integer (5.11).
(2) Next, send j to the desired value j0. Holography

relation (1.1) suggests that it corresponds to the
discrete representation of SLð2;RÞ=Uð1Þ, e.g.,
j → −1=2 or j → −1, see Eqs. (3.21) and (3.22).

(3) Lastly, take the limit k → 1.
This ensures that the LSZ “holography relation” (1.1)

suggested in [39] can be written in our theory as follows:

hVj̃;mL;mR
; O1;…; Oni ∼

1

j − j0
hVj;mL;mR

;O1;…; Oni;

ð5:12Þ

near the pole at j → j0, where we fixed m to be a (half)
integer. Here, j̃ and j are related via (5.10), while j0 ¼ −1.
Below, we check this relation for the two and three-point
correlation functions in our theory.
We also check the holography relation (1.1) for the

j0 ¼ −1=2 channel and show that holography does not
work in this case.

1. j = − 1

Let us consider the two-point correlation function (5.9)
with two non-normalizable operators Vj̃;mL;mR

near
j̃ ¼ −1 − j ¼ 0. To investigate the pole structure, we
can use a technique similar to the one outlined in [59]
[in particular, see Eqs. (3.10)–(3.13) in that paper]. Let us
take mL ¼ −mR ≡m > 0. Using Eq. (5.9) and expanding
the Γ functions in (5.2), we can see that the two-point
correlation function has a pole at j̃ ¼ 0,

hVj̃;m;−mVj̃0;−m;mi ¼ Rm
1

j̃
δðj̃ − j̃0Þ; ð5:13Þ

with the residue given by (see Appendix D)

Rm ¼ Res
j̃¼0

Rðj̃; m;−m; kÞ ¼ m2

2π
: ð5:14Þ

This formula holds also for m < 0. Recalling that
j̃ ¼ −1 − j, we see that the singularity actually appears at

j ¼ −1; m ¼ �f1; 2;…g; ð5:15Þ

and the two-point correlation function (5.13) can be
rewritten as

hVj̃;m;−mVj̃0;−m;mi ¼
Rm

−1 − j
δðj̃ − j̃0Þ; ð5:16Þ

which precisely corresponds to a j ¼ −1 discrete series of
SLð2; RÞ=Uð1Þ representations (3.22). Note that the residue
(5.14) vanishes at m ¼ 0 which directly corresponds to the
fact that m ¼ 0 associated with the would-be massless 4D
graviton is excluded from the series (3.22). Poles in (5.16)
correspond to a part of massive physical states (3.29) found
in [17].
Thus, we see that AdS/CFT-type holography works in

our theory for 4D physical states with j ¼ −1. Namely,
these 4D SQCD states are seen as poles in correlation
functions of non-normalizable vertex operators in the string
theory in accordance with Eqs. (1.1) and (5.12).
Let us note that at 2m ∈ Z, the two-point correlation

function also has other poles at j̃ > 0 (corresponding to
j < −1). Similar poles are called “bulk poles” in [39]
because they come from the region of large ϕ rather then
from states localized near the tip of the cigar (which are
called LSZ poles), see also discussions in Refs. [21,61,62].
In our theory, these poles are not physical and should be
ignored. Associated states with j < −1 break the lower
bound in Eq. (3.20) and have negative norms.
Finally, let us make a note on the two-point function of

the corresponding normalizable operators. According to
Eq. (5.9),

hVj¼−1;m;−mVj¼−1;−m;mi ¼ Rðj ¼ −1; m;−m; kÞδð0Þ:
ð5:17Þ

The reflection coefficient here vanishes, but this zero
cancels against the delta function. The whole two-point
function is finite.

2. j = − 1=2 normalizable

Now consider series of states with j ¼ −1=2, see
Eq. (3.21). These states are on the borderline between
normalizable and non-normalizable and saturate the so-
called Seiberg bound [63]). As we already mentioned, they
are logarithmically normalizable with respect to the coni-
fold radial coordinate and were interpreted as physical
states, see [17] and Sec. III B. Let us have a closer look at
the two-point function of these states.
Let us set for a moment j ¼ −1=2 − ϵ, mL ¼ −mR ≡

m ¼ 1=2þ δ. We have
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hVj;m;−mVj;−m;mi ¼ Rðj; m;−m; kÞ

¼
�
1

π

Γð1þ 1
kÞ

Γð1 − 1
kÞ
�
2jþ1 Γð1 − 2jþ1

k ÞΓðjþmþ 1ÞΓðj −mþ 1ÞΓð−2j − 1Þ
Γð1þ 2jþ1

k ÞΓðm − jÞΓð−j −mÞΓð2jþ 1Þ

¼
�
1

π

Γð1þ 1
kÞ

Γð1 − 1
kÞ
�−2ϵ Γð1þ 2ϵ

k ÞΓð1 − ϵþ δÞΓð−ϵ − δÞΓð2ϵÞ
Γð1 − 2ϵ

k ÞΓð1þ δþ ϵÞΓðϵ − δÞΓð−2ϵÞ

¼ ϵ − δ

ϵþ δ
þ ðnonsingular termsÞ: ð5:18Þ

This analysis can be repeated for other values of m;m ∈
1=2þ Z with the same result. One can see that, generally
speaking, this expression is ambiguous. However, by our
prescription, we have to first set m ¼ 1=2 (i.e., δ ¼ 0) and
then take the limit j → −1=2 (i.e., ϵ → 0). Finally, we take
the limit k → 1. Then, the expression for the two-point
correlation function is well defined, and we have

hV−1=2;m;−mV−1=2;−m;mi≡ lim
j→−1=2

hVj;m;−mVj;−m;mi ¼ 1:

ð5:19Þ

The correlation function is finite. This confirms the
interpretation of j ¼ − 1

2
states as physical states (logarith-

mically) localized near the tip of the cigar.
Finally, let us note that the factor δðj1 − j2Þ coming from

Eq. (5.9) in fact does not enter the final expression for the
two-point function for j ¼ −1=2. For details, see Sec. VII.

3. j = − 1=2 non-normalizable

Since the value j ¼ −1=2 is invariant under the reflec-
tion (5.10), one may think that there is no corresponding

non-normalizable operator. It turns out that this is not
entirely true. We saw that for each operator Vj with j ≠
−1=2 there is an operator Vj̃, j̃ ¼ −j − 1 with the same
conformal dimension. This is related to the fact that the
Schrödinger equation in the corresponding quantum
mechanical problem has two solutions. In the case of the
operator Vj¼−1=2, the second solution to the Schrödinger
equation is the operator [63]

ϕVj̃¼−1=2;m;−m ∼ ϕe−
Q
2
ϕeiQðmYL−mYRÞ: ð5:20Þ

Therefore, we should take this operator into account.
The operator (5.20) is an example of a so-called

logarithmic primary field [64] (see also [65,66] and
references therein). Such operators were also con-
sidered to some extent in [56,67]. It is a primary field
with the same conformal dimension as Vj¼−1=2;m;−m ∼
e−Q=2ϕeiQðmYL−mYRÞ. Indeed, consider its pairing with the
energy-momentum tensor,

hϕeQjϕeiQðmYL−mYRÞðz1Þ; Tðz2Þi ¼
1

Q
∂jheQjϕeiQðmYL−mYRÞðz1Þ; Tðz2Þi

¼ 1

ðz1 − z2Þ2
1

Q
∂jðΔj;meQjϕeiQðmYL−mYRÞ þ…Þ

¼ eiQðmYL−mYRÞ

ðz1 − z2Þ2
�
−
1

Q
2jþ 1

k
eQjϕ þ Δj;mϕeQjϕ

	




j¼−1

2

þ � � �

¼ Δj;m

ðz1 − z2Þ2
ϕeQjϕeiQðmYL−mYRÞ þ…; ð5:21Þ

where z1 and z2 are world-sheet coordinates. This shows
that operator

ϕVj̃¼−1=2;m;−m ∼ ϕe−
Q
2
ϕeiQðmYL−mYRÞ

is a primary field with conformal dimension Δj¼−1=2;m,
where Δj;m is defined in (3.14). The associated wave
function is more divergent at large ϕ than the one for

