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We study the two flavor nonlocal Nambu–Jona-Lasinio (NJL) model in the presence of a magnetic field
and explore the chiral crossover in presence of a nonlocal form of the ’t Hooft determinant term. Its
coupling is governed by a dimensionless parameter c. This term is responsible for the explicit breaking of
Uð1ÞA symmetry. We have attempted a systematic analysis of the model parameters by fitting to self-
consistent lattice QCD calculations. Three parameters of the model are fixed by eB ¼ 0 results from
published lattice QCD calculations on the chiral condensate, the pion decay constant (Fπ), and the pion
mass (mπ). The difference of the u and d quark condensates in the presence of a magnetic field (eB) is quite
sensitive to c, and we fix c using published lattice QCD results for this observable. We see no evidence that
c depends on eB. The crossover temperature decreases with increasing eB only for condensate values at the
lower end of the allowed values [as already seen in V. Pagura et al. Phys. Rev. D 95, 034013 (2017)], and
Fπ at the upper end of the allowed values. We further check our model predictions by calculating the
topological susceptibility with the fitted c values and comparing it with lattice results. Since the topological
susceptibility is related to the extent of the Uð1ÞA symmetry breaking, we find that it is sensitive to the
value of c.
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I. INTRODUCTION

The study of quantum chromodynamics (QCD) matter in
the presence of strong magnetic fields is a topic of current
interest (see [1] for a broad review). Phenomenologically,
it is interesting because a strong magnetic field is pre-
sent in the initial stages of heavy ion collisions (HICs)
(∼15m2

π;m2
π ≈ 1018 G) [2,3]. Intense fields in the range

1014–1019 G may also exist in the core of magnetars [4].
The QCD phase diagram in the presence of magnetic

fields, particularly the chiral crossover, has been heavily
studied for the last few decades. From different effective
QCD model investigations [5–13] and from the earliest
lattice QCD study [14], it was generally believed that at
zero chemical potential the value of the chiral condensate at
any temperature T in the presence of a magnetic field will

be larger than its value at eB ¼ 0. This property is termed
as magnetic catalysis (MC).
With more controlled lattice calculations [15,16] the

chiral condensate was found to decrease with an increasing
magnetic field near the crossover temperature. This behav-
ior was termed as inverse magnetic catalysis (IMC). These
effects have been studied for various magnetic fields and
mπ [15–19]. This sharper reduction in the condensate in the
crossover region often leads to a reduction of the crossover
temperature with increasing eB, which we will also loosely
call the IMC effect below. (A reduction in the crossover
temperature does not imply the IMC effect for mπ signifi-
cantly larger than the physical π mass [18].)
Since IMC was discovered using lattice QCD, several

attempts have been made to understand it through effective
QCD models [20–33]. A family of local Nambu–Jona-
Lasinio [34,35] (NJL) models explains the IMC by incor-
porating the effect of the energy scale eB on the four
fermion coupling. The motivation for this choice is that in
QCD the presence of this additional energy scale is
expected to weaken the coupling as eB increases.
Modeling this effect by reducing the four Fermi interaction
strength with eB leads to IMC in the crossover region.
The NJL interaction is local, which makes the model

simple yet powerful. The price paid for the model’s
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simplicity is the fact that the results of observables might
depend on the regularization procedure used. The most
popular regularization used is the introduction of a three
momentum cutoff. In this scheme, the QCD interaction is
assumed to be constant up to the value of the cutoff, and
modes above the cutoff are dropped. This procedure misses
the important nature of running of QCD coupling constant
with energy, and hence, the reduction in the coupling
constant as a function of eB needs to be put in by hand.
The nonlocal [36–40] version of the NJL model is

introduced to overcome some of the above-mentioned
drawbacks of the local NJL model. Technically, the
resulting expressions for the observables in the theory
are similar to implementing a soft cutoff using form factors
that decrease with increasing momenta but the intuition is
more than that. The reduction of the quark interaction with
increasing energy qualitatively mimics the nature of the
running of the QCD coupling constant. The nonlocal
version of the model also describes spontaneous chiral
symmetry breaking. Some aspects of confinement have
also been described in the model [36,37].
The nonlocal version of the NJL model has been used to

describe QCD matter under strong magnetic field. In
contrast to the standard NJL model (where one needs to
use multiple fitted parameters [21,22]), it naturally leads
to the effect of IMC [33] without using a four Fermi
interaction that explicitly depends on eB. To keep note of
the chronology of the actual development, it should be
mentioned here that the first attempt of incorporation of a
magnetic field in nonlocal NJL model showed MC at all
temperatures [41]. There the magnetic field was introduced
just like what is usually done in the local NJL model. On
the other hand, in Ref. [33], the analysis was performed
following a more rigorous procedure based on the Ritus
eigenfunction method [42] with the inclusion of a nonlocal
quark model with separable interactions including a cou-
pling to a uniform magnetic field. Our choice of working
with this model particularly stems from this important fact
that it naturally shows the IMC effect near crossover, in
agreement with lattice results.
Here we build upon the work of Refs. [33,43] and study

the two flavor nonlocal NJL model in presence of a
magnetic field to explore the chiral phase transition. In
this paper, we will focus on the Gaussian form factor, which
is one of the two considered by Refs. [33,43].
The first addition to Refs. [33,43] is that we add to the

nonlocal form of the standard four Fermi NJL interaction,
the ’t Hooft determinant term with an arbitrary coupling
constant. The usual NJL interaction has the well-known
form,

G0

2
½ðψ̄ψÞ2 þ ðψ̄iγ5τaψÞ2�; ð1Þ

which can be written as the sum of Uð1ÞA symmetric term
[L1 in Eq. (4) below] and a Uð1ÞA breaking ’t Hooft

determinant term [L2 in Eq. (5) below] with equal coupling.
The ’t Hooft determinant term arises due to instantons
and is included in such effective QCD models to break
the Uð1ÞA symmetry, which mimics the axial anomaly in
QCD. The difference between the two couplings is gov-
erned by the dimensionless parameter c [defined in Eq. (7)
below]. For c ¼ 1=2, the strength of the two couplings
are equal, and the interaction is of the form Eq. (1).
References [33,43] considered the nonlocal generaliza-
tion of this case. By allowing the two couplings to be
independent (c ≠ 1=2), the sum of the u and d quark
condensates and the difference of the u and d quark
condensates are governed by two independent coupling
constants.
In the absence of any isospin symmetry breaking, the u

and d condensates are equal (we assume mu ¼ md) and so
are the respective constituent quark masses. The value of c
does not play any role as only the sum of the u and d
condensates is nontrivial.
If one considers nonzero isospin chemical potential (μI

[44]) or/and magnetic field (eB [9]), the independent
appearance of both the u and d quark condensates in the
u and d constituent masses become important. This effect
has been termed as “flavor mixing” [44] in the literature
(although “flavor coupling” might be a more appropriate
term). This “flavor mixing” depends on c.
These facts make the consideration of an arbitrary

strength of ’t Hooft interaction in the presence of a
magnetic field quite relevant. With these combined effects
of instantons and magnetic field, the exploration becomes
more interesting. On one hand, the “flavor mixing” effects
coming via the instantons try to restore the isospin sym-
metry, and on the other hand, the strength of the magnetic
field breaks it further as the different flavors couple with the
magnetic field with different strengths [9].
One important result of our analysis is that an eB

independent c describes the lattice results for the u, d
condensate difference at T ¼ 0 quite well, and this allows
us to extract the value of c using lattice results on the u, d
condensate difference. Results for the thermodynamics of
isosymmetric matter cannot be used to constrain c. To our
knowledge, this is the first attempt to constrain c using
lattice results.
The results of [32,33] for the u, d condensate difference

at T ¼ 0 as a function of eB with c ¼ 1=2 agree quite
well with the lattice results when the model is fitted to a
larger value of the sum of the u, d condensate at eB ¼ 0.
However, the condensate differences for different values of
the magnetic field, have not been contrasted against the
lattice QCD data for finite T. Here, we aim to compare our
findings for both zero and nonzero temperature with the
lattice data with c fitted to T ¼ 0 results.
Our second addition is a more systematic analysis of the

parameters of the model by fitting to a self-consistent set of
lattice results. The pertinent parameters for eB ¼ 0 in the
nonlocal NJL model are the overall four Fermi coupling
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strength G0, the “cutoff” Λ (which determines the momen-
tum beyond which the form factor drops rapidly), and the
bare quark mass m. These are usually [45,46] fitted to
match Fπ , mπ and the condensate hψ̄ψi, and we follow
the same procedure. (Recall that c does not play a role for
eB ¼ 0.) While Fπ , mπ are very well constrained from
experiments and lattice [47], the condensate value is often
taken from models or phenomenology.
In Ref. [33], it has already been demonstrated that IMC

in the crossover region is seen only for smaller values of the
chiral condensate within a physically motivated range of
values [Ref. [33] considered a range of values of ðhψ̄ψiÞ1=3
from 210 MeV to 240 MeV.], especially for the Gaussian
form factor.
In this paper, we fit the model to self-consistent

calculations of the chiral condensate and Fπ for realistic
mπ , on the lattice. We consider the parameter set by the
JLQCD Collaboration, with the central value of condensate
being hψ̄fψfi1=3 ¼ 240 MeV [48] (at the renormalization
scale 2 GeV, see Sec. III A). We denote a specific flavor f
(u or d) of the ψ as ψf. When f is summed over, we denote
the bilinear as ψ̄ψ . To increase the exploration range in the
space of the chiral condensate, we consider another LQCD
calculation [49], for which the value of the condensate is a
bit larger (hψ̄fψfi1=3 ¼ 261 MeV). From this inclusion, it
becomes evident that within such effective models, the
IMC effect can only be observed for smaller values of chiral
condensates. This corroborates the findings in Ref. [33].
We put the whole discussion related to the second lattice
data in Appendix B.
Like Ref. [33], we also find that within the error band of

hψ̄fψfi1=3 IMC is obtained for the condensates near the
lower edge of the range. In addition, we find that within the
error band of Fπ to get a better match with the phase
diagram given by LQCD [15], one needs to consider Fπ

towards the upper edge of the range. Our analysis clearly
indicates that the obtainment of the IMC effect in such a
nonlocal effective QCD model also depends on the values
of Fπ .
In addition to the above two improvements, the inclusion

of the parameter c presents us with the scope of exploring
the temperature evolution of the axial anomaly breaking
term. In particular, it is expected that the Uð1ÞA symmetry
gets restored at high enough temperature, estimated to be
near or above the chiral crossover temperature [50]. Here,
the investigation becomes more interesting in the presence
of a magnetic field, which breaks the isospin symmetry as
well. One observable that can be impacted by a finite c is
the topological susceptibility (χt), and we also calculate it
as a function of eB and T for the fitted values of the
parameters. χt has been calculated for the local NJL model
for physically motivated values of c before [51,52]. We
now calculate this in the nonlocal case and compare it with
lattice calculations, which helps to provide an extra check
on our model.

