# Baryon magnetic moment in large- $N_c$ chiral perturbation theory: Complete analysis for $N_c = 3$

Rubén Flores-Mendieta<sup>®</sup>, Carlos Isaac García<sup>®</sup>, Johann Hernández<sup>®</sup>, and María Anabel Trejo Instituto de Física, Universidad Autónoma de San Luis Potosí, Álvaro Obregón 64, Zona Centro, San Luis Potosí, S.L.P. 78000, Mexico

(Received 9 September 2021; accepted 10 November 2021; published 20 December 2021)

Baryon magnetic moments are computed in baryon chiral perturbation theory in the large- $N_c$  limit at one-loop order, where  $N_c$  is the number of color charges. Orders  $\mathcal{O}(m_q^{1/2})$  and  $\mathcal{O}(m_q \ln m_q)$  corrections are both evaluated including all the operator structures that participate at the physical value  $N_c = 3$ . The complete expressions for octet and decuplet baryon magnetic moments in addition to octet-octet and decuplet-octet baryon transition moments are thus compared to their available counterparts obtained in heavy baryon chiral perturbation theory for degenerate intermediate baryons in the loops. Theoretical expressions fully agree at the physical values  $N_c = 3$  and  $N_f = 3$  flavors of light quarks. Some numerical evaluations are produced via a least-squares fit to explore the free parameters in the analysis. Results point out the necessity of incorporating the effects of nondegenerate intermediate baryons in the loops for a consistent determination of these free parameters.

DOI: 10.1103/PhysRevD.104.114024

#### I. INTRODUCTION

In the limit of exact SU(3) flavor symmetry, Coleman and Glashow [1] first derived a set of relations among magnetic moments of the octet baryons. Their celebrated relations read

$$\begin{split} \mu_{\Sigma^{+}}^{SU(3)} &= \mu_{p}^{SU(3)}, \qquad \mu_{\Sigma^{-}}^{SU(3)} + \mu_{n}^{SU(3)} = -\mu_{p}^{SU(3)}, \\ 2\mu_{\Lambda}^{SU(3)} &= \mu_{n}^{SU(3)}, \qquad \mu_{\Xi^{-}}^{SU(3)} = \mu_{\Sigma^{-}}^{SU(3)}, \\ \mu_{\Xi^{0}}^{SU(3)} &= \mu_{n}^{SU(3)}, \qquad 2\mu_{\Sigma^{0}\Lambda}^{SU(3)} = -\sqrt{3}\mu_{n}^{SU(3)}, \end{split}$$
(1)

along with the isospin relation

$$\mu_{\Sigma^{+}}^{SU(3)} - 2\mu_{\Sigma^{0}}^{SU(3)} + \mu_{\Sigma^{-}}^{SU(3)} = 0, \qquad (2)$$

where  $\mu_B^{SU(3)}$  represents the magnetic moment of the octet baryon *B* in the *SU*(3) symmetry limit.

Beyond the symmetry limit, various methods have been implemented for the evaluation of baryon magnetic moments. An important selection of such methods prior to 2009 can be found in Ref. [2]; a more recent analysis in the context of covariant chiral perturbation theory was presented in Ref. [3]. One of the earliest methods is chiral perturbation theory. Caldi and Pagels pointed out that nonanalytical corrections of orders  $\mathcal{O}(m_q^{1/2})$ and  $\mathcal{O}(m_a \ln m_a)$  in the perturbative series are calculable [4]. They tackled the former and found them to be as large as the lowest-order values, which would indicate a breakdown of the perturbative expansion. It was not until the arrival of heavy baryon chiral perturbation theory (HBCHPT) first introduced by Jenkins and Manohar [5,6] that some aspects of the theory were properly understood. When the method was applied to the renormalization of the baryon axial current, chiral logarithmic corrections to the axial couplings in hyperon semileptonic decays were found to be as large as the lowest order values when only intermediate octet baryons were included in the loops [5]. The inclusion of both octet and decuplet baryons in the loops reduced considerably the corrections with respect to the case with the inclusion of octet states alone [6]. The cancellation pointed out phenomenologically in Refs. [5,6] was later proved in the context of the  $1/N_c$  expansion of QCD in Refs. [7–11], where  $N_c$  is the number of quark charges.

The earliest analysis of the magnetic moments of octet baryons in HBCHPT to orders  $\mathcal{O}(m_q^{1/2})$  and  $\mathcal{O}(m_q \ln m_q)$ was presented in Ref. [12]. There, it was concluded that, unlike the axial current case, the inclusion of intermediate decuplet baryons in the loops does not partially cancel the contribution from intermediate octet baryons. The use of the combined formalism in  $1/N_c$  and chiral corrections [13,14] has shed light on the subject [2,15] by allowing one to perform a rigorous analytical evaluation of the cancellations that follow from the large- $N_c$  spin-flavor symmetry of baryons. In Ref. [2], one-loop corrections to magnetic

Published by the American Physical Society under the terms of the Creative Commons Attribution 4.0 International license. Further distribution of this work must maintain attribution to the author(s) and the published article's title, journal citation, and DOI. Funded by SCOAP<sup>3</sup>.

moments to relative order  $1/N_c^3$  in the  $1/N_c$  expansion were carried out under the limit  $\Delta \rightarrow 0$ , where  $\Delta \equiv M_T - M_B$  is the average decuplet-octet mass difference. A more refined analysis was later presented in Ref. [15], where the assumption of degenerate intermediate baryons was lifted and explicit SU(3) symmetry breaking (SB) effects were also included.

The aim of the present paper is to improve the analyses of Refs. [2,15] in a few aspects. Mainly, all  $1/N_c$ corrections to the baryon magnetic moment allowed for  $N_c = 3$  will be evaluated, motivated by a recent calculation of the baryon axial coupling [16]. While corrections of order  $\mathcal{O}(m_q^{1/2})$  will be carried out for nonzero  $\Delta$ , corrections of order  $\mathcal{O}(m_q \ln m_q)$  will keep the  $\Delta = 0$  assumption for reasons that will become apparent later. Complete expressions for all 27 magnetic moments of octet and decuplet baryons and decuplet-octet transition moments are provided. Despite their lengths, the analytical forms are basically simple and organized in a way that are easy to handle. Their main usefulness lies in that they can be used to perform an analytical comparison to the available expressions obtained in conventional HBCHPT (the effective field theory with no  $1/N_c$  expansion) of Ref. [12]. Therefore, the main contribution of this paper is to explicitly show that baryon chiral perturbation theory in the large- $N_c$  limit and HBCHPT analyses of baryon octet magnetic moments fully agree at the physical value  $N_c = 3$ for  $N_f = 3$  flavors of light quarks.

The organization of the paper is as follows. Some introductory aspects of large- $N_c$  chiral perturbation theory are provided in Sec. II; in passing, notation and conventions are introduced. After a brief review of baryon magnetic moments at tree level in Sec. III, the discussion is focused on the computation of one-loop corrections in Sec. IV; because of their different group theoretical properties, corrections of orders  $\mathcal{O}(m_q^{1/2})$  and  $\mathcal{O}(m_q \ln m_q)$  are studied separately in Secs. IVA and IVB, respectively, followed by their corresponding analytical comparisons with HBCHPT results. The issue of explicit SB is reviewed in Sec. V, based on the analysis of Ref. [15]. Gathering together all partial results allows one to carry out a numerical analysis to determine the free parameters of the theory, by making a least-squares fit to the available data [17]. Results are presented in Sec. VI and some closing remarks are provided in Sec. VII. The paper is complemented by five appendixes where the complete although lengthy formulas of baryon magnetic moments are relegated.

# II. OPERATOR ANALYSIS IN THE $1/N_c$ EXPANSION

The  $1/N_c$  expansion has been very useful in understanding the spin-flavor structure of baryons in QCD [7–10]. For the physically interesting case of three light flavors,  $N_f = 3$ , the lowest-lying baryon states fall into a representation of the spin-flavor group SU(6). At the physical value  $N_c = 3$ , this is the usual **56** dimensional representation of SU(6). The  $J^P = 1/2^+$  octet containing the nucleon and the  $J^P = 3/2^+$  decuplet containing the  $\Delta(1232)$  together make up the ground-state 56-plet, in which the orbital angular momenta between the quark pairs are zero and the spatial part of the state function is symmetric.

The present analysis builds on the  $1/N_c$  baryon chiral Lagrangian  $\mathcal{L}_{\text{baryon}}$  introduced in Ref. [14]. This Lagrangian incorporates nonet symmetry and the contracted spin-flavor symmetry for baryons in the large- $N_c$  limit; its definite form reads

$$\mathcal{L}_{\text{baryon}} = i\mathcal{D}^0 - \mathcal{M}_{\text{hyperfine}} + \text{Tr}(\mathcal{A}^k \lambda^c) A^{kc} + \frac{1}{N_c} \text{Tr}\left(\mathcal{A}^k \frac{2I}{\sqrt{6}}\right) A^k + \dots,$$
(3)

with

$$\mathcal{D}^0 = \partial^0 \mathbb{1} + \mathrm{Tr}(\mathcal{V}^0 \lambda^c) T^c.$$
(4)

The ellipses in Eq. (3) represent higher partial wave meson couplings which occur at subleading orders in the  $1/N_c$  expansion for  $N_c > 3$ . In the large- $N_c$  limit, all of these higher partial waves vanish so the meson coupling to baryons is purely p wave.

Meson fields participate in  $\mathcal{L}_{baryon}$  through the vector and axial-vector combinations

$$\mathcal{V}^{0} = \frac{1}{2} [\xi \partial^{0} \xi^{\dagger} + \xi^{\dagger} \partial^{0} \xi], \qquad \mathcal{A}^{k} = \frac{i}{2} (\xi \nabla^{k} \xi^{\dagger} - \xi^{\dagger} \nabla^{k} \xi),$$
  
$$\xi(x) = \exp[i\Pi(x)/f], \qquad (5)$$

where  $\Pi(x)$  represents the nonet of Goldstone boson fields and  $f \approx 93 \text{ MeV}/c^2$  is the pion decay constant.

Each term in  $\mathcal{L}_{\text{baryon}}$  is made up by a baryon operator. The baryon kinetic energy term involves the spin-flavor identity,  $\mathcal{M}_{\text{hyperfine}}$  represents the hyperfine baryon mass operator which incorporates the spin splittings of the tower of baryon states with spins  $1/2, ..., N_c/2$  in the flavor representations, and  $A^k$  and  $A^{kc}$  stand for the flavor singlet and flavor octet axial current operators, respectively. All these baryon operators have an expansion in operators whose coefficients are inverse powers of  $N_c$  [10]. To a given order in  $1/N_c$ , the expansions can be truncated and linked to physics by evaluating their matrix elements between SU(6) symmetric states at  $N_c = 3$ .

For any representation of SU(6), polynomials in the generators

$$J^{k} = q^{\dagger} \frac{\sigma^{k}}{2} q, \qquad T^{c} = q^{\dagger} \frac{\lambda^{c}}{2} q, \qquad G^{kc} = q^{\dagger} \frac{\sigma^{k} \lambda^{c}}{2} q, \qquad (6)$$

#### TABLE I. $SU(2N_f)$ commutation relations.

$$\begin{split} [J^i,T^a] &= 0, \\ [J^i,J^j] &= i\epsilon^{ijk}J^k, & [T^a,T^b] &= if^{abc}T^c, \\ [J^i,G^{ja}] &= i\epsilon^{ijk}G^{ka}, & [T^a,G^{ib}] &= if^{abc}G^{ic}, \\ [G^{ia},G^{jb}] &= \frac{i}{4}\delta^{ij}f^{abc}T^c + \frac{i}{2N_\ell}\delta^{ab}\epsilon^{ijk}J^k + \frac{i}{2}\epsilon^{ijk}d^{abc}G^{kc}. \end{split}$$

form a complete set of operators [10]. In the above relations,  $q^{\dagger}$  and q represent SU(6) operators that create and annihilate states in the fundamental representation of SU(6), and  $\sigma^k$  and  $\lambda^c$  are the Pauli spin and Gell-Mann flavor matrices, respectively. The spin-flavor generators satisfy the commutation relations listed in Table I.

The way in which large- $N_c$  dynamics enters can best be seen through some examples. The  $1/N_c$  expansion of the baryon mass operator  $\mathcal{M}$  can be written as [9,10]

$$\mathcal{M} = \tilde{m}_0 N_c \mathbb{1} + \sum_{n=2,4}^{N_c - 1} \tilde{m}_n \frac{1}{N_c^{n-1}} J^n,$$
(7)

where  $\tilde{m}_n$  are unknown coefficients. While the first summand on the right-hand side of Eq. (7) is the overall spin-independent mass of the baryon multiplet and is removed from the chiral Lagrangian by the heavy baryon field redefinition [5], the spin-dependent ones define  $\mathcal{M}_{hyperfine}$  introduced in the chiral Lagrangian (3). In the large- $N_c$  limit,  $\Delta = \langle \mathcal{M} \rangle_{\frac{3}{2}} - \langle \mathcal{M} \rangle_{\frac{1}{2}} \propto 1/N_c$ , so decuplet and octet baryons become degenerate and form a single irreducible representation of the contracted spin-flavor symmetry of baryons in large- $N_c$  QCD [10].

At the physical value  $N_c = 3$  the hyperfine mass expansion reduces to

$$\mathcal{M}_{\text{hyperfine}} = \frac{\tilde{m}_2}{N_c} J^2,$$
 (8)

so  $\Delta$  becomes  $\tilde{m}_2$ .

The baryon flavor singlet axial current  $A^k$  is a spin-1 object and a singlet under SU(3); its  $1/N_c$  expansion reads [10]

$$A^{k} = \sum_{n=1,3}^{N_{c}} b_{n}^{1,1} \frac{1}{N_{c}^{n-1}} \mathcal{D}_{n}^{k}, \qquad (9)$$

where  $\mathcal{D}_1^k = J^k$  and  $\mathcal{D}_{2m+1}^k = \{J^2, \mathcal{D}_{2m-1}^k\}$  for  $m \ge 1$ . The superscript on the operator coefficients of  $A^k$  denotes that they refer to the baryon singlet current. At  $N_c = 3$ , Eq. (9) becomes

$$A^{k} = b_{1}^{1,1}J^{k} + b_{3}^{1,1}\frac{1}{N_{c}^{2}}\{J^{2}, J^{k}\}.$$
 (10)

The baryon flavor octet axial current  $A^{kc}$  is a spin-1 object, an octet under SU(3) and odd under time reversal; its  $1/N_c$  expansion can be written as [9,10]

$$A^{kc} = a_1 G^{kc} + \sum_{n=2,3}^{N_c} b_n \frac{1}{N_c^{n-1}} \mathcal{D}_n^{kc} + \sum_{n=3,5}^{N_c} c_n \frac{1}{N_c^{n-1}} \mathcal{O}_n^{kc}, \quad (11)$$

where the unknown coefficients  $a_1$ ,  $b_n$ , and  $c_n$  have expansions in powers of  $1/N_c$  and are order unity at leading order in the  $1/N_c$  expansion. The basic operators in expansion (11) are

$$\mathcal{D}_2^{kc} = J^k T^c, \tag{12}$$

$$\mathcal{D}_{3}^{kc} = \{ J^{k}, \{ J^{r}, G^{rc} \} \},$$
(13)

$$\mathcal{O}_3^{kc} = \{J^2, G^{kc}\} - \frac{1}{2}\{J^k, \{J^r, G^{rc}\}\}, \qquad (14)$$

so that  $\mathcal{D}_n^{kc} = \{J^2, \mathcal{D}_{n-2}^{kc}\}$  and  $\mathcal{O}_n^{kc} = \{J^2, \mathcal{O}_{n-2}^{kc}\}$  for  $n \ge 4$ . Notice that  $\mathcal{D}_n^{kc}$  are diagonal operators with nonzero matrix elements only between states with the same spin, and the  $\mathcal{O}_n^{kc}$  are purely off-diagonal operators with nonzero matrix elements only between states with different spin. At  $N_c = 3$  the series (11) can be truncated as

$$A^{kc} = a_1 G^{kc} + b_2 \frac{1}{N_c} \mathcal{D}_2^{kc} + b_3 \frac{1}{N_c^2} \mathcal{D}_3^{kc} + c_3 \frac{1}{N_c^2} \mathcal{O}_3^{kc}.$$
 (15)

At leading order in the  $1/N_c$  expansion,  $A^{kc}$  is order  $\mathcal{O}(N_c)$ .

It should be emphasized that keeping all four terms in Eq. (15) allows for arbitrary values of the four possible SU(3) symmetric couplings of pseudoscalar mesons to the octet and decuplet baryons D, F, C, and  $\mathcal{H}$  introduced in Refs. [5,6]. This is the reason why for  $N_c = 3$  it is not necessary to go beyond operator products of third order in the spin-flavor generators.

#### III. BARYON MAGNETIC MOMENT AT TREE LEVEL

The starting point in the present analysis is the fact that in the large- $N_c$  limit, the baryon magnetic moments have the same kinematic properties as the baryon axial couplings so they can be expressed in terms of the very same operators [11]. Since much of the work has already been advanced in Refs. [2,15,16], some partial results presented in these references will be borrowed.

Accordingly, the  $1/N_c$  expansion of the operator that yields the baryon magnetic moment operator becomes [2]

$$M^{kc} = m_1 G^{kc} + \frac{1}{N_c} m_2 \mathcal{D}_2^{kc} + \frac{1}{N_c^2} m_3 \mathcal{D}_3^{kc} + \frac{1}{N_c^2} m_4 \mathcal{O}_3^{kc}, \quad (16)$$

which is also order  $O(N_c)$  at leading order in the  $1/N_c$  expansion;  $m_i$  are unknown coefficients which also possess a  $1/N_c$  expansion starting at order 1. Under the assumption of SU(3) symmetry, the unknown coefficients  $m_i$  are

independent of k so they are unrelated to  $a_1$ ,  $b_2$ ,  $b_3$ , or  $c_3$  [2].

The baryon magnetic moment operator is thus defined as

$$M^{k} \equiv M^{kQ} = M^{k3} + \frac{1}{\sqrt{3}}M^{k8}, \qquad (17)$$

where the spin index will be fixed to 3 and the flavor index becomes  $Q = 3 + (1/\sqrt{3})8$ . Hereafter, any operators of the form  $X^Q$  and  $X^{\bar{Q}}$  should be understood as  $X^3 + (1/\sqrt{3})X^8$  and  $X^3 - (1/\sqrt{3})X^8$ , respectively. The magnetic moments are proportional to the quark charge matrix diag(2/3, -1/3, -1/3), so they can be separated into isovector and isoscalar components,  $M^{33}$  and  $M^{38}$ , respectively.

The baryon magnetic moments at tree level can be straightforwardly obtained by evaluating the matrix elements of the operators that appear in (17) between SU(6) baryon symmetric states. The universality of operator (17) is such that it allows one to compute all possible 27 magnetic moments: Eight magnetic moments for the octet baryons, ten more for the decuplet baryons and one for the octet-octet and eight for the decuplet-octet transition moments. At tree level they will be denoted by  $\mu_B^{(0)} = \langle B|M^Q|B\rangle$ ,  $\mu_T^{(0)} = \langle T|M^Q|T\rangle$ ,  $\mu_{BB'}^{(0)} = \langle B|M^Q|B'\rangle$ , and  $\mu_{TB}^{(0)} = \langle T|M^Q|B\rangle$ , where *B* and *T* stand for octet and decuplet baryons, respectively. The theoretical expressions can generically be given by

$$\mu_B^{(0)} = \sum_{j=1}^4 \mu_j \langle B | S_j^{3Q} | B \rangle, \tag{18}$$

where the coefficients  $\mu_j$  can be easily read off from Eq. (17) and the operator basis  $\{S_i\}$  used to describe tree-level (and the singlet contribution of) magnetic moments reads

$$S_{1}^{kc} = G^{kc}, \quad S_{2}^{kc} = \mathcal{D}_{2}^{kc}, \quad S_{3}^{kc} = \mathcal{D}_{3}^{ke}, \quad S_{4}^{kc} = \mathcal{O}_{3}^{kc}, \quad S_{5}^{kc} = \mathcal{D}_{4}^{kc}, \\ S_{6}^{kc} = \mathcal{D}_{5}^{ke}, \quad S_{7}^{kc} = \mathcal{O}_{5}^{ke}, \quad S_{8}^{kc} = \mathcal{D}_{6}^{kc}, \quad S_{9}^{kc} = \mathcal{D}_{7}^{kc}, \quad S_{10}^{kc} = \mathcal{O}_{7}^{kc}.$$

$$(19)$$

Of course, it should be recalled that  $\mu^{(0)}$  also define  $\mu^{SU(3)}$ ; both quantities will be used interchangeably hereafter.

Nontrivial matrix elements<sup>1</sup> of the baryon operators that constitute the basis (19) are listed in Tables II–IV. The resultant expressions for the magnetic moments at tree level are thus listed in the column labeled (a) in Table V.

TABLE II. Nontrivial matrix elements of the operators involved in the magnetic moments of octet baryons at tree level. The entries for isoscalar components correspond to  $\sqrt{3}\langle S_i^{38} \rangle$ .

|                            | п               | р              | $\Sigma^{-}$    | $\Sigma^0$    | $\Sigma^+$    | [1]            | $\Xi^0$         | Λ              | $\Sigma^0 \Lambda$    |
|----------------------------|-----------------|----------------|-----------------|---------------|---------------|----------------|-----------------|----------------|-----------------------|
| $\langle S_1^{33} \rangle$ | $-\frac{5}{12}$ | $\frac{5}{12}$ | $-\frac{1}{3}$  | 0             | $\frac{1}{3}$ | $\frac{1}{12}$ | $-\frac{1}{12}$ | 0              | $\frac{1}{2\sqrt{3}}$ |
| $\langle S_2^{33} \rangle$ | $-\frac{1}{4}$  | $\frac{1}{4}$  | $-\frac{1}{2}$  | 0             | $\frac{1}{2}$ | $-\frac{1}{4}$ | $\frac{1}{4}$   | 0              | 0                     |
| $\langle S_3^{33} \rangle$ | $-\frac{5}{4}$  | 5<br>4         | $-\overline{1}$ | 0             | ī             | $\frac{1}{4}$  | $-\frac{1}{4}$  | 0              | $\frac{\sqrt{3}}{2}$  |
| $\langle S_1^{38} \rangle$ | $\frac{1}{4}$   | $\frac{1}{4}$  | $\frac{1}{2}$   | $\frac{1}{2}$ | $\frac{1}{2}$ | $-\frac{3}{4}$ | $-\frac{3}{4}$  | $-\frac{1}{2}$ | õ                     |
| $\langle S_2^{38} \rangle$ | $\frac{3}{4}$   | $\frac{3}{4}$  | Ō               | Ō             | Õ             | $-\frac{3}{4}$ | $-\frac{3}{4}$  | 0              | 0                     |
| $\langle S_3^{38} \rangle$ | $\frac{3}{4}$   | $\frac{3}{4}$  | $\frac{3}{2}$   | $\frac{3}{2}$ | $\frac{3}{2}$ | $-\frac{9}{4}$ | $-\frac{9}{4}$  | $-\frac{3}{2}$ | 0                     |

TABLE III. Nontrivial matrix elements of the operators involved in the magnetic moments of decuplet baryons at tree level. The entries for isoscalar components correspond to  $\sqrt{3}\langle S_i^{38}\rangle$ .

|                            | $\Delta^{++}$  | $\Delta^+$     | $\Delta^0$      | $\Delta^{-}$    | $\Sigma^{*+}$            | $\Sigma^{*0}$ | $\Sigma^{*-}$   | $\Xi^{*0}$      | $\Xi^{*-}$      | $\Omega^{-}$    |
|----------------------------|----------------|----------------|-----------------|-----------------|--------------------------|---------------|-----------------|-----------------|-----------------|-----------------|
| $\langle S_1^{33} \rangle$ | $\frac{3}{4}$  | $\frac{1}{4}$  | $-\frac{1}{4}$  | $-\frac{3}{4}$  | $\frac{1}{2}$            | 0             | $-\frac{1}{2}$  | $\frac{1}{4}$   | $-\frac{1}{4}$  | 0               |
| $\langle S_2^{33} \rangle$ | $\frac{9}{4}$  | $\frac{3}{4}$  | $-\frac{3}{4}$  | $-\frac{9}{4}$  | $\frac{\overline{3}}{2}$ | 0             | $-\frac{3}{2}$  | $\frac{3}{4}$   | $-\frac{3}{4}$  | 0               |
| $\langle S_3^{33} \rangle$ | $\frac{45}{4}$ | $\frac{15}{4}$ | $-\frac{15}{4}$ | $-\frac{45}{4}$ | $\frac{15}{2}$           | 0             | $-\frac{15}{2}$ | $\frac{15}{4}$  | $-\frac{15}{4}$ | 0               |
| $\langle S_1^{38} \rangle$ | $\frac{3}{4}$  | $\frac{3}{4}$  | $\frac{3}{4}$   | $\frac{3}{4}$   | Ō                        | 0             | 0               | $-\frac{3}{4}$  | $-\frac{3}{4}$  | $-\frac{3}{2}$  |
| $\langle S_2^{38} \rangle$ | $\frac{9}{4}$  | $\frac{9}{4}$  | $\frac{9}{4}$   | $\frac{9}{4}$   | 0                        | 0             | 0               | $-\frac{9}{4}$  | $-\frac{9}{4}$  | $-\frac{9}{2}$  |
| $\langle S_3^{38} \rangle$ | $\frac{45}{4}$ | $\frac{45}{4}$ | $\frac{45}{4}$  | $\frac{45}{4}$  | 0                        | 0             | 0               | $-\frac{45}{4}$ | $-\frac{45}{4}$ | $-\frac{45}{2}$ |

TABLE IV. Nontrivial matrix elements of the operators involved in the decuplet to octet transition moments at tree level. The entries for isovector and isoscalar components correspond to  $\sqrt{2}\langle S_i^{33} \rangle$  and  $\sqrt{6}\langle S_i^{38} \rangle$ , respectively.

|                            | $\Delta^+ p$  | $\Delta^0 n$  | $\Sigma^{*0}\Lambda$  | $\Sigma^{*0}\Sigma^0$ | $\Sigma^{*+}\Sigma^+$ | $\Sigma^{*-}\Sigma^{-}$ | $\Xi^{*0}\Xi_0$ | <u></u> =*-=   |
|----------------------------|---------------|---------------|-----------------------|-----------------------|-----------------------|-------------------------|-----------------|----------------|
| $\langle S_1^{33} \rangle$ | $\frac{2}{3}$ | $\frac{2}{3}$ | $\frac{1}{\sqrt{3}}$  | 0                     | $\frac{1}{3}$         | $-\frac{1}{3}$          | $\frac{1}{3}$   | $-\frac{1}{3}$ |
| $\langle S_4^{33} \rangle$ | 3             | 3             | $\frac{3\sqrt{3}}{2}$ | 0                     | $\frac{3}{2}$         | $-\frac{3}{2}$          | $\frac{3}{2}$   | $-\frac{3}{2}$ |
| $\langle S_1^{38} \rangle$ | 0             | 0             | õ                     | 1                     | 1                     | 1                       | 1               | 1              |
| $\langle S_4^{38} \rangle$ | 0             | 0             | 0                     | $\frac{9}{2}$         | $\frac{9}{2}$         | $\frac{9}{2}$           | $\frac{9}{2}$   | $\frac{9}{2}$  |

The main goal of the present analysis is to carry out an *analytical* comparison with HBCHPT results of Ref. [12]. The comparison can be made following a simple procedure. First, it is convenient to introduce the relations between the operator coefficients  $m_i$  of Eq. (16) and the SU(3) invariants  $\mu_D$ ,  $\mu_F$ ,  $\mu_C$ , and  $\mu_T$  used to parametrize the baryon magnetic moments in HBCHPT [12]. At  $N_c = 3$ , the relations read [2].

$$\mu_D = \frac{1}{2}m_1 + \frac{1}{6}m_3, \qquad (20a)$$

$$\mu_F = \frac{1}{3}m_1 + \frac{1}{6}m_2 + \frac{1}{9}m_3, \qquad (20b)$$

<sup>&</sup>lt;sup>1</sup>A baryon operator  $X_j^{kc}$  yields a trivial matrix element in two possible ways: Either by definition  $\langle X_j^{3c} \rangle = 0$  or  $\langle X_j^{3c} \rangle =$  $\langle \{J^2, X_{j-2}^{3c}\} \rangle$  for c = 3, 8. Hereafter, trivial matrix elements will not be listed in tables.

TABLE V. Tree-level expressions of baryon magnetic moments. Expressions in (a) are evaluated in the context of the  $1/N_c$  expansion; expressions in (b) follow from the ones given in (a) by using relations (21) to compare with heavy baryon chiral perturbation theory results.

|                                                                                                                                                         | Tree-level valu                                             | tes, $\mu_B^{(0)}$          |
|---------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------|
| Baryon                                                                                                                                                  | (a)                                                         | (b)                         |
| n                                                                                                                                                       | $-\frac{1}{3}m_1 - \frac{1}{9}m_3$                          | $-\frac{2}{3}\mu_D$         |
| р                                                                                                                                                       | $\frac{1}{2}m_1 + \frac{1}{6}m_2 + \frac{1}{6}m_3$          | $\frac{1}{3}\mu_D + \mu_F$  |
| $\Sigma^{-}$                                                                                                                                            | $-\frac{1}{6}m_1 - \frac{1}{6}m_2 - \frac{1}{18}m_3$        | $\frac{1}{3}\mu_D - \mu_F$  |
| $\Sigma^0$                                                                                                                                              | $\frac{1}{6}m_1 + \frac{1}{18}m_3$                          | $\frac{1}{3}\mu_D$          |
| $\Sigma^+$                                                                                                                                              | $\frac{1}{2}m_1 + \frac{1}{6}m_2 + \frac{1}{6}m_3$          | $\frac{1}{3}\mu_D + \mu_F$  |
| Ξ-                                                                                                                                                      | $-\frac{1}{6}m_1 - \frac{1}{6}m_2 - \frac{1}{18}m_3$        | $\frac{1}{3}\mu_D - \mu_F$  |
| $\Xi^0$                                                                                                                                                 | $-\frac{1}{3}m_1 - \frac{1}{9}m_3$                          | $-\frac{2}{3}\mu_D$         |
| Λ                                                                                                                                                       | $-\frac{1}{6}m_1 - \frac{1}{18}m_3$                         | $-\frac{1}{3}\mu_{D}$       |
| $\Sigma^0 \Lambda$                                                                                                                                      | $\frac{1}{2\sqrt{3}}m_1 + \frac{1}{6\sqrt{3}}m_3$           | $\frac{1}{\sqrt{3}}\mu_D$   |
| $\Delta^{++}$                                                                                                                                           | $m_1 + m_2 + \frac{5}{3}m_3$                                | $2\mu_C$                    |
| $\Delta^+$                                                                                                                                              | $\frac{1}{2}m_1 + \frac{1}{2}m_2 + \frac{5}{6}m_3$          | $\mu_C$                     |
| $\Delta^0$                                                                                                                                              | 0                                                           | 0                           |
| $\Delta^{-}$                                                                                                                                            | $-\frac{1}{2}m_1 - \frac{1}{2}m_2 - \frac{5}{6}m_3$         | $-\mu_C$                    |
| $\Sigma^{*+}$                                                                                                                                           | $\frac{1}{2}m_1 + \frac{1}{2}m_2 + \frac{5}{6}m_3$          | $\mu_C$                     |
| $\Sigma^{*0}$                                                                                                                                           | 0                                                           | 0                           |
| $\Sigma^{*-}$                                                                                                                                           | $-\frac{1}{2}m_1 - \frac{1}{2}m_2 - \frac{5}{6}m_3$         | $-\mu_C$                    |
| $\Xi^{*0}$                                                                                                                                              | 0                                                           | 0                           |
| <u></u> =*-                                                                                                                                             | $-\frac{1}{2}m_1 - \frac{1}{2}m_2 - \frac{5}{6}m_3$         | $-\mu_C$                    |
| Ω-                                                                                                                                                      | $-\frac{1}{2}m_1 - \frac{1}{2}m_2 - \frac{5}{6}m_3$         | $-\mu_C$                    |
| $\Delta^+ p$                                                                                                                                            | $\frac{1}{3\sqrt{2}}(2m_1+m_4)$                             | $-\frac{1}{3\sqrt{2}}\mu_T$ |
| $\Delta^0 n$                                                                                                                                            | $\frac{1}{3\sqrt{2}}(2m_1+m_4)$                             | $-\frac{1}{3\sqrt{2}}\mu_T$ |
| $\Sigma^{*0}\Lambda$                                                                                                                                    | $\frac{1}{2\sqrt{6}}(2m_1+m_4)$                             | $-\frac{1}{2\sqrt{6}}\mu_T$ |
| $\Sigma^{*0}\Sigma^{0}$                                                                                                                                 | $\frac{\frac{1}{6\sqrt{2}}}{\frac{1}{6\sqrt{2}}}(2m_1+m_4)$ | $-\frac{1}{6\sqrt{2}}\mu_T$ |
| $\Sigma^{*+}\Sigma^+$                                                                                                                                   | $\frac{1}{3\sqrt{2}}(2m_1+m_4)$                             | $-\frac{1}{3\sqrt{2}}\mu_T$ |
| $\Sigma^{*-}\Sigma^{-}$                                                                                                                                 | 0                                                           | 0                           |
| $\Xi^{*0}\Xi_0$                                                                                                                                         | $\frac{1}{3\sqrt{2}}(2m_1+m_4)$                             | $-\frac{1}{3\sqrt{2}}\mu_T$ |
| <u></u> | 0                                                           | 0                           |

$$\mu_C = \frac{1}{2}m_1 + \frac{1}{2}m_2 + \frac{5}{6}m_3, \qquad (20c)$$

$$\mu_T = -2m_1 - m_4, \tag{20d}$$

so the inverse relations become

$$m_1 = \frac{3}{2}\mu_D + \frac{3}{2}\mu_F - \frac{1}{2}\mu_C, \qquad (21a)$$

$$m_2 = -4\mu_D + 6\mu_F,$$
 (21b)

$$m_3 = \frac{3}{2}\mu_D - \frac{9}{2}\mu_F + \frac{3}{2}\mu_C, \qquad (21c)$$

$$m_4 = -3\mu_D - 3\mu_F + \mu_C - \mu_T.$$
(21d)

Second, by using the inverse relations (21), the tree-level magnetic moments can be rewritten in terms of the SU(3) invariants  $\mu_D$ ,  $\mu_F$ ,  $\mu_C$ , and  $\mu_T$ , which yields the expressions listed in the column labeled (b) in Table V. These last expressions are the ones suitable for comparison with HBCHPT. For octet and decuplet baryons these expressions fully agree with the ones reported in Ref. [12]. Tree-level magnetic moments for octet baryons are given in terms of  $\alpha_B$  of Eq. (23) of this reference, whereas for decuplet baryons, they are normalized to be  $\mu_C$  times the electric charge of the corresponding baryon. For decuplet-octet transition moments, no explicit theoretical expressions in the context of HBCHPT are available so no direct comparison is possible.

Once tree-level values of baryon magnetic moments are obtained, one-loop corrections are discussed in the next sections.

## IV. ONE-LOOP CORRECTIONS TO BARYON MAGNETIC MOMENTS

Baryon magnetic moments get corrections at one-loop order from the diagrams displayed in Figs. 1 and 2, which contribute to orders  $\mathcal{O}(m_q^{1/2})$  and  $\mathcal{O}(m_q \ln m_q)$ , respectively. The group theoretical properties of these diagrams have been discussed in detail in previous works [2,15] to a certain order in the  $1/N_c$  expansion, so some partial results will be borrowed. A useful  $1/N_c$  power counting scheme introduced in Ref. [18] becomes handy for the purposes of the present analysis. On general grounds, the meson-baryon vertex is proportional to  $g_A/f$ ; in the large- $N_c$  limit,  $g_A \propto$  $N_c$  and  $f \propto \sqrt{N_c}$ , so that the meson-baryon vertex is of order  $\mathcal{O}(\sqrt{N_c})$  and grows with  $N_c$ . The baryon propagator is  $i/(k \cdot v)$  and is  $N_c$  independent and so is the meson propagator. Besides, in the  $\overline{MS}$  scheme, loop integrals are given by the pole structure of the propagators, so loop integrals are  $N_c$  independent too. The tree-level matrix element of the baryon magnetic moment is thus of order  $\mathcal{O}(N_c)$ .

In this section, one-loop corrections will be evaluated to all orders allowed for  $N_c = 3$  in the  $1/N_c$  expansion. Each



FIG. 1. Feynman diagrams that yield order  $\mathcal{O}(m_q^{1/2})$  corrections to the magnetic moments of octet baryons. Dashed lines denote mesons and single and double solid lines denote octet and decuplet baryons, respectively. Similar diagrams arise for the magnetic moment of decuplet baryons and for decuplet-octet transition moments.



FIG. 2. Feynman diagrams that yield order  $\mathcal{O}(m_q \ln m_q)$  corrections to the magnetic moments of octet baryons. Dashed lines denote mesons and single and double solid lines denote octet and decuplet baryons, respectively. The wave function renormalization graphs are omitted in the figure but are nevertheless considered in the analysis. Similar diagrams arise for the magnetic moment of decuplet baryons and for decuplet-octet transition moments.

correction is dealt with separately due to its inherent complexity.

# A. Order $\mathcal{O}(m_q^{1/2})$ correction

The one-loop correction of order  $\mathcal{O}(m_q^{1/2})$  to baryon magnetic moments arising from Fig. 1 can be expressed as [2]

$$\delta M^k_{\text{loop 1}} = \sum_{j} \epsilon^{ijk} A^{ia} \mathcal{P}_j A^{jb} \Gamma^{ab}(\Delta_j).$$
(22)

This correction has been studied in Refs. [2] and [15] to relative order  $1/N_c^3$  in the  $1/N_c$  expansion for  $\Delta = 0$  and  $\Delta \neq 0$ , respectively. For definiteness, in Eq. (22), the explicit sum over spin j is indicated but the sums over spin and flavor indices are understood, the baryon axial current operators  $A^{ia}$  and  $A^{jb}$ , Eq. (15), are used at the meson-baryon vertices,  $\mathcal{P}_j$  is a spin projection operator for spin J = j, and  $\Gamma^{ab}(\Delta_j)$  is an antisymmetric tensor which depends on the difference of the hyperfine mass splitting for spin J = j and the external baryon. The most general form of  $\mathcal{P}_j$  for arbitrary  $N_c$  can be found in Ref. [14]. The spin- $\frac{1}{2}$  and spin- $\frac{3}{2}$  projectors for  $N_c = 3$  required here reduce to

$$\mathcal{P}_{\frac{1}{2}} = -\frac{1}{3} \left[ J^2 - \frac{15}{4} \right],$$
 (23a)

$$\mathcal{P}_{\frac{3}{2}} = \frac{1}{3} \left[ J^2 - \frac{3}{4} \right], \tag{23b}$$

with

$$\Delta_{\frac{1}{2}} = \begin{cases} 0, & j_{ext} = \frac{1}{2}, \\ -\Delta, & j_{ext} = \frac{3}{2}, \end{cases}$$
(24a)

$$\Delta_{\frac{3}{2}} = \begin{cases} \Delta, & j_{ext} = \frac{1}{2}, \\ 0, & j_{ext} = \frac{3}{2}. \end{cases}$$
(24b)

The  $\Gamma^{ab}(\Delta_i)$  tensor, in turn, can be decomposed as [15]

$$\Gamma^{ab}(\Delta_{j}) = A_{0}(\Delta_{j})\Gamma_{0}^{ab} + A_{1}(\Delta_{j})\Gamma_{1}^{ab} + A_{2}(\Delta_{j})\Gamma_{2}^{ab}, \quad (25)$$

where the tensors  $\Gamma_i^{ab}$  are written as [11].

$$\Gamma_0^{ab} = f^{abQ},\tag{26a}$$

$$\Gamma_1^{ab} = f^{ab\bar{Q}},\tag{26b}$$

$$\Gamma_2^{ab} = f^{aeQ} d^{be8} - f^{beQ} d^{ae8} - f^{abe} d^{eQ8}.$$
 (26c)

 $\Gamma_0^{ab}$  and  $\Gamma_1^{ab}$  are both SU(3) octets and transform as the electric charge, except that the latter is rotated by  $\pi$  in isospin space.  $\Gamma_2^{ab}$  breaks SU(3) as  $\mathbf{10} + \overline{\mathbf{10}}$  [11].

The  $A_i(\Delta_i)$  coefficients, on the other hand, read

$$A_0(\Delta_j) = \frac{1}{3} [I_1(m_{\pi}, \Delta_j, \mu) + 2I_1(m_K, \Delta_j, \mu)], \quad (27a)$$

$$A_{1}(\Delta_{j}) = \frac{1}{3} [I_{1}(m_{\pi}, \Delta_{j}, \mu) - I_{1}(m_{K}, \Delta_{j}, \mu)], \qquad (27b)$$

$$A_{2}(\Delta_{j}) = \frac{1}{\sqrt{3}} [I_{1}(m_{\pi}, \Delta_{j}, \mu) - I_{1}(m_{K}, \Delta_{j}, \mu)], \quad (27c)$$

which are expressed in terms of the loop integral [12]

$$\frac{8\pi^2 f^2}{M_N} I_1(m, \Delta, \mu)$$

$$= -\Delta \ln \frac{m^2}{\mu^2} + \begin{cases} 2\sqrt{m^2 - \Delta^2} \left[\frac{\pi}{2} - \tan^{-1} \frac{\Delta}{\sqrt{m^2 - \Delta^2}}\right], & |\Delta| \le m, \\ \sqrt{\Delta^2 - m^2} \left[-2i\pi + \ln \frac{\Delta - \sqrt{\Delta^2 - m^2}}{\Delta + \sqrt{\Delta^2 - m^2}}\right], & |\Delta| > m, \end{cases}$$
(28)

where  $M_N$  and *m* denote the nucleon and meson masses, respectively, and  $\mu$  is the scale of dimensional regularization. In the limit of vanishing  $\Delta$ , the integral reduces to

$$I_1(m,0,\mu) = \frac{1}{8\pi f^2} M_N m,$$
 (29)

and

where the order  $\mathcal{O}(m_q^{1/2})$  now becomes evident. A close inspection to Eq. (22) reveals that, according to the  $1/N_c$ power counting scheme reviewed above, the diagram is actually  $\mathcal{O}(m_q^{1/2}N_c)$ , so it is leading order in  $N_c$ . In the limit of small  $m_q$ , this diagram should be the dominant source of SB.

Collecting all partial contributions,  $\delta M_{\text{loop }1}^k$  can be expressed as [15]

$$\delta M_{\text{loop 1}}^{k} = \sum_{j} [A_{0}(\Delta_{j}) M_{\mathbf{8},\text{loop 1}}^{kQ}(\mathcal{P}_{j}) + A_{1}(\Delta_{j}) M_{\mathbf{8},\text{loop 1}}^{k\bar{Q}}(\mathcal{P}_{j}) + A_{2}(\Delta_{j}) M_{\mathbf{10}+\overline{\mathbf{10}},\text{loop 1}}^{kQ}(\mathcal{P}_{j})], \qquad (30)$$

where the flavor contributions  $M_{rep,loop1}^{kc}$  transforming under representation **rep** of SU(3) read

$$M^{kc}_{\mathbf{8},\text{loop 1}}(\mathcal{P}_{j}) = \epsilon^{ijk} f^{abc} A^{ia} \mathcal{P}_{j} A^{jb}, \qquad (31)$$

$$M_{\mathbf{10}+\overline{\mathbf{10}},\mathrm{loop}\,1}^{kc}(\mathcal{P}_{j})$$
  
=  $\epsilon^{ijk}(f^{aec}d^{be8} - f^{bec}d^{ae8} - f^{abe}d^{ec8})A^{ia}\mathcal{P}_{j}A^{jb}.$  (32)

Terms up to relative order  $1/N_c^3$  in the  $1/N_c$  expansion from the above expressions have been evaluated for spinindependent and spin-dependent contributions in Refs. [2] and [15], respectively. Terms that participate to the next relative order,  $1/N_c^4$ , for instance  $\mathcal{D}_3^{ia}\mathcal{O}_3^{ia}$  or  $\mathcal{D}_3^{ia}J^2\mathcal{D}_3^{ia}$ , would complete the calculation for  $N_c = 3$  so they are evaluated and listed in Appendix A for the sake of completeness.

Order  $\mathcal{O}(m_q^{1/2})$  corrections to baryon magnetic moments can be cast into the generic form

$$\delta\mu_B^{(\text{loop 1})} = \sum_{j=1}^{41} \mu_j^{(\text{loop 1})} \langle B | O_j^{3Q} | B \rangle, \tag{33}$$

where  $\mu_j^{(\text{loop }1)}$  are some coefficients and the operator basis  $\{O_i\}$  reads

$$\begin{array}{ll} O_{1}^{kc} = d^{c8c} O_{2}^{kc}, & O_{2}^{kc} = \delta^{c8} J^{k}, \\ O_{3}^{kc} = d^{c8c} D_{2}^{ke}, & O_{4}^{kc} = \{G^{kc}, T^{8}\}, \\ O_{5}^{kc} = \{G^{k8}, T^{c}\}, & O_{6}^{kc} = if^{c8e} [J^{2}, G^{ke}], \\ O_{7}^{kc} = d^{c8c} D_{3}^{kc}, & O_{8}^{kc} = d^{c8c} O_{3}^{kc}, \\ O_{9}^{kc} = \{G^{kc}, \{J^{r}, G^{r8}\}\}, & O_{10}^{kc} = \{G^{k8}, \{J^{r}, G^{rc}\}\}, \\ O_{11}^{kc} = \{J^{k}, \{T^{c}, T^{8}\}\}, & O_{12}^{kc} = \{J^{k}, \{G^{rc}, G^{r8}\}\}, \\ O_{13}^{kc} = \delta^{c8} \{J^{2}, J^{k}\}, & O_{12}^{kc} = \{J^{k}, \{G^{rc}, G^{r8}\}\}, \\ O_{15}^{kc} = \{D_{2}^{kc}, \{J^{r}, G^{r8}\}\}, & O_{16}^{kc} = \{D_{2}^{k8}, \{J^{r}, G^{rc}\}\}, \\ O_{15}^{kc} = \{D_{2}^{kc}, \{J^{r}, G^{r8}\}\}, & O_{16}^{kc} = \{D_{2}^{k8}, \{J^{r}, G^{rc}\}\}, \\ O_{15}^{kc} = \{D_{2}^{kc}, \{J^{r}, G^{r8}\}\}, & O_{16}^{kc} = \{D_{2}^{k8}, \{J^{r}, G^{rc}\}\}, \\ O_{17}^{kc} = \{J^{2}, \{G^{kc}, T^{8}\}\}, & O_{16}^{kc} = \{D_{2}^{k8}, \{J^{r}, G^{rc}\}\}, \\ O_{17}^{kc} = d^{c8e} O_{5}^{kc}, & O_{20}^{kc} = d^{c8e} D_{5}^{kc}, \\ O_{21}^{kc} = d^{c8e} O_{5}^{kc}, & O_{22}^{kc} = \{J^{2}, \{G^{kc}, \{J^{r}, G^{r8}\}\}\}, \\ O_{22}^{kc} = \{J^{2}, \{J^{k}, \{G^{rc}, G^{r8}\}\}\}, & O_{22}^{kc} = \{J^{2}, \{J^{k}, \{T^{r}, G^{r8}\}\}\}, \\ O_{25}^{kc} = \{J^{2}, \{J^{k}, \{G^{rc}, G^{r8}\}\}\}, & O_{26}^{kc} = \{J^{k}, \{\{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\}, \\ O_{25}^{kc} = \{J^{2}, \{J^{k}, \{G^{rc}, G^{r8}\}\}\}, & O_{26}^{kc} = \{J^{2}, \{D_{2}^{k}, \{J^{r}, G^{r6}\}\}\}, \\ O_{25}^{kc} = \{J^{2}, \{J^{2}, \{J^{k}, \{G^{rc}, G^{r8}\}\}\}, & O_{36}^{kc} = \{J^{2}, \{D_{2}^{k}, \{J^{r}, G^{r6}\}\}\}, \\ O_{25}^{kc} = if^{c8e} \{J^{2}, \{J^{2}, [J^{2}, G^{kc}]\}\}, & O_{36}^{kc} = \{J^{2}, \{J^{2}, \{G^{k8}, T^{c}\}\}\}, \\ O_{35}^{kc} = d^{c8e} O_{7}^{ke}, & O_{36}^{kc} = \{J^{2}, \{J^{2}, \{G^{k6}, \{J^{r}, G^{r8}\}\}\}\}, \\ O_{35}^{kc} = \{J^{2}, \{J^{2}, \{J^{k}, \{G^{rc}, G^{r8}\}\}\}\}, \\ O_{35}^{kc} = \{J^{2}, \{J^{k}, \{G^{rc}, G^{r8}\}\}\}\}, \\ O_{35}^{kc} = \{J^{2}, \{J^{k}, \{G^{rc},$$

Nontrivial matrix elements for the baryon operators contained in the operator basis (34) are listed in Tables VI-VIII.

Resultant expressions are, for instance,

$$\delta\mu_{\Sigma^{-}}^{(\text{loop 1})} = \left[\frac{7}{18}a_{1}^{2} + \frac{2}{9}a_{1}b_{2} + \frac{1}{18}b_{2}^{2} + \frac{7}{27}a_{1}b_{3} + \frac{2}{27}b_{2}b_{3} + \frac{7}{162}b_{3}^{2}\right]I_{1}(m_{\pi}, 0, \mu) \\ + \left[\frac{1}{36}a_{1}^{2} - \frac{1}{18}a_{1}b_{2} + \frac{1}{36}b_{2}^{2} + \frac{1}{54}a_{1}b_{3} - \frac{1}{54}b_{2}b_{3} + \frac{1}{324}b_{3}^{2}\right]I_{1}(m_{K}, 0, \mu) \\ + \left[-\frac{1}{18}a_{1}^{2} - \frac{1}{18}a_{1}c_{3} - \frac{1}{72}c_{3}^{2}\right]I_{1}(m_{\pi}, \Delta, \mu) + \left[-\frac{1}{9}a_{1}^{2} - \frac{1}{9}a_{1}c_{3} - \frac{1}{36}c_{3}^{2}\right]I_{1}(m_{K}, \Delta, \mu),$$
(35)

and

$$\delta\mu_{\Sigma^{*-}}^{(\text{loop 1})} = \left[\frac{1}{6}a_1^2 + \frac{1}{3}a_1b_2 + \frac{1}{6}b_2^2 + \frac{5}{9}a_1b_3 + \frac{5}{9}b_2b_3 + \frac{25}{54}b_3^2\right]I_1(m_{\pi}, 0, \mu) \\ + \left[\frac{1}{12}a_1^2 + \frac{1}{6}a_1b_2 + \frac{1}{12}b_2^2 + \frac{5}{18}a_1b_3 + \frac{5}{18}b_2b_3 + \frac{25}{108}b_3^2\right]I_1(m_K, 0, \mu) \\ + \left[\frac{1}{3}a_1^2 + \frac{1}{3}a_1c_3 + \frac{1}{12}c_3^2\right]I_1(m_{\pi}, -\Delta, \mu) + \left[\frac{1}{6}a_1^2 + \frac{1}{6}a_1c_3 + \frac{1}{24}c_3^2\right]I_1(m_K, -\Delta, \mu).$$
(36)

Γ

TABLE VI. Nontrivial matrix elements of the operators involved in the magnetic moments of octet baryons: flavor octet representation. The entries for isovector components correspond to  $\sqrt{3}\langle O_i^{33}\rangle$ .

| $ \begin{array}{ c c c c c c c c c c c c c c c c c c c$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                       | п                        | р                        | $\Sigma^{-}$             | $\Sigma^0$               | $\Sigma^+$               | $\Xi^-$                  | $\Xi^0$               | Λ                        | $\Sigma^0 \Lambda$    |                               |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|--------------------------|-----------------------|--------------------------|-----------------------|-------------------------------|
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\langle O_1^{33} \rangle$            | $-\frac{5}{12}$          | $\frac{5}{12}$           | $-\frac{1}{3}$           | 0                        | $\frac{1}{3}$            | $\frac{1}{12}$           | $-\frac{1}{12}$       | 0                        | $\frac{1}{2\sqrt{3}}$ | /033                          |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\langle O_2^{33} \rangle$            | 0                        | 0                        | 0                        | 0                        | 0                        | 0                        | 0                     | 0                        | 0                     | $(O_1^{33})$                  |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\langle O_3^{\tilde{3}3} \rangle$    | $-\frac{1}{4}$           | $\frac{1}{4}$            | $-\frac{1}{2}$           | 0                        | $\frac{1}{2}$            | $-\frac{1}{4}$           | $\frac{1}{4}$         | 0                        | 0                     | $(O_2^{33})$                  |
| $ \begin{array}{c} \langle O_{5}^{33} \rangle & -\frac{1}{4} & \frac{1}{4} & -1 & 0 & 1 & \frac{3}{4} & -\frac{3}{4} & 0 & 0 & \langle O_{4}^{33} \\ \langle O_{7}^{33} \rangle & -\frac{5}{4} & \frac{5}{5} & -1 & 0 & 1 & -\frac{1}{4} & -\frac{1}{4} & 0 & \frac{\sqrt{3}}{2} & \langle O_{7}^{33} \\ \langle O_{9}^{33} \rangle & -\frac{5}{8} & \frac{5}{8} & -1 & 0 & 1 & -\frac{3}{8} & \frac{3}{8} & 0 & 0 & \langle O_{31}^{33} \\ \langle O_{130}^{33} \rangle & -\frac{5}{8} & \frac{5}{8} & -1 & 0 & 1 & -\frac{3}{8} & \frac{3}{8} & 0 & 0 & \langle O_{131}^{33} \\ \langle O_{113}^{31} \rangle & -\frac{3}{2} & \frac{3}{2} & 0 & 0 & 0 & \frac{3}{2} & -\frac{3}{2} & 0 & 0 & \langle O_{131}^{33} \\ \langle O_{12}^{33} \rangle & -\frac{5}{8} & \frac{5}{8} & -2 & 0 & 2 & -\frac{11}{18} & \frac{11}{8} & 0 & -\frac{\sqrt{3}}{2} & \langle O_{132}^{33} \\ \langle O_{133}^{33} \rangle & -\frac{5}{8} & \frac{3}{8} & -\frac{3}{2} & 0 & \frac{3}{2} & \frac{9}{8} & -\frac{9}{8} & 0 & 0 & \langle O_{133}^{31} \\ \langle O_{133}^{33} \rangle & -\frac{15}{8} & \frac{15}{8} & 0 & 0 & 0 & -\frac{3}{8} & \frac{3}{8} & 0 & 0 & \langle O_{133}^{31} \\ \langle O_{23}^{36} \rangle & -\frac{15}{18} & \frac{15}{8} & -3 & 0 & 3 & -\frac{9}{8} & \frac{9}{8} & 0 & 0 & \langle O_{136}^{33} \\ \langle O_{23}^{38} \rangle & -\frac{1}{12} & -\frac{1}{12} & -\frac{1}{6} & -\frac{1}{6} & -\frac{1}{6} & \frac{1}{4} & \frac{1}{4} & \frac{1}{6} & 0 & \langle O_{138}^{38} \\ \langle O_{3}^{38} \rangle & -\frac{1}{4} & -\frac{1}{4} & 0 & 0 & 0 & \frac{3}{4} & \frac{3}{4} & 0 & 0 & \langle O_{38}^{38} \\ \langle O_{3}^{38} \rangle & -\frac{1}{4} & -\frac{1}{4} & -\frac{1}{2} & -\frac{1}{2} & -\frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & \langle O_{38}^{38} \\ \langle O_{3}^{38} \rangle & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 & \frac{3}{4} & \frac{3}{4} & 0 & 0 & \langle O_{38}^{38} \\ \langle O_{3}^{38} \rangle & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 & \frac{3}{4} & \frac{3}{4} & \frac{1}{2} & 0 & \langle O_{38}^{38} \\ \langle O_{3}^{38} \rangle & \frac{1}{8} & \frac{1}{8} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & \langle O_{38}^{38} \\ \langle O_{38}^{38} \rangle & \frac{1}{4} & \frac{1}{4} & 0 & 0 & 0 & \frac{3}{4} & \frac{3}{4} & \frac{1}{2} & 0 & \langle O_{38}^{38} \\ \langle O_{38}^{38} \rangle & \frac{1}{8} & \frac{1}{8} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & \langle O_{38}^{38} \\ \langle O_{38}^{38} \rangle & \frac{1}{8} & \frac{1}{8} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & \langle O_{38}^{38} \\ \langle O_{38}^{38} \rangle & \frac{1}{8} & \frac{1}{8} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & \langle O_{38}^{38} \\ \langle O_{38}^{38} \rangle & \frac{1}{8} & \frac{1}{8} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & \frac{1}{2} & 0 & \langle O_$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\langle O_4^{33} \rangle$            | $-\frac{1}{4}$           | 5                        | 0                        | 0                        | õ                        | $-\frac{1}{4}$           | $\frac{1}{4}$         | 0                        | 0                     | $(0^{33})$                    |
| $ \begin{array}{cccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\langle O_5^{33} \rangle$            | $-\frac{1}{4}$           | $\frac{4}{1}$            | -1                       | 0                        | 1                        | $\frac{3}{4}$            | $-\frac{3}{4}$        | 0                        | 0                     | $\langle O_4^{33} \rangle$    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\langle O_7^{33} \rangle$            | $-\frac{5}{4}$           | $\frac{1}{5}$            | -1                       | 0                        | 1                        | $\frac{1}{4}$            | $-\frac{1}{4}$        | 0                        | $\frac{\sqrt{3}}{2}$  | $\langle O_7^{33} \rangle$    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\langle O_9^{33} \rangle$            | $-\frac{5}{8}$           | 58                       | -1                       | 0                        | 1                        | $-\frac{3}{8}$           | $\frac{3}{8}$         | 0                        | $\tilde{0}$           | $\langle O_9^{33} \rangle$    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\langle O_{10}^{33} \rangle$         | $-\frac{5}{8}$           | 58                       | -1                       | 0                        | 1                        | $-\frac{3}{8}$           | 38                    | 0                        | 0                     | $\langle O_{10}^{33} \rangle$ |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\langle O_{11}^{33} \rangle$         | $-\frac{3}{2}$           | $\frac{3}{2}$            | 0                        | 0                        | 0                        | $\frac{3}{2}$            | $-\frac{3}{2}$        | 0                        | 0                     | $\langle O_{11}^{33} \rangle$ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\langle O_{12}^{33} \rangle$         | $-\frac{5}{8}$           | <u>5</u><br>8            | -2                       | 0                        | 2                        | $-\frac{11}{8}$          | $\frac{11}{8}$        | 0                        | $-\frac{\sqrt{3}}{2}$ | $\langle O_{12}^{33} \rangle$ |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\langle O_{15}^{33} \rangle$         | $-\frac{3}{8}$           | $\frac{3}{8}$            | $-\frac{3}{2}$           | 0                        | $\frac{3}{2}$            | $\frac{9}{8}$            | $-\frac{9}{8}$        | 0                        | 0                     | $\langle O_{15}^{33} \rangle$ |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\langle O_{16}^{33} \rangle$         | $-\frac{15}{8}$          | <u>15</u><br>8           | 0                        | 0                        | õ                        | $-\frac{3}{8}$           | 38                    | 0                        | 0                     | $\langle O_{16}^{33} \rangle$ |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\langle O_{26}^{33} \rangle$         | $-\frac{15}{8}$          | <u>15</u><br>8           | -3                       | 0                        | 3                        | $-\frac{9}{8}$           | $\frac{9}{8}$         | 0                        | 0                     | $\langle O_{26}^{33} \rangle$ |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\langle O_1^{\overline{38}} \rangle$ | $-\frac{1}{12}$          | $-\frac{1}{12}$          | $-\frac{1}{6}$           | $-\frac{1}{6}$           | $-\frac{1}{6}$           | $\frac{1}{4}$            | $\frac{1}{4}$         | $\frac{1}{6}$            | 0                     | $\langle O_1^{38} \rangle$    |
| $ \begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\langle O_2^{38} \rangle$            | $\frac{1}{2}$            | $\frac{1}{2}$            | $\frac{1}{2}$            | $\frac{1}{2}$            | $\frac{1}{2}$            | $\frac{1}{2}$            | $\frac{1}{2}$         | $\frac{1}{2}$            | 0                     | $\langle O_2^{38} \rangle$    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\langle O_3^{\overline{3}8} \rangle$ | $-\frac{1}{4}$           | $-\frac{1}{4}$           | Õ                        | õ                        | õ                        | $\frac{\overline{1}}{4}$ | $\frac{\tilde{1}}{4}$ | Õ                        | 0                     | $\langle O_3^{38} \rangle$    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\langle O_4^{38} \rangle$            | $\frac{1}{4}$            | $\frac{1}{4}$            | 0                        | 0                        | 0                        | $\frac{3}{4}$            | $\frac{3}{4}$         | 0                        | 0                     | $\langle O_4^{38} \rangle$    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\langle O_5^{38} \rangle$            | $\frac{1}{4}$            | $\frac{1}{4}$            | 0                        | 0                        | 0                        | $\frac{3}{4}$            | $\frac{3}{4}$         | 0                        | 0                     | $\langle O_5^{38} \rangle$    |
| $\begin{array}{c c c c c c c c c c c c c c c c c c c $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | $\langle O_7^{38} \rangle$            | $-\frac{1}{4}$           | $-\frac{1}{4}$           | $-\frac{1}{2}$           | $-\frac{1}{2}$           | $-\frac{1}{2}$           | $\frac{3}{4}$            | $\frac{3}{4}$         | $\frac{1}{2}$            | 0                     | $\langle O_7^{38} \rangle$    |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\langle O_9^{38} \rangle$            | $\frac{1}{8}$            | $\frac{1}{8}$            | $\frac{1}{2}$            | $\frac{1}{2}$            | $\frac{1}{2}$            | <u>9</u><br>8            | <u>9</u><br>8         | $\frac{\overline{1}}{2}$ | 0                     | $\langle O_9^{38}  angle$     |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\langle O_{10}^{38} \rangle$         | $\frac{1}{8}$            | $\frac{1}{8}$            | $\frac{\overline{1}}{2}$ | $\frac{\overline{1}}{2}$ | $\frac{\overline{1}}{2}$ | $\frac{\tilde{9}}{8}$    | $\frac{\tilde{9}}{8}$ | $\frac{\overline{1}}{2}$ | 0                     | $\langle O_{10}^{38} \rangle$ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\langle O_{11}^{38} \rangle$         | $\frac{3}{2}$            | $\frac{3}{2}$            | Ō                        | Ō                        | Ō                        | $\frac{3}{2}$            | $\frac{3}{2}$         | Ō                        | 0                     | $\langle O_{11}^{38} \rangle$ |
| $\begin{array}{c ccccccccccccccccccccccccccccccccccc$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\langle O_{12}^{38} \rangle$         | $\frac{\overline{1}}{8}$ | $\frac{\overline{1}}{8}$ | $\frac{3}{2}$            | $\frac{3}{2}$            | $\frac{3}{2}$            | $\frac{17}{8}$           | $\frac{17}{8}$        | $\frac{1}{2}$            | 0                     | $\langle O_{12}^{38} \rangle$ |
| $\langle O_{16}^{38} \rangle = \frac{3}{8} = \frac{3}{8} = 0 = 0 = 0 = \frac{5}{8} = \frac{5}{8} = 0 = 0 = \langle O_{16}^{38} \rangle \langle O_{16}^{38} $ | $\langle O_{15}^{38} \rangle$         | $\frac{\tilde{3}}{8}$    | $\frac{\tilde{3}}{8}$    | Ō                        | Ō                        | Ō                        | $\frac{\tilde{9}}{8}$    | $\frac{\tilde{9}}{8}$ | Ō                        | 0                     | $\langle O_{15}^{38} \rangle$ |
| (-38) $3$ $3$ $3$ $3$ $3$ $3$ $77$ $77$ $3$ 0 $(-38)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\langle O_{16}^{38} \rangle$         | $\frac{\tilde{3}}{8}$    | $\frac{\tilde{3}}{8}$    | 0                        | 0                        | 0                        | $\frac{\tilde{9}}{8}$    | $\frac{\tilde{9}}{8}$ | 0                        | 0                     | $\langle O_{16}^{38} \rangle$ |
| $\frac{\langle O_{26}^{30} \rangle}{\langle O_{26}^{30} \rangle} = \frac{5}{8} = \frac{5}{2} = \frac{5}{2} = \frac{5}{2} = \frac{27}{8} = \frac{27}{8} = \frac{5}{2} = 0 = \frac{\langle O_{26}^{30} \rangle}{\langle O_{26}^{30} \rangle} = \frac{\langle O_{26}^{30} \rangle}{\langle O_{26}^{3$                     | $\langle O_{26}^{38} \rangle$         | <u>3</u><br>8            | <u>3</u><br>8            | $\frac{3}{2}$            | $\frac{3}{2}$            | $\frac{3}{2}$            | $\frac{27}{8}$           | $\frac{27}{8}$        | $\frac{3}{2}$            | 0                     | $\langle O_{26}^{38} \rangle$ |