Vj¼−1=2; therefore, we consider the operator (5.20) as a
non-normalizable “partner” of Vj¼−1=2.
The corresponding two-point correlation function turns

out to have a double pole (see Appendix B 8 for the details),

hϕVj̃1¼−1=2;m;−mϕVj̃2¼−1=2;−m;mi ∼
1

ðj̃1 þ 1
2
Þ2 δðj̃1 − j̃2Þ:

ð5:22Þ
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The double pole is exactly what one would expect for the
correlation function (5.22) from LSZ. From Eq. (3.24), we
see that the linear in ðj̃þ 1=2Þ term vanishes at j̃ → −1=2
and we have

p2
μ þM2 ∼

�
j̃þ 1

2

	
2

near j̃ → −
1

2
: ð5:23Þ

Therefore, finally we get the LSZ formula,

hϕVj̃1¼−1=2;m;−mϕVj̃2¼−1=2;−m;mi

∼
1

p2
μ þM2

hVj¼−1=2;m;−mVj¼−1=2;−m;mi: ð5:24Þ

We conclude that the LSZ pole is present for the non-
normalizable j ¼ −1=2 operator (5.20), so the holography
works in this channel for the two-point function. Below, we
see that it does not work for the three-point function of such
operators.

VI. THREE-POINT CORRELATION FUNCTIONS

In this section, we consider three-point correlation
functions of operators Vj;mL;mR

with mL ¼ −mR ≡m.
The physical states at our disposal correspond to normal-
izable operators with j ¼ −1;−1=2 or by (5.10) to
j̃ ¼ 0;−1=2. The values of m of the three correlation
functions have to sum up to zero,

m1 þm2 þm3 ¼ 0: ð6:1Þ

This corresponds to baryon charge conservation in the 4D
SQCD, see (3.30). Winding number conservation in three-
point functions was also discussed in [62].
Therefore, we have two potentially nonvanishing three-

point functions: j¼ð−1;−1=2;−1=2Þ and j¼ð−1;−1;−1Þ.
In the following, we investigate these two cases.
Let us start with general comments. The holography

relation (5.12) suggests that the correlation functions of
non-normalizable operators should be singular, with the
poles corresponding to propagators of normalizable states
[discrete SLð2; RÞ=Uð1Þ representations]. The residues are
related to the correlation functions of normalizable oper-
ators. The latter correlation functions are finite.
The three-point correlation functions for the coset

SLð2;RÞ=Uð1Þ model were computed in [59], see also
[33,68]. The pole structure can be investigated by the
method used in [59]. (Note however that there is a typo in
[[59] Eq. (4.20)]), see Appendix D).

A. j= ð− 1;− 1=2;− 1=2Þ correlation function

In this subsection, we consider the three-point correla-
tion function with one j ¼ −1 operator and two j ¼ −1=2
operators and also investigate its possible holographic
relation to the correlation function with corresponding

non-normalizable operators. We see that there is indeed
such a relation in the j ¼ −1 ↔ j̃ ¼ 0 channel. Let us start
with this one.

1. A non-normalizable j̃1 = 0 operator

Consider three operators with SLð2;RÞ spins:
j̃1 ¼ 0; j2 ¼ −1=2; j3 ¼ −1=2. The first one is non-
normalizable, and by (5.10), it should correspond to a
normalizable operator with j1 ¼ −1. Since the other two
operators are not non-normalizable, they do not lead to
poles in the three-point function, and the resulting corre-
lation function contains only one pole. By using the
technique of [59] (see Appendix A 2 b for details), we
arrive at the expression

hVj̃1;m1;−m1
Vj2¼−1=2;m2;−m2

Vj3¼−1=2;m3;−m3
i

¼ Rm1m2m3

j̃1
þ ðregular termsÞ; ð6:2Þ

where we used that m1 ∈ Znf0g and m2; m3 ∈ 1=2þ Z.
We see that there is a pole at j̃1 ¼ 0. The residue is
calculated to be

Rm1m2m3
¼ 1

2π
; ð6:3Þ

cf. (6.6) and the comments below.

2. A normalizable j = − 1 operator

Now, we consider a similar correlation function, only
this time with all fields normalizable, j1 ¼ −1; j2 ¼ j3 ¼
−1=2. Namely, consider the three-point correlation
function

hVj1¼−1;m1;−m1
Vj2¼−1=2;m2;−m2

Vj3¼−1=2;m3;−m3
i: ð6:4Þ

Using the reflection property (5.4), we obtain the exact
expression

hVj1¼−1;m1;−m1
Vj2;m2;−m2

Vj3;m3;−m3
i

¼ hVj̃1¼0;m1;−m1
Vj2;m2;−m2

Vj3;m3;−m3
i

Rðj̃1 ¼ 0; m1;−m1; kÞ
: ð6:5Þ

As we saw above, both the numerator and denominator
have poles at j̃1 ¼ −1 − j1 ¼ 0. Substituting (6.3) and
(5.14), here we get

hVj1¼−1;m1;−m1
Vj2¼−1=2;m2;−m2

Vj3¼−1=2;m3;−m3
i

¼
Res
j̃1¼0

hVj̃1;m1;−m1
Vj2¼−1=2;m2;−m2

Vj3¼−1=2;m3;−m3
i

Res
j̃1¼0

Rðj̃1; m1;−m1; kÞ

¼ 1

m2
1

: ð6:6Þ
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This correlation function is finite. Note that the value m1 ¼
0 is excluded by (3.22).
To conclude this subsection, let us note that the corre-

lation function (6.4) describes a decay of one 4D physical
state into two other physical states. Clearly, the conserva-
tion of 4D momentum and mass-shell conditions for all
three states ensure that the heaviest state can decay into two
other states only if its mass is larger than the sum of masses
of other states. For example, the state with j ¼ −1 can
decay into two states from the j ¼ −1=2 series if its mass is
larger then the sum of the masses of the two j ¼ −1=2
states,

Massj1¼−1;m1
≥ Massj2¼−1=2;m2

þMassj3¼−1=2;m3
: ð6:7Þ

Using mass formulas (3.26) and (3.29) and the winding
conservation (6.1), we arrive at

m2
1 ≥ m2

2 −
1

4
þm3

3 −
1

4
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

2 −
1

4

	�
m3

3 −
1

4

	s

⇔ m2m3 ≥ −
1

4
: ð6:8Þ

In our case, this is equivalent to the condition that m2 and
m3 are of the same sign. If this condition is not satisfied, we
have the heaviest j ¼ −1=2 state decaying to a lighter j ¼
−1=2 state and a j ¼ −1 state. Figure 1 summarizes these
results.

3. ϕe−Q=2ϕ and would-be LSZ poles

In Sec. V C 3, we considered the non-normalizable
operator with j ¼ −1=2. We saw that the two-point
function for such an operator has a double pole.
It turns out that the three-point function with insertions

of the logarithmic primaries (5.20) has an unexpected
structure. This three-point function is calculated in
Appendix 2 b. The result is

hVj̃1¼0;m;−mϕVj̃2¼−1=2;m;−mϕVj̃3¼−1=2;m;−mi

¼ 1

2π

1

j̃1ðj̃2 þ 1
2
Þðj̃3 þ 1

2
Þ : ð6:9Þ

This is not the expected LSZ behavior. From Eqs. (1.1) and
(5.23), one could expect that the three-point correlation
function (6.9) has a single pole corresponding to j̃1 ¼ 0 and
two double poles corresponding to j̃2; j̃3 ¼ −1=2. The
single pole at j̃1 ¼ 0 shows up in Eq. (6.9) as expected, but
the other two are single rather than double poles. What is
going on?
Moreover, single poles at j̃2; j̃3 ¼ −1=2 in Eq. (6.9) are

not LSZ poles. Indeed, according to [39], when we consider
the xi-dependent correlation function and integrate over xi
[cf. (A4)], the LSZ poles are seen as poles coming from

xi → 0;∞. However, this integrated correlation function
also exhibits poles that can be traced back to coinciding xi
under the integral [and also to x → 1 in the expression
(A4)]. The analysis shows that the single j ¼ −1=2 poles in
(6.9) are exactly of this type, see Appendix A 2 a for details.
In other words, these are “bulk poles” coming from the

bulk of the cigar, i.e., from the region of large ϕ rather than
LSZ poles, which come from states localized near the tip of
the cigar.
We conclude that the holography picture does not work

for the j ¼ −1=2 channel.

