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(Received 5 March 2021; accepted 17 September 2021; published 20 December 2021)

Early speculations about the existence of heavy hadron molecules were grounded on the idea that light-
meson exchange forces could lead to binding. In analogy to the deuteron, the light mesons usually
considered include the pion, sigma, rho and omega, but not the axial meson a1ð1260Þ. Though it has been
argued in the past that the coupling of the axial meson to the nucleons is indeed strong, its mass is
considerably heavier than that of the vector mesons and thus its exchange ends up being suppressed. Yet,
this is not necessarily the case in heavy hadrons molecules; we find that even though the contribution to
binding from the axial meson is modest, it cannot be neglected in the isovector sector where vector meson
exchange cancels out. This might provide a natural binding mechanism for molecular candidates such
as the Zcð3900Þ, Zcð4020Þ, or the more recently observed Zcsð3985Þ. However, the Zcsð3985Þ is more
dependent on a mixture of different factors, which (besides axial meson exchange) include η exchange and
the nature of scalar meson exchange. Together they point towards the existence of two Zcsð3985Þ-like
resonances instead of one, while the observations about the role of scalar meson exchange in the Zcsð3985Þ
might be relevant for the Pcsð4459Þ. Finally, the combination of axial meson exchange and flavor-
symmetry breaking effects indicates that the isovector JPC ¼ 0þþ D�D̄� and the strange JP ¼ 2þ D�D̄�

s

molecules are the most attractive configurations and thus the most likely molecular partners of the
Zcð3900Þ, Zcð4020Þ, and Zcsð3985Þ.
DOI: 10.1103/PhysRevD.104.114025

I. INTRODUCTION

Heavy hadron molecules were originally theorized as an
analogy to the deuteron [1,2]. The argument is that the
same type of forces binding two nucleons together might
bind other hadrons as well. Since then a continuous inflow
of ideas from nuclear physics has enriched our under-
standing of heavy molecular states, ranging from phenom-
enological approaches such as light-meson exchanges
[3–6] to modern effective field theory (EFT) formulations

]7–11 ]. This is not at all surprising; in both cases we are
dealing with hadrons, where nucleons happen to be the
most well studied of all hadrons.
The origin and derivation of nuclear forces has itself a

tortuous and winding history, in which many competing
ideas have been proposed but few have succeeded [12]. The
reasons behind the failures are important though, as they
might be specific to nucleons. If we focus on light-meson

exchange forces, the idea is that the nuclear potential can be
derived from the exchange of a few light mesons, which
usually include the pion, the sigma, the rho, and the omega,
i.e., the one boson exchange model (OBE) [13,14]. Mesons
heavier than the nucleon are generally not expected to have
a sizable contribution to the nuclear force; their Compton
wavelength is shorter than the size of the nucleon and the
forces generated by their exchange are heavily suppressed.
A prominent example is the axial meson a1ð1260Þ,

which is expected to have a considerably strong coupling
to the nucleons [15–17]. It is also heavier than the vector
mesons; the ratio of the masses of the axial and rho mesons,
ma1 and mρ, is ma1=mρ ∼ 1.6. In fact it is even heavier than
the nucleon and its influence on the description of the
nuclear force has turned out to be rather limited [18].
However, this is not necessarily the case for heavy hadrons;
on one hand, they are heavier than axial mesons and
nucleons, and on the other vector-meson exchange cancels
out in a few specific molecular configurations, which
increases the relative importance of the axial meson.
The axial meson has a particularly interesting feature; its

quantum numbers IGðJPCÞ ¼ 1−ð1þþÞ indicate that it can
mix with the axial current of the pions. That is, we can
modify the axial pion current by including a term propor-
tional to the axial meson
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∂μπ → ∂μπ þ λ1ma1a1μ; ð1Þ

where π and a1μ are the pion and axial meson fields,
respectively, and λ1 is a proportionality constant which we
expect to be in the λ1 ∼ ð1.6–2.1Þ range. From this, the
coupling of the axial meson with the charmed hadrons D
and D� will be proportional to their axial coupling to the
pions, g1

gYða1Þ ¼
1ffiffiffi
3

p λ1
ma1

fπ
g1 ∼ ð8 − 11Þg1; ð2Þ

where the coupling is defined by matching the axial meson
exchange potential to a Yukawa [see Eqs. (15) and (22)].
Depending on the configuration of the two-hadron system
under consideration, this exchange potential might be
remarkably attractive and even explain binding if other
light-meson exchanges are suppressed.
The reason we are interested in the axial meson is

because of a specific difficulty when explaining the
isovector hidden-charm Zcð3900Þ [19], Z�

cð4020Þ [20],
and Zcsð3985Þ [21] resonances as hadronic molecules:
while their closeness to the D�D̄, D�D̄�, and D�D̄s −DD̄�

s
thresholds suggest the molecular nature of the Zc’s [22–26]
and the Zcs [27–32]—the reason why their interaction is
strong remains elusive. It happens that the rho and omega
exchange cancel out for the Zc and Z�

c, which in turn
requires a binding mechanism not involving the vector
mesons (where this cancellation does not happen with axial
mesons, as we will see). Possible explanations include one-
pion and sigma exchange [33–35], two-pion exchanges (the
correlated part of which is sometimes interpreted as a sigma
exchange), and charmonium exchanges [36–39]. Here we
will investigate how the axial meson exchange works as a
binding mechanism within the OBE model.
The manuscript is structured as follows: in Sec. II wewill

derive the axial meson exchange potential for the charmed
meson-antimeson system. In Sec. III we will review scalar
and vector meson exchange and the potentials they gen-
erate, which are still an important part of the OBE potential.
In Sec. IV we will investigate how the inclusion of the
axial meson makes the simultaneous description of the
Xð3872Þ and the Zcð3900Þ more compatible with each
other. In Sec. V we will consider how the previous ideas
apply to the Zcsð3985Þ and how the OBE potential can be
made compatible with the expectations from SU(3)-flavor
symmetry. Finally in Sec. VI we will explain our
conclusions.

II. AXIAL MESON EXCHANGE

First we will derive the potential generated by axial
meson exchange. We will begin with the interaction
Lagrangian between heavy mesons and pions and from
it we will derive the Lagrangian and potential for axial
mesons.

The quark content of the heavy mesons is Qq̄, with
Q ¼ c, b a heavy quark and q ¼ u, d, s a light quark.
The properties of heavy mesons and their interactions
are expected to be independent of the heavy-quark spin,
which is usually referred to as heavy-quark spin symmetry
(HQSS) [40,41]. The consequences of HQSS for heavy-
hadron molecules are important and have been extensively
explored in the literature [9–11,23,42–46]. For S-wave
heavy mesons (e.g., the D and D� charmed mesons) the
standard way to take into account HQSS is to define a
superfield HQ as

HQ ¼ 1ffiffiffi
2

p ½P1þ σ⃗ · P⃗��; ð3Þ

with P and P⃗� the JP ¼ 0− and 1− heavy mesons, 1 the
2 × 2 identity matrix, and σ⃗ the Pauli matrices, where
our definition ofHQ corresponds to the nonrelativistic limit
of the superfield defined in Ref. [47]. This field has good
properties with respect to heavy-quark spin rotation, i.e.,

the heavy-quark transformation jQi → e−iS⃗H ·θjQi induces
the superfield transformation

HQ → e−iS⃗H ·θHQ; ð4Þ

from which it is clear that H†
QHQO field combinations,

with O some operator in the form of a 2 × 2 matrix, will
be independent of heavy-quark spin rotations. With this
formalism, the interaction of S-wave heavy mesons with
the pion can be written as

L ¼ g1ffiffiffi
2

p
fπ

Tr½H†
QHQσ⃗ · a⃗�; ð5Þ

where g1 ¼ 0.6 is the axial coupling (a value which is
compatible with g1 ¼ 0.59� 0.01� 0.07 as extracted
from the D� → Dπ decay [48,49]), fπ ≃ 132 MeV the
pion weak decay constant and a⃗ is the (reduced) axial
current, which traditionally only includes the pion

a⃗ ¼ ∇⃗π; ð6Þ

where we implicitly include the SU(2)-isospin indices in
the pion field, i.e., π ¼ τcπ

c with c an isospin index.
Alternatively, instead of grouping the P and P⃗� into a

single superfield with good heavy-quark rotation pro-
perties, we notice that the heavy-quark spin degrees of
freedom do not come into play in the description of heavy-
light hadron interactions. This allows to write interactions
in terms of a fictitious light-quark subfield—a heavy field
with the quantum numbers of the light quark within the
heavy meson [50]. If we call this effective field qL, the
corresponding Lagrangian will read
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L ¼ g1ffiffiffi
2

p
fπ

q†Lσ⃗L · a⃗qL; ð7Þ

with σ⃗L the spin operators (Pauli matrices) as applied to
the light-quark spin. When this operator acts on the light-
quark degrees of freedom it can be translated into the
corresponding spin operator acting on the heavy meson
field with the rules

hPjσ⃗LjPi ¼ 0; ð8Þ

hPjσ⃗LjP�i ¼ ϵ⃗; ð9Þ

hP�jσ⃗LjP�i ¼ S⃗; ð10Þ

with ϵ⃗ the polarization vector of the P� heavy meson and S⃗
the spin-1 matrices. From now on we will work in this
notation.
The previous light-quark subfield Lagrangian leads to

the nonrelativistic potential

Vπðq⃗Þ ¼ −ζ
g21
2f2π

τ⃗1 · τ⃗2
σ⃗L1 · q⃗σ⃗L2 · q⃗
q⃗2 þm2

π
;

¼ −ζ
g21
6f2π

τ⃗1 · τ⃗2
σ⃗L1 · σ⃗L2q⃗2

q⃗2 þm2
π

− ζ
g21
6f2π

τ⃗1 · τ⃗2
ð3σ⃗L1 · q⃗σ⃗L2 · q⃗ − σ⃗L1 · σ⃗L2q2Þ

q⃗2 þm2
π

;

ð11Þ

with q⃗ the exchanged momentum, mπ ≃ 138 MeV the
pion mass and ζ ¼ �1 a sign which is þ1ð−1Þ for the
meson-meson (meson-antimeson) potential (which comes
from the G-parity of the pion). In the second and third
lines we separate the potential into its S-wave and S-to-
D-wave components (i.e., spin-spin and tensor pieces);
owing to the exploratory nature of the present manu-
script, we will be only concerned with the S-wave
components of hadronic molecules and will ignore the
D waves.
Now, to include the axial meson we simply modify the

axial current a⃗ as follows:

a⃗ ¼ ∇⃗π þ λ1ma1a⃗1; ð12Þ

with the isospin indices again implicit, i.e., a1 ¼ τcac1, and
λ1 a parameter describing how the axial meson mixes with
the pion-axial current (which value we will discuss later).
This readily leads to the potential

Va1ðq⃗Þ ¼ −ζλ21
g21m

2
a1

2f2π
τ⃗1 · τ⃗2

�
σ⃗L1 · σ⃗L2
q⃗2 þm2

a1

þ 1

m2
a1

σ⃗L1 · q⃗σ⃗L2 · q⃗
q⃗2 þm2

a1

�

¼ −ζλ21
g21m

2
a1

2f2π
τ⃗1 · τ⃗2

σ⃗L1 · σ⃗L2
q⃗2 þm2

a1

�
1þ q⃗2

3m2
a1

�
þ…;

ð13Þ
where in the last line we isolate the S-wave component.
Finally we are interested in the r-space expressions of the

pion and axial-exchange potentials. For this we Fourier
transform into r space, which in the pion case yields

Vπðr⃗Þ ¼ ζ
g21m

2
π

6f2π
τ⃗1 · τ⃗2σ⃗L1 · σ⃗L2

e−mπr

4πr
þ…; ð14Þ

where the dots represent tensor (i.e., S-to-D-wave) and
contact-range (i.e., Dirac delta) terms (which we also
ignore owing to their short-range nature). For the axial
meson exchange we have instead

Va1ðr⃗Þ ¼ −ζλ21
g21m

2
a1

3f2π
τ⃗1 · τ⃗2σ⃗L1 · σ⃗L2

e−ma1r

4πr
þ…; ð15Þ

where the dots indicate again contact and tensor terms.
The coupling of the axial meson to the hadrons depends

on λ1, which could be deduced from the matrix elements of
the axial current A5μ

h0jA5μjπi ¼ fπqμ; h0jA5μja1i ¼ fa1ma1ϵμ; ð16Þ
with qμ the momentum of the pion, fπ and fa1 the weak
decay constants of the pion and axial meson, ma1 the mass
of the axial meson and ϵμ its polarization vector. From
Eq. (1) we arrive at the identification

λ1 ¼
fa1
fπ

; ð17Þ

but fa1 is not particularly well known. Different estimations
exist, of which a few worth noticing are:

(i) The Weinberg sum rules [51] or the Kawarabayashi-
Suzuki-Riazuddin-Fayyazuddin (KSFR) relations
[52,53], both of which lead to ma1 ¼

ffiffiffi
2

p
mρ ¼

1.09 GeV, fa1 ¼ fπ , and λ1 ¼ 1.
(ii) The τ → 3πντ decay involves the axial meson as an

intermediate state, and has been used in the past to
determine fa1 :
(a) Three decades ago Ref. [54] obtained

ma1fa1 ¼ ð0.25� 0.02Þ GeV2; ð18Þ
for ma1 ¼ 1.22 GeV, which translates into
λ1 ¼ 1.55� 0.12. Later Ref. [55] made the
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observation that ma1fa1 shows a simple depend-
ence on the τ → 3πντ branching ratio, from
which it updated the previous value to ma1fa1 ¼
ð0.254� 0.20Þ GeV2, yielding λ1 ¼ 1.58� 0.12.

(b) Ref. [17] noticed a result from Ref. [56], which
contains a phenomenological relation between
ma1fa1 and the relative branching ratios for the
τ → 2πντ and τ → 3πντ decay. This led the
authors of Ref. [17] to the estimation1

ma1fa1 ¼ 0.33 GeV2; ð19Þ

which is equivalent to λ1 ¼ 2.05.
(c) Chiral Lagrangian analyses of the τ → 3πντ

decay [57,58], usually yield λ1 ∼ 1.4–1.5 but
with ma1 ∼ 1.1 GeV, which is somewhat light.

(iii) The lattice QCD calculation of Ref. [55] gives

ma1fa1 ¼ ð0.30� 0.02Þ GeV2; ð20Þ

andma1 ¼ 1.25� 0.08 GeV, from which we extract
λ1 ¼ 1.82� 0.08� 0.12 where the first and second
error refer to the uncertainties in ma1fa1 and ma1 ,
respectively.

(iv) Ref. [59] uses QCD sum rules to obtain

fa1 ¼ ð238� 10Þ MeV; ð21Þ

that is, λ1 ¼ 1.80� 0.08.
From the previous, it is apparent that the uncertainties in λ1
are large. But we can reduce its spread if we concentrate on
the determinations of λ1 for which ma1 is close to its value
in the Review of Particle Physics (RPP) [60], i.e., ma1 ¼
1.23 GeV (which is also the value we will adopt for the
mass of the axial meson). In this case we end up with the
λ1 ∼ ð1.55 − 2.05Þ window, which we will approximate by
λ1 ¼ 1.8� 0.3. This is the central value and uncertainty we
will use from now on.
At this point it is interesting to compare the strengths of

the resulting Yukawa-like piece of the previous potentials

VYðr⃗Þ ¼ � g2Y
4π

OIOS
e−mr

r
; ð22Þ

where gY is an effective Yukawa-like coupling, OI ¼ 1 or
τ⃗1 · τ⃗2 and OS ¼ 1 or σ⃗L1 · σ⃗L2 the usual isospin and spin
operators, whilem is the mass of the exchanged meson. For
the pion and axial meson exchange potentials we have that
the strength of the effective Yukawas are

g2YðπÞ
4π

≃ 6.6 × 10−2 and
g2Yða1Þ
4π

≃ 2.0 − 3.5; ð23Þ

which gives an idea of the relative strength of axial meson
exchange with respect to the pion. Provided it is attractive,
the condition for this effective Yukawa-like potential to
bind is

2μ

m
g2Y
4π

jhOIihOSij ≥ 1.68; ð24Þ

with μ the reduced mass of the two-hadron system. If we
consider the IGðJPCÞ ¼ 1þð1þ−ÞD�D̄ system, which is the
usual molecular interpretation of the Zcð3900Þ, the poten-
tial is indeed attractive and the previous condition is
fulfilled for λ1 ≥ 1.1 (if ma1 ¼ 1.23 GeV).