TABLE VII. Nontrivial matrix elements of the operators involved in the magnetic moments of decuplet baryons: flavor octet representation. The entries for isovector components correspond to  $\sqrt{3}\langle O_i^{33}\rangle$ .

|                                  | $\Delta^{++}$   | $\Delta^+$      | $\Delta^0$       | $\Delta^{-}$     | $\Sigma^{*+}$  | $\Sigma^{*0}$ | $\Sigma^{*-}$   | $\Xi^{*0}$               | $\Xi^{*-}$               | Ω-                        |
|----------------------------------|-----------------|-----------------|------------------|------------------|----------------|---------------|-----------------|--------------------------|--------------------------|---------------------------|
| $\langle O_1^{33} \rangle$       | $\frac{3}{4}$   | $\frac{1}{4}$   | $-\frac{1}{4}$   | $-\frac{3}{4}$   | $\frac{1}{2}$  | 0             | $-\frac{1}{2}$  | $\frac{1}{4}$            | $-\frac{1}{4}$           | 0                         |
| $\langle O_2^{33} \rangle$       | 0               | 0               | 0                | 0                | Ō              | 0             | 0               | 0                        | 0                        | 0                         |
| $\langle O_3^{\bar{3}3} \rangle$ | $\frac{9}{4}$   | $\frac{3}{4}$   | $-\frac{3}{4}$   | $-\frac{9}{4}$   | $\frac{3}{2}$  | 0             | $-\frac{3}{2}$  | $\frac{3}{4}$            | $-\frac{3}{4}$           | 0                         |
| $\langle O_4^{33} \rangle$       | $\frac{1}{2}$   | 3               | $-\frac{3}{4}$   | $-\frac{1}{2}$   | õ              | 0             | 0               | $-\frac{3}{4}$           | 3                        | 0                         |
| $\langle O_5^{33} \rangle$       | $\frac{4}{9}$   | $\frac{4}{3}$   | $-\frac{4}{3}$   | $-\frac{4}{2}$   | 0              | 0             | 0               | $-\frac{4}{3}$           | <u>3</u>                 | 0                         |
| $\langle O_7^{33} \rangle$       | $\frac{4}{45}$  | $\frac{15}{4}$  | $-\frac{15}{4}$  | $-\frac{45}{4}$  | $\frac{15}{2}$ | 0             | $-\frac{15}{2}$ | <u>15</u>                | $-\frac{15}{4}$          | 0                         |
| $\langle O_{9}^{33} \rangle$     | <u>45</u>       | <u>15</u>       | $-\frac{15}{2}$  | $-\frac{45}{2}$  | Õ              | 0             | 0               | $-\frac{15}{2}$          | <u>15</u>                | 0                         |
| $\langle O_{10}^{33} \rangle$    | $\frac{45}{8}$  | <u>15</u><br>8  | $-\frac{15}{8}$  | $-\frac{45}{8}$  | 0              | 0             | 0               | $-\frac{15}{8}$          | <u>15</u><br>8           | 0                         |
| $\langle O_{11}^{33} \rangle$    | $\frac{27}{2}$  | $\frac{9}{2}$   | $-\frac{9}{2}$   | $-\frac{27}{2}$  | 0              | 0             | 0               | $-\frac{9}{2}$           | $\frac{9}{2}$            | 0                         |
| $\langle O_{12}^{33} \rangle$    | $\frac{45}{8}$  | <u>15</u><br>8  | $-\frac{15}{8}$  | $-\frac{45}{8}$  | $\frac{3}{2}$  | 0             | $-\frac{3}{2}$  | $-\frac{3}{8}$           | $\frac{\tilde{3}}{8}$    | 0                         |
| $\langle O_{15}^{33} \rangle$    | <u>135</u><br>8 | <u>45</u><br>8  | $-\frac{45}{8}$  | $-\frac{135}{8}$ | Õ              | 0             | 0               | $-\frac{45}{8}$          | <u>45</u><br>8           | 0                         |
| $\langle O_{16}^{33} \rangle$    | <u>135</u><br>8 | $\frac{45}{8}$  | $-\frac{45}{8}$  | $-\frac{135}{8}$ | 0              | 0             | 0               | $-\frac{45}{8}$          | $\frac{45}{8}$           | 0                         |
| $\langle O_{26}^{33} \rangle$    | <u>675</u><br>8 | <u>225</u><br>8 | $-\frac{225}{8}$ | $-\frac{675}{8}$ | 0              | 0             | 0               | $-\frac{225}{8}$         | <u>225</u><br>8          | 0                         |
| $\langle O_1^{38}  angle$        | $-\frac{1}{4}$  | $-\frac{1}{4}$  | $-\frac{1}{4}$   | $-\frac{1}{4}$   | 0              | 0             | 0               | $\frac{1}{4}$            | $\frac{\tilde{1}}{4}$    | $\frac{1}{2}$             |
| $\langle O_2^{38} \rangle$       | $\frac{3}{2}$   | $\frac{3}{2}$   | $\frac{3}{2}$    | $\frac{3}{2}$    | $\frac{3}{2}$  | $\frac{3}{2}$ | $\frac{3}{2}$   | $\frac{3}{2}$            | $\frac{3}{2}$            | $\frac{3}{2}$             |
| $\langle O_3^{38} \rangle$       | $-\frac{3}{4}$  | $-\frac{3}{4}$  | $-\frac{3}{4}$   | $-\frac{3}{4}$   | Ō              | Ō             | Ō               | $\frac{\overline{3}}{4}$ | $\frac{\overline{3}}{4}$ | $\frac{\overline{3}}{2}$  |
| $\langle O_4^{38} \rangle$       | $\frac{3}{4}$   | $\frac{3}{4}$   | $\frac{3}{4}$    | $\frac{3}{4}$    | 0              | 0             | 0               | $\frac{3}{4}$            | $\frac{3}{4}$            | 3                         |
| $\langle O_5^{38} \rangle$       | $\frac{3}{4}$   | $\frac{3}{4}$   | $\frac{3}{4}$    | $\frac{3}{4}$    | 0              | 0             | 0               | $\frac{3}{4}$            | $\frac{3}{4}$            | 3                         |
| $\langle O_7^{38} \rangle$       | $-\frac{15}{4}$ | $-\frac{15}{4}$ | $-\frac{15}{4}$  | $-\frac{15}{4}$  | 0              | 0             | 0               | $\frac{15}{4}$           | $\frac{15}{4}$           | $\frac{15}{2}$            |
| $\langle O_9^{38} \rangle$       | <u>15</u><br>8  | <u>15</u><br>8  | <u>15</u><br>8   | <u>15</u><br>8   | 0              | 0             | 0               | <u>15</u><br>8           | <u>15</u><br>8           | $\frac{\overline{15}}{2}$ |
| $\langle O_{10}^{38} \rangle$    | $\frac{15}{8}$  | <u>15</u><br>8  | $\frac{15}{8}$   | $\frac{15}{8}$   | 0              | 0             | 0               | $\frac{15}{8}$           | <u>15</u><br>8           | $\frac{15}{2}$            |
| $\langle O_{11}^{38} \rangle$    | $\frac{9}{2}$   | $\frac{9}{2}$   | $\frac{9}{2}$    | $\frac{9}{2}$    | 0              | 0             | 0               | $\frac{9}{2}$            | $\frac{9}{2}$            | 18                        |
| $\langle O_{12}^{38} \rangle$    | $\frac{15}{8}$  | $\frac{15}{8}$  | $\frac{15}{8}$   | $\frac{15}{8}$   | $\frac{3}{2}$  | $\frac{3}{2}$ | $\frac{3}{2}$   | $\frac{27}{8}$           | $\frac{27}{8}$           | $\frac{15}{2}$            |
| $\langle O_{15}^{38} \rangle$    | <u>45</u><br>8  | <u>45</u><br>8  | <u>45</u><br>8   | <u>45</u><br>8   | Õ              | Õ             | õ               | <u>45</u><br>8           | <u>45</u><br>8           | $\frac{\tilde{45}}{2}$    |
| $\langle O_{16}^{38} \rangle$    | <u>45</u><br>8  | <u>45</u><br>8  | <u>45</u><br>8   | <u>45</u><br>8   | 0              | 0             | 0               | $\frac{45}{8}$           | 45<br>8                  | $\frac{\frac{2}{45}}{2}$  |
| $\langle O_{26}^{38} \rangle$    | <u>225</u><br>8 | <u>225</u><br>8 | <u>225</u><br>8  | <u>225</u><br>8  | 0              | 0             | 0               | <u>225</u><br>8          | <u>225</u><br>8          | $\frac{225}{2}$           |

TABLE VIII. Nontrivial matrix elements of the operators involved in the decuplet to octet transition magnetic moments: flavor octet representation. The entries for isovector and isoscalar components correspond to  $\sqrt{6}\langle O_i^{33} \rangle$  and  $\sqrt{2}\langle O_j^{38} \rangle$ , respectively.

|                                       | $\Delta^+ p$  | $\Delta^0 n$  | $\Sigma^{*0}\Lambda$  | $\Sigma^{*0}\Sigma^0$ | $\Sigma^{*+}\Sigma^+$ | $\Sigma^{*-}\Sigma^{-}$ | $\Xi^{*0}\Xi^0$ | Ξ*-Ξ-          |
|---------------------------------------|---------------|---------------|-----------------------|-----------------------|-----------------------|-------------------------|-----------------|----------------|
| $\overline{\langle O_1^{33} \rangle}$ | $\frac{2}{3}$ | $\frac{2}{3}$ | $\frac{1}{\sqrt{3}}$  | 0                     | $\frac{1}{3}$         | $-\frac{1}{3}$          | $\frac{1}{3}$   | $-\frac{1}{3}$ |
| $\langle O_4^{33} \rangle$            | 2             | 2             | 0                     | 0                     | 0                     | 0                       | -1              | 1              |
| $\langle O_5^{33} \rangle$            | 0             | 0             | 0                     | 0                     | 2                     | -2                      | 1               | -1             |
| $\langle O_8^{33} \rangle$            | 3             | 3             | $\frac{3\sqrt{3}}{2}$ | 0                     | $\frac{3}{2}$         | $-\frac{3}{2}$          | $\frac{3}{2}$   | $-\frac{3}{2}$ |
| $\langle O_9^{33} \rangle$            | 3             | 3             | $-\frac{\sqrt{3}}{2}$ | 0                     | $\frac{1}{2}$         | $-\frac{1}{2}$          | -2              | 2              |
| $\langle O_{10}^{33} \rangle$         | 0             | 0             | $-\frac{\sqrt{3}}{2}$ | 0                     | $\frac{7}{2}$         | $-\frac{7}{2}$          | 1               | -1             |
| $\langle O_1^{38}  angle$             | 0             | 0             | 0                     | $-\frac{1}{3}$        | $-\frac{1}{3}$        | $-\frac{1}{3}$          | $-\frac{1}{3}$  | $-\frac{1}{3}$ |
| $\langle O_4^{38} \rangle$            | 0             | 0             | 0                     | 0                     | 0                     | 0                       | -1              | -1             |
| $\langle O_5^{38} \rangle$            | 0             | 0             | 0                     | 0                     | 0                     | 0                       | -1              | -1             |
| $\langle O_8^{38} \rangle$            | 0             | 0             | 0                     | $-\frac{3}{2}$        | $-\frac{3}{2}$        | $-\frac{3}{2}$          | $-\frac{3}{2}$  | $-\frac{3}{2}$ |
| $\langle O_9^{38} \rangle$            | 0             | 0             | 0                     | $\frac{1}{2}$         | $\frac{1}{2}$         | $\frac{1}{2}$           | $-\tilde{2}$    | $-\tilde{2}$   |
| $\langle O_{10}^{38} \rangle$         | 0             | 0             | 0                     | $\frac{1}{2}$         | $\frac{1}{2}$         | $\frac{1}{2}$           | -2              | -2             |

All 27 resultant expressions are listed in full in Appendix B.

It can be easily verified that Coleman and Glashow relations are satisfied when order  $\mathcal{O}(m_q^{1/2})$  corrections are included to baryon magnetic moments, even for  $\Delta \neq 0$ . For decuplet baryons the I = 2 and I = 3 sum rules introduced in Ref. [19] are also satisfied. For I = 2

$$\mu_{\Delta^{++}}^{(\text{loop 1})} - \mu_{\Delta^{+}}^{(\text{loop 1})} - \mu_{\Delta^{0}}^{(\text{loop 1})} + \mu_{\Delta^{-}}^{(\text{loop 1})} = 0, \quad (37)$$

$$\mu_{\Sigma^{*+}}^{(\text{loop 1})} - 2\mu_{\Sigma^{*0}}^{(\text{loop 1})} + \mu_{\Sigma^{*-}}^{(\text{loop 1})} = 0,$$
(38)

whereas for I = 3

$$\mu_{\Delta^{++}}^{(\text{loop 1})} - 3\mu_{\Delta^{+}}^{(\text{loop 1})} + 3\mu_{\Delta^{0}}^{(\text{loop 1})} - \mu_{\Delta^{-}}^{(\text{loop 1})} = 0.$$
(39)

For transition magnetic moments, the isotensor combinations for I = 2 read [19]

$$\mu^{(\text{loop 1})}_{\Delta^+ p} - \mu^{(\text{loop 1})}_{\Delta^0 n} = 0, \tag{40}$$

and

$$\mu_{\Sigma^{*+}\Sigma^{+}}^{(\text{loop 1})} - 2\mu_{\Sigma^{*0}\Sigma^{0}}^{(\text{loop 1})} + \mu_{\Sigma^{*-}\Sigma^{-}}^{(\text{loop 1})} = 0,$$
(41)

where  $\mu_X^{(\text{loop 1})}$  should be understood as  $\mu_X + \delta \mu_X^{(\text{loop 1})}$  for baryon *X*.

#### 1. Comparison with heavy chiral perturbation theory results

The full expressions (B1) to (B27) can be rewritten in terms of the flavor octet baryon-meson couplings D, F, C, and  $\mathcal{H}$  introduced in Refs. [5,6], which are related to the

coefficients of the  $1/N_c$  expansion  $a_1$ ,  $b_2$ ,  $b_3$ , and  $c_3$  at  $N_c = 3$ . The relations are [14].

$$D = \frac{1}{2}a_1 + \frac{1}{6}b_3, \tag{42a}$$

$$F = \frac{1}{3}a_1 + \frac{1}{6}b_2 + \frac{1}{9}b_3, \tag{42b}$$

$$\mathcal{C} = -a_1 - \frac{1}{2}c_3, \tag{42c}$$

$$\mathcal{H} = -\frac{3}{2}a_1 - \frac{3}{2}b_2 - \frac{5}{2}b_3.$$
 (42d)

so the inverse relations become

$$a_1 = \frac{3}{2}D + \frac{3}{2}F + \frac{1}{6}\mathcal{H},$$
 (43a)

$$b_2 = -4D + 6F,$$
 (43b)

$$b_3 = \frac{3}{2}D - \frac{9}{2}F - \frac{1}{2}\mathcal{H},$$
 (43c)

$$c_3 = -3D - 3F - 2C - \frac{1}{3}\mathcal{H}.$$
 (43d)

Using the inverse relations (43), expressions (B1) to (B27) now become (B28) to (B54), respectively. In particular, for magnetic moments in the case study, Eqs. (35) and (36) can be rewritten as

$$\begin{split} \delta\mu_{\Sigma^{-}}^{(\text{loop 1})} &= \frac{2}{3} (D^2 + 3F^2) I_1(m_{\pi}, 0, \mu) \\ &+ (D - F)^2 I_1(m_K, 0, \mu) - \frac{1}{18} \mathcal{C}^2 I_1(m_{\pi}, \Delta, \mu) \\ &- \frac{1}{9} \mathcal{C}^2 I_1(m_K, \Delta, \mu), \end{split}$$
(44)

and

$$\delta\mu_{\Sigma^{*-}}^{(\text{loop }1)} = \frac{2}{27} \mathcal{H}^2 I_1(m_{\pi}, 0, \mu) + \frac{1}{27} \mathcal{H}^2 I_1(m_K, 0, \mu) + \frac{1}{3} \mathcal{C}^2 I_1(m_{\pi}, -\Delta, \mu) + \frac{1}{6} \mathcal{C}^2 I_1(m_K, -\Delta, \mu).$$
(45)

In the context of HBCHPT, order  $\mathcal{O}(m_q^{1/2})$  corrections to the magnetic moments of octet baryons can be organized as [12]

$$\delta\mu_{i}^{(\text{loop 1})} = \sum_{P=\pi,K} \beta_{i}^{(P)} I_{1}(m_{P}, 0, \mu) + \sum_{P=\pi,K} \beta_{i}^{\prime(P)} I_{1}(m_{P}, \Delta, \mu), \quad (46)$$

where  $\beta_i^{(P)}$  and  $\beta_i^{\prime(P)}$  are the contributions arising from loop graphs of Fig. 1 with intermediate octet and decuplet baryons, respectively. In the limit of vanishing  $\Delta$ , expressions (B28) to (B35) and (B46) agree in full with the corresponding ones attainable from Eq. (46).

# **B.** Order $\mathcal{O}(m_q \ln m_q)$ correction

The one-loop corrections to baryon magnetic moments from the Feynman diagrams depicted in Fig. 2 have a nonanalytic dependence on the quark mass of the form  $m_q \ln m_q$ . The computation of these diagrams requires a rather formidable effort to reduce the operator structures involved. In Refs. [2,15], relative corrections to order  $1/N_c^4$ in the  $1/N_c$  expansion were included. The incorporation of all the structures present for  $N_c = 3$  needs the inclusion of relative terms of up to order  $1/N_c^6$ . Again, a great deal of computational ease is gained by using some of the operator structures already reduced in the renormalized baryon axial current computed in Ref. [16]. Other structures appear for the first time and need to be reduced.

Diagrams 2(a)-2(d) present a few interesting features so they are studied first.

#### 1. Diagrams 2(a)-2(d)

Feynman diagrams depicted in Figs. 2(a)–2(d) contribute to the baryon magnetic moment operator, for  $\Delta = 0$ , as [2,15]

$$\delta M_{\text{loop 2ad}}^{k} = \frac{1}{2} [A^{ja}, [A^{jb}, M^{k}]] \Pi^{ab}.$$
 (47)

The double commutator structure in Eq. (47) involves three axial current operators, so naively this structure should be order  $\mathcal{O}(N_c^3)$ . However, it has been explicitly shown [18] that there are large- $N_c$  cancellations in the sum over intermediate baryon states in the loop. The cancellations are a consequence of the spin-flavor symmetry of large- $N_c$  QCD [7,8,10] and only occur when the ratios of F, D, C, and  $\mathcal{H}$  are close to their SU(6) values. Therefore, the double commutator structure is at most of order  $\mathcal{O}(N_c)$ .

On the other hand,  $\Pi^{ab}$  is a symmetric tensor which contains meson-loop integrals and decomposes into flavor singlet, flavor **8**, and flavor **27** representations as [14]

$$\Pi^{ab} = F_1 \delta^{ab} + F_8 d^{ab8} + F_{27} \bigg[ \delta^{a8} \delta^{b8} - \frac{1}{8} \delta^{ab} - \frac{3}{5} d^{ab8} d^{888} \bigg],$$
(48)

where

$$F_1 = \frac{1}{8} [3I_2(m_{\pi}, 0, \mu) + 4I_2(m_K, 0, \mu) + I_2(m_{\eta}, 0, \mu)], \quad (49)$$

$$F_{\mathbf{8}} = \frac{2\sqrt{3}}{5} \left[ \frac{3}{2} I_2(m_{\pi}, 0, \mu) - I_2(m_K, 0, \mu) - \frac{1}{2} I_2(m_{\eta}, 0, \mu) \right],$$
(50)

and

$$F_{27} = \frac{1}{3}I_2(m_{\pi}, 0, \mu) - \frac{4}{3}I_2(m_K, 0, \mu) + I_2(m_{\eta}, 0, \mu).$$
(51)

Equations (49)–(51) are linear combinations of  $I_2(m_{\pi}, 0, \mu)$ ,  $I_2(m_K, 0, \mu)$ , and  $I_2(m_{\eta}, 0, \mu)$ , where  $I_2(m, \Delta, \mu)$  represents the loop integral, which can be found in Ref. [15]. In the degeneracy limit  $\Delta \rightarrow 0$ , this function reduces to

$$I_2(m,0,\mu) = -\frac{m^2}{16\pi^2 f^2} \ln\frac{m^2}{\mu^2},$$
 (52)

where  $\mu$  is the scale of dimensional regularization and only nonanalytic terms in *m* have been retained.

Expression (47) can be organized in terms of the flavor **1**, **8**, and **27** contributions as [2]

$$\delta M_{\text{loop 2ad}}^{k} = F_{1} M_{1,\text{loop 2ad}}^{kQ} + F_{8} M_{8,\text{loop 2ad}}^{kQ} + F_{27} M_{27,\text{loop 2ad}}^{kQ}.$$
(53)

The matrix elements of the operator structures  $M_{rep,loop\,2ad}^{kQ}$  have the generic forms

$$\delta\mu_{j,\mathbf{1}}^{(\text{loop 2ad})} = \sum_{j=1}^{10} \mu_{j,\mathbf{1}}^{(\text{loop 2ad})} \langle B|S_j^{3Q}|B\rangle, \tag{54}$$

$$\delta\mu_{j,\mathbf{8}}^{(\text{loop 2ad})} = \sum_{j=1}^{41} \mu_{j,\mathbf{8}}^{(\text{loop 2ad})} \langle B|O_j^{3Q}|B\rangle,$$
(55)

$$\delta\mu_{j,27}^{(\text{loop 2ad})} = \sum_{j=1}^{167} \mu_{j,27}^{(\text{loop 2ad})} \langle B | T_j^{3Q} | B \rangle, \tag{56}$$

where as before  $\mu_{j,\text{rep}}^{(\text{loop 2ad})}$  are some coefficients, the operator bases  $\{S_i\}$  and  $\{O_j\}$  are listed in (19) and (34), respectively, and the operator basis  $\{T_k\}$  is given by

$$\begin{array}{ll} \Gamma_{3}^{hc} = f^{cs} f^{sc} g^{cs}, & \Gamma_{3}^{hc} = d^{cs} d^{sc} g^{cs}, \\ \Gamma_{3}^{hc} = d^{cs} d^{sc} g^{cs}, \\ \Gamma_{3}^{hc} = d^{cs} d^{sc} f^{sc} D_{2}^{bs}, \\ \Gamma_{3}^{hc} = d^{cs} d^{sc} f^{sc} D_{2}^{bs}, \\ \Gamma_{3}^{hc} = d^{cs} d^{sc} f^{sc} D_{2}^{bs}, \\ \Gamma_{3}^{hc} = d^{cs} d^{sc} f^{sc} D_{3}^{hc}, \\ \Gamma_{3}^{hc} = d^{cs} d^{sc} d^{sc} D_{3}^{hc}, \\ \Gamma_{4}^{hc} = d^{cs} d^{sc} d^{sc} d^{sc} D_{3}^{hc}, \\ \Gamma_{4}^{hc} = d^{cs} d^{sc} d^{sc} d^{sc} D_{3}^{hc}, \\ \Gamma_{4}^{hc} = d^{sc} d^{sc} d^{sc} d^{sc} d^{sc} D_{3}^{hc}, \\ \Gamma_{4}^{hc} = d^{sc} d$$

$$\begin{split} & T_{57}^{k} = f^{-8e} f^{8eg} O_{59}^{kg}, & T_{56}^{k} = d^{8e} d^{8eg} O_{59}^{kg}, \\ & T_{59}^{k} = d^{eeg} d^{8e} O_{59}^{kg}, & T_{50}^{k} = d^{8e} d^{8eg} O_{59}^{kg}, \\ & T_{51}^{k} = d^{2eg} d^{3ee} O_{59}^{kg}, & T_{52}^{k} = d^{2e} (J^{2}, J^{k}), \\ & T_{55}^{k} = d^{2}, \{G^{k}, \{T^{e}, T^{8}\}\}\}, \\ & T_{55}^{k} = \{J^{2}, \{G^{k}, \{T^{e}, T^{8}\}\}\}, & T_{56}^{k} = d^{2e} \{J^{2}, \{G^{k}, \{T^{8}, T^{8}\}\}\}, \\ & T_{57}^{k} = d^{8e} \{J^{2}, \{G^{k}, \{T^{e}, T^{6}\}\}\}, & T_{56}^{k} = d^{8e} \{J^{2}, \{G^{k}, \{T^{e}, T^{6}\}\}\}, \\ & T_{59}^{k} = d^{8e} \{J^{2}, \{G^{k}, \{T^{e}, G^{ee}\}\}\}, & T_{50}^{k} = d^{8e} \{J^{2}, \{G^{k}, \{T^{e}, G^{ee}\}\}\}, \\ & T_{59}^{k} = d^{8e} \{J^{2}, \{G^{k}, \{T^{e}, G^{ee}\}\}\}, & T_{50}^{k} = d^{8e} \{J^{2}, \{G^{k}, \{T^{e}, G^{ee}\}\}\}, \\ & T_{55}^{k} = d^{8e} \{J^{2}, \{G^{k}, \{T^{e}, G^{ee}\}\}\}, & T_{50}^{k} = d^{8e} \{J^{2}, \{G^{k}, \{T^{e}, G^{ee}\}\}\}, \\ & T_{55}^{k} = d^{8e} \{J^{2}, \{G^{k}, \{T^{e}, G^{ee}\}\}\}, & T_{50}^{k} = d^{6e} \{J^{4}, \{T^{e}, G^{ee}\}\}, \\ & T_{55}^{k} = \{G^{k}, \{\{I^{m}, G^{m8}\}, \{T^{e}, G^{ee}\}\}\}, & T_{50}^{k} = d^{6e} \{J^{4}, \{T^{e}, G^{ee}\}\}, \\ & T_{50}^{k} = d^{5e} \{D_{5}^{k}, \{T^{e}, G^{ee}\}\}, & T_{10}^{k} = d^{16e} \{D_{5}^{k}, \{T^{e}, G^{ee}\}\}, \\ & T_{105}^{k} = d^{16e} \{D_{5}^{k}, \{T^{e}, G^{ee}\}\}, & T_{105}^{k} = d^{16e} d^{16e} D_{5}^{k}, \{T^{e}, G^{ee}\}\}, \\ & T_{105}^{k} = d^{16e} d^{16e} D_{5}^{k}, & T_{10}^{eee} G^{16e} D_{5}^{k}, \\ & T_{105}^{k} = d^{16e} d^{16e} D_{5}^{k}, & T_{10}^{eee} G^{16e} D_{5}^{k}, \\ & T_{105}^{k} = d^{16e} d^{16e} D_{5}^{k}, & T_{105}^{k} = d^{16e} d^{16e} D_{5}^{k}, \\ & T_{105}^{k} = d^{16e} d^{16e} D_{5}^{k}, \\ & T_{105}^{k} = d^{16e} d^{16e} D_{5}^{k}, & T_{105}^{k} = d^{16e} d^{16e} D_{5}^{k}, \\ & T_{105}^{k} = d^{16e} D_{5}^{k}, \\ & T_{105}^{k} = d^{16e} D_{5}^{k},$$

| $T_{147}^{kc} = \delta^{c8} \mathcal{O}_7^{k8},$                                                              | $T^{kc}_{148} = d^{c88} \{J^2, \{J^2, \{J^2, J^k\}\}\},$                                                     |      |
|---------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------|------|
| $T^{kc}_{149} = \{J^2, \{J^2, \{G^{kc}, \{G^{r8}, G^{r8}\}\}\}\},\$                                           | $T_{150}^{kc} = \{J^2, \{J^2, \{G^{k8}, \{G^{rc}, G^{r8}\}\}\}\},\$                                          |      |
| $T_{151}^{kc} = d^{c8e} \{ J^2, \{ J^2, \{ J^k, \{ G^{re}, G^{r8} \} \} \},\$                                 | $T_{152}^{kc} = d^{88e} \{ J^2, \{ J^2, \{ J^k, \{ G^{rc}, G^{re} \} \} \} \}.$                              |      |
| $T_{153}^{kc} = d^{c8e} \{ J^2, \{ J^2, \{ G^{ke}, \{ J^r, G^{r8} \} \} \},\$                                 | $T_{154}^{kc} = d^{c8e} \{ J^2, \{ J^2, \{ G^{k8}, \{ J^r, G^{re} \} \} \} \},$                              |      |
| $T_{155}^{kc} = d^{88e} \{ J^2, \{ J^2, \{ G^{kc}, \{ J^r, G^{re} \} \} \} \},$                               | $T_{156}^{kc} = d^{88e} \{ J^2, \{ J^2, \{ G^{ke}, \{ J^r, G^{rc} \} \} \} \},$                              |      |
| $T_{157}^{kc} = \epsilon^{kim} f^{c8e} \{ J^2, \{ J^2, \{ T^e, \{ J^i, G^{m8} \} \} \} \},$                   | $T_{158}^{kc} = \{J^2, \{G^{kc}, \{\{J^m, G^{m8}\}, \{J^r, G^{r8}\}\}\}\},\$                                 | (57) |
| $T_{159}^{kc} = \{J^2, \{G^{k8}, \{\{J^m, G^{m8}\}, \{J^r, G^{rc}\}\}\}\},\$                                  | $T_{160}^{kc} = \{J^2, \{J^k, \{\{J^m, G^{mc}\}, \{G^{r8}, G^{r8}\}\}\}\},\$                                 |      |
| $T_{161}^{kc} = \{J^2, \{J^k, \{\{J^m, G^{m8}\}, \{G^{r8}, G^{rc}\}\}\}\},\$                                  | $T_{162}^{kc} = d^{c8e} \{ J^2, \{ \mathcal{D}_3^{ke}, \{ J^r, G^{r8} \} \} \},$                             |      |
| $T_{163}^{kc} = d^{88e} \{ J^2, \{ \mathcal{D}_3^{kc}, \{ J^r, G^{re} \} \} \},\$                             | $T_{164}^{kc} = \epsilon^{kim} f^{ab8} \{ J^2, \{ \{ J^i, G^{m8} \}, \{ T^a, \{ G^{rb}, G^{rc} \} \} \} \},$ |      |
| $T_{165}^{kc} = i\epsilon^{kil} \{J^2, [\{J^i, G^{l8}\}, \{\{J^m, G^{m8}\}, \{J^r, G^{rc}\}\}]\},\$           | $T_{166}^{kc} = \{ \mathcal{D}_3^{kc}, \{ \{ J^m, G^{m8} \}, \{ J^r, G^{r8} \} \} \},\$                      |      |
| $T_{167}^{kc} = i\epsilon^{kil} \{ J^2, \{ J^i, \{ J^r, [G^{l8}, \{ G^{r8}, \{ J^m, G^{mc} \} \} ] \} \} \}.$ |                                                                                                              |      |

The corresponding nontrivial matrix elements of the operators in basis (57) are listed in Tables IX-XIV.

Collecting all partial results, order  $O(m_q \ln m_q)$  corrections to baryon magnetic moments from diagrams 2(a)-2(d), for the usual examples, read

$$\begin{split} \delta\mu_{\Sigma^{-}}^{(\text{loop 2ad)}} &= \left[ \left( -\frac{1}{12}a_{1}^{2} - \frac{13}{108}a_{1}b_{2} - \frac{5}{81}a_{1}b_{3} + \frac{1}{108}a_{1}c_{3} - \frac{1}{36}b_{2}^{2} - \frac{1}{36}b_{2}b_{3} - \frac{1}{54}b_{2}c_{3} - \frac{1}{81}b_{3}^{2} + \frac{1}{162}b_{3}c_{3} - \frac{1}{432}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{13}{72}a_{1}^{2} - \frac{7}{54}a_{1}b_{2} - \frac{37}{324}a_{1}b_{3} - \frac{1}{108}a_{1}c_{3} - \frac{7}{216}b_{2}^{2} - \frac{7}{162}b_{2}b_{3} - \frac{37}{1944}b_{3}^{2} - \frac{1}{432}c_{3}^{2} \right)m_{2} \\ &+ \left( \frac{7}{324}a_{1}^{2} - \frac{1}{36}a_{1}b_{2} - \frac{2}{81}a_{1}b_{3} + \frac{19}{324}a_{1}c_{3} - \frac{1}{108}b_{2}^{2} - \frac{1}{108}b_{2}b_{3} - \frac{1}{243}b_{3}^{2} + \frac{19}{1296}c_{3}^{2} \right)m_{3} \\ &+ \left( \frac{1}{54}a_{1}^{2} - \frac{1}{34}a_{1}b_{2} + \frac{1}{162}a_{1}b_{3} + \frac{19}{324}a_{1}c_{3} - \frac{1}{108}b_{2}c_{3} + \frac{1}{324}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[ \left( -\frac{11}{144}a_{1}^{2} - \frac{31}{216}a_{1}b_{2} - \frac{89}{648}a_{1}b_{3} + \frac{7}{54}a_{1}c_{3} - \frac{1}{48}b_{2}^{2} - \frac{5}{216}b_{2}b_{3} - \frac{1}{27}b_{2}c_{3} - \frac{35}{1296}b_{3}^{2} + \frac{1}{81}b_{3}c_{3} + \frac{5}{216}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{7}{48}a_{1}^{2} - \frac{17}{216}a_{1}b_{2} - \frac{69}{648}a_{1}b_{3} + \frac{5}{54}a_{1}c_{3} - \frac{7}{432}b_{2}^{2} - \frac{17}{648}b_{2}b_{3} - \frac{103}{3888}b_{3}^{2} + \frac{5}{216}c_{3}^{2} \right)m_{2} \\ &+ \left( \frac{575}{1296}a_{1}^{2} - \frac{5}{216}a_{1}b_{2} - \frac{35}{648}a_{1}b_{3} + \frac{85}{54}a_{1}c_{3} - \frac{7}{432}b_{2}^{2} - \frac{17}{648}b_{2}b_{3} - \frac{35}{3888}b_{3}^{2} + \frac{85}{648}c_{3}^{2} \right)m_{3} \\ &+ \left( \frac{1}{27}a_{1}^{2} - \frac{1}{27}a_{1}b_{2} + \frac{1}{81}a_{1}b_{3} + \frac{1}{54}a_{1}c_{3} - \frac{1}{154}b_{2}c_{3} + \frac{1}{162}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[ \left( -\frac{1}{27}a_{1}b_{3} + \frac{1}{18}a_{1}c_{3} - \frac{1}{162}b_{3}^{2} + \frac{1}{72}c_{3}^{2} \right)m_{1} + \left( -\frac{1}{27}a_{1}b_{3} + \frac{1}{18}a_{1}c_{3} - \frac{1}{162}b_{3}^{2} + \frac{1}{72}c_{3}^{2} \right)m_{2} \\ &+ \left( \frac{5}{27}a_{1}^{2} - \frac{1}{81}a_{1}b_{3} + \frac{11}{54}a_{1}c_{3} - \frac{1}{486}b_{3}^{2} + \frac{11}{216}c_{3}^{2} \right)m_{3} \right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$

and

 $\Xi^{-}$ 

 $-\frac{1}{4}$ 

34

1

 $\frac{1}{4}$ 

 $-\frac{1}{4}$  $-\frac{3}{4}$ 

 $-\frac{3}{4}$ 

 $-\frac{3}{4}$ 

 $\begin{array}{c} -\frac{9}{4} & -\frac{9}{4} & -\frac{1}{16} \\ -\frac{1}{16} & -\frac{1}{18} \\ -\frac{1}{18} & -\frac{9}{8} \\ -\frac{9}{8} & 98 \\ -\frac{9}{8} & 98 \\ -\frac{51}{16} \\ -\frac{51}{16} \\ -\frac{51}{16} \\ -\frac{9}{18} \\ -\frac{27}{87} \\ -\frac{87}{78} \\ -\frac{27}{87} \\ -\frac{87}{78} \\ -\frac{87}{78} \\ -\frac{1}{18} \\ -\frac{1}{18}$ 

0

0

0

 $\begin{array}{r} -\frac{81}{16} \\ -\frac{81}{16} \\ -\frac{153}{16} \\ -\frac{153}{16} \\ -\frac{27}{8} \\ -\frac{27}{8} \\ -\frac{27}{8} \\ -\frac{27}{8} \\ -\frac{27}{8} \\ -\frac{81}{16} \\ -\frac{81}{16} \\ -\frac{81}{16} \\ -\frac{243}{16} \end{array}$ 

 $\Xi^0$ 

 $-\frac{1}{4}$ 

 $-\frac{3}{4}$ 

 $-\frac{1}{2}$ 

 $-\frac{1}{4}$ 

 $-\frac{1}{4}$ 

 $-\frac{3}{4}$ 

 $-\frac{3}{4}$ 

 $-\frac{3}{4}$ 

 $-\frac{3}{4}$ 

 $-\frac{3}{4}$ 

 $\begin{array}{c} & \stackrel{+}{-} 9 \stackrel{-}{4} 9 \stackrel{-}{4} 9 \stackrel{-}{4} \\ & - \frac{9}{4} \stackrel{-}{16} \stackrel{-}{16} \stackrel{-}{16} \\ & - \frac{51}{16} \stackrel{-}{17} \stackrel{-}{8} \stackrel{-}{9} \stackrel{-}{8} 9 \stackrel{-}{8$ 

 $-\frac{51}{16}$ 

 $-\frac{51}{16}$  $-\frac{9}{8}$  $-\frac{9}{8}$ 

 $-\frac{27}{8}$  $-\frac{27}{8}$  $-\frac{27}{8}$ 

0

0

0

 $-\frac{81}{16} \\ -\frac{153}{16} \\ -\frac{153}{16} \\ -\frac{27}{8} \\ -\frac{21}{8} \\$ 

 $-\frac{81}{16} \\ -\frac{81}{16} \\ -\frac{243}{16}$ 

 $\Lambda\Sigma^0$ 

0

0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

0

0

0

0

0

0

0

0 0

0

0

0

Λ

 $-\frac{1}{6}$  $-\frac{1}{2}$ 

 $-\frac{1}{2}$ 

0

0

0

0

0

 $-\frac{1}{2}$ 

 $-\frac{1}{2}$ 

 $-\frac{3}{2}{0}$ 

0

 $-\frac{1}{2}$ 

 $-\frac{1}{2}$ 

 $\frac{1}{2}$ 

 $\frac{1}{2}$ 

 $-\frac{1}{2}$ 

0

0 0

0

0

0

0

0

0

0

 $-\frac{3}{2}$ 

 $-\frac{3}{2}$ 

 $-\frac{2}{3}{2}$ 

 $-\frac{3}{2}$ 

0

0

 $-\frac{3}{2}$ 

 $-\frac{3}{2}$ 

0

0

0

 $-\frac{9}{2}$ 

TABLE IX. Nontrivial matrix elements of the operators involved in the magnetic moments of octet baryons: flavor 27 representation.

| TABLE X.     | Nontrivial matrix elements of the operators involved    |
|--------------|---------------------------------------------------------|
| in the magne | etic moments of octet baryons: flavor 27 representa-    |
| tion. The en | tries correspond to $\sqrt{3}\langle T_i^{38}\rangle$ . |

|                                                           | n                | р                  | $\Sigma^{-}$         | $\Sigma^0$ | $\Sigma^+$               | $\Xi^{-}$         | $\Xi^0$                  | Λ | $\Lambda\Sigma^0$      |   |                                                             | п                        | р                        | $\Sigma^{-}$     | $\Sigma^0$        | $\Sigma^+$               |
|-----------------------------------------------------------|------------------|--------------------|----------------------|------------|--------------------------|-------------------|--------------------------|---|------------------------|---|-------------------------------------------------------------|--------------------------|--------------------------|------------------|-------------------|--------------------------|
| $\langle T_2^{33} \rangle$                                | $-\frac{5}{36}$  | $\frac{5}{36}$     | $-\frac{1}{9}$       | 0          | $\frac{1}{9}$            | $\frac{1}{36}$    | $-\frac{1}{36}$          | 0 | $\frac{1}{6\sqrt{3}}$  | • | $\langle T_2^{38} \rangle$                                  | $\frac{1}{12}$           | $\frac{1}{12}$           | $\frac{1}{6}$    | $\frac{1}{6}$     | $\frac{1}{6}$            |
| $\langle T_3^{33} \rangle$                                | 0                | 0                  | 0                    | 0          | 0                        | 0                 | 0                        | 0 | 0                      |   | $\langle T_3^{\bar{3}8} \rangle$                            | $\frac{1}{4}$            | $\frac{1}{4}$            | $\frac{1}{2}$    | $\frac{1}{2}$     | $\frac{1}{2}$            |
| $\langle T_4^{33} \rangle$                                | 0                | 0                  | 0                    | 0          | 0                        | 0                 | 0                        | 0 | 0                      |   | $\langle T_4^{38} \rangle$                                  | $-\frac{1}{2}$           | $-\frac{1}{2}$           | $-\frac{1}{2}$   | $-\frac{1}{2}$    | $-\frac{1}{2}$           |
| $\langle T_6^{33} \rangle$                                | $-\frac{1}{12}$  | $\frac{1}{12}$     | $-\frac{1}{6}$       | 0          | $\frac{1}{6}$            | $-\frac{1}{12}$   | $\frac{1}{12}$           | 0 | 0                      |   | $\langle T_6^{38} \rangle$                                  | $\frac{1}{4}$            | $\frac{1}{4}$            | 0                | 0                 | 0                        |
| $\langle T_7^{33} \rangle$                                | $\frac{1}{12}$   | $-\frac{1}{12}$    | $\frac{1}{6}$        | 0          | $-\frac{1}{6}$           | $\frac{1}{12}$    | $-\frac{1}{12}$          | 0 | 0                      |   | $\langle T_7^{38} \rangle$                                  | $\frac{1}{4}$            | $\frac{1}{4}$            | 0                | 0                 | 0                        |
| $\langle T_8^{33} \rangle$                                | 0                | 0                  | 0                    | 0          | 0                        | 0                 | 0                        | 0 | 0                      |   | $\langle T_{8}^{38} \rangle$                                | $\frac{3}{4}$            | $\frac{3}{4}$            | 0                | 0                 | 0                        |
| $\langle I_{9}^{33} \rangle$                              | $-\frac{5}{12}$  | 12                 | 1                    | 0          | 0                        | $-\frac{1}{12}$   | 12                       | 0 | 0                      |   | $\langle T_{9}^{38} \rangle$                                | $-\frac{1}{4}$           | $-\frac{1}{4}$           | 0                | 0                 | 0                        |
| $\langle T_{10}^{20} \rangle$<br>$\langle T^{33} \rangle$ | 12<br>5          | $-\frac{12}{5}$    | 3<br>1               | 0          | $-\frac{1}{3}$           | $-\frac{1}{4}$    | 4<br>1                   | 0 | 1                      |   | $\langle T_{10}^{38} \rangle$                               | $-\frac{1}{4}$           | $-\frac{1}{4}$           | 1                | 1                 | 1                        |
| $(T_{15})$                                                | $-\frac{12}{5}$  | 12                 | $-\frac{1}{3}$       | 0          | 3                        | 12                | $-\frac{12}{12}$         | 0 | $\frac{2\sqrt{3}}{1}$  |   | $\langle I_{15}^{30} \rangle$<br>$\langle T^{38} \rangle$   | $\frac{1}{4}$            | 1<br>1                   | 1<br>1           | 1<br>2<br>1       | $\frac{1}{2}$            |
| $\langle I_{16}^{*} \rangle$                              | 12               | $-\frac{1}{12}$    | 3                    | 0          | $-\frac{1}{3}$           | $-\frac{1}{12}$   | 12                       | 0 | $-\frac{1}{2\sqrt{3}}$ |   | $(I_{16}) / T^{38}$                                         | 4<br>3                   | $\frac{\overline{4}}{3}$ | $\frac{2}{3}$    | $\frac{2}{3}$     | $\frac{\overline{2}}{3}$ |
| $\langle T_{19}^{33} \rangle$                             | 5                | 5                  | 0                    | 0          | 0                        | 1                 | 1                        | 0 | 0                      |   | $\langle T_{19} \rangle$<br>$\langle T^{38} \rangle$        | $\frac{4}{3}$            | $\frac{4}{3}$            | $\overline{2}$   | $\overline{2}$    | $\overline{\frac{2}{0}}$ |
| $\langle T_{25} \rangle$<br>$\langle T^{33} \rangle$      | $-\frac{1}{4}$   | 4<br>1             | 0                    | 0          | 0                        | 4<br>3            | $-\frac{1}{3}$           | 0 | 0                      |   | $\langle T_{25}^{38} \rangle$                               | 4<br><u>3</u>            | 4<br>3                   | 0                | 0                 | 0                        |
| $\langle T_{26} \rangle$<br>$\langle T^{33} \rangle$      | 4<br>5           | 4<br>5             | -1                   | 0          | 1                        | 4<br>             | 4<br><u>17</u>           | 0 | 1                      |   | $\langle T^{38}_{27} \rangle$                               | $\frac{4}{1}$            | 4<br>1                   | 3                | 3                 | 3                        |
| $\langle \mathbf{T}_{27} \rangle$                         | 48<br>5          | 48<br>5            | 2                    | 0          | 2                        | 48<br>11          | 48<br>11                 | 0 | $\sqrt{3}$             |   | $\langle T_{28}^{38} \rangle$                               | $\frac{16}{16}$          | $\frac{16}{16}$          | $\frac{2}{3}$    | $\frac{2}{3}$     | $\frac{2}{3}$            |
| $\langle T_{28} \rangle$<br>$\langle T^{33} \rangle$      | $\frac{48}{5}$   | 48<br>5            | $-\frac{3}{2}$       | 0          | $\frac{\overline{3}}{2}$ | 16<br>11          | $-\frac{16}{11}$         | 0 | 1_                     |   | $\langle T_{29}^{38} \rangle$                               | $-\frac{1}{8}$           | $-\frac{1}{8}$           | $-\frac{3}{2}$   | $-\frac{3}{2}$    | $-\frac{3}{2}$           |
| $(T_{29})/(T^{33})$                                       | 24<br>5          | 24<br>5            | 3<br>2               | 0          | 3<br>2                   | 24<br><u>11</u>   | 24<br>11                 | 0 | $\frac{2\sqrt{3}}{1}$  |   | $\langle T_{30}^{\overline{38}} \rangle$                    | $-\frac{1}{8}$           | $-\frac{1}{8}$           | $-\frac{3}{2}$   | $-\frac{3}{2}$    | $-\frac{3}{2}$           |
| $\langle \mathbf{T}_{30} \rangle$                         | 24<br>5          | - 24<br>5          | 3<br>1               | 0          | $-\frac{3}{3}$           | 24<br>1           | $-\frac{1}{24}$          | 0 | $\frac{2\sqrt{3}}{0}$  |   | $\langle T^{38}_{31} \rangle$                               | $-\frac{1}{8}$           | $-\frac{1}{8}$           | $-\frac{1}{2}$   | $-\frac{1}{2}$    | $-\frac{1}{2}$           |
| $(T_{31})$<br>$(T^{33})$                                  | 24               | 24<br>5            | $-\frac{3}{1}$       | 0          | 3<br>1                   | $-\frac{8}{1}$    | 8<br>1                   | 0 | 0                      |   | $\langle T^{38}_{32} \rangle$                               | $-\frac{1}{8}$           | $-\frac{1}{8}$           | $-\frac{1}{2}$   | $-\frac{1}{2}$    | $-\frac{1}{2}$           |
| $\langle T_{32}^{32} \rangle$                             | 24<br>           | 24<br>5            | 3<br>1               | 0          | $\frac{3}{1}$            | 8<br>1            | 8<br>_ <u>1</u>          | 0 | 0                      |   | $\langle T_{33}^{38} \rangle$                               | $-\frac{1}{8}$           | $-\frac{1}{8}$           | $-\frac{1}{2}$   | $-\frac{1}{2}$    | $-\frac{1}{2}$           |
| $\langle T_{24}^{33} \rangle$                             | $\frac{24}{5}$   | $-\frac{24}{5}$    | $\frac{3}{1}$        | 0          | $-\frac{3}{1}$           | $\frac{8}{1}$     | $-\frac{8}{1}$           | 0 | 0                      |   | $\langle T_{34}^{38} \rangle$                               | $-\frac{1}{8}$           | $-\frac{1}{8}$           | $-\frac{1}{2}$   | $-\frac{1}{2}$    | $-\frac{1}{2}$           |
| $\langle T_{46}^{33} \rangle$                             | $-\frac{3}{4}$   | $\frac{3}{4}$      | $\overset{3}{0}$     | 0          | 0                        | $-\frac{3}{4}$    | $\frac{3}{4}$            | 0 | 0                      |   | $\langle T_{46}^{36} \rangle$                               | $\frac{2}{4}$            | $\frac{2}{4}$            | 0                | 0                 | 0                        |
| $\langle T_{47}^{33} \rangle$                             | $-\frac{1}{16}$  | $\frac{1}{16}$     | $-\frac{3}{2}$       | 0          | $\frac{3}{2}$            | $-\frac{17}{16}$  | $\frac{17}{16}$          | 0 | 0                      |   | $\langle I_{47} \rangle$<br>$\langle T^{38} \rangle$        | 16<br>3                  | $\frac{16}{3}$           | 0                | 0                 | 0                        |
| $\langle T^{33}_{48} \rangle$                             | $-\frac{5}{16}$  | $\frac{5}{16}$     | 0                    | 0          | Ō                        | $\frac{11}{16}$   | $-\frac{11}{16}$         | 0 | 0                      |   | $(T_{48})$                                                  | <u>16</u><br>_ <u>3</u>  | <u>16</u><br><u>3</u>    | 0                | 0                 | 0                        |
| $\langle T^{33}_{49} \rangle$                             | $-\frac{5}{8}$   | <u>5</u><br>8      | 0                    | 0          | 0                        | $-\frac{1}{8}$    | $\frac{1}{8}$            | 0 | 0                      |   | $\langle T_{49}^{38} \rangle$                               | $-\frac{8}{3}$           | $-\frac{8}{3}$           | 0                | 0                 | 0                        |
| $\langle T_{50}^{33} \rangle$                             | 1<br>8           | $-\frac{1}{8}$     | $\frac{1}{2}$        | 0          | $-\frac{1}{2}$           | $-\frac{3}{8}$    | 3<br>8<br>2              | 0 | 0                      |   | $\langle T_{52}^{38} \rangle$                               | 3                        | $\frac{3}{8}$            | 0                | 0                 | 0                        |
| $\langle T_{52}^{33} \rangle$                             | $-\frac{5}{8}$   | <u>3</u><br>8<br>5 | 0                    | 0          | 0                        | 2<br>8<br>3       | $-\frac{5}{8}$           | 0 | 0                      |   | $\langle T_{53}^{38} \rangle$                               | 3/8                      | 3/8                      | 0                | 0                 | 0                        |
| $\langle T_{53}^{55} \rangle$                             | $-\frac{5}{8}$   | 8                  | 0                    | 0          | 0                        | 89                | $-\frac{5}{8}$           | 0 | 0                      |   | $\langle T_{54}^{38} \rangle$                               | <u>3</u><br>8            | $\frac{3}{8}$            | 0                | 0                 | 0                        |
| $\langle T_{54}^{23} \rangle$                             | $-\frac{1}{8}$   | 8                  | -1                   | 0          | 1                        | $-\frac{1}{8}$    | 8                        | 0 | $\sqrt{3}$             |   | $\langle T_{58}^{38} \rangle$                               | 0                        | 0                        | 0                | 0                 | 0                        |
| $\langle \mathbf{T}_{58} \rangle$                         | 0                | 0                  | 0                    | 0          | 0                        | 0                 | 0                        | 0 | $-\frac{\sqrt{3}}{2}$  |   | $\langle T_{65}^{38} \rangle$                               | 0                        | 0                        | 0                | 0                 | 0                        |
| $\langle T_{65} \rangle$                                  | 0                | 0                  | 0                    | 0          | 0                        | 0                 | 0                        | 0 | $-\frac{\sqrt{3}}{4}$  |   | $\langle T_{66}^{36} \rangle$<br>$\langle T^{38} \rangle$   | 3                        | 3                        | 3                | 3                 | 3                        |
| $(T_{66})$                                                | 5                | 5                  | 1                    | 0          | 1                        | 9                 | 9                        | 0 | $\frac{\sqrt{5}}{4}$   |   | $(T_{94})/(T^{38})$                                         | 16<br>3                  | 16<br>3                  | $\frac{2}{3}$    | $\frac{2}{3}$     | $\frac{2}{3}$            |
| $\langle I_{94}^{\circ} \rangle$                          | $-\frac{5}{16}$  | 16                 | -1                   | 0          | 1                        | 16                | - <u>16</u><br>9         | 0 | $\frac{\sqrt{3}}{2}$   |   | $\langle T_{95}^{38} \rangle$                               | $\frac{16}{3}$           | $\frac{16}{3}$           | $\frac{2}{9}$    | $\frac{2}{9}$     | $\frac{2}{9}$            |
| $\langle I_{95}^{33} \rangle$                             | $-\frac{5}{16}$  | 16<br>5            | -1                   | 0          | 1                        | 16<br>17          | $-\frac{1}{16}$          | 0 | 0                      |   | $\langle T_{07}^{38} \rangle$                               | $\frac{16}{3}$           | $\frac{16}{3}$           | $\frac{2}{9}{2}$ | $\frac{2}{9}{2}$  | 2<br><u>9</u>            |
| $\langle T_{96}^{36} \rangle$<br>$\langle T^{33} \rangle$ | $-\frac{16}{5}$  | 16<br>5            | -3<br>-2             | 0          | 2                        | 16<br>33          | $-\frac{16}{33}$         | 0 | $\sqrt{3}$             |   | $\langle T_{98}^{38} \rangle$                               | $\frac{10}{\frac{9}{8}}$ | $\frac{10}{\frac{9}{8}}$ | $\tilde{0}$      | $\dot{\tilde{0}}$ | $\tilde{0}$              |
| $\langle T_{97} \rangle$                                  | $\frac{16}{3}$   | 16<br><u>3</u>     | 0                    | 0          | 0                        | 16<br>9           | $\frac{-16}{9}$          | 0 | 0                      |   | $\langle T_{99}^{38} \rangle$                               | <u>9</u><br>8            | <u>9</u><br>8            | 0                | 0                 | 0                        |
| $\langle T_{98}^{33} \rangle$                             | $-\frac{8}{15}$  | 8<br>15            | 0                    | 0          | 0                        | $\frac{3}{2}^{8}$ | $\frac{8}{-\frac{3}{2}}$ | 0 | 0                      |   | $\langle T_{100}^{38} \rangle$                              | $-\frac{3}{8}$           | $-\frac{3}{8}$           | $-\frac{3}{2}$   | $-\frac{3}{2}$    | $-\frac{3}{2}$           |
| $\langle T_{100}^{33} \rangle$                            | $-\frac{8}{5}$   | 8<br>5             | -1                   | 0          | 1                        | $-\frac{8}{3}$    | <u>3</u>                 | 0 | 0                      |   | $\langle T_{101}^{38} \rangle$                              | $-\frac{3}{8}$           | $-\frac{3}{8}$           | $-\frac{3}{2}$   | $-\frac{3}{2}$    | $-\frac{3}{2}$           |
| $\langle T_{101}^{33} \rangle$                            | $\frac{5}{8}$    | $-\frac{5}{2}$     | 1                    | 0          | -1                       | $\frac{3}{8}$     | $-\frac{3}{8}$           | 0 | 0                      |   | $\langle T_{120}^{38} \rangle$                              | $\frac{9}{16}$           | $\frac{9}{16}$           | 0                | 0                 | 0                        |
| $\langle T_{120}^{33} \rangle$                            | $-\frac{3}{16}$  | $\frac{3}{16}$     | $-\frac{3}{2}$       | 0          | $\frac{3}{2}$            | $-\frac{27}{16}$  | $\frac{27}{16}$          | 0 | 0                      |   | $\langle T_{132}^{56} \rangle$                              | 9<br>16<br>9             | 9<br>16<br>9             | 0                | 0                 | 0                        |
| $\langle T^{33}_{132} \rangle$                            | $-\frac{3}{16}$  | $\frac{3}{16}$     | $-\frac{\bar{3}}{2}$ | 0          | $\frac{\overline{3}}{2}$ | $-\frac{27}{16}$  | $\frac{2\tilde{7}}{16}$  | 0 | 0                      |   | $\langle I_{133}^{(3)} \rangle$<br>$\langle T^{38} \rangle$ | $\frac{16}{9}$           | $\frac{16}{9}$           | 9                | 9                 | 9                        |
| $\langle T_{133}^{33} \rangle$                            | $-\frac{15}{16}$ | $\frac{15}{16}$    | 0                    | 0          | 0                        | $\frac{9}{16}$    | $-\frac{9}{16}$          | 0 | 0                      | : | 1 166/                                                      | 16                       | 16                       | 2                | 2                 | 2                        |
| $\langle T_{166}^{55} \rangle$                            | $-\frac{15}{16}$ | $\frac{15}{16}$    | -3                   | 0          | 3                        | $\frac{27}{16}$   | $-\frac{27}{16}$         | 0 | $\frac{3\sqrt{3}}{2}$  |   |                                                             |                          |                          |                  |                   |                          |