B. j= ð− 1;− 1;− 1Þ correlation function

Consider three operators with spins j1 ¼ j2 ¼ j3 ¼ −1.
Corresponding non-normalizable operators should have
j̃1 ¼ j̃2 ¼ j̃3 ¼ 0.
In this case, one could expect that the correlation

function of non-normalizable operators with j̃ ¼ 0 should
contain three poles, but it does not. This can be seen by
analyzing the exact formula for the three-point function
(A1). The coefficient D from (A3) becomes

D ¼ k
2π3

�
1

π

Γð1þ 1
kÞ

Γð1 − 1
kÞ
�j1þj2þj3þ1 Γð1 − j1þj2þj3þ1

k Þ
Γðj1þj2þj3þ1

k Þ

⟶
ji→0;k→1 k

2π4
: ð6:10Þ

FIG. 1. Possible decays determined by the energy conservation.
The quantum numbers j, m are as they appear in the three-point
correlation function (7.6). The ðm2; m3Þ plane extends infinitely.
Note that the points with m2 ¼ −m3 are excluded because of
winding conservation (6.1) and the fact that for j1 ¼ −1 it is
required that m1 ≠ 0 (3.29).
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The factor (A4) cannot produce all the necessary poles, and
the correlation function under consideration does not have
the necessary pole structure. See also a discussion in
Appendix B of [59].
Similarly, we can check that the three-point function of

three normalizable operators with j ¼ −1 is zero. Although
this time the coefficient D in Eq. (A3) happens to con-
tain a single pole, the function Fðj1; m1; j2; m2; j3; m3Þ in
Eq. (A4) has a double zero unless m1 ¼ m2 ¼ 0 [59];
however, the latter values of m are excluded, see (3.22).
Therefore, the whole correlation function vanishes,

hVj1¼−1;m1;−m1
Vj2¼−1;m2;−m2

Vj3¼−1;m3;−m3
i ¼ 0: ð6:11Þ

This completes the analysis of the three-point correlation
functions of vertex operators corresponding to baryons of
the 4D N ¼ 2 SQCD.

VII. CONTINUOUS REPRESENTATIONS

So far, we have discussed only the vertex operators from
the discrete representations (3.17), as they have direct
interpretations as hadrons of the underlying 4D N ¼ 2

SQCD [17,18]. However, there is also the principal and
exceptional continuous representations.
In this section, we concentrate on the vertex operators

from the principal continuous representation with12

j ¼ −1=2þ is, see (3.18). The scaling dimensions of these
vertex operators are given by

Δ ¼ m2 −
1

4
þ s2: ð7:1Þ

The parameter s ∈ R here is continuous, which leads to a
continuous mass spectrum for the states created by these
vertex operators. This prevents interpretation of such states
as baryons in 4D SQCD. It was argued in [17] that these
string states are multiparticle states related to the presence
of massless bifundamental quarks in 4D SQCD. To shed
more light on their nature, below we study correlation
functions with insertions of such operators.

A. Two-point correlation function

The two-point correlation function of such states is
given by

hVj1¼−1=2þis;mL;mR
Vj2¼−1=2þis;−mL;−mR

i ¼ Rð−1=2þ is; mL;mR; kÞ

¼
�
1

π

Γð1þ 1
kÞ

Γð1 − 1
kÞ
�
2is Γð1 − 2is

k ÞΓð1=2þ isþmLÞΓð1=2þ isþmRÞΓð−2isÞ
Γð1þ 2is

k ÞΓðmL þ 1=2 − isÞΓð1=2 − isþmRÞΓð2isÞ

¼
�
1

π

Γð1þ 1
kÞ

Γð1 − 1
kÞ
�
2is

· eiδðs;mL;mR;kÞ; ð7:2Þ

where we have introduced a phase δðs;mL;mR; kÞ. This
correlation function does not have poles in the variable s;
instead, it should be interpreted simply as a scattering
phase, see, e.g., Ref. [62]. The only possible problem with
Eq. (7.2) is that now the limit k → 1 is not well defined
because of the first factor. However, this factor is non-
physical and can be absorbed into the definition of vertex
operators (5.3).
Finally, let us comment on the factor δðj1 − j2Þ coming

from (5.9). It does not enter the formula for the two-point
function (7.2) for the following reason. The states with j ¼
−1=2þ is form a continuum. When we calculate an
amplitude with such states, we should integrate over all
final states, that is,Z

dsδðs − s0ÞhVj1¼−1=2þis;mL;mR
Vj2¼−1=2þis0;−mL;−mR

i

¼ hVj1¼−1=2þis;mL;mR
Vj2¼−1=2þis;−mL;−mR

i:
ð7:3Þ

The two-point function of j ¼ −1=2 operators considered
in Sec. V C 2 can be considered as the limiting s → 0 case
of the correlation function considered here. Therefore, the
delta function factor is absent in that expression, too.

B. Three-point correlation function

In Sec. VI A, we derived the three-point function
with j ¼ ð−1;−1=2;−1=2Þ. That derivation can be easily
adopted for the three-point function with continuous
representation, which turns out to be nontrivial in the case13

j1 ¼ −1 ↔ j̃1 ¼ 0; j2 ¼ −
1

2
þ is; j3 ¼ −

1

2
− is:

ð7:4Þ
The three-point function in this case is as follows (see
Appendix A 2 a for a detailed computation):

hVj̃1→0;m1;−m1
V−1=2þis;m2;−m2

V−1=2−is;m3;−m3
i

¼ 1

j̃1
×

1

2π
eiðδðs;m2;−m2;kÞ−δðs;m3;−m3;kÞÞ: ð7:5Þ

12On the interpretation of Imfjg as a momentum along the
cigar, see, e.g., [17,69–71].

13The case with j3 ¼ − 1
2
þ is is also nontrivial but can be

recovered from (7.4) using the reflection property (5.4).
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The phase factor δ is defined in (7.2). In the limit s → 0,
in the three-point function (7.5), the phase goes to zero,
and we recover the answer (6.2) with the residue given
by (6.3).
We see that the three-point correlation function with one

non-normalizable operator with j̃ ¼ 0 again has a single

pole. This confirms the LSZ holography relation (5.12) for
correlation functions of operators from principal continu-
ous representation. The corresponding three-point function
with normalizable operators is going to be finite; it can be
calculated by the same method as in Sec. VI A 2. The
answer is

hV−1;m1;−m1
V−1=2þis;m2;−m2

V−1=2−is;m3;−m3
i ¼ 1

m2
1

eiðδðs;m2;−m2;kÞ−δðs;m3;−m3;kÞÞ: ð7:6Þ

Much in the same way as for states from the discrete spectrum the decay of the j ¼ −1 state into two states from the
j ¼ − 1

2
� is series can go only if the mass of the decaying particle is greater than the sum of the masses of the products,

Massj1¼−1;m1
≥ Massj2¼−1=2þis;m2

þMassj3¼−1=2−is;m3
: ð7:7Þ

Using mass formulas (7.1) and (3.29) and the winding conservation (6.1), we arrive at

m2
1 ≥ m2

2 þ s2 −
1

4
þm3

3 þ s2 −
1

4
þ 2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

2 þ s2 −
1

4

	�
m3

3 þ s2 −
1

4

	s

⇔ m2m3 − s2 þ 1

4
≥

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi�
m2

2 þ s2 −
1

4

	�
m3

3 þ s2 −
1

4

	s

⇔

�
s2 ≤ 1

4

m2; m3 are of same sign
: ð7:8Þ

The condition that the j1 ¼ −1 state decays into two
continuous with j2;3 ¼ −1=2� is turns out to be�

s2 ≤ 1
4

m2; m3 are of same sign
: ð7:9Þ

Figure 1 summarizes these results. Note that decay via a
three particle process (when one particles decays to two) is
possible if and only if when it involves either all discrete
states or two continuous with s2 ≤ 1=4. A decay via a three
particle process cannot involve continuous states with
s2 > 1=4.