We organize the paper as follows: In Sec. II, we briefly
review the formalism for the model used in this article. We
start the discussion by considering the instanton term at
zero temperature and magnetic field in nonlocal model and
subsequently, in Sec. II A, we shift the focus to the scenario
for nonzero temperature and magnetic field. In Sec. II B, we
give a brief description for the topological susceptibility.
Then in Sec. III, the results of the paper have been outlined.
In Sec. III A, we give details of the fitting of the model
parameters and the necessary criteria. We show the results
for the fitting of the Uð1ÞA symmetry breaking parameter
c at zero eB and T in Sec. III B. In Sec. III C, we show the
model prediction for condensate average, phase diagram
and condensate difference with the fitted c value and
compare them with the available LQCD results. We further
show the model predictions for χt with the fitted c values
along with the comparison with LQCD results in Sec. III D.
Finally, in Sec. IV, we conclude.
To avoid breaking the flow of the paper, we have moved

some material to the Appendix. In Appendix A, the depend-
ence of the mass of (2 flavors) Uð1ÞA fluctuations on c is
shown. In Appendix B, results for Brandt13 are discussed.
Finally, in Appendix C, the dependence of χt on c is
discussed.

II. FORMALISM

In this section, we briefly discuss the formalism used in
the nonlocal NJL model. As mentioned earlier, our main
goal is to study the interplay between the effect of the
magnetic field and the ’t Hooft determinant term, particu-
larly the interplay of the magnetic field with the strength of
the explicit axial symmetry breaking.
In the standard NJL model, the strengths of axial

symmetric and axial symmetry breaking interaction terms
are equal [45,46]. We follow the prescription of Ref. [44],
where they have considered a general NJL Lagrangian with
arbitrary interaction strengths for Uð1ÞA symmetric and
breaking interactions,

LNJL ¼ L0 þ L1 þ L2; ð2Þ

where the kinetic term is

L0 ¼ ψ̄ði=∂ −mÞψ ; ð3Þ

and the interactions are given by

L1 ¼G1fðψ̄ψÞ2þðψ̄ τ⃗ ψÞ2þðψ̄iγ5ψÞ2þðψ̄iγ5τ⃗ψÞ2g and
ð4Þ

L2 ¼G2fðψ̄ψÞ2− ðψ̄ τ⃗ ψÞ2− ðψ̄iγ5ψÞ2þðψ̄iγ5τ⃗ψÞ2g; ð5Þ

with L1 being symmetric under Uð1ÞA, but L2 is not. τ⃗
represents Pauli matrices.
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In the absence of isospin chemical potential (μI)
and magnetic field (eB) (we take mu ¼ md), the chiral
condensate,

hψ̄ðxÞψðxÞi; ð6Þ

spontaneously breaks the (approximate) SUð2ÞA symmetry.
In mean field theory, it depends only on the combination
ðG1 þ G2Þ. The state is SUð2ÞV symmetric.
In the presence of μI or/and eB as the SUð2ÞV symmetry

is explicitly broken, one can have hψ̄τ3ψi condensate,
which depends also on the combination ðG1 −G2Þ. We can
parametrize the coupling constants as

G1 ¼ ð1 − cÞG0=2

G2 ¼ cG0=2; ð7Þ

where c ¼ 1=2 corresponds to the usual NJL model.
The local version of the NJL model lacks some important

features of the full QCD theory. For example, asymptotic
freedom, momentum dependent constituent mass, etc.
To implement these features in NJL type models qualita-
tively, one may consider the nonlocal version of it. With a
nonlocal form factor, one can qualitatively incorporate the
idea of asymptotic freedom in the NJL model.
The nonlocal NJL Lagrangian has the same structure as

Eq. (2), where the interaction term can be written as
[32,33,36–40,43],

L1 ¼ G1fjaðxÞjaðxÞ þ j̃aðxÞj̃aðxÞg and

L2 ¼ G2fjaðxÞjaðxÞ − j̃aðxÞj̃aðxÞg:

Here, jaðxÞ and j̃aðxÞ are the nonlocal currents, given by
(scheme II) [43]

jaðxÞ=j̃aðxÞ ¼
Z

d4zHðzÞψ̄
�
xþ z

2

�
Γa=Γ̃aψ

�
x −

z
2

�
;

ð8Þ

where Γa ¼ ðI; iγ5τ⃗Þ, Γ̃a ¼ ðiγ5; τ⃗Þ with a ¼ f0; 1; 2; 3g,
and HðzÞ is the nonlocal form factor in position space.
For the rest of this subsection, let us assume that the

isospin is a symmetry of the system (neither μI nor eB is
present). With G2 ≠ 0 in the chiral limit, the symmetry of
the above Lagrangian is

SUð2ÞV × SUð2ÞA ×Uð1ÞV: ð9Þ

With G2 ¼ 0, it has an additional UAð1Þ symmetry.
The next step is to integrate out the fermionic degrees of

freedom. To do that, moving to the Euclidean space from
the Minkowski space will make the calculation easier. This
can be achieved with the help of Wick rotation, which can
be performed through the following transformations:

t → −ix4 and γ0 → iγ4: ð10Þ

With the metric gμν ¼ diagð−1;−1;−1;−1Þ, all the calcu-
lations done below are in Euclidean space.
To integrate out the fermionic degrees of freedom, one

needs to linearize the theory, which can be done with the
help of Hubbard–Stratonovich (HS) transformation. In the
HS transformation, one can introduce four auxiliary fields
associated with the four different types of interactions. For
a detailed bosonization calculation, one can look in the
Appendix A of Ref. [53]. We mark the isoscalar and
isovector auxiliary fields by σ and π, respectively, and use
“s” and “ps” in the subscripts to denote Lorentz scalar and
pseudoscalar, respectively. In a mean-field approximation,
some of the auxiliary fields have an equilibrium expect-
ation value.
The expectation value of operators in the pseudoscalar

channel is 0 due to parity conservation. In the absence of μI
and eB, isospin symmetry ensures

hψ̄ðxÞτ⃗ψðxÞi ¼ 0: ð11Þ

This makes the free energy (Ω) and other vacuum observ-
ables independent of c.
The auxiliary field σs is given by

σsðxÞ ¼ −
G0

2

Z
d4zHðzÞψ̄

�
xþ z

2

�
ψ

�
x −

z
2

�
: ð12Þ

With only the nonzero scalar-isoscalar auxiliary field, one
gets the mean-field Lagrangian as

LMF ¼ ψ̄ðxÞ
�
δ4ðx− yÞð−i=∂þmÞþHðx− yÞσs

�
xþ y
2

��

×ψðyÞþ 1

2G0

σ2s

�
xþ y
2

�
: ð13Þ

Assuming that the mean-field is homogeneous and
isotropic (for eB ¼ 0) throughout space and time, we take
σs in Eq. (12) independent of x. With the above assumption,
one can obtain the formal expression for the free energy per
unit volume as

Ω ¼ SMF

Vð4Þ ¼ −2NfNc

Z
d4q
ð2πÞ4 ln ½q

2 þM2ðqÞ� þ σ2s
2G0

:

ð14Þ

In the mean field approximation, the constituent quark
mass is given by

MðqÞ ¼ mþ hðq; qÞσs: ð15Þ

hðp; p0Þ is the nonlocal form factor in momentum space,
the Fourier transformation of Hðx − yÞ. It is function of
only pþ p0 as one can see from Eq. (13).
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We follow the procedure used in Ref. [43] and con-
sider the nonlocal form factor to be Gaussian. The explicit
form is

hðp; p0Þ ¼ e−ðpþp0Þ2=ð4Λ2Þ: ð16Þ

The self-consistent gap equation has the following form:

σs ¼ 8NcG0

Z
d4q
ð2πÞ4 hðq; qÞ

MðqÞ
q2 þM2ðqÞ : ð17Þ

With σs given by Eq. (17), one can calculate the formal
expression for the local condensate by differentiating the Ω
with respect to current quark mass as

hψ̄fðxÞψfðxÞi ¼
∂Ω
∂m ¼ −4Nc

Z
d4q
ð2πÞ4

MðqÞ
q2 þM2ðqÞ : ð18Þ

We note that the right-hand side in Eq. (18) is not
convergent away from the chiral limit [substituting m ¼ 0
in Eq. (15) implies that MðpÞ → 0 at large p] and needs to
be regularized. This can be done by subtracting the
identical expression with M ¼ m. This prescription can
be understood from Eq. (14) if we subtract the analogous
term from the formal expression of the free energy to make
it regular.
Now, to fit the model parameters, we use pion mass and

also pion decay constant. To get the pion mass, we need to
calculate the pion propagator which can be obtained from
the quadratic term in the pionic fluctuation from the
bosonized action as

G�ðp2Þ ¼ 1

G0

− 8Nc

Z
d4q
ð2πÞ4 h

2ðqþ; q−Þ

×
½ðqþ · q−Þ ∓ MðqþÞMðq−Þ�

½ðqþÞ2 þM2ðqþÞ�½ðq−Þ2 þM2ðq−Þ� ; ð19Þ

where þ sign in G� corresponds to the σ mode and − sign
to the pionic mode with q� ¼ q� p=2. The pion mass is
obtained from

G−ð−m2
πÞ ¼ 0: ð20Þ

Following the steps given in Ref. [43], we use the
expression for pion decay constant,

m2
πFπ ¼ mZ1=2

π Jð−m2
πÞ; ð21Þ

where Jðp2Þ given by

Jðp2Þ ¼ 8Nc

Z
d4q
ð2πÞ4 hðq

þ; q−Þ

×
½ðqþ · q−Þ þMðqþÞMðq−Þ�

½ðqþÞ2 þM2ðqþÞ�½ðq−Þ2 þM2ðq−Þ� ; ð22Þ

and Zπ is related to the πψ̄fψf coupling constant and is
given by

Z−1
π ¼ dG−ðpÞ

dp2

����
p2¼−m2

π

: ð23Þ

Equations (35), (20), and (21) are used to fit the free
parameters of the model, m (current quark mass), G0 and Λ
with a given form factor. In the case of the Gaussian form
factor, Λ characterizes the range of nonlocal interaction. In
other words, it controls at what scale the coupling starts
becoming small. These parameters are fitted to obtain a
phenomenologically allowed quark condensate, physical
pion mass, and pion decay constant.