III. SCALAR AND VECTOR MESON EXCHANGE

Besides the pion and the axial mesons, usually the other
important exchanged light mesons in the OBE model are
the scalar σ and the vector mesons ρ and ω. In the following
we will discuss the potentials they generate.

A. Scalar meson

For the scalar meson we write a Lagrangian of the type

LS ¼ gσ1Tr½H†
QHQ�σ ð25Þ

¼ gσ1q
†
LσqL; ð26Þ

depending on the notation (superfield/subfield in first/
second line), with gσ1 the coupling of the scalar meson
to the charmed hadrons. From this Lagrangian we derive
the potential

Vσðq⃗Þ ¼ −
g2σ1

q⃗2 þm2
σ
; ð27Þ

which is attractive and where mσ is the scalar meson mass.
Finally, if we Fourier transform into coordinate space we
will arrive at

Vσðr⃗Þ ¼ −g2σ1
e−mσr

4πr
: ð28Þ

The parameters in this potential are the coupling gσ1 and
the mass mσ. For the coupling we will rely on the linear
sigma model (LσM) [61], which we briefly review here as
it will prove useful for the discussion on the Zcsð3985Þ
later. The LσM is a phenomenological model in which
originally we have a massless nucleon field that couples to
a combination of four boson fields, i.e., this model contains
a nucleon interaction term of the type

1We notice that Ref. [17] uses the fπ ∼ 93 MeV normalization
for the decay constants, i.e., a

ffiffiffi
2

p
factor smaller than ours. Thus

we have adapted their results to our normalization.
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LNσL
int ¼ gψ̄Nðϕ0 þ iγ5τ⃗ · ϕ⃗ÞψN; ð29Þ

where ψN is the relativistic nucleon field and g a coupling
constant. By means of spontaneous symmetry breaking we
end up with three massless bosons ϕ⃗, which might be
interpreted as pions, while the isospin scalar ϕ0 acquires a
vacuum expectation value (hϕ0i ¼ fπ=

ffiffiffi
2

p
) which also

provides the nucleons with mass. The σ field is defined
as a perturbation of the ϕ0 field around its vacuum
expectation value (ϕ0 ¼ fπ=

ffiffiffi
2

p þ σ). This model provides
a relation between fπ , the nucleon mass MN ≃ 940 MeV
and the couplings of the scalar mesons and the pions to the
nucleon, where g ¼ gσNN ¼ gπNN ¼ ffiffiffi

2
p

MN=fπ ¼ 10.2.
Nowadays we know that the pion coupling is derivative

(as required by chiral symmetry), yet if we are considering
one-pion exchange only this derivative coupling can be
matched to a nonderivative one as in both cases the same
potential is obtained. In this case the pion coupling is given
by gπNN ¼ gA

ffiffiffi
2

p
MN=fπ with gA ¼ 1.26, which means that

the linear sigma model is off by about a 26% (or a 30%
once we take into account the Goldberger-Treiman dis-
crepancy). Thus this is the expected uncertainty that we
should have for gσNN. For comparison purposes, the LσM
gives g2σNN=4π ¼ 8.3 while the OBE model of nuclear
forces [13,14] prefers slightly larger values g2σNN=4π ¼
8.5–8.9 (which are still compatible with the LσM). For the
charmed mesons, which contain only one light quark, we
will assume the quark model relation gσ1 ¼ gσNN=3 ≃ 3.4
[62] (though we notice that Ref. [62] advocates a slightly
larger coupling of gσqq ¼

ffiffiffi
2

p
mcon

q =fπ ≃ 3.6, with mcon
q the

constituent q ¼ u, d quark mass).
For the mass of the sigma the OBE model of nuclear

forces uses mσ ¼ 550 MeV, but it is also common to
find mσ ¼ 600 MeV in a few recent implementations of
the OBE model for hadronic molecules [33–35,63,64].
Nowadays the RPP designation of the σ is f0ð500Þ and the
mass is in the 400MeV–550MeV range [60]. However this
does not necessarily imply that the mass of the f0ð500Þ
pole should be used for the scalar meson exchange, owing
in part to its large width and in part to its relation with
correlated two-pion exchange, as has been extensively
discussed [65–68]. Direct fits of gσNN and mσ can also
lead to more than one solution, though they are usually
compatible with the RPP mass range of the sigma and with
the expected 30% uncertainty for the coupling in the LσM.
For instance, a renormalized OBE fit to NN data [69] leads
to two solutions, one with mσ ¼ 477 MeV, gσNN ¼ 8.76,
and another with mσ ¼ 556 MeV, gσNN ¼ 13.04. What we
will do then is to investigate binding as a function of the
σ mass.

B. Vector mesons

The interaction of the vector mesons with hadrons is
analogous to that of the photons and it can be expanded in a

multipole expansion. For the S-wave charmed mesons the
spin of the light-quark degree of freedom is SL ¼ 1

2
, which

admits an electric charge (E0) and magnetic dipole (M1)
moment, from which the Lagrangian reads

LV ¼ LE0 þ LM1

¼ gV1Tr½H†
QHQ�V0

þ fV1
2M

ϵijkTr½H†
QHQσi�∂jVk ð30Þ

¼ q†L

�
gV1V0 þ fV1

2M
ϵijkσLi∂jVk

�
qL; ð31Þ

depending on the notation (superfield or subfield), where
gV1 and fV1 are the electric- and magnetic-type couplings
with the S-wave charmed mesons,M is a mass scale (it will
prove convenient to choose this mass scale equal to the
nucleon mass, i.e., M ¼ MN) and Vμ ¼ ðV0; V⃗Þ the vector
meson field. For notational convenience we have momen-
tarily ignored the isospin factors. From this the vector-
meson exchange potentials are also expressible as a sum of
multipole components

VVðq⃗Þ ¼ VE0ðq⃗Þ þ VM1ðq⃗Þ; ð32Þ

which read

VE0ðq⃗Þ ¼ þ g2V1
q⃗2 þm2

V
; ð33Þ

VM1ðq⃗Þ ¼ −
f2V1
4M2

ðσ⃗L1 × q⃗Þ · ðσ⃗L2 × q⃗Þ
q⃗2 þm2

V

¼ −
f2V1
6M2

σ⃗L1 · σ⃗L2
q⃗2

q⃗2 þm2
V
þ…; ð34Þ

with mV the vector meson mass and where the second line
of the M1 contribution to the potential isolates its S-wave
component. After Fourier transforming into coordinate
space we end up with

VVðr⃗Þ ¼ ½g2V1 þ f2V1
m2

V

6M2
σ⃗L1 · σ⃗L2�

e−mVr

4πr
þ…; ð35Þ

where the dots indicate contact-range and tensor terms,
which we are ignoring. If we particularize for the ρ meson,
we will have to include isospin factors

Vρðr⃗Þ ¼ τ⃗1 · τ⃗2½g2ρ1þf2ρ1
m2

ρ

6M2
σ⃗L1 · σ⃗L2�

e−mρr

4πr
þ…: ð36Þ

For the ω no isospin factor is required, but there is a sign
coming from the negative G-parity of this meson
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Vωðr⃗Þ ¼ ζ½g2ω1 þ f2ω1
m2

ω

6M2
σ⃗L1 · σ⃗L2�

e−mωr

4πr
þ…; ð37Þ

where, as usual, ζ ¼ þ1 (−1) for the meson-meson
(meson-antimeson) potential.
The determination of the couplings with the vector

mesons follows the same pattern we have used for the
axial mesons. The neutral vector mesons, the ω and the ρ3

(where 3 refers to the isospin index, i.e., the neutral ρ), have
the same quantum numbers as the photon and thus can mix
with the electromagnetic current. It is convenient to write
down the mixing in the form

ρ3μ → ρ3μ þ λρ
e
g
Aμ; ð38Þ

ωμ → ωμ þ λω
e
g
Aμ; ð39Þ

with e the electric charge of the proton and g ¼ mV=2fπ ≃
2.9 the universal vector meson coupling constant. These
two substitution rules effectively encapsulate Sakurai’s
universality and vector meson dominance [52,53,70].
The proportionality constants can be determined from

matching with the electromagnetic Lagrangian of the light-
quark components of the hadrons. To illustrate this idea, we
can apply the substitution rules to the E0 piece of the
Lagrangian describing the interaction of the neutral vector
mesons with the charmed antimesons, i.e.,

LE0 ¼ Tr½H†
c̄ðgρ1τ3ρ30 þ gω1ω0ÞHc̄�; ð40Þ

where we have chosen the antimesons because they contain
light quarks. After applying Eqs. (38) and (39), we end up
with

Le:m:ðLÞ
E0 ¼ eTr

�
H†

c̄

�
gρ1
g

λρτ3 þ
gω1
g

λω

�
Hc̄

�
A0

¼ eTr½H†
c̄ðλρτ3 þ λωÞHc̄�A0: ð41Þ

where in the second line we have used that gρ1 ¼ gω1
¼ g.

This is to be matched with the contribution of the light
quarks to the E0 electromagnetic Lagrangian

Le:m:
E0 ¼ eTr½H†

Q̄ðQH þQLÞHQ̄�A0; ð42Þ

where QH and QL are the electric charges of the heavy
antiquark and light quarks in the isospin basis of the
superfield HQ̄, of which only QL is relevant for matching
purposes.

QL ¼
� 2

3
0

0 − 1
3

�
: ð43Þ

which implies that λρ ¼ 1=2 and λω ¼ 1=6. Alternatively
we could have determined λρ and λω from the nucleon
couplings to the vector mesons (gρ ¼ g, gω ¼ 3g) and their
electric charges, leading to the same result.
Given λρ and λω and repeating the same steps but now for

the M1 part of the Lagrangian, we can readily infer the
magnetic-type coupling fV1 of the charmed antimesons
with the vector mesons, which turn out to be

fV1 ¼ gκV1 with κV1 ¼
3

2

�
2M
e

�
μLðD�0Þ; ð44Þ

where μLðD�0Þ refers to the light-quark contribution to the
magnetic moment of the D�0 charmed antimeson, which in
the heavy-quark limit will coincide with the total magnetic
moment of the heavy meson. From the quark model we
expect this magnetic moment to be given by the u-quark,
i.e., �

2M
e

�
μLðD�0Þ ¼

�
2MN

e

�
μu ≃ 1.85; ð45Þ

where we have taken M ¼ MN ≃ 940 MeV (i.e., the
nucleon mass) so as to express the magnetic moments in
units of nuclear magnetons.
The outcome is gV1 ¼ 2.9 and κV1 ¼ 2.8, which are the

values we will use here. Besides this determination, the
vector meson dominance model of Ref. [71] leads to gV1 ¼
2.6 and κV1 ¼ 2.3 (as explained in more detail in Ref. [35]),
i.e., compatible with our estimates within the 20% level.
For the particular case of the E0 coupling, there is a lattice-
QCD calculation for the heavy mesons [72] yielding gV1 ¼
2.6� 0.1� 0.4 in the heavy-quark limit (i.e., compatible
within errors with gV1 ¼ 2.9).

IV. DESCRIPTION OF THE Xð3872Þ
AND Zcð3900=4020Þ

Now we will consider the Xð3872Þ, Zcð3900Þ and
Zcð4020Þ from the OBE model perspective. The problem
we want to address is can they be described together with
the same set of parameters? We will find that

(i) the axial meson indeed favors the compatible de-
scription of the X and Zc resonances,

(ii) the effect of axial mesons depends on the choice of a
mass for the scalar meson in the OBE model.

In general, lighter scalar meson masses will diminish the
impact of axial meson exchange and eventually even vector
meson exchange, leading to the binding of both the X and
Zc for mσ → 400 MeV. This is not necessarily a desired
feature, as the Zc in the molecular picture is not necessarily
a bound state but more probably a virtual state or a
resonance [26,27]. That is, we expect the strength of the
charmed meson-antimeson potential to be short of binding
for the Zc and Z�

c. However, as the mass of the scalar meson
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increases and reaches the standard values traditionally used
in the OBE model, mσ ∼ 500 MeV–600 MeV, the impor-
tance of the axial meson becomes clearer, where the a1
meson might be the difference between a virtual state close
to the threshold or not.

A. Molecular degrees of freedom:
Which interpretation to choose?

The nature of the Xð3872Þ and the Zcð3900=4020Þ is
still an open problem. Here we will assume that they are
molecular, that is, that they are two-meson states. This
requires us to identify two-meson thresholds close to
the masses of the Xð3872Þ and Zcð3900=4020Þ states
and compatible with their quantum numbers. The most
obvious candidates are the different charmed meson-
antimeson combinations, e.g., the D�D̄ for the Xð3872Þ
and Zcð3900Þ, and theD�D̄� for the Zcð4020Þ. This will be
the choice we will make in the present work.
However, this is not the only possibility. For instance,

some interpretations assume that the Xð3872Þ contains a
J=ψω component [73], to which we may include J=ψρ if
isospin breaking effects are explicitly considered. For the
Zcð3900=4020Þ, if we assume that their quantum numbers
are indeed IGðJPCÞ ¼ 1þð1þ−Þ, they could also contain
a ηcρ component [37] (though this channel is located
further from the Zc’s than the charmed meson-antimeson
components). If we extend this argument to the Zcsð3985Þ,
besides the charmed meson-antimeson D�

sD̄ and DsD̄�
components, we could also add ηcK� (or even J=ψK) [32].
Though these degrees of freedom have been explicitly

considered in other works, we will not include them. The
reason is their expected relative strength and range when
compared to the other meson exchanges considered here.
To illustrate this idea, we might consider the ηcρ compo-
nent in the Zcð3900Þ, for which the ηcρ → D�D̄ transition
potential is mediated by charm vector meson exchange.
The form of this potential can in principle be deduced in a
way analogous to the vector meson exchange potential,
leading to

hηcρjVD� ðq⃗ÞjD�D̄ðZcÞi ¼
h1h2

μ2D� þ q⃗2
; ð46Þ

where for simplicity we have only considered the E0
component; “ðZcÞ” indicates that we are already projecting
into the Zcð3900Þ channel, h1ð2Þ are the relevant coupling
constants in the vertices 1(2), μ�D is the effective mass of the
exchanged D� meson, which is somewhat lighter than its
physical mass owing to the fact that the D� meson has a
nontrivial zeroth component of its four-momentum (check
Sec. IV F for a more detailed explanation). This potential is
relatively short ranged, but (light) vector meson exchange
cancels out in the Zc channel, meaning that D� exchange
could be more important than expected.

But this conclusion still depends on the absence of other
light-meson exchange contributions that could mask theD�
exchange. In this work we have at least two of these
contributions; scalar and axial meson exchange. If we
compare the expected strength of a1 and D� exchanges
at low momenta (i.e., the potentials of Eqs. (13) and (46) at
jq⃗2j → 0), their ratio will be

lim
q⃗2→0

����VD�ðq⃗;ZcÞ
Va1ðq⃗;ZcÞ

���� ¼ h1h2
μ2D�

2f2π
3λ21g

2
1

≃ 0.04; ð47Þ

where following Ref. [32] we have taken h1 ¼ffiffiffi
2

p
gVðmD þmηcÞ=

ffiffiffiffiffiffiffiffiffi
2mD

p ffiffiffiffiffiffiffiffiffiffi
2mηc

p
≃ 1.45gV and h2 ¼ gV ,

while for the effective mass we have used μD� ≃ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m2

D� − ðm2
ηc −m2

DÞ
q

≃ 1.67 GeV (check Sec. IV F).