C. Interpretation of continuous representations

The correlation function (7.6) that we just computed
corresponds to a process where a j ¼ −1 state decays into
two conjugate states,

½j ¼ −1� →
�
j ¼ −

1

2
þ is

�
þ
�
j ¼ −

1

2
− is

�
; ð7:10Þ

cf. the discussion of operator mixing in [62].
How can we interpret the states corresponding to the

principal continuous representation (3.18)? As we already
mentioned, according to (7.1) their energies form a con-
tinuous spectrum. However, in 4D SQCD, we do not expect

to have a family of hadrons with continuous distribution of
masses.
In [17], it was suggested that these states can be

interpreted as decaying modes of normalizable physical
4D states. This was confirmed by showing that spectra of
continues states start from thresholds given by masses
(3.26) and (3.29). Here, we can confirm this interpretation
for the case of principal continuous representation.
Moreover, we can further specify this: a j ¼ −1=2þ is

state can be interpreted as a multipartical state of a j ¼
−1=2 baryon and massless bifundamental quarks. Then, the
decay (7.10) corresponds to the decay of a j ¼ −1 state into
two j ¼ −1=2 states (which we know can happen from
Sec. VI A) with the radiation of massless bifundamental
quarks.

VIII. CONCLUSIONS

In this paper, we studied correlation functions in the
string theory for the critical non-Abelian vortex. Speci-
fically, we considered these correlation functions using
the equivalent description in terms of string theory on the
SLð2;RÞ=Uð1Þ WZNW coset and studied their analytic
structure.
We also compared our solitonic string-gauge duality,

which relates hadrons of 4D N ¼ 2 SQCD to closed string
states of the string theory of the critical non-Abelian vortex
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with the AdS/CFT approach. Suggesting that the solitonic
string-gauge duality can be thought of as a “no branes”
limit of the AdS/CFT, we tested the holography, which is a
distinctive feature of the AdS/CFT correspondence.
We showed that the AdS/CFT-type holography relation

(1.1) found for LST [39] or Eq. (5.12) is fulfilled in our
theory for most channels. This relation ensures that
correlation functions of non-normalizable operators in
the string theory on the cigar correspond to correlation
functions of normalizable operators, which in turn are
directly associated with hadronic states in 4D N ¼ 2
SQCD. The only exception are operators of the j ¼
−1=2 series, which are on the borderline between normal-
izable and non-normalizable operators and correspond to
physical states in 4D SQCD. It turns out that in the j ¼
−1=2 channel holography relation does not work.
Technically, the reason for the holography relation (1.1)

is that non-normalizable and normalizable operators with
the same conformal dimension are related by the reflection
of the tip of the cigar. It would be interesting to understand
a deep conceptual reason behind this holography.
We can also mention several other open questions. The

first is to find a more direct relation between critical string
theory on the conifold and noncritical c ¼ 1 string theory
with the Liouville field. The second is the construction of
the effective theory of hadron interactions in the 4DN ¼ 2

SQCD. In principle, it should be possible using results
obtained in this paper for correlation functions in the string
theory. They fix the coupling constants of the effective
interactions of hadrons in SQCD. The symmetry restric-
tions, especially theN ¼ 2 supersymmetry, heavily restrict
the form of possible interaction terms. Moreover, the
interpretation of continuous representations deserves more
solid justification. We leave these problems for future work.
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APPENDIX A: THREE-POINT FUNCTIONS

Now let us review the results for the three-point
functions in the supersymmetric Liouville theory.

1. Full three-point function formula

The full analytical expression for the three-point function
of the operators Vj;m;−m was derived in [59]. Let us write it
down as

hVj̃1;m1;−m1
Vj2;m2;−m2

Vj3;m3;−m3
i ¼ Dðj̃1; j2; j3; kÞ

× Fðj̃1; m1; j2; m2; j3; m3Þ
Z

d2xjxj2ðm1þm2þm3−1Þ: ðA1Þ

The last factor here simply enforces the baryon charge conservation

m1 þm2 þm3 ¼ 0: ðA2Þ

The first factor14 equals

Dðj̃1; j2; j3; kÞ ¼
k
2π3

�
1

π

Γð1þ 1
kÞ

Γð1 − 1
kÞ
�j̃1þj2þj3þ1

×
Gð−j̃1 − j2 − j3 − 2ÞGðj3 − j̃1 − j2 − 1ÞGðj2 − j̃1 − j3 − 1ÞGðj̃1 − j2 − j3 − 1Þ

Gð−1ÞGð−2j̃1 − 1ÞGð−2j2 − 1ÞGð−2j3 − 1Þ : ðA3Þ

Some properties of the special G function used here are listed in Appendix B 6. The F factor in Eq. (A1) is given by

Fðj̃1; m1; j2; m2; j3; m3Þ ¼
Z

d2x1d2x2jx1j2ðj̃1þm1Þjx2j2ðj2þm2Þ

× j1 − x1j2ðj2−j̃1−j3−1Þj1 − x2j2ðj̃1−j2−j3−1Þjx1 − x2j2ðj3−j̃1−j2−1Þ: ðA4Þ

14The structure constants (A3) are equivalent to (B22). They can be derived from (B22) using (B23) and slightly changing the
normalization of the operators.
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2. The case with continuous and discrete
representations

Now let us calculate the three-point functions (7.5)
and (6.2).

a. j= − 1=2� is

Now let us turn to the computation of the three-point
function in the case (7.4),

j1 ¼ −1 ↔ j̃1 ¼ 0; j2 ¼ −
1

2
þ is; j3 ¼ −

1

2
− is:

ðA5Þ

We analyze the exact expression for the three-point
function (A1). Substituting (A5) into (A3) and using
(B24) and (B25), we obtain

Dðj̃1; j2; j3; kÞ

¼ k
2π3

×
Gð−1ÞGð−2is − 1ÞGð2is − 1ÞGðj̃1Þ

Gð−1ÞGð−1ÞGð−2isÞGð2isÞ þ…

¼ k
2π3

�
−

k

j̃1

	�
−
ð2isÞ2
k2

	
þ…

¼ −
2s2

π3
1

j̃1
þ…; ðA6Þ

where the ellipses stand for the terms nonsingular at
Eq. (7.4). Next, let us evaluate the integral factor A4.
From Eq. (7.4), we see that j̃1 − j2 − j3 − 1 ¼ 0. Making a
change of variables,

x1 ¼ x; x2 ¼ xt; ðA7Þ
we can rewrite Fðj̃1; m1; j2; m2; j3; m3Þ from Eq. (A4) as

Fðj̃1; m1; j2; m2; j3; m3Þ ¼
Z

d2xd2tjxj2ðj̃1þm1Þþ2þ2ðj2þm2Þþ2ðj3−j̃1−j2−1Þj1 − xj2ðj2−j̃1−j3−1Þ

× jtj2ðj2þm2Þj1 − tj2ðj3−j̃1−j2−1Þ: ðA8Þ

Using Eq. (A2), we obtain

Fðj̃1; m1; j2; m2; j3; m3Þ ¼
Z

d2xd2tjxj2ðj3−m3Þj1 − xj2ðj2−j̃1−j3−1Þ

× jtj2ðj2þm2Þj1 − tj2ðj3−j̃1−j2−1Þ: ðA9Þ

Finally, substituting (7.4) here gives

Fðj̃1; m1; j2; m2; j3; m3Þ ¼
Z

d2xjxj2ð−1=2−m3−isÞj1 − xj2ð2is−1Þ

×
Z

d2tjtj2ð−1=2þm2þisÞj1 − tj2ð−2is−1Þ: ðA10Þ

These integrals can be calculated with the help of (D1),Z
d2xjxj2ð−1=2−m3−isÞj1 − xj2ð2is−1Þ ¼ π

Γð1=2 −m3 − isÞΓð2isÞΓð−isþm3 þ 1=2Þ
Γð1=2þm3 þ isÞΓð1 − 2isÞΓðis −m3 þ 1=2Þ

¼ iπ
2s

·
Γð1=2 −m3 − isÞΓð2isÞΓð−isþm3 þ 1=2Þ
Γð1=2þm3 þ isÞΓð−2isÞΓðis −m3 þ 1=2Þ : ðA11Þ