 $\Xi^{*0}$ 

 $-\frac{1}{4}$ 

 $\frac{3}{4}$ 

 $-\frac{3}{4}$  $-\frac{9}{4}$ 

 $-\frac{3}{4}$ 

 $-\frac{15}{4}$  $-\frac{15}{4}$  $-\frac{45}{4}$  $-\frac{9}{4}$ 

\_

 $\Xi^{*-}$ 

 $-\frac{1}{4}$ 

 $-\frac{3}{4}$  $-\frac{9}{4}$  $-\frac{3}{4}$ 

 $-\frac{3}{4}$ 

 $\begin{array}{c} -\frac{15}{4} \\ -\frac{45}{4} \\ -\frac{94}{4} \\$ 

 $\begin{array}{c} -\frac{9}{4}\\ -\frac{27}{16}\\ -\frac{27}{16}\\ -\frac{27}{16}\\ -\frac{27}{16}\\ -\frac{27}{16}\\ -\frac{27}{16}\\ -\frac{27}{16}\\ -\frac{27}{16}\\ -\frac{15}{8}\\ -\frac{15}{8}\\ -\frac{15}{8}\\ -\frac{15}{8}\\ -\frac{45}{8}\\ -\frac{225}{16}\\ -\frac{405}{16}\\ -\frac{405}{16}\\ -\frac{135}{8}\\ -\frac{225}{8}\\ -\frac{225}{16}\\ -\frac{405}{16}\\ -\frac{135}{8}\\ -\frac{225}{8}\\ -\frac{225}{16}\\ -\frac{675}{16}\\ -\frac{675}{16}\\ -\frac{675}{16}\\ -\frac{675}{16}\\ -\frac{37}{16}\\ -\frac{37}$ 

\_

 $\Omega^{-}$  $-\frac{1}{2}$ 

 $-\frac{3}{2}$  $-\frac{2}{9}{2}$ 

-3

-3

 $-\frac{15}{2}$ 

 $-\frac{15}{2}$ 

 $-\frac{45}{2}$ 

-18

-18 $-\frac{15}{2}$ 

 $-\frac{15}{2}$ 

 $-\frac{15}{2}$  $-\frac{15}{2}$  $-\frac{15}{2}$ 

 $-\frac{15}{2}$ 

 $-\frac{15}{2}$ 

-54 $-\frac{45}{2}$ 

 $-\frac{\frac{2}{45}}{-\frac{45}{2}}$ 

 $-\frac{45}{2}$ 

-45

-45

-45  $-\frac{225}{2}$ 

 $-\frac{225}{2}$ 

\_ <u>225</u>

\_ 225

 $-1\bar{3}5$ 

-135

 $-\frac{225}{2}$ 

\_ <u>675</u>

\_ <u>675</u>

\_ 3375

TABLE XI. Nontrivial matrix elements of the operators involved in the magnetic moments of decuplet baryons: flavor 27 representation.

| TABLE     | XII.     | Nontrivial   | matrix     | elements  | of         | the                          | operators  |
|-----------|----------|--------------|------------|-----------|------------|------------------------------|------------|
| involved  | in the   | magnetic i   | moments    | of decup  | let l      | baryo                        | ns: flavor |
| 27 repres | sentatio | on. The entr | ries corre | espond to | $\sqrt{3}$ | $\langle T_i^{38} \rangle$ . |            |

 $\Sigma^{*+}$ 

 $-\frac{3}{2}$  $-\frac{3}{2}$  $-\frac{3}{2}$ \_

 $-\frac{3}{2}$  $-\frac{3}{2}$ 

 $-\frac{3}{2}$  $-\frac{3}{2}$ 

 $\Sigma^{*0} \Sigma^{*-}$ 

 $-\frac{3}{2}$ 

 $-\frac{\tilde{3}}{2}$ 

\_

TABLE XIII. Nontrivial matrix elements of the operators involved in the magnetic moments of decuplet baryons: flavor **27** representation. The entries correspond to  $\sqrt{2}\langle T_i^{33} \rangle$ .

TABLE XIV. Nontrivial matrix elements of the operators involved in the magnetic moments of decuplet baryons: flavor **27** representation. The entries correspond to  $\sqrt{6}\langle T_i^{38}\rangle$ .

|                                          | $\Delta^+ p$     | $\Delta^0 n$     | $\Sigma^{*0}\Lambda$                    | $\Sigma^{*0}\Sigma^{0}$ | $\Sigma^{*+}\Sigma^+$ | $\Sigma^{*-}\Sigma^{-}$ | $\Xi^{*0}\Xi_0$         | Ξ*-Ξ-                    |                                                                | $\Delta^+$    | $p \Delta^0 n$ | $\Sigma^{*0}\Lambda$ | $\Sigma^{*0}\Sigma^{0}$  | $\Sigma^{*+}\Sigma^+$    | $\Sigma^{*-}\Sigma^{-}$  | $\Xi^{*0}\Xi^{0}$  | Ξ*-Ξ-                  |
|------------------------------------------|------------------|------------------|-----------------------------------------|-------------------------|-----------------------|-------------------------|-------------------------|--------------------------|----------------------------------------------------------------|---------------|----------------|----------------------|--------------------------|--------------------------|--------------------------|--------------------|------------------------|
| $\langle T_2^{33} \rangle$               | $\frac{2}{9}$    | $\frac{2}{9}$    | $\frac{1}{3\sqrt{3}}$                   | 0                       | <u>1</u><br>9         | $-\frac{1}{9}$          | <u>1</u><br>9           | $-\frac{1}{9}$           | $\langle T_{2}^{38}$                                           | $\rangle 0$   | 0              | 0                    | $\frac{1}{3}$            | $\frac{1}{3}$            | $\frac{1}{3}$            | $\frac{1}{3}$      | $\frac{1}{3}$          |
| $\langle T_3^{33} \rangle$               | 0                | 0                | 0                                       | 0                       | 0                     | 0                       | 0                       | 0                        | $\langle T_{3}^{38}$                                           | $\rangle = 0$ | 0              | 0                    | 1                        | 1                        | 1                        | 1                  | 1                      |
| $\langle T_9^{33} \rangle$               | $\frac{2}{3}$    | $\frac{2}{3}$    | 0                                       | 0                       | 0                     | 0                       | $-\frac{1}{3}$          | $\frac{1}{3}$            | $\langle T_{9}^{38} \rangle$                                   | $\rangle 0$   | 0              | 0                    | 0                        | 0                        | 0                        | 1                  | 1                      |
| $\langle T_{10}^{33} \rangle$            | 0                | 0                | 0                                       | 0                       | $-\frac{2}{3}$        | $\frac{2}{3}$           | $-\frac{1}{3}$          | $\frac{1}{3}$            | $\langle T_{10}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | 0                        | 0                        | 0                        | 1                  | 1                      |
| $\langle T_{21}^{33} \rangle$            | 1                | 1                | $\frac{\sqrt{3}}{2}$                    | 0                       | $\frac{1}{2}$         | $-\frac{1}{2}$          | $\frac{1}{2}$           | $-\frac{1}{2}$           | $\langle T_{21}^{30} \rangle$                                  | $\rangle 0$   | 0              | 0                    | $\frac{3}{2}{3}$         | $\frac{3}{2}$            | $\frac{3}{2}$            | $\frac{3}{2}{3}$   | $\frac{3}{2}$          |
| $\langle T_{22}^{33} \rangle$            | -1               | -1               | $-\frac{\sqrt{3}}{2}$                   | 0                       | $-\frac{1}{2}$        | $\frac{1}{2}$           | $-\frac{1}{2}$          | $\frac{1}{2}$            | $\langle T_{22}^{36} \rangle$                                  |               | 0              | 0                    | $\frac{3}{2}$            | $\frac{3}{2}$            | $\frac{3}{2}$            | $\frac{3}{2}$      | 29                     |
| $\langle T_{23}^{33} \rangle$            | 0                | 0                | 0                                       | 0                       | 0                     | 0                       | 0                       | 0                        | $\langle I \rangle_{23}^{30}$<br>$\langle T \rangle_{38}^{30}$ |               | 0              | 0                    | 2                        | $\frac{1}{2}$            | $\frac{2}{2}$            | $\frac{2}{3}$      | $\frac{2}{3}$          |
| $\langle T_{25}^{33} \rangle$            | 2                | 2                | 0                                       | 0                       | 0                     | 0                       | 1                       | -1                       | $(T_{25})/(T^{38})$                                            | $\rangle 0$   | 0              | 0                    | 0                        | 0                        | 0                        | 3                  | 3                      |
| $\langle T_{26}^{33} \rangle$            | 0                | 0                | 0                                       | 0                       | 0                     | 0                       | -1                      | 1                        | $\langle T_{26}^{26} \rangle$                                  | $\rangle 0$   | 0              | 0                    | 2                        | 2                        | 2                        | <u>13</u>          | <u>13</u>              |
| $\langle T_{27}^{33} \rangle$            | $\frac{1}{2}$    | $\frac{1}{2}$    | $\frac{1}{\sqrt{3}}$                    | 0                       | $\frac{2}{3}$         | $-\frac{2}{3}$          | $\frac{13}{12}$         | $-\frac{13}{12}$         | $\langle T_{28}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | 2                        | 2                        | 2                        | $\frac{4}{13}$     | $\frac{4}{13}$         |
| $\langle T_{28}^{33} \rangle$            | 0                | 0                | $\frac{1}{2\sqrt{3}}$                   | 0                       | $\frac{5}{6}$         | $-\frac{5}{6}$          | $\frac{5}{12}$          | $-\frac{5}{12}$          | $\langle T_{31}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | $-\frac{1}{2}$           | $-\frac{1}{2}$           | $-\frac{1}{2}$           | $\frac{4}{2}$      | <sup>4</sup> 2         |
| $\langle T_{31}^{33} \rangle$            | 1                | 1                | $-\frac{1}{2\sqrt{3}}$                  | 0                       | $\frac{1}{6}$         | $-\frac{1}{6}$          | $-\frac{2}{3}$          | $\frac{2}{3}$            | $\langle T_{32}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | $-\frac{1}{2}$           | $-\frac{1}{2}$           | $-\frac{1}{2}$           | 2                  | 2                      |
| $\langle T_{32}^{33} \rangle$            | 0                | 0                | $-\frac{1}{2\sqrt{3}}$                  | 0                       | $\frac{7}{6}$         | $-\frac{7}{6}$          | $\frac{1}{3}$           | $-\frac{1}{3}$           | $\langle T_{33}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | $-\frac{1}{2}$           | $-\frac{1}{2}$           | $-\frac{1}{2}$           | 2                  | 2                      |
| $\langle T_{33}^{33} \rangle$            | -1               | -1               | $\frac{1}{2\sqrt{2}}$                   | 0                       | $-\frac{1}{6}$        | $\frac{1}{6}$           | $\frac{2}{3}$           | $-\frac{2}{3}$           | $\langle T_{34}^{38} \rangle$                                  | $\rangle = 0$ | 0              | 0                    | $-\frac{1}{2}$           | $-\frac{1}{2}$           | $-\frac{1}{2}$           | 2                  | 2                      |
| $\langle T^{33}_{34} \rangle$            | 0                | 0                | $\frac{2\sqrt{3}}{\frac{1}{2\sqrt{2}}}$ | 0                       | $-\frac{7}{6}$        | $\frac{7}{6}$           | $-\frac{1}{3}$          | $\frac{1}{3}$            | $\langle T^{38}_{45}$                                          | $\rangle = 0$ | 0              | 0                    | $-\frac{27}{2}$          | $-\frac{27}{2}$          | $-\frac{27}{2}$          | $-\frac{27}{2}$    | $-\frac{27}{2}$        |
| $(T_{45}^{33})$                          | 0                | 0                | $0^{2\sqrt{3}}$                         | 0                       | 0                     | 0                       | 0                       | 0                        | $\langle T_{52}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | 0                        | 0                        | 0                        | 6                  | 6                      |
| $\langle T_{52}^{33} \rangle$            | 0                | 0                | 0                                       | 0                       | 0                     | 0                       | -1                      | 1                        | $\langle T_{53}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | 0                        | 0                        | 0                        | 6                  | 6                      |
| $\langle T_{53}^{3\overline{3}} \rangle$ | 3                | 3                | 0                                       | 0                       | 0                     | 0                       | 2                       | -2                       | $\langle T_{54}^{30} \rangle$                                  |               | 0              | 0                    | 0                        | 0                        | 0                        | 6<br>39            | 6<br>39                |
| $\langle T_{54}^{33} \rangle$            | 0                | 0                | 0                                       | 0                       | 1                     | -1                      | -2                      | 2                        | $\langle T_{55}^{30} \rangle$                                  |               | 0              | 0                    | -0<br>-6                 | -0<br>-6                 | -0<br>-6                 | $-\frac{35}{4}$ 39 | $-\frac{35}{4}$ 39     |
| $\langle T_{55}^{33} \rangle$            | 0                | 0                | $-\frac{\sqrt{3}}{2}$                   | 0                       | $-\frac{5}{2}$        | $\frac{5}{2}$           | $-\frac{5}{4}$          | $\frac{5}{4}$            | $(T_{56})^{T}$<br>$(T^{38})^{T}$                               | ) 0           | 0              | 0                    | 0                        | 0                        | 0                        | $-\frac{4}{4}$     | $-\frac{4}{4}$         |
| $\langle T_{56}^{33} \rangle$            | $-\frac{3}{2}$   | $-\frac{3}{2}$   | $-\sqrt{3}$                             | 0                       | -2                    | 2                       | $-\frac{13}{4}$         | $\frac{13}{4}$           | $\langle T_{57}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | <u>45</u>                | <u>45</u>                | <u>45</u>                | 27                 | 27                     |
| $\langle T_{57}^{33} \rangle$            | 0                | 0                | $-\frac{\sqrt{3}}{2}$                   | 0                       | 0                     | 0                       | 0                       | 0                        | $\langle T_{cs}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | $-\frac{2}{9}$           | $-\frac{2}{9}$           | $-\frac{2}{9}$           | $-\frac{9}{4}$     | $-\frac{9}{4}$         |
| $\langle T_{59}^{33} \rangle$            | 0                | 0                | $-\frac{3\sqrt{3}}{2}$                  | 0                       | $\frac{9}{2}$         | $-\frac{9}{2}$          | 3                       | -3                       | $\langle T_{66}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | $-\frac{4}{2}$           | $-\frac{4}{9}$           | $-\frac{4}{2}$           | $-\frac{4}{9}$     | $-\frac{4}{9}$         |
| $\langle T_{65}^{33} \rangle$            | -3               | -3               | $-\frac{3\sqrt{3}}{4}$                  | 0                       | $\frac{3}{4}$         | $-\frac{3}{4}$          | $\frac{3}{4}$           | $-\frac{3}{4}$           | $\langle T_{67}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | $\frac{3}{2}$            | $\frac{3}{2}$            | $\frac{3}{2}^{4}$        | $-6^{-1}$          | $-6^{-1}$              |
| $\langle T_{66}^{33} \rangle$            | 0                | 0                | $-\frac{3\sqrt{3}}{4}$                  | 0                       | $-\frac{9}{4}$        | $\frac{9}{4}$           | $-\frac{9}{4}$          | $\frac{9}{4}$            | $\langle T_{68}^{38}$                                          | $\rangle 0$   | 0              | 0                    | $\frac{\overline{3}}{2}$ | $\frac{\overline{3}}{2}$ | $\frac{\overline{3}}{2}$ | -6                 | -6                     |
| $\langle T_{67}^{33} \rangle$            | -6               | -6               | $\frac{\sqrt{3}}{2}$                    | 0                       | $\frac{1}{2}$         | $-\frac{1}{2}$          | -2                      | 2                        | $\langle T_{69}^{38} \rangle$                                  | $\rangle = 0$ | 0              | 0                    | $\frac{\overline{3}}{4}$ | $\frac{\overline{3}}{4}$ | $\frac{\overline{3}}{4}$ | -3                 | -3                     |
| $\langle T_{68}^{33} \rangle$            | 0                | 0                | $\overset{2}{0}$                        | 0                       | 1                     | $-1^{-1}$               | $\frac{7}{2}$           | $-\frac{7}{2}$           | $\langle T_{70}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | $\frac{171}{8}$          | $\frac{171}{8}$          | $\frac{171}{8}$          | $\frac{99}{4}$     | $\frac{99}{4}$         |
| $\langle T_{69}^{33} \rangle$            | 0                | 0                | $-\frac{\sqrt{3}}{4}$                   | 0                       | $\frac{7}{4}$         | $-\frac{7}{4}$          | $\frac{\frac{2}{1}}{2}$ | $-\frac{1}{2}$           | $\langle T_{94}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | $\frac{3}{2}$            | $\frac{3}{2}$            | $\frac{3}{2}$            | $\frac{51}{4}$     | $\frac{51}{4}$         |
| $\langle T_{70}^{33} \rangle$            | 0                | 0                | $\frac{4}{3\sqrt{3}}$                   | 0                       | <u>39</u>             | - <u>39</u>             | $\frac{15}{4}$          | $-\frac{15}{4}$          | $\langle T_{95}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | $\frac{3}{2}$            | $\frac{3}{2}$            | $\frac{3}{2}$            | $\frac{51}{4}$     | $\frac{51}{4}$         |
| $(T_{04}^{33})$                          | <u>13</u>        | <u>13</u>        | $\frac{8}{\sqrt{3}}$                    | 0                       | $\frac{1}{2}$         | $-\frac{1}{2}$          | <u>17</u>               | $-\frac{17}{4}$          | $\langle T_{10}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | 0                        | 0                        | 0                        | $-\frac{27}{2}$    | $-\frac{27}{2}$        |
| $(T_{05}^{33})$                          | $\overset{2}{0}$ | $\overset{2}{0}$ |                                         | 0                       | 1                     | $-1^{2}$                | _ <u>11</u>             | 4<br><u>11</u>           | $\langle I_{10}^{30} \\ \langle T_{38}^{30} \rangle$           | ↓) U<br>\ 0   | 0              | 0                    | $-\frac{2}{2}$           | $-\frac{2}{2}$           | $-\frac{2}{2}$           | 18                 | 18                     |
| $T_{102}^{33}$                           | 0                | 0                | 0                                       | 0                       | -9                    | 9                       | $-\frac{4}{2}$          | 4<br><u>9</u>            | $(T_{12})_{12}$<br>$(T^{38})_{73}$                             | $\rangle 0$   | 0              | 0                    | 0                        | 0                        | 0                        | _ 81               | _ 81                   |
| $T_{104}^{33}$                           | 0                | 0                | 0                                       | 0                       | -3                    | 3                       | $-\frac{21}{2}$         | $\frac{\frac{2}{21}}{2}$ | $(T_{12})^{T_{12}}$                                            | $\rangle 0$   | 0              | 0                    | -27                      | -27                      | -27                      | $\frac{1}{351}$    | $\frac{2}{351}$        |
| $T_{120}^{1047}$                         | 0                | 0                | 0                                       | 0                       | $\frac{9}{2}$         | $-\frac{9}{2}$          | $-9^{2}$                | $\hat{9}$                | $(T_{12})$<br>$(T_{12})$                                       | $\rangle 0$   | 0              | 0                    | -27                      | -27                      | -27                      | <u> </u>           | <u>8</u><br><u>351</u> |
| $T_{121}^{33}$                           | 0                | 0                | 0                                       | 0                       | $\tilde{0}$           | 0                       | $\frac{27}{2}$          | $-\frac{27}{2}$          | $\langle T_{12}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | 0                        | 0                        | 0                        | $-\frac{8}{81}$    | $-\frac{8}{81}$        |
| $T_{122}^{33}\rangle$                    | 0                | 0                | $-\frac{9\sqrt{3}}{4}$                  | 0                       | $-\frac{45}{4}$       | $\frac{45}{4}$          | $-\frac{45}{8}$         | $\frac{45}{8}$           | $\langle T_{16}^{38} \rangle$                                  | $\rangle 0$   | 0              | 0                    | <u> </u>                 | $-\frac{189}{2}$         | - <u>189</u>             | <u>621</u>         | <u>621</u>             |
| $T_{123}^{33}$                           | $-\frac{27}{4}$  | $-\frac{27}{4}$  | $-\frac{9\sqrt{3}}{2}$                  | 0                       | -9                    | 9                       | $-\frac{117}{8}$        | <u>117</u><br>8          | <u>\ 10</u>                                                    | ,             |                |                      | δ                        | δ                        | δ                        | δ                  | <u>ð</u>               |
| $T^{33}_{134}\rangle$                    | -27              | -27              | 0                                       | 0                       | 0                     | 0                       | $-\frac{27}{4}$         | $\frac{27}{4}$           |                                                                |               |                |                      |                          |                          |                          |                    |                        |
| $T_{167}^{33}$                           | 0                | 0                | $9\sqrt{3}$                             | 0                       | $-\frac{81}{8}$       | 81                      | $-\frac{351}{2}$        | <u>351</u>               |                                                                |               |                |                      |                          |                          |                          |                    |                        |

$$\begin{split} \delta\mu_{\Sigma^{**}}^{(\text{loop 2ad)}} &= \left[ \left( -\frac{1}{8}a_1^2 - \frac{11}{36}a_1b_2 - \frac{55}{108}a_1b_3 + \frac{1}{36}a_1c_3 - \frac{19}{72}b_2^2 - \frac{95}{108}b_2b_3 + \frac{1}{9}b_2c_3 - \frac{475}{648}b_3^2 + \frac{5}{27}b_3c_3 - \frac{1}{48}c_3^2 \right)m_1 \\ &+ \left( -\frac{11}{24}a_1^2 - \frac{19}{36}a_1b_2 - \frac{95}{108}a_1b_3 - \frac{7}{36}a_1c_3 - \frac{19}{72}b_2^2 - \frac{95}{108}b_2b_3 - \frac{475}{648}b_3^2 - \frac{7}{144}c_3^2 \right)m_2 \\ &+ \left( -\frac{161}{216}a_1^2 - \frac{95}{108}a_1b_2 - \frac{475}{324}a_1b_3 - \frac{11}{36}a_1c_3 - \frac{95}{216}b_2^2 - \frac{475}{324}b_2b_3 - \frac{2375}{1944}b_3^2 - \frac{11}{144}c_3^2 \right)m_3 \\ &+ \left( \frac{1}{9}a_1^2 + \frac{1}{9}a_1b_2 + \frac{5}{27}a_1b_3 + \frac{1}{18}a_1c_3 + \frac{1}{18}b_2c_3 + \frac{5}{54}b_3c_3 \right)m_4 \right]I_2(m_{\pi}, 0, \mu) \\ &+ \left[ \left( -\frac{13}{48}a_1^2 - \frac{35}{72}a_1b_2 - \frac{175}{216}a_1b_3 - \frac{1}{36}a_1c_3 - \frac{43}{144}b_2^2 - \frac{215}{216}b_2b_3 + \frac{1}{18}b_2c_3 - \frac{1075}{1296}b_3^2 + \frac{5}{54}b_3c_3 - \frac{1}{48}c_3^2 \right)m_1 \\ &+ \left( -\frac{7}{16}a_1^2 - \frac{43}{72}a_1b_2 - \frac{215}{216}a_1b_3 - \frac{5}{36}a_1c_3 - \frac{43}{144}b_2^2 - \frac{215}{216}b_2b_3 - \frac{1075}{1296}b_3^2 - \frac{5}{144}c_3^2 \right)m_2 \\ &+ \left( -\frac{323}{432}a_1^2 - \frac{215}{216}a_1b_2 - \frac{1075}{648}a_1b_3 - \frac{1}{4}a_1c_3 - \frac{215}{432}b_2^2 - \frac{1075}{108}b_2c_3 - \frac{5375}{3888}b_3^2 - \frac{1}{16}c_3^2 \right)m_3 \\ &+ \left( \frac{1}{18}a_1^2 + \frac{1}{18}a_1b_2 + \frac{5}{54}a_1b_3 + \frac{1}{36}a_1c_3 + \frac{1}{36}b_2c_3 + \frac{5}{108}b_3c_3 \right)m_4 \right]I_2(m_K, 0, \mu) \\ &+ \left[ \left( -\frac{1}{12}a_1^2 - \frac{1}{12}a_1c_3 - \frac{1}{48}c_3^2 \right)m_1 + \left( -\frac{1}{12}a_1^2 - \frac{1}{12}a_1c_3 - \frac{1}{48}c_3^2 \right)m_2 \\ &+ \left( -\frac{7}{36}a_1^2 - \frac{7}{36}a_1c_3 - \frac{7}{144}c_3^2 \right)m_1 + \left( -\frac{1}{12}a_1^2 - \frac{1}{12}a_1c_3 - \frac{1}{48}c_3^2 \right)m_2 \\ &+ \left( -\frac{7}{36}a_1^2 - \frac{7}{36}a_1c_3 - \frac{7}{144}c_3^2 \right)m_1 + \left( -\frac{1}{12}a_1^2 - \frac{1}{12}a_1c_3 - \frac{1}{48}c_3^2 \right)m_2 \\ &+ \left( -\frac{7}{36}a_1^2 - \frac{7}{36}a_1c_3 - \frac{7}{144}c_3^2 \right)m_3 \right]I_2(m_\eta, 0, \mu). \end{split}$$

All 27 allowed magnetic moments are listed in Appendix D 1, Eqs. (D1)-(D27).

The use of relations (21) and (43) yields the magnetic moments expressed in terms of the SU(3) invariants  $\mu_D$ ,  $\mu_F$ ,  $\mu_C$ ,  $\mu_T$ , D, F, C, and H, namely,

$$\delta\mu_{\Sigma^{-}}^{(\text{loop 2ad})} = \left[ \left( \frac{2}{9} D^2 + \frac{2}{3} DF + \frac{8}{3} F^2 + \frac{1}{9} C^2 \right) \mu_D + \left( -D^2 - 7F^2 - \frac{1}{3} C^2 \right) \mu_F + \frac{5}{54} C^2 \mu_C + \frac{1}{9} (D - F) C \mu_T \right] I_2(m_\pi, 0, \mu) \\ + \left[ \left( \frac{5}{6} D^2 + DF + \frac{5}{6} F^2 + \frac{5}{9} C^2 \right) \mu_D + \left( -\frac{7}{2} D^2 - DF - \frac{7}{2} F^2 - \frac{5}{3} C^2 \right) \mu_F + \frac{20}{27} C^2 \mu_C + \frac{2}{9} (D - F) C \mu_T \right] I_2(m_K, 0, \mu) \\ + \left[ \left( \frac{4}{9} D^2 + \frac{1}{6} C^2 \right) \mu_D + \left( -\frac{4}{3} D^2 - \frac{1}{2} C^2 \right) \mu_F + \frac{5}{18} C^2 \mu_C \right] I_2(m_\eta, 0, \mu), \tag{60}$$

and

$$\delta\mu_{\Sigma^{*-}}^{(\text{loop 2ad})} = \left[\frac{7}{36}C^{2}\mu_{D} + \frac{1}{12}C^{2}\mu_{F} + \left(-\frac{5}{12}C^{2} - \frac{19}{81}\mathcal{H}^{2}\right)\mu_{C} - \frac{2}{27}C\mathcal{H}\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) \\ + \left[\frac{1}{18}C^{2}\mu_{D} + \frac{1}{6}C^{2}\mu_{F} + \left(-\frac{1}{3}C^{2} - \frac{43}{162}\mathcal{H}^{2}\right)\mu_{C} - \frac{1}{27}C\mathcal{H}\mu_{T}\right]I_{2}(m_{K}, 0, \mu) \\ + \left[-\frac{1}{12}C^{2}\mu_{D} + \frac{1}{4}C^{2}\mu_{F} - \frac{1}{4}C^{2}\mu_{C}\right]I_{2}(m_{\eta}, 0, \mu).$$
(61)

Equations (D28) to (D54) of Appendix D1 are the counterparts of (D1) to (D27), respectively.

## C. Diagrams 2(e)

Corrections to magnetic moments from the diagram 2(e) are straightforwardly evaluated as [2,15]

$$\delta M_{\text{loop }2e}^{k} = -\frac{1}{2} [T^{a}, [T^{b}, M^{k}]] \Pi^{ab}, \qquad (62)$$

where  $\Pi^{ab}$  is the symmetric tensor already displayed in Eq. (48), except for the fact that the corresponding loop integral is now  $I_3(m,\mu)$ . Retaining only the nonanalytic pieces of that integral, it turns out that

$$I_3(m,\mu) = -I_2(m,0,\mu), \tag{63}$$

where  $I_2(m, 0, \mu)$  is given in Eq. (52).

Explicit results for the case study are thus

$$\delta\mu_{\Sigma^{-}}^{(\text{loop 2e})} = \left[\frac{1}{3}m_{1} + \frac{1}{6}m_{2} + \frac{1}{9}m_{3}\right]I_{2}(m_{\pi}, 0, \mu) \\ + \left[-\frac{1}{12}m_{1} + \frac{1}{12}m_{2} - \frac{1}{36}m_{3}\right]I_{2}(m_{K}, 0, \mu),$$
(64)

and

$$\delta\mu_{\Sigma^{*-}}^{(\text{loop 2e})} = \left[\frac{1}{2}m_1 + \frac{1}{2}m_2 + \frac{5}{6}m_3\right]I_2(m_{\pi}, 0, \mu) \\ + \left[\frac{1}{4}m_1 + \frac{1}{4}m_2 + \frac{5}{12}m_3\right]I_2(m_K, 0, \mu), \quad (65)$$

or equivalently, in terms of the SU(3) invariants

$$\delta\mu_{\Sigma^{-}}^{(\text{loop 2e})} = \mu_F I_2(m_{\pi}, 0, \mu) - \frac{1}{2}(\mu_D - \mu_F)I_2(m_K, 0, \mu), \quad (66)$$

and

$$\delta\mu_{\Sigma^{*-}}^{(\text{loop 2e})} = \mu_C I_2(m_{\pi}, 0, \mu) + \frac{1}{2}\mu_C I_2(m_K, 0, \mu).$$
(67)

All allowed expressions are listed in Appendix D, Eqs. (D55)-(D81), and their corresponding expressions in terms of the SU(3) invariants are listed in Eqs. (D82)-(D108).

## 1. Comparison with heavy chiral perturbation theory results

In HBCHPT, the corrections to magnetic moments from the Feynman diagrams displayed in Fig. 2 can be organized as [12]

$$\delta\mu_i^{(\text{loop }2)} = \sum_{P=\pi,K,\eta} -\frac{1}{2} (\bar{\gamma}_i^{(P)} - 2\bar{\lambda}_i^{(P)} \alpha_i) \left[ -\frac{1}{16\pi^2 f^2} m_P^2 \ln\frac{m_P^2}{\mu^2} \right],$$
(68)

where the coefficients  $\bar{\gamma}_i^{(P)}$ ,  $\bar{\lambda}_i^{(P)}$ , and  $\alpha_i$  are listed in that reference.

The comparison between the expressions extracted from Eq. (68) fully agree with the ones found here for octet baryons listed in Appendix D, taking into account a missing factor of -5/2 in the contribution from the graph 2(b) and the additional corrections noted in the erratum to [12].

#### V. EXPLICIT SU(3) SYMMETRY BREAKING

As it has already been discussed in Ref. [15], in the conventional chiral momentum counting scheme, tree diagrams involving higher order vertices will also contribute to the magnetic moments along with the one-loop contributions of orders  $\mathcal{O}(m_q^{1/2})$  and  $\mathcal{O}(m_q \ln m_q)$ . These higher order contributions are needed as counterterms for the divergent parts of the loops integrals. The leading SU(3)breaking effects to the magnetic moments thus will also have contributions from the effective Lagrangian of order  $p^4$ , which vield contributions linear in the quark mass [20]. In the combined formalism, a convenient way of accounting for terms of order  $\mathcal{O}(m_a)$  springs from the fact that flavor SU(3)SB transforms as a flavor octet. Neglecting isospin breaking and including first order SU(3) SB.  $M^{kc}$  thus has pieces transforming according to all SU(3) representations  $(1, 8 \otimes 8) =$ contained in the tensor product  $(1,1) \oplus (1,8_s) \oplus (1,8_A) \oplus (1,10+\overline{10}) \oplus (1,27)$ , namely,

$$\delta M_{\mathrm{SB}}^{kc} = \delta M_{\mathrm{SB},\mathbf{1}}^{kc} + \delta M_{\mathrm{SB},\mathbf{8}}^{kc} + \delta M_{\mathrm{SB},\mathbf{10}+\overline{\mathbf{10}}}^{kc} + \delta M_{\mathrm{SB},\mathbf{27}}^{kc}.$$
 (69)

Following the detailed analysis presented in Ref. [15], explicit SB to the baryon magnetic operator can be cast into the form

$$\begin{split} \delta M_{\rm SB}^{kc} &= \left[ m_1^{1,1} \delta^{c8} J^k + m_3^{1,1} \frac{1}{N_c^2} \delta^{c8} \{J^2, J^k\} \right] \\ &+ \left[ n_1^{1,8} d^{ce8} G^{ke} + n_2^{1,8} \frac{1}{N_c} d^{ce8} \mathcal{D}_2^{ke} + n_3^{1,8} \frac{1}{N_c^2} d^{ce8} \mathcal{D}_3^{ke} + \bar{n}_3^{1,8} \frac{1}{N_c^2} d^{ce8} \mathcal{O}_3^{ke} \right] \\ &+ \left[ m_2^{1,10+\overline{10}} \frac{1}{N_c} (\{G^{kc}, T^8\} - \{G^{k8}, T^c\}) + m_3^{1,10+\overline{10}} \frac{1}{N_c^2} (\{G^{kc}, \{J^r, G^{r8}\}\} - \{G^{k8}, \{J^r, G^{rc}\}\}) \right] \\ &+ \left[ m_2^{1,27} \frac{1}{N_c} (\{G^{kc}, T^8\} + \{G^{k8}, T^c\}) + m_3^{1,27} \frac{1}{N_c^2} \{J^k, \{T^c, T^8\}\} \\ &+ \bar{m}_3^{1,27} \frac{1}{N_c^2} (\{G^{kc}, \{J^r, G^{r8}\}\} + \{G^{k8}, \{J^r, G^{rc}\}\}) \right], \end{split}$$

where the superscripts attached to the eleven unknown coefficients  $m_i^{1,rep}$  and  $n_j^{1,rep}$  indicate the spin-flavor representation **rep** they fall in. Although the series has been truncated at the 3-body level, higher-order terms can be obtained by anticommuting the operators retained with  $J^2$ .

Equation (70) is the one to be used in the numerical analysis. By using the appropriate matrix elements listed in Tables VI–VIII, the explicit SB contributions to magnetic moments in the usual examples read

$$\sqrt{3}\delta\mu_{\Sigma^{-}}^{SB} = \frac{1}{2}m_{1}^{1,1} + \frac{1}{12}m_{3}^{1,1} - \frac{1}{2}n_{1}^{1,8} - \frac{1}{6}n_{2}^{1,8} - \frac{1}{6}n_{3}^{1,8} + \frac{1}{3}m_{2}^{1,10+\overline{10}} - \frac{1}{3}m_{2}^{1,27} - \frac{1}{9}\bar{c}_{3}^{1,27}, \qquad (71)$$

and

$$\sqrt{3}\delta\mu_{\Sigma^{*-}}^{\mathrm{SB}} = \frac{3}{2}m_1^{1,1} + \frac{5}{4}m_3^{1,1} - \frac{1}{2}n_1^{1,8} - \frac{1}{2}n_2^{1,8} - \frac{5}{6}n_3^{1,8}.$$
 (72)

The complete list of expressions is given in Appendix E.

#### VI. NUMERICAL ANALYSIS

A number of different fits to the experimental data can now be performed. These fits, however, are not intended to be definitive; instead, they can be useful in testing the working assumptions. The theoretical formulas are not as accurate enough as the experimental measurements so a theoretical error has to be included to get a meaningful  $\chi^2$ . Thus, the dominant error in all the fits is theoretical.

On the experimental bent, the Review of Particle Physics [17] lists values for only ten magnetic moments: Seven out of the eight octet baryons ( $\mu_{\Sigma^0}$  remains unknown),  $\mu_{\Omega^-}$ , and the transition moments  $\mu_{\Sigma^0\Lambda}$  and  $\mu_{\Delta^+p}$ . The latter can be obtained from the  $\Delta \rightarrow N\gamma$  helicity amplitudes  $A_{\frac{1}{2}}$  and  $A_{\frac{3}{2}}$ . A consistent extraction of  $\mu_{\Delta}^{++}$  can be used [21], together with two more pieces of information, namely,  $\mu_{\Sigma^{*0}\Lambda}$  and  $\mu_{\Sigma^{*+}\Sigma^{+}}$ , which can be extracted from Refs. [22] and [23], respectively. Additional inputs are the physical masses of the  $\pi$ , K, and  $\eta$  pseudoscalar mesons, the average decupletoctet mass difference  $\Delta = 0.231$  GeV, which follows from the average baryon decuplet and octet and masses,  $M_T = 1.382 \text{ GeV}$  and  $M_B = 1.151 \text{ GeV}$ , respectively. Similarly, the pion decay constant is set to f = 93 MeVand the scale of dimensional regularization used is  $\mu = 1$  GeV.

The standard  $\chi^2$  function to be minimized is written as

$$\chi^2 = \sum_{i=1}^{N} \left[ \frac{\mu_i^{\exp} - \mu_i^{\text{th}}}{\Delta \mu_i^{\exp}} \right]^2, \tag{73}$$

where  $\mu_i^{exp}$  and  $\Delta \mu_i^{exp}$  are the available measured magnetic moments and their corresponding uncertainties,

respectively, and  $\mu_i^{\text{th}}$  are their theoretical counterparts, which are constituted by the sum of tree-level values  $\mu_i^{(0)}$ , one-loop corrections  $\delta\mu^{(\text{loop }n)}$ , and explicit SB corrections  $\delta\mu^{\text{SB}}$ , i.e.,

$$\mu_i^{\text{th}} = \mu_i^{(0)} + \delta \mu^{(\text{loop 1})} + \delta \mu^{(\text{loop 2ad})} + \mu^{(\text{loop 2e})} + \delta \mu^{\text{SB}}.$$
 (74)

The free parameters in the theory are the operator coefficients  $a_1$ ,  $b_2$ ,  $b_3$ , and  $c_3$  from the baryon axial current operator  $A^{kc}$  (15). Four additional parameters  $m_k$  are introduced in the definition of the baryon magnetic moment operator  $M^k$  (17). There are eleven additional parameters coming from explicit SU(3) SB. In total, there are 19 free parameters to be determined and only N = 13 pieces of experimental information.

The simplest possibility is an SU(3) symmetric fit neglecting all SU(3) breaking effects, which involves only the four parameters  $m_i$ . Keeping in mind that in most hadronic quantities SU(3) breaking is around 20%–30% and that the theoretical errors are of order  $\epsilon/N_c$ , where  $\epsilon$  is a measure of SU(3) breaking, then a fair estimate of the theoretical error to be added in quadrature to the experimental ones is  $\pm 0.30\mu_N$  [recall that baryon magnetic moments are order  $O(N_c)$  at leading order in  $N_c$ ]. The

TABLE XV. Best-fit parameters from least-squares fits: Fit 1 is an SU(3) fit; Fit 2 includes one-loop and partial SB corrections (see the text); Fit 3 constitutes the so-called prior fit. The resulting values of the corresponding SU(3) couplings  $\mu_D$ ,  $\mu_F$ ,  $\mu_C$ , and  $\mu_T$ are also shown.

| Parameter                    | Fit 1           | Fit 2           | Fit 3               |
|------------------------------|-----------------|-----------------|---------------------|
| $m_1$                        | $5.07\pm0.42$   | $7.86\pm0.09$   | $7.86\pm0.09$       |
| $m_2$                        | $0.73\pm1.28$   | $-0.01\pm0.18$  | $0.01\pm0.19$       |
| $m_3$                        | $-0.41\pm0.82$  | $-1.01\pm0.13$  | $-1.01\pm0.13$      |
| $m_4$                        | $4.05\pm1.27$   | $1.67\pm0.23$   | $1.67\pm0.24$       |
| $m_1^{1,1}$                  |                 | $0.16\pm0.20$   | $0.16\pm0.20$       |
| $m_3^{1,1}$                  |                 |                 | $0.021\pm0.100$     |
| $n_1^{1,8}$                  |                 | $-0.71\pm0.38$  | $-0.69\pm0.38$      |
| $n_2^{1,8}$                  |                 | $-2.61\pm0.89$  | $-2.65\pm0.90$      |
| $n_{3}^{\bar{1},8}$          |                 |                 | $0.010\pm0.100$     |
| $\bar{n}_{3}^{1,8}$          |                 |                 | $0.006\pm0.100$     |
| $m_2^{1,10+\overline{10}}$   |                 | $-2.35\pm0.23$  | $-2.35 \pm 0.23411$ |
| $m_{2}^{1,10+\overline{10}}$ |                 |                 | $0.011\pm0.100$     |
| $m_2^{1,27}$                 |                 | $0.71\pm0.33$   | $0.68\pm0.35$       |
| $m_{3}^{\tilde{1},27}$       |                 |                 | $0.025\pm0.100$     |
| $\bar{m}_{3}^{1,27}$         |                 |                 | $0.017\pm0.100$     |
| $\chi^2$                     | 12.22           | 14.56           | 14.38               |
| $\mu_D$                      | $2.47\pm0.23$   | $3.76\pm0.05$   | $3.76\pm0.02$       |
| $\mu_F$                      | $1.77\pm0.15$   | $2.51\pm0.03$   | $2.30\pm0.03$       |
| $\mu_C$                      | $2.56\pm0.21$   | $3.08\pm0.08$   | $2.50\pm0.06$       |
| $\mu_T$                      | $-14.18\pm0.95$ | $-17.38\pm0.33$ | $-17.39\pm0.24$     |
| $\mu_D/\mu_F$                | $1.40\pm0.13$   | $1.50\pm0.02$   | $1.62\pm0.02$       |

results are listed in the column labeled Fit 1 in Table XV. In this case,  $\chi^2 = 12.22$  for 9 degrees of freedom, but this particular value only reflects the choice of theoretical error. Adding smaller theoretical errors lowers the errors in the parameters at the expense of increasing  $\chi^2$  and, except for  $m_3$ , the central values of the remaining coefficients change a little. The closeness of  $\chi^2/dof$  to one might be interpreted as a sign that SU(3) SB is indeed around 30%.

To proceed further, in order to gain predictive power, a few assumptions on the unknown parameters should be made. First, the values of the operator coefficients  $a_1$ ,  $b_2$ ,  $b_3$ , and  $c_3$  can be borrowed from the recent analysis of the baryon axial current presented in Ref. [16], namely,

$$a_1 = 1.20 \pm 0.07,$$
  $b_2 = -1.60 \pm 0.18,$   
 $b_3 = 1.25 \pm 0.07,$   $c_3 = 0.46 \pm 0.09,$  (75)

which are extracted from Table II of Ref. [16], labeled as Fit B.

The relevant parameters  $m_k$  should be determined in full, so a few restrictions can be imposed on the parameters from explicit SB. The simplest one is to keep terms up to relative order  $1/N_c$ , so the relevant parameters become  $m_1^{1,1}$ ,  $n_1^{1,8}$ ,  $n_2^{1,8}$ ,  $m_2^{1,10+\overline{10}}$ , and  $m_2^{1,27}$ .

In order to get a consistent least-squares fit, a theoretical uncertainty of  $\pm 1/N_c^2 = \pm 0.11$  will be added in quadrature to the experimental errors to account for the omitted terms mentioned above. Without further ado, the fit yields the best-fit parameters listed in Table XV under the label Fit 2. In this case,  $\chi^2 = 14.55/4$  dof and although it exceeds expectations, the best-fit parameters are fairly order 1 (except for  $m_1$ ) and yield reasonable predictions, as can be verified in the predicted magnetic moments listed in Table XVI. Explicit SB and one-loop corrections to tree-level values roughly represent 30%–40%, which are in accordance with first-order SB.

In general, predictions are consistent with data and with other determinations. For instance, in the context of the  $1/N_c$  expansion alone [19], there is an overall agreement. In the context of heavy baryon chiral perturbation theory [24] and relativistic baryon chiral perturbation theory [25], there is a reasonable agreement with calculations for octet baryons to third order. These references, however, present more refined calculations to fourth order. At the level of

TABLE XVI. Predicted baryon magnetic moments using the best-fit parameters from Fit 2.

|                         | $\mu^{ m exp}$        | $\mu^{	ext{th}}$ | $\mu^{(0)}$ | $\delta\mu^{ m SB}$ | $\delta\mu^{(\mathrm{loop}1)}$ | $\delta\mu^{(\mathrm{loop} 2\mathrm{ad})}$ | $\delta\mu^{(\mathrm{loop}2\mathrm{e})}$ |
|-------------------------|-----------------------|------------------|-------------|---------------------|--------------------------------|--------------------------------------------|------------------------------------------|
| n                       | $-1.9130 \pm 0.000$   | -2.079           | -2.507      | 0.818               | 0.804                          | -0.861                                     | -0.334                                   |
| р                       | $2.7928 \pm 0.000$    | 2.852            | 3.760       | -0.266              | -2.064                         | 0.616                                      | 0.807                                    |
| $\Sigma^{-}$            | $-1.160 \pm 0.025$    | -1.108           | -1.253      | -0.085              | 0.487                          | -0.275                                     | 0.017                                    |
| $\Sigma^0$              |                       | 0.702            | 1.253       | 0.116               | -1.531                         | 0.390                                      | 0.474                                    |
| $\Sigma^+$              | $2.458\pm0.010$       | 2.512            | 3.760       | 0.317               | -3.550                         | 1.055                                      | 0.930                                    |
| $\Xi^{-}$               | $-0.6507 \pm 0.0025$  | -0.602           | -1.253      | 0.637               | 1.059                          | -0.449                                     | -0.596                                   |
| $\Xi^0$                 | $-1.250 \pm 0.014$    | -1.279           | -2.507      | -0.587              | 3.263                          | -0.661                                     | -0.788                                   |
| Λ                       | $-0.613 \pm 0.004$    | -0.487           | -1.253      | -0.021              | 1.531                          | -0.765                                     | 0.021                                    |
| $\Sigma^0 \Lambda$      | $1.61\pm0.08$         | 1.239            | 2.171       | -0.119              | -1.464                         | 0.255                                      | 0.395                                    |
| $\Delta^{++}$           | $6.14\pm0.51^{\rm a}$ | 5.695            | 6.170       | 0.007               | -3.273                         | 1.366                                      | 1.426                                    |
| $\Delta^+$              |                       | 2.821            | 3.085       | 0.554               | -2.278                         | 0.596                                      | 0.864                                    |
| $\Delta^0$              |                       | -0.156           | 0.000       | 1.101               | -1.283                         | -0.277                                     | 0.302                                    |
| $\Delta^{-}$            |                       | -3.082           | -3.085      | 1.649               | -0.288                         | -1.098                                     | -0.260                                   |
| $\Sigma^{*+}$           |                       | 2.044            | 3.085       | -0.818              | -0.995                         | 0.210                                      | 0.562                                    |
| $\Sigma^{*0}$           |                       | -0.361           | 0.000       | 0.142               | 0.000                          | -0.503                                     | 0.000                                    |
| $\Sigma^{*-}$           |                       | -2.766           | -3.085      | 1.101               | 0.995                          | -1.216                                     | -0.562                                   |
| $\Xi^{*0}$              |                       | -0.518           | 0.000       | -0.818              | 1.283                          | -0.681                                     | -0.302                                   |
| $\Xi^{*-}$              |                       | -2.475           | -3.085      | 0.554               | 2.278                          | -1.358                                     | -0.864                                   |
| $\Omega^{-}$            | $-2.02\pm0.05$        | -2.053           | -3.085      | 0.007               | 3.560                          | -1.370                                     | -1.166                                   |
| $\Delta^+ p$            | $3.51\pm0.09$         | 3.381            | 4.097       | -0.638              | -3.071                         | 2.247                                      | 0.746                                    |
| $\Delta^0 n$            |                       | 3.381            | 4.097       | -0.638              | -3.071                         | 2.247                                      | 0.746                                    |
| $\Sigma^{*0}\Lambda$    | $2.73\pm0.25^{\rm b}$ | 2.885            | 3.548       | -0.168              | -3.089                         | 2.071                                      | 0.522                                    |
| $\Sigma^{*0}\Sigma^{0}$ |                       | 1.284            | 2.049       | 0.097               | -3.048                         | 1.413                                      | 0.774                                    |
| $\Sigma^{*+}\Sigma^{+}$ | $3.17\pm0.36^{\rm c}$ | 3.456            | 4.097       | 0.833               | -5.327                         | 2.705                                      | 1.147                                    |
| $\Sigma^{*-}\Sigma^{-}$ |                       | -0.888           | 0.000       | -0.640              | -0.769                         | 0.121                                      | 0.401                                    |
| $\Xi^{*0}\Xi_0$         |                       | 3.064            | 4.097       | 0.444               | -5.327                         | 2.702                                      | 1.147                                    |
| $\Xi^{*-}\Xi^{-}$       |                       | -0.892           | 0.000       | -0.640              | -0.769                         | 0.116                                      | 0.401                                    |

<sup>a</sup>Value reported in Ref. [21].

<sup>b</sup>Value extracted from Ref. [22].

<sup>c</sup>Value extracted from Ref. [23].

precision presented in this work, no comparison is possible yet. Theoretical expressions need be improved, for instance, by lifting the  $\Delta = 0$  assumption in graphs 2(a)–2(d). This could improve the determinations of  $\mu_C$  and  $\mu_T$  to a reasonable extent. Actually, the analysis of Ref. [15] where partial terms containing a nonzero  $\Delta$  in loop diagrams 2(a)–2(d) seems to point in the right direction.

An alternative approach to get at least an estimate of the size of the omitted free parameters of Fit 2 above can be achieved following the lines of the fitting procedure implemented in Ref. [26]. The approach, adapted to the present analysis, consists in using the prior fit [27] to extend the standard  $\chi^2$  of Eq. (73) to

$$\chi^{2}_{\text{prior}} = \chi^{2} + \left[\frac{m_{3}^{1,1}}{\Delta m_{3}^{1,1}}\right]^{2} + \left[\frac{n_{3}^{1,8}}{\Delta n_{3}^{1,8}}\right]^{2} + \left[\frac{\bar{n}_{3}^{1,8}}{\Delta \bar{n}_{3}^{1,8}}\right]^{2} + \left[\frac{m_{3}^{1,0+\overline{10}}}{\Delta m_{3}^{1,10+\overline{10}}}\right]^{2} + \left[\frac{m_{3}^{1,27}}{\Delta m_{3}^{1,27}}\right]^{2} + \left[\frac{\bar{m}_{3}^{1,27}}{\Delta \bar{m}_{3}^{1,27}}\right]^{2}, \quad (76)$$

where  $m_3^{1,rep}$  and  $n_3^{1,rep}$  are the unknown coefficients that come along 3-body operators from explicit SB weighted by their respective errors. While the extra terms added to  $\chi^2$ guarantees that these six parameters get values around zero (approximately Gaussian distributed [26]), the remaining nine parameters are the ones actually fitted to the experimental data. For definiteness, the nominal theoretical errors  $\Delta m_3^{1,rep} = \Delta n_3^{1,rep} = 0.100$  have been used and the corresponding best-fit parameters are listed in Table XV under the label Fit 3. It is convenient to point out that nominal errors of  $\pm 0.200$  and  $\pm 0.050$  produce  $\chi^2_{prior} = 13.97$  and  $\chi^2_{prior} = 14.51$ , respectively. In all cases, the six parameters referred to above are small compared to the ones retained in the standard fit, which suggest that the assumption of neglecting them in the analysis is justified.

#### VII. CONCLUDING REMARKS

Baryon magnetic moments to orders  $\mathcal{O}(m_q^{1/2})$  and  $\mathcal{O}(m_q \ln m_q)$  are evaluated in the present paper in the context of chiral perturbation theory in the large- $N_c$  limit. All the operator structures that appear for  $N_c = 3$  are accounted for in the analysis. Regrettably, the expressions obtained are rather long; however, including them in full is necessary to make the paper self-contained.

The approach presented here is twofold. On the one hand, previous analyses [2,15] get improved with the addition of new terms not considered before, and, on the other hand, the complete structures presented allow one to carry out a full comparison with the conventional chiral perturbation theory results by using the relations between the operator coefficients  $a_1$ ,  $b_2$ ,  $b_3$ , and  $c_3$  and the SU(3) invariants  $\mu_D$ ,  $\mu_F$ ,  $\mu_C$ , and  $\mu_T$ .

The main conclusion obtained is that theoretical expressions of baryon magnetic moments agree in both theories at the physical value  $N_c = 3$  for  $N_f = 3$  flavors of light quarks.

A preliminary numerical analysis via a least-squares fit is also conducted to explore the free parameters in the theory. Although a stable fit is observed, the best-fit parameters are not entirely satisfactory with the assumptions made. The main issue is the lack of experimental data to perform a detailed determination of all the free parameters. In order to improve the theoretical expressions, also the effects of a nonzero decuplet-octet baryon mass difference in the diagrams of order  $\mathcal{O}(m_q \ln m_q)$  are needed. The calculation of these contributions, however, involves a non-negligible effort which can be attempted elsewhere. The approach discussed here will constitute useful guidance for this enterprise. Of course, new and/or improved measurements of baryon magnetic moments will be welcome in the future.

#### ACKNOWLEDGMENTS

The authors are grateful to Consejo Nacional de Ciencia y Tecnología (Mexico) for partial support.