This preliminary comparison indicates that the contribu-
tion from the D� exchange can be probably neglected if we
have already included axial meson exchange. However if
neither scalar nor axial meson exchanges are included or
are expected to be weaker than here, it will make sense to
include the D� exchange and the ηcρ channel. It is also
worth mentioning that there is another factor reducing the
potential importance of the aforementioned ηcρ channel;
it is located about 200 MeV below the Zcð3900Þ. As a
consequence, iterations of the D�-exchange potential will
be further suppressed owing to this mass gap. Yet, a caveat
is in place; the previous argument does not take into
account the effect of form factors (see Sec. IV D), which
could be very different in the a1 and D� exchange cases, or
all the possible channels or meson exchanges involved.
These effects could increase the importance of channels
other than charmed meson-antimeson.

B. General structure of the potential

Before considering the light-meson exchange potential
in detail, we will review the general structure of the S-wave
potential. For the Dð�ÞD̄ð�Þ system there are two relevant
symmetries—SU(2) -isospin and HQSS—from which we
decompose the potential into

V ¼ ðVa þ τWaÞ þ ðVb þ τWbÞσ⃗L1 · σ⃗L2; ð48Þ

with τ ¼ τ⃗1 · τ⃗2. In this notation, theX and Z potentials read

VX ¼ ðVa − 3WaÞ þ ðVb − 3WbÞ; ð49Þ

VZ ¼ðVa þWaÞ − ðVb þWbÞ: ð50Þ

However, it will be more useful to define the isoscalar and
isovector contributions to the potential as follows:

Vð0Þ
a ¼ Va − 3Wa; ð51Þ
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Vð0Þ
b ¼ Vb − 3Wb; ð52Þ

Vð1Þ
a ¼ Va þWa; ð53Þ

Vð1Þ
b ¼ Vb þWb; ð54Þ

from which the general structure of the potential is the one
shown in Table I. In the following we will explain what the
contributions of each light-meson to the potential are, yet
we can advance that

(i) VðIÞ
a receives contributions from σ and E0 ρ=ω and is

attractive for Dð�ÞD̄ð�Þ molecules.
(ii) VðIÞ

b receives contributions from the pion, the axial
meson and M1 ρ=ω exchange:
(a) Vð0Þ

b is dominated by M1 vector meson
exchange and its sign is negative, making the
Xð3872Þ the most attractive isoscalar molecular
configuration.

(b) Vð1Þ
b is dominated by axial meson exchange and

its sign is positive, implying that the Zcð3900Þ
and Zcð4020Þ are among the most attractive
isovector molecular configurations.

(c) The most attractive isovector configuration
should be the IGðJPCÞ ¼ 1−ð0þþÞD�D̄� mol-
ecule, though no molecular state has been found
yet with these quantum numbers.

Finally, the potentials for the Zcð3900Þ and Zcð4020Þ
are identical, which explains the evident observation that
they come in pairs [23]. For this reason, from now on
we will ignore the Zcð4020Þ and concentrate in the
Zcð3900Þ, as results in the latter automatically apply to
the former.

C. The OBE potential

In the OBE model the HcH0
c and HcH̄c

0 potentials
(where Hc, H0

c represent the S-wave charmed mesons) can
be written as the sum of each light-meson contribution

VOBE ¼ VðζÞ
π þ Vσ þ Vρ þ VðζÞ

ω þ VðζÞ
a1 ; ð55Þ

where the individual contributions have been already
discussed in this paper (for the approximation in which
the hadrons are pointlike):

(i) VðζÞ
π and VðζÞ

a1 in Eqs. (14) and (15)
(ii) Vσ in Eq. (28)
(iii) Vρ and VðζÞ

ω in Eqs. (36) and (37).
We have included the superscript ðζÞ as a reminder that
the contributions stemming from exchange of negative
G-parity light mesons (π, ω, a1) change sign depending on
whether we are considering the meson-meson (ζ ¼ þ1) or
meson-antimeson (ζ ¼ −1) systems. These signs have been
already included in the definition of the potential contri-
butions, i.e., in Eqs. (14), (15), and (37). For convenience
we review our choice of couplings in Table II.
Here we consider only the S-wave component of the

light-meson exchange potential, i.e., we ignore the tensor
(S-to-D-wave) components. This choice allows a simpler
analysis of the factors involved in binding.
Finally, we will assume the OBE model to be a fairly

complete description of the charmed meson-antimeson
potential. Even though there are shorter-range components
of the potential, e.g., the previously discussed transition
potentials into the charmonium—(light) meson channels or
the vector charmonium exchange potentials considered in
Refs. [36–39]—if we follow the arguments of Sec. IVA.
these pieces of the potential should be suppressed with
respect to (light) meson exchange. Nonetheless, they could

TABLE I. SU(2)-isospin and HQSS structure of the S-wave potential in the heavy meson-antimeson molecules. “System” indicates
the specific charmed meson-antimeson molecule, IðJPCÞ its quantum numbers, “Potential” the potential and “Candidate” refers to

known experimental resonances that might be explained by the specific configuration considered. VðIÞ
a and VðIÞ

b are the central and spin-

spin pieces of the potential, with I ¼ 0, 1 referring to the isospin. From light-meson exchanges we expect Vð0Þ
a < 0 and Vð0Þ

b < 0 in the
isoscalar sector, which makes the 1þþ and 2þþ the most promising configurations for binding (in the absences of other binding factors,

e.g., coupled channels, nearby charmonia, etc.). For the isovector sector we expect Vð1Þ
a < 0 and Vð1Þ

b > 0, from which the 0þþ and 1þ−

configurations are the most promising. However Vð1Þ
b is really weak, making this conclusion contingent on other factors (e.g., isospin

breaking in vector meson exchange).

System IGðJPCÞ Potential Candidate System IGðJPCÞ Potential Candidate

DD̄ 0þð0þþÞ Vð0Þ
a

� � � DD̄ 1−ð0þþÞ Vð1Þ
a

� � �
D�D̄ 0−ð1þ−Þ Vð0Þ

a − Vð0Þ
b

� � � D�D̄ 1þð1þ−Þ Vð1Þ
a − Vð1Þ

b
Zcð3900Þ

D�D̄ 0þð1þþÞ Vð0Þ
a þ Vð0Þ

b
Xð3872Þ D�D̄ 1−ð1þþÞ Vð1Þ

a þ Vð1Þ
b

� � �
D�D̄� 0þð0þþÞ Vð0Þ

a − 2Vð0Þ
b

� � � D�D̄� 1−ð0þþÞ Vð1Þ
a − 2Vð1Þ

b
� � �

D�D̄� 0−ð1þ−Þ Vð0Þ
a − Vð0Þ

b
� � � D�D̄� 1þð1þ−Þ Vð1Þ

a − Vð1Þ
b

Zcð4020Þ
D�D̄� 0þð2þþÞ Vð0Þ

a þ Vð0Þ
b

� � � D�D̄� 1−ð2þþÞ Vð1Þ
a þ Vð1Þ

b
� � �
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be easily included as a contact-range potential following the
general structure of Table I. This type of improved OBE with
contacts has been investigated in the two-nucleon system
[74], where its main advantage is that it allows for the
renormalization of the OBE model, i.e., it becomes possible
to generate observable results that are independent of meson
form factors and cutoffs. However, the detailed study of
these effects lies beyond the scope of the present work; for
instance, it will involve the determination of four indepen-
dent coupling constants corresponding to the four indepen-
dent potential components of Table I, or a minimum of four
molecular candidates to calibrate said couplings.

D. Form factors and regulators

As mentioned, the previous form of the potential
assumes pointlike hadrons. The finite size of the hadrons
involved can be taken into account with different methods,
e.g., form factors. The inclusion of form factors amounts to
multiply each vertex involving a heavy hadron and light
meson by a function of the exchanged momentum, i.e.,

ARðH → HMðqÞÞ ¼ fMðqÞAðH → HMðqÞÞ; ð56Þ

where A and AR are the pointlike and regularized ampli-
tudes, respectively, and fðqÞ the form factor. In terms of the
potential, the inclusion of a form factor is equivalent to the
substitution rule

VMðq⃗Þ → f2Mðq⃗ÞVMðq⃗Þ: ð57Þ

Here we will use multipolar form factors, i.e.,

fMðqÞ ¼
�
Λ2 −m2

Λ2 − q2

�
nP
; ð58Þ

with Λ the form-factor cutoff, q2 ¼ q20 − q⃗2 the exchanged
four-momentum of the mesonM,m the mass of the meson,
and nP the multipole momentum. In general this procedure
requires that Λ > m.

The form-factor cutoff can be different for each of the
exchanged mesons, which is what happens for instance in
the meson theory of nuclear forces [13,14]. However, we
will also consider the simplification of a single cutoff for
all exchanged mesons; this choice is popular within OBE
descriptions of hadronic molecules as it entails less free
parameters. In contrast with the two-nucleon system, the
number of actual data for the different two-hadron systems
is usually limited to a few bound state candidates at most.
This indeed favors theoretical simplifications such as a
single cutoff, but it is important to stress that there is no
compelling phenomenological reason why this should have
to be the case. For the inclusion of the axial meson, we
advance that the assumption of a single cutoff entails
nP ≥ 2 (otherwise, the cutoff will be smaller than the axial
meson mass). If we allow for each meson to have its own
cutoff, there will be no constraints on the polarity of the
form factor.
It is also worth mentioned that in a first approxima-

tion we will assume the cutoffs to be identical in the
different isospin, flavor and heavy/light-quark spin chan-
nels. However this assumption only holds if the previous
symmetries are perfectly preserved, which is not the case.
We will later discuss how the breaking effects of these
symmetries (in particular flavor and HQSS) might play a
role in the coherent description of the Xð3872Þ, Zcð3900Þ,
and also the Zcsð3985Þ.
Multipolar form factors are local regulators and

thus they still generate a local potential for which the
Fourier transform is analytic. The expressions can be a
bit convoluted though, particularly for the dipolar and
higher-momentum form factors. Here we only consider the
S-wave piece of the light-meson exchange potentials
where the contact-range contributions have been removed,
which slightly simplifies the analytic expressions. First,
for each meson we have a Yukawa-like potential of
the type

VMðr⃗Þ ¼
g2Y
4π

�
OI

X
i

ciOi
S

�
e−mr

r

¼ g2Y

�
OI

X
i

ciOi
S

�
mWYðmrÞ; ð59Þ

with gY the effective Yukawa coupling, OI and OS isospin
and spin operators, m the mass of the exchanged light
meson, and where the exact potential could involve a sum
of different spin operators with ci their coefficients. In the
second line we have included the dimensionless function

WYðxÞ ¼
e−x

4πx
; ð60Þ

which is the only thing that changes when a multipolar
form factor is included

TABLE II. Couplings of the light mesons we are considering in
this work (π, σ, ρ, ω and a1) to the charmed mesons. For the
masses of the light mesons we will use mπ ¼ 138 MeV,
mσ ¼ 550 MeV, mρ ¼ 770 MeV, mω ¼ 780 MeV and ma1 ¼
1230 MeV. For the vector mesons we use the scaling mass
M ¼ 938 MeV. For the charmed mesons we will consider
their isospin-averaged masses, mD ¼ 1867 MeV and mD� ¼
2009 MeV.

Coupling Value Relevant to meson(s)

g1 0.60 π, a1
gσ 3.4 σ
gV1 2.9 ρ, ω
κV1 2.8 ρ, ω
λ1 1.8 a1
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WYðxÞ → WYðx; λ; kPÞ; ð61Þ

where λ ¼ Λ=m, kP ¼ 2nP and with

WYðx; λ; kPÞ ¼
Z

d3z
ð2πÞ3

�
λ2 − 1

λ2 þ z2

�
kP eiz⃗·x⃗

1þ z2
: ð62Þ

The general form of WY for integer kP ≥ 1 can be found
by recursion. If we redefine WY as

WYðx; λ; kPÞ ¼ ðλ2 − 1ÞkPIYðx; λ; kPÞ; ð63Þ

then IY follows the recursive relation

IYðx; λ; 1Þ ¼
1

λ2 − 1
½WYðxÞ − λWYðλxÞ�; ð64Þ

IYðx; λ; kP > 1Þ ¼ 1

2λkP

d
dλ

½IYðx; λ; kP − 1Þ�; ð65Þ

from which we can find the form of the potential for
arbitrary multipolar form factors.
For the choice of the polarity nP, if we decide to follow

the simplifying assumption of a single cutoff for all
exchanged mesons, we will have to choose at least a
dipolar form factor (nP ≥ 2). Otherwise the form factor
cutoff will be lighter than the axial meson, rendering it
impossible the inclusion of said meson with a multipolar
form factor. In particular, for nP ¼ 1 we have to remove
the axial meson to correctly reproduce the Xð3872Þ, in
which case the necessary cutoff is Λ ¼ 1.00 GeV (com-
patible with Λ ¼ 1.01þ0.18

−0.10 GeV in the OBE of Ref. [35],
which also uses a monopolar form factor).

E. Finite meson width effects

Previously we have simply assumed that the light
mesons generating the OBE potential are narrow states.
However, though this assumption is well justified in the
case of the pion, the omega and to a lesser extent the rho,
the scalar and axial mesons are rather broad actually, where
in the RPP [60] their widths are listed to be

Γσ ¼ 400–800 MeV and Γa1 ¼ 250–600 MeV: ð66Þ

Naturally this raises the question of how these large widths
can be taken into account within the OBE model.
This problem being rather conspicuous, particularly in

the case of the σ, has been investigated in the past. The
basic idea is to substitute the narrow meson propagator by a
propagator averaged over the actual mass distribution of the
meson

1

m2 þ q⃗2
→
Z

∞

mth

ρðμ2Þdðμ2Þ
μ2 þ q⃗2

; ð67Þ

where ρðμ2Þ is the spectral distribution of the wide meson
and mth the threshold mass of the particles into which this
meson can decay. The evaluation of this integral depends
on the form of ρðμ2Þ, which in turn has led to different
approximations for handling wide mesons. Five decades
ago Ref. [75] proposed a really practical solution for wide
mesons decaying into two pions (i.e., this solution is
tailored for the σ), which amounts to a two-pole approxi-
mation of the previous integral

Z
∞

mth

ρðμ2Þdðμ2Þ
μ2 þ q⃗2

≈
α1

m2
1 þ q⃗2

þ α2
m2

2 þ q⃗2
; ð68Þ

where α1 and α2 are positive numerical coefficients such
that α1 þ α2 ¼ 1 and m1, m2 are the masses of the two
poles which obey the relation m1 < m and m2 > m. This
two-pole approximation has been used for instance in the
Nijmegen high-precision potentials [76].
Later, Ref. [77] proposed a more detailed solution, which

begins by considering the exchange of a narrow meson
generating a Yukawa-like potential of the type

VYðrÞ ¼ −
g2Y
4π

e−mr

r
; ð69Þ

with gY the coupling. When this meson acquires a width,
the evaluation of the integral over the spectral mass
distribution [i.e. Eq. (67)] results in a potential that is
the sum of a few contributions, where we refer to Ref. [77]
for details. The two most important of these contributions
are the following: close to mr ∼ 1, the original Yukawa
potential is modified into a potential of the type

VYðrÞ ≈ −
g2

4π

e−mr

r

�
1 −

Γr
π

−
Γ
πm

�
; ð70Þ

with Γ the width of the meson. In practical terms this
implies that at short distances the potential for a broad
meson is weaker than for a narrow one, where it is
interesting to notice that one can still use the pole mass
of the meson. The other relevant contribution to the
potential of a broad meson comes from this meson
decaying into two lighter mesons of mass 2M, which will
generate an additional attractive longer-range contribution
to the potential at distances 2Mr ∼ 1. In the case of the σ
meson, we would expect the appearance of a two-pion
exchange contribution, while for the a1 meson this pro-
cedure will give us a πρ exchange potential. To summarize,
in comparison to a narrow meson, a wide meson exchange
potential will be weaker at short distances and stronger at
long distances.
At this point it is worth noticing that though the analysis

of Ref. [77] has not been explicitly used for the construc-
tion of meson exchange potentials, it nonetheless explains
the features of previous OBE models. For instance, the
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relation between two-pion and sigma exchange [65–68]
(or πρ and a1 exchange [15,78]) is well known and has
been extensively discussed in the past.
Yet, the actual effect of a meson is related both to its

coupling and range. In this regard, it might be possible to
simply disregard the complications coming from the width
of the meson in favor of considering the mass and coupling
of the meson as effective parameters. This idea seems to be
compatible with the practice of OBE models, where we can
compare the Bonn-A/B [13,14] and CD-Bonn [79] models
for illustrative purposes. The Bonn-A and Bonn-B models
are traditional OBE potentials where the exchanged bosons
are effectively treated as narrow; for the case of the σ meson
it features a mass and a coupling of mσ ¼ 550 MeV and
g2σ=4π ≃ 8.7–8.8 (which basically coincides with coupling
expected in the LσM, g2σ=4π ≃ 8.3). In contrast the CD-
Bonn model includes two-boson exchange (e.g., two-pion
exchange) and the mass and couplings of the σ meson are
mσ ¼ 452 MeV and g2σ=4π ≃ 4.25 instead. This actually
illustrates a few of the ideas of Ref. [77]; in practice the
strength of the σ exchange potential in the CD-Bonn model
is about 50% weaker than in the Bonn-A/B model, but this
is counterbalanced by the presence of two-pion exchange in
CD-Bonn. In the end, the two types of OBE potentials are
roughly equivalent at the observable level, yielding com-
parable predictions.
From this later observation, in this work we will simply

treat the wide scalar and axial mesons as narrow, with their
masses and couplings being considered as effective instead
of fundamental. Obviously there is a relation between the
effective and physical values, which is what is discussed
in Refs. [75,77], but no unique solution for taking into
account the finite width effects. This in turn explains why
the parameters of these mesons can take such different
values depending on the approach. What we will do is to
consider how predictions change with different values of
the masses and couplings of the scalar and axial mesons.