Note that the pole at s ¼ 0 in this expression comes from the region x → 1. According to [39], this means that this pole is
the “bulk pole;” that is, it does not signify propagation of a physical state.
Putting all expressions together (and omitting the factor

R
d2xjxj2ðm1þm2þm3−1Þ, which gives a conservation law for m’s)

we arrive at Eq. (7.5)

hVj̃1→0;m1;−m1
V−1=2þis;m2;−m2

V−1=2−is;m3;−m3
i ¼ 1

j̃1
×

1

2π
eiðδðs;m2;−m2;kÞ−δðs;m3;−m3;kÞÞ: ðA12Þ
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Finally, we note that one can check the pole structure
of the resulting correlation function (A12) by performing
the calculation differently. Namely, we can first study the
singularity at x1 → 0 in Eq. (A4) which would give the pole
at j̃1 þm1 ¼ −1;−2;…. The results are consistent.
One could worry that the pole at j̃ ¼ 0 might mix with a

so-called bulk pole (see the discussion in Sec. 2.4 of
Ref. [39]). This can happen in the case when all but one
vertex operator in a correlator are normalizable, but one
operator has a normalizable and a non-normalizable part,
both of which contribute to a pole. However, in our case,
the operator with j̃ ¼ 0 has no bulk contribution, since

Vj̃1≈0;m1;−m1
∼ eQ·0·ϕ þ Rðj̃1 ≈ 0; m1;−m1; kÞ · e−Qϕ

∼ Idþ Rðj̃1 ≈ 0; m1;−m1; kÞ · e−Qϕ; ðA13Þ

where Id is the so-called “fake identity” operator, see, e.g.,
[[72] Sec. 12.2.2]. The second term here represents a
normalizable operator times a pole. Plugging (A13) into
the three-point correlator, we see that the second term
reproduces the pole (A12), while the first term with Id gives
the two-point function of two j ¼ −1=2� is operators,
which is finite and does not contain a pole.

b. j= − 1=2
The three-point function in the case with discrete

representations j̃1 ¼ 0, j2 ¼ j3 ¼ −1=2 (6.2) can be
obtained by formally sending s to zero in the previous
calculation. Setting s ¼ 0 in Eq. (7.5), we recover
Eqs. (6.2) and (6.3).
Moreover, careful examination of the limit j1 →

−1; j2 → −1=2; j3 → −1=2 in Eq. (A1) shows that the
three-point function (6.4) is indeed finite, cf. (6.6). Setting
s ¼ 0 in Eq. (7.6), we recover Eq. (6.6).
Another interesting question is the three-point function

with two logarithmic primary fields,

hVj̃1¼0;m;−mϕVj̃2¼−1=2;m;−mϕVj̃3¼−1=2;m;−mi: ðA14Þ

This three-point function can be derived using the results of
Appendix A 2 a. To do this, we recall that, first, in the
nonsupersymmetric Liouville theory, we have

ϕeQϕ ¼ −i
∂
∂s e

2ðQ
2
þisÞϕjs¼0; ðA15Þ

and second that an analytic continuation of the three-point
function in the nonsupersymmetric Liouville gives the
structure constants Dðj̃1; j2; j3; kÞ (A3) in the supersym-
metric Liouville. From this, we can conclude that we can
obtain the three-point function (A14) as follows15:

hVj̃1¼0;m;−mϕVj̃2¼−1=2;m;−mϕVj̃3¼−1=2;m;−mi

¼
�� ∂

∂s1
∂
∂s2Dð0;−1=2þ is1;−1=2 − is2; kÞ

�
× Fð0; m1;−1=2þ is1; m2;−1=2 − is2; m3Þ

×
Z

d2xjxj2ðm1þm2þm3−1Þ
�





s1¼s2¼0

: ðA16Þ

Performing the calculation, we obtain

hVj̃1¼0;m;−mϕVj̃2¼−1=2;m;−mϕVj̃3¼−1=2;m;−mi

¼ 1

2π

1

j̃1ðj2 þ 1
2
Þðj3 þ 1

2
Þ : ðA17Þ

APPENDIX B: COMPARISON TO THE
NONSUPERSYMMETRIC LIOUVILLE THEORY

In this paper, we mainly consider the SLð2;RÞ=Uð1Þ
coset WZNW model, which is a mirror of the N ¼ 2
Liouville theory. However, it is interesting to compare with
the results in nonsupersymmetric Liouville theory. From
that, we can draw lessons for our case [for example, why do
we see a specific combination of exponentials in Eq. (5.1)]
and find out some factorization properties.
Discussing various Liouville models below we need to

introduce the Liouville b parameter. So in order not to
confuse it with our VEV of the massless baryon in 4D
SQCD, we denote the Liouville parameter of the non-
supersymmetric theory as bL and in the supersymmetric
model as bN¼2. Moreover, we denote the background
charges in nonsupersymmetric Liouville, supersymmetric
Liouville, and SLð2;RÞ=Uð1Þ coset WZNW, respectively,
as QL, QN¼2, and QSL.

1. Non-SUSY vs. SUSY

In the nonsupersymmetric Liouville theory (considered,
e.g., in [31,32,73]), the interaction term is

Lint ∼ e2bLϕL : ðB1Þ

The requirement that this is a marginal deformation (of
conformal weight 1) leads to

bLðQL − bLÞ ¼ 1 ⇒ QL ¼ bL þ 1

bL
; ðB2Þ

see also Ref. [36] [Eq. (2.13)].
On the other hand, in the N ¼ 2 Liouville, the inter-

action term can be written as

Lint ∼
Z

d2θe−
1ffiffi
2

p bN¼2ðϕN¼2þiYÞ: ðB3Þ15There are also logarithmic terms coming from the world-
sheet dependence like in (B31), but these are subleading.
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(Here, we use the normalization where the asymptotic
radius of the compact dimension is R ¼ ffiffiffiffiffiffiffiffi

2=k
p

, see
Sec. III.) In components, we have terms like
b2N¼2

ψþψ−ebN¼2ðϕN¼2þiYÞ. The requirement that this is a
marginal deformation (of conformal weight 1) leads to

1

2
þ bN¼2

2
ffiffiffi
2

p
�
QN¼2 −

bN¼2

2
ffiffiffi
2

p
	
þ b2N¼2

8

¼ 1 ⇒ QN¼2 ¼
ffiffiffi
2

p

bN¼2

; ðB4Þ

see also [36] [Eq. (11.7)]. That is why (B3) can be
written as

Lint ∼
Z

d2θe
−
ϕN¼2þiY

QN¼2 ; ðB5Þ

cf. [39] [Eq. (3.9)] and [17] [Eq. (4.8)].
Next, consider the SLð2;RÞ=Uð1Þ theory, which is

a mirror to the N ¼ 2 Liouville [20,21,25,26]. In this
model, the asymptotic radius is R ¼ ffiffiffiffiffi

2k
p

. The vertex
operators at large positive ϕ are written as (see Sec. V
for details)

V ∼ eQSLjϕþQSLimY: ðB6Þ

Here,

QSL ¼ QN¼2 ¼
ffiffiffi
2

k

r
: ðB7Þ

2. The dictionary

Extending the dictionary from Teschner’s papers [34]
[Eq. (17)], [33] [Sec. IV. 4] (see also Ref. [36] [Eq. (6.92)
and below]), we can write the correspondence16 between
quantities in supersymmetric and nonsupersymmetric
Liouville theories,

bL ↔
1ffiffiffi
k

p ;

α ↔ −bLj;

QL ↔
1ffiffiffi
2

p QSL; ðB8Þ

where α defines the primary operator expf2αϕLg in the
Liouville theory. (Also note that the level k in Teschner’s
papers is shifted by 2.) Comparing Eqs. (B4), (B7), and
(B8), we conclude that bN¼2 ¼ 1

bL
, and

QSL ¼
ffiffiffi
2

p
bL: ðB9Þ

This matches with [36] [Eq. (6.100)], [76] [Eq. (2.2)].
For example, according to Eqs. (B8) and (B9), the map

acts as follows:

α ¼ QL=2 ↔ j ¼ −
1

b
1ffiffiffi
2

p QSL=2 ¼ −1=2;

QL − α ↔ −
1

b

�
1ffiffiffi
2

p QSL þ bLj

	
¼ −1 − j: ðB10Þ

Moreover, the Liouville field is mapped as

ϕL ¼ −
1ffiffiffi
2

p ϕN¼2: ðB11Þ

3. Stress tensor

The stress tensor is mapped correctly,

TL ¼ −ð∂ϕLÞ2 þQL∂2ϕL

→ −ð∂ϕLÞ2 þ
1ffiffiffi
2

p QSL∂2ϕL

¼ −
1

2

�
ð∂ϕN¼2Þ2 þ

ffiffiffi
2

k

r
∂2ϕN¼2

�
; ðB12Þ

which is the ϕ part of the full stress tensor (3.3). Primary
operators (in the large-ϕ limit) and conformal dimensions
are also mapped correctly,

e2αϕL ↔ e2ð−
jffiffi
k

p Þð− 1ffiffi
2

p ϕN¼2Þ ¼ e
ffiffiffiffiffiffi
2=k

p
jϕN¼2 ¼ eQSLjϕN¼2 ;

Δ ¼ αðQL − αÞ ↔ −bLj
�

1ffiffiffi
2

p QSL þ bj

	

¼ −b2Ljðjþ 1Þ ¼ −
jðjþ 1Þ

k
: ðB13Þ

Primary fields of the nonsupersymmetric Liouville
theory ∼e2αϕ can be both normalizable and non-
normalizable.

4. Reflection coefficient

With this dictionary, the inverse17 reflection coefficient
from [31,32,73] correctly reproduces the m-independent
part of the reflection coefficient (5.2). Indeed,

16In [74,75], an alternative dictionary was presented.

17Some authors define the reflection coefficient R (schemati-
cally) as Vα ¼ RðαÞVQ−α, while others use the definition
Vα ¼ RðQ − αÞVQ−α. The two reflection coefficients are recip-
rocal with respect to each other. Our conventions in the bulk of
this paper (and also the conventions of [39]) correspond to the
former definition, while the authors of [32,73] use the latter.
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RðαÞL ¼ ½πμLγðb2LÞ�ð2α−QLÞ=bL b2L
γð2α=bL − 1 − 1=b2LÞγð2bLα − b2LÞ

¼ ½πμLγðb2LÞ�ð2α−QLÞ=bL b2L
γð2α−QL

bL
ÞγðbLð2α −QLÞ þ 1Þ

→ ½πμLγðb2LÞ�ð2ð−bLjÞ−QSLÞ=bL b2L
γð2ð−bLjÞ−QSL

bL
ÞγðbLð2α −QSLÞ þ 1Þ

¼
�
πμLγ

�
1

k

	�
−2j−1 1

k
1

γð−2j − 1Þγð1 − 2jþ1
k Þ : ðB14Þ

Then,

1

RðαÞL
→ k

�
πμL

Γð1kÞ
Γð1 − 1

kÞ
�
2jþ1 Γð1 − 2jþ1

k ÞΓð−2j − 1Þ
Γð2jþ1

k ÞΓð2jþ 2Þ

¼
�
kπμL

Γð1þ 1
kÞ

Γð1 − 1
kÞ
�
2jþ1 Γð1 − 2jþ1

k ÞΓð−2j − 1Þ
Γð1þ 2jþ1

k ÞΓð2jþ 1Þ : ðB15Þ

On the other hand, the reflection coefficient in the supersymmetric Liouville theory is given by (5.2). One can see that that
the analytically continued reflection coefficient in the nonsupersymmetric Liouville (B15) matches the m-independent part
of the supersymmetric reflection amplitude (5.2) up to the factor ðkπ2μLÞ2jþ1. (Recall that m is the momentum along the
compact direction, which is absent in the pure Liouville theory.) However, a factor of the form ð::Þ2jþ1 is insignificant, since
it can be absorbed into a redefinition of the operators (5.3).

5. DOZZ formula

The formula for the three-point correlation function in nonsupersymmetric pure Liouville theory (the so-called DOZZ
formula) was derived in [31,32]. Later, it was extensively studied by many authors; one can mention [73,77,78] and a review
[36]. The structure constants Cðα1; α2; α3Þ [the analog of Dðj1; j2; j3; kÞ from the supersymmetric case (A3)] are

Cðα1;α2; α3Þ ¼ ½πμγðb2LÞb2−2b
2
L

L �ðQL−
P

αiÞ=bL

×
ϒ0ϒð2α1Þϒð2α2Þϒð2α3Þ

ϒðα1 þ α2 þ α3 −QLÞϒðα1 þ α2 − α3Þϒðα2 þ α3 − α1Þϒðα1 þ α3 − α2Þ
: ðB16Þ

Here, QL ¼ bL þ 1=bL.
Let us review the special function ϒ, see also [32]

[Eqs. (3.10–13)], [73] [Appendix A]. It can be defined as

logϒðxÞ ¼
Z

∞

0

dt
t

��
QL

2
− x

	
2

e−t −
sinh2ðQL

2
− xÞ t

2

sinh bLt
2
sinh t

2bL

�
;

ðB17Þ

while

ϒ0 ¼
dϒðxÞ
dx






x¼0

: ðB18Þ

Some useful properties of the ϒ function are

ϒðxÞ ¼ ϒðQL − xÞ;
ϒðQL=2Þ ¼ 1; ðB19Þ

ϒðxþ bLÞ ¼ γðbLxÞb1−2bLxL ϒðxÞ;
ϒðxþ 1=bLÞ ¼ γðx=bLÞb2x=bL−1ϒðxÞ; ðB20Þ

ϒðx − bLÞ ¼ γðbLx − b2LÞ−1b2bLx−1−2b
2
L

L ϒðxÞ;

ϒðx − 1=bLÞ ¼ γðx=bL − 1=b2LÞ−1b
1þ 2

b2
L
−2x
bL

L ϒðxÞ: ðB21Þ

Here, we use the standard notation

γðxÞ ¼ ΓðxÞ
Γð1 − xÞ :
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The function ϒðxÞ has simple zeros at x ¼ −mbL − n=bL
and x ¼ ðm0 þ 1ÞbL þ ðn0 þ 1Þ=bL. Here, n; n0; m;m0 ¼
0; 1; 2;….

6. Different form of the structure constants in the
supersymmetric Liouville theory

The three-point function in a corresponding WZNW
model (which is a mirror of the N ¼ 2 Liouville) was
calculated in [33,34], see also [59]. It is given by the
product of the structure constantsDðj1; j2; j3; kÞ (which do

not depend on the momentum along the compact dimen-
sionm) and anm-dependent part. It turns out that under the
dictionary (B8), the structure constants for this super-
symmetric Liouville theory (A3) maps to the three-point
function of the nonsupersymmetric Liouville (B16).

a. Structure constants

In Ref. [33], the author considers the SLð2;CÞ=SUð2Þ
WZNW model.18 The result for the three-point structure
constants is [33] [Eq. (64)]

Cðα1; α2; α3Þ ¼
C0ðbLÞðνðbLÞÞ−b−1L ðα1þα2þα3Þϒð2α1Þϒð2α2Þϒð2α3Þ

ϒðα1 þ α2 þ α3 − bLÞϒðα1 þ α2 − α3Þϒðα1 þ α3 − α2Þϒðα2 þ α3 − α1Þ
: ðB22Þ

Here, C0ðbLÞðνðbLÞÞ−b−1L ðα1þα2þα3Þ is a coefficient that can
be found in Ref. [33].
Comparing this formula to the nonsupersymmetric case

(B16), we see that the firstϒ function in the denominator of
(B22) depends on bL while in (B16) in the same place
enters QL. This fits with our dictionary (B8) and (B9). One
can also compare to [34] [Eq. (66)], [34] [Eq. (23)] (in the
latter paper, the author uses a different normalization of
operators, see [[34] last paragraph of Appendix A]).
The three-point function formula can be also written in

terms of the special G function. Such a form of the three-
point correlation function is quite popular in the literature,
so let us review it here, see also [62] [Eqs. (2.15–18)], [59]
[Eq. (A3)], [39] [Appendix A]. The function G can be
expressed via the Barnes double gamma function, see, e.g.,
[62] [Eq. (2.15)]. The relation between the ϒ and G
functions is given by