A. Nonzero temperature and magnetic field

To include both the temperature and magnetic field, we
follow the procedure given in Ref. [33]. Since the isospin
SUð2Þ symmetry (both vector and axial) is broken in the
presence of a magnetic field, we introduce another auxiliary
field πs [9]. Pseudoscalar mean fields are still not allowed
due to the parity symmetry.
Introducing these two auxiliary fields (σs, πs, introduced

in the previous section), one can obtain the effective
Euclidean action using the mean field Lagrangian,

Sbos ¼ − ln detDþ 1

2G0

Z
d4xσ2sðxÞ

þ 1

2ð1 − 2cÞG0

Z
d4xπ⃗sðxÞ · π⃗sðxÞ; ð24Þ

where the fermionic determinant is given by

D
�
xþ z

2
;x−

z
2

�
¼ γ0W

�
xþ z

2
; x

�
γ0½δð4ÞðzÞð−i=∂þmÞ

þHðzÞ½σsðxÞþ τ⃗ · π⃗sðxÞ��W
�
x;x−

z
2

�
:

ð25Þ

Here,Wðx;yÞ is given asWðx;yÞ¼Pexp ½−iQ̂R
y
x drμAμðrÞ�.

As for the nonmagnetic field scenario, here also we will
assign space-time independent mean field values to the
auxiliary fields. Without loss of generality, we can choose
π⃗s to be in the τ3 (π3s) direction. As already mentioned, all
other pseudoscalar auxiliary fields are chosen to have zero
mean field values. Then the fermionic determinant and the
action become
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DMFAðx; x0Þ ¼ δð4Þðx − x0Þð−i=∂ − Q̂Bx1γ2 þmÞ

þ ðσs þ τ3π
3
sÞHðx − x0Þ exp

�
i
2
Q̂Bðx2 − x02Þðx1 þ x01Þ

�
and ð26Þ

Sbos ¼ − ln detDMFA þ 1

2G0

Z
d4xσ2s þ

1

2ð1 − 2cÞG0

Z
d4xðπ3sÞ2; ð27Þ

respectively.
Following the Ritus eigenfunction method [42] as employed in Ref. [33], we obtain the constituent mass for a Gaussian

nonlocality form factor as

Mλ;f
qk;k ¼ mþ ðσs þ sfπ3sÞ

ð1 − jqfBj=Λ2Þkþλsf−1
2

ð1þ jqfBj=Λ2Þkþλsfþ1

2

expð−qk2=Λ2Þ; ð28Þ

where qk ¼ ðq3; q4Þ, sf ¼ signðqfÞ, k is the Landau level index and λ ¼ �1 is the spin. The free energy per unit volume is
given by

Ω ¼ SMFA
bos

Vð4Þ ¼ σ2s
2G0

þ ðπ3sÞ2
2ð1 − 2cÞG0

− Nc

X
f¼u;d

jqfBj
2π

Z
d2qk
ð2πÞ2

�
ln ½q2k þ ðMsf;f

qk;0Þ
2�

þ
X∞
k¼1

ln ½ð2kjqfBj þ q2k þM−1;f
qk;k

Mþ1;f
qk;k

Þ2 þ q2kðMþ1;f
qk;k

−M−1;f
qk;k

Þ2�
�
: ð29Þ

The two gap equations can be obtained by differentiating the above equation with respect to σs and π3s as

∂Ω
∂σs ¼

σs
G0

− Nc

X
f¼u;d

2jqfBj
2π

Z
d2qk
ð2πÞ2

� M
sf;f
qk;0A

sf;f
qk;0

q2k þ ðMsf;f
qk;0Þ

2

þ
X∞
k¼1

�ð2kjqfBj þ q2k þM−1;f
qk;k M

þ1;f
qk;k ÞðA

−1;f
qk;k M

þ1;f
qk;k þM−1;f

qk;k A
þ1;f
qk;k Þ

ð2kjqfBj þ q2k þM−1;f
qk;k M

þ1;f
qk;k Þ

2 þ q2kðMþ1;f
qk;k −M−1;f

qk;k Þ
2

þ
q2kðMþ1;f

qk;k −M−1;f
qk;k ÞðA

þ1;f
qk;k − A−1;f

qk;k Þ
ð2kjqfBj þ q2k þM−1;f

qk;k
Mþ1;f

qk;k
Þ2 þ q2kðMþ1;f

qk;k
−M−1;f

qk;k
Þ2
��

¼ 0 and ð30Þ

∂Ω
∂π3s ¼

π3s
ð1 − 2cÞG0

− Nc

X
f¼u;d

sf
2jqfBj
2π

Z
d2qk
ð2πÞ2

� M
sf;f
qk;0A

sf;f
qk;0

q2k þ ðMsf;f
qk;0Þ

2

þ
X∞
k¼1

�ð2kjqfBj þ q2k þM−1;f
qk;k M

þ1;f
qk;k ÞðA

−1;f
qk;k M

þ1;f
qk;k þM−1;f

qk;k A
þ1;f
qk;k Þ

ð2kjqfBj þ q2k þM−1;f
qk;k M

þ1;f
qk;k Þ

2 þ q2kðMþ1;f
qk;k −M−1;f

qk;k Þ
2

þ
q2kðMþ1;f

qk;k
−M−1;f

qk;k
ÞðAþ1;f

qk;k
− A−1;f

qk;k
Þ

ð2kjqfBj þ q2k þM−1;f
qk;k M

þ1;f
qk;k Þ

2 þ q2kðMþ1;f
qk;k −M−1;f

qk;k Þ
2

��
¼ 0; ð31Þ

respectively. Here, Aλ;f
qk;k is given by

Aλ;f
qk;k ¼

ð1 − jqfBj=Λ2Þkþλsf−1
2

ð1þ jqfBj=Λ2Þkþλsfþ1

2

expð−qk2=Λ2Þ: ð32Þ

The finite temperature is introduced using the Matsubara formalism, which connects the Euclidean time component to the
temperature as follows:
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Z
dq4
2π

fðq4Þ ¼ T
X∞
n¼−∞

fðωnÞ; ð33Þ

where the Mastubara frequency (ωn) for fermions are given
by ωn ¼ ð2nþ 1ÞπT.
With the above prescription [Eq. (33)], q2k is replaced by

ðq23 þ ω2
nÞ in Eqs. (28), (29), (30), and (31); and the

integration
R d2qk

ð2πÞ2 is replaced by T
P∞

n¼−∞
R dq3

ð2πÞ. Here,

we would like to highlight the major difference with the
standard NJL model scenario, where one can separate out
the vacuum and thermal contribution coming from the
fermionic determinant. There the temperature appears only
through the momentum component q4 in the propagator,
and using a summation identity, one can easily separate out
the above-mentioned two components. In the nonlocal
case, however, we cannot separate out the vacuum and
the thermal contributions. In the presence of a nonlocal
form factor, one gets an explicit temperature dependence in
the constituent mass which then prevents us from making
any further analytic simplification, and the Matsubara sums
needs to be performed numerically.
One can easily notice that the free energy form [Eq. (29)]

is divergent due to the integration over q3. Our purpose is to
minimize the free energy and obtain the associated mean
field values. To remove the divergence from the action, we
can subtract from Eq. (29) the same expression with
constituent mass (M) being replaced by the current mass
(m). This replacement does not affect the position of the
extremum in the mean field space but removes the
divergence. The subtraction also ensures that the summa-
tions over Landau levels and Matsubara frequencies
converge.
The values of the mean fields can be obtained by solving

the gap equations. Now if we look into the gap equations
[(30) and (31)], we can see that the integrands are
multiplied by Aλ;f

qk;k, which goes to zero as q3 → ∞ due

to the exponential factor. Hence, the gap equations are also

divergence free. The same exponential factor makes sure
that the summation over Matsubara frequencies converges
too, whereas the Landau level summation converges as the
effective power of k is −1 with a suppressing factor in the
numerator coming from Eq. (32).
Using the two gap equations [(30), (31)], we obtain the

mean field values σs and π3s . σs is proportional to the
average of u and d condensates and π3s to the difference of
them and since π3s ¼ 0 for eB ¼ 0, we expect that for eB
small enough,

absðσsÞ ≥ absðπ3sÞ: ð34Þ

Now looking at the Euclidean action [Eq. (29)] in the
chiral limit (m ¼ 0) without the mean-field part (i.e., terms
one and two on the right-hand side), one observes that it is
symmetric under the interchange of σs and π3s . Then it
becomes important to know what guarantees a higher
numerical value to σs solution compared to π3s and not
vice versa. Where a smaller solution for σs compared to π3s
simply implies that the sign of u and d condensates are
different, which is unphysical. This symmetry is broken by
the mean field terms. c ≠ 0 breaks this symmetry, and in
the chiral limit, we found out that with c > 0, we always
end up with physically acceptable solutions, but for c < 0,
we do not. Hence, c ¼ 0 is the boundary line between these
two scenarios.
The introduction of a small quark mass (m) shifts this

boundary to a slightly negative value in c. Motivated by this
discussion, we will restrict ourselves to c > 0. We will
further see that c > 1=2 can be ruled out of other physical
considerations, and hence, we shall restrict ourselves
to c ∈ ½0; 1=2�.
The formal expression for the quark condensate for