F. Mass gaps and effective meson masses

When the light-meson exchange potential entails a
transition between two hadrons of different masses, i.e.,
there is a vertex of the type

H → H0M; ð71Þ

with H, H0 the initial and final hadrons and M the light
meson, we will have to modify the effective mass of the in-
flight light meson. In this case the light-meson exchange
potential is not diagonal and entails a transition between the
HH0 and H0H configurations

VMðq⃗Þ ¼ VMðq⃗; HH0 → H0HÞ; ð72Þ

for which the light-meson propagator in the exchange
potential will change to

1

m2 þ q⃗2
→

1

μ2 þ q⃗2
; ð73Þ

where μ is the effective mass of the light meson, i.e.,

μ2 ¼ m2 − Δ2; ð74Þ

with Δ ¼ mðH0Þ −mðHÞ.
If we are dealing with a charmed meson-antimeson

system, this correction will only have to be taken into
account for the D�D̄ and DD̄� systems, i.e., for the
Xð3872Þ and Zcð3900Þ. Only the spin-spin part of the
potential will be affected, as the central part cannot gen-
erate a transition between the D and D� charmed mesons.
For the pion and axial meson exchange potentials, the
correction is trivial

Vπðr⃗Þ ¼ ζ
g21μ

2
π

6f2π
τ⃗1 · τ⃗2σ⃗L1 · σ⃗L2

e−μπr

4πr
; ð75Þ

Va1ðr⃗Þ ¼ −ζλ21
g21m

2
a1

3f2π
τ⃗1 · τ⃗2σ⃗L1 · σ⃗L2

e−μa1r

4πr
; ð76Þ

with μπ and μa1 the effective pion and axial meson masses,
where we notice that for axial meson exchange the
ma1 → μa1 substitution is limited to the long-range decay
exponent (but not the m2

a1 factor involved in the strength of
the potential). For the vector meson exchange potential the
correction only affects its spin-spin piece

VVðr⃗Þ ¼ g2V1
e−mVr

4πr
þ f2V1

μ2V
6M2

σ⃗L1 · σ⃗L2
e−μVr

4πr
: ð77Þ

Finally for the sigma meson no modification is required.
If we combine this modification with a multipolar

form factor, from direct inspection of Eq. (58) we find
that besides modifying the effective mass of the light-
meson, we also have to modify its cutoff

m → μ and Λ →
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Λ2 − Δ2

p
: ð78Þ

Taking into account that mðD�Þ −mðDÞ ∼ 140 MeV, the
only light meson that is substantially affected by this change
is the pion, for which its spin-spin contribution essentially
vanishes for the Xð3872Þ and Zcð3900Þ molecules.

G. Bound state equation

For obtaining predictions with the S-wave OBE potential
of Eq. (55), we plug it into the reduced Schrödinger
equation

−u00ðrÞ þ 2μHHVOBEðrÞuðrÞ ¼ −γ2uðrÞ; ð79Þ

where uðrÞ is the reduced wave function, μHH is the
reduced mass of the particular charmed meson-antimeson
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system under consideration, and γ is the wave number
of the bound state which is related to the two-body binding

energy (B2) by B2 ¼ γ2

2μHH
. For the Xð3872Þ, we will

consider it to be a D�D̄ system bound by 4 MeV in the
isospin symmetric limit (i.e., we will be using the isospin-
averaged D and D� masses). For the Zcð3900Þ we will be
interested in determining the cutoff for which it becomes a
bound state at threshold, that is, the γ ¼ 0 limit, as we will
explore in the following lines.

H. The Xð3872Þ and Zcð3900Þ cutoffs
Now we will explore whether the Xð3872Þ and Zcð3900Þ

can be explained with the same set of parameters in
a simplified OBE model with a single cutoff for all
exchanged mesons. This is not necessarily the most
realistic assumption—the OBE model in the two-nucleon
sector has different cutoffs for each of the exchanged
mesons [13,14]—but it allows for a simpler analysis.
Here, what we are interested in is whether it is plausible
to explain these two states with compatible parameters in
the molecular picture, which seems to be the case.
As previously discussed, the single cutoff OBE model

requires a polarity of nP ≥ 2 for the form factor. With a
dipolar form factor (nP ¼ 2) we can reproduce the mass of
the X with

ΛðXÞ ¼ 1.37þ0.08
−0.09ð1.27–1.41Þ GeV: ð80Þ

The central value corresponds to mσ ¼ 550 MeV, which is
the σ mass used in the original OBE model for nuclear
forces [13,14], the error comes from the uncertainty in
the scalar coupling gσ ¼ 3.4� 0.1, while the spread
represents the mass range mσ ¼ 450 MeV − 600 MeV
(with gσ ¼ 3.4), which covers most of the plausible choices
for its mass. For mσ ¼ 450 MeV the dipolar cutoff is
merely a bit above the axial meson mass,ma1 ¼ 1.23 GeV.
In contrast the cutoff for which the Zc binds at threshold is

ΛðZcÞ ¼ 1.82þ0.62
−0.43ð1.37–1.99Þ GeV; ð81Þ

for which we get the ratio

ΛðZcÞ
ΛðXÞ ¼ 1.33þ0.35

−0.24ð1.08–1.41Þ: ð82Þ

Now if we assume that the cutoffs for the X and the Zc are
the same, modulo HQSS violations (the size of which is
about ΛQCD=mQ, i.e., of the order of 15% for mQ ¼ mc,
where we have taken ΛQCD ∼ 200 MeV), this ratio should
be one within the aforementioned HQSS uncertainty

ΛZ

ΛX
¼ 1� 0.15 ¼ ð0.85–1.15Þ; ð83Þ

which means that the existence of the X is compatible
within one standard deviation with a Zc binding at the
threshold for the lower σ meson mass range. This lower σ
mass range basically gives cutoffs that are barely larger
than the axial meson mass, which indicates that we should
consider larger dipolar momenta for a better comparison.
This is done in Table III, where we extend the comparison
to the nP ¼ 3, 4 (i.e., tripolar and quadrupolar) cases;
yet, we consistently end up about two standard deviations
away. However this discrepancy is not troubling; a molecu-
lar Zc is expected to be a virtual state or a resonance near
the threshold, which means that the amount of attraction
in the 1þð1þ−ÞD�D̄ system is not enough to bind the
charmed meson and antimeson at threshold. That is, the
ratio should be larger than one [but still of Oð1Þ], though it
is difficult to estimate how much larger. Thus the previous
ratio and the ones in Table III are probably compatible with
a molecular Zc.
However, the most interesting comparison is against the

OBE model without the axial meson, which will reveal the
conditions under which the axial meson might be relevant.
If we remove the axial meson, the cutoffs we get are

Λ=a1X ¼ 1.37þ0.09
−0.09ð1.27–1.41Þ GeV; ð84Þ

Λ=a1Z ¼ 1.99þ∞
−0.60ð1.37–2.38Þ GeV; ð85Þ

where Zc does not bind for the lower values of gσ (we dis-
cuss this in a moment), hence the þ∞ error, yielding the ratio

TABLE III. Cutoffs required to reproduce the Xð3872Þ and to bind a molecular Zc at threshold in a OBE model with and without axial
mesons for different masses of the scalar meson. We use a multipolar form factor with polarity nP ¼ 2, 3, 4 at each vertex, Eq. (58).
ΛðX=ZcÞ shows the Xð3872Þ and Zc cutoffs for the OBE model including the axial meson, while for the axial-less case we add the
superscript =a1. Finally we show the ratio between the Xð3872Þ and Zc cutoffs. The central value representsmσ ¼ 550 MeV, the error in
the central values arise from the uncertainty in gσ ¼ 3.4� 1.0 and the intervals (in parentheses) correspond to mσ ¼ 450–600 MeV.

Polarity
(nP) ΛðXÞ Λ=a1ðXÞ ΛðZcÞ Λ=a1ðZcÞ RðZc=XÞ R=a1ðZc=XÞ
2 1.37þ0.08

−0.09 (1.27–1.41) 1.37þ0.09
−0.09 (1.27–1.41) 1.82þ0.62

−0.43 (1.37–1.99) 1.99þ∞
−0.60 (1.37–2.38) 1.33þ0.35

−0.24 (1.08–1.41) 1.45þ∞
−0.36 (1.08–1.69)

3 1.65þ0.10
−0.11 (1.53–1.69) 1.65þ0.11

−0.11 (1.53–1.70) 2.19þ0.76
−0.51 (1.67–2.40) 2.44þ∞

−0.75 (1.68–2.92) 1.33þ0.36
−0.24 (1.09–1.42) 1.48þ∞

−0.38 (1.10–1.72)
4 1.95þ0.11

−0.13 (1.82–2.00) 1.97þ0.13
−0.14 (1.83–2.03) 2.72þ0.96

−0.65 (2.10–2.96) 3.26þ∞
−1.16 (2.16–4.02) 1.39þ0.39

−0.26 (1.15–1.48) 1.65þ∞
−0.51 (1.18–1.98)
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Λ=a1Z
Λ=a1X

¼ 1.45þ∞
−0.36ð1.08–1.69Þ; ð86Þ

which results in larger relative cutoffs as the σ gets
heavier, increasing the discrepancy with HQSS to the three
standard deviation level (if we assume a molecular Zc at the
threshold, which is probably too restrictive). The ratios also
grow larger for higher polarity nP (see Table III). Again
lighter σ masses result in cutoffs that are not completely
satisfactory if wewant to take the axial mesons into account.
Finally, in the left panel of Fig. 1 we show the dependence of
the cutoff ratiowith themass of theσ for a dipolar form factor,
where we can see again that the impact of the axial meson
increases with the mass of the scalar meson.
At first sight the comparison between the axial-full and

axial-less OBE models indicates a modest contribution
from the axial mesons. But the observation that the cutoff
ratios increase with larger scalar meson masses, left panel
of Fig. 1, and with it the compatibility of the molecular
description of the X and the Zc decreases, indicates that
the previous conclusion depends on the strength of scalar
meson exchange and the parameters used to describe the
later. We actually do not know the coupling of the σ to the
charmed baryons very precisely, but with considerable
errors: the LσM and the quark model suggest gσ ¼
3.4� 1.0, where this uncertainty turns out to be important.
If the attraction provided by the σ falls short of binding, the
axial meson will be the difference between the charmed
meson-antimeson interaction being weak or strong. Indeed,
if there is no axial meson, the condition for the isovector
D�D̄ system to bind is

gσ ≥ 2.45ð2.22–2.56Þ; ð87Þ

which is within the expected uncertainties for the scalar
coupling. That is, σ exchange is by itself no guarantee that
the Zcð3900Þ can be explained in terms of the charmed
meson-antimeson interaction alone. In the right panel of
Fig. (1) we visualize the dependence of the ΛðZcÞ=ΛðXÞ
ratio as a function of gσ, which further supports the pre-
vious interpretation of axial meson exchange as the factor
guaranteeing the required molecular interaction necessary
for the Zc. Finally for a σ-less theory with axial mesons the
Zc will still bind for large cutoffs, with concrete calcu-
lations yielding

Λ=σðXÞ ¼ 1.55 GeV and Λ=σðZcÞ ¼ 3.62 GeV; ð88Þ

for which the ratio is 2.33. In this later scenario the
uncertainty of the factor involved in the mixing of the
pion and axial meson current (λ1 ¼ 1.8� 0.3 ¼ 1.5–2.1)
might be relevant, as this error induces the ratio to move
within the 2.01–2.99 range.
The previous analysis of the scalar mass and coupling

dependence is motivated in part by the width of the σ,
which implies that its parameters as applied to the OBE
model are in a sense effective and do not necessarily
coincide with its physical parameters (see the discussion in
Sec. IV E). This factor is also present for the axial meson,
though in a lesser extent owing to a smaller width to mass
ratio. Nonetheless it is relevant to study how the cutoff ratio
depends on ma1 and λ1, which we do in Fig. 2. What we
find is that the uncertainties in the RðZc=XÞ ratio show a
weaker dependence with the axial meson mass and

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 2.4

 400  500  600  700

R
 (

Z
c/

X
)

m

w/ a1
wo/ a1

 0.6

 0.9

 1.2

 1.5

 1.8

 2.1

 2.4

 1.5  2  2.5  3  3.5  4  4.5  5

R
 (

Z
c/

X
)

g

w/ a1
wo/ a1

FIG. 1. Cutoff ratios RðZc=XÞ as a function of the mass and the coupling of the scalar meson for the OBE model with (solid lines) and
without (dashed-dotted lines) axial meson exchange. RðZc=XÞ is defined as the ratio of the cutoff for which a molecular Zc will be a
bound state at threshold over the cutoff for which the mass of the Xð3872Þ is reproduced as a IGðJPCÞ ¼ 0þð1þþÞD�D̄ bound state. If
the Zc were to be a bound state at threshold, the ratio would be expected to be RðZc=XÞ ¼ 1.0� 0.15, which we show in the figure as a
dashed line and a series of bands representing one, two and three standard deviations (shown in increasingly light colors). When we vary
the scalar meson mass (coupling), the scalar coupling (mass) is taken to be gσ ¼ 3.4 (mσ ¼ 550 MeV). The predictions for the preferred
values of the scalar mass and couplings (mσ ¼ 550 MeV and gσ ¼ 3.4) are highlighted as round dots. For the axial meson, we use
ma1 ¼ 1230 MeV and λ1 ¼ 1.8� 0.3, where the uncertainty in the axial coupling is shown as a series of bands around the central
predictions for the axial-full theory (where we show again the one, two, and three standard deviations bands in increasingly light colors).
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coupling with respect to the scalar meson. This result is in
line with the previous observations that the importance of
axial meson exchange is indeed subordinated to the scalar
meson, which having a larger range naturally exerts a larger
influence of the spectrum.
Finally, we recall here that we have worked under

the assumption that the ΛX and ΛZ cutoffs should be
identical. This would be true if the form-factor cutoffs
of the OBE model are determined by the particles for
which the potential is calculated (i.e., the charmed mesons),
instead of by the light mesons being exchanged. However,
this is not necessarily the case; in the OBEmodel of nuclear
forces [13] the cutoffs of the light mesons are of the same
order of magnitude, but not identical. This leads us to a
second interpretation; the use of a unique cutoff could then
be regarded as an average of the particular cutoffs of each of
the light mesons. If this is the case, the ΛX and ΛZ cutoffs
could differ from each other much more than naively
expected, where a very important reason for this is that
in the isovector molecules there is no vector meson
exchange, giving a much larger weight for the axial meson
cutoff in the Zc-like molecules. In turn this will allows us to
make independent predictions of the isoscalar and isovector
charmed meson-antimeson molecules. We will explore this
possibility in the following.