#### **APPENDIX A: REDUCTION OF BARYON OPERATORS EMERGING FROM FIG. 1**

#### 1. Flavor 8 spin-independent operators

$$\epsilon^{ijk} f^{abc} G^{ia} G^{jb} = -\frac{1}{2} (N_c + N_f) G^{kc} + \frac{1}{2} \mathcal{D}_2^{kc}, \tag{A1}$$

$$\epsilon^{ijk} f^{abc} (G^{ia} \mathcal{D}_2^{jb} + \mathcal{D}_2^{ia} G^{jb}) = -N_f G^{kc} - \mathcal{O}_3^{kc}, \tag{A2}$$

$$\epsilon^{ijk} f^{abc} \mathcal{D}_2^{ia} \mathcal{D}_2^{jb} = -\frac{1}{2} N_f \mathcal{D}_2^{kc}, \tag{A3}$$

$$\epsilon^{ijk} f^{abc} (G^{ia} \mathcal{D}_3^{jb} + \mathcal{D}_3^{ia} G^{jb}) = -2(N_c + N_f) G^{kc} - (N_f - 2) \mathcal{D}_2^{kc} - (N_c + N_f) \mathcal{O}_3^{kc}, \tag{A4}$$

$$\epsilon^{ijk} f^{abc} (G^{ia} \mathcal{O}_3^{jb} + \mathcal{O}_3^{ia} G^{jb}) = \frac{3}{2} N_f \mathcal{D}_2^{kc} - \frac{1}{2} (N_c + N_f) \mathcal{D}_3^{kc} - \frac{1}{2} (N_c + N_f) \mathcal{O}_3^{kc} + \mathcal{D}_4^{kc}, \tag{A5}$$

$$\epsilon^{ijk} f^{abc} (\mathcal{D}_2^{ia} \mathcal{D}_3^{jb} + \mathcal{D}_3^{ia} \mathcal{D}_2^{jb}) = -N_f \mathcal{D}_3^{kc}, \tag{A6}$$

$$\epsilon^{ijk} f^{abc} (\mathcal{D}_2^{ia} \mathcal{O}_3^{jb} + \mathcal{O}_3^{ia} \mathcal{D}_2^{jb}) = -N_f \mathcal{O}_3^{kc} - \mathcal{O}_5^{kc}, \tag{A7}$$

$$\epsilon^{ijk} f^{abc} \mathcal{D}_3^{ia} \mathcal{D}_3^{jb} = -(N_c + N_f) \mathcal{D}_3^{kc} - (N_f - 2) \mathcal{D}_4^{kc},$$
 (A8)

$$\epsilon^{ijk} f^{abc} (\mathcal{D}_3^{ia} \mathcal{O}_3^{jb} + \mathcal{O}_3^{ia} \mathcal{D}_3^{jb}) = -2(N_c + N_f) \mathcal{O}_3^{kc} - (N_c + N_f) \mathcal{O}_5^{kc}, \tag{A9}$$

$$\epsilon^{ijk} f^{abc} \mathcal{O}_3^{ia} \mathcal{O}_3^{jb} = \frac{3}{2} N_f \mathcal{D}_2^{kc} - \frac{3}{4} (N_c + N_f) \mathcal{D}_3^{kc} + \frac{1}{4} (5N_f + 6) \mathcal{D}_4^{kc} - \frac{1}{4} (N_c + N_f) \mathcal{D}_5^{kc} + \frac{1}{2} \mathcal{D}_6^{kc}.$$
(A10)

# 2. Flavor 8 spin-dependent operators

$$\epsilon^{ijk} f^{abc} G^{ia} J^2 G^{jb} = -\frac{1}{2} (N_c + N_f) G^{kc} + \frac{1}{2} (N_f + 1) \mathcal{D}_2^{kc} - \frac{1}{8} (N_c + N_f) \mathcal{D}_3^{kc} - \frac{1}{4} (N_c + N_f) \mathcal{O}_3^{kc} + \frac{1}{4} \mathcal{D}_4^{kc}, \tag{A11}$$

$$\epsilon^{ijk} f^{abc} (G^{ia} J^2 \mathcal{D}_2^{jb} + \mathcal{D}_2^{ia} J^2 G^{jb}) = -\frac{1}{4} N_f \mathcal{D}_3^{kc} - (N_f + 1) \mathcal{O}_3^{kc} - \frac{1}{2} \mathcal{O}_5^{kc}, \tag{A12}$$

$$\epsilon^{ijk} f^{abc} \mathcal{D}_2^{ia} J^2 \mathcal{D}_2^{jb} = -\frac{1}{4} N_f \mathcal{D}_4^{kc}, \tag{A13}$$

$$\epsilon^{ijk} f^{abc} (G^{ia} J^2 \mathcal{D}_3^{jb} + \mathcal{D}_3^{ia} J^2 G^{jb}) = -\frac{1}{2} (N_c + N_f) \mathcal{D}_3^{kc} - 3(N_c + N_f) \mathcal{O}_3^{kc} - \frac{1}{2} (N_f - 2) \mathcal{D}_4^{kc} - \frac{1}{2} (N_c + N_f) \mathcal{O}_5^{kc}, \quad (A14)$$

$$\epsilon^{ijk} f^{abc} (G^{ia} J^2 \mathcal{O}_3^{jb} + \mathcal{O}_3^{ia} J^2 G^{jb}) = 3N_f \mathcal{D}_2^{kc} - \frac{3}{2} (N_c + N_f) \mathcal{D}_3^{kc} - \frac{1}{2} (N_c + N_f) \mathcal{O}_3^{kc} + \frac{1}{4} (7N_f + 12) \mathcal{D}_4^{kc} - \frac{1}{4} (N_c + N_f) \mathcal{D}_5^{kc} - \frac{1}{4} (N_c + N_f) \mathcal{O}_5^{kc} + \frac{1}{2} \mathcal{D}_6^{kc},$$
(A15)

$$\epsilon^{ijk} f^{abc} (\mathcal{D}_2^{ia} J^2 \mathcal{D}_3^{jb} + \mathcal{D}_3^{ia} J^2 \mathcal{D}_2^{jb}) = -\frac{1}{2} N_f \mathcal{D}_5^{kc}, \tag{A16}$$

$$\epsilon^{ijk} f^{abc} (\mathcal{D}_2^{ia} J^2 \mathcal{O}_3^{jb} + \mathcal{O}_3^{ia} J^2 \mathcal{D}_2^{jb}) = -(N_f + 1)\mathcal{O}_5^{kc} - \frac{1}{2}\mathcal{O}_7^{kc}, \tag{A17}$$

$$\epsilon^{ijk} f^{abc} \mathcal{D}_3^{ia} J^2 \mathcal{D}_3^{jb} = -\frac{1}{2} (N_c + N_f) \mathcal{D}_5^{kc} - \frac{1}{2} (N_f - 2) \mathcal{D}_6^{kc}, \tag{A18}$$

$$\epsilon^{ijk} f^{abc} (\mathcal{D}_3^{ia} J^2 \mathcal{O}_3^{jb} + \mathcal{O}_3^{ia} J^2 \mathcal{D}_3^{jb}) = -3(N_c + N_f) \mathcal{O}_5^{kc} - \frac{1}{2}(N_c + N_f) \mathcal{O}_7^{kc}, \tag{A19}$$

$$\epsilon^{ijk} f^{abc} \mathcal{O}_3^{ia} J^2 \mathcal{O}_3^{jb} = 3N_f \mathcal{D}_2^{kc} - \frac{3}{2} (N_c + N_f) \mathcal{D}_3^{kc} + \frac{1}{4} (19N_f + 12) \mathcal{D}_4^{kc} - \frac{13}{8} (N_c + N_f) \mathcal{D}_5^{kc} + \frac{1}{8} (9N_f + 26) \mathcal{D}_6^{kc} - \frac{1}{8} (N_c + N_f) \mathcal{D}_7^{kc} + \frac{1}{4} \mathcal{D}_8^{kc}.$$
(A20)

$$\epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) \mathcal{O}_3^{ia} \mathcal{O}_3^{jb} = \frac{3}{2} \{ \mathcal{D}_2^{kc}, \{J^r, G^{r8}\} \} - \frac{3}{2} \{ \mathcal{D}_2^{k8}, \{J^r, G^{rc}\} \} + \frac{1}{2} \{ J^2, \{ \mathcal{D}_2^{kc}, \{J^r, G^{r8}\} \} \} - \frac{1}{2} \{ J^2, \{ \mathcal{D}_2^{k8}, \{J^r, G^{rc}\} \} \}.$$
(A30)

$$\begin{aligned} \epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) (\mathcal{D}_3^{ia} \mathcal{O}_3^{jb} + \mathcal{O}_3^{ia} \mathcal{D}_3^{jb}) \\ &= -2\{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\} + 2\{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\} - 2\{J^2, \{G^{kc}, T^8\}\} + 2\{J^2, \{G^{k8}, T^c\}\} - \frac{4}{N_f} i f^{c8e} \{J^2, [J^2, G^{ke}]\} \\ &- \{J^2, \{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\}\} + \{J^2, \{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\}\} - \{J^2, \{J^2, \{G^{kc}, T^8\}\}\} + \{J^2, \{J^2, \{G^{k8}, T^c\}\}\} \\ &- \frac{2}{N_f} i f^{c8e} \{J^2, \{J^2, [J^2, G^{ke}]\}\}, \end{aligned}$$
(A29)

$$\epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) \mathcal{D}_3^{ia} \mathcal{D}_3^{jb} = 2\{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\} - 2\{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\},$$
(A28)

$$\epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) (\mathcal{D}_2^{ia} \mathcal{O}_3^{jb} + \mathcal{O}_3^{ia} \mathcal{D}_2^{jb}) \\ = -\frac{N_c + N_f}{N_f} i f^{c8e} \{J^2, [J^2, G^{ke}]\} - \{J^2, \{G^{kc}, \{J^r, G^{r8}\}\}\} + \{J^2, \{G^{k8}, \{J^r, G^{rc}\}\}\},$$
(A27)

$$\epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) (\mathcal{D}_2^{ia} \mathcal{D}_3^{jb} + \mathcal{D}_3^{ia} \mathcal{D}_2^{jb}) = 0,$$
(A26)

$${}^{jk}(f^{aec}d^{be8} - f^{bec}d^{ae8} - f^{abe}d^{ec8})(G^{ia}\mathcal{O}_3^{jb} + \mathcal{O}_3^{ia}G^{jb}) = \frac{1}{2}\{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\} - \frac{1}{2}\{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\} - \frac{1}{2}\{J^2, \{G^{kc}, T^8\}\} + \frac{1}{2}\{J^2, \{G^{k8}, T^c\}\} - \frac{1}{N_f}if^{c8e}\{J^2, [J^2, G^{ke}]\}, \quad (A25)$$

$$\epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) (G^{ia} \mathcal{O}_3^{jb} + \mathcal{O}_3^{ia} G^{jb}) \\ = \frac{1}{2} \{ \mathcal{D}_2^{kc}, \{J^r, G^{r8}\} \} - \frac{1}{2} \{ \mathcal{D}_2^{k8}, \{J^r, G^{rc}\} \} - \frac{1}{2} \{ J^2, \{G^{kc}, T^8\} \} + \frac{1}{2} \{ J^2, \{G^{k8}, T^c\} \} - \frac{1}{N} i f^{c8e} \{ J^2, [J^2, G^{ke}] \}, \quad (A25)$$

$$\epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) (G^{ia} \mathcal{O}_3^{jb} + \mathcal{O}_3^{ia} G^{jb}) = \frac{1}{2} \{ \mathcal{D}_2^{kc}, \{J^r, G^{r8}\} \} - \frac{1}{2} \{ \mathcal{D}_2^{k8}, \{J^r, G^{rc}\} \} - \frac{1}{2} \{ J^2, \{G^{kc}, T^8\} \} + \frac{1}{2} \{ J^2, \{G^{k8}, T^c\} \} - \frac{1}{N} i f^{c8e} \{ J^2, [J^2, G^{ke}] \}, \quad (A25)$$

$$+\{J^{2},\{G^{k8},T^{c}\}\} - \frac{2}{N_{f}}if^{c8e}\{J^{2},[J^{2},G^{ke}]\},$$
(A24)

$$\epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) (G^{ia} \mathcal{D}_3^{jb} + \mathcal{D}_3^{ia} G^{jb})$$

$$= -2\{G^{kc}, T^8\} + 2\{G^{k8}, T^c\} - \frac{4}{N_f} i f^{c8e} [J^2, G^{ke}] - \{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\} + \{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\} - \{J^2, \{G^{kc}, T^8\}\}$$

$$+ \{J^2, \{G^{k8}, T^c\}\} - \frac{2}{i} i f^{c8e} \{J^2, [J^2, G^{ke}]\},$$
(A24)

$$= -2\{G^{kc}, T^{8}\} + 2\{G^{k8}, T^{c}\} - \frac{4}{N_{f}}if^{c8e}[J^{2}, G^{ke}] - \{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{r8}\}\} + \{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\} - \{J^{2}, \{G^{kc}, T^{8}\}\}$$

$$(f^{aec}d^{be8} - f^{bec}d^{ae8} - f^{abe}d^{ec8})(G^{ia}\mathcal{D}_3^{jb} + \mathcal{D}_3^{ia}G^{jb}) = -2\{G^{kc}, T^8\} + 2\{G^{k8}, T^c\} - \frac{4}{N_c}if^{c8e}[J^2, G^{ke}] - \{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\} + \{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\} - \{J^2, \{G^{kc}, T^8\}\}$$

 $\epsilon^{ijk}(f^{aec}d^{be8} - f^{bec}d^{ae8} - f^{abe}d^{ec8})\mathcal{D}_2^{ia}\mathcal{D}_2^{jb} = 0,$ 

$$\epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) (G^{ia} \mathcal{D}_2^{jb} + \mathcal{D}_2^{ia} G^{jb}) = -\frac{N_c + N_f}{N_f} i f^{c8e} [J^2, G^{ke}] - \{G^{kc}, \{J^r, G^{r8}\}\} + \{G^{k8}, \{J^r, G^{rc}\}\},$$
(A22)

$$\epsilon^{ijk}(f^{aec}d^{be8} - f^{bec}d^{ae8} - f^{abe}d^{ec8})G^{ia}G^{jb} = -\frac{1}{2}\{G^{kc}, T^8\} + \frac{1}{2}\{G^{k8}, T^c\} - \frac{1}{N_f}if^{c8e}[J^2, G^{ke}], \tag{A21}$$

3. Flavor  $10 + \overline{10}$  spin-independent operators

(A23)

$$\epsilon^{ijk}(f^{aec}d^{be8} - f^{bec}d^{ae8} - f^{abe}d^{ec8})\mathcal{D}_3^{ia}J^2\mathcal{D}_3^{jb} = \{J^2, \{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\}\} - \{J^2, \{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\}\},$$
(A38)

$$(f^{ucc}d^{bcs} - f^{bcc}d^{ucs} - f^{abc}d^{ecs})(D_2^{u}J^2O_3^{v} + O_3^{u}J^2D_2^{v})$$

$$= -\frac{N_c + N_f}{N_f}if^{c8e}\{J^2, [J^2, G^{ke}]\} - \{J^2, \{G^{kc}, \{J^r, G^{r8}\}\}\} + \{J^2, \{G^{k8}, \{J^r, G^{rc}\}\}\}$$

$$-\frac{N_c + N_f}{2N_f}if^{c8e}\{J^2, \{J^2, [J^2, G^{ke}]\}\} - \frac{1}{2}\{J^2, \{J^2, \{G^{kc}, \{J^r, G^{r8}\}\}\}\} + \frac{1}{2}\{J^2, \{J^2, \{G^{k8}, \{J^r, G^{rc}\}\}\}\}, \quad (A37)$$

 $\epsilon^{ijk}(f^{aec}d^{be8} - f^{bec}d^{ae8} - f^{abe}d^{ec8})(\mathcal{D}^{ia}_{a}I^2\mathcal{O}^{jb}_{a} + \mathcal{O}^{ia}I^2\mathcal{D}^{jb})$ 

$$\epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) (\mathcal{D}_2^{ia} J^2 \mathcal{D}_3^{jb} + \mathcal{D}_3^{ia} J^2 \mathcal{D}_2^{jb}) = 0,$$
(A36)

$$\begin{aligned} \epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) (G^{ia} J^2 \mathcal{O}_3^{jb} + \mathcal{O}_3^{ia} J^2 G^{jb}) \\ &= \frac{5}{2} \{ \mathcal{D}_2^{kc}, \{J^r, G^{r8}\} \} - \frac{5}{2} \{ \mathcal{D}_2^{k8}, \{J^r, G^{rc}\} \} - \frac{1}{2} \{ J^2, \{G^{kc}, T^8\} \} + \frac{1}{2} \{ J^2, \{G^{k8}, T^c\} \} - \frac{1}{N_f} i f^{c8e} \{ J^2, [J^2, G^{ke}] \} \\ &+ \frac{1}{4} \{ J^2, \{ \mathcal{D}_2^{kc}, \{J^r, G^{r8}\} \} \} - \frac{1}{4} \{ J^2, \{ \mathcal{D}_2^{k8}, \{J^r, G^{rc}\} \} \} - \frac{1}{4} \{ J^2, \{J^2, \{G^{kc}, T^8\} \} \} + \frac{1}{4} \{ J^2, \{J^2, \{G^{k8}, T^c\} \} \} \\ &- \frac{1}{2N_f} i f^{c8e} \{ J^2, \{J^2, [J^2, G^{ke}] \} \}, \end{aligned}$$
(A35)

$$\begin{aligned} \epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) (G^{ia} J^2 \mathcal{D}_3^{jb} + \mathcal{D}_3^{ia} J^2 G^{jb}) \\ &= -2\{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\} + 2\{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\} - 3\{J^2, \{G^{kc}, T^8\}\} + 3\{J^2, \{G^{k8}, T^c\}\} - \frac{6}{N_f} if^{c8e} \{J^2, [J^2, G^{ke}]\} \\ &- \frac{1}{2}\{J^2, \{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\}\} + \frac{1}{2}\{J^2, \{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\}\} - \frac{1}{2}\{J^2, \{J^2, \{G^{kc}, T^8\}\}\} + \frac{1}{2}\{J^2, \{J^2, \{G^{k8}, T^c\}\}\} \\ &- \frac{1}{N_f} if^{c8e} \{J^2, \{J^2, [J^2, G^{ke}]\}\}, \end{aligned}$$
(A34)

$$k(f^{aec}d^{be8} - f^{bec}d^{ae8} - f^{abe}d^{ec8})(G^{ia}J^2\mathcal{D}_3^{jb} + \mathcal{D}_3^{ia}J^2G^{jb})$$

$$= -2\{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\} + 2\{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\} - 3\{J^2, \{G^{kc}, T^8\}\} + 3\{J^2, \{G^{k8}, T^c\}\} - \frac{6}{N_f}if^{c8e}\{J^2, [J^2, G^{ke}]\}$$

$$-\frac{1}{2}\{J^2, \{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\}\} + \frac{1}{2}\{J^2, \{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\}\} - \frac{1}{2}\{J^2, \{J^2, \{G^{kc}, T^8\}\}\} + \frac{1}{2}\{J^2, \{J^2, \{G^{k8}, T^c\}\}\}$$

$$\frac{1}{2}\{J^2, \{I^2, [I^2, [I^2, G^{ke}]\}\}$$

$$(A24)$$

$$\epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) \mathcal{D}_2^{ia} J^2 \mathcal{D}_2^{jb} = 0,$$
(A33)

$$\begin{aligned} \epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) (G^{ia} J^2 \mathcal{D}_2^{jb} + \mathcal{D}_2^{ia} J^2 G^{jb}) \\ &= -\frac{N_c + N_f}{N_f} i f^{c8e} [J^2, G^{ke}] - \{G^{kc}, \{J^r, G^{r8}\}\} + \{G^{k8}, \{J^r, G^{rc}\}\} - \frac{N_c + N_f}{2N_f} i f^{c8e} \{J^2, [J^2, G^{ke}]\} \\ &- \frac{1}{2} \{J^2, \{G^{kc}, \{J^r, G^{r8}\}\}\} + \frac{1}{2} \{J^2, \{G^{k8}, \{J^r, G^{rc}\}\}\}, \end{aligned}$$
(A32)

$$2^{(c-1)} + 2^{(c-1)} + 2^{(c-1)} + N_f^{(c-1)} + 4^{(c-1)} + 4^$$

$$= -\frac{1}{2} \{ G^{kc}, T^8 \} + \frac{1}{2} \{ G^{k8}, T^c \} - \frac{1}{N_f} i f^{c8e} [J^2, G^{ke}] - \frac{1}{4} \{ J^2, \{ G^{kc}, T^8 \} \} + \frac{1}{4} \{ J^2, \{ G^{k8}, T^c \} \} - \frac{1}{2N_f} i f^{c8e} \{ J^2, [J^2, G^{ke}] \},$$
(A31)

4. Flavor  $10 + \overline{10}$  spin-dependent operators

$$\begin{aligned} \epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) G^{ia} J^2 G^{jb} \\ &= -\frac{1}{2} \{ G^{kc}, T^8 \} + \frac{1}{2} \{ G^{k8}, T^c \} - \frac{1}{N_f} i f^{c8e} [J^2, G^{ke}] - \frac{1}{4} \{ J^2, \{ G^{kc}, T^8 \} \} + \frac{1}{4} \{ J^2, \{ G^{k8}, T^c \} \} \\ &- \frac{1}{2N_f} i f^{c8e} \{ J^2, [J^2, G^{ke}] \}, \end{aligned}$$
(A31)

(A40)

$$\begin{aligned} \epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) (\mathcal{D}_3^{ia} J^2 \mathcal{O}_3^{jb} + \mathcal{O}_3^{ia} J^2 \mathcal{D}_3^{jb}) \\ &= -3\{J^2, \{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\}\} + 3\{J^2, \{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\}\} - 3\{J^2, \{J^2, \{G^{kc}, T^8\}\}\} + 3\{J^2, \{J^2, \{G^{k8}, T^c\}\}\} \\ &- \frac{6}{N_f} if^{c8e} \{J^2, \{J^2, [J^2, G^{ke}]\}\} - \frac{1}{2} \{J^2, \{J^2, \{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\}\}\} + \frac{1}{2} \{J^2, \{J^2, \{J^2, \{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\}\}\} \\ &- \frac{1}{2} \{J^2, \{J^2, \{J^2, \{G^{kc}, T^8\}\}\}\} + \frac{1}{2} \{J^2, \{J^2, \{J^2, \{G^{k8}, T^c\}\}\}\} - \frac{1}{N_f} if^{c8e} \{J^2, \{J^2, \{J^2, [J^2, G^{ke}]\}\}\}, \end{aligned}$$
(A39)  
$$\epsilon^{ijk} (f^{aec} d^{be8} - f^{bec} d^{ae8} - f^{abe} d^{ec8}) \mathcal{O}_3^{ia} J^2 \mathcal{O}_3^{jb} \\ &= 3\{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\} - 3\{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\} + \frac{13}{4} \{J^2, \{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\}\} - \frac{13}{4} \{J^2, \{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\}\} \\ &+ \frac{1}{4} \{J^2, \{J^2, \{\mathcal{D}_2^{kc}, \{J^r, G^{r8}\}\}\}\} - \frac{1}{4} \{J^2, \{J^2, \{\mathcal{D}_2^{k8}, \{J^r, G^{rc}\}\}\}\}. \end{aligned}$$

APPENDIX B: COMPLETE EXPRESSIONS FROM ORDER 
$$\mathcal{O}(m_q^{1/2})$$
 CORRECTIONS

Order  $O(m_q^{1/2})$  corrections to baryon magnetic moments coming from Fig. 1, *including all* the terms allowed for  $N_f = N_c = 3$ , are given, for octet baryons, by

$$\begin{split} \delta\mu_n^{(\text{loop 1})} &= \left[\frac{25}{36}a_1^2 + \frac{5}{18}a_1b_2 + \frac{1}{36}b_2^2 + \frac{25}{54}a_1b_3 + \frac{5}{54}b_2b_3 + \frac{25}{324}b_3^2\right]I_1(m_\pi, 0, \mu) \\ &+ \left[-\frac{1}{36}a_1^2 + \frac{1}{18}a_1b_2 - \frac{1}{36}b_2^2 - \frac{1}{54}a_1b_3 + \frac{1}{54}b_2b_3 - \frac{1}{324}b_3^2\right]I_1(m_K, 0, \mu) \\ &+ \left[\frac{2}{9}a_1^2 + \frac{2}{9}a_1c_3 + \frac{1}{18}c_3^2\right]I_1(m_\pi, \Delta, \mu) + \left[\frac{1}{9}a_1^2 + \frac{1}{9}a_1c_3 + \frac{1}{36}c_3^2\right]I_1(m_K, \Delta, \mu), \end{split}$$
(B1)

$$\delta\mu_{p}^{(\text{loop 1})} = \left[ -\frac{25}{36}a_{1}^{2} - \frac{5}{18}a_{1}b_{2} - \frac{1}{36}b_{2}^{2} - \frac{25}{54}a_{1}b_{3} - \frac{5}{54}b_{2}b_{3} - \frac{25}{324}b_{3}^{2} \right] I_{1}(m_{\pi}, 0, \mu) + \left[ -\frac{7}{18}a_{1}^{2} - \frac{2}{9}a_{1}b_{2} - \frac{1}{18}b_{2}^{2} - \frac{7}{27}a_{1}b_{3} - \frac{2}{27}b_{2}b_{3} - \frac{7}{162}b_{3}^{2} \right] I_{1}(m_{K}, 0, \mu) + \left[ -\frac{2}{9}a_{1}^{2} - \frac{2}{9}a_{1}c_{3} - \frac{1}{18}c_{3}^{2} \right] I_{1}(m_{\pi}, \Delta, \mu) + \left[ \frac{1}{18}a_{1}^{2} + \frac{1}{18}a_{1}c_{3} + \frac{1}{72}c_{3}^{2} \right] I_{1}(m_{K}, \Delta, \mu),$$
(B2)

$$\delta\mu_{\Sigma^{-}}^{(\text{loop 1})} = \left[\frac{7}{18}a_1^2 + \frac{2}{9}a_1b_2 + \frac{1}{18}b_2^2 + \frac{7}{27}a_1b_3 + \frac{2}{27}b_2b_3 + \frac{7}{162}b_3^2\right]I_1(m_{\pi}, 0, \mu) \\ + \left[\frac{1}{36}a_1^2 - \frac{1}{18}a_1b_2 + \frac{1}{36}b_2^2 + \frac{1}{54}a_1b_3 - \frac{1}{54}b_2b_3 + \frac{1}{324}b_3^2\right]I_1(m_K, 0, \mu) \\ + \left[-\frac{1}{18}a_1^2 - \frac{1}{18}a_1c_3 - \frac{1}{72}c_3^2\right]I_1(m_{\pi}, \Delta, \mu) + \left[-\frac{1}{9}a_1^2 - \frac{1}{9}a_1c_3 - \frac{1}{36}c_3^2\right]I_1(m_K, \Delta, \mu),$$
(B3)

$$\delta\mu_{\Sigma^0}^{(\text{loop 1})} = \left[ -\frac{1}{3}a_1^2 - \frac{1}{6}a_1b_2 - \frac{2}{9}a_1b_3 - \frac{1}{18}b_2b_3 - \frac{1}{27}b_3^2 \right] I_1(m_K, 0, \mu) + \left[ -\frac{1}{6}a_1^2 - \frac{1}{6}a_1c_3 - \frac{1}{24}c_3^2 \right] I_1(m_K, \Delta, \mu), \quad (B4)$$

$$\delta\mu_{\Sigma^{+}}^{(\text{loop 1})} = \left[ -\frac{7}{18}a_{1}^{2} - \frac{2}{9}a_{1}b_{2} - \frac{1}{18}b_{2}^{2} - \frac{7}{27}a_{1}b_{3} - \frac{2}{27}b_{2}b_{3} - \frac{7}{162}b_{3}^{2} \right] I_{1}(m_{\pi}, 0, \mu) + \left[ -\frac{25}{36}a_{1}^{2} - \frac{5}{18}a_{1}b_{2} - \frac{1}{36}b_{2}^{2} - \frac{25}{54}a_{1}b_{3} - \frac{5}{54}b_{2}b_{3} - \frac{25}{324}b_{3}^{2} \right] I_{1}(m_{K}, 0, \mu) + \left[ \frac{1}{18}a_{1}^{2} + \frac{1}{18}a_{1}c_{3} + \frac{1}{72}c_{3}^{2} \right] I_{1}(m_{\pi}, \Delta, \mu) + \left[ -\frac{2}{9}a_{1}^{2} - \frac{2}{9}a_{1}c_{3} - \frac{1}{18}c_{3}^{2} \right] I_{1}(m_{K}, \Delta, \mu),$$
(B5)

$$\delta\mu_{\Xi^{-}}^{(\text{loop 1})} = \left[\frac{1}{36}a_{1}^{2} - \frac{1}{18}a_{1}b_{2} + \frac{1}{36}b_{2}^{2} + \frac{1}{54}a_{1}b_{3} - \frac{1}{54}b_{2}b_{3} + \frac{1}{324}b_{3}^{2}\right]I_{1}(m_{\pi}, 0, \mu) \\ + \left[\frac{7}{18}a_{1}^{2} + \frac{2}{9}a_{1}b_{2} + \frac{1}{18}b_{2}^{2} + \frac{7}{27}a_{1}b_{3} + \frac{2}{27}b_{2}b_{3} + \frac{7}{162}b_{3}^{2}\right]I_{1}(m_{K}, 0, \mu) \\ + \left[-\frac{1}{9}a_{1}^{2} - \frac{1}{9}a_{1}c_{3} - \frac{1}{36}c_{3}^{2}\right]I_{1}(m_{\pi}, \Delta, \mu) + \left[-\frac{1}{18}a_{1}^{2} - \frac{1}{18}a_{1}c_{3} - \frac{1}{72}c_{3}^{2}\right]I_{1}(m_{K}, \Delta, \mu), \tag{B6}$$

$$\delta\mu_{\Xi^{0}}^{(\text{loop 1})} = \left[ -\frac{1}{36}a_{1}^{2} + \frac{1}{18}a_{1}b_{2} - \frac{1}{36}b_{2}^{2} - \frac{1}{54}a_{1}b_{3} + \frac{1}{54}b_{2}b_{3} - \frac{1}{324}b_{3}^{2} \right] I_{1}(m_{\pi}, 0, \mu) + \left[ \frac{25}{36}a_{1}^{2} + \frac{5}{18}a_{1}b_{2} + \frac{1}{36}b_{2}^{2} + \frac{25}{54}a_{1}b_{3} + \frac{5}{54}b_{2}b_{3} + \frac{25}{324}b_{3}^{2} \right] I_{1}(m_{K}, 0, \mu) + \left[ \frac{1}{9}a_{1}^{2} + \frac{1}{9}a_{1}c_{3} + \frac{1}{36}c_{3}^{2} \right] I_{1}(m_{\pi}, \Delta, \mu) + \left[ \frac{2}{9}a_{1}^{2} + \frac{2}{9}a_{1}c_{3} + \frac{1}{18}c_{3}^{2} \right] I_{1}(m_{K}, \Delta, \mu),$$
(B7)

$$\delta\mu_{\Lambda}^{(\text{loop 1})} = \left[\frac{1}{3}a_{1}^{2} + \frac{1}{6}a_{1}b_{2} + \frac{2}{9}a_{1}b_{3} + \frac{1}{18}b_{2}b_{3} + \frac{1}{27}b_{3}^{2}\right]I_{1}(m_{K}, 0, \mu) + \left[\frac{1}{6}a_{1}^{2} + \frac{1}{6}a_{1}c_{3} + \frac{1}{24}c_{3}^{2}\right]I_{1}(m_{K}, \Delta, \mu), \quad (B8)$$

for decuplet baryons, by

$$\begin{split} \delta\mu_{\Delta^{++}}^{(\text{loop 1})} &= \left[ -\frac{1}{4}a_1^2 - \frac{1}{2}a_1b_2 - \frac{1}{4}b_2^2 - \frac{5}{6}a_1b_3 - \frac{5}{6}b_2b_3 - \frac{25}{36}b_3^2 \right] I_1(m_{\pi}, 0, \mu) \\ &+ \left[ -\frac{1}{4}a_1^2 - \frac{1}{2}a_1b_2 - \frac{1}{4}b_2^2 - \frac{5}{6}a_1b_3 - \frac{5}{6}b_2b_3 - \frac{25}{36}b_3^2 \right] I_1(m_K, 0, \mu) \\ &+ \left[ -\frac{1}{2}a_1^2 - \frac{1}{2}a_1c_3 - \frac{1}{8}c_3^2 \right] I_1(m_{\pi}, -\Delta, \mu) + \left[ -\frac{1}{2}a_1^2 - \frac{1}{2}a_1c_3 - \frac{1}{8}c_3^2 \right] I_1(m_K, -\Delta, \mu), \end{split}$$
(B9)

$$\delta\mu_{\Delta^{+}}^{(\text{loop 1})} = \left[ -\frac{1}{12}a_{1}^{2} - \frac{1}{6}a_{1}b_{2} - \frac{1}{12}b_{2}^{2} - \frac{5}{18}a_{1}b_{3} - \frac{5}{18}b_{2}b_{3} - \frac{25}{108}b_{3}^{2} \right] I_{1}(m_{\pi}, 0, \mu) + \left[ -\frac{1}{6}a_{1}^{2} - \frac{1}{3}a_{1}b_{2} - \frac{1}{6}b_{2}^{2} - \frac{5}{9}a_{1}b_{3} - \frac{5}{9}b_{2}b_{3} - \frac{25}{54}b_{3}^{2} \right] I_{1}(m_{K}, 0, \mu) + \left[ -\frac{1}{6}a_{1}^{2} - \frac{1}{6}a_{1}c_{3} - \frac{1}{24}c_{3}^{2} \right] I_{1}(m_{\pi}, -\Delta, \mu) + \left[ -\frac{1}{3}a_{1}^{2} - \frac{1}{3}a_{1}c_{3} - \frac{1}{12}c_{3}^{2} \right] I_{1}(m_{K}, -\Delta, \mu), \quad (B10)$$

$$\begin{split} \delta\mu_{\Delta^0}^{(\text{loop 1})} &= \left[\frac{1}{12}a_1^2 + \frac{1}{6}a_1b_2 + \frac{1}{12}b_2^2 + \frac{5}{18}a_1b_3 + \frac{5}{18}b_2b_3 + \frac{25}{108}b_3^2\right]I_1(m_{\pi}, 0, \mu) \\ &+ \left[-\frac{1}{12}a_1^2 - \frac{1}{6}a_1b_2 - \frac{1}{12}b_2^2 - \frac{5}{18}a_1b_3 - \frac{5}{18}b_2b_3 - \frac{25}{108}b_3^2\right]I_1(m_K, 0, \mu) \\ &+ \left[\frac{1}{6}a_1^2 + \frac{1}{6}a_1c_3 + \frac{1}{24}c_3^2\right]I_1(m_{\pi}, -\Delta, \mu) + \left[-\frac{1}{6}a_1^2 - \frac{1}{6}a_1c_3 - \frac{1}{24}c_3^2\right]I_1(m_K, -\Delta, \mu), \end{split}$$
(B11)

$$\delta\mu_{\Delta^{-}}^{(\text{loop 1})} = \left[\frac{1}{4}a_{1}^{2} + \frac{1}{2}a_{1}b_{2} + \frac{1}{4}b_{2}^{2} + \frac{5}{6}a_{1}b_{3} + \frac{5}{6}b_{2}b_{3} + \frac{25}{36}b_{3}^{2}\right]I_{1}(m_{\pi}, 0, \mu) + \left[\frac{1}{2}a_{1}^{2} + \frac{1}{2}a_{1}c_{3} + \frac{1}{8}c_{3}^{2}\right]I_{1}(m_{\pi}, -\Delta, \mu), \quad (\text{B12})$$

$$\delta\mu_{\Sigma^{*+}}^{(\text{loop 1})} = \left[ -\frac{1}{6}a_1^2 - \frac{1}{3}a_1b_2 - \frac{1}{6}b_2^2 - \frac{5}{9}a_1b_3 - \frac{5}{9}b_2b_3 - \frac{25}{54}b_3^2 \right] I_1(m_{\pi}, 0, \mu) \\ + \left[ -\frac{1}{12}a_1^2 - \frac{1}{6}a_1b_2 - \frac{1}{12}b_2^2 - \frac{5}{18}a_1b_3 - \frac{5}{18}b_2b_3 - \frac{25}{108}b_3^2 \right] I_1(m_K, 0, \mu) \\ + \left[ -\frac{1}{3}a_1^2 - \frac{1}{3}a_1c_3 - \frac{1}{12}c_3^2 \right] I_1(m_{\pi}, -\Delta, \mu) + \left[ -\frac{1}{6}a_1^2 - \frac{1}{6}a_1c_3 - \frac{1}{24}c_3^2 \right] I_1(m_K, -\Delta, \mu),$$
(B13)

$$\delta\mu_{\Sigma^{*0}}^{(\text{loop 1})} = 0, \tag{B14}$$

$$\delta\mu_{\Sigma^{*-}}^{(\text{loop 1})} = \left[\frac{1}{6}a_1^2 + \frac{1}{3}a_1b_2 + \frac{1}{6}b_2^2 + \frac{5}{9}a_1b_3 + \frac{5}{9}b_2b_3 + \frac{25}{54}b_3^2\right]I_1(m_{\pi}, 0, \mu) \\ + \left[\frac{1}{12}a_1^2 + \frac{1}{6}a_1b_2 + \frac{1}{12}b_2^2 + \frac{5}{18}a_1b_3 + \frac{5}{18}b_2b_3 + \frac{25}{108}b_3^2\right]I_1(m_K, 0, \mu) \\ + \left[\frac{1}{3}a_1^2 + \frac{1}{3}a_1c_3 + \frac{1}{12}c_3^2\right]I_1(m_{\pi}, -\Delta, \mu) + \left[\frac{1}{6}a_1^2 + \frac{1}{6}a_1c_3 + \frac{1}{24}c_3^2\right]I_1(m_K, -\Delta, \mu),$$
(B15)

$$\delta\mu_{\Xi^{*0}}^{(\text{loop 1})} = \left[ -\frac{1}{12}a_1^2 - \frac{1}{6}a_1b_2 - \frac{1}{12}b_2^2 - \frac{5}{18}a_1b_3 - \frac{5}{18}b_2b_3 - \frac{25}{108}b_3^2 \right] I_1(m_{\pi}, 0, \mu) \\ + \left[ \frac{1}{12}a_1^2 + \frac{1}{6}a_1b_2 + \frac{1}{12}b_2^2 + \frac{5}{18}a_1b_3 + \frac{5}{18}b_2b_3 + \frac{25}{108}b_3^2 \right] I_1(m_K, 0, \mu) \\ + \left[ -\frac{1}{6}a_1^2 - \frac{1}{6}a_1c_3 - \frac{1}{24}c_3^2 \right] I_1(m_{\pi}, -\Delta, \mu) + \left[ \frac{1}{6}a_1^2 + \frac{1}{6}a_1c_3 + \frac{1}{24}c_3^2 \right] I_1(m_K, -\Delta, \mu),$$
(B16)

$$\begin{split} \delta\mu_{\Xi^{*-}}^{(\text{loop 1})} &= \left[\frac{1}{12}a_1^2 + \frac{1}{6}a_1b_2 + \frac{1}{12}b_2^2 + \frac{5}{18}a_1b_3 + \frac{5}{18}b_2b_3 + \frac{25}{108}b_3^2\right]I_1(m_{\pi}, 0, \mu) \\ &+ \left[\frac{1}{6}a_1^2 + \frac{1}{3}a_1b_2 + \frac{1}{6}b_2^2 + \frac{5}{9}a_1b_3 + \frac{5}{9}b_2b_3 + \frac{25}{54}b_3^2\right]I_1(m_K, 0, \mu) \\ &+ \left[\frac{1}{6}a_1^2 + \frac{1}{6}a_1c_3 + \frac{1}{24}c_3^2\right]I_1(m_{\pi}, -\Delta, \mu) + \left[\frac{1}{3}a_1^2 + \frac{1}{3}a_1c_3 + \frac{1}{12}c_3^2\right]I_1(m_K, -\Delta, \mu), \end{split}$$
(B17)

$$\delta\mu_{\Omega^{-}}^{(\text{loop 1})} = \left[\frac{1}{4}a_{1}^{2} + \frac{1}{2}a_{1}b_{2} + \frac{1}{4}b_{2}^{2} + \frac{5}{6}a_{1}b_{3} + \frac{5}{6}b_{2}b_{3} + \frac{25}{36}b_{3}^{2}\right]I_{1}(m_{K}, 0, \mu) + \left[\frac{1}{2}a_{1}^{2} + \frac{1}{2}a_{1}c_{3} + \frac{1}{8}c_{3}^{2}\right]I_{1}(m_{K}, -\Delta, \mu), \quad (B18)$$

and for octet-octet and decuplet-octet transitions by

$$\sqrt{3}\delta\mu_{\Sigma^{0}\Lambda}^{(\text{loop 1})} = \left[ -\frac{2}{3}a_{1}^{2} - \frac{1}{3}a_{1}b_{2} - \frac{4}{9}a_{1}b_{3} - \frac{1}{9}b_{2}b_{3} - \frac{2}{27}b_{3}^{2} \right] I_{1}(m_{\pi}, 0, \mu) 
+ \left[ -\frac{1}{3}a_{1}^{2} - \frac{1}{6}a_{1}b_{2} - \frac{2}{9}a_{1}b_{3} - \frac{1}{18}b_{2}b_{3} - \frac{1}{27}b_{3}^{2} \right] I_{1}(m_{K}, 0, \mu) 
+ \left[ -\frac{1}{3}a_{1}^{2} - \frac{1}{3}a_{1}c_{3} - \frac{1}{12}c_{3}^{2} \right] I_{1}(m_{\pi}, \Delta, \mu) + \left[ -\frac{1}{6}a_{1}^{2} - \frac{1}{6}a_{1}c_{3} - \frac{1}{24}c_{3}^{2} \right] I_{1}(m_{K}, \Delta, \mu), \quad (B19)$$

$$\begin{split} \sqrt{2}\delta\mu_{\Delta^{+}p}^{(\text{loop 1})} &= \left[ -\frac{5}{18}a_{1}^{2} - \frac{1}{18}a_{1}b_{2} - \frac{5}{54}a_{1}b_{3} - \frac{5}{36}a_{1}c_{3} - \frac{1}{36}b_{2}c_{3} - \frac{5}{108}b_{3}c_{3} \right] I_{1}(m_{\pi}, 0, \mu) \\ &+ \left[ -\frac{1}{18}a_{1}^{2} + \frac{1}{18}a_{1}b_{2} - \frac{1}{54}a_{1}b_{3} - \frac{1}{36}a_{1}c_{3} + \frac{1}{36}b_{2}c_{3} - \frac{1}{108}b_{3}c_{3} \right] I_{1}(m_{K}, 0, \mu) \\ &+ \left[ -\frac{25}{18}a_{1}^{2} - \frac{25}{18}a_{1}b_{2} - \frac{125}{54}a_{1}b_{3} - \frac{25}{36}a_{1}c_{3} - \frac{25}{36}b_{2}c_{3} - \frac{125}{108}b_{3}c_{3} \right] I_{1}(m_{\pi}, \Delta, \mu) \\ &+ \left[ -\frac{5}{18}a_{1}^{2} - \frac{5}{18}a_{1}b_{2} - \frac{25}{54}a_{1}b_{3} - \frac{5}{36}a_{1}c_{3} - \frac{5}{36}b_{2}c_{3} - \frac{25}{108}b_{3}c_{3} \right] I_{1}(m_{K}, \Delta, \mu), \end{split}$$
(B20)

$$\begin{split} \sqrt{2}\delta\mu_{\Delta^{0}n}^{(\text{loop 1})} &= \left[ -\frac{5}{18}a_{1}^{2} - \frac{1}{18}a_{1}b_{2} - \frac{5}{54}a_{1}b_{3} - \frac{5}{36}a_{1}c_{3} - \frac{1}{36}b_{2}c_{3} - \frac{5}{108}b_{3}c_{3} \right] I_{1}(m_{\pi}, 0, \mu) \\ &+ \left[ -\frac{1}{18}a_{1}^{2} + \frac{1}{18}a_{1}b_{2} - \frac{1}{54}a_{1}b_{3} - \frac{1}{36}a_{1}c_{3} + \frac{1}{36}b_{2}c_{3} - \frac{1}{108}b_{3}c_{3} \right] I_{1}(m_{K}, 0, \mu) \\ &+ \left[ -\frac{25}{18}a_{1}^{2} - \frac{25}{18}a_{1}b_{2} - \frac{125}{54}a_{1}b_{3} - \frac{25}{36}a_{1}c_{3} - \frac{25}{36}b_{2}c_{3} - \frac{125}{108}b_{3}c_{3} \right] I_{1}(m_{\pi}, \Delta, \mu) \\ &+ \left[ -\frac{5}{18}a_{1}^{2} - \frac{5}{18}a_{1}b_{2} - \frac{25}{54}a_{1}b_{3} - \frac{5}{36}a_{1}c_{3} - \frac{5}{36}b_{2}c_{3} - \frac{25}{108}b_{3}c_{3} \right] I_{1}(m_{K}, \Delta, \mu), \end{split}$$
(B21)

$$\sqrt{6}\delta\mu_{\Sigma^{*0}\Lambda}^{(\text{loop 1})} = \left[ -\frac{1}{3}a_1^2 - \frac{1}{9}a_1b_3 - \frac{1}{6}a_1c_3 - \frac{1}{18}b_3c_3 \right] I_1(m_{\pi}, 0, \mu) 
+ \left[ -\frac{1}{6}a_1^2 - \frac{1}{18}a_1b_3 - \frac{1}{12}a_1c_3 - \frac{1}{36}b_3c_3 \right] I_1(m_K, 0, \mu) 
+ \left[ -\frac{5}{3}a_1^2 - \frac{5}{3}a_1b_2 - \frac{25}{9}a_1b_3 - \frac{5}{6}a_1c_3 - \frac{5}{6}b_2c_3 - \frac{25}{18}b_3c_3 \right] I_1(m_{\pi}, \Delta, \mu) 
+ \left[ -\frac{5}{6}a_1^2 - \frac{5}{6}a_1b_2 - \frac{25}{18}a_1b_3 - \frac{5}{12}a_1c_3 - \frac{5}{12}b_2c_3 - \frac{25}{36}b_3c_3 \right] I_1(m_K, \Delta, \mu), \quad (B22)$$

$$\sqrt{2}\delta\mu_{\Sigma^{*0}\Sigma^{0}}^{(\text{loop 1})} = \left[ -\frac{1}{6}a_{1}^{2} - \frac{1}{18}a_{1}b_{3} - \frac{1}{12}a_{1}c_{3} - \frac{1}{36}b_{3}c_{3} \right] I_{1}(m_{K}, 0, \mu) \\
+ \left[ -\frac{5}{6}a_{1}^{2} - \frac{5}{6}a_{1}b_{2} - \frac{25}{18}a_{1}b_{3} - \frac{5}{12}a_{1}c_{3} - \frac{5}{12}b_{2}c_{3} - \frac{25}{36}b_{3}c_{3} \right] I_{1}(m_{K}, \Delta, \mu),$$
(B23)

$$\begin{split} \sqrt{2}\delta\mu_{\Sigma^{*+}\Sigma^{+}}^{(\text{loop 1})} &= \left[ -\frac{1}{18}a_{1}^{2} + \frac{1}{18}a_{1}b_{2} - \frac{1}{54}a_{1}b_{3} - \frac{1}{36}a_{1}c_{3} + \frac{1}{36}b_{2}c_{3} - \frac{1}{108}b_{3}c_{3} \right] I_{1}(m_{\pi}, 0, \mu) \\ &+ \left[ -\frac{5}{18}a_{1}^{2} - \frac{1}{18}a_{1}b_{2} - \frac{5}{54}a_{1}b_{3} - \frac{5}{36}a_{1}c_{3} - \frac{1}{36}b_{2}c_{3} - \frac{5}{108}b_{3}c_{3} \right] I_{1}(m_{K}, 0, \mu) \\ &+ \left[ -\frac{5}{18}a_{1}^{2} - \frac{5}{18}a_{1}b_{2} - \frac{25}{54}a_{1}b_{3} - \frac{5}{36}a_{1}c_{3} - \frac{5}{36}b_{2}c_{3} - \frac{25}{108}b_{3}c_{3} \right] I_{1}(m_{\pi}, \Delta, \mu) \\ &+ \left[ -\frac{25}{18}a_{1}^{2} - \frac{25}{18}a_{1}b_{2} - \frac{125}{54}a_{1}b_{3} - \frac{25}{36}a_{1}c_{3} - \frac{25}{36}b_{2}c_{3} - \frac{125}{108}b_{3}c_{3} \right] I_{1}(m_{K}, \Delta, \mu), \end{split}$$
(B24)

$$\begin{split} \sqrt{2}\delta\mu_{\Sigma^{*}-\Sigma^{-}}^{(\text{loop 1})} &= \left[\frac{1}{18}a_{1}^{2} - \frac{1}{18}a_{1}b_{2} + \frac{1}{54}a_{1}b_{3} + \frac{1}{36}a_{1}c_{3} - \frac{1}{36}b_{2}c_{3} + \frac{1}{108}b_{3}c_{3}\right]I_{1}(m_{\pi}, 0, \mu) \\ &+ \left[-\frac{1}{18}a_{1}^{2} + \frac{1}{18}a_{1}b_{2} - \frac{1}{54}a_{1}b_{3} - \frac{1}{36}a_{1}c_{3} + \frac{1}{36}b_{2}c_{3} - \frac{1}{108}b_{3}c_{3}\right]I_{1}(m_{K}, 0, \mu) \\ &+ \left[\frac{5}{18}a_{1}^{2} + \frac{5}{18}a_{1}b_{2} + \frac{25}{54}a_{1}b_{3} + \frac{5}{36}a_{1}c_{3} + \frac{5}{36}b_{2}c_{3} + \frac{25}{108}b_{3}c_{3}\right]I_{1}(m_{\pi}, \Delta, \mu) \\ &+ \left[-\frac{5}{18}a_{1}^{2} - \frac{5}{18}a_{1}b_{2} - \frac{25}{54}a_{1}b_{3} - \frac{5}{36}a_{1}c_{3} - \frac{5}{36}b_{2}c_{3} - \frac{25}{108}b_{3}c_{3}\right]I_{1}(m_{K}, \Delta, \mu), \end{split}$$
(B25)

$$\begin{split} \sqrt{2}\delta\mu_{\Xi^{*0}\Xi^{0}}^{(\text{loop 1})} &= \left[ -\frac{1}{18}a_{1}^{2} + \frac{1}{18}a_{1}b_{2} - \frac{1}{54}a_{1}b_{3} - \frac{1}{36}a_{1}c_{3} + \frac{1}{36}b_{2}c_{3} - \frac{1}{108}b_{3}c_{3} \right] I_{1}(m_{\pi}, 0, \mu) \\ &+ \left[ -\frac{5}{18}a_{1}^{2} - \frac{1}{18}a_{1}b_{2} - \frac{5}{54}a_{1}b_{3} - \frac{5}{36}a_{1}c_{3} - \frac{1}{36}b_{2}c_{3} - \frac{5}{108}b_{3}c_{3} \right] I_{1}(m_{K}, 0, \mu) \\ &+ \left[ -\frac{5}{18}a_{1}^{2} - \frac{5}{18}a_{1}b_{2} - \frac{25}{54}a_{1}b_{3} - \frac{5}{36}a_{1}c_{3} - \frac{5}{36}b_{2}c_{3} - \frac{25}{108}b_{3}c_{3} \right] I_{1}(m_{\pi}, \Delta, \mu) \\ &+ \left[ -\frac{25}{18}a_{1}^{2} - \frac{25}{18}a_{1}b_{2} - \frac{125}{54}a_{1}b_{3} - \frac{25}{36}a_{1}c_{3} - \frac{25}{36}b_{2}c_{3} - \frac{125}{108}b_{3}c_{3} \right] I_{1}(m_{K}, \Delta, \mu), \end{split}$$
(B26)

$$\sqrt{2}\delta\mu_{\Xi^{*-}\Xi^{-}}^{(\text{loop 1})} = \left[\frac{1}{18}a_{1}^{2} - \frac{1}{18}a_{1}b_{2} + \frac{1}{54}a_{1}b_{3} + \frac{1}{36}a_{1}c_{3} - \frac{1}{36}b_{2}c_{3} + \frac{1}{108}b_{3}c_{3}\right]I_{1}(m_{\pi}, 0, \mu) 
+ \left[-\frac{1}{18}a_{1}^{2} + \frac{1}{18}a_{1}b_{2} - \frac{1}{54}a_{1}b_{3} - \frac{1}{36}a_{1}c_{3} + \frac{1}{36}b_{2}c_{3} - \frac{1}{108}b_{3}c_{3}\right]I_{1}(m_{K}, 0, \mu) 
+ \left[\frac{5}{18}a_{1}^{2} + \frac{5}{18}a_{1}b_{2} + \frac{25}{54}a_{1}b_{3} + \frac{5}{36}a_{1}c_{3} + \frac{5}{36}b_{2}c_{3} + \frac{25}{108}b_{3}c_{3}\right]I_{1}(m_{\pi}, \Delta, \mu) 
+ \left[-\frac{5}{18}a_{1}^{2} - \frac{5}{18}a_{1}b_{2} - \frac{25}{54}a_{1}b_{3} - \frac{5}{36}a_{1}c_{3} - \frac{5}{36}b_{2}c_{3} - \frac{25}{108}b_{3}c_{3}\right]I_{1}(m_{K}, \Delta, \mu).$$
(B27)

Using the inverse relations (43),  $\delta \mu_i^{(\text{loop 1})}$  expressions can be rewritten, for octet baryons, as

$$\delta\mu_n^{(\text{loop 1})} = (D+F)^2 I_1(m_\pi, 0, \mu) - (D-F)^2 I_1(m_K, 0, \mu) + \frac{2}{9} \mathcal{C}^2 I_1(m_\pi, \Delta, \mu) + \frac{1}{9} \mathcal{C}^2 I_1(m_K, \Delta, \mu),$$
(B28)

$$\delta\mu_p^{(\text{loop 1})} = -(D+F)^2 I_1(m_\pi, 0, \mu) - \frac{2}{3} (D^2 + 3F^2) I_1(m_K, 0, \mu) - \frac{2}{9} \mathcal{C}^2 I_1(m_\pi, \Delta, \mu) + \frac{1}{18} \mathcal{C}^2 I_1(m_K, \Delta, \mu), \tag{B29}$$

$$\delta\mu_{\Sigma^{-}}^{(\text{loop 1})} = \frac{2}{3}(D^2 + 3F^2)I_1(m_{\pi}, 0, \mu) + (D - F)^2I_1(m_K, 0, \mu) - \frac{1}{18}C^2I_1(m_{\pi}, \Delta, \mu) - \frac{1}{9}C^2I_1(m_K, \Delta, \mu), \quad (B30)$$

$$\delta\mu_{\Sigma^0}^{(\text{loop }1)} = -2DFI_1(m_K, 0, \mu) - \frac{1}{6}C^2I_1(m_K, \Delta, \mu), \tag{B31}$$

$$\delta\mu_{\Sigma^+}^{(\text{loop 1})} = -\frac{2}{3}(D^2 + 3F^2)I_1(m_{\pi}, 0, \mu) - (D + F)^2I_1(m_K, 0, \mu) + \frac{1}{18}\mathcal{C}^2I_1(m_{\pi}, \Delta, \mu) - \frac{2}{9}\mathcal{C}^2I_1(m_K, \Delta, \mu), \tag{B32}$$

$$\delta\mu_{\Xi^{-}}^{(\text{loop 1})} = (D-F)^2 I_1(m_{\pi}, 0, \mu) + \frac{2}{3} (D^2 + 3F^2) I_1(m_K, 0, \mu) - \frac{1}{9} C^2 I_1(m_{\pi}, \Delta, \mu) - \frac{1}{18} C^2 I_1(m_K, \Delta, \mu), \quad (B33)$$

$$\delta\mu_{\Xi^0}^{(\text{loop 1})} = -(D-F)^2 I_1(m_{\pi}, 0, \mu) + (D+F)^2 I_1(m_K, 0, \mu) + \frac{1}{9} \mathcal{C}^2 I_1(m_{\pi}, \Delta, \mu) + \frac{2}{9} \mathcal{C}^2 I_1(m_K, \Delta, \mu), \quad (B34)$$

$$\delta\mu_{\Lambda}^{(\text{loop 1})} = 2DFI_1(m_K, 0, \mu) + \frac{1}{6}C^2I_1(m_K, \Delta, \mu),$$
(B35)