individual flavors (u and d) can be obtained by differ-
entiating the action with respect to the corresponding
current quark mass as before,

hψ̄fψfi ¼−Nc

X
f¼u;d

2jqfBj
2π

Z
d2qk
ð2πÞ2

(
M

sf;f
qk;0

q2k þ ðMsf;f
qk;0Þ

2
þ
X∞
k¼1

ð2kjqfBj þq2k þM−1;f
qk;k

Mþ1;f
qk;k

ÞðMþ1;f
qk;k

þM−1;f
qk;k

Þ
ð2kjqfBj þq2k þM−1;f

qk;k M
þ1;f
qk;k Þ

2þq2kðMþ1;f
qk;k −M−1;f

qk;k Þ
2

)
: ð35Þ

In the large-p region, one easily find out that the above integral is divergent with nonzero quark masses. To obtain a finite
condensate, one need to regularize it. Here, we have used the same regularization procedure as used in Ref. [33],

hψ̄fψfiregB;T ¼ hψ̄fψfiB;T − hψ̄fψfifreeB;T þ hψ̄fψfifree;regB;T ; ð36Þ

where “free” implies that there is no self-interaction and hψ̄fψfifree;regB;T is given by

hψ̄fψfifree;regB;T ¼ Ncm3

4π2

�
lnΓðxfÞ

xf
−
lnð2πÞ
2xf

þ 1 −
�
1 −

1

2xf
ln xf

��
þ NcjqfBj

π

X∞
k¼0

αk

Z
dq
2π

m

Ef
kð1þ exp½Ef

k=T�Þ
; ð37Þ
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with xf ¼ m2=ð2jqfBjÞ. It is obvious that the “free,reg”
term will be zero in absence of magnetic field.
Finally, to compare our findings with LQCD results [16],

we use their definition of the renormalized condensate,
which was used to cancel both additive and multiplicative
divergences that appear in the lattice calculation. The form
is given below,

Σf
B;T ¼ 2m

N 4
½hψ̄fψfiregB;T − hψ̄fψfireg0;0� þ 1; ð38Þ

whereN is given byN ¼ ðmπFπ;0Þ1=2, which follows from
Gell-Mann-Oakes-Renner (GOR) relation,mπ is the neutral
pion mass, and Fπ;0 is the pion decay constant in the
chiral limit.

B. Topological susceptibility (χ t)

The QCD Lagrangian features a CP-violating [54,55]
topological term that can be written as [56]

ΔL ¼ ϵμνσλ
θ

64π2
F a

μνF a
σλ; ð39Þ

where θ is the QCD vacuum angle and F a stands for the
gluonic field strength tensor. For direct comparison to
lattice measurements, we follow the conventions where g is
absorbed in the definition of F .
An important quantity is the topological susceptibility

[57] as a function of T,

χt ¼
Z

d4xhQtðxÞQtð0Þi; ð40Þ

where

QtðxÞ ¼ −ϵμνσλ
1

64π2
F a

μνF a
σλ: ð41Þ

It can be related to the thermodynamic derivative of the free
energy [58],

d2Ω
dθ2

����
a¼0

¼ χt: ð42Þ

One reason why χt is important is that in QCD, χt can be
formally related to the mass of the axion field [59,60]. The
existence of a dynamical axion is considered to be a
possible solution to the strong CP problem (the absence
of charge and parity violation in strong interaction) [59]. θ
can be related to the QCD axion field (a) via the relation
θ ¼ a=fa, with fa being the axion decay constant.
It is also well known [61] that this term [Eq. (39)] can be

removed by making a Uð1ÞA transformation on the fer-
mionic field,

ψ → e−iγ
5θ=4ψ ; ψ̄ → ψ̄e−iγ

5θ=4: ð43Þ

Using the fact that the fermionic measure of the gauge
theory is not invariant under the chiral transformations,
it was shown that ΔL [Eq. (39)] cancels out. Now, under
the above mentioned chiral transformation, both the
Lagrangian (5) and the mass term are not invariant and
pick up a phase factor. θ then appears in the fermionic
sector.
For the calculation of χt in effective models without

dynamic gluonic degrees of freedom, it is assumed that the
same procedure follows [62–64]. Namely, θ can be intro-
duced in the fermionic sector using Eq. (43).
Under Eq. (43) the currents transform as

jaðxÞ=j̃aðxÞ→
Z

d4zHðzÞψ̄
�
xþ z

2

�
e−iγ5θΓa=Γ̃aψ

�
x−

z
2

�
:

ð44Þ

It is clear that the transformations [Eq. (44)] are the same as
those for local currents. This is because the Uð1ÞA trans-
formations that we are making are global.
Therefore, L1 remains unchanged after going through

the transformations Eq. (44), but L2 transforms to

L2 → La ¼ G2½cos θfjaðxÞjaðxÞ − j̃aðxÞj̃aðxÞg
þ 2 sin θfj0ðxÞj̃0ðxÞ − jiðxÞj̃iðxÞg�; ð45Þ

where i runs from 1 to 3. It can be easily verified that
the Lagrangian in Eq. (45) is chirally symmetric but breaks
the Uð1ÞA symmetry as required by QCD. Now with the
inclusion of the axion field the new working Lagrangian
becomes

LNJL ¼ L0 þ L1 þ La: ð46Þ
There is also an additional change in the mass term

[Eq. (3)], but this additional contribution is small because
of the smallness of m. Therefore, we ignore the explicit
breaking of Uð1ÞA by the mass term and consider only
contributions from Eq. (5).
Once we have the total Lagrangian, we can get the

thermodynamic potential (Ω) using the mean field approxi-
mation [51,52,62,63]. To make the above Lagrangian
bilinear in quark fields, we follow the same procedure
used in the previous subsection. As nonzero θ breaks P, T,
and CP symmetry, we can have nonzero mean fields
associated with the axial currents. Thus, with the mean-
fields σs, π3s we now, as well, consider the parity violating
mean-fields σps and π3ps. The topological susceptibility is
calculated from Eq. (42) at θ ¼ 0, which makes the newly
introduced fields go to zero. The quark contribution to the
free energy looks the same as obtained in the previous
subsection with modifications in the mass term as given
below,
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Mλ;f
qk;k ¼Mλ;f

0;qk;kþ sfM
λ;f
3;qk;k;

Mλ;f
0;qk;k

¼mþAλ;f
qk;k

fAσsþDσpsþðCσsþBσpsÞiγ5g and

Mλ;f
3;qk;k

¼ Aλ;f
qk;k

fBπ3s −Cπ3psþðAπ3ps−Dπ3sÞiγ5g: ð47Þ

Here, A ¼ ð1 − 2c sin2ðθ=2ÞÞ, B ¼ ð1 − 2c cos2ðθ=2ÞÞ=
ð1 − 2cÞ, C ¼ c sinðθÞ, and D ¼ c sinðθÞ=ð1 − 2cÞ. In
absence of an axion field (i.e., at θ ¼ 0), we have A ¼
B ¼ 1 and C ¼ D ¼ 0, which then lead us to the expres-
sion obtained in the previous subsection. The eigenvalues
are straightforward to calculate. The pure mean field
contribution to the free energy is given below,

ΩMF ¼ A
2G0

ðσ2s þ ðπ3psÞ2Þ þ
B

2ð1 − 2cÞG0

ðσ2ps þ ðπ3sÞ2Þ

þ C
ð1 − 2cÞG0

ðσsσps − π3sπ
3
psÞ: ð48Þ

With these modifications, one can write down the free
energy which looks like Eq. (29) with the modified mass
eigenvalues and the mean field part replaced by the above
expression [Eq. (48)]. With this free energy, we have four
gap equations associated with four meanfields. Now from
Ω, one can obtain different mean fields by solving the gap
equations simultaneously. But as the topological suscep-
tibility is calculated at θ ¼ 0, which forces σps and π3ps to
acquire zero values. Hence, the free energy is the same as
what we obtained by considering only two mean fields. But
to calculate the topological susceptibility, we need the
second derivatives of the free energy with respect to all the
mean fields and then set σps and π3ps to zero. For specific
temperature and magnetic field, these solutions will also
depend on θ and thus as a whole, the potential will be

Ω ¼ ΩðT; eB; θÞ: ð49Þ
The total derivative of the free energy with respect to θ can
be expressed in terms of the partial derivatives of the same
with respect to the mean fields and θ,

d2Ω
dθ2

¼ ∂2Ω
∂θ2 þ 2

∂2Ω
∂π3ps∂θ

∂π3ps
∂θ þ ∂2Ω

∂π3ps2
�∂π3ps

∂θ
�

2

þ 2
∂2Ω
∂π3s∂θ

∂π3s
∂θ þ 2

∂2Ω
∂π3s∂π3ps

∂π3s
∂θ

∂π3ps
∂θ þ ∂2Ω

∂π3s2
�∂π3s
∂θ

�
2

þ 2
∂2Ω

∂σps∂θ
∂σps
∂θ þ 2

∂2Ω
∂σps∂π3ps

∂σps
∂θ

∂π3ps
∂θ þ 2

∂2Ω
∂σps∂π3s

∂σps
∂θ

∂π3s
∂θ þ ∂2Ω

∂σps2
�∂σps

∂θ
�

2

þ 2
∂2Ω
∂σs∂θ

∂σs
∂θ

þ 2
∂2Ω

∂σs∂π3ps
∂σs
∂θ

∂π3ps
∂θ þ 2

∂2Ω
∂σs∂π3s

∂σs
∂θ

∂π3s
∂θ þ 2

∂2Ω
∂σs∂σps

∂σs
∂θ

∂σps
∂θ þ ∂2Ω

∂σs2
�∂σs
∂θ

�
2

þ ∂Ω
∂σs

∂2σs
∂θ2

þ ∂Ω
∂π3s

∂2π3s
∂θ2 þ ∂Ω

∂σps
∂2σps
∂θ2 þ ∂Ω

∂π3ps
∂2π3ps
∂θ2 : ð50Þ

Each of the last four terms contains gap equations, which
are zero at the minima of the free energy. Using the above
expression, we can now calculate χt from Eq. (42). For a
recent calculation of χt in the local NJL model with
eB ¼ 0, see [51], and for nonzero eB, see [52].