I. The HQSS partners of the Xð3872Þ and Zcð3900Þ
Now we want to explore what type of molecular

spectrum is derived when the exchange of the axial meson
is included. For this we will consider a two cutoff model

where the isoscalar and isovector configurations are inde-
pendent, i.e., we will use the ΛX and ΛZ cutoffs calculated
in the previous section.
Ideally, the description of the two isospin channels

would involve using a different cutoff for each of the
exchanged meson, as done for instance in the meson theory
of nuclear forces. However, instead of calibrating all these
parameters—we only have two molecular candidates—
here we will consider the interpretation in which the
cutoff works as an effective parameter representing the
different mix of mesons contributing in each channel. In
particular the isovector Zcð3900Þ and Zcð4020Þ resonan-
ces do not exchange vector mesons, from which it is
sensible to expect a different “effective” or “average”
cutoff from the one in the Xð3872Þ case. Provided these
two cutoffs are not too far away, which seems to be the
case for most choices of parameters in the axial-full
theory, this simplified description should be able to
generate the qualitative features of the charmed meson-
antimeson molecular spectrum.
The spectrum we obtain is summarized in Table IV for

the axial-less and axial-full OBE models. While for the
isoscalar configurations—the partners of the Xð3872Þ—
there is no practical difference between including or
excluding the a1ð1260Þ, for the partners of the Zcð3900Þ
there are important differences. We summarize our results
as follows:

(i) In the isoscalar sector (the partners of the Xð3872Þ)
there is no significant difference between including
or excluding axial meson exchange. The spectrum is
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FIG. 2. Cutoff ratios RðZc=XÞ as a function of the mass (left panel) and coupling (right panel) of the axial meson for the OBE model.
RðZc=XÞ is defined as in Fig. 1, with its expected value being RðZc=XÞ ¼ 1.0� 0.15, which we show as a dashed line and a series of
bands representing one, two, and three standard deviations (shown in increasingly light colors). The solid and dashed-dotted lines
represent the ratios for the OBE with and without axial meson exchange. The mass and coupling of the scalar meson are taken to be
mσ ¼ 550 MeV and gσ ¼ 3.4� 1.0, where in the case of the coupling we have added a 30% relative uncertainty, which is shown as the
error band around the solid line. In contrast with Fig. 1, where we showed up to three standard deviations of the uncertainty in λ1, for gσ
the errors are considerably larger and we show only one standard deviation instead. For the axial-less OBE model the ratio is constant, as

there is no dependence with respect to the axial meson parameters, and calculated to be R=a1 ¼ 1.42þ∞
−0.34, where the error comes from the

uncertainty of gσ (not shown in the plots owing to its large spread). The ma1 ¼ 1230 MeV and λ1 ¼ 1.8 ratios for the axial-full theory
are highlighted as a round dot. When we vary the axial mass (coupling), we set the axial coupling (mass) to its expected central value,
i.e., λ1 ¼ 1.8 (ma1 ¼ 1230 MeV).
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similar to the one predicted in Ref. [35] (an axial-
less OBE model), though here we observe two
additional states that are worth mentioning:
(a) A near threshold 0þþ DD̄ virtual state, which

could correspond to the previously predicted
Xð3700Þ state [11,80] or the recent 0þþ bound
state predicted in the lattice [81]. We note
that this latter work includes the DD̄ −DsD̄s
coupled-channel dynamics, which will provide
additional attraction not present here.

(b) A negative C-parity (virtual state) partner of the
Xð3872Þ, which might be related to the obser-
vation of a state with these quantum numbers by
COMPASS [82] withM ¼ 3860.0� 10.4 MeV.
We notice that by taking gσ ¼ 2.4wewill predict
the central value of the COMPASS observation.
This might also indicate that smaller values of
the scalar meson coupling are to be preferred.

(ii) In the isovector sector (the partners of the Zcð3900Þ)
there are interesting difference between the axial-
less and axial-full models:
(a) In the axial-less model, all the isovector mole-

cules have the same binding energy (except for
perturbative corrections from pion exchanges),

i.e., they are all located close to threshold. How-
ever this conclusion depends on gσ > 2.45,
which is within the error that we expect for
the scalar coupling (gσ ¼ 3.4� 1.0). If this
condition is met, there should be a total of six
isovector molecules or, equivalently, four unob-
served partners of the Zcð3900Þ and Zcð4020Þ.
On the contrary, if gσ is not strong enough
isovector molecular states will not exist.

(b) In the axial-full model, a1-exchange generates a
spin dependent interaction that breaks this degen-
eracy. The most attractive configuration is the
IGðJPCÞ ¼ 1−ð0þþÞD�D̄� molecule, followed by
the Zcð3900Þ and Zcð4020Þ. However the size of
this effect depends on gσ; for the central value
derived from the LσM, the hyperfine splittingwill
be of the order ofmerely 1MeV, and the spectrum
will be barely distinguishable from the axial-less
model. But if gσ is weak, the hyperfine splitting
will become sizable. For instance, if gσ ¼ 2.4 the
0þþ D�D̄ molecule will be more bound than the
Zcð4020Þ by about 10 MeV.

In general, it is the isovectormolecular spectrumwhich could
provide more information about scalar and axial meson

TABLE IV. HQSS partners of the Xð3872Þ and Zcð3900Þ states in the molecular picture in the axial-less and axial-
full theories. The spectrum is calculated with the OBE model proposed here and a dipolar form factor (nP ¼ 2),
where the cutoff is determined independently in the isoscalar and isovector channels from the condition of
reproducing the Xð3872Þ (as an isoscalar JPC ¼ 1þþ D�D̄ bound state 4 MeV below threshold) and the Zcð3900Þ
(as an isovector JPC ¼ 1þ− D�D̄ bound state at threshold). With these conditions we obtain the cutoffs Λ=a1X ¼
1.37þ0.09

−0.09 GeV and Λ=a1Z ¼ 1.99þ∞
−0.60 GeV in the axial-less model and Λa1

X ¼ 1.37þ0.08
−0.09 GeV and Λa1

Z ¼
1.82þ0.62

−0.43 GeV in the axial-full model, where the errors correspond to the uncertainty in the σ meson coupling,
gσ ¼ 3.4� 1.0 (which is also propagated into the binding / virtual state energies). Owing to the absence of coupled
channels, we only obtain bound or virtual states; we use the convention of a positive number for the binding energy
of a bound state and a negative number for the energy of a virtual state, while a dash (“-”) indicates the absence of a
pole close to the threshold.

System (X-like) IG JPC B=a1=E=a1V M=a1 Ba1=Ea1
V Ma1

DD̄ 0þ 0þþ −0.0þ0.1
−0.7 3734.4þ0.0

−0.7 −0.0þ0.1
−0.8 3734.4þ0.0

−0.8

D�D̄ 0þ 1þþ Input Input Input Input
D�D̄ 0− 1þ− −4.0þ3.6

−10.3 3871.8þ3.6
−10.3 −4.2þ3.9

−11.2 3871.6þ3.9
−11.2

D�D̄� 0þ 0þþ −−
0.3 � � � −−

0.3 � � �
D�D̄� 0− 1þ− −1.0þ1.0

−1.8 4016.2þ1.0
−1.8 −1.0þ1.0

−1.9 4016.2þ1.0
−1.9

D�D̄� 0þ 2þþ þ3.5þ0.0
−0.1 4013.7þ0.1

−0.0 þ3.5þ0.0
−0.1 4013.7þ0.1

−0.0

System (Zc-like) IG JPC B=a1=E=a1V M=a1 Ba1=Ea1
V Ma1

DD̄ 1− 0þþ −0.1þ0.0
−∞ 3734.30.0−∞ −0.6þ6.9

−13.4 3733.8þ0.6
−13.4

D�D̄ 1− 1þþ −0.0þ0.0
−∞ 3875.8þ0.0

−∞ −1.3þ6.0
−16.1 3874.5þ1.3

−16.1
D�D̄ 1þ 1þ− Input Input Input Input

D�D̄� 1− 0þþ þ0.0þ0.0
−∞ 4017.2þ0.0

−∞ þ0.3þ10.2
−0.3 4016.9þ0.3

−10.2
D�D̄� 1þ 1þ− þ0.0þ0.0

−∞ 4017.2þ0.0
−∞ þ0.0þ0.0

−0.0 4017.2þ0.0
−0.0

D�D̄� 1− 2þþ þ0.2þ0.0
−∞ 4017.0þ0.2

−∞ −0.5þ0.7
−4.7 4016.7þ0.5

−4.7
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exchange; the eventual observation of the HQSS partners
of the Zcð3900Þ and Zcð4020Þ could determine which
of the scenarios discussed here is the one chosen by
nature—a degenerate spectrum would be compatible with
a strong scalar meson exchange (or maybe with vector
charmonia exchange [39]), while the discovery of a 0þþ
partner of the Zcð4020Þ will signal that axial meson
exchange is a relevant part of the description of isovector
molecules. However, if a 2þþ partner happens to be
discovered and it can be shown that requires more
attraction than the Zcð4020Þ, this will be difficult to
accommodate in the previous molecular explanations,
independently on whether it is grounded on scalar, axial
or charmonium exchange.

V. DESCRIPTION OF THE NEW Zcsð3985Þ
Finally we turn our attention to the Zcsð3985Þ, recently

discovered by BESIII [21]. The existence of this reso-
nance can be readily deduced from the Zcð3900Þ and
Zcð4020Þ and SU(3)-flavor symmetry, as the latter
dictates that the D�D̄ interaction in the I ¼ 1 isovector
channel is identical to the one in the D�

sD̄ system [27,83].
However the realization of SU(3)-flavor symmetry in the
OBE model is not automatic and depends on two
conditions

(i) the pseudo–Nambu-Goldstone meson current mix-
ing with the octet part of the axial mesons,

(ii) the scalar meson coupling with similar strengths to
the q ¼ u, d, s light quarks.

The first condition is required in order for the axial meson
exchange to be nontrivial in the isovector molecules; if the
axial mesons form a clear nonet with almost ideal decoupling
of strange and nonstrange components, as happens with the
vector mesons, then axial meson exchange will cancel out
in both the Zcð3900Þ and Zcsð3985Þ. We warn though that
the status and nature of the axial mesons—a1ð1260Þ,
f1ð1285Þ, f1ð1420Þ, K1ð1270Þ—is not clear; they might
be composite [84], the f1ð1420Þ might not exist [85,86].
Herewewill not discuss these issues, but simply point out the
conditions under which they will help explain the Zcð3900Þ
and Zcsð3985Þ.
The second condition is required for SU(3)-flavor

symmetry to be respected between the Zcð3900Þ and
Zcsð3985Þ; if the scalar σ meson does not couple with
the strange quarks, then a sizable part of the attraction in the
Zcð3900Þ system will simply not be present in the
Zcsð3985Þ. As happened with the axial mesons, the nature
of the scalar mesons is not clear either: they might be qq̄ or
tetraquark or a superposition of both, the mixing angle
between the singlet and octet components is not known or it
might violate the Okubo-Zweig-Iizuka (OZI) rule. We will
note that the binding of the Zcsð3985Þ as a hadronic
molecule requires a σ that couples with similar strength
to the nonstrange and strange light quarks, which is not
implausible.

A. Flavor structure of the potential

The Dð�Þ and Dð�Þ
s charmed mesons belong to the 3̄ SU

(3)-flavor representation. From this the flavor structure of

the Dð�Þ
a D̄ð�Þ

a potential, where a ¼ 1, 2, 3 refers to the D0,
Dþ, andDþ

s , is expected to be 3 ⊗ 3̄ ¼ 1 ⊕ 8, i.e., the sum
of a singlet and octet contributions

VðDð�Þ
a D̄ð�Þ

a Þ ¼ λðSÞVðSÞ þ λðOÞVðOÞ; ð89Þ
with the superscript ðSÞ and ðOÞ referring to the singlet and
octet and where the specific decomposition is shown in
Table V. Of course, the flavor structure compounds with the
HQSS structure, i.e., the singlet and octet potential can be
further decomposed into a central and a spin-spin part

VðSÞ ¼ VðSÞ
a þ VðSÞ

b σ⃗L1 · σ⃗L2; ð90Þ

VðOÞ ¼ VðOÞ
a þ VðOÞ

b σ⃗L1 · σ⃗L2: ð91Þ

Finally, the relation between the singlet and octet compo-
nents and the isospin components we previously defined
for the Xð3872Þ and the Zcð3900Þ is

VðSÞ ¼ 3

2
VðI¼0Þ −

1

2
VðI¼1Þ; ð92Þ

VðOÞ ¼ VðI¼1Þ: ð93Þ

From the flavor decomposition of the potential (Table V)
it is apparent that the potential for a molecular Zcð3900Þ
and Zcsð3985Þ are identical [provided their tentative iden-
tifications with the IGðJPCÞ ¼ 1þð1þ−ÞD�D̄ and D�D̄s −
DD̄�

s systems are correct]. This in turn is compatible with
their experimental masses, as can be deduced from the
qualitative argument that their interaction is the same. This
conclusion has indeed been checked by concrete EFT
calculations [27], which do not make hypotheses about
the binding mechanism but simply assume that the Zc and
Zcs are bound states. The question we will explore now is

TABLE V. SU(3)-flavor structure of the charmed meson-
antimeson potential. The charmed mesons (antimesons) belong
to the 3̄ (3) representation of SU(3)-flavor symmetry, from which
the potential accepts a 3 ⊗ 3̄ ¼ 1 ⊕ 8 decomposition, which we
show here. Notice that the SU(3)-flavor structure has to be
combined with the HQSS structure in order to get the full S-wave
potential [see Eqs. (90) and (91)].

System I S V

Dð�ÞD̄ð�Þ 0 0 2
3
VðSÞ þ 1

3
VðOÞ

Dð�Þ
s D̄ð�Þ

s
0 0 1

3
VðSÞ þ 2

3
VðOÞ

Dð�ÞD̄ð�Þ 1 0 VðOÞ

Dð�ÞD̄ð�Þ
s

1
2

−1 VðOÞ
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what are the conditions under which we expect the OBE
model to respect this SU(3)-flavor structure.

B. Flavor structure of the light-meson exchanges

When extending the present formalism from SU(2)-
isospin to SU(3)-flavor, a problem appears regarding the
coupling of the charmed and light mesons; the isoscalar
(I ¼ 0) lightmesons, beingqq̄ states, can be either in a flavor
singlet or octet configuration. The singlet and isoscalar octet
states, having the same quantum numbers, can mix and this
mixing most often works out as to separate the ðuūþ
dd̄Þ= ffiffiffi

2
p

and ss̄ components of these two types of mesons
almost perfectly. This is what happens for instance with the
vector mesons ω and ϕ. However, the other light mesons we
are considering here are further away from decoupling. The
easiest case will be the pseudoscalar mesons, for which the
singlet and octet almost donotmix. The axialmeson casewill
be the most complex one, as it entails nontrivial mixing
angles that have to be combined with the fact that the axial
mesonmixes with the pion current. In the following lines we
will consider each case in detail.

1. Pseudoscalar meson octet

We will begin with the pseudoscalar mesons for which
the singlet and octet (η1 and η8) members can be identified
with the η0 and ηmesons, as the mixing angle is small. Thus
in practice we can consider the pseudoscalar mesons as
forming a standard octet

M ¼

0
BB@

π0ffiffi
2

p þ ηffiffi
6

p πþ Kþ

π− − π0ffiffi
2

p þ ηffiffi
6

p K0

K− K̄0 − 2ηffiffi
6

p

1
CCA: ð94Þ

From this, the interaction term of the pseudoscalars with the
charmed mesons can be written as

Lflavor ¼
g1
fπ

Tr½Ha†
c̄ σ⃗ · ∂⃗MabHb

c̄ �; ð95Þ

where a, b are flavor indices, which are ordered as
D̄a ¼ ðD̄0; D−; D−

s Þ, and Hc̄ the heavy superfield for the
charmed antimesons (as with this choice we have light
quarks). Alternatively, if we use the light-subfield notation
we will have

Lflavor ¼
g1
fπ

qa†L σ⃗L · ∂⃗MabqbL; ð96Þ

with qaL ¼ ðuL; dL; sLÞ for a ¼ 1, 2, 3.