#### 114024-29

for decuplet baryons as

$$\delta\mu_{\Delta^{++}}^{(\text{loop 1})} = -\frac{1}{9}\mathcal{H}^2 I_1(m_{\pi}, 0, \mu) - \frac{1}{9}\mathcal{H}^2 I_1(m_K, 0, \mu) - \frac{1}{2}\mathcal{C}^2 I_1(m_{\pi}, -\Delta, \mu) - \frac{1}{2}\mathcal{C}^2 I_1(m_K, -\Delta, \mu), \tag{B36}$$

$$\delta\mu_{\Delta^+}^{(\text{loop 1})} = -\frac{1}{27}\mathcal{H}^2 I_1(m_{\pi}, 0, \mu) - \frac{2}{27}\mathcal{H}^2 I_1(m_K, 0, \mu) - \frac{1}{6}\mathcal{C}^2 I_1(m_{\pi}, -\Delta, \mu) - \frac{1}{3}\mathcal{C}^2 I_1(m_K, -\Delta, \mu), \tag{B37}$$

$$\delta\mu_{\Delta^0}^{(\text{loop 1})} = \frac{1}{27} \mathcal{H}^2 I_1(m_{\pi}, 0, \mu) - \frac{1}{27} \mathcal{H}^2 I_1(m_K, 0, \mu) + \frac{1}{6} \mathcal{C}^2 I_1(m_{\pi}, -\Delta, \mu) - \frac{1}{6} \mathcal{C}^2 I_1(m_K, -\Delta, \mu), \tag{B38}$$

$$\delta\mu_{\Delta^{-}}^{(\text{loop 1})} = \frac{1}{9}\mathcal{H}^{2}I_{1}(m_{\pi}, 0, \mu) + \frac{1}{2}\mathcal{C}^{2}I_{1}(m_{\pi}, -\Delta, \mu), \tag{B39}$$

$$\delta\mu_{\Sigma^{*+}}^{(\text{loop 1})} = -\frac{2}{27}\mathcal{H}^2 I_1(m_{\pi}, 0, \mu) - \frac{1}{27}\mathcal{H}^2 I_1(m_K, 0, \mu) - \frac{1}{3}\mathcal{C}^2 I_1(m_{\pi}, -\Delta, \mu) - \frac{1}{6}\mathcal{C}^2 I_1(m_K, -\Delta, \mu), \tag{B40}$$

$$\delta\mu_{\Sigma^{*0}}^{(\text{loop 1})} = 0, \tag{B41}$$

$$\delta\mu_{\Sigma^{*-}}^{(\text{loop }1)} = \frac{2}{27}\mathcal{H}^2 I_1(m_{\pi}, 0, \mu) + \frac{1}{27}\mathcal{H}^2 I_1(m_K, 0, \mu) + \frac{1}{3}\mathcal{C}^2 I_1(m_{\pi}, -\Delta, \mu) + \frac{1}{6}\mathcal{C}^2 I_1(m_K, -\Delta, \mu), \tag{B42}$$

$$\delta\mu_{\Xi^{*0}}^{(\text{loop 1})} = -\frac{1}{27}\mathcal{H}^2 I_1(m_{\pi}, 0, \mu) + \frac{1}{27}\mathcal{H}^2 I_1(m_K, 0, \mu) - \frac{1}{6}\mathcal{C}^2 I_1(m_{\pi}, -\Delta, \mu) + \frac{1}{6}\mathcal{C}^2 I_1(m_K, -\Delta, \mu), \tag{B43}$$

$$\delta\mu_{\Xi^{*-}}^{(\text{loop 1})} = \frac{1}{27} \mathcal{H}^2 I_1(m_{\pi}, 0, \mu) + \frac{2}{27} \mathcal{H}^2 I_1(m_K, 0, \mu) + \frac{1}{6} \mathcal{C}^2 I_1(m_{\pi}, -\Delta, \mu) + \frac{1}{3} \mathcal{C}^2 I_1(m_K, -\Delta, \mu), \tag{B44}$$

$$\delta\mu_{\Omega^{-}}^{(\text{loop 1})} = \frac{1}{9}\mathcal{H}^{2}I_{1}(m_{K}, 0, \mu) + \frac{1}{2}\mathcal{C}^{2}I_{1}(m_{K}, -\Delta, \mu), \tag{B45}$$

and for octet-octet and decuplet-octet transitions as

$$\sqrt{3}\delta\mu_{\Sigma^0\Lambda}^{(\text{loop 1})} = -4DFI_1(m_{\pi}, 0, \mu) - 2DFI_1(m_K, 0, \mu) - \frac{1}{3}\mathcal{C}^2I_1(m_{\pi}, \Delta, \mu) - \frac{1}{6}\mathcal{C}^2I_1(m_K, \Delta, \mu),$$
(B46)

$$\sqrt{2}\delta\mu_{\Delta^+p}^{(\text{loop 1})} = \frac{1}{3}\mathcal{C}(D+F)I_1(m_{\pi},0,\mu) + \frac{1}{3}\mathcal{C}(D-F)I_1(m_K,0,\mu) - \frac{25}{27}\mathcal{CH}I_1(m_{\pi},\Delta,\mu) - \frac{5}{27}\mathcal{CH}I_1(m_K,\Delta,\mu), \quad (B47)$$

$$\sqrt{2}\delta\mu_{\Delta^0 n}^{(\text{loop 1})} = \frac{1}{3}\mathcal{C}(D+F)I_1(m_{\pi}, 0, \mu) + \frac{1}{3}\mathcal{C}(D-F)I_1(m_K, 0, \mu) - \frac{25}{27}\mathcal{CH}I_1(m_{\pi}, \Delta, \mu) - \frac{5}{27}\mathcal{CH}I_1(m_K, \Delta, \mu), \quad (B48)$$

$$\sqrt{6}\delta\mu_{\Sigma^{*0}\Lambda}^{(\text{loop }1)} = \frac{2}{3}\mathcal{C}DI_1(m_{\pi}, 0, \mu) + \frac{1}{3}\mathcal{C}DI_1(m_K, 0, \mu) - \frac{10}{9}\mathcal{C}\mathcal{H}I_1(m_{\pi}, \Delta, \mu) - \frac{5}{9}\mathcal{C}\mathcal{H}I_1(m_K, \Delta, \mu),$$
(B49)

$$\sqrt{2}\delta\mu_{\Sigma^{*0}\Sigma^{0}}^{(\text{loop }1)} = \frac{1}{3}\mathcal{C}DI_{1}(m_{K}, 0, \mu) - \frac{5}{9}\mathcal{CH}I_{1}(m_{K}, \Delta, \mu),$$
(B50)

$$\sqrt{2}\delta\mu_{\Sigma^{*+}\Sigma^{+}}^{(\text{loop 1})} = \frac{1}{3}\mathcal{C}(D-F)I_{1}(m_{\pi},0,\mu) + \frac{1}{3}\mathcal{C}(D+F)I_{1}(m_{K},0,\mu) - \frac{5}{27}\mathcal{CH}I_{1}(m_{\pi},\Delta,\mu) - \frac{25}{27}\mathcal{CH}I_{1}(m_{K},\Delta,\mu), \quad (B51)$$

$$\sqrt{2}\delta\mu_{\Sigma^{*}-\Sigma^{-}}^{(\text{loop 1})} = -\frac{1}{3}\mathcal{C}(D-F)I_{1}(m_{\pi},0,\mu) + \frac{1}{3}\mathcal{C}(D-F)I_{1}(m_{K},0,\mu) + \frac{5}{27}\mathcal{CH}I_{1}(m_{\pi},\Delta,\mu) - \frac{5}{27}\mathcal{CH}I_{1}(m_{K},\Delta,\mu), \quad (B52)$$

$$\sqrt{2}\delta\mu_{\Xi^{*0}\Xi^{0}}^{(\text{loop 1})} = \frac{1}{3}\mathcal{C}(D-F)I_{1}(m_{\pi},0,\mu) + \frac{1}{3}\mathcal{C}(D+F)I_{1}(m_{K},0,\mu) - \frac{5}{27}\mathcal{CH}I_{1}(m_{\pi},\Delta,\mu) - \frac{25}{27}\mathcal{CH}I_{1}(m_{K},\Delta,\mu), \quad (B53)$$

#### 114024-30

$$\sqrt{2}\delta\mu_{\Xi^*-\Xi^-}^{(\text{loop 1})} = -\frac{1}{3}\mathcal{C}(D-F)I_1(m_{\pi},0,\mu) + \frac{1}{3}\mathcal{C}(D-F)I_1(m_K,0,\mu) + \frac{5}{27}\mathcal{CH}I_1(m_{\pi},\Delta,\mu) - \frac{5}{27}\mathcal{CH}I_1(m_K,\Delta,\mu).$$
(B54)

# APPENDIX C: REDUCTION OF BARYON OPERATORS EMERGING FROM FIG. 2 1. Flavor 1 operators

$$[G^{ia}, [G^{ia}, G^{kc}]] = \frac{3N_f^2 - 4}{4N_f} G^{kc},$$
(C1)

$$[G^{ia}, [G^{ia}, \mathcal{D}_2^{kc}]] = -(N_c + N_f)G^{kc} + \frac{7N_f^2 + 4N_f - 4}{4N_f}\mathcal{D}_2^{kc},$$
(C2)

$$[\mathcal{D}_2^{ia}, [G^{ia}, G^{kc}]] + [G^{ia}, [\mathcal{D}_2^{ia}, G^{kc}]] = \frac{(N_c + N_f)(N_f - 2)}{N_f} G^{kc} + \frac{1}{2}(N_f + 2)\mathcal{D}_2^{kc}, \tag{C3}$$

$$[G^{ia}, [G^{ia}, \mathcal{D}_3^{kc}]] = -[N_c(N_c + 2N_f) + 4]G^{kc} - 4(N_c + N_f)\mathcal{D}_2^{kc} + \frac{11N_f^2 + 12N_f - 4}{4N_f}\mathcal{D}_3^{kc},$$
(C4)

$$[\mathcal{D}_{3}^{ia}, [G^{ia}, G^{kc}]] + [G^{ia}, [\mathcal{D}_{3}^{ia}, G^{kc}]] = 2(N_f - 2)G^{kc} + (N_c + N_f)\mathcal{D}_{2}^{kc} + \frac{N_f^2 + 2N_f - 4}{2N_f}\mathcal{D}_{3}^{kc} + \frac{(N_f + 4)(N_f - 2)}{N_f}\mathcal{O}_{3}^{kc}, \quad (C5)$$

$$[G^{ia}, [G^{ia}, \mathcal{O}_3^{kc}]] = -[N_c(N_c + 2N_f) - N_f]G^{kc} + (N_c + N_f)\mathcal{D}_2^{kc} + \frac{11N_f^2 + 12N_f - 4}{4N_f}\mathcal{O}_3^{kc},$$
(C6)

$$[G^{ia}, [\mathcal{O}_3^{ia}, G^{kc}]] + [\mathcal{O}_3^{ia}, [G^{ia}, G^{kc}]] = -\frac{3}{2}(N_c + N_f)\mathcal{D}_2^{kc} + \frac{1}{2}(N_f + 1)\mathcal{D}_3^{kc} + N_f\mathcal{O}_3^{kc},$$
(C7)

$$[\mathcal{D}_{2}^{ia}, [G^{ia}, \mathcal{D}_{2}^{kc}]] + [G^{ia}, [\mathcal{D}_{2}^{ia}, \mathcal{D}_{2}^{kc}]] = -2N_f G^{kc} + \frac{2(N_c + N_f)(N_f - 1)}{N_f} \mathcal{D}_{2}^{kc} + \frac{1}{2}N_f \mathcal{D}_{3}^{kc} - 2\mathcal{O}_{3}^{kc}, \tag{C8}$$

$$\left[\mathcal{D}_{2}^{ia}, \left[\mathcal{D}_{2}^{ia}, G^{kc}\right]\right] = \frac{N_{c}(N_{c} + 2N_{f})(N_{f} - 2) - 2N_{f}^{2}}{2N_{f}}G^{kc} + \frac{1}{4}(N_{f} + 2)\mathcal{D}_{3}^{kc} + \frac{1}{2}(N_{f} + 4)\mathcal{O}_{3}^{kc}, \tag{C9}$$

$$\begin{aligned} [\mathcal{D}_{2}^{ia}, [G^{ia}, \mathcal{D}_{3}^{kc}]] + [G^{ia}, [\mathcal{D}_{2}^{ia}, \mathcal{D}_{3}^{kc}]] \\ &= -4(N_{c} + N_{f})G^{kc} - 2(N_{f} - 2)\mathcal{D}_{2}^{kc} + \frac{(N_{c} + N_{f})(3N_{f} - 2)}{N}\mathcal{D}_{3}^{kc} - 2(N_{c} + N_{f})\mathcal{O}_{3}^{kc} + (N_{f} - 2)\mathcal{D}_{4}^{kc}, \end{aligned}$$
(C10)

$$= -4(N_c + N_f)G^{kc} - 2(N_f - 2)\mathcal{D}_2^{kc} + \frac{(N_c + N_f)(3N_f - 2)}{N_f}\mathcal{D}_3^{kc} - 2(N_c + N_f)\mathcal{O}_3^{kc} + (N_f - 2)\mathcal{D}_4^{kc},$$
(C10)

$$\left[\mathcal{D}_{2}^{ia}, \left[G^{ia}, \mathcal{O}_{3}^{kc}\right]\right] + \left[G^{ia}, \left[\mathcal{D}_{2}^{ia}, \mathcal{O}_{3}^{kc}\right]\right] = 3N_{f}\mathcal{D}_{2}^{kc} - (N_{c} + N_{f})\mathcal{D}_{3}^{kc} + \frac{2(N_{c} + N_{f})(N_{f} - 1)}{N_{f}}\mathcal{O}_{3}^{kc} + 2\mathcal{D}_{4}^{kc}, \quad (C11)$$

$$[\mathcal{D}_{3}^{ia}, [G^{ia}, \mathcal{D}_{2}^{kc}]] + [G^{ia}, [\mathcal{D}_{3}^{ia}, \mathcal{D}_{2}^{kc}]]$$

$$= -4(N_c + N_f)G^{kc} + [N_c(N_c + 2N_f) + 2N_f]\mathcal{D}_2^{kc} + (N_c + N_f)\mathcal{D}_3^{kc} - 2(N_c + N_f)\mathcal{O}_3^{kc} + \frac{N_f^2 - 4}{N_f}\mathcal{D}_4^{kc}, \qquad (C12)$$

$$[G^{ia}, [\mathcal{O}_3^{ia}, \mathcal{D}_2^{kc}]] + [\mathcal{O}_3^{ia}, [G^{ia}, \mathcal{D}_2^{kc}]] = -\frac{3}{2} [N_c (N_c + 2N_f) - 4N_f] \mathcal{D}_2^{kc} - \frac{5}{2} (N_c + N_f) \mathcal{D}_3^{kc} - (N_c + N_f) \mathcal{O}_3^{kc} + 3(N_f + 2) \mathcal{D}_4^{kc},$$
(C13)

#### 114024-31

$$[\mathcal{D}_2^{ia}, [\mathcal{D}_2^{ia}, \mathcal{D}_2^{kc}]] = \frac{N_c (N_c + 2N_f)(N_f - 2) - 2N_f^2}{2N_f} \mathcal{D}_2^{kc} + \frac{1}{2}(N_f + 2)\mathcal{D}_4^{kc}, \tag{C14}$$

 $[\mathcal{D}_2^{ia},[\mathcal{D}_3^{ia},G^{kc}]]+[\mathcal{D}_3^{ia},[\mathcal{D}_2^{ia},G^{kc}]]$ 

$$= -4(N_c + N_f)G^{kc} - 2(N_f - 2)\mathcal{D}_2^{kc} + \frac{(N_c + N_f)(3N_f - 2)}{N_f}\mathcal{D}_3^{kc} + \frac{2(N_c + N_f)(5N_f - 4)}{N_f}\mathcal{O}_3^{kc} + (N_f - 2)\mathcal{D}_4^{kc}, \quad (C15)$$

$$[\mathcal{D}_2^{ia}, [\mathcal{O}_3^{ia}, G^{kc}]] + [\mathcal{O}_3^{ia}, [\mathcal{D}_2^{ia}, G^{kc}]] = 3N_f \mathcal{D}_2^{kc} - (N_c + N_f) \mathcal{D}_3^{kc} - (N_c + N_f) \mathcal{O}_3^{kc} + 2\mathcal{D}_4^{kc},$$
(C16)

$$\begin{aligned} [\mathcal{D}_{3}^{ia}, [G^{ia}, \mathcal{D}_{3}^{kc}]] + [G^{ia}, [\mathcal{D}_{3}^{ia}, \mathcal{D}_{3}^{kc}]] \\ &= -4[N_{c}(N_{c} + 2N_{f}) + 2N_{f}]G^{kc} + 4(N_{c} + N_{f})\mathcal{D}_{2}^{kc} + 2[N_{c}(N_{c} + 2N_{f}) + 2N_{f} - 2]\mathcal{D}_{3}^{kc} \\ &- 2[N_{c}(N_{c} + 2N_{f}) - 2N_{f} + 8]\mathcal{O}_{3}^{kc} - 2(N_{c} + N_{f})\mathcal{D}_{4}^{kc} + \frac{N_{f}^{2} + 2N_{f} - 4}{N_{f}}\mathcal{D}_{5}^{kc}, \end{aligned}$$
(C17)

$$\begin{aligned} [\mathcal{D}_{3}^{ia}, [G^{ia}, \mathcal{O}_{3}^{kc}]] + [G^{ia}, [\mathcal{D}_{3}^{ia}, \mathcal{O}_{3}^{kc}]] \\ &= -[N_{c}(N_{c} + 2N_{f}) - N_{f}]\mathcal{D}_{3}^{kc} + [N_{c}(N_{c} + 2N_{f}) + 2N_{f}]\mathcal{O}_{3}^{kc} + 2(N_{c} + N_{f})\mathcal{D}_{4}^{kc} + \frac{(N_{f} + 4)(N_{f} - 2)}{N_{f}}\mathcal{O}_{5}^{kc}, \quad (C18) \end{aligned}$$

$$\begin{split} [G^{ia}, [\mathcal{O}_3^{ia}, \mathcal{D}_3^{kc}]] + [\mathcal{O}_3^{ia}, [G^{ia}, \mathcal{D}_3^{kc}]] \\ &= -24(N_c + N_f)\mathcal{D}_2^{kc} - [4N_c(N_c + 2N_f) - 13N_f]\mathcal{D}_3^{kc} - [N_c(N_c + 2N_f) + 4]\mathcal{O}_3^{kc} - 9(N_c + N_f)\mathcal{D}_4^{kc} \\ &+ (5N_f + 11)\mathcal{D}_5^{kc}, \end{split}$$
(C19)

$$\begin{split} [G^{ia}, [\mathcal{O}_3^{ia}, \mathcal{O}_3^{kc}]] + [\mathcal{O}_3^{ia}, [G^{ia}, \mathcal{O}_3^{kc}]] \\ &= -3N_c(N_c + 2N_f)G^{kc} + 3(N_c + N_f)\mathcal{D}_2^{kc} - \frac{1}{2}[N_c(N_c + 2N_f) - 3N_f]\mathcal{D}_3^{kc} - \frac{1}{2}[9N_c(N_c + 2N_f) - 34N_f - 12]\mathcal{O}_3^{kc} \\ &+ (N_c + N_f)\mathcal{D}_4^{kc} + 5(N_f + 2)\mathcal{O}_5^{kc}, \end{split}$$
(C20)

$$[\mathcal{D}_2^{ia}, [\mathcal{D}_2^{ia}, \mathcal{D}_3^{kc}]] = \frac{N_c (N_c + 2N_f)(N_f - 2) - 2N_f^2}{2N_f} \mathcal{D}_3^{kc} + \frac{1}{2} (N_f + 2) \mathcal{D}_5^{kc},$$
(C21)

$$[\mathcal{D}_2^{ia}, [\mathcal{D}_2^{ia}, \mathcal{O}_3^{kc}]] = \frac{N_c (N_c + 2N_f)(N_f - 2) - 2N_f^2}{2N_f} \mathcal{O}_3^{kc} + \frac{1}{2} (N_f + 4) \mathcal{O}_5^{kc},$$
(C22)

$$[\mathcal{D}_{2}^{ia}, [\mathcal{D}_{3}^{ia}, \mathcal{D}_{2}^{kc}]] + [\mathcal{D}_{3}^{ia}, [\mathcal{D}_{2}^{ia}, \mathcal{D}_{2}^{kc}]] = -2N_f \mathcal{D}_{3}^{kc} + \frac{4(N_c + N_f)(N_f - 1)}{N_f} \mathcal{D}_{4}^{kc} + N_f \mathcal{D}_{5}^{kc},$$
(C23)

$$[\mathcal{D}_2^{ia}, [\mathcal{O}_3^{ia}, \mathcal{D}_2^{kc}]] + [\mathcal{O}_3^{ia}, [\mathcal{D}_2^{ia}, \mathcal{D}_2^{kc}]] = -2N_f \mathcal{O}_3^{kc} - 2\mathcal{O}_5^{kc},$$
(C24)

$$\begin{aligned} [\mathcal{D}_{3}^{ia}, [\mathcal{D}_{3}^{ia}, G^{kc}]] &= -2[N_{c}(N_{c} + 2N_{f}) + 2N_{f}]G^{kc} + 2(N_{c} + N_{f})\mathcal{D}_{2}^{kc} + [N_{c}(N_{c} + 2N_{f}) + 2N_{f} - 2]\mathcal{D}_{3}^{kc} \\ &+ \frac{3N_{c}N_{f}(N_{c} + 2N_{f}) + 8N_{f}^{2} - 8N_{f} + 8}{N_{f}}\mathcal{O}_{3}^{kc} - (N_{c} + N_{f})\mathcal{D}_{4}^{kc} + \frac{N_{f}^{2} + 2N_{f} - 4}{2N_{f}}\mathcal{D}_{5}^{kc} \\ &+ \frac{(N_{f} + 10)(N_{f} - 2)}{N_{f}}\mathcal{O}_{5}^{kc}, \end{aligned}$$
(C25)

 $[\mathcal{D}_{3}^{ia}, [\mathcal{O}_{3}^{ia}, G^{kc}]] + [\mathcal{O}_{3}^{ia}, [\mathcal{D}_{3}^{ia}, G^{kc}]] = -[N_c(N_c + 2N_f) - N_f]\mathcal{D}_{3}^{kc} - [N_c(N_c + 2N_f) + 4]\mathcal{O}_{3}^{kc} + 2(N_c + N_f)\mathcal{D}_{4}^{kc}, \quad (C26)$ 

$$\begin{aligned} [\mathcal{O}_{3}^{ia}, [\mathcal{O}_{3}^{ia}, G^{kc}]] &= \frac{3}{2} N_{c} (N_{c} + 2N_{f}) G^{kc} - 3(N_{c} + N_{f}) \mathcal{D}_{2}^{kc} + \frac{1}{4} N_{c} (N_{c} + 2N_{f}) \mathcal{D}_{3}^{kc} \\ &+ \frac{1}{4} [5N_{c} (N_{c} + 2N_{f}) - 30N_{f} - 12] \mathcal{O}_{3}^{kc} - \frac{7}{4} (N_{c} + N_{f}) \mathcal{D}_{4}^{kc} + \frac{1}{4} (N_{f} + 3) \mathcal{D}_{5}^{kc} \\ &+ \frac{1}{2} (N_{f} - 4) \mathcal{O}_{5}^{kc}, \end{aligned}$$
(C27)

$$[\mathcal{D}_2^{ia}, [\mathcal{D}_3^{ia}, \mathcal{D}_3^{kc}]] + [\mathcal{D}_3^{ia}, [\mathcal{D}_2^{ia}, \mathcal{D}_3^{kc}]]$$

$$= -4(N_c + N_f)\mathcal{D}_3^{kc} - 4(N_f - 2)\mathcal{D}_4^{kc} + \frac{2(N_c + N_f)(3N_f - 2)}{N_f}\mathcal{D}_5^{kc} + 2(N_f - 2)\mathcal{D}_6^{kc},$$
(C28)

$$[\mathcal{D}_{2}^{ia}, [\mathcal{D}_{3}^{ia}, \mathcal{O}_{3}^{kc}]] + [\mathcal{D}_{3}^{ia}, [\mathcal{D}_{2}^{ia}, \mathcal{O}_{3}^{kc}]] = -4(N_{c} + N_{f})\mathcal{O}_{3}^{kc} + \frac{2(N_{c} + N_{f})(5N_{f} - 4)}{N_{f}}\mathcal{O}_{5}^{kc},$$
(C29)

$$[\mathcal{D}_2^{ia}, [\mathcal{O}_3^{ia}, \mathcal{D}_3^{kc}]] + [\mathcal{O}_3^{ia}, [\mathcal{D}_2^{ia}, \mathcal{D}_3^{kc}]] = -4(N_c + N_f)\mathcal{O}_3^{kc} - 2(N_c + N_f)\mathcal{O}_5^{kc},$$
(C30)

$$[\mathcal{D}_{2}^{ia}, [\mathcal{O}_{3}^{ia}, \mathcal{O}_{3}^{kc}]] + [\mathcal{O}_{3}^{ia}, [\mathcal{D}_{2}^{ia}, \mathcal{O}_{3}^{kc}]] = 6N_{f}\mathcal{D}_{2}^{kc} - 3(N_{c} + N_{f})\mathcal{D}_{3}^{kc} + (5N_{f} + 6)\mathcal{D}_{4}^{kc} - (N_{c} + N_{f})\mathcal{D}_{5}^{kc} + 2\mathcal{D}_{6}^{kc}, \quad (C31)$$

$$[\mathcal{D}_{3}^{ia}, [\mathcal{D}_{3}^{ia}, \mathcal{D}_{2}^{kc}]] = -2(N_{c} + N_{f})\mathcal{D}_{3}^{kc} + [N_{c}(N_{c} + 2N_{f}) + 2N_{f}]\mathcal{D}_{4}^{kc} + (N_{c} + N_{f})\mathcal{D}_{5}^{kc} + \frac{N_{f}^{2} - 4}{N_{f}}\mathcal{D}_{6}^{kc}, \quad (C32)$$

$$[\mathcal{D}_3^{ia}, [\mathcal{O}_3^{ia}, \mathcal{D}_2^{kc}]] + [\mathcal{O}_3^{ia}, [\mathcal{D}_3^{ia}, \mathcal{D}_2^{kc}]] = -4(N_c + N_f)\mathcal{O}_3^{kc} - 2(N_c + N_f)\mathcal{O}_5^{kc},$$
(C33)

$$\begin{aligned} [\mathcal{O}_{3}^{ia}, [\mathcal{O}_{3}^{ia}, \mathcal{D}_{2}^{kc}]] \\ &= -\frac{3}{2} [N_{c}(N_{c} + 2N_{f}) - 4N_{f}] \mathcal{D}_{2}^{kc} - 3(N_{c} + N_{f}) \mathcal{D}_{3}^{kc} - \frac{1}{4} [5N_{c}(N_{c} + 2N_{f}) - 38N_{f} - 24] \mathcal{D}_{4}^{kc} - \frac{7}{4} (N_{c} + N_{f}) \mathcal{D}_{5}^{kc} \\ &+ \frac{1}{2} (3N_{f} + 10) \mathcal{D}_{6}^{kc}, \end{aligned}$$
(C34)

 $[\mathcal{D}_3^{ia},[\mathcal{D}_3^{ia},\mathcal{D}_3^{kc}]]$ 

$$= -2[N_c(N_c + 2N_f) + 2N_f]\mathcal{D}_3^{kc} + 4(N_c + N_f)\mathcal{D}_4^{kc} + 2[N_c(N_c + 2N_f) + 2N_f - 2]\mathcal{D}_5^{kc} - 2(N_c + N_f)\mathcal{D}_6^{kc} + \frac{N_f^2 + 2N_f - 4}{N_f}\mathcal{D}_7^{kc},$$
(C35)

 $[\mathcal{D}_3^{ia},[\mathcal{D}_3^{ia},\mathcal{O}_3^{kc}]]$ 

$$= -2[N_c(N_c + 2N_f) + 2N_f]\mathcal{O}_3^{kc} + \frac{3N_cN_f(N_c + 2N_f) + 8N_f^2 - 8N_f + 8}{N_f}\mathcal{O}_5^{kc} + \frac{(N_f + 10)(N_f - 2)}{N_f}\mathcal{O}_7^{kc}, \quad (C36)$$

$$[\mathcal{D}_{3}^{ia}, [\mathcal{O}_{3}^{ia}, \mathcal{D}_{3}^{kc}]] + [\mathcal{O}_{3}^{ia}, [\mathcal{D}_{3}^{ia}, \mathcal{D}_{3}^{kc}]] = -4[N_{c}(N_{c} + 2N_{f}) + 2N_{f}]\mathcal{O}_{3}^{kc} - 2[N_{c}(N_{c} + 2N_{f}) - 2N_{f} + 8]\mathcal{O}_{5}^{kc}, \quad (C37)$$

$$[\mathcal{D}_{3}^{ia}, [\mathcal{O}_{3}^{ia}, \mathcal{O}_{3}^{kc}]] + [\mathcal{O}_{3}^{ia}, [\mathcal{D}_{3}^{ia}, \mathcal{O}_{3}^{kc}]] = -3N_{c}(N_{c} + 2N_{f})\mathcal{D}_{3}^{kc} + 6(N_{c} + N_{f})\mathcal{D}_{4}^{kc} - [N_{c}(N_{c} + 2N_{f}) - 3N_{f}]\mathcal{D}_{5}^{kc}$$

$$+2(N_c+N_f)\mathcal{D}_6^{kc},$$
(C38)

 $[\mathcal{O}_3^{ia},[\mathcal{O}_3^{ia},\mathcal{D}_3^{kc}]]$ 

$$= -24(N_c + N_f)\mathcal{D}_2^{kc} - \frac{3}{2}[3N_c(N_c + 2N_f) - 8N_f]\mathcal{D}_3^{kc} - 32(N_c + N_f)\mathcal{D}_4^{kc} - [3N_c(N_c + 2N_f) - 19N_f - 12]\mathcal{D}_5^{kc} - \frac{11}{2}(N_c + N_f)\mathcal{D}_6^{kc} + \frac{1}{2}(5N_f + 17)\mathcal{D}_7^{kc},$$
(C39)

$$[\mathcal{O}_3^{ia}, [\mathcal{O}_3^{ia}, \mathcal{O}_3^{kc}]] = -\frac{3}{2}N_c(N_c + 2N_f)\mathcal{O}_3^{kc} - \frac{1}{4}[9N_c(N_c + 2N_f) - 34N_f - 12]\mathcal{O}_5^{kc} + \frac{5}{2}(N_f + 2)\mathcal{O}_7^{kc}.$$
 (C40)

# 2. Flavor 8 operators

$$d^{ab8}[G^{ia}, [G^{ib}, G^{kc}]] = \frac{3N_f^2 - 16}{8N_f} d^{c8e} G^{ke} + \frac{N_f^2 - 4}{2N_f^2} \delta^{c8} J^k,$$
(C41)

$$d^{ab8}[G^{ia}, [G^{ib}, \mathcal{D}_2^{kc}]] = -\frac{1}{2}(N_c + N_f)d^{c8e}G^{ke} + \frac{1}{8}(3N_f + 4)d^{c8e}\mathcal{D}_2^{ke} - \frac{1}{2}\{G^{kc}, T^8\} + \frac{N_f^2 + N_f - 4}{2N_f}\{G^{k8}, T^c\} - \frac{1}{N_f}if^{c8e}[J^2, G^{ke}],$$
(C42)

$$d^{ab8}([\mathcal{D}_{2}^{ia}, [G^{ib}, G^{kc}]] + [G^{ia}, [\mathcal{D}_{2}^{ib}, G^{kc}]]) = \frac{(N_{c} + N_{f})(N_{f} - 4)}{2N_{f}} d^{c8e}G^{ke} + \frac{(N_{c} + N_{f})(N_{f} - 2)}{N_{f}^{2}} \delta^{c8}J^{k} + \frac{1}{4}(N_{f} + 2)d^{c8e}\mathcal{D}_{2}^{ke} + \frac{N_{f} - 4}{2N_{f}}\{G^{kc}, T^{8}\} + \frac{1}{2}\{G^{k8}, T^{c}\} - \frac{N_{f}^{2} + 2N_{f} - 4}{4N_{f}}if^{c8e}[J^{2}, G^{ke}],$$
(C43)

 $d^{ab8}[G^{ia},[G^{ib},\mathcal{D}_3^{kc}]]$ 

$$= -4d^{c8e}G^{ke} - \frac{2[N_c(N_c + 2N_f) - N_f + 2]}{N_f} \delta^{c8}J^k - 2(N_c + N_f)d^{c8e}\mathcal{D}_2^{ke} - (N_c + N_f)\{G^{kc}, T^8\} - \frac{1}{2}(N_c + N_f)if^{c8e}[J^2, G^{ke}] + \frac{1}{8}(3N_f + 8)d^{c8e}\mathcal{D}_3^{ke} - \frac{2}{N_f}d^{c8e}\mathcal{O}_3^{ke} + \frac{2}{N_f}\{G^{kc}, \{J^r, G^{r8}\}\} + \frac{N_f^2 + 2N_f - 6}{N_f}\{G^{k8}, \{J^r, G^{rc}\}\} - \{J^k, \{T^c, T^8\}\} + (N_f + 2)\{J^k, \{G^{rc}, G^{r8}\}\} + \frac{N_f + 2}{N_f}\delta^{c8}\{J^2, J^k\}, \quad (C44)$$

$$\begin{aligned} d^{ab8}([\mathcal{D}_{3}^{ia},[G^{ib},G^{kc}]] + [G^{ia},[\mathcal{D}_{3}^{ib},G^{kc}]]) \\ &= (N_{f}-4)d^{c8e}G^{ke} + \frac{N_{c}(N_{c}+2N_{f})+4N_{f}-8}{2N_{f}}\delta^{c8}J^{k} + \frac{1}{2}(N_{c}+N_{f})d^{c8e}\mathcal{D}_{2}^{ke} - (N_{c}+N_{f})if^{c8e}[J^{2},G^{ke}] \\ &+ \frac{(N_{f}+4)(N_{f}-2)}{4N_{f}}d^{c8e}\mathcal{D}_{3}^{ke} + \frac{N_{f}^{2}+2N_{f}-20}{2N_{f}}d^{c8e}\mathcal{O}_{3}^{ke} + \frac{N_{f}-6}{N_{f}}\{G^{kc},\{J^{r},G^{r8}\}\} + \frac{N_{f}+2}{N_{f}}\{G^{k8},\{J^{r},G^{rc}\}\} \\ &+ \frac{1}{4}\{J^{k},\{T^{c},T^{8}\}\} - \{J^{k},\{G^{rc},G^{r8}\}\} + \frac{N_{f}-4}{N_{f}^{2}}\delta^{c8}\{J^{2},J^{k}\}, \end{aligned}$$
(C45)

$$d^{ab8}[G^{ia}, [G^{ib}, \mathcal{O}_3^{kc}]]$$

$$=\frac{1}{2}N_{f}d^{c8e}G^{ke} + \frac{N_{c}(N_{c}+2N_{f})}{2N_{f}}\delta^{c8}J^{k} + \frac{1}{2}(N_{c}+N_{f})d^{c8e}\mathcal{D}_{2}^{ke} - (N_{c}+N_{f})\{G^{kc},T^{8}\}$$

$$+\frac{3}{4}(N_{c}+N_{f})if^{c8e}[J^{2},G^{ke}] - \frac{1}{N_{f}}d^{c8e}\mathcal{D}_{3}^{ke} + \frac{3N_{f}^{2}+8N_{f}-8}{8N_{f}}d^{c8e}\mathcal{O}_{3}^{ke} + \frac{N_{f}^{2}+2N_{f}-1}{N_{f}}\{G^{kc},\{J^{r},G^{r8}\}\}$$

$$-\frac{N_{f}^{2}+2N_{f}-2}{2N_{f}}\{G^{k8},\{J^{r},G^{rc}\}\} + \frac{1}{4}\{J^{k},\{T^{c},T^{8}\}\} - \frac{N_{f}^{2}+2N_{f}-4}{2N_{f}}\{J^{k},\{G^{rc},G^{r8}\}\} - \frac{2}{N_{f}^{2}}\delta^{c8}\{J^{2},J^{k}\}, \quad (C46)$$

$$d^{ab8}([G^{ia}, [\mathcal{O}_3^{ib}, G^{kc}]] + [\mathcal{O}_3^{ia}, [G^{ib}, G^{kc}]])$$

$$= -\frac{3N_{c}(N_{c}+2N_{f})}{4N_{f}}\delta^{c8}J^{k} - \frac{3}{4}(N_{c}+N_{f})d^{c8e}\mathcal{D}_{2}^{ke} + \frac{1}{4}(N_{c}+N_{f})if^{c8e}[J^{2},G^{ke}] + \frac{N_{f}^{2}+N_{f}-4}{4N_{f}}d^{c8e}\mathcal{D}_{3}^{ke} \\ + \frac{N_{f}^{2}-2}{2N_{f}}d^{c8e}\mathcal{O}_{3}^{ke} + \frac{1}{N_{f}}\{G^{kc},\{J^{r},G^{r8}\}\} - \frac{1}{N_{f}}\{G^{k8},\{J^{r},G^{rc}\}\} - \frac{3}{8}\{J^{k},\{T^{c},T^{8}\}\} \\ + \frac{N_{f}+4}{2N_{f}}\{J^{k},\{G^{rc},G^{r8}\}\} + \frac{2N_{f}^{2}+N_{f}-4}{2N_{f}^{2}}\delta^{c8}\{J^{2},J^{k}\},$$
(C47)

$$d^{ab8}([\mathcal{D}_{2}^{ia}, [G^{ib}, \mathcal{D}_{2}^{kc}]] + [G^{ia}, [\mathcal{D}_{2}^{ib}, \mathcal{D}_{2}^{kc}]]) = -N_{f}d^{c8e}G^{ke} + \frac{(N_{c} + N_{f})(N_{f} - 2)}{N_{f}}\{G^{k8}, T^{c}\} - \frac{N_{c} + N_{f}}{N_{f}}if^{c8e}[J^{2}, G^{ke}] + \frac{1}{4}N_{f}d^{c8e}\mathcal{D}_{3}^{ke} - d^{c8e}\mathcal{O}_{3}^{ke} - \{G^{kc}, \{J^{r}, G^{r8}\}\} + \{G^{k8}, \{J^{r}, G^{rc}\}\} + \frac{N_{f} - 2}{2N_{f}}\{J^{k}, \{T^{c}, T^{8}\}\},$$
(C48)

$$d^{ab8}[\mathcal{D}_{2}^{ia}, [\mathcal{D}_{2}^{ib}, G^{kc}]] = -\frac{1}{2}N_{f}d^{c8e}G^{ke} + \frac{(N_{c} + N_{f})(N_{f} - 4)}{2N_{f}}\{G^{kc}, T^{8}\} - \frac{(N_{c} + N_{f})(N_{f} - 4)}{4N_{f}}if^{c8e}[J^{2}, G^{ke}] + \frac{1}{8}N_{f}d^{c8e}\mathcal{D}_{3}^{ke} + \frac{1}{4}(N_{f} + 2)d^{c8e}\mathcal{O}_{3}^{ke} + \frac{3}{2}\{G^{kc}, \{J^{r}, G^{r8}\}\} - \frac{1}{2}\{G^{k8}, \{J^{r}, G^{rc}\}\},$$
(C49)

$$\begin{aligned} d^{ab8}([\mathcal{D}_{2}^{ia},[G^{ib},\mathcal{D}_{3}^{kc}]] + [G^{ia},[\mathcal{D}_{2}^{ib},\mathcal{D}_{3}^{kc}]]) \\ &= -2(N_{c}+N_{f})d^{c8e}G^{ke} - (N_{f}-2)d^{c8e}\mathcal{D}_{2}^{ke} - 2\{G^{kc},T^{8}\} + 2\{G^{k8},T^{c}\} - 2(N_{f}-1)if^{c8e}[J^{2},G^{ke}] \\ &+ \frac{1}{2}(N_{c}+N_{f})d^{c8e}\mathcal{D}_{3}^{ke} - \frac{2(N_{c}+N_{f})}{N_{f}}d^{c8e}\mathcal{O}_{3}^{ke} - \frac{(N_{c}+N_{f})(N_{f}-2)}{N_{f}}\{G^{kc},\{J^{r},G^{r8}\}\} \\ &+ \frac{3(N_{c}+N_{f})(N_{f}-2)}{N_{f}}\{G^{k8},\{J^{r},G^{rc}\}\} + \frac{1}{2}(N_{f}-2)d^{c8e}\mathcal{D}_{4}^{ke} - 2\{\mathcal{D}_{2}^{kc},\{J^{r},G^{r8}\}\} \\ &+ \frac{4(N_{f}-1)}{N_{f}}\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} - \{J^{2},\{G^{kc},T^{8}\}\} + \{J^{2},\{G^{k8},T^{c}\}\} - if^{c8e}\{J^{2},[J^{2},G^{ke}]\}, \end{aligned}$$
(C50)

$$\begin{split} d^{ab8}([\mathcal{D}_{2}^{ia},[G^{ib},\mathcal{O}_{3}^{kc}]] + [G^{ia},[\mathcal{D}_{2}^{ib},\mathcal{O}_{3}^{kc}]]) \\ &= \frac{3}{2}N_{f}d^{c8e}\mathcal{D}_{2}^{ke} + \frac{1}{2}(N_{f}-2)if^{c8e}[J^{2},G^{ke}] - \frac{N_{c}+N_{f}}{N_{f}}d^{c8e}\mathcal{D}_{3}^{ke} + \frac{(N_{c}+N_{f})(N_{f}-2)}{2N_{f}}d^{c8e}\mathcal{O}_{3}^{ke} \\ &+ \frac{(N_{c}+N_{f})(N_{f}-2)}{2N_{f}}\{G^{kc},\{J^{r},G^{r8}\}\} - \frac{(N_{c}+N_{f})(N_{f}-2)}{2N_{f}}\{G^{k8},\{J^{r},G^{rc}\}\} \\ &- \frac{(N_{c}+N_{f})(N_{f}-2)}{N_{f}}\{J^{k},\{G^{rc},G^{r8}\}\} + \frac{(N_{c}+N_{f})(N_{f}-2)}{N_{f}^{2}}\delta^{c8}\{J^{2},J^{k}\} + d^{c8e}\mathcal{D}_{4}^{ke} + \{\mathcal{D}_{2}^{kc},\{J^{r},G^{r8}\}\} \\ &- \frac{2(N_{f}-1)}{N_{f}}\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} + \frac{N_{f}-2}{N_{f}}\{J^{2},\{G^{kc},T^{8}\}\} - \frac{N_{f}^{2}-4}{4N_{f}}if^{c8e}\{J^{2},[J^{2},G^{ke}]\}, \end{split}$$
(C51)

$$\begin{aligned} d^{ab8}([\mathcal{D}_{3}^{ia},[G^{ib},\mathcal{D}_{2}^{kc}]] + [G^{ia},[\mathcal{D}_{3}^{ib},\mathcal{D}_{2}^{kc}]]) \\ &= -2(N_{c}+N_{f})d^{c8e}G^{ke} - (N_{f}-2)d^{c8e}\mathcal{D}_{2}^{ke} - 2\{G^{kc},T^{8}\} + 2(N_{f}-1)\{G^{k8},T^{c}\} - \frac{4}{N_{f}}if^{c8e}[J^{2},G^{ke}] \\ &+ \frac{1}{2}(N_{c}+N_{f})d^{c8e}\mathcal{D}_{3}^{ke} - (N_{c}+N_{f})d^{c8e}\mathcal{O}_{3}^{ke} + \frac{1}{2}(N_{c}+N_{f})\{J^{k},\{T^{c},T^{8}\}\} + \frac{1}{2}(N_{f}-2)d^{c8e}\mathcal{D}_{4}^{ke} \\ &- (N_{f}+2)\{\mathcal{D}_{2}^{kc},\{J^{r},G^{r8}\}\} + 2\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} - \{J^{2},\{G^{kc},T^{8}\}\} + \frac{N_{f}^{2}+3N_{f}-8}{N_{f}}\{J^{2},\{G^{k8},T^{c}\}\} \\ &- \frac{2}{N_{f}}if^{c8e}\{J^{2},[J^{2},G^{ke}]\}, \end{aligned}$$
(C52)

$$d^{ab8}([G^{ia}, [\mathcal{O}_{3}^{ib}, \mathcal{D}_{2}^{kc}]] + [\mathcal{O}_{3}^{ia}, [G^{ib}, \mathcal{D}_{2}^{kc}]]) = 3N_{f}d^{c8e}\mathcal{D}_{2}^{ke} - \frac{5}{4}(N_{c} + N_{f})d^{c8e}\mathcal{D}_{3}^{ke} - \frac{1}{2}(N_{c} + N_{f})d^{c8e}\mathcal{O}_{3}^{ke} - \frac{3}{4}(N_{c} + N_{f})\{J^{k}, \{T^{c}, T^{8}\}\} + \frac{1}{2}(N_{f} + 5)d^{c8e}\mathcal{D}_{4}^{ke} + \frac{N_{f}^{2} + 6N_{f} + 4}{2N_{f}}\{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{r8}\}\} - 2\{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\} - \frac{1}{2}\{J^{2}, \{G^{kc}, T^{8}\}\} + \frac{N_{f}^{2} + N_{f} - 4}{2N_{f}}\{J^{2}, \{G^{k8}, T^{c}\}\} - \frac{1}{N_{f}}if^{c8e}\{J^{2}, [J^{2}, G^{ke}]\},$$
(C53)

$$d^{ab8}[\mathcal{D}_{2}^{ia}, [\mathcal{D}_{2}^{ib}, \mathcal{D}_{2}^{kc}]] = -\frac{1}{2}N_{f}d^{c8e}\mathcal{D}_{2}^{ke} + \frac{(N_{c} + N_{f})(N_{f} - 4)}{4N_{f}}\{J^{k}, \{T^{c}, T^{8}\}\} + \frac{1}{4}N_{f}d^{c8e}\mathcal{D}_{4}^{ke} + \{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{r8}\}\}, \quad (C54)$$

$$\begin{aligned} d^{ab8}([\mathcal{D}_{2}^{ia},[\mathcal{D}_{3}^{ib},G^{kc}]] + [\mathcal{D}_{3}^{ia},[\mathcal{D}_{2}^{ib},G^{kc}]]) \\ &= -2(N_{c}+N_{f})d^{c8e}G^{ke} - (N_{f}-2)d^{c8e}\mathcal{D}_{2}^{ke} - 2\{G^{kc},T^{8}\} + 2\{G^{k8},T^{c}\} + \frac{N_{f}^{2}-2N_{f}-4}{N_{f}}if^{c8e}[J^{2},G^{ke}] \\ &+ \frac{1}{2}(N_{c}+N_{f})d^{c8e}\mathcal{D}_{3}^{ke} + \frac{2(N_{c}+N_{f})(N_{f}-1)}{N_{f}}d^{c8e}\mathcal{O}_{3}^{ke} + \frac{3(N_{c}+N_{f})(N_{f}-2)}{N_{f}}\{G^{kc},\{J^{r},G^{r8}\}\} \\ &- \frac{(N_{c}+N_{f})(N_{f}-2)}{N_{f}}\{G^{k8},\{J^{r},G^{rc}\}\} + \frac{1}{2}(N_{f}-2)d^{c8e}\mathcal{D}_{4}^{ke} - \frac{2(N_{f}-2)}{N_{f}}\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} \\ &+ \frac{5N_{f}-8}{N_{f}}\{J^{2},\{G^{kc},T^{8}\}\} - \{J^{2},\{G^{k8},T^{c}\}\} - \frac{N_{f}^{2}+2N_{f}-12}{2N_{f}}if^{c8e}\{J^{2},[J^{2},G^{ke}]\}, \end{aligned}$$
(C55)

$$\begin{split} d^{ab8}([\mathcal{D}_{2}^{ia},[\mathcal{O}_{3}^{ib},G^{kc}]] + [\mathcal{O}_{3}^{ia},[\mathcal{D}_{2}^{ib},G^{kc}]]) \\ &= \frac{3}{2}N_{f}d^{c8e}\mathcal{D}_{2}^{ke} - \frac{1}{2}(N_{f}-2)if^{c8e}[J^{2},G^{ke}] - \frac{N_{c}+N_{f}}{N_{f}}d^{c8e}\mathcal{D}_{3}^{ke} - \frac{N_{c}+N_{f}}{N_{f}}d^{c8e}\mathcal{O}_{3}^{ke} \\ &- \frac{(N_{c}+N_{f})(N_{f}-2)}{2N_{f}}\{G^{kc},\{J^{r},G^{r8}\}\} + \frac{(N_{c}+N_{f})(N_{f}-2)}{2N_{f}}\{G^{k8},\{J^{r},G^{rc}\}\} \\ &- \frac{(N_{c}+N_{f})(N_{f}-2)}{N_{f}}\{J^{k},\{G^{rc},G^{r8}\}\} + \frac{(N_{c}+N_{f})(N_{f}-2)}{N_{f}^{2}}\delta^{c8}\{J^{2},J^{k}\} + d^{c8e}\mathcal{D}_{4}^{ke} + \frac{1}{2}\{\mathcal{D}_{2}^{kc},\{J^{r},G^{r8}\}\} \\ &- \frac{1}{2}\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} - \frac{1}{2}\{J^{2},\{G^{kc},T^{8}\}\} + \frac{1}{2}\{J^{2},\{G^{k8},T^{c}\}\} - \frac{1}{2}if^{c8e}\{J^{2},[J^{2},G^{ke}]\}, \end{split}$$
(C56)
$$\begin{split} d^{ab8}([\mathcal{D}_{3}^{ia},[G^{ib},\mathcal{D}_{3}^{kc}]] + [G^{ia},[\mathcal{D}_{3}^{ib},\mathcal{D}_{3}^{kc}]]) \\ &= -4N_{f}d^{c8e}G^{ke} + \frac{2N_{c}(N_{c}+2N_{f})}{N_{f}}\delta^{c8}J^{k} + 2(N_{c}+N_{f})d^{c8e}\mathcal{D}_{2}^{ke} - 4(N_{c}+N_{f})\{G^{kc},T^{8}\} \\ &- 2(N_{c}+N_{f})if^{c8e}[J^{2},G^{ke}] - 2d^{c8e}\mathcal{D}_{3}^{ke} - \frac{4(3N_{f}+2)}{N_{f}}d^{c8e}\mathcal{O}_{3}^{ke} + \frac{2(N_{f}^{2}-2N_{f}+4)}{N_{f}}\{G^{kc},\{J^{r},G^{r8}\}\} \\ &+ \frac{2(3N_{f}^{2}-2N_{f}-4)}{N_{f}}\{G^{k8},\{J^{r},G^{rc}\}\} + \{J^{k},\{T^{c},T^{8}\}\} - 4(N_{f}-1)\{J^{k},\{G^{rc},G^{r8}\}\} \\ &- \frac{N_{c}(N_{c}+2N_{f}) + 4}{N_{f}}\delta^{c8}\{J^{2},J^{k}\} - (N_{c}+N_{f})d^{c8e}\mathcal{D}_{4}^{ke} + 6(N_{c}+N_{f})\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} \\ &- 2(N_{c}+N_{f})\{J^{2},\{G^{kc},T^{8}\}\} - (N_{c}+N_{f})d^{c8e}\mathcal{D}_{4}^{ke} + 6(N_{c}+N_{f})\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} \\ &- 2(N_{c}+N_{f})\{J^{2},\{G^{kc},T^{8}\}\} - (N_{c}+N_{f})d^{c8e}\{J^{2},[J^{2},G^{ke}]\} + \frac{1}{2}(N_{f}+2)d^{c8e}\mathcal{D}_{5}^{ke} - \frac{4}{N_{f}}d^{c8e}\mathcal{O}_{5}^{ke} \\ &+ \frac{4}{N_{f}}\{J^{2},\{G^{kc},\{J^{r},G^{r8}\}\}\} + \frac{2(N_{f}^{2}+4N_{f}-10)}{N_{f}}\{J^{2},\{G^{k8},\{J^{r},G^{rc}\}\}\} - \frac{1}{2}\{J^{2},\{J^{k},\{T^{c},T^{8}\}\} \\ &+ 2(N_{f}-1)\{J^{2},\{J^{k},\{G^{rc},G^{r8}\}\}\} - 2(N_{f}+1)\{J^{k},\{\{J^{m},G^{mc}\},\{J^{r},G^{r8}\}\}\} + \frac{2}{N_{f}}\delta^{c8}\{J^{2},\{J^{2},J^{k}\}\}, \quad (C57) \end{split}$$

$$\begin{split} d^{ab8}([\mathcal{D}_{3}^{ia},[G^{ib},\mathcal{O}_{3}^{kc}]] + [G^{ia},[\mathcal{D}_{3}^{ib},\mathcal{O}_{3}^{kc}]]) \\ &= \frac{1}{2}N_{f}d^{c8e}\mathcal{D}_{3}^{ke} + N_{f}d^{c8e}\mathcal{O}_{3}^{ke} + \frac{N_{c}(N_{c}+2N_{f})}{N_{f}}\delta^{c8}\{J^{2},J^{k}\} + (N_{c}+N_{f})d^{c8e}\mathcal{D}_{4}^{ke} - 3(N_{c}+N_{f})\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} \\ &+ (N_{c}+N_{f})\{J^{2},\{G^{kc},T^{8}\}\} - \frac{1}{2}(N_{c}+N_{f})if^{c8e}\{J^{2},[J^{2},G^{ke}]\} - \frac{2}{N_{f}}d^{c8e}\mathcal{D}_{5}^{ke} + \frac{N_{f}^{2}+2N_{f}-16}{2N_{f}}d^{c8e}\mathcal{O}_{5}^{ke} \\ &+ \frac{N_{f}-8}{N_{f}}\{J^{2},\{G^{kc},\{J^{r},G^{r8}\}\}\} - \frac{N_{f}^{2}+N_{f}-8}{N_{f}}\{J^{2},\{G^{k8},\{J^{r},G^{rc}\}\}\} + \frac{1}{2}\{J^{2},\{J^{k},\{T^{c},T^{8}\}\}\} \\ &- \frac{N_{f}^{2}+2N_{f}-4}{N_{f}}\{J^{2},\{J^{k},\{G^{rc},G^{r8}\}\}\} + (N_{f}+1)\{J^{k},\{\{J^{m},G^{mc}\},\{J^{r},G^{r8}\}\}\} - \frac{4}{N_{f}^{2}}\delta^{c8}\{J^{2},\{J^{2},J^{k}\}\}, \quad (C58) \end{split}$$

$$\begin{split} d^{ab8}([G^{ia}, [\mathcal{O}_{3}^{ib}, \mathcal{D}_{3}^{kc}]] + [\mathcal{O}_{3}^{ia}, [G^{ib}, \mathcal{D}_{3}^{kc}]]) \\ &= -\frac{12N_{c}(N_{c} + 2N_{f})}{N_{f}} \delta^{c8}J^{k} - 12(N_{c} + N_{f})d^{c8e}\mathcal{D}_{2}^{ke} + \frac{1}{2}(5N_{f} - 8)d^{c8e}\mathcal{D}_{3}^{ke} - 4d^{c8e}\mathcal{O}_{3}^{ke} - 6\{J^{k}, \{T^{c}, T^{8}\}\} \\ &+ 8(N_{f} + 1)\{J^{k}, \{G^{rc}, G^{r8}\}\} - \frac{9N_{c}(N_{c} + 2N_{f}) - 32N_{f} + 16}{2N_{f}} \delta^{c8}\{J^{2}, J^{k}\} - \frac{9}{2}(N_{c} + N_{f})d^{c8e}\mathcal{D}_{4}^{ke} \\ &- 7(N_{c} + N_{f})\{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\} - (N_{c} + N_{f})\{J^{2}, \{G^{kc}, T^{8}\}\} - \frac{1}{2}(N_{c} + N_{f})if^{c8e}\{J^{2}, [J^{2}, G^{ke}]\} \\ &+ \frac{1}{2}(N_{f} + 5)d^{c8e}\mathcal{D}_{5}^{ke} - \frac{2}{N_{f}}d^{c8e}\mathcal{O}_{5}^{ke} + \frac{2}{N_{f}}\{J^{2}, \{G^{kc}, \{J^{r}, G^{r8}\}\}\} + \frac{N_{f}^{2} + 2N_{f} - 6}{N_{f}}\{J^{2}, \{G^{k8}, \{J^{r}, G^{rc}\}\}\} \\ &- \frac{9}{4}\{J^{2}, \{J^{k}, \{T^{c}, T^{8}\}\}\} + (N_{f} + 7)\{J^{2}, \{J^{k}, \{G^{rc}, G^{r8}\}\}\} + \frac{N_{f}^{2} + 4N_{f} + 2}{N_{f}}\{J^{k}, \{\{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\} \\ &+ \frac{2N_{f} + 5}{N_{f}}\delta^{c8}\{J^{2}, \{J^{2}, J^{k}\}\}, \end{split}$$
(C59)

 $d^{ab8}([G^{ia}, [\mathcal{O}_3^{ib}, \mathcal{O}_3^{kc}]] + [\mathcal{O}_3^{ia}, [G^{ib}, \mathcal{O}_3^{kc}]])$ 

$$= \frac{3N_{c}(N_{c}+2N_{f})}{2N_{f}}\delta^{c8}J^{k} + \frac{3}{2}(N_{c}+N_{f})d^{c8e}\mathcal{D}_{2}^{ke} - 3(N_{c}+N_{f})\{G^{kc},T^{8}\} + 4(N_{c}+N_{f})if^{c8e}[J^{2},G^{ke}] \\ + \frac{(N_{f}+4)(N_{f}-2)}{4N_{f}}d^{c8e}\mathcal{D}_{3}^{ke} + 3(N_{f}+1)d^{c8e}\mathcal{O}_{3}^{ke} + \frac{1}{2}(11N_{f}+6)\{G^{kc},\{J^{r},G^{r8}\}\} \\ - \frac{1}{2}(5N_{f}+6)\{G^{k8},\{J^{r},G^{rc}\}\} + \frac{3}{4}\{J^{k},\{T^{c},T^{8}\}\} - \frac{2N_{f}^{2}+N_{f}-4}{N_{f}}\{J^{k},\{G^{rc},G^{r8}\}\} \\ + \frac{N_{c}N_{f}(N_{c}+2N_{f})-2N_{f}^{2}+2N_{f}-8}{2N_{f}^{2}}\delta^{c8}\{J^{2},J^{k}\} + \frac{1}{2}(N_{c}+N_{f})d^{c8e}\mathcal{D}_{4}^{ke} + \frac{7}{2}(N_{c}+N_{f})\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} \\ - \frac{9}{2}(N_{c}+N_{f})\{J^{2},\{G^{kc},T^{8}\}\} + \frac{3}{2}(N_{c}+N_{f})if^{c8e}\{J^{2},[J^{2},G^{ke}]\} - \frac{1}{N_{f}}d^{c8e}\mathcal{D}_{5}^{ke} + \frac{1}{2}(N_{f}+4)d^{c8e}\mathcal{O}_{5}^{ke} \\ + 2(N_{f}+4)\{J^{2},\{G^{kc},\{J^{r},G^{r8}\}\}\} - \frac{1}{2}(N_{f}+4)\{J^{2},\{G^{k8},\{J^{r},G^{rc}\}\}\} + \frac{1}{4}\{J^{2},\{J^{k},\{T^{c},T^{8}\}\}\} \\ - \frac{N_{f}^{2}+4N_{f}-8}{2N_{f}}\{J^{2},\{J^{k},\{G^{rc},G^{r8}\}\}\} - \frac{N_{f}^{2}+4N_{f}+2}{2N_{f}}\{J^{k},\{\{J^{m},G^{mc}\},\{J^{r},G^{r8}\}\}\} \\ - \frac{2}{N_{f}^{2}}\delta^{c8}\{J^{2},\{J^{2},J^{k}\}\},$$
(C60)

$$d^{ab8}[\mathcal{D}_{2}^{ia}, [\mathcal{D}_{2}^{ib}, \mathcal{D}_{3}^{kc}]] = -\frac{1}{2} N_{f} d^{c8e} \mathcal{D}_{3}^{ke} + \frac{(N_{c} + N_{f})(N_{f} - 4)}{N_{f}} \{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\} + \frac{1}{4} N_{f} d^{c8e} \mathcal{D}_{5}^{ke} + \{J^{k}, \{\{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\},$$
(C61)

$$\begin{aligned} d^{ab8}[\mathcal{D}_{2}^{ia}, [\mathcal{D}_{2}^{ib}, \mathcal{O}_{3}^{kc}]] \\ &= -\frac{1}{2} N_{f} d^{c8e} \mathcal{O}_{3}^{ke} - \frac{(N_{c} + N_{f})(N_{f} - 4)}{2N_{f}} \{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\} + \frac{(N_{c} + N_{f})(N_{f} - 4)}{2N_{f}} \{J^{2}, \{G^{kc}, T^{8}\}\} \\ &- \frac{(N_{c} + N_{f})(N_{f} - 4)}{4N_{f}} if^{c8e} \{J^{2}, [J^{2}, G^{ke}]\} + \frac{1}{4} (N_{f} + 2) d^{c8e} \mathcal{O}_{5}^{ke} + \frac{3}{2} \{J^{2}, \{G^{kc}, \{J^{r}, G^{r8}\}\}\} \\ &- \frac{1}{2} \{J^{2}, \{G^{k8}, \{J^{r}, G^{rc}\}\}\} - \frac{1}{2} \{J^{k}, \{\{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\}, \end{aligned}$$
(C62)

$$d^{ab8}([\mathcal{D}_{2}^{ia}, [\mathcal{D}_{3}^{ib}, \mathcal{D}_{2}^{kc}]] + [\mathcal{D}_{3}^{ia}, [\mathcal{D}_{2}^{ib}, \mathcal{D}_{2}^{kc}]]) = -N_{f}d^{c8e}\mathcal{D}_{3}^{ke} + \frac{2(N_{c} + N_{f})(N_{f} - 2)}{N_{f}}\{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{r8}\}\} + \frac{1}{2}N_{f}d^{c8e}\mathcal{D}_{5}^{ke} + \frac{N_{f} - 2}{N_{f}}\{J^{2}, \{J^{k}, \{T^{c}, T^{8}\}\}\},$$
(C63)

$$d^{ab8}([\mathcal{D}_{2}^{ia}, [\mathcal{O}_{3}^{ib}, \mathcal{D}_{2}^{kc}]] + [\mathcal{O}_{3}^{ia}, [\mathcal{D}_{2}^{ib}, \mathcal{D}_{2}^{kc}]]) = -N_{f}d^{c8e}\mathcal{O}_{3}^{ke} - \frac{(N_{c} + N_{f})(N_{f} - 2)}{N_{f}}\{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{r8}\}\} + \frac{(N_{c} + N_{f})(N_{f} - 2)}{N_{f}}\{J^{2}, \{G^{k8}, T^{c}\}\} - \frac{N_{c} + N_{f}}{N_{f}}if^{c8e}\{J^{2}, [J^{2}, G^{ke}]\} - d^{c8e}\mathcal{O}_{5}^{ke} - \{J^{2}, \{G^{kc}, \{J^{r}, G^{r8}\}\}\} + \{J^{2}, \{G^{k8}, \{J^{r}, G^{rc}\}\}\},$$
(C64)