III. RESULTS

A. Choice of the fitting observables for eB= 0 and the
ranges of parameters

As discussed above, the nonlocal NJL model for eB ¼ 0
has three parameters G0, Λ, and m. (c plays a role only for
eB ≠ 0.) To fix these, we would like to fit the model to
match three independent observables. In this paper, we will
work only with the two-flavor model. We fit the three
parameters to self-consistently determined data from (two-
flavor) lattice calculations for mπ, Fπ and hψ̄fψfi in the
absence of a magnetic field. With this parameter set, we
study the behavior of u and d condensates in the presence
of magnetic field within the nonlocal NJL model and

compare them with the lattice results of Ref. [16] for zero as
well as nonzero temperatures.
The lattice study in Ref. [16] is done for physical pions,

and they also quote the value of Fπ in the chiral limit
(86 MeV). However, since the value of the condensate for
this lattice calculation was not available in the literature, we
use other lattice calculations to fit the parameters of
our model.
We do note that the results of Ref. [16] are for 1þ 1þ 1

QCD, and hence, the model fitted to two flavor data cannot
be expected to capture the physics of the three flavor model
completely. Indeed, as we will see below, the crossover
temperature for eB ¼ 0 we obtain is lower than the cross-
over temperature in Ref. [16]. This is a well-known
property of the nonlocal NJL model [33]. A direct
comparison will require the generalization of the model
to three flavors, which we will consider in future work.
However, here, we study to what extent the two flavor
model captures the results found in Ref. [16] and hope that
once the temperature is scaled by the scale TCO, the
dependence on the flavor content is not very strong.
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To cover a range of self-consistently determined param-
eter values, we consider a two-flavor LQCD calculation to
constrain our model [48] (referred in the text as JLQCD),
which we discuss in detail in the following sections. We
also consider another LQCD data set [49] (we refer to it as
Brandt13), for which the analysis is briefly discussed in the
Appendix. One can look into the Ref. [47] for the available
lattice results and the latest developments. The calculation
in [48] is performed at the physical mπ and the error on mπ

is assumed to be negligible. We fit to Fπ at the physical
pion mass.
We begin our search for finding parameter space for the

model with the JLQCD data set. The condensate and the
decay constant (with the error estimates) are given in
Ref. [47], and we quote them below,

hψ̄ψi1=3jμ¼2 GeV ¼ 240ð4Þ MeV and

Fπ ¼ 87.3ð5.6Þ MeV: ð51Þ

One should note that the quoted value of the condensate
from the LQCD study has been obtained at the renorm-
alization scale μ ¼ 2 GeV [48]. A direct matching of this
value to the effective models is difficult because of two
reasons. First, the natural scale for the kind of effective
models that we are considering here is around 1 GeV (for
the nonlocal model, Λ provides a rough estimate of the
cutoff, which is ∼1 GeV; see Figs. 1 and 2). Second, the
renormalization scheme in the effective models is usually
not MS.
The correction due to a difference in schemes is a

systematic that we can not presently correct. However,
we can consider the effect of the difference in the energy
scales by renormalization group (RG) techniques. In order
to express the LQCD results at the scales suitable for the

model, we exploit the perturbative renormalization group
running for the condensate calculated in [65–67]. This has
been previously used for example in Ref. [68]. We estimate
the condensate value at μ ¼ 1 GeV and found it to be

hψ̄ψi1=3jμ¼1 GeV ¼ 224.8ð3.7Þ MeV: ð52Þ

On the other hand, Fπ being a scale-independent quantity
remains unchanged.
With mπ fixed to its physical value 135 MeV, we explore

the allowed region for the parameters by considering the
central value of Fπ and its �1σ variation, and similarly for
the condensate. Thus, we obtain a total of nine parameter
sets to cover the allowed range provided by the quoted data.
Reference [43] considered condensates in the range

hψ̄fψfi1=3 ¼ 210–240 MeV and showed that the appear-
ance of IMC in the crossover region in the nonlocal NJL
model depends on the values of the condensates. They
showed that for condensates larger than 240 MeV, TCO
increases as one increases eB for smaller eB (for the
Gaussian form factor), in contradiction with lattice obser-
vations. The motivation for the considered range of the
condensate in Ref. [43], comes from the cited articles
[69,70]. One of them [69], using chiral perturbation
theory, calculated the condensate to be in the range
ð200–260 MeVÞ3 and the other article [70], from a model
calculation with fermions interacting via instanton-induced
interaction, deduces the condensate to be ð270 MeVÞ3.
However, the value of Fπ was fixed to be the physical
value. With the more controlled lattice results now available
on Fπ and the condensate, one of the motivations for our
paper is to fit the model to these. We find that IMC near
TCO, sensitively, also depends on the value of Fπ .

FIG. 2. Range of model parameters to access the full allowed range of the pion decay constant (PDC), including the errors as given in
LQCD [48] (JLQCD).

FIG. 1. Range of model parameters to access the full allowed range of the condensate, including the errors as given in LQCD [48]
(JLQCD).
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Figures 1 and 2 represent the range of the model
parameters as allowed by the JLQCD observables in the
form of bands. These bands are drawn using the nine
parameter sets that we have, including the errors. In Fig. 1,
the bands are obtained for different condensate values as a
function of Fπ. On the other hand, they are shown for
different Fπ’s as a function of condensate in Fig. 2. The
upper and lower lines of the bands are for two extreme sets
of observables (hψ̄ψi1=3; Fπ)—the blue and the magenta
lines are for lowest and highest values, respectively. It is
further to be noted from Fig. 1, that as we increase Fπ for a
given value of condensate the parameter Λ decreases
whereas G0 increases. On the other hand, in Fig. 2, it is
the other way around, i.e., as the condensate is increased Λ
increases and G0 decreases, for a given value of Fπ . Now Λ
controls how the effective coupling runs as a function of
momentum, i.e., how fast the effective coupling decreases
with momentum. This information will be helpful in
qualitatively understanding the results for finite eB from
different parameter sets. Out of these nine parameter sets,
we will investigate in detail only five—the central value
along with the four corners.
In Table I, for further illustration, we have presented the

central parameter set and the four corner parameter sets
associated with Figs. 1 and 2. The letters C, H, and L stand
for central, highest, and lowest values, respectively. The
first letter corresponds to the value of condensate and the
second one to the value of Fπ . These are the five parameter
sets from JLQCD that we work with. Just to remind our
readers, we mention here again that the condensate values

shown in the second column of the Table I are calculated at
μ ¼ 1 GeV by using the perturbation RG running [68], and
the values are roughly 15 MeV smaller than their corre-
sponding LQCD values estimated at μ ¼ 2 GeV.
In the scaled definition of the condensate given by

Eq. (38), we need to use Fπ in the chiral limit (denoted
as Fπ;0). In Fig. 3, we present the chiral limit behavior of
the Fπ and the condensate in the model by keeping G0 and
Λ fixed and only changing m to 0. This is a self-consistent
way to obtain the chiral limit within the model.
To give more details about the chiral extrapolation, in the

left panel of Fig. 3, we show the plot of Fπ for the central
value of condensate (224.8 MeV) and in the right panel, the
plot for condensate, for three different values of Fπ (L, C
and H) as allowed by the JLQCD observables. One should
necessarily note here that the mentioned values for the
condensate and Fπ (CC, CL and CH) are to be interpreted
only for the fitted values of current quark mass (m), because
eventually in both the plots, neither of them is constant as a
function of m. We learn from there that as we increase the
pion mass, Fπ increases with an almost constant slope. On
the other hand, the condensate also increases with the pion
mass but the slope depends on the values of Fπ—it
decreases as the value of Fπ is increased.
In the next subsection, we describe the parameter fitting

at zero temperature but nonzero magnetic field.

B. Magnetic field dependence at zero temperature

In this subsection, we fit the explicit Uð1ÞA symmetry
breaking parameter (c) with the LQCD data [16] at zero

TABLE I. Central and the four corner parameter sets associated with the Figs. 1 and 2 for LQCD data [48]. The quantities in the last
four columns pertain to the nonlocal NJL model. The values of the condensate are at μ ¼ 1 GeV, obtained following perturbation RG
running used in the Ref. [68].

hψfψfi1=3 (MeV) mπ (MeV) Fπ (MeV) Fπ;0 (MeV) m (MeV) G0 ðGeV−2Þ Λ (MeV)

Parameter set CC 224.8 135 87.3 84.25 5.87 43.34 697.22
Parameter set HH 228.6 135 92.9 90.63 6.31 57.15 660.46
Parameter set HL 228.6 135 81.7 77.04 4.94 27.90 792.22
Parameter set LH 221.1 135 92.9 91.00 6.94 80.26 605.05
Parameter set LL 221.1 135 81.7 77.61 5.42 34.32 735.38