2. Vector meson nonet

Next we consider the vector mesons, for which the
nonstrange and strange components of the singlet (ω1) and

octet (ω8) decouple almost perfectly to form the ω and ϕ
mesons. While the light-quark content of the singlet and
isoscalar octet mesons is expected to be

jω1i ¼
1ffiffiffi
3

p ½juūi þ jdd̄i þ jss̄i�; ð97Þ

jω8i ¼
1ffiffiffi
6

p ½juūi þ jdd̄i − 2jss̄i�; ð98Þ

for the physical ω and the ϕ meson we have

jωi ≃ 1ffiffiffi
2

p ½juūi þ jdd̄i�; ð99Þ

jϕi≃jss̄i; ð100Þ

which means that the relation between the physical and SU
(3) eigenstates is

�
ϕ

ω

�
≃

0
BB@

ffiffi
1
3

q
−

ffiffi
2
3

q
ffiffi
2
3

q ffiffi
1
3

q
1
CCA
�
ω1

ω8

�
: ð101Þ

This matrix is actually a rotation, as can be seen by direct
inspection.
In principle there should be two independent couplings

for the singlet and the octet vector meson components,

i.e., gð1ÞV for ω1 and gð8ÞV for ω8 and ρ [or fð1ÞV and fð8ÞV for
the magnetic-type couplings]. These two couplings are
reduced to one once we consider the OZI rule; the coupling
of hadrons that do not contain strange quarks to the ϕ
meson should be suppressed. This in turn generates a

relation between gð1ÞV and gð8ÞV (there is only one independent
coupling owing to the OZI rule) from which we can deduce
the relation gρ ¼ gω.
Alternatively, if we consider that the mixing is indeed

ideal, we can write down a vector meson nonet matrix

V ¼

0
BB@

ρ0ffiffi
2

p þ ω0ffiffi
2

p ρþ K�þ

ρ− − ρ0ffiffi
2

p þ ω0ffiffi
2

p K�0

K̄�− K̄�0 ϕ

1
CCA; ð102Þ

and notice that the structure of the interaction Lagrangian in
flavor space will be

Lflavor ∝ D̄†
aVabD̄b; ð103Þ

with a, b flavor indices and D̄a the anticharmed meson field
in flavor space, i.e., D̄a ¼ ðD̄0; D0; D−

s Þ for a ¼ 1, 2, 3.
From this we end up with a unique gV and fV , and thus
gρ ¼ gω and fρ ¼ fω automatically.
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3. Axial meson octet vs nonet

The SU(3)-extension of the present formalism to the
axial mesons will encounter three problems. The first is
which are the flavor partners of the a1ð1260Þmeson, which
we will simply assume to be the f1ð1285Þ, f1ð1420Þ, and
K1ð1270Þ (we will further discuss this point later).
The second problem is the singlet and octet mixing; if

we consider that the isoscalar partners of the a1 are the
f1ð1285Þ and f1ð1420Þ, they will be a nontrivial mixture of
a singlet and octet axial meson

�
f1ð1285Þ
f1ð1420Þ

�
¼
�

cos θ1 sin θ1
− sin θ1 cos θ1

��
f11
f81

�
; ð104Þ

where f11 and f
8
1 are the singlet and octet components of the

two f1’s. As a matter of fact, the f1ð1285Þ and f1ð1420Þ
are relatively far away from the mixing angle which
effectively separates them into nonstrange and strange com-
ponents. If we define the decoupling mixing angle as θdec ¼
atanð1= ffiffiffi

2
p Þ ∼ 35.3°, the θ1 angle can be expressed as

θ1 ¼ θdec þ α1; ð105Þ

where there is a recent determination of this angle by
the LHCb, α1 ¼ �ð24.0þ3.1þ0.6

−2.3−0.8 Þ° [87] (which is the
value we will adopt), and previously in the lattice α1 ¼
�ð31� 2Þ° [88].
Third, the axial neutral mesons are JPC ¼ 1þþ states but

their strange partners do not have well-defined C-parity.
Depending on their C-parity there are two possible types of
axial mesons: JPC ¼ 1þþ and 1þ− mesons originate from
3P1 and 1P1 quark-antiquark configurations, where we have
used the spectroscopic notation Sþ1LJ, with S, L, and J
being the spin, orbital, and total angular momentum of the
quark-antiquark pair. For a quark-antiquark system the C-
parity is C ¼ ð−1ÞLþS, which translates into C ¼ þ1ð−1Þ
for 3P1 (1P1). The JPC ¼ 1þþ and 1þ− neutral axial mesons
correspond with the a1, f1, and b1, h1, respectively, of
which only the a1, f1 can mix with the pseudo–Nambu-
Goldstone boson axial current. The strange partners of the
a1 and b1 axial mesons are referred to as the K1A and K1B,
but for the strange axial mesons C-parity is not a well
defined number and the physical states are a mixture of the
1P1 and 3P1 configurations

�
K1ð1270Þ
K1ð1400Þ

�
¼
�

cos θK sin θK
− sin θK cos θK

��
K1B

K1A

�
; ð106Þ

with most determinations of θK usually close to either 30°
or 60° [89–91].
The mixing of the axial pseudo–Nambu-Goldstone

meson current [i.e., the SU(3) extension of the axial pion
current] has to happen with the axial meson octet (instead
of the physical axial mesons)

∂μMab → ∂μMab þ λ1m1A8
1ab; ð107Þ

where Mab and A1ab would be the pseudoscalar and axial
meson octets, the first of which is given by Eq. (94) and the
second by

A8
1 ¼

0
BBB@

a0
1ffiffi
2

p þ f8
1ffiffi
6

p aþ1 Kþ�
1A

a−1 − a0
1ffiffi
2

p þ f8
1ffiffi
6

p K0�
1A

K−�
1A K̄0�

1A − 2f8
1ffiffi
6

p

1
CCCA: ð108Þ

Thus, the specific relations for the contribution of the f81
and K1A to the axial meson currents, i.e.,

∂μη → ∂μηþ λ1m1f81; ð109Þ

∂μK → ∂μK þ λ1m1K1A; ð110Þ

have to be translated into the physical basis by undoing the
rotations. For the f81 we will get

∂μη → ∂μηþ λ1m1ðsin θ1f1 þ cos θ1f�1Þ; ð111Þ

which determines the coupling of the f1 and f�1 with the D
and Ds mesons, while for the K1A we will get instead

∂μK → ∂μK þ λ1m1ðsin θKK1 þ cos θKK�
1Þ: ð112Þ

Owing to the form factors, the exchange of the heavier
variants of the axial mesons (f�1, K�

1) are expected to
be suppressed with respect to the lighter ones (f1, K1).
From this observation and the previous relations, the most
important contribution for axial meson exchange will come
from the couplings of the f1 and K1 mesons, which are
proportional to sin θ1 and sin θK , respectively.
The K1 meson deserves a bit more of discussion as it

can help us to get a sense of the accuracy of the previous
relation from a comparison with the K1 axial meson decay
constant, which can be extracted from experimental infor-
mation. The current mixing relation implies that the decay
constant will be

h0jA5μjK1i ¼ fK1
mK1

with fK1
¼ λ1 cosθKfK; ð113Þ

with θK ¼ 30°–35° or 55°–60° and fK ¼ 160 MeV yields
fK1

¼ 110 MeV–150 MeV or fK1
¼ 180MeV–230MeV,

respectively, which is to be compared with fK1
¼ 175�

19 MeV [92] (which in turn is extracted from the exper-
imental data of Ref. [93]). The two possible mixing angles
are in principle compatible with the previous determina-
tion of fK1

; though it is possible to argue that the higher
angle might be a slightly better choice, this is based on the
assumption that fK1A ≠ 0 but fK1B ¼ 0. However, while
the axial decay constant of the neutral 1P1 axial mesons b1
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and h1 have to be zero owing to their negative C-parity, i.e.,
fb1 ¼ 0 and fh1 ¼ 0, this is not true for the K1B for which
fK1B ¼ 0 is a consequence of chiral symmetry. In fact
fK1B ≠ 0 owing to the finite strange quark mass. This
effect, though small, is enough as to make the comparison
of mixing angles more ambiguous [92,94].
Finally, it is worth stressing that the structure of the axial

mesons is not particularly well known and there exist
interesting conjectures about their nature in the literature. A
few hypotheses worth noticing are: (i) the axial mesons
might be dynamically generated (i.e., molecular) [84,95],
(ii) the K1ð1270Þ resonance might actually have a double
pole structure [96,97], and (iii) the f1ð1420Þ might simply
be a KK̄ decay mode of the f1ð1285Þ [86]. All of them
might potentially influence the theoretical treatment of the
axial mesons; (i) actually was considered in Ref. [78] four
decades ago for the a1ð1260Þ, where it was determined that
it would not strongly influence the form of the potential. It
is worth noticing that (iii) would imply that there are not
enough axial mesons to form a nonet, but only an octet.
This would be interesting, as in this scenario it might be
plausible to identify the f1ð1285Þ with f81 in Eq. (104),
leading to θ1 ¼ 90°. However, though interesting, we will
not consider the multiple ramifications of the previous
possibilities in this work.

4. Scalar meson singlet vs nonet

The lightest scalar meson nonet is formed by the σ
(or f0ð500Þ), a0ð980Þ, f0ð980Þ, and K�

0ð700Þ. If we are
considering light-meson exchange the most important of
the scalars will be the lightest one, i.e., the σ (see Ref. [98]
for an extensive review about the status of this meson).
While the a0 andK�

0 are pure octets, the σ and f0ð980Þ are a
mixture of singlet and octet, i.e.,

�
f0ð500Þ
f0ð980Þ

�
¼
�

cos θ sin θ

− sin θ cos θ

��
S1
S8

�
; ð114Þ

where S1 and S8 represent the pure singlet and octet states.
The meaning of S1 and S8 depends however on the internal
structure of the scalar mesons; if the σ were to be a qq̄ state,
the light-quark content of S1 and S8 would be analogous
to that of the vector mesons, i.e., to jω1i and jω8i in
Eqs. (97) and (98). But if the σ were to be a qqq̄ q̄ state, the
light-quark content of S1 and S8 would be different (yet
easily obtainable from the substitutions u → d̄ s̄, d → ū s̄,
s → ū d̄, which assumes the diquark-antidiquark structure
proposed by Jaffe [99], where the antidiquark and diquark
are in a triplet and antitriplet configuration, respectively).
If g1 and g8 are the coupling of the charmed mesons to

the singlet and octet scalar, respectively, we will have that
the coupling of the σ to the nonstrange and strange charmed
mesons will be

gσ1 ¼ gσDD ¼ cos θg1 þ
1ffiffiffi
6

p sin θg8; ð115Þ

g0σ1 ¼ gσDsDs
¼ cos θg1 −

2ffiffiffi
6

p sin θg8: ð116Þ

Independently of whether the σ is a qq̄ or qqq̄ q̄ scalar, if
we assume a mixing angle that decouples the nonstrange
and strange components, we will end up with gσDsDs

¼ 0

after invoking the OZI rule (though we will discuss this
point later). In this case, σ meson exchange will badly break
SU(3) symmetry between the Zcð3900Þ and Zcsð3985Þ.
However this conclusion depends on the previous assump-
tions, which are not necessarily correct. In the following we
will discuss how the observed SU(3) symmetry can still be
preserved with scalar meson exchange.
The most obvious solution would be a flavor singlet σ, as

this would provide roughly the same attraction for a
molecular Zcð3900Þ and Zcsð3985Þ. In this regard it is
relevant to notice Ref. [100], which analyzed the σ pole
in unitarized chiral perturbation theory and obtained a
mixing angle θ ¼ 19� 5°. This would translate into a σ
that is mostly a flavor singlet.
The interpretation of the σ as a singlet would also be

compatible with the following naive extension of the LσM
from SU(2)-isospin to SU(3)-flavor, in which an originally
massless baryon octet interacts with a total of nine bosons
by means of

LNσL0
int ¼ gTr½B̄8ðϕ0 þ iγ5λaϕaÞB8�; ð117Þ

with B8 the baryon octet (N, Λ, Σ, Ξ), ϕ0 and ϕa the boso-
nic fields, λa with a ¼ 1;…; 8, the Gell-Mann matrices and
g a coupling constant. In the standard LσM the nucleon
field acquires mass owing to the spontaneous symmetry
breaking and the subsequent vacuum expectation value
of the ϕ0 field. Here it is completely analogous, with
hϕi ¼ fP=

ffiffiffi
2

p
, the redefinition of ϕ0 ¼ fP=

ffiffiffi
2

p þ σ and the
reinterpretation of the ϕa fields as the pseudoscalar octet
(π, K, η). This procedure will give gσB8B8

¼ gϕB8B8
¼ffiffiffi

2
p

M8=fP, withM8 the averaged mass of the octet baryons
and fP representing either fπ, fK , or fη, which are all
identical in the SU(3)-symmetric limit. The gσB8B8

thus
obtained is basically compatible with the previous SU(2)
value for gσNN (≃10.2). Meanwhile the F=ðDþ FÞ-ratio
would be α ¼ 1=2 (as the interaction term implies F ¼ D),
to be compared for instance with the SU(6) quark model
value α ¼ 2=5 (i.e., a 20% discrepancy).
All this would suggest the use of approximately the same

coupling of the σ to strange and nonstrange hadrons alike,
resulting in the same attraction strength for both the
Zcð3900Þ and Zcsð3985Þ. In fact if we assume the relation
gσqq ¼

ffiffiffi
2

p
mq=fP at the quark level, take mq ¼ 336, 340,

486 MeV for the q ¼ u, d, s constituent quark masses and
choose fP ¼ fπ for q ¼ u, d and fP ¼ fK for q ¼ s, we
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would get gσuu ≃ gσdd ≃ 3.6 and gσss ≃ 4.3, leading to the
counterintuitive conclusion that the coupling of the σ to the
strange quark is larger than to the u, d quarks. However if
we subtract the mass of the quarks gσqq ¼

ffiffiffi
2

p ðmcon
q −

mqÞ=fP (with mcon
q and mq the constituent and standard

quark masses), we will obtain gσss ≃ 3.4 instead (i.e.,
approximately identical to gσuu and gσdd).
But the SU(3) extension of the LσM we have presented

here is not the only possible one. In fact it could just be
considered as a simplified version of the chiral quark model
[101] in which the scalar octet is removed. It happens that
the inclusion of the scalar octet in the chiral-quark model
makes it perfectly possible to have a nonstrange σ and still
explain the mass of the light baryons.
However the problemmight not necessarily bewhether the

σ contains a sizable strange component or not, but whether it
couples to the strange degrees of freedom. In this regard it has
been suggested that the OZI rule does not apply in the scalar
0þþ sector [102,103]. This in turn might be the most robust
argument in favor of a sizable coupling of the σ meson with
the strange-charmed mesons, as it does not depend on the
flavor structure or the strange content of the σ. This in
principle implies that the gσ and g0σ couplings to theDð�Þ and
Dð�Þ

s charmed mesons would be independent parameters.
Without the OZI rule there is no reason for the g1 and g8

couplings to have comparable sizes: while the application
of the OZI rule implies that g8 ¼

ffiffiffi
6

p
=2 tan θg1 (which for

the qq̄ and qqq̄ q̄ ideal decoupling angles would translate
into g8 ¼

ffiffiffi
3

p
=2g1 ≃ 0.87g1 and g8 ¼ −

ffiffiffi
3

p
g1 ≃ −1.73g1,

respectively)—without OZI g1 and g8 are independent
parameters. Now, if it happens that g1 ≫ g8 the result will
be indistinguishable from a flavor singlet σ; the gσ and
g0σ couplings can be approximated by gσ ≃ g0σ ≃ g1 cos θ,
resulting in approximately the same couplings to the Dð�Þ

and Dð�Þ
s charmed mesons. As to whether the g1 ≫ g8

condition is met or not, it happens that g1 cos θ can be
identified with g=3 in the SU(3)-extension of the LσM of
Eq. (117), giving it a relatively large value, while there is no
reason why g8 should be as large. Besides, g1 ≫ g8 would
also justify not including the scalar octet in the OBE model.
Yet, we might get a better sense of the sizes of g1 and g8

from a comparison with previous determinations of the σ
coupling in the light-baryon sector. While the Nijmegen
baryon-baryon OBE models originally considered a flavor-
singlet σ [104], latter this idea was put aside in favor
of a more standard singlet-octet interpretation for the σ
[105]. Their description depended on a singlet and octet
couplings, g1B8B8

and g8B8B8
, the mixing angle θ and the

F=ðF þDÞ-ratio (which is necessary in the light-baryon
octet but not for the antitriplet charmed mesons). They
obtained g8B8B8

¼ 0.22g1B8B8
, while for the later Nijmegen

soft-core baryon-baryon OBE model [106] this ratio is
g8B8B8

¼ 0.34g1B8B8
. Thus it would not be a surprise if the

relation g1 ≫ g8 also happens for the charmed mesons.