 $d^{ab8}[\mathcal{D}_3^{ia},[\mathcal{D}_3^{ib},G^{kc}]]$ 

$$= -2N_{f}d^{c8e}G^{ke} + \frac{N_{c}(N_{c} + 2N_{f})}{N_{f}}\delta^{c8}J^{k} + (N_{c} + N_{f})d^{c8e}\mathcal{D}_{2}^{ke} - 2(N_{c} + N_{f})\{G^{kc}, T^{8}\} - d^{c8e}\mathcal{D}_{3}^{ke} \\ + \frac{N_{f}^{2} - 2N_{f} + 8}{N_{f}}d^{c8e}\mathcal{O}_{3}^{ke} + \frac{3N_{f}^{2} - 6N_{f} + 8}{N_{f}}\{G^{kc}, \{J^{r}, G^{r8}\}\} + \frac{(N_{f} + 4)(N_{f} - 2)}{N_{f}}\{G^{k8}, \{J^{r}, G^{rc}\}\} \\ + \frac{1}{2}\{J^{k}, \{T^{c}, T^{8}\}\} - 2(N_{f} - 1)\{J^{k}, \{G^{rc}, G^{r8}\}\} - \frac{N_{c}(N_{c} + 2N_{f}) + 4}{2N_{f}}\delta^{c8}\{J^{2}, J^{k}\} - \frac{1}{2}(N_{c} + N_{f})d^{c8e}\mathcal{D}_{4}^{ke} \\ - (N_{c} + N_{f})\{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\} + 3(N_{c} + N_{f})\{J^{2}, \{G^{kc}, T^{8}\}\} - (N_{c} + N_{f})if^{c8e}\{J^{2}, [J^{2}, G^{ke}]\} \\ + \frac{1}{4}(N_{f} + 2)d^{c8e}\mathcal{D}_{5}^{ke} + \frac{N_{f}^{2} + 4N_{f} - 24}{2N_{f}}d^{c8e}\mathcal{O}_{5}^{ke} + \frac{2(3N_{f} - 14)}{N_{f}}\{J^{2}, \{G^{kc}, \{J^{r}, G^{r8}\}\}\} \\ - \frac{N_{f}^{2} + 2N_{f} - 12}{N_{f}}\{J^{2}, \{G^{k8}, \{J^{r}, G^{rc}\}\}\} - \frac{1}{4}\{J^{2}, \{J^{k}, \{T^{c}, T^{8}\}\}\} + (N_{f} - 1)\{J^{2}, \{J^{k}, \{G^{rc}, G^{r8}\}\}\} \\ - \frac{N_{f} - 4}{N_{f}}\{J^{k}, \{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\} + \frac{1}{N_{f}}\delta^{c8}\{J^{2}, \{J^{2}, J^{k}, \}\}.$$
(C65)

$$\begin{split} d^{ab8}([\mathcal{D}_{3}^{ia},[\mathcal{O}_{3}^{ib},G^{kc}]] + [\mathcal{O}_{3}^{ia},[\mathcal{D}_{3}^{ib},G^{kc}]]) \\ &= \frac{1}{2}N_{f}d^{c8e}\mathcal{D}_{3}^{ke} - 4d^{c8e}\mathcal{O}_{3}^{ke} + \frac{N_{c}(N_{c}+2N_{f})}{N_{f}}\delta^{c8}\{J^{2},J^{k}\} + (N_{c}+N_{f})d^{c8e}\mathcal{D}_{4}^{ke} - (N_{c}+N_{f})\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} \\ &- (N_{c}+N_{f})\{J^{2},\{G^{kc},T^{8}\}\} - \frac{1}{2}(N_{c}+N_{f})if^{c8e}\{J^{2},[J^{2},G^{ke}]\} - \frac{2}{N_{f}}d^{c8e}\mathcal{D}_{5}^{ke} - \frac{2}{N_{f}}d^{c8e}\mathcal{O}_{5}^{ke} \\ &+ \frac{2}{N_{f}}\{J^{2},\{G^{kc},\{J^{r},G^{r8}\}\}\} + \frac{N_{f}^{2}+2N_{f}-6}{N_{f}}\{J^{2},\{G^{k8},\{J^{r},G^{rc}\}\}\} + \frac{1}{2}\{J^{2},\{J^{k},\{T^{c},T^{8}\}\}\} \\ &- \frac{N_{f}^{2}+2N_{f}-4}{N_{f}}\{J^{2},\{J^{k},\{G^{rc},G^{r8}\}\}\} + \frac{2}{N_{f}}\{J^{k},\{\{J^{m},G^{mc}\},\{J^{r},G^{r8}\}\}\} - \frac{4}{N_{f}^{2}}\delta^{c8}\{J^{2},\{J^{2},J^{k}\}\}, \end{split}$$
(C66)

$$\begin{split} d^{ab8}[\mathcal{O}_{3}^{ia}, [\mathcal{O}_{3}^{ib}, G^{kc}]] \\ &= -\frac{3N_{c}(N_{c}+2N_{f})}{2N_{f}}\delta^{c8}J^{k} - \frac{3}{2}(N_{c}+N_{f})d^{c8e}\mathcal{D}_{2}^{ke} + \frac{3}{2}(N_{c}+N_{f})\{G^{kc}, T^{8}\} - 2(N_{c}+N_{f})if^{c8e}[J^{2}, G^{ke}] \\ &+ \frac{1}{4}(N_{f}-2)d^{c8e}\mathcal{D}_{3}^{ke} - \frac{1}{2}(2N_{f}+3)d^{c8e}\mathcal{O}_{3}^{ke} - \frac{1}{4}(11N_{f}+6)\{G^{kc}, \{J^{r}, G^{r8}\}\} + \frac{1}{4}(5N_{f}+6)\{G^{k8}, \{J^{r}, G^{rc}\}\} \\ &- \frac{3}{4}\{J^{k}, \{T^{c}, T^{8}\}\} + (N_{f}+1)\{J^{k}, \{G^{rc}, G^{r8}\}\} - \frac{7N_{c}(N_{c}+2N_{f}) - 16N_{f}+8}{8N_{f}}\delta^{c8}\{J^{2}, J^{k}\} \\ &- \frac{7}{8}(N_{c}+N_{f})d^{c8e}\mathcal{D}_{4}^{ke} - \frac{3}{4}(N_{c}+N_{f})\{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\} + \frac{5}{4}(N_{c}+N_{f})\{J^{2}, \{G^{kc}, T^{8}\}\} \\ &+ \frac{1}{4}(N_{c}+N_{f})if^{c8e}\{J^{2}, [J^{2}, G^{ke}]\} + \frac{1}{8}(N_{f}+3)d^{c8e}\mathcal{D}_{5}^{ke} + \frac{1}{4}N_{f}d^{c8e}\mathcal{O}_{5}^{ke} - 2\{J^{2}, \{G^{kc}, \{J^{r}, G^{r8}\}\}\} \\ &- \frac{1}{4}N_{f}\{J^{2}, \{G^{k8}, \{J^{r}, G^{rc}\}\}\} - \frac{7}{16}\{J^{2}, \{J^{k}, \{T^{c}, T^{8}\}\}\} + \frac{1}{4}(N_{f}+5)\{J^{2}, \{J^{k}, \{G^{rc}, G^{r8}\}\}\} \\ &+ \frac{3}{4}\{J^{k}, \{\{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\} + \frac{2N_{f}+3}{4N_{f}}\delta^{c8}\{J^{2}, \{J^{2}, J^{k}\}\}, \end{split}$$

$$d^{ab8}([\mathcal{D}_{2}^{ia}, [\mathcal{D}_{3}^{ib}, \mathcal{D}_{3}^{kc}]] + [\mathcal{D}_{3}^{ia}, [\mathcal{D}_{2}^{ib}, \mathcal{D}_{3}^{kc}]]) = -2(N_{c} + N_{f})d^{c8e}\mathcal{D}_{3}^{ke} - 2(N_{f} - 2)d^{c8e}\mathcal{D}_{4}^{ke} + 4\{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{r8}\}\} - 4\{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\} + (N_{c} + N_{f})d^{c8e}\mathcal{D}_{5}^{ke} + \frac{2(N_{c} + N_{f})(N_{f} - 2)}{N_{f}}\{J^{k}, \{\{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\} + (N_{f} - 2)d^{c8e}\mathcal{D}_{6}^{ke} - 2\{J^{2}, \{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{r8}\}\}\} + \frac{2(3N_{f} - 4)}{N_{f}}\{J^{2}, \{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\}\},$$
(C68)

$$\begin{split} d^{ab8}([\mathcal{D}_{2}^{ia},[\mathcal{D}_{3}^{ib},\mathcal{O}_{3}^{sc}]] + [\mathcal{D}_{3}^{ia},[\mathcal{D}_{2}^{ib},\mathcal{O}_{3}^{sc}]]) \\ &= -2(N_{c}+N_{f})d^{c8e}\mathcal{O}_{3}^{ke} - 2\{\mathcal{D}_{2}^{kc},\{J^{r},G^{r8}\}\} + 2\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} - 2\{J^{2},\{G^{kc},T^{8}\}\} + 2\{J^{2},\{G^{k8},T^{c}\}\} \\ &+ \frac{N_{f}^{2} - 2N_{f} - 4}{N_{f}}if^{c8e}\{J^{2},[J^{2},G^{ke}]\} + \frac{2(N_{c}+N_{f})(N_{f}-1)}{N_{f}}d^{c8e}\mathcal{O}_{5}^{ke} \\ &+ \frac{3(N_{c}+N_{f})(N_{f}-2)}{N_{f}}\{J^{2},\{G^{kc},\{J^{r},G^{r8}\}\}\} - \frac{(N_{c}+N_{f})(N_{f}-2)}{N_{f}}\{J^{2},\{G^{k8},\{J^{r},G^{rc}\}\}\} \\ &- \frac{(N_{c}+N_{f})(N_{f}-2)}{N_{f}}\{J^{k},\{\{J^{m},G^{mc}\},\{J^{r},G^{r8}\}\}\} + \{J^{2},\{\mathcal{D}_{2}^{kc},\{J^{r},G^{r8}\}\}\} \\ &- \frac{5N_{f}-8}{N_{f}}\{J^{2},\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\}\} + \frac{5N_{f}-8}{N_{f}}\{J^{2},\{J^{2},\{G^{kc},T^{8}\}\}\} - \{J^{2},\{J^{2},\{G^{k8},T^{c}\}\}\} \\ &- \frac{N_{f}^{2}+2N_{f}-12}{2N_{f}}if^{c8e}\{J^{2},\{J^{2},[J^{2},G^{ke}]\}\}, \end{split}$$
(C69)

$$\begin{aligned} d^{ab8}([\mathcal{D}_{2}^{ia},[\mathcal{O}_{3}^{ib},\mathcal{D}_{3}^{kc}]] + [\mathcal{O}_{3}^{ia},[\mathcal{D}_{2}^{ib},\mathcal{D}_{3}^{kc}]]) \\ &= -2(N_{c}+N_{f})d^{c8e}\mathcal{O}_{3}^{ke} - 2\{\mathcal{D}_{2}^{kc},\{J^{r},G^{r8}\}\} + 2\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} - 2\{J^{2},\{G^{kc},T^{8}\}\} + 2\{J^{2},\{G^{k8},T^{c}\}\} \\ &- 2(N_{f}-1)if^{c8e}\{J^{2},[J^{2},G^{ke}]\} - \frac{2(N_{c}+N_{f})}{N_{f}}d^{c8e}\mathcal{O}_{5}^{ke} - \frac{(N_{c}+N_{f})(N_{f}-2)}{N_{f}}\{J^{2},\{G^{kc},\{J^{r},G^{r8}\}\}\} \\ &+ \frac{3(N_{c}+N_{f})(N_{f}-2)}{N_{f}}\{J^{2},\{G^{k8},\{J^{r},G^{rc}\}\}\} - \frac{(N_{c}+N_{f})(N_{f}-2)}{N_{f}}\{J^{k},\{\{J^{m},G^{mc}\},\{J^{r},G^{r8}\}\}\} \\ &- \{J^{2},\{\mathcal{D}_{2}^{kc},\{J^{r},G^{r8}\}\}\} + \{J^{2},\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\}\} - \{J^{2},\{J^{2},\{G^{kc},T^{8}\}\}\} + \{J^{2},\{J^{2},\{G^{k8},T^{c}\}\}\} \\ &- if^{c8e}\{J^{2},\{J^{2},[J^{2},G^{ke}]\}\}, \end{aligned}$$
(C70)

$$\begin{split} d^{ab8}([\mathcal{D}_{2}^{ia},[\mathcal{O}_{3}^{ib},\mathcal{O}_{3}^{sc}]] + [\mathcal{O}_{3}^{ia},[\mathcal{D}_{2}^{ib},\mathcal{O}_{3}^{kc}]]) \\ &= 3N_{f}d^{c8e}\mathcal{D}_{2}^{ke} - \frac{(N_{f}+4)(N_{c}+N_{f})}{2N_{f}}d^{c8e}\mathcal{D}_{3}^{ke} - \frac{2(N_{c}+N_{f})(N_{f}-2)}{N_{f}}\{J^{k},\{G^{rc},G^{r8}\}\} \\ &+ \frac{2(N_{c}+N_{f})(N_{f}-2)}{N_{f}^{2}}\delta^{c8}\{J^{2},J^{k}\} + \frac{1}{2}(5N_{f}+6)d^{c8e}\mathcal{D}_{4}^{ke} + 3\{\mathcal{D}_{2}^{kc},\{J^{r},G^{r8}\}\} - 3\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} \\ &- \frac{N_{c}+N_{f}}{N_{f}}d^{c8e}\mathcal{D}_{5}^{ke} - \frac{2(N_{c}+N_{f})(N_{f}-2)}{N_{f}}\{J^{2},\{J^{k},\{G^{rc},G^{r8}\}\}\} \\ &+ \frac{(N_{c}+N_{f})(N_{f}-2)}{2N_{f}}\{J^{k},\{\{J^{m},G^{mc}\},\{J^{r},G^{r8}\}\}\} + \frac{(N_{c}+N_{f})(N_{f}-2)}{N_{f}^{2}}\delta^{c8}\{J^{2},\{J^{2},J^{k}\}\} + d^{c8e}\mathcal{D}_{6}^{ke} \\ &+ \{J^{2},\{\mathcal{D}_{2}^{kc},\{J^{r},G^{r8}\}\}\} - \{J^{2},\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\}\}, \end{split}$$
(C71)

$$d^{ab8}[\mathcal{D}_3^{ia}, [\mathcal{D}_3^{ib}, \mathcal{D}_2^{kc}]]$$

$$= -(N_{c} + N_{f})d^{c8e}\mathcal{D}_{3}^{ke} - (N_{f} - 2)d^{c8e}\mathcal{D}_{4}^{ke} + 2(N_{f} - 1)\{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{r8}\}\} - 2\{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\} + \frac{1}{2}(N_{c} + N_{f})d^{c8e}\mathcal{D}_{5}^{ke} + \frac{1}{2}(N_{c} + N_{f})\{J^{2}, \{J^{k}, \{T^{c}, T^{8}\}\}\} + \frac{1}{2}(N_{f} - 2)d^{c8e}\mathcal{D}_{6}^{ke} + \frac{N_{f} - 8}{N_{f}}\{J^{2}, \{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{r8}\}\}\} + \{J^{2}, \{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\}\},$$
(C72)

$$\begin{aligned} d^{ab8}([\mathcal{D}_{3}^{ia}, [\mathcal{O}_{3}^{ib}, \mathcal{D}_{2}^{kc}]] + [\mathcal{O}_{3}^{ia}, [\mathcal{D}_{3}^{ib}, \mathcal{D}_{2}^{kc}]]) \\ &= -2(N_{c} + N_{f})d^{c8e}\mathcal{O}_{3}^{ke} - 2(N_{f} - 1)\{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{r8}\}\} + 2\{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\} - 2\{J^{2}, \{G^{kc}, T^{8}\}\} \\ &+ 2(N_{f} - 1)\{J^{2}, \{G^{k8}, T^{c}\}\} - \frac{4}{N_{f}}if^{c8e}\{J^{2}, [J^{2}, G^{ke}]\} - (N_{c} + N_{f})d^{c8e}\mathcal{O}_{5}^{ke} \\ &- \frac{N_{f}^{2} + 3N_{f} - 8}{N_{f}}\{J^{2}, \{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{r8}\}\}\} + \{J^{2}, \{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\}\} - \{J^{2}, \{J^{2}, \{G^{kc}, T^{8}\}\}\} \\ &+ \frac{N_{f}^{2} + 3N_{f} - 8}{N_{f}}\{J^{2}, \{J^{2}, \{G^{k8}, T^{c}\}\}\} - \frac{2}{N_{f}}if^{c8e}\{J^{2}, \{J^{2}, [J^{2}, G^{ke}]\}\}, \end{aligned}$$
(C73)

$$\begin{aligned} d^{ab8}[\mathcal{O}_{3}^{ia}, [\mathcal{O}_{3}^{ib}, \mathcal{D}_{2}^{kc}]] \\ &= 3N_{f}d^{c8e}\mathcal{D}_{2}^{ke} - \frac{3}{2}(N_{c} + N_{f})d^{c8e}\mathcal{D}_{3}^{ke} - \frac{3}{4}(N_{c} + N_{f})\{J^{k}, \{T^{c}, T^{8}\}\} + \frac{1}{4}(13N_{f} + 12)d^{c8e}\mathcal{D}_{4}^{ke} \\ &+ \frac{3}{2}(N_{f} + 2)\{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{r8}\}\} - 3\{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\} - \frac{7}{8}(N_{c} + N_{f})d^{c8e}\mathcal{D}_{5}^{ke} \\ &- \frac{5}{8}(N_{c} + N_{f})\{J^{2}, \{J^{k}, \{T^{c}, T^{8}\}\}\} + \frac{1}{4}(N_{f} + 7)d^{c8e}\mathcal{D}_{6}^{ke} + \frac{1}{4}(2N_{f} + 13)\{J^{2}, \{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{r8}\}\}\} \\ &- \frac{7}{4}\{J^{2}, \{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\}\}, \end{aligned}$$
(C74)

$$\begin{aligned} d^{ab8}[\mathcal{D}_{3}^{ia}, [\mathcal{D}_{3}^{ib}, \mathcal{D}_{3}^{sc}]] \\ &= -2N_{f}d^{c8e}\mathcal{D}_{3}^{ke} + \frac{2N_{c}(N_{c}+2N_{f})}{N_{f}}\delta^{c8}\{J^{2}, J^{k}\} + 2(N_{c}+N_{f})d^{c8e}\mathcal{D}_{4}^{ke} - 4(N_{c}+N_{f})\{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\} \\ &- 2d^{c8e}\mathcal{D}_{5}^{ke} + \{J^{2}, \{J^{k}, \{T^{c}, T^{8}\}\}\} - 4(N_{f}-1)\{J^{2}, \{J^{k}, \{G^{rc}, G^{r8}\}\}\} \\ &+ 4(N_{f}-1)\{J^{k}, \{\{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\} - \frac{N_{c}(N_{c}+2N_{f})+4}{N_{f}}\delta^{c8}\{J^{2}, \{J^{2}, J^{k}\}\} - (N_{c}+N_{f})d^{c8e}\mathcal{D}_{6}^{ke} \\ &+ 4(N_{c}+N_{f})\{J^{2}, \{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\}\} + \frac{1}{2}(N_{f}+2)d^{c8e}\mathcal{D}_{7}^{ke} - \frac{1}{2}\{J^{2}, \{J^{2}, \{J^{k}, \{T^{c}, T^{8}\}\}\}\} \\ &+ 2(N_{f}-1)\{J^{2}, \{J^{2}, \{J^{k}, \{G^{rc}, G^{r8}\}\}\}\} - \frac{N_{f}^{2}-2N_{f}+8}{N_{f}}\{J^{2}, \{J^{k}, \{\{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\}\} \\ &+ \frac{2}{N_{f}}\delta^{c8}\{J^{2}, \{J^{2}, \{J^{2}, J^{k}, \}\}, \end{aligned}$$

$$(C75)$$

 $d^{ab8}[\mathcal{D}_3^{ia}, [\mathcal{D}_3^{ib}, \mathcal{O}_3^{kc}]]$ 

$$= -2N_{f}d^{c8e}\mathcal{O}_{3}^{ke} + 2(N_{c} + N_{f})\{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\} - 2(N_{c} + N_{f})\{J^{2}, \{G^{kc}, T^{8}\}\} + \frac{N_{f}^{2} - 2N_{f} + 8}{N_{f}}d^{c8e}\mathcal{O}_{5}^{ke} + \frac{3N_{f}^{2} - 6N_{f} + 8}{N_{f}}\{J^{2}, \{G^{kc}, \{J^{r}, G^{r8}\}\}\} + \frac{(N_{f} + 4)(N_{f} - 2)}{N_{f}}\{J^{2}, \{G^{k8}, \{J^{r}, G^{rc}\}\}\} - 2(N_{f} - 1)\{J^{k}, \{\{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\} - 3(N_{c} + N_{f})\{J^{2}, \{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\}\} + 3(N_{c} + N_{f})\{J^{2}, \{J^{2}, \{G^{kc}, T^{8}\}\}\} - (N_{c} + N_{f})if^{c8e}\{J^{2}, \{J^{2}, [J^{2}, G^{ke}]\}\} + \frac{N_{f}^{2} + 4N_{f} - 24}{2N_{f}}d^{c8e}\mathcal{O}_{7}^{ke} + \frac{2(3N_{f} - 14)}{N_{f}}\{J^{2}, \{J^{2}, \{G^{kc}, \{J^{r}, G^{r8}\}\}\} - \frac{N_{f}^{2} + 2N_{f} - 12}{N_{f}}\{J^{2}, \{J^{2}, \{G^{k8}, \{J^{r}, G^{rc}\}\}\}\} + \frac{N_{f}^{2} - 4N_{f} + 16}{2N_{f}}\{J^{2}, \{J^{k}, \{\{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\}\},$$
(C76)

$$\begin{aligned} d^{ab8}([\mathcal{D}_{3}^{ia},[\mathcal{O}_{3}^{ib},\mathcal{D}_{3}^{kc}]] + [\mathcal{O}_{3}^{ia},[\mathcal{D}_{3}^{ib},\mathcal{D}_{3}^{kc}]]) \\ &= -4N_{f}d^{c8e}\mathcal{O}_{3}^{ke} + 4(N_{c}+N_{f})\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} - 4(N_{c}+N_{f})\{J^{2},\{G^{kc},T^{8}\}\} - 2(N_{c}+N_{f})if^{c8e}\{J^{2},[J^{2},G^{ke}]\} \\ &- \frac{4(3N_{f}+2)}{N_{f}}d^{c8e}\mathcal{O}_{5}^{ke} + \frac{2(N_{f}^{2}-2N_{f}+4)}{N_{f}}\{J^{2},\{G^{kc},\{J^{r},G^{r8}\}\}\} + \frac{2(3N_{f}^{2}-2N_{f}-4)}{N_{f}}\{J^{2},\{G^{k8},\{J^{r},G^{rc}\}\}\} \\ &- 4(N_{f}-1)\{J^{k},\{\{J^{m},G^{mc}\},\{J^{r},G^{r8}\}\}\} + 2(N_{c}+N_{f})\{J^{2},\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\}\} \\ &- 2(N_{c}+N_{f})\{J^{2},\{J^{2},\{G^{kc},T^{8}\}\}\} - (N_{c}+N_{f})if^{c8e}\{J^{2},\{J^{2},[J^{2},G^{ke}]\}\} - \frac{4}{N_{f}}d^{c8e}\mathcal{O}_{7}^{ke} \\ &+ \frac{4}{N_{f}}\{J^{2},\{J^{2},\{G^{kc},\{J^{r},G^{r8}\}\}\}\} + \frac{2(N_{f}^{2}+4N_{f}-10)}{N_{f}}\{J^{2},\{J^{2},\{G^{k8},\{J^{r},G^{rc}\}\}\}\} \\ &- \frac{N_{f}^{2}+4N_{f}-8}{N_{f}}\{J^{2},\{J^{k},\{\{J^{m},G^{mc}\},\{J^{r},G^{r8}\}\}\}\}, \tag{C77}$$

$$\begin{split} d^{ab8}([\mathcal{D}_{3}^{ia},[\mathcal{O}_{3}^{ib},\mathcal{O}_{3}^{kc}]] + [\mathcal{O}_{3}^{ia},[\mathcal{D}_{3}^{ib},\mathcal{O}_{3}^{kc}]]) \\ &= \frac{3N_{c}(N_{c}+2N_{f})}{N_{f}} \delta^{c8}\{J^{2},J^{k}\} + 3(N_{c}+N_{f})d^{c8e}\mathcal{D}_{4}^{ke} - 6(N_{c}+N_{f})\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} + \frac{(N_{f}+4)(N_{f}-2)}{2N_{f}}d^{c8e}\mathcal{D}_{5}^{ke} \\ &+ \frac{3}{2}\{J^{2},\{J^{k},\{T^{c},T^{8}\}\}\} - \frac{2(2N_{f}^{2}+N_{f}-4)}{N_{f}}\{J^{2},\{J^{k},\{G^{rc},G^{r8}\}\}\} + 3N_{f}\{J^{k},\{\{J^{m},G^{mc}\},\{J^{r},G^{r8}\}\}\} \\ &+ \frac{N_{c}N_{f}(N_{c}+2N_{f}) - 2N_{f}^{2} + 2N_{f}-8}{N_{f}^{2}}\delta^{c8}\{J^{2},\{J^{2},J^{k},\}\} + (N_{c}+N_{f})d^{c8e}\mathcal{D}_{6}^{ke} \\ &- 2(N_{c}+N_{f})\{J^{2},\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\}\} - \frac{2}{N_{f}}d^{c8e}\mathcal{D}_{7}^{ke} + \frac{1}{2}\{J^{2},\{J^{2},\{J^{k},\{T^{c},T^{8}\}\}\}\} \\ &- \frac{N_{f}^{2} + 4N_{f}-8}{N_{f}}\{J^{2},\{J^{2},\{J^{k},\{G^{rc},G^{r8}\}\}\}\} + \frac{N_{f}^{2} + 4N_{f}-4}{2N_{f}}\{J^{2},\{J^{k},\{\{J^{m},G^{mc}\},\{J^{r},G^{r8}\}\}\}\} \\ &- \frac{4}{N_{f}^{2}}\delta^{c8}\{J^{2},\{J^{2},\{J^{2},J^{k},\}\}, \end{split}$$
(C78)

$$\begin{split} & [G^{i8}, [G^{i8}, \mathcal{D}_{3}^{kc}]] \\ &= -\frac{3}{2} f^{c8e} f^{8eg} G^{kg} + \frac{5}{4} f^{c8e} f^{8eg} \mathcal{D}_{3}^{kg} + \frac{3}{2} d^{c8e} d^{8eg} \mathcal{D}_{3}^{kg} - d^{ceg} d^{88e} \mathcal{D}_{3}^{kg} + \frac{1}{N_f} \delta^{c8} \mathcal{D}_{3}^{k8} + \frac{1}{N_f} d^{c88} \{J^2, J^k\} \\ &\quad -2\{G^{kc}, \{G^{r8}, G^{r8}\}\} + 2\{G^{k8}, \{G^{rc}, G^{r8}\}\} - 3d^{c8e} \{J^k, \{G^{re}, G^{r8}\}\} + d^{88e} \{J^k, \{G^{rc}, G^{re}\}\} \\ &\quad + d^{c8e} \{G^{ke}, \{J^r, G^{r8}\}\} + d^{88e} \{G^{ke}, \{J^r, G^{rc}\}\} - \frac{1}{2} \epsilon^{kim} f^{c8e} \{T^e, \{J^i, G^{m8}\}\}, \end{split}$$
(C84)

$$\begin{aligned} [\mathcal{D}_{2}^{i8}, [G^{i8}, G^{kc}]] + [G^{i8}, [\mathcal{D}_{2}^{i8}, G^{kc}]] \\ &= \frac{1}{2} f^{c8e} f^{8eg} \mathcal{D}_{2}^{kg} + \frac{2}{N_{f}} \delta^{c8} \mathcal{D}_{2}^{k8} + d^{c8e} \{G^{ke}, T^{8}\} + \frac{1}{2} i f^{c8e} [G^{ke}, \{J^{r}, G^{r8}\}] + \frac{1}{2} i f^{c8e} [G^{k8}, \{J^{r}, G^{re}\}], \end{aligned}$$
(C83)

$$[G^{i8}, [G^{i8}, \mathcal{D}_{2}^{kc}]] = \frac{7}{4} f^{c8e} f^{8eg} \mathcal{D}_{2}^{kg} + \frac{1}{2} d^{c8e} d^{8eg} \mathcal{D}_{2}^{kg} - \frac{1}{2} d^{ceg} d^{88e} \mathcal{D}_{2}^{kg} + \frac{1}{N_{f}} \delta^{c8} \mathcal{D}_{2}^{k8} + \frac{1}{2} d^{88e} \{G^{ke}, T^{c}\} - \frac{1}{2} i f^{c8e} [G^{ke}, \{J^{r}, G^{r8}\}] + \frac{1}{2} i f^{c8e} [G^{k8}, \{J^{r}, G^{re}\}],$$
(C82)

$$[G^{i8}, [G^{i8}, G^{kc}]] = \frac{1}{4} f^{c8e} f^{8eg} G^{kg} + \frac{1}{2} d^{c8e} d^{8eg} G^{kg} + \frac{1}{N_f} \delta^{c8} G^{k8} + \frac{1}{2N_f} d^{c88} J^k,$$
(C81)

## 3. Flavor 27 operators

$$\begin{aligned} d^{ab8}[\mathcal{O}_{3}^{ia}, [\mathcal{O}_{3}^{ib}, \mathcal{O}_{3}^{kc}]] \\ &= \frac{3}{2} (N_{c} + N_{f}) \{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\} - \frac{3}{2} (N_{c} + N_{f}) \{J^{2}, \{G^{kc}, T^{8}\}\} + 2(N_{c} + N_{f}) if^{c8e} \{J^{2}, [J^{2}, G^{ke}]\} \\ &+ \frac{3}{2} (N_{f} + 1) d^{c8e} \mathcal{O}_{5}^{ke} + \frac{1}{4} (11N_{f} + 6) \{J^{2}, \{G^{kc}, \{J^{r}, G^{r8}\}\}\} - \frac{1}{4} (5N_{f} + 6) \{J^{2}, \{G^{k8}, \{J^{r}, G^{rc}\}\}\} \\ &- \frac{3}{4} N_{f} \{J^{k}, \{\{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\} + \frac{9}{4} (N_{c} + N_{f}) \{J^{2}, \{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{rc}\}\}\} - \frac{9}{4} (N_{c} + N_{f}) \{J^{2}, \{J^{2}, \{G^{kc}, T^{8}\}\}\} \\ &+ \frac{3}{4} (N_{c} + N_{f}) if^{c8e} \{J^{2}, \{J^{2}, [J^{2}, G^{ke}]\}\} + \frac{1}{4} (N_{f} + 4) d^{c8e} \mathcal{O}_{7}^{ke} + (N_{f} + 4) \{J^{2}, \{J^{2}, \{G^{kc}, \{J^{r}, G^{r8}\}\}\}\} \\ &- \frac{1}{4} (N_{f} + 4) \{J^{2}, \{J^{2}, \{G^{k8}, \{J^{r}, G^{rc}\}\}\}\} - \frac{3}{8} (N_{f} + 4) \{J^{2}, \{J^{k}, \{\{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\}\}. \end{aligned}$$
(C80)

$$= -\frac{12N_{c}(N_{c}+2N_{f})}{N_{f}}\delta^{c8}J^{k} - 12(N_{c}+N_{f})d^{c8e}\mathcal{D}_{2}^{ke} + 2(N_{f}-2)d^{c8e}\mathcal{D}_{3}^{ke} - 6\{J^{k},\{T^{c},T^{8}\}\}$$

$$+ 8(N_{f}+1)\{J^{k},\{G^{rc},G^{r8}\}\} - \frac{8[2N_{c}(N_{c}+2N_{f})-2N_{f}+1]}{N_{f}}\delta^{c8}\{J^{2},J^{k}\} - 16(N_{c}+N_{f})d^{c8e}\mathcal{D}_{4}^{ke}$$

$$- 9(N_{c}+N_{f})\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\} + 3N_{f}d^{c8e}\mathcal{D}_{5}^{ke} - 8\{J^{2},\{J^{k},\{T^{c},T^{8}\}\}\} + 8(N_{f}+2)\{J^{2},\{J^{k},\{G^{rc},G^{r8}\}\}\}$$

$$+ \frac{1}{2}(5N_{f}+8)\{J^{k},\{\{J^{m},G^{mc}\},\{J^{r},G^{r8}\}\}\} - \frac{11N_{c}(N_{c}+2N_{f})-64N_{f}}{4N_{f}}\delta^{c8}\{J^{2},\{J^{2},J^{k},\}\}$$

$$- \frac{11}{4}(N_{c}+N_{f})d^{c8e}\mathcal{D}_{6}^{ke} - 6(N_{c}+N_{f})\{J^{2},\{\mathcal{D}_{2}^{k8},\{J^{r},G^{rc}\}\}\} + \frac{1}{4}(N_{f}+7)d^{c8e}\mathcal{D}_{7}^{ke}$$

$$- \frac{11}{8}\{J^{2},\{J^{2},\{J^{k},\{T^{c},T^{8}\}\}\}\} + \frac{1}{2}(N_{f}+9)\{J^{2},\{J^{2},\{J^{k},\{G^{rc},G^{r8}\}\}\}\}$$

$$+ \frac{3}{4}(N_{f}+6)\{J^{2},\{J^{k},\{\{J^{m},G^{mc}\},\{J^{r},G^{r8}\}\}\}\} + \frac{2N_{f}+7}{2N_{f}}\delta^{c8}\{J^{2},\{J^{2},J^{2},J^{k},\}\},$$
(C79)

 $d^{ab8}[\mathcal{O}_3^{ia}, [\mathcal{O}_3^{ib}, \mathcal{D}_3^{kc}]]$ 

$$\begin{split} & [\mathcal{D}_{3}^{i8}, [G^{i8}, \mathcal{D}_{2}^{kc}]] + [G^{i8}, [\mathcal{D}_{3}^{i8}, \mathcal{D}_{2}^{kc}]] \\ &= -2if^{c8e}[G^{ke}, \{J^{r}, G^{r8}\}] + d^{88e}\{J^{2}, \{G^{ke}, T^{c}\}\} - d^{88e}\{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{re}\}\} + 2\{\{J^{r}, G^{r8}\}, \{G^{k8}, T^{c}\}\} \\ &+ if^{c8e}\{J^{k}, [\{J^{i}, G^{ie}\}, \{J^{r}, G^{r8}\}]\} - if^{c8e}\{\{J^{r}, G^{re}\}, [J^{2}, G^{k8}]\} + if^{c8e}\{\{J^{r}, G^{r8}\}, [J^{2}, G^{ke}]\}, \end{split}$$
(C92)

$$\begin{split} [\mathcal{D}_{2}^{i8}, [G^{i8}, \mathcal{O}_{3}^{kc}]] + [G^{i8}, [\mathcal{D}_{2}^{i8}, \mathcal{O}_{3}^{kc}]] \\ &= \frac{3}{2} f^{c^{8e}} f^{8eg} \mathcal{D}_{2}^{kg} - \frac{1}{2} i f^{c^{8e}} [G^{k8}, \{J^{r}, G^{re}\}] + \frac{1}{2} f^{c^{8e}} f^{8eg} \mathcal{D}_{4}^{kg} + \frac{2}{N_{f}} \delta^{c^{8}} \mathcal{D}_{4}^{k8} + \frac{1}{2} d^{c^{8e}} \{J^{2}, \{G^{ke}, T^{8}\}\} \\ &- 2 \{\mathcal{D}_{2}^{k8}, \{G^{rc}, G^{r8}\}\} + \frac{1}{2} d^{c^{8e}} \{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{re}\}\} - \frac{1}{2} \{\{J^{r}, G^{rc}\}, \{G^{k8}, T^{8}\}\} + \frac{1}{2} \{\{J^{r}, G^{r8}\}, \{G^{kc}, T^{8}\}\} \\ &- \frac{1}{2} i f^{c^{8e}} \{J^{k}, [\{J^{i}, G^{ie}\}, \{J^{r}, G^{r8}\}]\} + \frac{1}{2} i f^{c^{8e}} \{\{J^{r}, G^{re}\}, [J^{2}, G^{k8}]\} + \frac{1}{2} i f^{c^{8e}} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}]\} \\ &+ \frac{1}{2} i f^{c^{8e}} \{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}]\}, \end{split}$$
(C91)

$$\begin{aligned} [\mathcal{D}_{2}^{i8}, [G^{i8}, \mathcal{D}_{3}^{kc}]] + [G^{i8}, [\mathcal{D}_{2}^{i8}, \mathcal{D}_{3}^{kc}]] \\ &= 5if^{c8e}[G^{k8}, \{J^{r}, G^{re}\}] + d^{c8e}\{J^{2}, \{G^{ke}, T^{8}\}\} - d^{c8e}\{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{re}\}\} + 3\{\{J^{r}, G^{rc}\}, \{G^{k8}, T^{8}\}\} \\ &- \{\{J^{r}, G^{r8}\}, \{G^{kc}, T^{8}\}\} + if^{c8e}\{J^{k}, [\{J^{i}, G^{ie}\}, \{J^{r}, G^{r8}\}]\} - if^{c8e}\{\{J^{r}, G^{re}\}, [J^{2}, G^{k8}]\}, \end{aligned}$$
(C90)

$$[\mathcal{D}_{2}^{i8}, [\mathcal{D}_{2}^{i8}, G^{kc}]] = -f^{c8e} f^{8eg} G^{kg} + \frac{1}{4} f^{c8e} f^{8eg} \mathcal{D}_{3}^{kg} + \frac{1}{2} f^{c8e} f^{8eg} \mathcal{O}_{3}^{kg} + \frac{1}{2} \{G^{kc}, \{T^{8}, T^{8}\}\} - \frac{1}{2} \epsilon^{kim} f^{c8e} \{T^{8}, \{J^{i}, G^{me}\}\},$$
(C89)

$$[\mathcal{D}_{2}^{i8}, [G^{i8}, \mathcal{D}_{2}^{kc}]] + [G^{i8}, [\mathcal{D}_{2}^{i8}, \mathcal{D}_{2}^{kc}]]$$

$$= -f^{c8e} f^{8eg} G^{kg} + \frac{1}{2} f^{c8e} f^{8eg} \mathcal{D}_{3}^{kg} + \{G^{k8}, \{T^{c}, T^{8}\}\} - \frac{1}{2} \epsilon^{kim} f^{c8e} \{T^{e}, \{J^{i}, G^{m8}\}\} + \frac{1}{2} \epsilon^{kim} f^{c8e} \{T^{8}, \{J^{i}, G^{me}\}\},$$
(C88)

$$\begin{split} [G^{i8}, [\mathcal{O}_{3}^{i8}, G^{kc}]] &+ [\mathcal{O}_{3}^{i8}, [G^{i8}, G^{kc}]] \\ &= \frac{1}{2} d^{c8e} d^{8eg} \mathcal{D}_{3}^{kg} + \frac{1}{2} f^{c8e} f^{8eg} \mathcal{O}_{3}^{kg} + \frac{1}{2} d^{c8e} d^{8eg} \mathcal{O}_{3}^{kg} + \frac{2}{N_f} \delta^{c8} \mathcal{O}_{3}^{k8} + \frac{1}{N_f} d^{c88} \{J^2, J^k\} - d^{c8e} \{J^k, \{G^{re}, G^{r8}\}\} \\ &- \frac{1}{2} d^{c8e} \{G^{ke}, \{J^r, G^{r8}\}\} + \frac{1}{2} d^{c8e} \{G^{k8}, \{J^r, G^{re}\}\}, \end{split}$$
(C87)

$$\begin{split} &[G^{i8}, [G^{i8}, \mathcal{O}_{3}^{kc}]] \\ &= \frac{3}{4} f^{c8e} f^{8eg} G^{kg} + \frac{1}{N_f} \delta^{c8} \mathcal{D}_{3}^{k8} + \frac{5}{4} f^{c8e} f^{8eg} \mathcal{O}_{3}^{kg} + \frac{3}{2} d^{c8e} d^{8eg} \mathcal{O}_{3}^{kg} - d^{ceg} d^{88e} \mathcal{O}_{3}^{kg} + \frac{5}{N_f} \delta^{c8} \mathcal{O}_{3}^{k8} \\ &- \{G^{kc}, \{G^{r8}, G^{r8}\}\} - \{G^{k8}, \{G^{rc}, G^{r8}\}\} + \frac{1}{2} d^{c8e} \{J^k, \{G^{re}, G^{r8}\}\} - \frac{1}{2} d^{88e} \{J^k, \{G^{rc}, G^{re}\}\} \\ &- \frac{1}{2} d^{c8e} \{G^{ke}, \{J^r, G^{r8}\}\} + d^{c8e} \{G^{k8}, \{J^r, G^{re}\}\} + d^{88e} \{G^{kc}, \{J^r, G^{re}\}\} \\ &- \frac{1}{2} d^{88e} \{G^{ke}, \{J^r, G^{rc}\}\} + \frac{3}{4} \epsilon^{kim} f^{c8e} \{T^e, \{J^i, G^{m8}\}\}, \end{split}$$
(C86)

$$\begin{aligned} [\mathcal{D}_{3}^{i8}, [G^{i8}, G^{kc}]] + [G^{i8}, [\mathcal{D}_{3}^{i8}, G^{kc}]] \\ &= \frac{1}{2} f^{c8e} f^{8eg} \mathcal{D}_{3}^{kg} + \frac{2}{N_{f}} \delta^{c8} \mathcal{D}_{3}^{k8} + d^{c8e} d^{8eg} \mathcal{O}_{3}^{kg} + 3d^{c8e} \{G^{ke}, \{J^{r}, G^{r8}\}\} - d^{c8e} \{G^{k8}, \{J^{r}, G^{re}\}\}, \end{aligned}$$
(C85)

$$\begin{split} &= \frac{1}{2} i f^{cw} \{\{J^{r}, G^{r}\}\} - \frac{1}{2} i f^{cw} \{J^{r}, G^{r}\}\}\} + \frac{1}{2} i f^{cw} \{J^{r}, G^{r}, \{J^{r}, G^{r}\}\}\}, \end{split}$$

$$\begin{split} [\mathcal{D}_{2}^{i8}, [\mathcal{O}_{3}^{i8}, G^{kc}]] &+ [\mathcal{O}_{3}^{i8}, [\mathcal{D}_{2}^{i8}, G^{kc}]] \\ &= \frac{3}{2} f^{c8e} f^{8eg} \mathcal{D}_{2}^{kg} + \frac{1}{2} i f^{c8e} [G^{k8}, \{J^{r}, G^{re}\}] + \frac{1}{2} f^{c8e} f^{8eg} \mathcal{D}_{4}^{kg} + \frac{2}{N_{f}} \delta^{c8} \mathcal{D}_{4}^{k8} + \frac{1}{2} d^{c8e} \{J^{2}, \{G^{ke}, T^{8}\}\} \\ &- 2\{\mathcal{D}_{2}^{k8}, \{G^{rc}, G^{r8}\}\} + \frac{1}{2} d^{c8e} \{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{re}\}\} + \frac{1}{2} \{\{J^{r}, G^{rc}\}, \{G^{k8}, T^{8}\}\} - \frac{1}{2} \{\{J^{r}, G^{r8}\}, \{G^{kc}, T^{8}\}\} \\ &- \frac{1}{2} i f^{c8e} \{\{J^{r}, G^{r8}\}, [J^{2}, G^{ke}]\} - \frac{1}{2} i f^{c8e} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}]\} + \frac{1}{2} i f^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}]\}, \end{split}$$
(C96)

$$\begin{aligned} [\mathcal{D}_{2}^{i8}, [\mathcal{D}_{3}^{i8}, G^{kc}]] + [\mathcal{D}_{3}^{i8}, [\mathcal{D}_{2}^{i8}, G^{kc}]] \\ &= -2if^{c8e}[G^{ke}, \{J^{r}, G^{r8}\}] - if^{c8e}[G^{k8}, \{J^{r}, G^{re}\}] + d^{c8e}\{J^{2}, \{G^{ke}, T^{8}\}\} - d^{c8e}\{\mathcal{D}_{2}^{k8}, \{J^{r}, G^{re}\}\} \\ &- \{\{J^{r}, G^{rc}\}, \{G^{k8}, T^{8}\}\} + 3\{\{J^{r}, G^{r8}\}, \{G^{kc}, T^{8}\}\} - if^{c8e}\{\{J^{r}, G^{r8}\}, [J^{2}, G^{ke}]\} + 2if^{c8e}\{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}]\}, \end{aligned}$$
(C95)

$$[\mathcal{D}_{2}^{i8}, [\mathcal{D}_{2}^{i8}, \mathcal{D}_{2}^{kc}]] = -f^{c8e} f^{8eg} \mathcal{D}_{2}^{kg} + \frac{1}{2} f^{c8e} f^{8eg} \mathcal{D}_{4}^{kg} + \frac{1}{2} \{\mathcal{D}_{2}^{kc}, \{T^{8}, T^{8}\}\},$$
(C94)

$$\begin{split} & [G^{i8}, [\mathcal{O}_{3}^{i8}, \mathcal{D}_{2}^{kc}]] + [\mathcal{O}_{3}^{i8}, [G^{i8}, \mathcal{D}_{2}^{kc}]] \\ &= 6f^{c8e} f^{8eg} \mathcal{D}_{2}^{kg} + \frac{9}{2} f^{c8e} f^{8eg} \mathcal{D}_{4}^{kg} + d^{c8e} d^{8eg} \mathcal{D}_{4}^{kg} - d^{ceg} d^{88e} \mathcal{D}_{4}^{kg} + \frac{2}{N_{f}} \delta^{c8} \mathcal{D}_{4}^{k8} + \frac{1}{2} d^{88e} \{J^{2}, \{G^{ke}, T^{c}\}\} \\ &- 2\{\mathcal{D}_{2}^{kc}, \{G^{r8}, G^{r8}\}\} + \frac{1}{2} d^{88e} \{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{re}\}\} - \frac{3}{2} i f^{c8e} \{J^{k}, [\{J^{i}, G^{ie}\}, \{J^{r}, G^{r8}\}]\} \\ &+ \frac{1}{2} i f^{c8e} \{\{J^{r}, G^{re}\}, [J^{2}, G^{k8}]\} - \frac{1}{2} i f^{c8e} \{\{J^{r}, G^{r8}\}, [J^{2}, G^{ke}]\} - i f^{c8e} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}]\} \\ &+ i f^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}]\}, \end{split}$$

$$(C93)$$

$$\begin{split} & [G^{i8}, [\mathcal{O}_{3}^{i8}, \mathcal{D}_{3}^{kc}]] + [\mathcal{O}_{3}^{i8}, [G^{i8}, \mathcal{D}_{3}^{kc}]] \\ &= -3f^{c8e}f^{8eg}G^{kg} + ie^{kim}f^{c8e}f^{8eg}\{J^{i}, G^{mg}\} + \frac{5}{4}f^{c8e}f^{8eg}\mathcal{D}_{3}^{kg} + 8d^{c8e}d^{8eg}\mathcal{D}_{3}^{kg} - 4d^{ceg}d^{88e}\mathcal{D}_{3}^{kg} \\ &+ \frac{7}{16}N_{c}id^{8eg}f^{c8e}\mathcal{D}_{3}^{kg} + \frac{7}{16}N_{c}id^{c8e}f^{8eg}\mathcal{D}_{3}^{kg} - 2f^{c8e}f^{8eg}\mathcal{O}_{3}^{kg} - 2d^{c8e}d^{8eg}\mathcal{O}_{3}^{kg} + 2d^{ceg}d^{88e}\mathcal{O}_{3}^{kg} \\ &+ \frac{8}{N_{f}}d^{c88}\{J^{2}, J^{k}\} - 4\{G^{kc}, \{G^{r8}, G^{r8}\}\} + 4\{G^{k8}, \{G^{rc}, G^{r8}\}\} - 14d^{c8e}\{J^{k}, \{G^{re}, G^{r8}\}\} \\ &+ 6d^{88e}\{J^{k}, \{G^{rc}, G^{re}\}\} - 4d^{c8e}\{G^{ke}, \{J^{r}, G^{r8}\}\} + 2d^{c8e}\{G^{k8}, \{J^{r}, G^{re}\}\} - 2d^{88e}\{G^{kc}, \{J^{r}, G^{re}\}\} \\ &+ 4d^{88e}\{G^{ke}, \{J^{r}, G^{rc}\}\} - \frac{1}{8}(3N_{f} - 4)e^{kim}f^{c8e}\{T^{e}, \{J^{i}, G^{m8}\}\} - \frac{7}{8}id^{8eg}f^{c8e}\mathcal{D}_{4}^{kg} \\ &- \frac{7}{4N_{f}}ie^{kim}\delta^{c8}\{J^{2}, \{J^{i}, G^{m8}\}\} + 2if^{c8e}\{\mathcal{D}_{2}^{ke}, \{J^{r}, G^{r8}\}\} - \frac{9}{4}ie^{kim}\{\{J^{i}, G^{m8}\}, \{G^{r8}, G^{rc}\}\} \\ &+ 4ie^{kim}\{\{J^{i}, G^{mc}\}, \{G^{r8}, G^{r8}\}\} - 4ie^{rim}\{G^{k8}, \{J^{r}, \{G^{ic}, G^{m8}\}\}\} - \frac{7}{8}ie^{rim}d^{c8e}\{J^{k}, \{J^{r}, \{G^{i8}, G^{me}\}\}\} \end{split}$$

$$\begin{aligned} &: -\frac{15}{4} f^{cse} f^{seg} G^{kg} - \frac{1}{2} ie^{kim} f^{cse} f^{seg} \{J^{i}, G^{mg}\} - \frac{1}{2} f^{cse} f^{seg} D^{kg}_{3} + \frac{5}{32} N_{c} id^{seg} f^{cse} D^{kg}_{3} + \frac{5}{32} N_{c} id^{cse} f^{seg} D^{kg}_{3} \\ &+ f^{cse} f^{seg} D^{kg}_{3} - \frac{5}{2} d^{cse} d^{seg} D^{kg}_{3} + \frac{5}{2} d^{ceg} d^{sse} O^{kg}_{3} - 5\{G^{kc}, \{G^{rs}, G^{rs}\}\} + 5\{G^{k8}, \{G^{rc}, G^{r8}\}\} \\ &+ \frac{5}{2} d^{cse} \{J^{k}, \{G^{re}, G^{r8}\}\} - \frac{5}{2} d^{sse} \{J^{k}, \{G^{rc}, G^{re}\}\} - 5d^{cse} \{G^{ke}, \{J^{r}, G^{re}\}\} - 5d^{cse} \{G^{ke}, \{J^{r}, G^{re}\}\} + \frac{5}{2} d^{cse} \{G^{ke}, \{J^{r}, G^{re}\}\} \\ &- \frac{5}{2} d^{sse} \{G^{kc}, \{J^{r}, G^{re}\}\} + 5d^{sse} \{G^{ke}, \{J^{r}, G^{rc}\}\} - \frac{1}{8} (3N_{f} - 2)e^{kim} f^{cse} \{T^{e}, \{J^{i}, G^{m8}\}\} - \frac{5}{16} id^{seg} f^{cse} D^{kg}_{4} \\ &- \frac{5}{8N_{f}} ie^{kim} \delta^{cs} \{J^{2}, \{I^{i}, G^{m8}\}\} - if^{cse} \{D^{ke}_{2}, \{J^{r}, G^{r8}\}\} + \frac{21}{8} ie^{kim} \{I^{a}, G^{m8}\}, \{G^{r8}, G^{re}\}\} \\ &- 2ie^{kim} \{\{J^{i}, G^{me}\}, \{G^{r8}, G^{r8}\}\} + 2ie^{rim} \{G^{k8}, \{J^{r}, \{G^{ci}, G^{m8}\}\}\} - \frac{5}{16} ie^{rim} d^{cse} \{J^{k}, \{J^{r}, \{G^{i8}, G^{me}\}\}\} \\ &- 2ie^{kim} f^{cae} f^{seb} \{\{J^{i}, G^{m8}\}, \{T^{a}, T^{b}\}\} - \frac{59}{16} if^{cse} \{J^{k}, \{J^{r}, G^{r8}\}\}\} - \frac{59}{16} if^{cse} \{J^{k}, \{J^{r}, G^{re}\}\} - \frac{59}{16} if^{cse} \{J^{k}, \{J^{r}, G^{re}\}\} \\ &- \frac{5}{16} d^{cse} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}\}\} - \frac{59}{16} if^{cse} \{J^{2}, [G^{ke}, \{J^{r}, G^{re}\}\}\} - \frac{59}{16} if^{cse} \{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}\}\} \\ &+ \frac{5}{16} d^{cse} \{J^{2}, [G^{ke}, \{J^{r}, G^{re}\}\}\} - \frac{5}{16} d^{cse} \{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}]\} + \frac{1}{12} [G^{kc}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{r8}\}\}] \\ &- \frac{21}{16} [G^{k8}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{rc}\}\}] + \frac{21}{16} \{\{J^{m}, G^{mc}\}, [G^{k8}, \{J^{r}, G^{r8}\}]\} \\ &- \frac{5}{16} ie^{kim} f^{cae} f^{sbb} \{\{J^{i}, G^{m8}\}, \{G^{ra}, G^{rb}\}\} + \frac{2}{2} N_{f} \delta^{cs} D^{sb} \Delta^{sb} \Delta^{sb} \Delta^{sb} \Delta^{sb} \Delta^{sb} \Delta^{sb} \Delta^{sb} \Delta^{sb} \{J^{c}, \{G^{re}, G^{r8}\}\}\} \\ &- \frac{5}{16} ie^{kim} f^{cae} f^{sbb} \{J^{i}, G^{m8}\}, \{G^{ra}, G^{rb}\}\} + \frac{2}{16} \{I^{k}, G^{rc}, G^{r$$

$$\begin{split} [\mathcal{D}_{3}^{i8}, [G^{i8}, \mathcal{O}_{3}^{kc}]] + [G^{i8}, [\mathcal{D}_{3}^{i8}, \mathcal{O}_{3}^{kc}]] \\ = -\frac{15}{4} f^{c8e} f^{8eg} G^{kg} - \frac{1}{2} i \epsilon^{kim} f^{6e} f^{8e} f^{8e$$

$$\begin{aligned} & \left[G^{28}, \left[\mathcal{G}_{3}^{18}, \mathcal{G}_{3}^{4c}\right]\right] + \left[\mathcal{G}_{3}^{18}, \left[G^{18}, \mathcal{G}_{3}^{4c}\right]\right] \\ &= \frac{9}{8} f^{cse} f^{seg} G^{kg} - \frac{1}{4} ie^{kim} f^{cse} f^{seg} \{J^{i}, G^{mg}\} + f^{cse} f^{seg} \mathcal{D}_{3}^{kg} - \frac{23}{64} \mathcal{N}_{c} id^{seg} f^{cse} \mathcal{D}_{3}^{kg} - \frac{23}{64} \mathcal{N}_{c} id^{cse} f^{seg} \mathcal{D}_{3}^{kg} \\ &+ \frac{2}{N_{f}} \delta^{cs} \mathcal{D}_{3}^{kg} + 7f^{cse} f^{seg} \mathcal{O}_{3}^{kg} + \frac{27}{4} d^{cse} d^{seg} \mathcal{O}_{3}^{kg} - \frac{19}{4} d^{csg} d^{sse} \mathcal{O}_{3}^{kg} + \frac{24}{N_{f}} \delta^{cs} \mathcal{O}_{3}^{kg} - \frac{5}{2} \{G^{kc}, \{G^{r8}, G^{r8}\}\} \\ &- \frac{3}{2} \{G^{ks}, \{G^{rc}, G^{r8}\}\} + \frac{5}{4} d^{cse} \{J^{k}, \{G^{re}, G^{r8}\}\} - \frac{5}{4} d^{sse} \{J^{k}, \{G^{rc}, G^{re}\}\} - \frac{9}{2} d^{cse} \{G^{ke}, \{J^{r}, G^{r8}\}\} \\ &+ \frac{21}{4} d^{cse} \{G^{ks}, \{J^{r}, G^{re}\}\} + \frac{19}{4} d^{sse} \{G^{kc}, \{I^{r}, G^{re}\}\} - \frac{7}{2} d^{sse} \{G^{ke}, \{I^{r}, G^{rc}\}\} \\ &+ \frac{3(N_{f} + 14)}{16} e^{kim} f^{cse} \{T^{e}, \{I^{i}, G^{m8}\}\} + \frac{23}{32} i d^{seg} f^{cse} \mathcal{D}_{4}^{kg} + \frac{23}{16N_{f}} i e^{kim} \delta^{cs} \{J^{2}, \{J^{i}, G^{m8}\}\} \\ &- \frac{1}{2} i f^{cse} \{\mathcal{D}_{2}^{kc}, \{J^{r}, G^{r8}\}\} - \frac{7}{16} i e^{kim} \{I^{i}, G^{m8}\}, \{G^{r8}, G^{rc}\}\} - i e^{kim} \{\{J^{i}, G^{mc}\}, \{G^{r8}, G^{r8}\}\} \\ &+ i e^{rim} \{G^{ks}, \{J^{r}, \{G^{ic}, G^{m8}\}\}\} - \frac{3}{23} 2i e^{rim} d^{cse} \{J^{k}, \{J^{r}, \{G^{is}, G^{me}\}\} + \frac{69}{128} i e^{kim} f^{cae} \{J^{s}, G^{r8}\}, [I^{2}, G^{ke}]\} \\ &- \frac{7}{32} i f^{cse} \{J^{k}, \{[J^{i}, G^{ic}], \{J^{r}, G^{r8}\}\}\} - \frac{7}{32} i f^{cse} \{J^{2}, [G^{ks}, \{J^{r}, G^{r8}\}\}] - \frac{7}{32} i f^{cse} \{J^{2}, [G^{ks}, \{J^{r}, G^{r8}\}\}\} - \frac{7}{32} i f^{cse} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}\}\} - \frac{7}{32} i f^{cse} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}\}\} - \frac{7}{32} i f^{cse} \{J^{2}, [G^{ks}, \{J^{r}, G^{r8}\}\}\} - \frac{7}{32} i f^{cse} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}\}\} - \frac{7}{32} i f^{cse} \{J^{2}, [G^{ks}, \{J^{r}, G^{r8}$$

$$-\frac{21}{32}ie^{kim}f^{cae}f^{8eb}\{\{J^{i},G^{m8}\},\{T^{a},T^{b}\}\} - \frac{3}{8}if^{c8e}\{J^{k},[\{J^{i},G^{ie}\},\{J^{r},G^{r8}\}]\} - \frac{3}{8}if^{c8e}\{\{J^{r},G^{re}\},[J^{2},G^{k8}]\}$$

$$+\frac{3}{8}if^{c8e}\{\{J^{r},G^{r8}\},[J^{2},G^{ke}]\} + \frac{3}{8}if^{c8e}\{J^{2},[G^{ke},\{J^{r},G^{r8}\}]\} - \frac{3}{8}if^{c8e}\{J^{2},[G^{k8},\{J^{r},G^{re}\}]\}$$

$$+\frac{3}{8}if^{c8e}\{J^{2},[G^{ke},\{J^{r},G^{r8}\}]\} - \frac{7}{8}d^{c8e}\{J^{2},[G^{k8},\{J^{r},G^{re}\}]\} - \frac{23}{16}[G^{kc},\{\{J^{m},G^{m8}\},\{J^{r},G^{r8}\}\}]$$

$$+\frac{9}{8}[G^{k8},\{\{J^{m},G^{m8}\},\{J^{r},G^{rc}\}\}] - \frac{9}{8}\{\{J^{m},G^{mc}\},[G^{k8},\{J^{r},G^{r8}\}]\}$$

$$+\frac{2}{8}ie^{kim}f^{cae}f^{e8b}\{\{J^{i},G^{m8}\},\{G^{ra},G^{rb}\}\} + 2f^{c8e}f^{8e}\mathcal{D}_{5}^{kg} + 3d^{c8e}\mathcal{D}_{5}^{kg} - 2d^{ceg}\mathcal{D}_{5}^{k8e}\mathcal{D}_{5}^{kg}$$

$$+\frac{2}{N_{f}}\delta^{c8}\mathcal{D}_{5}^{k8} + \frac{2}{N_{f}}\mathcal{D}_{6}^{c88}\{J^{2},\{J^{2},J^{k}\}\} - 4\{J^{2},\{G^{kc},\{G^{r8},G^{r8}\}\}\} + 4\{J^{2},\{G^{ke},\{J^{r},G^{r8}\}\}\}$$

$$-7d^{c8e}\{J^{2},\{G^{ke},\{J^{r},G^{re}\}\}\} + d^{88e}\{J^{2},\{J^{k},\{G^{rc},G^{re}\}\}\} - 2d^{c8e}\{J^{2},\{G^{ke},\{J^{r},G^{r8}\}\}\}$$

$$-2d^{88e}\{J^{2},\{G^{ke},\{J^{r},G^{rc}\}\}\} - 5\{J^{k},\{\{J^{m},G^{mc}\},\{G^{r8},G^{r8}\}\}\} + 4\{G^{kc},\{\{J^{m},G^{m8}\},\{G^{r8},G^{rc},\}\}\}$$

$$+\frac{5}{2}d^{c8e}\{\mathcal{D}_{3}^{k},\{J^{r},G^{r8}\}\} + \frac{5}{2}d^{88e}\{\mathcal{D}_{3}^{k},\{J^{r},G^{re}\}\} + e^{kim}f^{ab8}\{\{J^{i},G^{m8}\},\{T^{a},\{G^{rb},G^{rc}\}\}\}$$

$$+2d^{ke}\{I^{j},G^{l8},\{J^{r},G^{r8}\}\} + \frac{5}{2}d^{88e}\{\mathcal{D}_{3}^{k},\{J^{r},G^{re}\}\} + e^{kim}f^{ab8}\{\{J^{i},G^{m8}\},\{T^{a},\{G^{rb},G^{rc}\}\}\}$$