FIG. 3. Pion decay constant and condensate in the chiral limit with G0 and Λ kept fixed. The left panel is obtained for the central value
of condensate (224.8 MeV), whereas for the right panel plot, three different values of Fπ have been used (see Table I).
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T and nonzero eB. The lattice simulation provides us
with the average and difference of the condensates. In the
model calculation, the condensate average is independent
of c, but the difference depends on it. So we use the
values of condensate differences to fit c at zero T and
nonzero eB. Then we further use this fitted value to
predict the nonzero T and eB behavior of the condensate
in the model and compare them with the lattice data in
the next subsection.
First, let us consider the condensate average. Analyzing

the JLQCD set, we compare the model results with the
LQCD data in Fig. 4, using their normalized definition of
condensate as given in Eq. (38). It shows that for the CC
parameter set the matching with the LQCD data is very
good even for finite eB. Black points are used to denote the
CC parameter and LQCD data are shown with the red
points. Using the corner parameter sets, we obtain the
spread in average condensate, which is also shown with
the dashed blue (HL) and green (LH) lines. For eB ¼ 0, the
curves meet at unity just from the definition [Eq. (38)].
What is interesting is that for the central value (CC) of

the parameters, the condensate average agrees very well
with results from Ref. [16]. (The black points completely
overlap with the red points within error bars.) However, for
the corners of the parameter space (LL, LH, HL, and HH),
the agreement with the lattice results is not as good: the
slope for the eB variation does not match LQCD. We
examine this more carefully below.
In Ref. [33], it was already shown that the scaled

condensate given by Eq. (38) has a mild dependence on
the actual value of condensate and Fπ was kept fixed. Here,
we have explored the Fπ dependence on all observable
quantities and as there is a significant difference in Fπ ,
hence in Fπ;0 for the corner parameter sets, we obtain a
spread in the (scaled) average condensate.
The implication for the comparison in Fig. 4 is that the

normalization factor N 2 ¼ ðmπFπ;0Þ2 is very sensitive to
Fπ;0 and hence, gives rise to the different slopes: the larger
values of Fπ;0 lead to a smaller slope and vice versa. In the
lattice calculation in Ref. [16], Fπ;0 is taken to be 86 MeV.
Figure 4 shows the range of average condensate we obtain

when we vary Fπ;0 in the range of values self-consistently
determined with the condensate.
Now we analyze the effect of c. First, we keep eB ¼ 0

and think about constraints on c due to general physical
considerations. As mentioned above, Fπ , mπ , and the
condensate average are independent of c. Σu − Σd ¼ 0
for eB ¼ 0 irrespective of the value of c. But certain
fluctuations are sensitive to the value of c even for eB ¼ 0.
More specifically, the mass of the fluctuations in the
isoscalar pseudoscalar channel [71] depends on c. In the
two flavor problem, this is often called η� [71] and can be
intuitively thought of as a fictitious mixture of η and η0
mesons present in the full three-flavor theory. Since there is
no physical particle directly corresponding to the η�, the
meson spectrum in the two flavor theory can not be directly
used to find c. However, physical considerations do restrict
the allowed values of c in the theory.
At c ¼ 0, η� becomes degenerate with π0. This is a

simple consequence of the restoration of the Uð1ÞA
symmetry in this limit. On the other hand, considering
η� as a mixture of η and η0 one would expect the mass of η�

to be a few times to that of π0. This sets a lower bound on
the value of c. To be precise, we impose the physically
motivated constraint that Mη� > 400 MeV.1 In Fig. 11
(in Appendix A), we have shown the Mη� , obtained using
the expression from Ref. [72], as a function of c for the CC
parameter set and the assumed constraint on Mη� allows c
to be greater than 0.12. This should be mentioned here
that changing the parameter set will have a negligible
effect on the constraint. This gives c > 0.12. At the other
end, η� becomes tachyonic for c > 1=2. Therefore, these
physical constraints restrict, c to be in the following region:

c ∈ ½0.12; 0.5�: ð53Þ
Below we first consider the effect of c on condensate

difference for finite eB without imposing the physically
motivated constraints on c [Eq. (53)]. These results are
given in Table II.

TABLE II. χ2 fitting of condensate difference in c for all the
five parameter sets from JLQCD.

c χ2 per d.o.f.

Parameter set CC 0.276� 0.068 0.211
Parameter set HH 0.044� 0.079 0.149
Parameter set HL 0.374� 0.051 0.290
Parameter set LH 0.149� 0.103 0.634
Parameter set LL 0.465� 0.062 0.551

FIG. 4. The condensate average as function of magnetic field as
compared with LQCD [16] data for JLQCD.

1We should remind ourselves that this limit is not of a very
strict nature because of the flavor number we are considering
here. But we will eventually find out that the kind of c limit that
this approximated value of Mη� provides us is reasonable for
having the appropriate strength of topological susceptibility and
is also comparable with other known studies.
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For finite eB, Σu − Σd grows as eB increases, and the
rate of this increase is sensitive to c, and we use this
dependence to fit c.
As an illustrative example, in Fig. 5, we show the best fit

for the CC parameters along with the uncertainty in c. In
principle, there is no reason why c cannot depend on eB,
but we see from the same figure that a one-parameter fit in c
is quite adequate to describe the data. It is drawn with the
fitted value of c along with its uncertainty shown as a
magenta coloured band. We see from Table II, where the
χ2=d:o:f: is shown, c ¼ 0.276� 0.068 describes the data
well for CC. The conclusion is that the data for Σu − Σd as a
function of eB allow us to extract the value of c, which can
then be used to compute additional observables (for
example, topological susceptibility) everywhere through
the range from eB ¼ 0 to about 1 GeV2.
In the pursuit of narrowing down further to find the best

possible parameter set for the model, we look at the fitted c
values from Table II.
The fittings for the other four corner parameter sets are

summarized in Table II, which contains both the fitted c
values along with their uncertainty and the corresponding
χ2=d:o:f: We see that the quality of fits in c is quite
satisfactory. We would like to mention here that the
parameter c can be constrained further with reduced errors,
once we have better-controlled LQCD data with narrower
error bands for the Σu − Σd.
Now with these fitted c values we will explore the

nonzero T behaviour of both the condensate average and
the difference.

C. Results for nonzero temperature

1. Condensate average and the phase diagram

In this subsection, we study the results for condensate
average at both nonzero T and eB. The main assumption
here is that the parameters G0, Λ, m, and c are independent
of eB and T, and we use the values fitted at T ¼ 0 for all of
these (Tables I and II) and compare the results with the
LQCD data [16]. The value of the average condensate is
very insensitive to c if we vary it within the range [0, 1].
Though we mention here the full range of c as from 0 to 1,

but for our analysis we never go beyond c ¼ 1=2 and the
reason for this along with the implications have been
mentioned in detail in the previous subsection before
Eq. (53) and also in the next subsection after Eq. (55).
In principle, we can start the discussion in this section from
any parameter set from Table I, and we design our analysis
in the following manner. First, we explore all the five
available parameter sets and look for the ones for which the
IMC effect is obtained satisfactorily as compared to the
LQCD data [16]. This part of the analysis is almost
independent of the values of c and will leave us with a
fewer number of parameter sets. then we see the effect of c.
Following the preceding argument, initially, we have two

parameter sets to deal with—one is the LH parameter set
(221.1,92.9) and the other is the HH (228.6,92.9) one, both
of which reproduce the IMC effect reasonably well (Fig. 7)
as compared to the LQCD data [16]. Then we refer back to
the fitted c values (Table II) for these two parameter sets
and chose LH (0.149� 0.103) over HH (0.044� 0.079) by
the following arguments. Further imposing the physical
constraint in Eq. (53) eliminates the allowed region for HH,
and hence, from now on, we focus on the LH data set only.
The allowed c value for LH parameter set, after taking into
consideration the constraint, becomes

c ¼ 0.149þ0.103
−0.029 : ð54Þ

As we have argued that the LH parameter set is the best
possible parameter set in the model, we display the plot of
the temperature dependence of average condensate in Fig. 6
for the corresponding parameter set. In the figure, we have
used five different values of eB, the top left panel is for
0.2 GeV2, and we increase eB in steps of 0.2 GeV2 from
left to right. We observe that the results from the model
(Fig. 6) agree reasonably well with the LQCD data.
The crossover temperatures from the LQCD calculation

[16] for eB ¼ 0 and in the present model are different. For a
clear notation, we call this TCO. The crossover temperature
at finite eB we will call TCOðeBÞ. The value of TCO in
Ref. [16] is given to be 158 MeV. The values for the model
are shown in Table III. The crossover temperature in both is
defined as the inflection point of the average condensate.
It is to be noted here that the overall scale of the thermal

transition is not captured in the model, as the predicted
critical temperatures (Table III) are found to be relatively
low as compared to the known standard LQCD results. This
is usually the case with the nonlocal NJL model [33]. This
can be improved with the standard technique of including
Polyakov loop (PL) [32]. In spite of an underprediction of
the transition temperature in the model, to see if the model
describes how the condensate changes as a function of the
ratio of the temperature to the crossover scale, we follow
previous literature and compare our calculations with lattice
calculations as a function of T=TCO. We keep the inclusion
of PL for the future endeavour, particularly it will be really

FIG. 5. The condensate differences (u and d) fitted in c for
parameter set CC in JLQCD for LQCD data [16].
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interesting to observe the behavior of the Uð1ÞA symmetry
breaking parameter c in the presence of background
gauge field.
It is expected from the figure above that the crossover

temperature in the model for the LH parameter set will be
very close to that of LQCD as eB is increased. This is what
is observed from Fig. 7, where the predicted phase
diagrams for all five parameter sets are displayed. As
already mentioned, it is noted from the phase diagram that
the decrease of TCOðeBÞ as a function of the magnetic field
as obtained in LQCD simulation is not satisfactorily
reproduced with all the parameter sets. HL (228.6,81.7)
and LL (221.1,81.7) parameter sets fail to produce the IMC
effect. Though the CC (224.8,87.3) parameter set can
reproduce the IMC effect, it is not very satisfactory as
compared to LQCD data. Only for the LH and HH
parameter sets we see a comparable reproduction of the
IMC effect.
From the phase diagram, we find this important message

that we get a better agreement with LQCD results as we
decrease the condensate and/or increase Fπ . The necessity
of smaller values of the condensate has already been
demonstrated by Scoccola et al. (see the left panel of
Fig. 3 in Ref. [33] for the Gaussian form factor). But our
analysis indicates that whether the nonlocal effective QCD

model shows the IMC effect also depends on the values of
Fπ . This observation becomes apparent when the analysis
is performed with sets of self-consistent parameters fitted to
LQCD results.2 This observation in the effective model
scenarios, to the extent of our knowledge, has not been
reported before.
As discussed in Sec. III A, this observation can be related

to the constants of the model, namely Λ and the coupling
constant (G0). We observe that lowerΛ and higherG0 gives
a better agreement with LQCD results. One of the impor-
tant features of the nonlocal NJL model is that it captures an
important property of QCD, the running of coupling
constant, which gives rise to the asymptotic freedom.
For higher Λ, the effective coupling constant decreases

TABLE III. Crossover temperature at eB ¼ 0 (we call this TCO)
for all parameter sets of JLQCD in MeV.