The comparison of the coupling constants to the light
baryons might provide further insights too. If we consider
the Jülich hyperon-nucleon OBE model [65], their results
are gσΛΛ ≃ 0.95ð0.77ÞgσNN and gσΣΣ ≃ 1.13ð1.05ÞgσNN in
what is referred to as model A(B) in Ref. [65], where these
couplings are supposed to represent correlated (uncorre-
lated) and uncorrelated (correlated) processes in the scalar
channel. It is worth noticing that the Jülich model [65]
predated the rediscovery of the σ as a pole in the pion-pion
scattering amplitude [107,108], and consequently treated
the σ as a fictitious degree of freedom. From a modern point
of view in which the σ is not a fictitious meson, their results
would be compatible (within the expected 30% error of the
LσM) both with a σ that only couples with the nonstrange
q ¼ u, d quarks (gNS

σΛΛ ¼ 0.67gNS
σNN and gNS

σΣΣ ¼ 0.67gNS
σNN ,

where NS indicate that it couples only to the nonstrange
quarks) and with a σ that couples with equal strength to the
q ¼ u, d, s quarks (gFSσΛΛ ¼ gFSσNN and gFSσΣΣ ¼ gFSσNN , where
FS indicates that the coupling is flavor-symmetric).
In short, there are theoretical arguments in favor of a

sizable coupling of the σ meson to the Ds and D�
s charmed

mesons, g0σ . In what follows we will consider the problem
form a phenomenological point of view, i.e., we will simply
consider the g0σ coupling to be a free parameter and discuss
which are the values which allow for a simultaneous
description of the Zc and Zcs, without regard as to which
is the theoretical reason behind this.

C. Light-meson exchange for the Zc and Zcs

Now that we have reviewed the flavor structure of the
pseudoscalar, scalar, vector and axial mesons, we can write
down the resulting light-meson exchange potential for
the Zc and Zcs. Wewill begin with the pseudoscalar mesons,
for which the singlet and octet can be considered as effec-
tively decoupled. For theZc therewill be π- and η-exchange,
while for the Zcs only η-exchange will be possible. The
pseudoscalar-exchange potential can be written as

VPðD�D̄Þ ¼ ζτ⃗1 · τ⃗2WπðrÞ þ
1

3
WηðrÞ; ð118Þ

VPðD�
sD̄Þ ¼ −

2

3
WηðrÞ; ð119Þ

whereWπ andWη are the π- and η-exchange potentials once
we have removed the flavor and G-parity factors, i.e.,

WπðrÞ ¼
g21
6f2π

σ⃗L1 · σ⃗L2μπWYðμπrÞ; ð120Þ

WηðrÞ ¼
g21
6f2η

σ⃗L1 · σ⃗L2μηWYðμηrÞ: ð121Þ

In the flavor-symmetric limit we will have mπ ¼ mη and
fπ ¼ fη, leading to identical π- and η-exchange potentials,
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Wπ ¼ Wη. However in the real world, mη > mπ and
fη > fπ , implying a suppression of the η-exchange potential
relative to the pion-exchange one. In particular, we will
take fη ¼ 150 MeV.
For the vector mesons there is instead an almost ideal

mixing between the singlet and octet, from which the ω and
ϕ are close to being purely nonstrange and strange,
respectively. The structure of the potential will be

VVðD�D̄Þ ¼ ζτ⃗1 · τ⃗2WρðrÞ þWωðrÞ; ð122Þ

VVðD�
sD̄Þ ¼ 0; ð123Þ

with Wρ and Wω the ρ- and ω-exchange potential once the
flavor and G-parity factors have been removed

Wρ ¼ g2ρ1mρWYðmρrÞþf2ρ1
μ2ρ
6M2

σ⃗L1 · σ⃗L2μρWYðμρrÞ;
ð124Þ

Wρ ¼g2ω1mωWYðmωrÞ þ f2ω1
μ2ω
6M2

σ⃗L1 · σ⃗L2μωWYðμωrÞ:
ð125Þ

For the scalar meson we will consider it to generate two
independent couplings for the nonstrange and strange
charmed mesons

VσðD�D̄Þ ¼ −g2σ1mσWYðmσrÞ; ð126Þ

VσðD�
sD̄Þ ¼ −g0σ1gσ1mσWYðmσrÞ; ð127Þ

as this choice allows to explore the conditions for which we
expect the Zcs to bind, provided that the Zc binds. We
suspect that gσ1 and g0σ1 are of the same order of magnitude,
yet provided jg0σ1j is not much smaller than jgσ1j, the Zc and
Zcs will be related to each other.
For the axial mesons, the f1ð1285Þ and f1ð1420Þ are

probably a nonstandard mixture between a singlet and
octet, where the mixing angles will have to be taken into
account explicitly

VAðD�D̄Þ ¼ ζτ⃗1 · τ⃗2Wa1ðrÞ þ
1

3
½sin θ12Wf1ðrÞ

þ cos θ12Wf1� ðrÞ�; ð128Þ

VAðD�
sD̄Þ ¼ −

2

3
½sin θ12Wf1ðrÞ þ cos θ12Wf1� ðrÞ�: ð129Þ

The reduced Wa1, Wf1 and W�
f1 potentials are given by

Wa1 ¼ −λ21
g21m

2
a1

3f2π
σ⃗L1 · σ⃗L2μa1WYðμa1rÞ; ð130Þ

Wf1 ¼ −λ21
g21m

2
f1

3f2η
σ⃗L1 · σ⃗L2μf1WYðμf1rÞ; ð131Þ

W�
f1 ¼ −λ21

g21m
�2
f1

3f2η
σ⃗L1 · σ⃗L2μ�f1WYðμ�f1rÞ; ð132Þ

with ma1, mf1, and m�
f1 the masses of the a1, f1, and f�1

axial mesons (while μa1, μf1 and μ�f1 are their effective
masses when there is a mass gap). In general the exchange
of the f1 and f�1 mesons will be moderately suppressed
owing to fη > fπ .

D. The two Zcs-like configurations

There is an interesting difference between the isovector
(Zc) and strange (Zcs) sectors: in the first,C-parity is a good
quantum number for the neutral component of the isospin
triplet, i.e., for the Z0

c, while in the second this is not the
case. For the D�D̄s −DD̄�

s molecules, even if we consider
these two channels to be degenerate (which we do here), the
structure of the potential is still better understood as a
coupled channel problem, i.e.,

VðZcsÞ ¼
 
Vð1Þ
a Vð1Þ

b

Vð1Þ
b Vð1Þ

a

!
; ð133Þ

where Vð1Þ
a and Vð1Þ

b are the central and spin-dependent
parts of the potential [see Eqs. (48)–(54)]. The two
eigenvalues of the previous potential are

VðZ̃csÞ ¼ Vð1Þ
a þ Vð1Þ

b ; ð134Þ

VðZcsÞ ¼ Vð1Þ
a − Vð1Þ

b ; ð135Þ

which would be the strange counterparts of the 1þþ and
1þ− isovector configurations in Table I. In our C-parity
convention the Z̃cs and Zcs wave functions would be

jZ̃csi ¼
1ffiffiffi
2

p ½jD�D̄si þ jDD̄�
si�; ð136Þ

jZcsi ¼
1ffiffiffi
2

p ½jD�D̄si − jDD̄�
si�; ð137Þ

respectively.2 The most standard interpretation of the
Zcsð3985Þ observed by BESIII is that it is indeed the
strange partner of the Zcð3900Þ [27,29], that is, what we

2Meanwhile, in the alternative C-parity convention the sign of
Vð1Þ
b in Eq. (133) changes and the same is true for the linear

combinations in Eqs. (136) and (137). However the potentials
in Eqs. (134) and (135) will remain the same.
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have called the Zcs configuration in Eqs. (135) and (137).
This is the interpretation we will follow here.
However it is worth noticing that in the BESIII data [21]

the Zcsð3985Þ− is seen in the D�0D−
s channel, while in the

D0D�−
s what seems to be seen is a broader structure at a

lower mass. This might be compatible with two nearby Zcs

and Z̃cs poles generating a constructive and destructive
interference in the D�D̄s and DD̄�

s channels. Alternatively,
it might be a consequence of the production mechanism.
The point though is that the existence of two Zcs poles is
not implausible and that we are not completely sure of
which one corresponds to the state observed by BESIII.
Indeed, we find that the existence of both the Zcs and Z̃cs
poles is a likely outcome of our present approach.3

E. The Zcð3900Þ and Zcsð3985Þ cutoffs
With the light-flavor structure of the OBE potential at

hand, we simply have to choose the parameters (couplings,
masses, and mixing angles), compare the cutoffs for
which the Zcð3900Þ and Zcsð3985Þ bind and check whether
they are compatible with each other. This is analogous to
what we have already done with the Xð3872Þ and the
Zcð3900Þ, though now the focus is the preservation of
SU(3)-flavor symmetry, from which we expect

ΛðZcsÞ
ΛðZcÞ

≃ 1.0: ð138Þ

Of course this relation is approximate; HQSS and SU(3)-
flavor violations will generate deviations from this cutoff
ratio. We expect HQSS and SU(3)-flavor breaking effects
to be of the order of 15% and 20% (i.e., ΛQCD=mc and the
difference between fπ and fK), respectively, which add up
to 25% if we sum them in quadrature, i.e.,

ΛðZcsÞ
ΛðZcÞ

¼ 1� 0.25 ¼ ð0.75–1.25Þ: ð139Þ

For the SU(3)-flavor breaking, an extra factor to be taken
into account is the relative sizes of the D and Ds mesons,
which are not necessarily the same. If we use the electro-
magnetic radii as a proxy of the matter radii, although they
have not been experimentally measured, there are theo-
retical calculations; in Ref. [111] they are estimated to be

ffiffiffiffiffiffiffiffi
r2e:m

p
∼ 0.43 and 0.35 fm for the D and Ds, respectively.

This indicates that the strange charmed meson Ds is 0.82
the size of its nonstrange partner, from which it would be
expectable for the form-factor cutoff of aDsD̄s molecule to
be a 22% larger than a DD̄ molecule. This figure is in fact
compatible with the fK and fπ ratio we mentioned before,
but indicates a bias in the flavor uncertainties; the naive
expectation will be a larger cutoff for the Zcs than for
the Zc. The DsD̄ molecules would be in between, with
deviations at the 10% level expected for the cutoff (biased
towards larger cutoffs), from which we might revise the
range of acceptable cutoff ratios to

ΛðZcsÞ
ΛðZcÞ

≃ 1.1� 0.25 ¼ ð0.85 − 1.35Þ; ð140Þ

i.e., we have moved the expected central value from 1 to 1.1
to reflect on the smaller size of the strange charmed
mesons. If we consider a σ that does not couple with the

strange charmed meson Dð�Þ
s , for nP ¼ 2 the Zc and Zcs

eventually bind for large enough cutoffs, though the ratio is
too large

ΛσðNSÞðZcsÞ
ΛσðNSÞðZcÞ

����
θþ
1

¼ 3.69þ1.16
−1.06ð3.35 − 4.92Þ; ð141Þ

ΛσðNSÞðZcsÞ
ΛσðNSÞðZcÞ

����
θ−
1

¼ 3.57þ1.10
−1.00ð3.24 − 4.74Þ; ð142Þ

where θ�1 ¼ θdec � α1, from which it can be appreciated
that the dependence on the θ1 mixing angle is weak. The
central value, its error and the bands corresponds to
mσ ¼ 550MeV, gσ ¼ 3.4� 1.0, and mσ ¼ 450–600MeV,
check Eq. (80) and the explanations following it. If we
instead consider a σ that couples with the same strength to
the nonstrange and strange quarks, i.e., a σ with a flavor-
symmetric coupling, we will get instead the ratios

ΛσðFSÞðZcsÞ
ΛσðFSÞðZcÞ

����
θþ
1

¼ 1.04þ0.10
−0.04ð1.00 − 1.06Þ; ð143Þ

ΛσðFSÞðZcsÞ
ΛσðFSÞðZcÞ

����
θ−
1

¼ 1.06þ0.14
−0.05ð1.00 − 1.09Þ; ð144Þ

which are basically independent of θ1 and compatible
with Eq. (140).
The conclusion is that some coupling of the σ meson to

the strange charmed meson is required for a coherent
molecular description of the Zc and Zcs. Thus we might
consider the question of what is the g0σ=gσ ratio which is
compatible with the upper bound for the cutoff ratio, i.e.,
with Eq. (140). This happens to be

3We notice that it has also been suggested that the existence of
two Zcs states of similar mass might explain [109] the recently
discovered Zcsð4000Þþ by the LHCb [110] {in addition to the
Zcsð3985Þ− state observed by BESIII [21]}. This possibility is
intriguing, but we do not consider it here because of the large
width of the Zcsð4000Þþ (Γ ∼ 130 MeV), which is an order of
magnitude larger than the width of the Zcsð3985Þ− and thus
difficult to explain if these two resonances were to be HQSS
partners. This is not impossible though, as the Zcs and Z̃cs contain
different linear combinations of the D�D̄s and DD̄�

s channels.
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g0σ
gσ

≥ 0.66 − 0.70; ð145Þ

which is weakly dependent on mσ (that is why we do not
include a bracket showing the mσ spread) and somewhat
dependent on θ1, with θþ1 ðθ−1 Þ yielding 0.66 (0.70). This
ratio is compatible with a few of the different interpreta-
tions of the σ we have discussed; provided the σ has a
sizable coupling to the strange components, it should be a
plausible outcome. For obtaining the cutoff ratio suggested
by the strange and nonstrange charmed meson size com-
parison (≃1.1) we will need instead

g0σ
gσ

≃ 0.91 − 0.94; ð146Þ

which again is nearly independent of mσ and weakly
dependent on θ1 [θ

þ
1 ðθ−1 Þ gives 0.91(0.94)]. This ratio also

fallswithin the realm of possibility, but ismore stringent. The
dependence of the cutoff ratioRðZcs=ZcÞwith theg0σ=gσ ratio
is shown in Fig. 3, fromwhich can see again that axial meson
exchange becomes important if scalar meson exchange
happens to be weak. Owing to the weak dependence of this
ratio on θ1, Fig. 3 only shows the θþ1 results
Finally, if we remove the sigma completely we will still

get a ratio compatible with Eq. (140),

Λ=σðZcsÞ
Λ=σðZcÞ

����
θþ
1

¼ 1.50ð1.33 − 4.19Þ; ð147Þ

Λ=σðZcsÞ
Λ=σðZcÞ

����
θ−
1

¼ 1.45ð1.36 − 2.07Þ; ð148Þ

where the intervals now reflect the uncertainty in
λ1 ¼ 1.8� 0.3. σ-less molecular descriptions include most
works which use vector-meson exchange (usually within
the hidden-gauge approach) to predict molecular states—
e.g., the Xð3872Þ [112], the hidden-charm pentaquarks
[113,114] or, recently, more general descriptions of the
molecular spectrum [39]. However, these descriptions
traditionally require a different binding mechanism for
the Zcð3900Þ resonance, which might include two-pion
exchange or charmonium exchange [36–39]. Here we note
that axial meson exchange could be a useful complemen-
tary addition to these models, but if we want these models
to simultaneously reproduce the Xð3872Þwith the same set
of parameters the σ is probably a required addition.