GðjÞ ¼ b
−b2Ljðjþ1þb−2L Þ
L

1

ϒðbLðjþ 1ÞÞ ; ðB23Þ

cf. [34] [between Eqs. (23) and (24)].19 Let us list some
useful properties of the G function,

GðjÞ ¼ Gð−j − 1 − kÞ;

Gðj − 1Þ ¼ γ

�
1þ j

k

	
GðjÞ;

Gðj − kÞ ¼ k−ð2jþ1Þγðjþ 1ÞGðjÞ: ðB24Þ

From (B24), we can derive another useful property,

Gðj − 1Þ
GðjÞ

Gð−j − 1Þ
Gð−jÞ ¼ −

j2

k2
: ðB25Þ

The function GðjÞ has poles at j ¼ nþmk and
j ¼ −ðnþ 1Þ − ðmþ 1Þk, n;m ¼ 0; 1; 2;….
Using the relation (B23) and that α ¼ −bLj [see the

dictionary (B8)], one can easily see that the structure
constants formulas (A3) and (B22) are equivalent.

7. Factorization

From what we have seen so far, we can make
an observation. The three-point correlation function
formula (A1) for the SLð2;RÞ=Uð1Þ (supersymmetric
Liouville) theory can be naturally split into a product of
“structure constants” that do not depend on the compact
momentum m and an m-dependent part. Moreover, it turns
out that the structure constants in the supersymmetric
theory (A3) and (B22) precisely correspond to the ana-
lytically continued structure constants in the nonsupersym-
metric Liouville (B16), when we use the dictionary (B8)
and (B9).
So we see a curious property. The two- and three-point

correlation functions in the supersymmetric Liouville
factorize into the (analytically continued) “nonsupersym-
metric Liouville” part and an extra m-dependent part. For
the two-point function, it was noted in [33]. In [74], an
alternative prescription was presented.

8. Two-point function from the DOZZ formula

In this section, we are going to show that the two-point
function with non-normalizable j̃ ¼ −1=2 operators (5.20),

hϕVj̃¼−1=2;m;−m ϕVj̃¼−1=2;m;−mi; ðB26Þ

has a double pole. To this end, we are going to use the
factorization property, see the previous subsection.
According to this property, the m-dependent part of
the correlation function (B26) is given simply by the

18The manifold SLð2;CÞ=SUð2Þ can be thought of as a
Euclidean version of SLð2;RÞ.

19Note that Teschner uses in [34] a different notation for j,
namely, jTeschner ¼ −jour − 1.
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m-dependent part of the reflection amplitude (5.2), while
for the m-independent part we can take the analytically
continued result from the Liouville theory.
So let us consider for a moment the correlation function,

hϕe2αϕLϕe2αϕLi; α ¼ QL=2; ðB27Þ

in the nonsupersymmetric Liouville theory. One way to
compute this is to use the property20 ∂jeQjϕ ∼ ϕeQjϕ.

Let us start from the identity [31,32,73] (see also
Sec. 9.2.1 of Ref. [72]),

2πδðα1 − α2Þhe2α1ϕLe2α2ϕLi ¼ lim
ε→0

he2α1ϕLe2εϕLe2α2ϕLi:
ðB28Þ

The rhs here can be computed explicitly using the formulas
from Appendix B 5.
Taking

α1 ¼
QL

2
þ ip1; α2 ¼

QL

2
þ ip2; p1; p2 → 0; ε → 0; ðB29Þ

we get (here we do write explicitly dependence on the world-sheet coordinates),

he2α1ϕLe2εϕLe2α2ϕLi ≈ 2ε

ε2 þ ðp1 − p2Þ2
4p1p2

ε2 þ ðp1 þ p2Þ2

×
1

jz1 − z2j2ðΔ1þΔ2−ΔεÞjz1 − zεj2ðΔ1−Δ2þΔεÞjz2 − zεj2ð−Δ1þΔ2þΔεÞ ≈ 2πδðp1 − p2Þ
ðp1 þ p2Þ2

ε2 þ ðp1 þ p2Þ2

×
1

jz1 − z2j2ðΔ1þΔ2−ΔεÞjz1 − zεj2ðΔ1−Δ2þΔεÞjz2 − zεj2ð−Δ1þΔ2þΔεÞ ; ðB30Þ

where Δi ¼ αiðQL − αiÞ ¼ Q2
L=4þ p2

i , Δε ¼ εðQL − εÞ,
and z1, z2, zε refer to the world-sheet coordinates of the
corresponding operators.
To obtain the two-point function (B27), we need to

take derivatives of (B30) with respect21 to p1, p2. However,
this time, we should take into account the dependence on
the world-sheet coordinates, since conformal dimensions
depend on p1, p2. Taking the derivatives and dropping the
δ0, δ00 terms, we obtain

hϕe2α1ϕLe2εϕLϕe2α2ϕLi

≈ 2πδðp1 − p2Þ
2ε2ðε2 − 12p2

1Þ
ðε2 þ 4p2

1Þ3
1

jz1 − z2j4Δ

× 2πδðp1 − p2Þ
4p2

1

ε2 þ 4p2
1

ln jz1 − z2j
jz1 − z2j4Δ

: ðB31Þ

The delta function lets us to set p1 ¼ p2.
When we send ε → 0, the first term here generically

vanishes. However, if p1 and p2 both tend to zero, the first
term becomes singular. From this, we see that the two-point
function (B28) in fact has a double pole,

hϕe−2α1ϕϕe−2α2ϕi ∼ δðα1 − α2Þ
1

ðα1 −QL=2Þ2
: ðB32Þ

From Eqs. (B32) and (5.19), we conclude that the full
correlation function (B26) is given by

hϕVj̃1→−1=2;m;−mϕVj̃2→−1=2;m;−mi ∼
1

ðj̃1 þ 1
2
Þ2 δðj̃1 − j̃2Þ:

ðB33Þ

9. Pure Liouville degenerate operators

One may wonder why in the primary operators (5.1) we
see only the specific combination

eQN¼2jϕN¼2 þ Rðj; mL;mR; kÞe−QN¼2ðjþ1ÞϕN¼2 ;

while the orthogonal combination (with the minus sign in
front of R) does not appear. We can see the hint of this in
nonsupersymmetric Liouville theory.
The reflection property in the nonsupersymmetric

Liouville theory [31,32] can be written as

e2ðQL−αÞϕL ¼ RðαÞLe2αϕL : ðB34Þ

(See footnote 17 on page 60.) The two-point function is
structurally similar to (5.9),

20Note that ∂jVj;mL;mR
jj¼−1=2 vanishes, cf. (5.1) and

Sec. V C 2.
21These are easiest to compute in terms of the variables

pþ ¼ p1 þ p2, p− ¼ p1 − p1.
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he2αϕLe2αϕLi ∼ 1

RðαÞL
: ðB35Þ

The formula (B34) should be interpreted as a valid
relation on the level of correlation functions. For example,
using Eqs. (B34) and (B35), one can see that

he2ðQ−αÞϕe2αϕi ¼ RðαÞhe2αϕe2αϕi ¼ 1: ðB36Þ

Moreover,

hðe2ðQL−αÞϕL − RðαÞLe2αϕLÞ
· ðe2ðQL−αÞϕL − RðαÞLe2αϕLÞi ¼ 0: ðB37Þ

Therefore, the combination e2ðQL−αÞϕL − RðαÞLe2αϕL is in
fact a null state, and in this sense, we can understand (B34).
Of course, the reflection coefficient RðαÞL is different from
(5.2), but they are closely related, see Appendix B. 4.