Parameter set CC HH HL LH LL

JLQCD 122.282 130.156 115.577 130.664 115.041

FIG. 7. The phase diagram in T − eB plane for parameter sets
obtained to reproduce JLQCD vacuum observables, compared
with that from LQCD study [15].

FIG. 6. Plot of condensate average for different values of magnetic field as a function of temperature for parameter set LH of JLQCD,
along with the comparison with LQCD data [16].

2We find that there is a difference in the value of mπ between
Ref. [33] and us. Their quoted value is 139 MeV.
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with a slower rate as compared to smaller Λ and thus,
getting more contribution from higher momentum modes.
It leads to delay in achieving asymptotic freedom, which is
crucial for obtaining IMC effect [21,22,73].

2. Condensate difference

In this subsection, we describe the condensate difference
obtained by using the same LH parameter sets and compare
them with the LQCD findings for different strengths of eB.
To understand the results it is helpful to review the idea

of “flavor mixing” [44] in the presence of backgrounds that
break isospin symmetry. The idea is most cleanly displayed
for the local NJL model, where the constituent masses [the
analog of Eq. (28)] are given by

Mu ¼ m − 4G1hūui − 4G2hd̄di
Md ¼ m − 4G1hd̄di − 4G2hūui; ð55Þ

where G1, G2 are given in Eq. (7). In particular, for c ¼ 0,
G2 ¼ 0 and Mu decouples from hd̄di and vice versa, and
the equations for the two condensates are independent.
For c ¼ 1, G1 ¼ 0 and the gap equations for the two
condensates are maximally coupled. In terms of the
Lagrangian, c ¼ 0 implies L2 [Eq. (5)] is set to zero,
which further signifies complete flavor decoupling and
maximal “flavor mixing” corresponds to c ¼ 1, which
implies that L1 [Eq. (4)] is set to zero. For the nonlocal
model, the relation between σs þ πs (σs − πs) and hūui
(hd̄di) is more complicated, but the intuition that the two
gap equations decouple for c ¼ 0 still holds. In our
analysis, we explore only up to the c ¼ 1=2 as the reference
point, since beyond that ’t Hooft mass becomes imaginary;
i.e., η� becomes a tachyon [71].

With these intuitions in mind, we show the Fig. 8
displaying the plot for the condensate difference for the
LH parameter set for different values of eB. The band
shows the uncertainty in the fitted c value.
More concretely, the uncertainty marked in the figure by

a gray band corresponds to the fitted value 0.149� 0.103 at
T ¼ 0 (Table II). Further imposing the condition c > 0.12
(Sec. III B), a part of the gray band (from c ¼ 0.046 to
0.12) gets excluded, and the magenta band remains as a
prediction from the model as given by our final fitted c
value (0.149þ0.103

−0.029 ) in Eq. (54). In the figure, we have also
shown the behavior for c ¼ 1=2 as a reference line; at that
value of c, the model reduces back to the usual NJL model.
This figure sheds some light on how the “flavor mixing”
effects impact the behavior of condensate difference in
presence of eB at finite T. We note that the condensate
difference calculated in the model matches well with the
LQCD data up to the temperature 0.8T=TCO, and then it
falls at a bit faster rate than the LQCD data.
One interesting thing to notice in Fig. 8 is that around the

crossover temperature, for a part of the gray band corre-
sponding to the lowest c values, the condensate difference
(Σu − Σd) becomes negative and then increases and gradu-
ally merges with the LQCD data at higher values of T. It is
quite heartening that for the magenta band for which the
lowest values of c are excluded based on physical argu-
ments, this peculiar behavior is clipped, and the results
track closer to lattice results. This oscillatory behavior
about Σu − Σd ¼ 0 at small c in the model can be explained
in the following manner.
For any arbitrary strength of the magnetic field at T ¼ 0,

the u condensate is always greater than the d condensate
because its coupling with the magnetic field is twice as
strong as that of the d quark. For c ¼ 0, as discussed below

FIG. 8. Plot of condensate difference for different values of magnetic field as a function of temperature for parameter set LH of
JLQCD.
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Eq. (55), the u and d condensates decouple and can vary
independently. For the c values which are small but not 0,
the partial decoupling of the u and d condensates leads to
an independent drop of Σu at a faster rate as T approaches
TCO before Σd; i.e., the IMC effect is stronger for Σu than
Σd due to a larger jquj. Hence, Σu − Σd becomes negative
just before TCO. Eventually, both the condensates catch up
and drop asymptotically to 0. At zero magnetic field,
πs ¼ 0, and c does not have any influence on the con-
densates. Introduction of a magnetic field separates the two;
hence, the stronger the magnetic field greater the effect.
This kind of behavior just below TCO is not a peculiarity

of this particular model for small c. In fact, in the local NJL
(three flavor) model, a different kind of scenario is also
observed, where the d condensate decreases with a faster
rate as compared to that of u one resulting in a “bump” like
behavior in the condensate difference around the crossover
temperature before finally going to zero ([13,22]). The
authors explained this using a higher coupling constant of u
quark with the magnetic field as compared to d, which
relatively delays the decrease of u condensate around the
crossover temperature since they consider a constant
coupling constant which does not reproduce IMC. This
argument is indeed an important way in which such
behavior can arise, but as we have found, “flavor mixing”
effects could possibly play an important part too.

D. Topological susceptibility

In this section, we describe our model predictions for χt.
The field a is connected to Uð1ÞA transformations of the
quark field, and hence, the χt is related to the extent of the
Uð1ÞA symmetry breaking. L2 explicitly breaks Uð1ÞA
symmetry. [The small quark mass m also breaks Uð1ÞA
weakly.] Furthermore, the chiral condensate spontaneously
breaks Uð1ÞA. Hence, we expect that the topological
susceptibility is sensitive to both c and the chiral con-
densate. In particular, in the chiral limit, if c ¼ 0, χt will
be 0.
We use the fitted c value for LH parameter set (the most

suitable parameter set in the present model as established in
the previous sections) from Table II to calculate the χt using
Eq. (42). The plot is shown in Fig. 9 along with two
different LQCD results [74,75]. We show the central value
of the fitted c, which is 0.149, for three different values of
the magnetic field, eB ¼ 0, 0.5 and 1.0 GeV2.
For comparison with the LQCD results, we have used

two separate results from LQCD calculations available in
the literature. The red band is obtained from the Ref. [74].
In this reference, they used a 2þ 1þ 1 flavor LQCD and
extend their analysis further to give the equation of state in
2þ 1þ 1þ 1 flavor QCD. But as charm quarks begin to
contribute to the equation of state above 300 MeV, they
used 2þ 1 flavors dynamical quarks up to 250 MeV. So
this red band used in the Fig. 9 is a 2þ 1 flavor lattice result
for χt. In that original paper [74], the authors have given

the plot as a function of temperature. To scale it with the
transition temperature, we used Ref. [76], where the
authors have given the range of the TCO depending on
the observables they use. Since in the model we are
calculating the TCO from the inflection point of the
condensate, it makes sense that we use the value calculated
using the same observable in lattice simulation, which is
found to be 155 MeV. There is another LQCD result [75]
shown by the gray band, which is also a 2þ 1 flavor
calculation. There the result is already provided as a
function of scaled temperature and is given starting from
close to TCO.
The black squares in the plot are the model predictions at

zero eB with the fitted c value. Below the transition
temperature, the model prediction is within the red band
given by the only available LQCD data at that range [76].
Although the trend is similar, as the temperature increases
further, the model prediction falls at a faster rate. We
understand that the model is simple and is deprived of some
of the important features of full QCD as that in lattice QCD,
but in our opinion, this numerical mismatch could possibly
be arising from different flavor number considerations.
This hunch can be tested by incorporating another flavor,
which is beyond the scope of the present article, and we
plan to address it elsewhere.
Then we further explore the impact of the magnetic

field on χt and learn that it increases with the increase of
eB below the transition temperature. This is easily
understood as eB increases the condensate at low T.
This finding has already been reported in Ref. [52] in the
local NJL model. There are two main differences
between our calculation and Ref. [52]. The first is that
we use a value of c determined by matching to T ¼ 0
LQCD results at T ¼ 0. Second, we observe that after
1.3TCO or so we do not see any effect of magnetic field
on χt, and they all fall on top of each other, whereas
Ref. [52] reported a considerable impact from the
magnetic field even after the transition temperature. It
is also to be noted from the figure that the IMC effect is
well reflected in χt around the TCO.
In Fig. 10, we show the sensitivity of the result to the

value of c for eB ¼ 0. It is drawn for two different values

FIG. 9. Topological susceptibility as a function of scaled
temperature for the LH parameter set. The red and the gray bands
represent lattice results from the Refs. [74,75], respectively.
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of c: c ¼ 0.149 (the fitted one with solid black line),
c ¼ 1=2 (standard NJL model with blue dashed line). For
the fitted value, we have shown the uncertainty in χt as
well by the magenta band. This uncertainty arises from
the uncertainty in c, given by Eq. (54). At low temper-
ature, the χt for these three values are almost the same,
and as the temperature is enhanced, they start diverging
from one another, particular above the TCO. We see that
currently the LQCD results for χt cannot distinguish
among these values.