BARYON MAGNETIC MOMENT IN LARGE- $N_c$  CHIRAL ...

$$\begin{split} [\mathcal{D}_{3}^{i8}, [\mathcal{D}_{3}^{i8}, G^{kc}]] \\ &= -\frac{15}{2} f^{c8e} f^{8eg} G^{kg} - \frac{3}{4} i e^{kim} f^{c8e} f^{8eg} \{J^{i}, G^{mg}\} - \frac{7}{4} f^{c8e} f^{8eg} \mathcal{D}_{3}^{kg} + \frac{5}{8} N_{c} i d^{8eg} f^{c8e} \mathcal{D}_{3}^{kg} + \frac{5}{8} N_{c} i d^{c8e} f^{8eg} \mathcal{D}_{3}^{kg} + \frac{3}{2} f^{c8e} f^{8eg} \mathcal{O}_{3}^{kg} - 5 d^{c8e} d^{8eg} \mathcal{O}_{3}^{kg} + 3 d^{ceg} d^{88e} \mathcal{O}_{3}^{kg} - 10 \{G^{kc}, \{G^{r8}, G^{r8}\}\} + 10 \{G^{k8}, \{G^{rc}, G^{r8}\}\} \\ &+ 5 d^{c8e} \{J^{k}, \{G^{re}, G^{r8}\}\} - 5 d^{88e} \{J^{k}, \{G^{rc}, G^{re}\}\} - 10 d^{c8e} \{G^{ke}, \{J^{r}, G^{r8}\}\} + 5 d^{c8e} \{G^{k8}, \{J^{r}, G^{re}\}\} \\ &- 3 d^{88e} \{G^{kc}, \{J^{r}, G^{re}\}\} + 8 d^{88e} \{G^{ke}, \{J^{r}, G^{rc}\}\} - \frac{5}{2} e^{kim} f^{c8e} \{T^{e}, \{J^{i}, G^{m8}\}\} - \frac{5}{4} i d^{8eg} f^{c8e} \mathcal{D}_{4}^{kg} \\ &- \frac{5}{2N_{f}} i e^{kim} \delta^{c8} \{J^{2}, \{J^{i}, G^{m8}\}\} - \frac{3}{2} i f^{c8e} \{\mathcal{D}_{2}^{ke}, \{J^{r}, G^{r8}\}\} + \frac{11}{2} i e^{kim} \{\{J^{i}, G^{m8}\}, \{G^{r8}, G^{rc}\}\} \\ &- 3 i e^{kim} \{\{J^{i}, G^{mc}\}, \{G^{r8}, G^{r8}\}\} + 3 i e^{rim} \{G^{k8}, \{J^{r}, \{G^{ic}, G^{m8}\}\}\} - \frac{5}{4} i e^{rim} d^{c8e} \{J^{k}, \{J^{r}, \{G^{i8}, G^{me}\}\}\} \\ &- \frac{15}{16} i e^{kim} f^{cae} f^{8eb} \{\{J^{i}, G^{m8}\}, \{T^{a}, T^{b}\}\} - \frac{13}{4} i f^{c8e} \{J^{k}, \{J^{r}, G^{r8}\}\}\} \\ &- \frac{13}{4} i f^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}]\} + \frac{5}{4} d^{c8e} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}]\} - \frac{5}{4} d^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{r8}\}]\} \\ &- \frac{13}{4} i f^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}]\} + \frac{5}{4} d^{c8e} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}]\} - \frac{5}{4} d^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{r8}\}]\} \\ &- \frac{13}{4} i f^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}]\} + \frac{5}{4} d^{c8e} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}]\} - \frac{5}{4} d^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}]\} \\ &- \frac{13}{4} i f^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}]\} + \frac{5}{4} d^{c8e} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}]\} - \frac{5}{4} d^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}]\}$$

$$\begin{aligned} [\mathcal{D}_{2}^{i8}, [\mathcal{O}_{3}^{i8}, \mathcal{D}_{2}^{kc}]] + [\mathcal{O}_{3}^{i8}, [\mathcal{D}_{2}^{i8}, \mathcal{D}_{2}^{kc}]] \\ &= \frac{1}{2} f^{c8e} f^{8eg} \mathcal{D}_{3}^{kg} - f^{c8e} f^{8eg} \mathcal{O}_{3}^{kg} + \{J^{2}, \{G^{k8}, \{T^{c}, T^{8}\}\}\} - \frac{1}{2} \epsilon^{kim} f^{c8e} \{J^{2}, \{T^{e}, \{J^{i}, G^{m8}\}\}\} \\ &+ \frac{1}{2} \epsilon^{kim} f^{c8e} \{J^{2}, \{T^{8}, \{J^{i}, G^{me}\}\}\} - \{\mathcal{D}_{2}^{kc}, \{T^{8}, \{J^{r}, G^{r8}\}\}\}, \end{aligned}$$
(C104)

$$[\mathcal{D}_{2}^{i8}, [\mathcal{D}_{3}^{i8}, \mathcal{D}_{2}^{kc}]] + [\mathcal{D}_{3}^{i8}, [\mathcal{D}_{2}^{i8}, \mathcal{D}_{2}^{kc}]] = -2f^{c8e}f^{8eg}\mathcal{D}_{3}^{kg} + f^{c8e}f^{8eg}\mathcal{D}_{5}^{kg} + 2\{\mathcal{D}_{2}^{kc}, \{T^{8}, \{J^{r}, G^{r8}\}\}\},$$
(C103)

$$[\mathcal{D}_{2}^{i8}, [\mathcal{D}_{2}^{i8}, \mathcal{O}_{3}^{kc}]] = -\frac{1}{4} f^{c8e} f^{8eg} \mathcal{D}_{3}^{kg} - f^{c8e} f^{8eg} \mathcal{O}_{3}^{kg} + \frac{1}{2} f^{c8e} f^{8eg} \mathcal{O}_{5}^{kg} + \frac{1}{2} \{J^{2}, \{G^{kc}, \{T^{8}, T^{8}\}\}\} - \frac{1}{2} \epsilon^{kim} f^{c8e} \{J^{2}, \{T^{8}, \{J^{i}, G^{me}\}\}\} - \frac{1}{2} \{\mathcal{D}_{2}^{k8}, \{T^{8}, \{J^{r}, G^{rc}\}\}\},$$
(C102)

$$[\mathcal{D}_{2}^{i8}, [\mathcal{D}_{2}^{i8}, \mathcal{D}_{3}^{kc}]] = -\frac{1}{2} f^{c8e} f^{8eg} \mathcal{D}_{3}^{kg} + \frac{1}{2} f^{c8e} f^{8eg} \mathcal{D}_{5}^{kg} + \{\mathcal{D}_{2}^{k8}, \{T^{8}, \{J^{r}, G^{rc}\}\}\},$$
(C101)

$$-\frac{1}{2}d^{88e}\{J^{2},\{J^{k},\{G^{rc},G^{re}\}\}\} + d^{c8e}\{J^{2},\{G^{ke},\{J^{r},G^{r8}\}\}\} + \frac{5}{2}d^{c8e}\{J^{2},\{G^{k8},\{J^{r},G^{re}\}\}\} + 2d^{88e}\{J^{2},\{G^{kc},\{J^{r},G^{re}\}\}\} + \frac{3}{2}d^{88e}\{J^{2},\{G^{ke},\{J^{r},G^{rc}\}\}\} + \frac{5}{4}\epsilon^{kim}f^{c8e}\{J^{2},\{T^{e},\{J^{i},G^{m8}\}\}\} - \frac{1}{2}\{G^{kc},\{\{J^{m},G^{m8}\},\{J^{r},G^{r8}\}\}\} + \frac{3}{2}\{G^{k8},\{\{J^{m},G^{m8}\},\{J^{r},G^{rc}\}\}\} + \frac{5}{2}\{J^{k},\{\{J^{m},G^{mc}\},\{G^{r8},G^{r8},\}\}\} - \frac{1}{2}\{J^{k},\{\{J^{m},G^{m8}\},\{G^{r8},G^{rc}\}\}\} - \frac{3}{2}d^{c8e}\{\mathcal{D}^{ke}_{3},\{J^{r},G^{r8}\}\} - \frac{3}{2}d^{c8e}\{\mathcal{D}^{ke}_{3},\{J^{r},G^{r8}\}\} - \frac{3}{2}d^{c8e}\{\mathcal{D}^{ke}_{3},\{J^{r},G^{re}\}\} - \frac{1}{2}\epsilon^{kim}f^{ab8}\{\{J^{i},G^{m8}\},\{T^{a},\{G^{rb},G^{rc}\}\}\} - 2i\epsilon^{kil}[\{J^{i},G^{l8}\},\{\{J^{m},G^{m8}\},\{J^{r},G^{rc}\}\}],$$
(C100)

$$\begin{split} & [\mathcal{D}_{3}^{8}, [\mathcal{O}_{3}^{8}, G^{kc}]] + [\mathcal{O}_{3}^{8}, [\mathcal{D}_{3}^{8}, G^{kc}]] \\ &= -3f^{c\%}f^{8eg}G^{kg} - \frac{3}{16}ie^{kim}f^{c\%}f^{8eg}f^{8eg}\{J^{l}, G^{mg}\} - \frac{1}{4}f^{c\%}f^{8eg}\mathcal{D}_{3}^{kg} + \frac{17}{32}N_{c}id^{8eg}f^{e\%}\mathcal{D}_{3}^{kg} + \frac{17}{32}N_{c}id^{c\%}f^{8eg}\mathcal{D}_{3}^{kg} \\ &\quad -\frac{3}{2}f^{c\%}f^{8eg}\mathcal{O}_{3}^{kg} - 2d^{c\%}d^{8eg}\mathcal{O}_{3}^{kg} + 2d^{ccg}d^{8\&e}\mathcal{O}_{3}^{kg} - 4\{G^{kc}, \{G^{r8}, G^{r8}\}\} + 4\{G^{k8}, \{G^{rc}, G^{r8}\}\} \\ &\quad + 2d^{c\%}f^{8eg}\mathcal{O}_{3}^{kg} - 2d^{c\%}d^{8eg}\mathcal{O}_{3}^{kg} + 2d^{ccg}d^{8\&e}\mathcal{O}_{3}^{kg} - 4\{G^{kc}, \{G^{r8}, G^{r8}\}\} + 4\{G^{k8}, \{G^{rc}, G^{r8}\}\} \\ &\quad + 2d^{c\%}f^{8eg}\mathcal{O}_{3}^{kg} - 2d^{c\%}d^{8eg}\mathcal{O}_{3}^{kg} + 2d^{ccg}d^{8\&e}\mathcal{O}_{3}^{kg} - 4\{G^{kc}, \{G^{r8}, G^{r8}\}\} + 2d^{c\%}f^{8eg}\mathcal{O}_{3}^{kg} + 2d^{c}g^{kg}\mathcal{O}_{3}^{kg} - 4\{G^{k\%}, \{G^{r6}, G^{r8}\}\} + 4\{G^{k8}, \{G^{rc}, G^{r8}\}\} \\ &\quad + 2d^{c\%}f^{8eg}\mathcal{O}_{3}^{kg} - 2d^{c\%}f^{8eg}\mathcal{O}_{3}^{kg} + 2d^{ccg}d^{8\&e}\mathcal{O}_{3}^{kg} - 4\{G^{k\%}, \{G^{r6}, G^{r8}\}\} + 2d^{c\%}f^{kg}\mathcal{O}_{4}^{kg} + 2d^{c\%}f^{kg}\mathcal{O}_{4}^{kg}\mathcal{O}_{4}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg} + 2d^{c}f^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg} + 2d^{c}f^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{6}^{kg}\mathcal{O}_{$$

$$+ \frac{1}{8}[G^{kc}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{r8}\}\}] - \frac{11}{4}[G^{k8}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{rc}\}\}] + \frac{11}{4}\{\{J^{m}, G^{mc}\}, [G^{k8}, \{J^{r}, G^{r8}\}]\} \\ + \frac{5}{4}i\epsilon^{kim}f^{cea}f^{e8b}\{\{J^{i}, G^{m8}\}, \{G^{ra}, G^{rb}\}\} + \frac{1}{2}f^{c8e}f^{8eg}\mathcal{D}_{5}^{kg} + d^{c8e}d^{8eg}\mathcal{O}_{5}^{kg} + 2\{J^{2}, \{G^{kc}, \{G^{r8}, G^{r8}\}\}\} \\ - 2\{J^{2}, \{G^{k8}, \{G^{rc}, G^{r8}\}\}\} - d^{c8e}\{J^{2}, \{J^{k}, \{G^{re}, G^{r8}\}\}\} + d^{88e}\{J^{2}, \{J^{k}, \{G^{rc}, G^{re}\}\}\} \\ - d^{c8e}\{J^{2}, \{G^{k8}, \{J^{r}, G^{re}\}\}\} - 5d^{88e}\{J^{2}, \{G^{ke}, \{J^{r}, G^{rc}\}\}\} + \frac{1}{2}\epsilon^{kim}f^{c8e}\{J^{2}, \{T^{e}, \{J^{i}, G^{m8}\}\}\} \\ + 8\{G^{kc}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{r8}\}\}\} - 6\{G^{k8}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{rc}\}\}\} + d^{c8e}\{\mathcal{D}_{3}^{ke}, \{J^{r}, G^{r8}\}\} \\ + 2d^{88e}\{\mathcal{D}_{3}^{kc}, \{J^{r}, G^{re}\}\} + 4i\epsilon^{kil}[\{J^{i}, G^{l8}\}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{rc}\}\}],$$
(C105)

$$\begin{split} &[\mathcal{O}_{3}^{8}, [\mathcal{O}_{3}^{8}, \mathcal{G}^{kr}]] \\ &= \frac{21}{8} f^{r8e} f^{8eg} \mathcal{O}_{3}^{kg} + \frac{5}{52} ie^{kim} f^{r8e} f^{8eg} \{J^{i}, \mathcal{G}^{mg}\} + \frac{9}{16} f^{r8e} f^{8eg} \mathcal{O}_{3}^{kg} + \frac{1}{2} d^{r3e} d^{8eg} \mathcal{O}_{3}^{kg} - \frac{11}{12} N_{i} d^{8eg} f^{r8e} \mathcal{O}_{3}^{kg} - \frac{21}{8} f^{r8e} f^{8eg} \mathcal{O}_{3}^{kg} - \frac{5}{4} d^{r8e} d^{8eg} \mathcal{O}_{3}^{kg} + \frac{1}{4} d^{reg} d^{8e} \mathcal{O}_{3}^{kg} - \frac{12}{N_{f}} \delta^{r8} \mathcal{O}_{3}^{kg} \\ &+ \frac{1}{N_{f}} d^{r8e} \{J^{2}, J^{k}\} + \frac{11}{2} \{G^{ke}, \{G^{rk}, G^{rk}\}\} - \frac{7}{2} \{G^{k8}, \{G^{re}, G^{rk}\}\} - \frac{15}{4} d^{r8e} \{J^{k}, \{G^{re}, G^{r8}\}\} \\ &+ \frac{11}{14} d^{88e} \{J^{k}, \{G^{re}, G^{re}\}\} + \frac{13}{2} d^{r8e} \{G^{ke}, \{J^{r}, G^{r8}\}\} - \frac{19}{4} d^{r8e} \{G^{ke}, \{J^{r}, G^{re}\}\} - \frac{1}{4} d^{88e} \{G^{ke}, \{J^{r}, G^{re}\}\} \\ &- \frac{5}{2} d^{88e} \{G^{ke}, \{J^{r}, G^{re}\}\} - \frac{13}{2} e^{kkm} f^{r8e} \{T^{e}, \{J^{i}, G^{m8}\}\} - \frac{19}{4} e^{ke} \{G^{ke}, \{J^{r}, G^{re}\}\} - \frac{1}{4} d^{8ee} \{G^{ke}, \{J^{r}, G^{re}\}\} \\ &- \frac{5}{2} d^{88e} \{G^{ke}, \{J^{r}, G^{re}\}\} - \frac{13}{2} e^{kkm} f^{r8e} \{T^{e}, \{J^{i}, G^{m8}\}\} - \frac{19}{4} e^{ke} \{G^{ke}, \{J^{r}, G^{re}\}\} - \frac{1}{4} d^{8ee} \{G^{ke}, \{J^{r}, G^{re}\}\} \\ &- \frac{5}{2} d^{88e} \{G^{ke}, \{J^{r}, G^{re}\}\} - 2ie^{kim} \{J^{i}, G^{m8}, \{G^{r8}, G^{re}\}\} - \frac{1}{5} e^{kim} \{J^{i}, G^{m8}\}\} + \frac{11}{16} ie^{rim} d^{r8e} \{T^{k}, \{J^{r}, \{G^{i8}, G^{re}\}\} + \frac{1}{8} N_{f} ie^{kim} \delta^{rae} \{J^{2}, \{J^{i}, G^{m8}\}\} \\ &- \frac{5}{8} ie^{kim} \{G^{ke}, \{J^{r}, G^{re}\}\} - 2ie^{kim} \{J^{i}, G^{m8}\}, \{G^{r8}, G^{re}\}\} + \frac{1}{3} \frac{1}{6} if^{r8e} \{J^{k}, \{G^{re}, G^{r8}\}\} \\ &+ \frac{3}{16} if^{r8e} \{\{J^{r}, G^{re}\}\} - \frac{1}{4} \frac{3}{6} if^{r8e} \{J^{r}, G^{r8}\}\} + \frac{1}{16} ie^{kim} \{F^{2e} \{J^{r}, G^{r8}\}\} + \frac{1}{16} ie^{kim} \{F^{2e} \{J^{r}, G^{r8}\}\} + \frac{1}{16} \frac{1}{6} e^{ke} \{J^{r}, G^{r8}\}\} \\ &+ \frac{3}{16} if^{r8e} \{J^{2}, \{G^{k8}, \{J^{r}, G^{r8}\}\}\} - \frac{1}{16} d^{k8e} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}\}\} + \frac{1}{16} ie^{ke} \{J^{r}, G^{r8}\}\} \\ &+ \frac{3}{16} if^{r8e} \{J^{2}, \{G^{k8}, \{J^{r}, G^{r8}\}\}\} + \frac{1}{16} e^{k8e} \{J^{2}, \{G^{k8}, \{J^{r}, G^{r8}\}\}\} + \frac{1}{16} ie^{k8e} \{J^$$

$$\begin{split} &-\frac{4}{11}ie^{kim}[\{T^{8},\{J^{r},G^{r8}\}\},\{J^{2},\{J^{i},G^{mc}\}\}], \end{split} \tag{C108}$$

$$\begin{split} [\mathcal{D}_{2}^{18}, [\mathcal{D}_{3}^{18}, \mathcal{D}_{3}^{1c}]] &= \frac{7}{44} ie^{kim} f^{c8e} f^{8eg} \{J^{i}, G^{mg}\} - \frac{3}{22} N_{c} id^{8eg} f^{c8e} \mathcal{D}_{3}^{kg} - \frac{3}{22} N_{c} id^{c8e} f^{8eg} \mathcal{D}_{3}^{kg} + \frac{3}{11} id^{8eg} f^{c8e} \mathcal{D}_{4}^{kg} \\ &+ \frac{6}{11N_{f}} ie^{kim} \delta^{c8} \{J^{2}, \{J^{i}, G^{m8}\}\} + \frac{7}{22} if^{c8e} \{\mathcal{D}_{2}^{ke}, \{J^{r}, G^{r8}\}\} - \frac{13}{11} ie^{kim} \{\{J^{i}, G^{m8}\}, \{G^{r8}, G^{rc}\}\} \\ &+ \frac{7}{11} ie^{kim} \{\{J^{i}, G^{mc}\}, \{G^{r8}, G^{r8}\}\} - \frac{7}{11} ie^{rim} \{G^{k8}, \{J^{r}, \{G^{ic}, G^{m8}\}\}\} + \frac{3}{11} ie^{rim} d^{c8e} \{J^{k}, \{J^{r}, \{G^{i8}, G^{me}\}\}\} \\ &+ \frac{9}{44} ie^{kim} f^{cae} f^{8eb} \{\{J^{i}, G^{m8}\}, \{T^{a}, T^{b}\}\} - \frac{23}{11} if^{c8e} \{J^{k}, [\{J^{i}, G^{ie}\}, \{J^{r}, G^{r8}\}]\} - \frac{1}{11} if^{c8e} \{\{J^{r}, G^{re}\}, [J^{2}, G^{k8}]\} \\ &+ \frac{1}{11} if^{c8e} \{\{J^{r}, G^{r8}\}, [J^{2}, G^{ke}]\} + \frac{1}{11} if^{c8e} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}]\} + \frac{3}{11} if^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}]\} \\ &- \frac{3}{11} d^{c8e} \{J^{2}, [G^{ke}, \{I^{r}, G^{r8}\}]\} + \frac{3}{11} d^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{r8}\}]\} - \frac{13}{12} \{\{J^{m}, G^{mc}\}, [G^{k8}, \{J^{r}, G^{r8}\}]\} \\ &- \frac{3}{11} ie^{kim} f^{cae} f^{e8b} \{\{J^{i}, G^{m8}\}, \{G^{ra}, G^{rb}\}\} - \frac{13}{11} if^{c8e} \{J^{2}, [G^{ke}, \{I^{r}, G^{r8}\}]\} - \frac{13}{11} if^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{r8}\}]\} \\ &- \frac{3}{11} d^{c8e} \{J^{2}, [G^{ke}, \{I^{r}, G^{r8}\}]\} - \frac{13}{12} if^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{r8}\}]\} \\ &- \frac{3}{11} ie^{kim} f^{cae} f^{e8b} \{\{J^{i}, G^{m8}\}, \{G^{ra}, G^{rb}\}\} - \frac{4}{11} d^{c8e} \{J^{2}, \{G^{ke}, T^{8}\}\}\} + \frac{4}{11} d^{c8e} \{J^{2}, \{D^{k}_{2}, \{J^{r}, G^{r8}\}\}\} \\ &+ \frac{4}{11} if^{c8e} \{J^{2}, \{\{J^{r}, G^{r8}\}, [J^{2}, G^{ke}]\}\} - \frac{4}{11} \{J^{2}, \{\{J^{r}, G^{r8}\}, \{G^{kc}, T^{8}\}\}\} + 2if^{c8e} \{J^{2}, \{J^{k}, [\{J^{i}, G^{ie}\}, \{J^{r}, G^{r8}\}]\}\} \\ &+ \frac{4}{11} if^{c8e} \{J^{2}, \{\{J^{r}, G^{r8}\}, [J^{2}, G^{ke}]\}\} + 4\{D^{k8}_{2}, \{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\} \\ &- \frac{4}{i} ie^{kim} \{T^{8}, \{J^{r}, G^{r8}\}\} + \frac{1}{2} i, G^{r8}\}\}$$

BARYON MAGNETIC MOMENT IN LARGE- $N_c$  CHIRAL ...

$$\begin{split} &= \frac{63}{176} ie^{kim} f^{c8e} f^{8eg} \{J^{i}, G^{mg}\} + \frac{67}{176} N_{c} id^{8eg} f^{c8e} \mathcal{D}_{3}^{kg} + \frac{67}{176} N_{c} id^{c8e} f^{8eg} \mathcal{D}_{3}^{kg} - \frac{67}{88} id^{8eg} f^{c8e} \mathcal{D}_{4}^{kg} \\ &- \frac{67}{44N_{f}} ie^{kim} \delta^{c8} \{J^{2}, \{J^{i}, G^{m8}\}\} + \frac{63}{88} if^{c8e} \{\mathcal{D}_{2}^{ke}, \{J^{r}, G^{r8}\}\} + \frac{1}{11} ie^{kim} \{\{J^{i}, G^{m8}\}, \{G^{r8}, G^{rc}\}\} \\ &+ \frac{63}{44} ie^{kim} \{\{J^{i}, G^{mc}\}, \{G^{r8}, G^{r8}\}\} - \frac{63}{44} ie^{rim} \{G^{k8}, \{J^{r}, \{G^{ic}, G^{m8}\}\}\} - \frac{67}{88} ie^{rim} d^{c8e} \{J^{k}, \{J^{r}, \{G^{i8}, G^{me}\}\}\} \\ &- \frac{201}{352} ie^{kim} f^{cae} f^{8eb} \{\{J^{i}, G^{m8}\}, \{T^{a}, T^{b}\}\} + \frac{101}{44} if^{c8e} \{J^{k}, [\{J^{i}, G^{ie}\}, \{J^{r}, G^{r8}\}]\} \\ &+ \frac{57}{44} if^{c8e} \{\{J^{r}, G^{re}\}, [J^{2}, G^{k8}]\} - \frac{57}{44} if^{c8e} \{\{J^{r}, G^{r8}\}, [J^{2}, G^{ke}]\} - \frac{57}{44} if^{c8e} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}]\} \\ &+ \frac{269}{44} if^{c8e} \{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}]\} + \frac{67}{88} d^{c8e} \{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}]\} - \frac{1}{22} [G^{k8}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{re}\}\}] + \frac{1}{22} \{\{J^{m}, G^{mc}\}, [G^{k8}, \{J^{r}, G^{r8}\}]\} \\ &+ \frac{67}{88} ie^{kim} f^{cea} f^{e8b} \{\{J^{i}, G^{m8}\}, \{G^{ra}, G^{rb}\}\} + \frac{13}{11} d^{c8e} \{J^{2}, \{J^{2}, \{G^{ke}, T^{8}\}\}\} - \frac{1}{31} d^{c8e} \{J^{2}, \{D^{k8}, \{J^{r}, G^{r8}\}\}\} \\ &+ \frac{31}{11} \{J^{2}, \{\{J^{r}, G^{rc}\}, \{G^{k8}, T^{8}\}\}\} - \frac{9}{11} \{J^{2}, \{\{J^{r}, G^{r8}\}, \{G^{ra}, G^{rb}\}\}\} - if^{c8e} \{J^{2}, \{J^{r}, G^{re}\}, [J^{2}, G^{k8}]\}\} \\ &+ \frac{2}{11} ie^{kim} [\{T^{8}, \{J^{r}, G^{r8}\}, \{J^{2}, G^{ke}]\}\} - 2\{\mathcal{D}^{k8}_{2}, \{\{J^{m}, G^{mc}\}, \{J^{r}, G^{r8}\}\}\} \\ &+ \frac{2}{11} ie^{kim} [\{T^{8}, \{J^{r}, G^{r8}\}, \{J^{2}, \{J^{i}, G^{mc}\}\}], (C110)$$

 $[\mathcal{D}_2^{i8}, [\mathcal{O}_3^{i8}, \mathcal{D}_3^{kc}]] + [\mathcal{O}_3^{i8}, [\mathcal{D}_2^{i8}, \mathcal{D}_3^{kc}]]$ 

$$\begin{split} & [\mathcal{D}_{3}^{i8}, [\mathcal{O}_{3}^{i8}, \mathcal{D}_{2}^{kc}]] + [\mathcal{O}_{3}^{i8}, [\mathcal{D}_{3}^{i8}, \mathcal{D}_{2}^{kc}]] \\ &= \frac{21}{2} f^{c^{8e}} f^{8eg} G^{kg} + \frac{7}{8} i \epsilon^{kim} f^{c^{8e}} f^{8eg} \{J^{i}, G^{mg}\} + \frac{7}{2} f^{c^{8e}} f^{8eg} \mathcal{D}_{3}^{kg} - \frac{21}{16} N_{c} i d^{8eg} f^{c^{8e}} \mathcal{D}_{3}^{kg} - \frac{21}{16} N_{c} i d^{c^{8e}} f^{8eg} \mathcal{D}_{3}^{kg} \\ &+ 7 d^{c^{8e}} d^{8eg} \mathcal{O}_{3}^{kg} - 7 d^{ceg} d^{88e} \mathcal{O}_{3}^{kg} + 14 \{G^{kc}, \{G^{r8}, G^{r8}\}\} - 14 \{G^{k8}, \{G^{rc}, G^{r8}\}\} - 7 d^{c^{8e}} \{J^{k}, \{G^{re}, G^{r8}\}\} \\ &+ 7 d^{88e} \{J^{k}, \{G^{rc}, G^{re}\}\} + 14 d^{c^{8e}} \{G^{ke}, \{J^{r}, G^{r8}\}\} - 7 d^{c^{8e}} \{G^{k8}, \{J^{r}, G^{re}\}\} + 7 d^{88e} \{G^{kc}, \{J^{r}, G^{re}\}\} \\ &- 14 d^{88e} \{G^{ke}, \{J^{r}, G^{rc}\}\} + \frac{7}{2} \epsilon^{kim} f^{c^{8e}} \{T^{e}, \{J^{i}, G^{m8}\}\} + \frac{21}{8} i d^{8eg} f^{c^{8e}} \mathcal{D}_{4}^{kg} + \frac{21}{4N_{f}} i \epsilon^{kim} \delta^{c8} \{J^{2}, \{J^{i}, G^{m8}\}\} \\ &+ \frac{7}{4} i f^{c^{8e}} \{\mathcal{D}_{2}^{ke}, \{J^{r}, G^{r8}\}\} - \frac{35}{4} i \epsilon^{kim} \{\{J^{i}, G^{m8}\}, \{G^{r8}, G^{rc}\}\} + \frac{7}{2} i \epsilon^{kim} \{\{J^{i}, G^{mc}\}, \{G^{r8}, G^{r8}\}\} \\ &- \frac{7}{2} i \epsilon^{rim} \{G^{k8}, \{J^{r}, \{G^{ic}, G^{m8}\}\}\} + \frac{21}{8} i \epsilon^{rim} d^{c^{8e}} \{J^{k}, \{J^{r}, \{G^{i8}, G^{me}\}\}\} \\ &+ \frac{63}{32} i \epsilon^{kim} f^{cae} f^{8eb} \{\{J^{i}, G^{m8}\}, \{T^{a}, T^{b}\}\} + \frac{95}{8} i f^{c^{8e}} \{J^{k}, \{J^{r}, G^{ie}\}, \{J^{r}, G^{r8}\}]\} \end{split}$$

$$\begin{split} & [\mathcal{D}_{3}^{R}, \mathcal{D}_{2}^{k}] \\ = -3f^{c&e}f^{⪚}G^{kg} - \frac{1}{4}ie^{kim}f^{c&e}f^{⪚}\{J^{i}, G^{mg}\} - f^{c&e}f^{⪚}\mathcal{D}_{3}^{kg} + \frac{3}{8}N_{c}id^{⪚}f^{c&e}\mathcal{D}_{3}^{kg} + \frac{3}{8}N_{c}id^{c&e}f^{⪚}\mathcal{D}_{3}^{kg} \\ & - 2d^{c&e}d^{⪚}\mathcal{O}_{3}^{kg} + 2d^{ceg}d^{&e}\mathcal{O}_{3}^{kg} - 4\{G^{kc}, \{G^{r}, G^{r}^{8}\}\} + 4\{G^{kk}, \{G^{rc}, G^{rk}\}\} + 2d^{c&e}\{J^{k}, \{G^{rc}, G^{rk}\}\} \\ & - 2d^{ⅇ}\{J^{k}, \{G^{rc}, G^{re}\}\} - 4d^{c&e}\{G^{ke}, \{J^{r}, G^{rk}\}\} + 2d^{c&e}\{G^{kk}, \{J^{r}, G^{re}\}\} - 2d^{&e}\{G^{kc}, \{J^{r}, G^{re}\}\} \\ & + 4d^{&e}\{G^{ke}, \{J^{r}, G^{rc}\}\} - 4d^{c&e}\{G^{ke}, \{J^{r}, G^{rk}\}\} + 2d^{c&e}\{G^{kk}, \{J^{r}, G^{re}\}\} - 2d^{&e}\{G^{kc}, \{J^{r}, G^{re}\}\} \\ & + 4d^{&e}\{G^{ke}, \{J^{r}, G^{rc}\}\} - e^{kim}f^{c&e}\{T^{e}, \{J^{i}, G^{mk}\}\} - \frac{3}{4}id^{&e}g^{fc&e}\mathcal{D}_{4}^{kg} - \frac{3}{2N_{f}}ie^{kim}\delta^{ce}\{J^{2}, \{J^{i}, G^{mk}\}\} \\ & - \frac{1}{2}if^{c&e}\{\mathcal{D}_{2}^{ke}, \{J^{r}, G^{rk}\}\} + \frac{5}{2}ie^{kim}\{\{J^{i}, G^{mk}\}, \{G^{rk}, G^{re}\}\} - ie^{kim}\{\{J^{i}, G^{mc}\}, \{G^{rk}, G^{rk}\}\} \\ & + ie^{rim}\{G^{kk}, \{J^{r}, \{G^{ic}, G^{mk}\}\}\} - \frac{3}{4}ie^{rim}d^{c&e}\{J^{k}, \{J^{r}, \{G^{ik}, G^{me}\}\}\} - \frac{9}{16}ie^{kim}f^{cae}f^{&eb}\{\{J^{i}, G^{mk}\}, \{T^{a}, T^{b}\}\} \\ & - \frac{19}{4}if^{c&e}\{J^{k}, [\{J^{i}, G^{re}\}, \{J^{r}, G^{rk}\}]\} - \frac{11}{4}if^{c&e}\{\{J^{r}, G^{re}\}, [J^{2}, G^{kk}]\} + \frac{11}{4}if^{c&e}\{\{J^{r}, G^{rk}\}, [J^{2}, G^{ke}]\} \\ & + \frac{11}{4}if^{c&e}\{J^{2}, [G^{ke}, \{J^{r}, G^{rk}\}]\} - \frac{1}{8}[G^{kc}, \{\{J^{m}, G^{mk}\}, \{J^{r}, G^{re}\}\}] - \frac{5}{4}[G^{kk}, \{\{J^{m}, G^{mk}\}, \{J^{r}, G^{re}\}\}] \\ & -\frac{3}{4}d^{e&e}\{J^{2}, [G^{kk}, \{J^{r}, G^{rk}\}]\} - \frac{1}{8}[G^{kc}, \{\{J^{m}, G^{mk}\}, \{J^{r}, G^{rk}\}\}] - \frac{1}{4}ie^{kim}f^{cea}f^{e}b^{k}\{\{J^{i}, G^{rk}\}\}] - \frac{5}{4}[G^{kk}, \{J^{m}, G^{mk}\}, \{J^{r}, G^{rk}\}]\} \\ & - 4d^{&e}\{J^{2}, \{G^{ke}, \{J^{r}, G^{rk}\}\}\} + 2d^{&e}\{\mathcal{D}_{3}^{kc}, \{J^{r}, G^{rk}\}\}\} + 2d^{&e}\{\mathcal{D}_{3}^{kc}, \{J^{r}, G^{rk}\}\}] + 2d^{&e}\{\mathcal{D}_{3}^{kc}, \{J^{r}, G^{rk}\}\} + 2d^{&e}\{\mathcal{D}_{3}^{kc}, \{J^{r}, G^{rk}\}\}\} - 2d^{&e}\{\mathcal{D}_{3}^{kc}, \{J^{r}, G^{rk}\}\}\} - 2d^{&e}\{\mathcal{D}_{3}^{kc}, \{J^{r}, G^{rk}\}\}\} + 2d^{&e}\{$$

$$-\frac{29}{22}if^{c8e}\{J^{2},\{\{J^{r},G^{r8}\},[J^{2},G^{ke}]\}\} - \frac{1}{2}if^{c8e}\{J^{2},\{J^{2},[G^{ke},\{J^{r},G^{r8}\}]\}\} + \frac{1}{2}if^{c8e}\{J^{2},\{J^{2},[G^{k8},\{J^{r},G^{re}\}]\}\} + \{\mathcal{D}_{2}^{k8},\{\{J^{m},G^{mc}\},\{J^{r},G^{r8}\}\}\} + \frac{9}{11}i\epsilon^{kim}[\{T^{8},\{J^{r},G^{r8}\}\},\{J^{2},\{J^{i},G^{mc}\}\}],$$
(C111)

$$\begin{aligned} &-d^{avc}\{D_{3}^{k}, \{D_{1}^{k}, G^{k}\}\} + 14t^{avc}\{T, \{T^{k}, G^{k}\}, \{T^{k}, G^{k}, \{T^{k}, G^{k}\}\}\} + d^{avc}\{T, \{T^{k}, \{G^{k}, T^{k}\}\}\} \\ &-d^{8kc}\{T^{k}, \{D_{2}^{k}, \{T^{k}, G^{re}\}\}\} + 2\{T^{k}, \{T^{k}, G^{re}\}\} - 2\{D_{2}^{k}, \{G^{kk}, T^{c}\}\}\} - it^{r\delta c}\{T^{k}, \{T^{k}, G^{re}\}, [T^{k}, G^{kk}]\}\} \\ &+ it^{r\delta c}\{T^{k}, \{T^{k}, G^{rk}\}, [T^{k}, G^{rk}]\}\} - 2\{D_{2}^{k}, \{\{T^{k}, G^{rk}\}\}\} - 2\{D_{2}^{k}, \{T^{k}, G^{rk}\}\}\}, \end{aligned}$$
(C113)  
$$\begin{aligned} &= -\frac{9}{2}t^{r\delta c}t^{8cg}G^{kg} + 6t^{r\delta c}t^{8cg}T^{8cg}D^{kg}_{2} + \frac{5}{16}ie^{kim}f^{8c}}f^{8cg}\{T^{k}, G^{rm}\}\} + 6\{G^{kk}, \{G^{rc}, G^{rk}\}\} \\ &+ \frac{9}{16}N_{c}id^{8cg}t^{8cg}D^{kg}_{2} - 3d^{8c}d^{8cg}O^{kg}_{2} + 3d^{ccg}d^{8kc}O^{kg}_{2} - 6\{G^{kc}, \{G^{rk}, G^{rk}\}\} + 3d^{ck}\{G^{kc}, \{T^{k}, G^{re}\}\} \\ &+ \frac{3}{4}d^{sk}\{T^{k}, \{G^{rc}, G^{rk}\}\} - 3d^{8kc}\{J^{k}, \{G^{rc}, G^{rc}\}\} - 6d^{8kc}\{G^{kc}, \{T^{k}, G^{rk}\}\} + 3d^{ck}G^{k\delta}, \{T^{k}, G^{rc}\}\} \\ &- 3d^{8kc}\{T^{k}, \{G^{rc}, G^{rk}\}\} + 6d^{8kc}\{G^{kc}, \{T^{k}, G^{rc}\}\} - 6d^{8kc}\{G^{kc}, \{T^{k}, G^{rk}\}\} + 3d^{ck}G^{k\delta}g^{kg}D^{kg}_{4} + d^{8kc}d^{8cg}D^{kg}_{4} \\ &- d^{crg}d^{8c}D^{kq}_{4} - \frac{9}{8}id^{kcg}t^{r\delta c}D^{kg}_{4} + \frac{2}{N_{f}}\delta^{ck}D^{kd}_{4} - \frac{9}{4N_{f}}ie^{kim}\delta^{ck}\{T^{k}, \{T^{i}, G^{rk}\}\} - 2\{D^{kc}_{2}, \{G^{rk}, G^{rk}\}\} \\ &+ d^{8kc}\{D^{kc}_{2}, \{T^{r}, G^{re}\}\} + \frac{5}{8}it^{r\delta k}\{D^{k}_{2}, \{T^{r}, G^{rk}\}\} + ie^{kim}\{T^{i}, G^{rk}\}\} - \frac{9}{8}ie^{rim}d^{8c}\{J^{k}, \{T^{r}, G^{rk}\}\} \\ &+ \frac{3}{2}ie^{kim}\{t^{ra}g^{cm}_{6}, \{G^{rc}, G^{rk}\}\} - \frac{5}{7}ie^{rim}\{G^{kk}_{4}, \{T^{r}, \{G^{rk}, G^{rk}\}\}\} - \frac{8}{3}it^{r\delta k}\{T^{k}_{4}, G^{re}_{7}\}\} \\ &+ \frac{3}{3}it^{r\delta k}\{T^{k}_{4}, [G^{re}_{8}, \{T^{r}, G^{rk}\}]\} - \frac{5}{8}i^{r\delta k}\{T^{k}_{4}, [G^{rk}_{6}, \{T^{r}, G^{rk}\}]\} - \frac{3}{8}it^{r\delta k}\{T^{k}_{4}, [G^{rk}_{6}, \{T^{r}, G^{rk}\}\}\} \\ &+ \frac{3}{8}d^{sk}\{T^{k}_{4}, [G^{rk}_{6}, \{T^{r}, G^{rk}\}]\} - \frac{5}{9}i^{sk}\{T^{k}_{4}, [G^{rk}_{6}, \{T^{r}, G^{rk}\}\}\} + \frac{3}{8}it^{r\delta k}\{T^{k}_{6}, [G^{rk}_{6}, \{T^{r}, G^{rk}\}\}\} \\ &+ \frac{3}{8}it^{r\delta k}\{T^{k}_{6}, [G^{rk}_{6}, \{T^{r}, G^{rk}\}\}\} - \frac{5}{8}it^{r\delta k}\{T^{k}_{6}, [G^{$$

$$+ \frac{79}{8}if^{c8e}\{\{J^{r}, G^{re}\}, [J^{2}, G^{k8}]\} - \frac{79}{8}if^{c8e}\{\{J^{r}, G^{r8}\}, [J^{2}, G^{ke}]\} - \frac{95}{8}if^{c8e}\{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}]\} + \frac{79}{8}if^{c8e}\{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}]\} - \frac{21}{8}d^{c8e}\{J^{2}, [G^{ke}, \{J^{r}, G^{r8}\}]\} + \frac{21}{8}d^{c8e}\{J^{2}, [G^{k8}, \{J^{r}, G^{re}\}]\} + \frac{71}{16}[G^{kc}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{r8}\}\}] + \frac{35}{8}[G^{k8}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{rc}\}\}] - \frac{35}{8}\{\{J^{m}, G^{mc}\}, [G^{k8}, \{J^{r}, G^{r8}\}]\} + \frac{21}{16}[G^{kc}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{r8}\}\}] + \frac{35}{8}[G^{k8}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{rc}\}\}] - \frac{35}{8}\{\{J^{m}, G^{mc}\}, [G^{k8}, \{J^{r}, G^{r8}\}]\} + \frac{21}{14}G^{k8}\{\{J^{m}, G^{m8}\}, \{J^{r}, G^{r2}\}\}] - \frac{35}{8}\{\{J^{m}, G^{mc}\}, [G^{k8}, \{J^{r}, G^{r8}\}]\} + \frac{14}{14}G^{k8}\{J^{2}, \{G^{ke}, \{J^{r}, G^{r8}\}\}\} + 14d^{88e}\{J^{2}, \{G^{ke}, \{J^{r}, G^{r6}\}\}\} - \frac{14}{8}ie^{kim}f^{caa}f^{e8b}\{\{J^{i}, G^{r8}\}, \{J^{r}, G^{r8}\}\}\} + 14\{G^{k8}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{rc}\}\}\} - 7d^{c8e}\{\mathcal{D}_{3}^{kc}, \{J^{r}, G^{r8}\}\} - 14ie^{kil}[\{J^{i}, G^{l8}\}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{rc}\}\}\} - 14ie^{kil}[\{J^{i}, G^{l8}\}, \{G^{k8}, T^{c}\}\}\} - if^{c8e}\{J^{2}, \{\{J^{r}, G^{re}\}, [J^{2}, G^{k8}]\}\} + \frac{14}{2}\{I^{2}, \{I^{r}, G^{r8}\}\}\} - 2\{\mathcal{D}_{2}^{kc}, \{I^{m}, G^{r8}\}, \{G^{k8}, T^{c}\}\}\} - if^{c8e}\{J^{2}, \{\{J^{r}, G^{re}\}, [J^{2}, G^{k8}]\}\} - 2\{\mathcal{D}_{2}^{kc}, \{I^{m}, G^{r8}\}, \{I^{m}, G^{r8}\}\}\}$$

 $[\mathcal{D}_3^{i8}, [\mathcal{D}_3^{i8}, \mathcal{D}_3^{kc}]]$ 

$$\begin{split} &= \frac{176N_c - 2625}{48} f^{sbc} f^{sbc} g^{lag} - \frac{6248N_c + 5155}{6336} ie^{kim} f^{sbc} f^{bcg} f^{lag} g^{lag} + \frac{176N_c - 2985}{144} f^{sbc} f^{bcg} g^{lag} \\ &= \frac{N_c(3960N_c - 48923)}{6336} (if^{sbc} d^{bcg} D^{lag}_{S} + id^{sbc} f^{bcg} D^{lag}_{S}) + \frac{1437}{144} f^{sbc} f^{bcg} D^{lag}_{S} - \frac{176N_c - 2625}{72} d^{sbc} d^{bcg} D^{lag}_{S} \\ &= \frac{176N_c - 2625}{72} d^{scg} d^{sbc} Q^{lag}_{S} + \frac{176N_c - 2625}{72} d^{sbc} (f^{lag}, G^{lag}) + \frac{176N_c - 2625}{76} d^{sbc} (f^$$

$$\begin{split} &-\frac{293}{72}e^{kim}f^{ab8}\{\{J^i, G^{m8}\}, \{T^v, \{G^{rb}, G^{rc}\}\}\} + \frac{1}{36}(N_c + N_f)ic^{kim}d^{c8e}\{J^2, \{T^e, \{J^i, G^{m8}\}\}\} \\ &-\frac{352N_c - 5543}{72}ic^{kill}[\{J^i, G^{l8}\}, \{\{J^m, G^{m8}\}, \{J^r, G^{rc}\}\}\} + \frac{1}{18}if^{c3e}d^{8cg}D_{6}^{8g} - \frac{41}{99}d^{c3e}\{J^2, \{J^2, \{G^{ke}, T^8\}\}\} \\ &+\frac{41}{9N_f}ic^{kim}\delta^{c8}\{J^2, \{J^2, \{J^i, G^{m8}\}\}\} + \frac{41}{99}d^{k3e}\{J^2, \{D_2^{k8}, \{J^r, G^{rc}\}\}\} + \frac{1}{18}if^{c3e}d^{8cg}D_{6}^{kg} - \frac{41}{99}d^{c3e}\{\{J^2, \{T^c, T^8\}\}\}\} \\ &+\frac{41}{99}\{J^2, \{\{J^r, G^{rc}\}, \{G^{k8}, T^8\}\}\} + \frac{41}{99}d^{k3e}\{J^2, \{D_2^{k8}, \{J^r, G^{rc}\}\}\} + \frac{1}{18}ie^{kim}\delta^{c8}\{J^2, \{T^r, T^8\}, \{J^i, G^{m8}\}\}\} \\ &+\frac{41}{99}\{J^2, \{\{G^{rc}, G^{r8}\}, \{J^i, G^{m8}\}\}\} + \frac{1}{39}ie^{kim}\{J^2, \{G^{c8}, G^{r8}\}, \{J^i, G^{m8}\}\}\} \\ &-\frac{4}{9}ie^{kim}\{J^2, \{G^{re}, G^{r8}\}, \{J^i, G^{m8}\}\}\} + \frac{1}{18}ie^{kim}\delta^{c2}\{I^2, \{J^k, \{J^r, \{G^{r8}, G^{r8}\}\}\} \\ &-\frac{1}{3}ie^{rim}\{J^2, \{G^{48}, \{T^r, \{G^{ic}, G^{m8}\}\}\}\} + \frac{1}{18}ie^{im}\sigma^{c3e}\{J^2, \{J^k, \{J^r, G^{r8}\}, \{J^r, G^{r8}\}\}\} \\ &-\frac{1}{3}ie^{kim}\{I^2, \{G^{48}, \{T^r, G^{rc}, G^{m8}\}\}\} + \frac{1}{18}ie^{kim}\delta^{c2}\{J^2, \{J^k, \{J^r, G^{r8}\}, \{J^r, G^{r8}\}\}\} \\ &+\frac{1}{18}ie^{kim}\delta^{c2e}\{J^2, \{J^2, \{G^{k8}, \{T^r, G^{r8}\}\}\} + \frac{247}{198}if^{c8e}\{J^2, \{J^r, G^{r8}\}, \{J^2, G^{kc}\}\}\} \\ &-\frac{5}{6}if^{c8e}\{J^2, \{J^2, [G^{ke}, \{T^r, G^{r8}\}\}\} + \frac{5}{6}if^{c8e}\{J^2, \{J^2, [G^{ke}, \{J^r, G^{r8}\}\}\} \\ &+\frac{5}{6}if^{c8e}\{J^2, \{J^2, [G^{k8}, \{T^r, G^{r8}\}\}\} - \frac{5}{6}if^{c8e}\{J^2, \{J^2, [G^{ke}, \{J^r, G^{r8}\}\}\}\} \\ &+\frac{1}{18}d^{r8e}\{J^2, \{J^2, [G^{k8}, \{T^r, G^{re}\}\}\} - \frac{1}{18}d^{J^2} [G^{ke}\{J^2, G^{ke}, \{T^r, G^{r8}\}\}\} \\ &+\frac{1}{18}d^{r8e}\{J^2, \{J^2, [G^{k8}, \{T^r, G^{re}\}\}\} + 2d^{2}k^{2}\{J^2, \{J^k, \{G^{rc}, G^{re}\}\}\}\} \\ &+\frac{4}{3}d^{8e}\{J^2, \{J^2, \{G^{ke}, \{T^r, G^{r8}\}\}\} + 2d^{2}k^{2}\{J^2, \{J^k, \{G^{re}, G^{r8}\}\}\} \\ &+\frac{4}{3}d^{8e}\{J^2, \{J^2, \{G^{ke}, \{T^r, G^{re}\}\}\} + \frac{4}{3}d^{8e}\{J^2, \{G^{ke}, \{T^r, G^{r8}\}\}\} + 2d^{2}k^{2}\{J^2, \{G^{ke}, \{T^r, G^{r8}\}\}\} \\ &+\frac{4}{3}d^{8e}\{J^2, \{J^2, \{G^{ke}, \{T^r, G^{re}\}\}\} + \frac{1}{3}d^{8e}\{J^2, \{G^{ke}, \{T^r, G^{r8}\}\}\} \\ &+\frac{1}{3}d^{8e}\{J^2, \{$$