APPENDIX C: TWO-POINT CORRELATION
FUNCTION CHECK

In this appendix, we use a quasiclassical approximation
to check the consistency of the two-point function for-
mula (5.9). Looking at Eqs. (5.1), (5.8), and (5.9) together,
one may wonder whether these formulas are consistent.
Namely, we would like to compare the pole structure of the
rhs and lhs of (5.9).
Consider a correlation function of two non-normalizable

operators. Suppose we use the expansion (5.1) in the
two-point function (5.9) and go at one of the poles of
Rðj; m;−m; kÞ. Then, it seems that in the rhs of (5.9) we get
a single pole, which is fine for a two-point function.
However, according to (5.1) and (5.8), on the lhs, both
operators develop a pole,22 and it seems that we should get
a double pole. What is going on?
To resolve this issue, it is easier to make the calculation

of the correlation function in the Euclidean AdS3 theory
with primary operators Φj;mL;mR

(it is equal to the corre-
lation function of the coset operators, see, e.g., [59]
[Eq. (3.4)]). Large ϕ expansion of these operators is similar
to (5.9),

Φj;mL;mR
≈ eQjϕγjþmL γ̄j−mR þ Rðj; mL;mR; kÞ
· e−Qðjþ1ÞϕγmL−j−1γ̄−mR−j−1: ðC1Þ

Here, ðϕ; γ; γ̄Þ are the Poincaré coordinates on Euclidean
AdS3 [39] [Eq. (2.14)]. The two-point function of these
operators is the same as for the V operators, see, e.g., [59]
[Eqs. (3.4) and (3.6)],

hΦj1;mL;mR
Φj2;−mL;−mR

i ¼Rðj1;mL;mR;kÞδðj1− j2Þ: ðC2Þ

Let us concentrate on the case of interestmL¼−mR≡m.
Recall that the reflection coefficient Rðj; m;−m; kÞ (5.2)
has poles at special values of j,m corresponding to discrete
representations (3.17).
When calculating the correlation function of two oper-

ators (C1), we have to integrate over the (zero modes of)
γ’s. Moreover, the γ’s in the first operatorΦj;m;−m and in the
second operator Φj;−m;m in (C2) are basically the same,
since γðzÞγðz0Þ ∼ γ2ðzÞð1þOðz − z0ÞÞ (here, z, z0 are the
world-sheet coordinates).
Then, from (C1) we have

hΦj1;m;−mΦj2;−m;mi∼
Z

d2γfheQj1eQj2ijγj2ðj1þj2Þ

þ heQj1e−Qðj2þ1Þijγj−2Rðj2;−m;m;kÞ
þ he−Qðj1þ1ÞeQj2ijγj−2Rðj1;m;−m;kÞ
þ he−Qðj1þ1Þe−Qðj2þ1Þijγj−2ðj1þj2þ2Þ

×Rðj1;m;−m;kÞRðj2;−m;m;kÞg:
ðC3Þ

Now, we need to integrate over γ. Using the integration
formula (D1), we obtainZ

C
jγj−2ad2γ ¼ π

Γð1 − aÞΓð1ÞΓða − 1Þ
ΓðaÞΓð0ÞΓð2 − aÞ : ðC4Þ

But this is zero, unless a ¼ 1! The divergence at a ¼ 1 can
be interpreted as the volume of the target space, cf., e.g.,
[21] [below Eq. (3.5)], [62] [Eq. (5.12)].
From this, we see that there are two cases: either

j1 þ j2 ¼ −1 or j1 þ j2 ≠ −1. Let us start with the latter.
Integrating over γ in (C3), we obtain

hΦj1;m;−mΦj2;−m;mi ∼ heQj1e−Qðj2þ1ÞiRðj2;−m;m; kÞ
þ he−Qðj1þ1ÞeQj2iRðj1; m;−m; kÞ:

ðC5Þ

(The divergent γ integral cancels in the SLð2;RÞ=Uð1Þ
coset theory, see [75] [Sec. III. 2].) Thus, the last term
of (C3) (containing a would-be double pole) drops out.
Now, it is time to say something about correlation functions
of pure exponentials. They do not contain any m or γ
dependence. Therefore, these correlation functions can be
computed using the results from nonsupersymmetric
Liouville theory, see Appendix B. From this logic, we
obtain [cf. (B36)]

he−Qðj1þ1ÞeQj2i ¼ δðj1− j2Þ in thevicinityj1 ≈ j2: ðC6Þ

Using this in (C5), we arrive at

22It is important that on the one hand (3.17) is symmetric in
m ↔ −m, and on the other hand, Rðj; m;−m; kÞ has the same
poles as Rðj;−m;m; kÞ.
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hΦj1;m;−mΦj2;m;−mi ∼ δðj1 − j2ÞRðj1; m;−m; kÞ: ðC7Þ

This has the same pole structure as the formula (C2).
To conclude, we comment on the case j1 ¼ j2 ¼ −1=2.

In this case, all the terms in (C3) do contribute. However,
they all give comparable contributions, since the reflection

coefficient does not actually develop a pole. This is
consistent with the results of Sec. V C 2.

APPENDIX D: USEFUL FORMULAS

Integration formula useful for the m-mode expansion of
SLð2;RÞ primary operators (see, e.g., Refs. [59,62]),

Z
C
d2xjxj2axnj1 − xj2bð1 − xÞm ¼ π

Γðaþ nþ 1ÞΓðbþmþ 1ÞΓð−a − b − 1Þ
Γð−aÞΓð−bÞΓðaþ bþmþ nþ 2Þ ; n; m ∈ Z: ðD1Þ

This formula can be derived using the method outlined in the book by Green, Schwarz, Witten [79] (Secs. 7.2.2–7.2.3
there). When the integral in the lhs does not converge, we use the rhs as the analytic continuation.
Another useful formula that helps with derivations of Sec. VI: integrating by parts, one can show that

Res
ϵ→0

Z
∞

0

dxx−1þϵ · fðxÞ ¼ fð0Þ; ðD2Þ

at least if f is differentiable and fðx → ∞Þ ¼ 0. (However, this result seems to hold even if f has singularities and is
divergent at infinity.)

The residue (5.14) can be calculated as follows. Consider j̃ ¼ ϵ ≪ 0, and take half-integer m > 0. We have

Rðj̃ ¼ ϵ; m;−m; kÞ ¼
�
1

π

Γð1þ 1
kÞ

Γð1 − 1
kÞ
�
2ϵþ1 Γð1 − 2ϵþ1

k ÞΓðmþ ϵþ 1ÞΓð−mþ ϵþ 1ÞΓð−2ϵ − 1Þ
Γð1þ 2ϵþ1

k ÞΓðm − ϵÞΓð−m − ϵÞΓð2ϵþ 1Þ

≈
1

π

�
1

π

Γð1þ 1
kÞ

Γð1 − 1
kÞ
�
2ϵ Γðmþ 1ÞΓð−mþ ϵþ 1ÞΓð−2ϵ − 1Þ

ΓðmÞΓð−m − ϵÞΓð1Þ

≈
1

π
m ·

Γð−mþ ϵþ 1ÞΓð−2ϵ − 1Þ
Γð−m − ϵÞ : ðD3Þ

Next, we use the formula

Γð−nþ ϵÞ ≈ ð−1Þn
ϵn!

: ðD4Þ

Then,

Rðj̃ ¼ ϵ; m;−m; kÞ ≈ 1

π
m ·

Γð−mþ ϵþ 1ÞΓð−2ϵ − 1Þ
Γð−m − ϵÞ

≈
1

π
m ·

ð−1Þm−1

ϵðm − 1Þ! ·
ð−1Þ1

ð−2ϵÞð1Þ! ·
ð−ϵÞm!

ð−1Þm

¼ m2

2π
·
1

ϵ
: ðD5Þ

Finally, let us also note a typo in Ref. [59]. Using the formulas from this appendix and fromAppendix A one can check that
factorial signs in the numerator in the last line of Eq. (4.20) in [59] should not be there. So, the formula (4.20) in [59] should read

Sð2; 3Þ ¼
Xmin fN;n3−1g

n¼max f0;Nþ1−n2g

�
N
n

	 ð−1Þn3−1−n
ðn3 − 1 − nÞ!ðn2 − 1þ n − NÞ!

×
Yn3−n−2
i¼0

ð2j3 þ n3 þ N − n − iÞ
Yn2þn−N−2

i¼0

ð2j2 þ n2 þ n − iÞ: ðD6Þ
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