IV. CONCLUSIONS AND OUTLOOK

In this paper, we have studied the two flavor nonlocal
NJL model in the presence of a magnetic field and explored
the chiral crossover. Our investigation builds upon the
nonlocal NJL model calculations of Refs. [33,43] with
some important additions.
The first is that we add to the nonlocal form of the

standard four Fermi NJL interaction, the nonlocal form of
the ’t Hooft determinant term with an arbitrary coupling
constant, which is governed by a dimensionless param-
eter c. In the Refs. [33,43], c is taken to be 1=2, which is
generally the case in the usual NJL model. In the absence
of any isospin symmetry breaking (we assume equal
u and d current quark masses), the value of c does not
play any role because only the sum of the u and d
condensates is nontrivial. But in the presence of isospin
symmetry breaking agents like an isospin chemical poten-
tial [44] or/and magnetic field [9], the two condensates
become different because of their different couplings to the
agents. The difference between the u and d condensates is
particularly sensitive to c. This is evident from the gap
equation associated with π3s [Eq. (31)].
Our second major addition is that we have attempted a

more systematic analysis of the parameters of the model by
fitting them to a self-consistent set of lattice results. For
eB ¼ 0, the parameters G0, Λ, and m were fixed to mπ, Fπ ,
and the condensate (at T ¼ 0). We used the lattice result
[48] for which we performed the detailed analysis in the

main text. We also use another lattice result [49], the central
values of the condensates being different for these two
references, and discuss briefly the results of our analysis in
the Appendix B.
Then considering T ¼ 0 results for finite eB, we found

that an eB independent c describes the lattice results for the
u, d condensate difference at T ¼ 0 quite well, which
allows us to extract the value of c using lattice results on the
u, d condensate difference. We estimate this observation to
be significant, as to our knowledge, for the first time c has
been constrained using lattice results.
In the past, efforts have been made to constrain c but

from different perspectives than us, particularly by these
two Refs. [9,44], which we summarize here to emphasize
the difference with our approach. Reference [44] dis-
cusses the effect of c on the phase diagram for the small
T and high chemical potential (μ) region, in the presence
of an isospin chemical potential (μI). For zero instanton
interactions, the quarks decouple, hence giving rise to
different transition lines in the T − μ plane, though the
authors argued that in their respective T − μI plane they
will be identical. They obtained a critical value for c
above which these two transition lines merge with each
other in the T − μ plane. They also drew an analogy from
the three-flavor NJL model to estimate the value of c,
which turned out to be close to the one obtained from the
phase diagram. Reference [9] has done a similar analysis
to Ref. [44] with a nonzero magnetic field instead of an
isospin chemical potential. With zero instanton effects,
one obtains two different phase transitions. In this paper,
they showed that as one introduces the “flavor mixing
effects” through c, the transitions come closer to each
other, and beyond some critical value of c, they merge to
become a single phase transition. In these works, the
value of c is found to be approximately within the range
of 0.1–0.2.
In our calculation, we analyzed the parameter sets

accessible for a given LQCD study and picked the ones
which are reproducing the IMC effect suitably as com-
pared to the LQCD result [15]. We found that for the
JLQCD data [48] LH (221.1,92.9) and HH (228.6,92.9)
parameter sets replicate the IMC effect reasonably well.
Further looking at the fitted c values for these two
parameter sets, which are 0.149� 0.103 and 0.044�
0.079, respectively and evoking some basic properties of
η�, we could constrain the plausible range of c. We
argued that, as at c ¼ 0, η� becomes degenerate with π0

and also expecting the mass of η� to be a few times that
of π0 (considering η� as a mixture of η and η0), which
sets the lower bound in c as c > 0.12, thus excluding
the HH parameter as the fitted c is smaller than the
above mentioned lower bound. Using this η� motivated
lower bound on c, our final fitted c range in the LH
parameter set becomes 0.149þ0.103

−0.029 . This range is also
compatible with the other existing ones in the literature

FIG. 10. Topological susceptibility as a function of scaled
temperature for different c values for the LH parameter set. The
blue dashed line is for c ¼ 0.5, and the black solid line is the
model prediction with the magenta band representing the un-
certainty in c. The red and the gray bands represent lattice results
from the Refs. [74,75], respectively.
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[9,44]. We would also like to comment here that the
error in our fitted c value can be reduced further once
we have narrower error bands for the LQCD data
on Σu − Σd and thus further improving our estimation
of c.
After fitting c to T ¼ 0 results for the splitting between

the u and d condensate values, we use the model to
analyze the average condensate and the splitting as a
function of T and eB. These results are summarized in
Secs. III C 1 and III C 2. We found, like Ref. [33], that
within the error band of hψ̄ψi1=3 IMC is obtained for
the condensates near the lower edge of the range.
Furthermore, we observed that within the error band
of Fπ to get a better match with the phase diagram given
by LQCD [15], one needs to consider Fπ towards the
upper edge of the range.
We further test our model by calculating the topologi-

cal susceptibility (χt) and comparing that with the
available LQCD results. We observed that with the fitted
eB independent c value the model’s prediction for χt at
zero eB can produce the trend well as found in the lattice
results [74,75]. Beyond TCO, the quantitative mismatch
with the lattice data may arise because of differences in
the number of flavors in the two methods. For nonzero
eB (for which, to our knowledge, there is no lattice study
available for χt), we found that the χt increases as one
increases the strength of the magnetic field up to the
crossover temperature. This conclusion is similar to what
is found in Ref. [52]. We also observed that, in the
present model, χt’s for different values of eB fall on top
of that at zero eB once we go beyond the crossover
temperature and the IMC effect is reflected. All these
observations can be understood following the correlation
between topological susceptibility and condensate aver-
age, as we know that the condensate is responsible for
spontaneously breaking Uð1ÞA symmetry along with the
chiral symmetry. This connection is well reflected in the
present study. All these predictions for nonzero eB could
be further tested in future when lattice data becomes
available for the same.
One natural extension of our study is the analysis of

2þ 1 flavor QCD. TheUð1ÞA breaking term, in this case, is
of dimension 9 and the strength of the interaction is well
known to be related to the η − η0 mass splitting [45,46]. It
will be interesting to see whether the results for Σu − Σd for
finite eB at both 0 and finite T can be adequately described
by the 2þ 1 flavor model, or other terms in the effective
models are necessary.
More recently, a magnetic field dependent ’t Hooft

interaction strength for three flavor [77] has been consid-
ered. All these facts validate our choice of considering
arbitrary strength of ’t Hooft interaction in presence of a
magnetic field. In principle, c can also depend on eB as
well as T, though we do not see evidence of a strong
dependence on these variables in the range we consider.

However, a closer analysis of these effects will be
interesting.
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APPENDIX A: Mη� VS c

In Fig. 11, we show the plot of η� mass as a function of c
for the CC parameter set. The plot is not very sensitive to
the choice of parameter set (Table I) in the range shown. It
is also to be noted that η� and π0 become degenerate
at c ¼ 0.

APPENDIX B: ANALYSIS WITH ANOTHER SET
OF LQCD DATA

We tried to perform the whole analysis with another
set of LQCD data [49] (referred to as Brandt13 in the
text), which has a higher central value of condensate
(hψ̄fψfi1=3 ¼ 261 MeV).3 This value is at a renormalization

FIG. 11. η� mass as a function of c for the CC parameter set.

3It is to be noted here that the central value of the condensate in
Brandt13 is roughly 20 MeV higher than that of JLQCD. This
difference could be attributed to the systematic controls for
LQCD discretization artifacts by continuum extrapolation and
controls for finite-size effects in the former data set.
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scale μ ¼ 2 GeV. To be able to use it in the present effective
model scenario, we have evaluated it at μ ¼ 1 GeV follow-
ing the procedures given in [68] as given in Table IV
along with the corner parameter sets, which are obtained
using the errors in the values of both the condensate
[hψ̄ψi1=3 ¼ 261ð13Þð1Þ MeV] and the decay constant
[Fπ ¼ 90ð8Þð2Þ MeV]. Apart from the condensate, we also
have the values formπ andFπ, which are used to estimate the
model parameters m, G0, and Λ.
We follow here the same procedures as we did for the

JLQCD data set. We explore all the data sets, including the
corner ones, and look for the data set which could
reproduce the IMC effect satisfactorily as compared to
the LQCD data [16].
Looking at the Fig. 12, we observe that for Brandt13 LH,

(232.5,98.25) is the lone parameter set that can replicate
the IMC effect, quite satisfactorily. Then we move to the
second part of our analysis, in which we look at the fitted c
values (Table V) corresponding to the IMC reproducing
parameter set(s). In this case, the fitted c value is −0.0255
for LH.
Now evoking the η� related phenomenological argument

as given in the main text before Eq. (53), where the
plausible range of c is given as c ∈ ð0.12; 0.5�, we can
exclude the LH parameter set of Brandt13 data as a
favorable one for the present model. Thus, we conclude
that from Brandt13 data set [49], we do not find any

suitable parameter set for the present model, which can be
reliably explored.

APPENDIX C: c DEPENDENCE OF χ t IN THE LH
PARAMETER SET OF JLQCD

In Fig. 13, we show the topological susceptibility as a
function of theparameterc for different values ofT at zeroeB
in the LH parameter set of JLQCD [48]. For a fixed eB, the
topological susceptibility is 0 for c ¼ 0 and rises as we
increase c from 0. This rise is very sharp for smaller values of
c and saturates very fast, particularly for the low-temperature
values. Thus, a smaller c value will not be able to reproduce
the expected result for χt. This gives us another reason,
although in the hindsight, to exclude any parameter set which
offers a smaller fitted c value and corroborates our choice of
excluding theHHparameter set (forwhich the fitted central c
value is 0.044) from η� phenomenology.

TABLE IV. Central and the four corner parameter sets for LQCD data [49]. The quantities in the last four columns
pertain to the nonlocal NJL model. As in the case of JLQCD, the condensate values are estimated at μ ¼ 1 GeV
following the RG running shown in [68].

hψfψfi1=3 (MeV) mπ (MeV) Fπ (MeV) Fπ;0 (MeV) m (MeV) G0 ðGeVÞ−2 Λ (MeV)

Parameter set CC 244.7 135 90.0 86.28 4.89 28.03 814.75
Parameter set HH 256.9 135 98.25 95.40 5.04 31.35 809.04
Parameter set HL 256.9 135 81.75 74.90 3.54 15.01 1012.84
Parameter set LH 232.5 135 98.25 96.52 6.71 78.19 627.60
Parameter set LL 232.5 135 81.75 76.80 4.71 25.34 821.43

FIG. 12. The phase diagram in T − eB plane for all parameter
sets of Table IV (Brandt13 [49]) along with that as given by
LQCD [15].

TABLE V. χ2 fitting of condensate difference in c for all the five
parameter sets from Brandt13 [49].

c χ2 per d.o.f.

Parameter set CC 0.0749 0.334
Parameter set HH −0.0198 6.076
Parameter set HL 0.2200 0.461
Parameter set LH −0.0255 2.753
Parameter set LL 0.338 0.157

FIG. 13. χt as a function of the explicit Uð1ÞA symmetric
breaking parameter c at different temperatures for the LH
parameter set of JLQCD [48].
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