F. The HQSS partners of the Zcsð3985Þ
Now we calculate the spectrum of the molecular partners

of the Zcsð3985Þ within the axial-full OBE model. For
simplicity we set the σ coupling to the nonstrange and
strange mesons to be identical, i.e. gσ ¼ g0σ ¼ 3.4� 1.0,
and θ1 ¼ θþ1 . We use a dipolar form factor (nP ¼ 2) where
the cutoff is obtained from the condition of generating
a pole in the JP ¼ 1þ ðjDD̄�

si − jD�D̄siÞ=
ffiffiffi
2

p
scattering

channel at threshold, yielding ΛðZcsÞ ¼ 1.88þ1.02
−0.50 GeV.

The spectrum is shown in Table VI, where it is worth
noticing the following:

(i) the details of the spectrum are less dependent on
the strength of σ exchange and there is already a
considerable D�D̄�

s hyperfine splitting for gσ ¼ 3.4.
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FIG. 3. Cutoff ratio between the Zcsð3985Þ and the Zcð3900Þ as
a function of the ratio g0σ=gσ , where gσ and g0σ are the couplings of
the scalar meson to the nonstrange and strange charmed baryons
D and Ds. We assume gσ ¼ 3.4, its expected central value from
the LσM and the quark model. We show the ratios in the OBE
model with and without axial mesons, where we notice that for
the axial-less case the Zcs

0 does not bind for g0σ < 1.7. We
compare the cutoff ratio RðZcs=ZcÞ to the expected ratio derived
from SU(3)-flavor, HQSS and corrections from the strange
charmed meson size, RðZcs=ZcÞ ≃ 1.10� 0.25.

TABLE VI. HQSS partners of the Zcsð3985Þ as a DD̄�
s −D�D̄s

molecule in the axial-full OBE model presented here. We use a
dipolar form factor (nP ¼ 2) where the cutoff is determined from
the condition of generating a pole at threshold in the JP ¼ 1þ

DsD̄� −D�
sD̄ system, which for gσ ¼ g0σ ¼ 3.4� 1.0 and θ1 ¼

θþ1 results in ΛðZcsÞ ¼ 1.88þ1.02
−0.50 GeV. For the binding/virtual

state energies we follow the same conventions as in Table IV,
where positive (negative) numbers indicate a bound (virtual)
state. Masses and bound/virtual state energies are in units of MeV.

System (Zcs-like) I JP Bf1=Ef1
V

Mf1

DD̄s
1
2

0þ þ1.5þ0.1
−0.7 3834.1þ0.7

−0.1

1ffiffi
2

p ðD�D̄s þDD̄�
sÞ 1

2
1þ þ8.1þ1.8

−6.5 3970.1þ6.5
−1.8

1ffiffi
2

p ðD�D̄s −DD̄�
sÞ 1

2
1þ Input Input

D�D̄�
s

1
2

0þ −1.8þ1.6
−1.2 4119.0þ1.2

−1.6
D�D̄�

s
1
2

1þ þ0.1þ0.0
−0.0 4120.8þ0.0

−0.0
D�D̄�

s
1
2

2þ þ9.4þ7.5
−2.4 4111.4þ2.4

−7.5
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(ii) However, the hyperfine splitting has the opposite
sign to that of the Zc sector:
(a) In the D�D̄s −DD̄�

s , the most attractive con-
figuration is the Z̃cs one (instead of the Zcs).

(b) The most attractive D�D̄�
s molecule is the JP ¼

2þ configuration (instead of the 0þ one).
The reason for these features is pseudoscalar meson
exchange: η-exchange is considerably stronger in the Zcs
sector than in the Zc one, where at distances of the order of
mηr ∼ 1 we have

VPðr;ZcÞ ≈ −
g21
6

�
m2

π

f3πr
−
1

3

m2
η

f3ηr

�
σ⃗L1 · σ⃗L2; ð149Þ

VPðr;ZcsÞ ≈ −
g21
6

�
2

3

m2
η

f3ηr

�
σ⃗L1 · σ⃗L2: ð150Þ

While in the flavor-symmetric limit these two potentials
would be identical, when we input the physical pseudo-
scalar masses and decay constants it becomes apparent that
pseudoscalar-meson exchange will be much more impor-
tant in the Zcs than in the Zc (actually, by a factor of −2.8,
where the minus sign is worth noticing). In addition, η- and
σ-exchange have approximately the same range, which
explains why it is not necessary to have a weak scalar
coupling in order to have a sizable hyperfine splitting.
Then, if we compare η-exchange with axial meson
exchange, each of which generate hyperfine splittings of
the opposite sign, the strength and range combination of the
η clearly dominates over f1 and f�1 meson exchanges.
This generates opposite hyperfine splitting patterns in

the nonstrange and strange D�D̄� and D�D̄�
s sectors, a

characteristic of the spectrum that is unlikely to happen
unless the Zc and Zcs are molecular. Depending on the
nature of the Zc and Zcs resonances, this prediction might
be trivial to check; for instance, if we assume all the D�D̄�

andD�D̄�
s to be bound, the expected ordering of the masses

of the states should be

MBðZ�
c; 0þþÞ < MBðZ�

cð4020ÞÞ < MBðZ�
c; 2þþÞ;

MBðZ�
cs; 0þÞ > MBðZ�

cs; 1þÞ > MBðZ�
cs; 2þÞ; ð151Þ

where MB refers to the masses of the bound states. On the
other hand, if they all happen to be virtual states the
ordering would invert

MVðZ�
c; 0þþÞ > MVðZ�

cð4020ÞÞ > MVðZ�
c; 2þþÞ;

MVðZ�
cs; 0þÞ < MVðZ�

cs; 1þÞ < MVðZ�
cs; 2þÞ; ð152Þ

with MV denoting their masses. Unfortunately, we do not
know yet whether the Zc and Zcs are molecular, or whether
they are bound/virtual states or resonances above the
threshold [26,27]. But independently of this, the eventual
observation of the HQSS partners of these two states, if

accompanied by markedly different isospin splittings in
the D�D̄� and D�D̄�

s sectors, would indeed reveal their
molecular nature.

G. The scalar meson and the Pcsð4459Þ pentaquark
The strange and nonstrange couplings of the scalar

meson are not only important for a unified molecular
description of the Zcð3900Þ and Zcsð3985Þ, but also for the
new strange hidden-charm pentaquark Pcsð4459Þ [115]
when considered in comparison to the other three mole-
cular pentaquark candidates; the Pcð4312Þ, Pcð4440Þ, and
Pcð4457Þ [116].
The Pcsð4459Þ is 19.2 MeV below the D̄�Ξc threshold—

4478.0 MeV in the isospin symmetric limit, which is why
the Pcsð4459Þ has been conjectured to be a D̄�Ξc molecule
[117–121]. The charmed baryon Ξc is a flavor antitriplet
with quark content csu (Ξþ

c ) and csd (Ξ0
c), where the light-

quark pair within the Ξc is in a SL ¼ 0 configuration, with
SL the total light-quark spin. As a consequence, pion
exchange, axial meson exchange and the M1 part of vector
meson exchange do not contribute to the D̄�Ξc interaction.
This observation also applies to the D̄Σc system [46,122–
130], which is the most common molecular explanation for
the Pcð4312Þ; the Pcð4312Þ pentaquark is merely 8.9 MeV
below the D̄Σc threshold.
The question is whether this is compatible with the

expected binding of the Pcsð4459Þ as a D̄�Ξc molecule.
Owing to the lack of explicit light-spin dependence,
the only difference between the OBE descriptions of the
Pcð4312Þ and Pcsð4459Þ is scalar meson exchange
(the strength of vector meson being identical in both cases).
While the Σc baryon contains two nonstrange light quarks,
the Ξc contains only one and if we assume a σ that does not
couple to the nonstrange light quarks we will have

gNSσΣcΣc
≃
1

2
gNSσΞcΞc

; ð153Þ

which will translate into considerably less attraction (and
binding) for the Pcsð4459Þ. In contrast, if the σ couples
with approximately the same strength to the strange quark
within the Ξc, we will have

gFSσΣcΣc
≃ gFSσΞcΞc

; ð154Þ

where the superscript FS indicates that the coupling is now
flavor-symmetric (in the sense of identical coupling
strengths with the q ¼ u, d, s quarks). That is, if the σ
couples equally to all the light quarks, the binding of the
Pcð4312Þ and Pcsð4459Þ molecules will be approximately
the same.
However, the experimental determination of the mass of

the Pcsð4459Þ indicates that it is more bound than the
Pcð4312Þ by about 11.3 MeV, where the specific binding
energies are
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BðPcÞ ¼ 8.9 MeV and BðPcsÞ ¼ 19.2 MeV; ð155Þ

for the Pcð4312Þ and Pcsð4459Þ pentaquarks, respectively.
This could be interpreted as gσΞcΞc

> gσΣcΣc
, which would

be somewhat surprising but still plausible. Yet, the com-
parison we have done does not take into account that there
is a factor that generates spin dependence in the Pcsð4459Þ
pentaquark; the coupled channel dynamics with the nearby
D̄Ξ0

c and D̄Ξ�
c thresholds, where the J ¼ 1=2 (J ¼ 3=2)

D̄�Ξc molecule will mix with the D̄Ξ0
c (D̄Ξ�

c) channel.
Owing to the relative location of the thresholds, this
generates repulsion and attraction for the J ¼ 1=2 and
3=2 configurations, respectively. Ref. [118] computes this
effect with a contact-range theory, yielding

ΔBCC ¼ BCC

�
D̄�Ξc; J ¼ 3

2

�
− BCC

�
D̄�Ξc; J ¼ 1

2

�
≈ ð5 − 15ÞMeV; ð156Þ

depending on the assumptions made to calculate this effect,
where the superscript CC stands for “coupled channels”.
This hyperfine splitting is of the same order of magnitude
as the aforementioned 11.3 MeV difference in binding
between the Pc and Pcs. For comparison, a recent phe-
nomenological calculation provides a similar hyperfine
splitting [121] of ΔBCC ¼ ð2.4–20.0Þ MeV.
Yet, it is interesting to notice that the LHCb collaboration

[115] already explored the possibility that the Pcsð4459Þ is
actually composed of two peaks instead of one. For this
two peak fit, the masses of the two Pcs pentaquarks will
be MðPcs1Þ ¼ 4454.9� 2.7 MeV and M2 ¼ 4467.8�
3.7 MeV [115], yielding the following binding energies

BðPcs1Þ ¼ 23.1 MeV and BðPcs2Þ ¼ 10.2 MeV:

ð157Þ

We can describe this two-peak solution with the contact-
range theory of Ref. [118], which provides us with an
interesting advantage—we can explicitly turn off the
coupled channel effects within the theory to predict what
the energy of these twoPcs pentaquarks would have been in
the absence of this effect, leading to

BSC

�
D̄�Ξc; J ¼ 1

2
;
3

2

�
¼ ð15.4–16.7Þ MeV; ð158Þ

with the superscript SC indicating “single channel” and
where now the two-spin states are degenerate, but have
binding energies that are still somewhat larger than the
Pcð4312Þ as a D̄Σc molecule.
The conclusion seems to be that, if the Pcsð4459Þ

pentaquark is a D̄�Ξc molecule (and assume that the
previous procedures effectively isolate the single- and
coupled-channel contributions), it is probably more

compatible with a σ that couples to all the light quarks
with equal strength than with a σ that does not couple with
the strange quark. If anything, it seems that there is more
attraction in the D̄�Ξc channel than in the D̄Σc one. But this
conclusion still depends on the size of the coupled channel
effects (they could have been underestimated) and the
experimental uncertainties surrounding the Pcsð4459Þ pen-
taquark. Thus, it might be possible that the Pcsð4459Þ
pentaquark might still be compatible instead with a sigma
that does not couple to the strange degrees of freedom.

VI. CONCLUSIONS

In this paper we consider the problem of describing
the Zcð3900Þ, Zcð4020Þ, and Zcsð3985Þ as heavy-hadron
molecules from a phenomenological perspective. Of
course, we do not know for sure whether they are molecular
or not. Instead, we are in interested in what their binding
mechanism is (provided they are molecular). Regarding the
problem of their nature, the closeness of these resonances to
the D�D̄, D�D̄�, and D�D̄s thresholds suggest a molecular
nature. The success of EFT formulations in describing the
Zc’s [23,26,83] and Zcs [27] further points towards the
plausibility of the molecular nature. Yet, tetraquark explan-
ations are also possible [131–134]. What is not trivial to
explain though in the molecular picture is the binding
mechanism; while the Zc’s should not be there in vector
meson exchange models, OBE models usually require
relatively large cutoffs for these two-body systems to bind

]33–35 ] (or might simply not bind depending on the choice
of couplings), prompting other explanations such as two-
pion exchange or charmonium exchange [36–39].
Here we consider a new factor in the molecular descrip-

tion of the Zc’s and Zcs; axial meson exchange. The
exchange of axial mesons is strongly suppressed in the
two-nucleon system, partly owing to the fact that the axial
meson mass is larger than the nucleon’s, and partly owing
to vector meson exchange being a more dominant factor
than the axial mesons. But this is not necessarily the case
for charmed mesons, prompting a reevaluation of the role
of axial mesons. We find that the inclusion of the axial
mesons makes the molecular description more plausible for
the Zc’s, as they indeed provide additional attraction. But
their importance depends on the strength of scalar meson
exchange; if the coupling of the charmed hadrons to the
scalar meson is smaller than suggested by phenomeno-
logical models, axial mesons will become the binding
mechanism. Conversely, if the scalar coupling is large
enough, axial mesons will become irrelevant. For molecu-
lar candidates in which vector meson exchange is strong,
for instance the Xð3872Þ, the axial meson exchange
contribution is negligible. Thus we expect the relevance
of axial meson exchange to be limited to molecules where
the ρ- and ω-exchange cancel out, as is the case with
the Zc’s.
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Besides the axial meson, the nature of sigma exchange is
probably the most important factor for a coherent molecular
description of the Zcð3900Þ and Zcsð3985Þ. If the sigma
meson couplings breaks SU(3)-flavor symmetry to a large
degree, the short-range of the axial meson, combinedwith its
nontrivial SU(3)-flavor structure, might be insufficient to
explain theZcs as themolecular SU(3) partner of theZc in the
molecular picture. Thus a molecularZcs requires a nontrivial
coupling of the strange charmed mesonsDs andD�

s with the
sigma meson. This is not improbable though, as there are
theoretical reasons (in particular the suspicion that the OZI
rule might not apply to the scalar mesons [102,103]) why
the sigma meson could have a sizable coupling to the
strange degrees of freedom. The bottom-line though is that
a molecular Zcs requires a non-negligible coupling of the
sigma to the strange hadrons in the OBE model, independ-
ently of which is the origin of this coupling. This might not
only be a requirement for the Zcs to bemolecular but also for
the recently discovered Pcsð4459Þ, the interpretation of
which as a D̄�Ξc bound state might also require a coupling
of theΞc strange charmed baryon to the sigma similar to that
of the nonstrange Σc.
Finally, the observable signature of axial meson

exchange will be a particular type of hyperfine splitting
for the isovector D�D̄� molecules, where attraction

decreases with spin. If the isovector D�D̄� molecules are
bound states or resonances, there will be a JPC ¼ 0þþ Zc-
like state that is probably 0 MeV–10 MeV lighter than the
Zcð4020Þ. This pattern is reversed for their strange partners,
owing to flavor symmetry breaking effects that are specific
to the molecular hypothesis. Thus, besides the standard
prediction of a Zcsð4120Þ JP ¼ 1þ D�D̄�

s partner of the
Zcsð3985Þ [27], here we expect the existence of a lighter
(about 10 MeV) JP ¼ 2þ partner of the Z�

cs. However if
the Zc’s and Zcs happen to be virtual states [26,27], the
previous patterns will invert or become difficult to recog-
nize, requiring a much more complex theoretical analysis to
determine which are the most attractive spin configurations.
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