 $[\mathcal{D}_{3}^{i8}, [\mathcal{D}_{3}^{i8}, \mathcal{O}_{3}^{kc}]]$  $=\frac{4976N_c-7845}{192}f^{c8e}f^{8eg}G^{kg}+\frac{159016N_c-399703}{25344}i\epsilon^{kim}f^{c8e}f^{8eg}\{J^i,G^{mg}\}+\frac{4976N_c-8637}{576}f^{c8e}f^{8eg}\mathcal{D}_3^{kg}$  $-\frac{N_c(234432N_c-716249)}{25344}(if^{c8e}d^{8eg}\mathcal{D}_3^{kg}+id^{c8e}f^{8eg}\mathcal{D}_3^{kg})-\frac{2431}{576}f^{c8e}f^{8eg}\mathcal{O}_3^{kg}+\frac{4976N_c-7845}{288}d^{c8e}d^{8eg}\mathcal{O}_3^{kg}+\frac{10}{288}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}d^{28e}$  $-\frac{4976N_c-7845}{288}d^{ceg}d^{88e}\mathcal{O}_3^{kg}+\frac{4976N_c-7845}{144}\{G^{kc},\{G^{r8},G^{r8}\}\}-\frac{4976N_c-7845}{144}\{G^{k8},\{G^{rc},G^{r8}\}\}$  $-\frac{4976N_c-7845}{288}d^{c8e}\{J^k,\{G^{re},G^{r8}\}\}+\frac{4976N_c-7845}{288}d^{88e}\{J^k,\{G^{rc},G^{re}\}\}$  $+\frac{4976N_c-7845}{144}d^{c8e}\{G^{ke},\{J^r,G^{r8}\}\}-\frac{4976N_c-7845}{288}d^{c8e}\{G^{k8},\{J^r,G^{re}\}\}$  $+\frac{4976N_c-7845}{288}d^{88e}\{G^{kc},\{J^r,G^{re}\}\}-\frac{4976N_c-7845}{144}d^{88e}\{G^{ke},\{J^r,G^{rc}\}\}$  $+\frac{19904N_c+2643N_f-41952}{2304}\epsilon^{kim}f^{c8e}\{T^e,\{J^i,G^{m8}\}\}+\frac{234432N_c-716249}{12672}if^{c8e}d^{8eg}\mathcal{D}_4^{kg}$  $-\frac{47}{48}i\epsilon^{kim}f^{c8e}f^{8eg}\{J^2,\{J^i,G^{mg}\}\}+\frac{N_c(1408N_c+2816N_f+234432)-716249}{6336N_f}i\epsilon^{kim}\delta^{c8}\{J^2,\{J^i,G^{m8}\}\}$  $+\frac{159016N_c-399703}{12672}if^{c8e}\{\mathcal{D}_2^{ke},\{J^r,G^{r8}\}\}-\frac{49181N_c-139494}{792}i\epsilon^{kim}\{\{J^i,G^{m8}\},\{G^{r8},G^{rc}\}\}$  $+\frac{159016N_c-399703}{6336}i\epsilon^{kim}\{\{J^i,G^{mc}\},\{G^{r8},G^{r8}\}\}-\frac{159016N_c-399703}{6336}i\epsilon^{rim}\{G^{k8},\{J^r,\{G^{ic},G^{m8}\}\}\}$  $+\frac{234432N_c-716249}{12672}i\epsilon^{rim}d^{c8e}\{J^k,\{J^r,\{G^{i8},G^{me}\}\}\}+\frac{234432N_c-716249}{16896}i\epsilon^{kim}f^{cae}f^{8eb}\{\{J^i,G^{m8}\},\{T^a,T^b\}\}$  $\frac{236896N_c - 382457}{12672}if^{c8e}\{J^k, [\{J^i, G^{ie}\}, \{J^r, G^{r8}\}]\} + \frac{236896N_c - 382457}{12672}if^{c8e}\{\{J^r, G^{re}\}, [J^2, G^{k8}]\}$  $\frac{236896N_c - 382457}{12672}if^{c8e}\{\{J^r, G^{r8}\}, [J^2, G^{ke}]\} - \frac{236896N_c - 382457}{12672}if^{c8e}\{J^2, [G^{ke}, \{J^r, G^{r8}\}]\}$  $+\frac{236896N_c-429721}{12672}if^{c8e}\{J^2, [G^{k8}, \{J^r, G^{re}\}]\}-\frac{234432N_c-716249}{12672}d^{c8e}\{J^2, [G^{ke}, \{J^r, G^{r8}\}]\}$  $+\frac{234432N_c-716249}{12672}d^{c8e}\{J^2, [G^{k8}, \{J^r, G^{re}\}]\}+\frac{37708N_c-158273}{12672}[G^{kc}, \{\{J^m, G^{m8}\}, \{J^r, G^{r8}\}\}]$  $+\frac{49181N_c-139494}{1584}[G^{k8},\{\{J^m,G^{m8}\},\{J^r,G^{rc}\}\}]-\frac{49181N_c-139494}{1584}\{\{J^m,G^{mc}\},[G^{k8},\{J^r,G^{r8}\}]\}$  $-\frac{234432N_c-716249}{12672}i\epsilon^{kim}f^{cea}f^{e8b}\{\{J^i,G^{m8}\},\{G^{ra},G^{rb}\}\}-\frac{11}{12}f^{c8e}f^{8eg}\mathcal{D}_5^{kg}-\frac{1}{9}N_cif^{c8e}d^{8eg}\mathcal{D}_5^{kg}$  $-\frac{1}{9}N_{c}id^{c8e}f^{8eg}\mathcal{D}_{5}^{kg} + \frac{3}{2}f^{c8e}f^{8eg}\mathcal{O}_{5}^{kg} - \frac{23}{6}d^{c8e}d^{8eg}\mathcal{O}_{5}^{kg} + \frac{59}{18}d^{ceg}d^{88e}\mathcal{O}_{5}^{kg} - \frac{223}{144}\{J^{2}, \{G^{kc}, \{G^{r8}, G^{r8}\}\}\}$  $+\frac{223}{144}\{J^{2},\{G^{k8},\{G^{rc},G^{r8}\}\}\}+\frac{11}{6}d^{c8e}\{J^{2},\{J^{k},\{G^{re},G^{r8}\}\}\}-\frac{11}{6}d^{88e}\{J^{2},\{J^{k},\{G^{rc},G^{re}\}\}\}$  $+\frac{9952N_c-18779}{288}d^{c8e}\{J^2,\{G^{ke},\{J^r,G^{r8}\}\}\}+\frac{23}{6}d^{c8e}\{J^2,\{G^{k8},\{J^r,G^{re}\}\}\}-\frac{59}{18}d^{88e}\{J^2,\{G^{kc},\{J^r,G^{re}\}\}\}$  $+\frac{9952N_c-14523}{288}d^{88e}\{J^2,\{G^{ke},\{J^r,G^{rc}\}\}\}-\frac{23}{12}\epsilon^{kim}f^{c8e}\{J^2,\{T^e,\{J^i,G^{m8}\}\}\}$  $-\frac{4976N_c - 7845}{144} \{G^{kc}, \{\{J^m, G^{m8}\}, \{J^r, G^{r8}\}\}\} + \frac{4976N_c - 7845}{144} \{G^{k8}, \{\{J^m, G^{m8}\}, \{J^r, G^{rc}\}\}\}$  $-\frac{305}{288}\{J^k, \{\{J^m, G^{mc}\}, \{G^{r8}, G^{r8}\}\}\} + \frac{305}{288}\{J^k, \{\{J^m, G^{m8}\}, \{G^{r8}, G^{rc}\}\}\}$ 

$$\begin{split} &-\frac{9952N_{e}-17147}{576}d^{*8e}\{J^{*}_{2},\{J^{r},G^{r8}\}\} - \frac{9952N_{e}-15995}{576}d^{88e}\{D^{kc}_{3},\{J^{r},G^{re}\}\}\\ &=\frac{881}{288}e^{kimfab8}\{\{J^{i},G^{m8}\},\{T^{a},\{G^{rb},G^{rc}\}\}\} + \frac{1}{9}(N_{c}+N_{f})ie^{kim}d^{*8e}\{J^{2},\{T^{c},\{J^{i},G^{m8}\}\}\}\\ &-\frac{9952N_{c}-16571}{288}ie^{kinf}[\{J^{i},G^{i8}\},\{\{J^{m},G^{m8}\},\{J^{r},G^{rc}\}\}] + \frac{1}{2}(N_{c}+N_{f})ie^{kim}d^{*8e}\{J^{2},\{T^{c},\{J^{i},G^{m8}\}\}\}\\ &+\frac{4}{9N_{f}}ie^{kimf}d^{*8}\{J^{2},\{J^{2},\{J^{i},G^{m8}\}\} - \frac{1477}{396}d^{e^{8}e}\{J^{2},\{D^{ke}_{2},\{D^{ke}_{2},\{T^{r},G^{re}\}\}\} - \frac{1477}{396}d^{*8e}\{J^{2},\{\{J^{r},G^{re}\}\}\} - \frac{1477}{396}d^{*8e}\{J^{2},\{\{J^{r},G^{re}\},\{J^{r},G^{re}\}\}\}\\ &-\frac{1477}{396}\{J^{2},\{\{J^{r},G^{rc}\},\{G^{k8},T^{8}\}\}\} - \frac{1477}{396}\{J^{2},\{\{J^{r},G^{r8}\},\{J^{r},G^{r8}\}\}\} + \frac{1477}{396}\{J^{2},\{\{J^{r},G^{r8}\},\{J^{i},G^{m8}\}\}\} + \frac{1477}{396}\{J^{2},\{\{J^{r},G^{re},\{J^{r},G^{r8}\},\{J^{r},G^{r8}\}\}\} - \frac{1477}{396}\{J^{2},\{\{J^{r},G^{r8},\{J^{r},G^{r8}\}\}\} - \frac{1477}{396}\{J^{2},\{\{J^{r},G^{r8},\{J^{r},G^{r8}\}\}\} + \frac{1477}{396}\{J^{2},\{\{J^{r},G^{r8},\{J^{r},G^{r8}\}\}\} + \frac{1477}{396}\{J^{2},\{\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r},G^{r8},\{J^{r}$$

| $[\mathcal{D}_{3}^{i8}, [\mathcal{O}_{3}^{i8}, \mathcal{D}_{3}^{kc}]] + [\mathcal{O}_{3}^{i8}, [\mathcal{D}_{3}^{i8}, \mathcal{D}_{3}^{kc}]]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| $= 1864N_c - 129_{fc8e f8eqCkq} + 10120N_c - 146461_{ickim fc8e f8eq[1i Cmq]} = 1864N_c - 633_{fc8e f8eqD}^{kq}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $= -\frac{96}{96} \int \int \sqrt{30} \sqrt{30} + \frac{12672}{12672} le \int \int \sqrt{30} \sqrt{30} - \frac{1288}{288} \int \sqrt{30} \sqrt{30} $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $+\frac{N_{c}(9306N_{c}+36325)}{(226)}(if^{c8e}d^{8eg}\mathcal{D}_{3}^{kg}+id^{c8e}f^{8eg}\mathcal{D}_{3}^{kg})-\frac{1333}{288}f^{c8e}f^{8eg}\mathcal{O}_{3}^{kg}-\frac{1864N_{c}-129}{144}d^{c8e}d^{8eg}\mathcal{O}_{3}^{kg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |
| 0.350 $1.264N$ $120$ $1.264N$ $120$ $1.264N$ $120$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $+\frac{1804N_{c}-129}{144}d^{ceg}d^{88e}\mathcal{O}_{3}^{kg}-\frac{1804N_{c}-129}{72}\{G^{kc},\{G^{r8},G^{r8}\}\}+\frac{1804N_{c}-129}{72}\{G^{k8},\{G^{rc},G^{r8}\}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $+\frac{1864N_c-129}{144}d^{c8e}\{J^k,\{G^{re},G^{r8}\}\}-\frac{1864N_c-129}{144}d^{88e}\{J^k,\{G^{rc},G^{re}\}\}-\frac{1864N_c-129}{72}d^{c8e}\{G^{ke},\{J^r,G^{r8}\}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| $+\frac{1864N_{c}-129}{144}d^{c8e}\{G^{k8},\{J^{r},G^{re}\}\}-\frac{1864N_{c}-129}{144}d^{88e}\{G^{kc},\{J^{r},G^{re}\}\}+\frac{1864N_{c}-129}{72}d^{88e}\{G^{ke},\{J^{r},G^{rc}\}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| $-\frac{7456N_c + 1839N_f - 7872}{1152}\epsilon^{kim}f^{c8e}\{T^e, \{J^i, G^{m8}\}\} - \frac{9306N_c + 36325}{2168}if^{c8e}d^{8eg}\mathcal{D}_4^{kg}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| 1132 $5106$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $+\frac{1}{24}i\epsilon^{kim}f^{c8e}f^{8eg}\{J^2,\{J^i,G^{mg}\}\}+\frac{N_c(110N_c+220N_f-9500)-50525}{1584N_f}i\epsilon^{kim}\delta^{c8}\{J^2,\{J^i,G^{m8}\}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| $+\frac{10120N_c-146461}{6226}if^{c8e}\{\mathcal{D}_2^{ke},\{J^r,G^{r8}\}\}+\frac{8492N_c+219111}{2168}i\epsilon^{kim}\{\{J^i,G^{m8}\},\{G^{r8},G^{rc}\}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| 0550 5108<br>10120N 146461 10120N 146461                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $+\frac{101201v_{c}-140401}{2169}i\epsilon^{kim}\{\{J^{i},G^{mc}\},\{G^{r8},G^{r8}\}\}-\frac{101201v_{c}-140401}{2169}i\epsilon^{rim}\{G^{k8},\{J^{r},\{G^{ic},G^{m8}\}\}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| 3108 $3108$ $0306N + 36325$ $0306N + 36325$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $-\frac{9500N_c + 50525}{3168}i\epsilon^{rim}d^{c8e}\{J^k, \{J^r, \{G^{i8}, G^{me}\}\}\} - \frac{9500N_c + 50525}{4224}i\epsilon^{kim}f^{cae}f^{8eb}\{\{J^i, G^{m8}\}, \{T^a, T^b\}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $-\frac{83864N_c+75953}{6226}if^{c8e}\{J^k, [\{J^i, G^{ie}\}, \{J^r, G^{r8}\}]\} - \frac{83864N_c+75953}{6226}if^{c8e}\{\{J^r, G^{re}\}, [J^2, G^{k8}]\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |
| 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330 		 0330                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |
| $+\frac{63804N_{c}+73933}{6336}if^{c8e}\{\{J^{r},G^{r8}\},[J^{2},G^{ke}]\}+\frac{63804N_{c}+73933}{6336}if^{c8e}\{J^{2},[G^{ke},\{J^{r},G^{r8}\}]\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $83864N_c + 104209_{c} = 668e \left[ \frac{12}{10} $ |
| $-\frac{-6336}{6336}u^{-1}\{J, [G^{-1}, \{J, G^{-1}\}]\} + \frac{-3168}{3168}u^{-1}\{J, [G^{-1}, \{J, G^{-1}\}]\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $9306N_c + 36325_{168e} \left[ r^2 \left[ ck_8 \left[ r cre \right] \right] \right] = 28732N_c - 73811_{[ck_6]} \left[ r cr_8 \right] \left[ r cr_8 \right] \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |
| $-\frac{12672}{3168} \left[ G^{++} \{J^{+}, [G^{++}, \{J^{+}, G^{++}\}] \right] - \frac{12672}{12672} \left[ G^{++}, \{\{J^{+}, G^{++}\}, \{J^{+}, G^{++}\}\} \right]$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |
| $8492N_c + 219111$ [ <i>ck</i> <sup>8</sup> (( <i>m</i> , <i>cm</i> <sup>8</sup> ) ( <i>r</i> , <i>crc</i> )] + $8492N_c + 219111$ (( <i>m</i> , <i>cmc</i> ) [ <i>ck</i> <sup>8</sup> ( <i>r</i> , <i>cr</i> <sup>8</sup> )])                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| $-\frac{6336}{6336}[0^{-1},\{\{J^{-1},0^{-1}\},\{J^{-1},0^{-1}\}\}] + \frac{6336}{6336}\{\{J^{-1},0^{-1}\},[0^{-1},\{J^{-1},0^{-1}\}]\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
| $9306N_c + 36325_{i_k kim_k cea ke8b} \left[ 1 cm^8 \right] \left[ cra crb \right] + 7_{kc8e_k kea D} kg 5_{NL i cc8e_k kea D} kg$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |
| $+\frac{3168}{3168}le^{-1} \int de^{-1} \int $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |
| $-\frac{5}{144}N_{c}id^{c8e}f^{8eg}\mathcal{D}_{5}^{kg}-2f^{c8e}f^{8eg}\mathcal{O}_{5}^{kg}+\frac{7}{3}d^{c8e}d^{8eg}\mathcal{O}_{5}^{kg}-\frac{22}{9}d^{ceg}d^{88e}\mathcal{O}_{5}^{kg}-\frac{853}{72}\{J^{2},\{G^{kc},\{G^{r8},G^{r8}\}\}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |
| 853 (-2) (-2) (-2) (-2) (-2) (-2) (-2) (-2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| $+\frac{1}{72}\{J^{2},\{G^{\kappa\delta},\{G^{rc},G^{r\delta}\}\}\}-\frac{1}{3}d^{c\delta e}\{J^{2},\{J^{\kappa},\{G^{re},G^{r\delta}\}\}\}+\frac{1}{3}d^{\delta\delta e}\{J^{2},\{J^{\kappa},\{G^{rc},G^{re}\}\}\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |

$$\begin{split} &-\frac{3728N_c-967}{144}d^{8k}\{J^2, \{G^{kk}, \{J^r, G^{rk}\}\}\} - \frac{7}{3}d^{8k}\{J^2, \{G^{kk}, \{J^r, G^{rk}\}\} + \frac{2}{2}d^{8k}\{J^2, \{G^{kc}, \{J^r, G^{re}\}\}\} \\ &-\frac{3728N_c-759}{144}d^{8k}\{J^2, \{G^{ke}, \{J^r, G^{rk}\}\}\} + \frac{9N_f-46}{12}e^{kim}f^{cke}\{J^2, \{T^r, \{J^i, G^{mk}\}\}\} \\ &+\frac{1864N_c-129}{72}\{G^{ke}, \{\{J^m, G^{mk}\}, \{J^r, G^{rk}\}\}\} - \frac{1864N_c-129}{72}\{G^{kk}, \{J^m, G^{mk}\}, \{J^r, G^{rr}\}\}\} \\ &+\frac{1864N_c-129}{72}\{G^{kc}, \{\{J^m, G^{mk}\}, \{J^r, G^{rk}\}\}\} - \frac{1189}{144}\{J^k, \{\{J^m, G^{mk}\}, \{G^{rk}, G^{rr}\}\}\} \\ &+\frac{3728N_c-295}{288}d^{ck}\{D_3^{kc}, \{J^r, G^{rk}\}\} + \frac{1189}{144}\{J^k, \{\{J^m, G^{mk}\}, \{G^{rk}, G^{rr}\}\}\} \\ &+\frac{3728N_c-1447}{288}d^{8kc}\{D_3^{kc}, \{J^r, G^{rk}\}\} + \frac{164}{144}e^{kim}f^{ab8}\{\{J^i, G^{mk}\}, \{T^a, G^{rb}, G^{rc}\}\}\} \\ &+\frac{5}{144}(N_c+N_f)ie^{kim}d^{ck}\{I^2, \{T^r, \{J^r, G^{nk}\}\}\} + \frac{5}{144}e^{kim}f^{ab8}\{J^1, G^{mk}\}, \{T^a, G^{rb}, G^{rc}\}\}\} \\ &+\frac{5}{72}if^{ck}d^{8c}pD_6^{kr} + \frac{883}{198}d^{rk}\{I^2, \{T^r, \{J^r, G^{rk}\}\}\} + \frac{5}{36N_f}ie^{kim}\delta^{rk}\{J^2, \{J^r, G^{rk}\}, \{J^r, G^{rc}\}\}\} \\ &+\frac{5}{72}if^{ck}d^{8c}pD_6^{kr} + \frac{883}{198}d^{rk}\{I^2, \{T^r, G^{rk}\}\}\} + \frac{5}{144}ie^{kim}f^{ab}\{I^2, \{J^r, G^{rk}\}\}\} - \frac{5}{144}ie^{kim}f^{ab}\{I^2, \{J^r, G^{rk}\}, \{J^r, G^{rk}\}\}\} \\ &+\frac{5}{72}if^{ck}d^{8c}pD_6^{kr} + \frac{883}{198}d^{rk}\{I^2, \{T^r, \{T^r, \{I^r, G^{rk}\}\}\} + \frac{5}{36N_f}ie^{kim}\delta^{rk}\{J^2, \{I^r, G^{rc}\}, \{G^{kk}, T^k\}\}\} \\ &+\frac{5}{72}ie^{im}d^{sk}\{I^2, \{I^r, G^{rk}\}, \{J^r, G^{mk}\}\}\} - \frac{1}{14}ie^{kim}\{J^2, \{G^{kk}, \{I^r, G^{rk}\}\}\} - \frac{1}{136}ie^{kim}\{J^2, \{G^{rc}, G^{rk}\}, \{I^r, G^{mk}\}\}\} \\ &+\frac{5}{198}d^{rk}\{I^2, \{I^r, G^{rk}\}, \{I^r, G^{mk}\}\}\} - \frac{5}{14}ie^{kim}\{I^2, \{G^{rk}, G^{rk}, G^{rk}\}\} + \frac{5}{2i}ie^{im}d^{rk}\{I^2, \{I^r, G^{rk}\}\}\} \\ &+\frac{5}{12}e^{irm}d^{sk}\{I^2, \{I^r, G^{rk}\}, \{I^r, G^{rk}\}\}\} + \frac{5}{2i}ie^{kim}\{I^r, \{I^r, G^{rk}\}\}\} \\ &+\frac{5}{2i}e^{irm}d^{sk}\{I^2, \{I^r, G^{rk}\}, \{I^r, G^{rk}\}\}\} + \frac{5}{2i}ie^{kim}\{I^r, \{I^r, G^{rk}\}\}\} + \frac{$$

$$\begin{split} & [D_{2}^{9}, [O_{3}^{9}, O_{4}^{8}]] + [O_{3}^{9}, [D_{3}^{9}, O_{4}^{8}]] \\ &= \frac{1612N_{c} - 1695}{48} f^{86g} f^{86g} G^{kg} + \frac{34826N_{c} - 65975}{6336} ie^{kim} f^{5ke} f^{8cg} [J^{1}, G^{mg}] + \frac{1612N_{c} - 1875}{144} f^{5ke} f^{8cg} D_{3}^{kg} \\ &+ \frac{N_{c}(2376N_{c} - 184945)}{12672} (if^{16g} e^{d} e^{0} p_{3}^{kg} + ie^{ke} f^{8cg} D_{3}^{kg}) - \frac{15}{72} f^{5ke} f^{8cg} D_{3}^{kg} + \frac{1612N_{c} - 1695}{36} d^{5ke} (G^{ke}, G^{rk}] \\ &- \frac{1612N_{c} - 1695}{72} d^{5ke} d^{keg} O_{3}^{kg} + \frac{1612N_{c} - 1695}{36} \{G^{kc}, \{G^{rk}, G^{rk}\} \} - \frac{1612N_{c} - 1695}{36} d^{5ke} \{G^{ke}, \{F', G^{rk}\} \} \\ &- \frac{1612N_{c} - 1695}{72} d^{5ke} \{F^{1}, \{G^{re}, G^{rk}\} \} + \frac{1612N_{c} - 1695}{72} d^{5ke} \{G^{ke}, \{F', G^{rk}\} \} + \frac{1612N_{c} - 1695}{72} d^{5ke} \{G^{ke}, \{F', G^{rk}\} \} \\ &- \frac{1612N_{c} - 1695}{72} d^{5ke} \{G^{ke}, \{F, G^{rr}\} \} + \frac{1612N_{c} - 1695}{72} d^{5ke} \{G^{ke}, \{F', G^{rk}\} \} + \frac{1612N_{c} - 1695}{72} d^{5ke} \{G^{ke}, \{F', G^{rk}\} \} \\ &- \frac{1612N_{c} - 1695}{72} d^{5ke} \{G^{ke}, \{F', G^{rr}\} \} + \frac{3224N_{c} - 100N_{c} - 5394}{288} d^{5km} f^{5ke} \{T^{2}, \{J^{1}, G^{m8}\} \} \\ &- \frac{1612N_{c} - 1695}{636} d^{5ke} \{G^{ke}, \{F', G^{re}\} \} + \frac{3224N_{c} - 5097_{c}}{72} f^{5kg} \{T^{2}, \{J^{1}, G^{m8}\} \} \\ &- \frac{1612N_{c} - 1695}{36} d^{5ke} \{G^{ke}, \{F', G^{re}\} \} + \frac{3224N_{c}}{5184} f^{5kg} f^{5cg} \{I^{2}, \{I^{r}, G^{re}\} \} \\ &- \frac{1612N_{c} - 1695}{363} d^{5ke} \{G^{ke}, \{F', G^{re}\} \} + \frac{3224N_{c}}{5184} f^{5kg} \{T^{k}, \{G^{re}, G^{re}\} \} \\ &- \frac{7276N_{c} - 184945}{3168N_{f}} d^{5kg} \{G^{kg}, \{F', G^{re}\} \} + \frac{34826N_{c} - 65975}{1584} d^{5ke} \{D^{k}, \{F', G^{rk}\} \} \\ &- \frac{5276N_{c} - 184945}{6316} ie^{tim} \{G^{kg}, \{F', G^{rk}\} \} + \frac{612N_{c}}{6336} d^{5ke} \{J^{k}, \{G^{re}, \{F', G^{rk}\} \} \\ &- \frac{5276N_{c} - 184945}{6346} ie^{km} f^{rue} f^{ke} \{F^{k}, G^{re}\} \} \\ &- \frac{2376N_{c} - 184945}{6346} ie^{km} f^{rue} f^{ke} \{F^{k}, G^{re}\} \} \\ &- \frac{2376N_{c} - 184945}{6336} ie^{rts} \{F^{k}, \{F', G^{rk}\} \} \\ &- \frac{158448N_{c} - 123989}{636} ie^{rts} \{F^{k}, \{G^{re}, \{F', G^{rk}\} \} \} \\ &- \frac{158448N_$$

$$\begin{split} &+ \frac{1612N_c - 1695}{36} \{G^{48}, \{\{J^m, G^{m8}\}, \{J^r, G^{re}\}\}\} - \frac{311}{36} \{J^k, \{\{J^m, G^{mc}\}, \{G^{r8}, G^{r8}\}\}\} \\ &+ \frac{167}{36} \{J^k, \{\{J^m, G^{m8}\}, \{G^{r8}, G^{re}\}\}\} - \frac{806N_c - 931}{36} d^{r8e} \{\mathcal{D}_{3}^{kx}, \{J^r, G^{r8}\}\} - \frac{806N_c - 1003}{36} d^{8x} \{\mathcal{D}_{3}^{kx}, \{J^r, G^{r8}\}\} \\ &- \frac{167}{36} e^{kim} f^{ab8} \{\{J^i, G^{m8}\}, \{T^a, \{G^{rb}, G^{rc}\}\}\} - \frac{91}{144} (N_c + N_f) ie^{kim} d^{r8e} \{J^2, \{T^c, \{I^i, G^{m8}\}\}\} \\ &- \frac{806N_c - 931}{18} ie^{kil} \{J^i, G^{n8}\}, \{\{J^m, G^{m8}\}, \{J^r, G^{re}\}\}\} - \frac{91}{12} if^{c8c} d^{8cg} \mathcal{D}_{6}^{kg} - \frac{226}{99} d^{c8c} \{J^2, \{J^2, \{G^{kc}, T^8\}\}\} \\ &- \frac{91}{36N_f} ie^{kim} \delta^{r8} \{J^2, \{J^2, \{J^i, G^{m8}\}\}\} + \frac{226}{299} d^{r8c} \{J^2, \{D_2^{kx}, \{J^r, G^{r8}\}\}\} + \frac{1}{12} if^{c8c} \{J^2, \{D_2^{kx}, \{J^r, G^{r8}\}\}\} \\ &+ \frac{226}{99} \{J^2, \{\{J^r, G^{re}\}, \{G^{k8}, T^8\}\}\} - \frac{226}{99} \{J^2, \{\{J^r, G^{r8}\}\}\} + \frac{1}{12} if^{c8c} \{J^2, \{D_2^{kx}, \{J^r, G^{r8}\}\}\} \\ &+ \frac{226}{39} \{J^2, \{\{J^r, G^{re}\}, \{G^{k8}, T^8\}\}\} - \frac{226}{99} \{J^2, \{\{J^r, G^{r8}\}\}\} + \frac{1}{12} if^{c8c} \{J^2, \{D_2^{kx}, \{J^r, G^{r8}\}\}\} \\ &+ \frac{226}{36} ie^{kim} \delta^{r2} \{\{G^{rc}, G^{r8}\}, \{J^i, G^{m8}\}\}\} + \frac{1}{6} ie^{kim} \{J^2, \{\{G^{rc}, G^{r8}\}\}\} + \frac{1}{12} if^{c8c} \{J^2, \{T^r, T^8\}, \{J^r, G^{m8}\}\}\} \\ &+ \frac{226}{36} ie^{kim} \{J^2, \{G^{rc}, G^{r8}\}, \{J^i, G^{m8}\}\}\} + \frac{1}{12} if^{c8c} \{J^2, \{J^x, \{G^{rc}, G^{r8}\}, \{J^r, G^{m8}\}\}\} \\ &+ \frac{1}{6} ie^{rim} \{J^2, \{G^{rc}, G^{r8}\}, \{J^r, G^{m8}\}\}\} + \frac{1}{12} if^{c8c} \{J^2, \{J^r, G^{rc}\}\}\} \\ &+ \frac{1}{12} if^{c8c} \{J^2, \{J^r, G^{rc}\}, [J^2, G^{k8}]\}\} + \frac{2257}{396} if^{c8c} \{J^2, \{J^r, G^{r8}\}, [J^2, G^{kc}]\}\} \\ &+ \frac{1}{12} if^{c8c} \{J^2, \{J^2, [G^{k8}, \{T^r, G^{re}\}]\}\} + \frac{225}{296} ie^{kim} \{T^8, \{T^r, G^{r8}\}, \{J^2, G^{kc}\}\}\} + \frac{1}{12} if^{c8c} \{J^2, \{G^{kc}, \{T^r, G^{r8}\}\}\}\} \\ &+ \frac{1}{12} if^{c8c} \{J^2, \{J^2, [G^{k8}, \{T^r, G^{re}\}\}\}\} + \frac{225}{296} ie^{kim} \{T^8, \{T^r, G^{r8}\}, [J^2, G^{kc}]\}\} \\ &+ \frac{1}{12} if^{c8c} \{J^2, \{G^{kc}, \{T^r, G^{r8}\}\}\} + \frac{2}{2} \frac{2}{2} ie^{ki} \{J^2, \{G^{kc}, \{T^r, G^{r8}\}\}\} \\ &+ \frac{1}{12} if^{c8c} \{J^2, \{G^{kc}, \{G^{rc$$

 $[\mathcal{O}_{3}^{i8}, [\mathcal{O}_{3}^{i8}, \mathcal{D}_{3}^{kc}]]$  $=\frac{422N_c-195}{48}f^{c8e}f^{8eg}G^{kg}-\frac{38489N_c-191759}{6336}ie^{kim}f^{c8e}f^{8eg}\{J^i,G^{mg}\}+\frac{422N_c-15}{144}f^{c8e}f^{8eg}\mathcal{D}_3^{kg}+8d^{c8e}d^{8eg}\mathcal{D}_3^{kg}$  $-4d^{ceg}d^{88e}\mathcal{D}_{3}^{kg} - \frac{N_{c}(44352N_{c}+22915)}{25344}if^{c8e}d^{8eg}\mathcal{D}_{3}^{kg} - \frac{N_{c}(44352N_{c}+22915)}{25344}id^{c8e}f^{8eg}\mathcal{D}_{3}^{kg} - \frac{577}{144}f^{c8e}f^{8eg}\mathcal{O}_{3}^{kg} - \frac{577}{144}f^{c8e}f^{8eg}\mathcal{O}_{3}^{kg} - \frac{1}{25344}id^{c8e}f^{8eg}\mathcal{O}_{3}^{kg} - \frac{1}{25}id^{c8e}f^{8eg}\mathcal{O}_{3}^{kg} - \frac{1}{25}id^{c8e}f^{8eg}\mathcal{O}_{3}^$  $+\frac{422N_{c}-195}{72}d^{c8e}d^{8eg}\mathcal{O}_{3}^{kg}-\frac{422N_{c}-195}{72}d^{ceg}d^{88e}\mathcal{O}_{3}^{kg}+\frac{8}{N_{f}}d^{c88}\{J^{2},J^{k}\}+\frac{422N_{c}-195}{36}\{G^{kc},\{G^{r8},G^{r8}\}\}$  $-\frac{422N_c-195}{36}\{G^{k8},\{G^{rc},G^{r8}\}\}-\frac{422N_c+957}{72}d^{c8e}\{J^k,\{G^{re},G^{r8}\}\}+\frac{422N_c+381}{72}d^{88e}\{J^k,\{G^{rc},G^{re}\}\}$  $+\frac{422N_c-195}{36}d^{c8e}\{G^{ke},\{J^r,G^{r8}\}\}-\frac{422N_c-195}{72}d^{c8e}\{G^{k8},\{J^r,G^{re}\}\}+\frac{422N_c-195}{72}d^{88e}\{G^{kc},\{J^r,G^{re}\}\}$  $-\frac{422N_c-195}{36}d^{88e}\{G^{ke},\{J^r,G^{rc}\}\}+\frac{1688N_c-1515N_f+5280}{576}\epsilon^{kim}f^{c8e}\{T^e,\{J^i,G^{m8}\}\}$  $+\frac{44352N_c+22915}{12672}if^{c8e}d^{8eg}\mathcal{D}_4^{kg}+\frac{29}{24}i\epsilon^{kim}f^{c8e}f^{8eg}\{J^2,\{J^i,G^{mg}\}\}$  $-\frac{N_c(2684N_c+5368N_f-44352)-22915}{6336N_f}i\epsilon^{kim}\delta^{c8}\{J^2,\{J^i,G^{m8}\}\}-\frac{38489N_c-191759}{3168}if^{c8e}\{\mathcal{D}_2^{ke},\{J^r,G^{r8}\}\}$  $+\frac{109604N_c-789951}{6336}i\epsilon^{kim}\{\{J^i,G^{m8}\},\{G^{r8},G^{rc}\}\}-\frac{38489N_c-191759}{1584}i\epsilon^{kim}\{\{J^i,G^{mc}\},\{G^{r8},G^{r8}\}\}$  $+\frac{38489N_c-191759}{1584}i\epsilon^{rim}\{G^{k8},\{J^r,\{G^{ic},G^{m8}\}\}\}+\frac{44352N_c+22915}{12672}i\epsilon^{rim}d^{c8e}\{J^k,\{J^r,\{G^{i8},G^{me}\}\}\}$  $+\frac{44352N_{c}+22915}{16896}i\epsilon^{kim}f^{cae}f^{8eb}\{\{J^{i},G^{m8}\},\{T^{a},T^{b}\}\}+\frac{39974N_{c}-48217}{6336}if^{c8e}\{J^{k},[\{J^{i},G^{ie}\},\{J^{r},G^{r8}\}]\}$  $+\frac{39974N_c-48217}{6336}if^{c8e}\{\{J^r,G^{re}\},[J^2,G^{k8}]\}-\frac{39974N_c-48217}{6336}if^{c8e}\{\{J^r,G^{r8}\},[J^2,G^{ke}]\}$  $\frac{39974N_c - 48217}{6336}if^{c8e}\{J^2, [G^{ke}, \{J^r, G^{r8}\}]\} + \frac{39974N_c - 20921}{6336}if^{c8e}\{J^2, [G^{k8}, \{J^r, G^{re}\}]\}$  $\frac{44352N_c + 22915}{12672}d^{c8e}\{J^2, [G^{ke}, \{J^r, G^{r8}\}]\} + \frac{44352N_c + 22915}{12672}d^{c8e}\{J^2, [G^{k8}, \{J^r, G^{re}\}]\}$  $+\frac{198308N_c-744121}{25344}[G^{kc},\{\{J^m,G^{m8}\},\{J^r,G^{r8}\}\}]-\frac{109604N_c-789951}{12672}[G^{k8},\{\{J^m,G^{m8}\},\{J^r,G^{rc}\}\}]$  $+\frac{109604N_{c}-789951}{12672}\{\{J^{m},G^{mc}\},[G^{k8},\{J^{r},G^{r8}\}]\}-\frac{44352N_{c}+22915}{12672}i\epsilon^{kim}f^{cea}f^{e8b}\{\{J^{i},G^{m8}\},\{G^{ra},G^{rb}\}\}$  $+\frac{113}{24}f^{c8e}f^{8eg}\mathcal{D}_{5}^{kg}+11d^{c8e}d^{8eg}\mathcal{D}_{5}^{kg}-6d^{ceg}d^{88e}\mathcal{D}_{5}^{kg}+\frac{61}{288}N_{c}if^{c8e}d^{8eg}\mathcal{D}_{5}^{kg}+\frac{61}{288}N_{c}id^{c8e}f^{8eg}\mathcal{D}_{5}^{kg}+\frac{2}{N_{f}}\delta^{c8}\mathcal{D}_{5}^{kg}$  $-\frac{1}{2}f^{c8e}f^{8eg}\mathcal{O}_{5}^{kg} - \frac{1}{3}d^{c8e}d^{8eg}\mathcal{O}_{5}^{kg} + \frac{11}{18}d^{ceg}d^{88e}\mathcal{O}_{5}^{kg} + \frac{10}{N_{f}}d^{c88}\{J^{2}, \{J^{2}, J^{k}\}\} - \frac{529}{36}\{J^{2}, \{G^{kc}, \{G^{r8}, G^{r8}\}\}\}$  $+\frac{529}{36}\{J^{2},\{G^{k8},\{G^{rc},G^{r8}\}\}\}-\frac{65}{3}d^{c8e}\{J^{2},\{J^{k},\{G^{re},G^{r8}\}\}\}+\frac{23}{3}d^{88e}\{J^{2},\{J^{k},\{G^{rc},G^{re}\}\}\}$ 

$$\begin{split} &+ \frac{844N_{v} + 67}{72} d^{36} \{J^{2}, \{G^{6v}, \{J^{r}, G^{rk}\}\}\} + \frac{1}{3} d^{36} \{J^{2}, \{G^{88}, \{J^{r}, G^{re}\}\}\} - \frac{11}{18} d^{86} \{J^{2}, \{G^{8c}, \{J^{r}, G^{re}\}\}\} \\ &+ \frac{844N_{v} + 133}{72} d^{86} \{J^{2}, \{G^{6v}, \{J^{r}, G^{rk}\}\}\} - \frac{9N_{I} - 32}{24} e^{kim} f^{*6} \{J^{2}, \{T^{e}, \{J^{r}, G^{m8}\}\}\} \\ &- \frac{422N_{v} - 195}{36} \{G^{4v}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{r8}\}\}\} + \frac{422N_{v} - 195}{36} \{G^{48}, \{\{J^{m}, G^{m8}\}, \{J^{r}, G^{r6}\}\}\} \\ &- \frac{11}{72} \{J^{K}, \{\{J^{m}, G^{m8}\}, \{G^{r}, G^{r8}\}\}\} - \frac{73}{72} \{J^{K}, \{\{J^{m}, G^{m8}\}, \{G^{r}, G^{rc}\}\}\} - \frac{844N_{v} - 29}{144} d^{v56} \{D^{4v}_{V}, \{J^{r}, G^{r8}\}\}\} \\ &- \frac{844N_{v} - 173}{144} d^{86} (D^{4v}_{S}, \{J^{r}, G^{rr}\}\} + \frac{50}{72} e^{kim} f^{v56} \{J^{r}, G^{r8}\}, \{T^{r}, G^{r6}, G^{rr}\}\}\} \\ &- \frac{61}{288} (N_{v} + N_{f}) i e^{kim} d^{v56} \{J^{2}, \{T^{v}, \{J^{f}, G^{m8}\}\}\} - \frac{61}{72N_{f}} i e^{kim} \delta^{v56} \{J^{2}, \{J^{2}, \{J^{f}, G^{m8}\}\} + \frac{61}{288} i e^{kim} f^{v56} \{J^{2}, \{D^{4}, \{J^{r}, G^{r8}, \}\} \\ &- \frac{61}{144} i f^{v5e} d^{6v} D^{50}_{S} - \frac{853}{198} d^{s6} \{J^{2}, \{J^{2}, \{D^{5v}_{S}, T^{r}, G^{r8}\}\} + \frac{61}{288} i e^{kim} \{J^{2}, \{T^{r}, G^{r8}\}\} + \frac{853}{198} \{J^{2}, \{\{J^{r}, G^{r8}\}\} + \frac{61}{288} i e^{kim} \{J^{2}, \{T^{r}, G^{r8}\}\} + \frac{853}{198} \{J^{2}, \{J^{r}, G^{r8}, \{J^{r}, G^{r8}\}\}\} \\ &- \frac{853}{198} \{J^{2}, \{\{J^{r}, G^{r8}\}, \{J^{r}, G^{r8}\}\} + \frac{61}{288} i e^{kim} \{J^{2}, \{G^{r4}, G^{r5}, G^{r6}, M^{8}\}\}\} \\ &+ \frac{853}{198} \{J^{2}, \{I^{r}, G^{r8}\}, \{J^{r}, G^{r8}\}\} + \frac{61}{288} i e^{kim} \{J^{2}, \{G^{r4}, \{T^{r}, G^{r8}\}\}\} \\ &- \frac{61}{144} i e^{im} f^{c3e} \{J^{2}, \{J^{2}, \{G^{r6}, G^{r8}\}, \{J^{r}, G^{r8}\}\}\} + \frac{1}{2} i f^{v5e} \{J^{2}, \{I^{r}, G^{r8}\}\}\} \\ &+ \frac{1}{12} i f^{r6e} \{J^{2}, \{I^{r}, G^{r8}\}, \{J^{r}, G^{r8}\}\}\} + \frac{1}{12} i f^{v5e} \{J^{2}, \{G^{r4}, \{T^{r}, G^{r8}\}\}\} \\ &+ \frac{1}{12} i f^{r6e} \{J^{2}, \{I^{r}, G^{r8}\}, \{J^{r}, G^{r8}\}\}\}\} \\ &+ \frac{1}{12} i f^{r6e} \{J^{2}, \{I^{r}, G^{r8}\}, \{J^{r}, G^{r8}\}\}\} + \frac{1}{12} i f^{v5e} \{J^{2}, \{I^{r}, G^{r8}\}\}\} \\ &+ \frac{1}{12} i f^{r6e} \{J^{2}, \{I^{r}, G^{r8}\}, \{J^{r}, G^{r8}\}\}\} + \frac{1}{12}$$

 $[\mathcal{O}_{3}^{i8}, [\mathcal{O}_{3}^{i8}, \mathcal{O}_{3}^{kc}]]$ 

 $=-\frac{17872N_c-34725}{768}f^{c8e}f^{8eg}G^{kg}-\frac{196856N_c-65447}{101376}i\epsilon^{kim}f^{c8e}f^{8eg}\{J^i,G^{mg}\}-\frac{17872N_c-36093}{2304}f^{c8e}f^{8eg}\mathcal{D}_3^{kg}$  $+\frac{N_{c}(323928N_{c}-571207)}{101376}(if^{c8e}d^{8eg}\mathcal{D}_{3}^{kg}+id^{c8e}f^{8eg}\mathcal{D}_{3}^{kg})+\frac{3431}{2304}f^{c8e}f^{8eg}\mathcal{O}_{3}^{kg}-\frac{17872N_{c}-34725}{1152}d^{c8e}d^{8eg}\mathcal{O}_{3}^{kg}$  $+\frac{17872N_c-34725}{1152}d^{ceg}d^{88e}\mathcal{O}_3^{kg}-\frac{17872N_c-34725}{576}\{G^{kc},\{G^{r8},G^{r8}\}\}+\frac{17872N_c-34725}{576}\{G^{k8},\{G^{rc},G^{r8}\}\}$  $+\frac{17872N_c-34725}{1152}d^{c8e}\{J^k,\{G^{re},G^{r8}\}\}-\frac{17872N_c-34725}{1152}d^{88e}\{J^k,\{G^{rc},G^{re}\}\}$  $\frac{17872N_c - 34725}{576}d^{c8e}\{G^{ke}, \{J^r, G^{r8}\}\} + \frac{17872N_c - 34725}{1152}d^{c8e}\{G^{k8}, \{J^r, G^{re}\}\}$  $-\frac{17872N_c - 34725}{1152}d^{88e}\{G^{kc}, \{J^r, G^{re}\}\} + \frac{17872N_c - 34725}{576}d^{88e}\{G^{ke}, \{J^r, G^{rc}\}\}$  $\frac{71488N_c - 2085N_f - 130560}{9216} e^{kim} f^{c8e} \{T^e, \{J^i, G^{m8}\}\} - \frac{323928N_c - 571207}{50688} i f^{c8e} d^{8eg} \mathcal{D}_4^{kg}$  $-\frac{77}{192}i\epsilon^{kim}f^{c8e}f^{8eg}\{J^2,\{J^i,G^{mg}\}\}+\frac{N_c(24904N_c+49808N_f-323928)+571207}{25344N_f}i\epsilon^{kim}\delta^{c8}\{J^2,\{J^i,G^{m8}\}\}$  $\frac{196856N_c - 65447}{50688} if^{c8e} \{ \mathcal{D}_2^{ke}, \{J^r, G^{r8}\} \} + \frac{260392N_c - 318327}{12672} i\epsilon^{kim} \{ \{J^i, G^{m8}\}, \{G^{r8}, G^{rc}\} \}$  $\frac{196856N_c - 65447}{25344}i\epsilon^{kim}\{\{J^i, G^{mc}\}, \{G^{r8}, G^{r8}\}\} + \frac{196856N_c - 65447}{25344}i\epsilon^{rim}\{G^{k8}, \{J^r, \{G^{ic}, G^{m8}\}\}\}$  $\frac{323928N_c - 571207}{50688}i\epsilon^{rim}d^{c8e}\{J^k, \{J^r, \{G^{i8}, G^{me}\}\}\} - \frac{323928N_c - 571207}{67584}i\epsilon^{kim}f^{cae}f^{8eb}\{\{J^i, G^{m8}\}, \{T^a, T^b\}\}$  $\frac{696344N_c - 971293}{50688}if^{c8e}\{J^k, [\{J^i, G^{ie}\}, \{J^r, G^{r8}\}]\} - \frac{696344N_c - 971293}{50688}if^{c8e}\{\{J^r, G^{re}\}, [J^2, G^{k8}]\}$  $\frac{696344N_c-971293}{50688}if^{c8e}\{\{J^r,G^{r8}\},[J^2,G^{ke}]\}+\frac{696344N_c-971293}{50688}if^{c8e}\{J^2,[G^{ke},\{J^r,G^{r8}\}]\}$  $\frac{696344N_c - 912317}{50688}if^{c8e}\{J^2, [G^{k8}, \{J^r, G^{re}\}]\} + \frac{323928N_c - 571207}{50688}d^{c8e}\{J^2, [G^{ke}, \{J^r, G^{r8}\}]\}$  $\frac{323928N_c-571207}{50688}d^{c8e}\{J^2, [G^{k8}, \{J^r, G^{re}\}]\} - \frac{3971N_c-15805}{3168}[G^{kc}, \{\{J^m, G^{m8}\}, \{J^r, G^{r8}\}\}]$  $\frac{260392N_c - 318327}{25344}[G^{k8}, \{\{J^m, G^{m8}\}, \{J^r, G^{rc}\}\}] + \frac{260392N_c - 318327}{25344}\{\{J^m, G^{mc}\}, [G^{k8}, \{J^r, G^{r8}\}]\}$  $+\frac{323928N_c-571207}{50688}i\epsilon^{kim}f^{cea}f^{e8b}\{\{J^i,G^{m8}\},\{G^{ra},G^{rb}\}\}+\frac{19}{48}f^{c8e}f^{8eg}\mathcal{D}_5^{kg}-\frac{283}{576}N_cif^{c8e}d^{8eg}\mathcal{D}_5^{kg}$  $-\frac{283}{576}N_c i d^{c8e} f^{8eg} \mathcal{D}_5^{kg} + \frac{29}{8} f^{c8e} f^{8eg} \mathcal{O}_5^{kg} + \frac{91}{24} d^{c8e} d^{8eg} \mathcal{O}_5^{kg} - \frac{343}{72} d^{ceg} d^{88e} \mathcal{O}_5^{kg} + \frac{12}{N_f} \delta^{c8} \mathcal{O}_5^{kg}$  $+\frac{455}{576}\{J^2,\{G^{kc},\{G^{r8},G^{r8}\}\}\}-\frac{1607}{576}\{J^2,\{G^{k8},\{G^{rc},G^{r8}\}\}\}-\frac{19}{24}d^{c8e}\{J^2,\{J^k,\{G^{re},G^{r8}\}\}\}$  $+\frac{19}{24}d^{88e}\{J^2, \{J^k, \{G^{rc}, G^{re}\}\}\} - \frac{35744N_c - 67123}{1152}d^{c8e}\{J^2, \{G^{ke}, \{J^r, G^{r8}\}\}\} + \frac{53}{24}d^{c8e}\{J^2, \{G^{k8}, \{J^r, G^{re}\}\}\}$  $+\frac{343}{72}d^{88e}\{J^2,\{G^{kc},\{J^r,G^{re}\}\}\}-\frac{35744N_c-63507}{1152}d^{88e}\{J^2,\{G^{ke},\{J^r,G^{rc}\}\}\}$  $+\frac{1}{48}(9N_f+55)\epsilon^{kim}f^{c8e}\{J^2,\{T^e,\{J^i,G^{m8}\}\}\}+\frac{17872N_c-34725}{576}\{G^{kc},\{\{J^m,G^{m8}\},\{J^r,G^{r8}\}\}\}$  $-\frac{17872N_c - 34725}{576} \{G^{k8}, \{\{J^m, G^{m8}\}, \{J^r, G^{rc}\}\}\} + \frac{457}{1152} \{J^k, \{\{J^m, G^{mc}\}, \{G^{r8}, G^{r8}\}\}\}$  $+\frac{695}{1152}\{J^{k},\{\{J^{m},G^{m8}\},\{G^{r8},G^{rc}\}\}\}+\frac{35744N_{c}-68755}{2304}d^{c8e}\{\mathcal{D}_{3}^{ke},\{J^{r},G^{r8}\}\}$ 

$$\begin{split} + \frac{35744N_{e} - 69907}{2304} d^{8bc} \{D_{3}^{kc}, \{J', G^{rc}\}\} - \frac{695}{1152} e^{kim} f^{abk} \{J', G^{mk}\}, \{T^{a}, \{G^{rb}, G^{rc}\}\} \\ + \frac{283}{576} (N_{c} + N_{f}) ic^{kim} d^{cbc} \{J^{2}, \{T^{c}, \{J', G^{mk}\}\}\} + \frac{35744N_{c} - 68755}{1152} ic^{kill} [J^{i}, G^{2k}\}, \{\{J^{m}, G^{mk}\}, \{J', G^{rc}\}\}] \\ + \frac{283}{288} if^{cbc} d^{bc} D_{0}^{bc} + \frac{1843}{1584} d^{cbc} \{J^{2}, \{J^{2}, \{G^{kc}, T^{8}\}\}\} + \frac{283}{144N_{f}} ie^{kim} \delta^{ck} \{J^{2}, \{J^{2}, \{G^{kc}, T^{8}\}\}\} \\ - \frac{1843}{1584} d^{cbc} \{J^{2}, \{D_{2}^{kc}, \{J', G^{rc}\}\}\} - \frac{77}{96} if^{cbc} \{J^{2}, \{D_{2}^{kc}, \{J', G^{rk}\}\} - \frac{1843}{1584} id^{2}, \{\{J', G^{rc}, \{G^{kk}, T^{8}\}\}\} \\ + \frac{1843}{1584} id^{2}, \{\{J', G^{rc}\}, \{G^{kc}, T^{8}\}\}\} - \frac{283}{576} ie^{kim} \{J^{2}, \{\{T^{c}, T^{8}\}, \{J^{i}, G^{m8}\}\}\} - \frac{13}{156} ie^{kim} \{J^{2}, \{\{G^{rc}, G^{r\beta}\}, \{J^{i}, G^{m8}\}\}\} \\ - \frac{77}{48} ie^{kim} \{J^{2}, \{\{G^{rc}, G^{r\beta}\}, \{J^{i}, G^{mc}\}\}\} - \frac{283}{576} ie^{kim} \{J^{2}, \{G^{kc}, G^{m8}\}\} - \frac{13}{156} ie^{kim} \{J^{2}, \{G^{rc}, G^{r\beta}\}, \{J^{i}, G^{m8}\}\}\} \\ - \frac{72}{48} ie^{kim} \{J^{2}, \{\{I', G^{r\beta}\}, \{J^{i}, G^{mc}\}\}\} + \frac{73}{76} ie^{cbc} \{J^{2}, \{J^{i}, G^{mc}\}, \{J^{i}, G^{mc}\}\}\} + \frac{73}{96} ie^{cbc} \{J^{2}, \{J^{i}, G^{mb}\}\} + \frac{73}{96} ie^{cbc} \{J^{2}, \{J^{i}, G^{mb}\}\}\} \\ - \frac{73}{26} if^{cbc} \{J^{2}, \{I', \{J', G^{rk}\}, \{J^{2}, G^{kc}\}\}\} + \frac{73}{96} if^{cbc} \{J^{2}, \{J^{i}, G^{rc}\}, \{J^{2}, G^{kk}, \{J', G^{rc}\}\}\} + \frac{73}{96} if^{cbc} \{J^{2}, \{J^{i}, \{G^{rc}, G^{rk}\}\}\} + \frac{73}{96} if^{cbc} \{J^{2}, \{J^{i}, \{G^{rc}, G^{rk}\}\}\} + \frac{73}{96} if^{cbc} \{J^{2}, \{J^{i}, G^{rc}\}, \{J^{2}, G^{kk}, \{J', G^{rc}\}\}\} + \frac{73}{96} if^{cbc} \{J^{2}, \{J^{i}, [G^{kc}, \{J', G^{rc}\}\}\} + \frac{73}{96} if^{cbc} \{J^{2}, \{J^{i}, G^{rc}\}\} + \frac{73}{96} if^{cbc} \{J^{2}, \{J^{i}, G^{rc}\}\} + \frac{7}{96} if^{cbc} \{J^{2}, \{J^{i}, G^{rc}\}\}\} + \frac{73}{96} if^{cbc} \{J^{2}, \{J^{i}, G^{rc}\}\}\} + \frac{73}{96} if^{cbc} \{J^{i},$$

## APPENDIX D: COMPLETE EXPRESSIONS FROM ORDER $\mathcal{O}(m_q \ln m_q)$ CORRECTIONS 1. Figures 2(a)-2(d)

The complete expressions for contributions from loop 2(a)–2(d) for  $N_f = N_c = 3$  can be organized as

$$\begin{split} \delta\mu_{n}^{(\text{loop 2ad)}} &= \left[ \left( -\frac{7}{48}a_{1}^{2} - \frac{1}{72}a_{1}b_{2} - \frac{5}{216}a_{1}b_{3} - \frac{1}{9}a_{1}c_{3} - \frac{7}{432}b_{2}^{2} - \frac{35}{648}b_{2}b_{3} + \frac{2}{27}b_{2}c_{3} - \frac{175}{388}b_{3}^{2} + \frac{10}{81}b_{3}c_{3} - \frac{13}{108}c_{3}^{2} \right)m_{1} \\ &+ \left( \frac{35}{144}a_{1}^{2} + \frac{5}{216}a_{1}b_{2} + \frac{25}{648}a_{1}b_{3} + \frac{5}{27}a_{1}c_{3} + \frac{1}{432}b_{2}^{2} + \frac{5}{648}b_{2}b_{3} + \frac{25}{3888}b_{3}^{2} + \frac{5}{108}c_{3}^{2} \right)m_{2} \\ &+ \left( -\frac{7}{144}a_{1}^{2} - \frac{35}{648}a_{1}b_{2} - \frac{175}{1944}a_{1}b_{3} + \frac{7}{81}a_{1}c_{3} - \frac{7}{1296}b_{2}^{2} - \frac{35}{1944}b_{2}b_{3} - \frac{175}{11664}b_{3}^{2} + \frac{7}{324}c_{3}^{2} \right)m_{3} \\ &+ \left( \frac{10}{27}a_{1}^{2} + \frac{2}{27}a_{1}b_{2} + \frac{10}{81}a_{1}b_{3} + \frac{5}{27}a_{1}c_{3} + \frac{1}{27}b_{2}c_{3} + \frac{5}{81}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[ \left( -\frac{7}{48}a_{1}^{2} - \frac{1}{24}a_{1}b_{2} - \frac{7}{72}a_{1}b_{3} - \frac{23}{432}b_{2}^{2} - \frac{25}{648}b_{2}b_{3} + \frac{1}{27}b_{2}c_{3} - \frac{95}{3888}b_{3}^{2} + \frac{2}{81}b_{3}c_{3} - \frac{1}{54}c_{3}^{2} \right)m_{1} \\ &+ \left( \frac{13}{144}a_{1}^{2} + \frac{1}{216}a_{1}b_{2} - \frac{1}{648}a_{1}b_{3} + \frac{5}{54}a_{1}c_{3} - \frac{1}{432}b_{2}^{2} + \frac{1}{648}b_{2}b_{3} - \frac{1}{3888}b_{3}^{2} + \frac{5}{216}c_{3}^{2} \right)m_{2} \\ &+ \left( \frac{11}{432}a_{1}^{2} - \frac{25}{648}a_{1}b_{2} - \frac{95}{1944}a_{1}b_{3} + \frac{8}{81}a_{1}c_{3} - \frac{23}{1296}b_{2}^{2} - \frac{25}{1944}b_{2}b_{3} - \frac{95}{11664}b_{3}^{2} + \frac{2}{81}c_{3}^{2} \right)m_{3} \\ &+ \left( \frac{2}{27}a_{1}^{2} + \frac{1}{27}a_{1}b_{2} + \frac{2}{81}a_{1}b_{3} + \frac{1}{27}a_{1}c_{3} + \frac{1}{54}b_{2}c_{3} + \frac{1}{81}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[ \left( -\frac{1}{36}a_{1}^{2} - \frac{1}{18}a_{1}b_{2} - \frac{1}{54}a_{1}b_{3} - \frac{1}{36}b_{2}^{2} - \frac{1}{154}b_{2}b_{3} - \frac{1}{972}b_{3}^{2} \right]m_{3} \right]I_{2}(m_{\eta}, 0, \mu), \end{split} \right]$$

$$\begin{split} \delta\mu_p^{(\text{loop 2ad)}} &= \left[ \left( \frac{13}{48} a_1^2 + \frac{11}{72} a_1 b_2 + \frac{55}{216} a_1 b_3 - \frac{1}{9} a_1 c_3 + \frac{13}{432} b_2^2 + \frac{65}{648} b_2 b_3 - \frac{2}{27} b_2 c_3 + \frac{325}{3888} b_3^2 - \frac{10}{81} b_3 c_3 + \frac{7}{108} c_3^2 \right) m_1 \right. \\ &+ \left( -\frac{17}{144} a_1^2 + \frac{25}{216} a_1 b_2 + \frac{125}{648} a_1 b_3 - \frac{11}{27} a_1 c_3 + \frac{5}{432} b_2^2 + \frac{25}{648} b_2 b_3 + \frac{125}{3888} b_3^2 - \frac{11}{108} c_3^2 \right) m_2 \\ &+ \left( -\frac{281}{432} a_1^2 + \frac{65}{648} a_1 b_2 + \frac{325}{1944} a_1 b_3 - \frac{73}{81} a_1 c_3 + \frac{13}{1296} b_2^2 + \frac{65}{1944} b_2 b_3 + \frac{325}{11664} b_3^2 - \frac{73}{324} c_3^2 \right) m_3 \\ &+ \left( -\frac{10}{27} a_1^2 - \frac{2}{27} a_1 b_2 - \frac{10}{81} a_1 b_3 - \frac{5}{27} a_1 c_3 - \frac{1}{27} b_2 c_3 - \frac{5}{81} b_3 c_3 \right) m_4 \right] I_2(m_\pi, 0, \mu) \\ &+ \left[ \left( \frac{1}{6} a_1^2 + \frac{5}{36} a_1 b_2 + \frac{5}{54} a_1 b_3 + \frac{1}{36} a_1 c_3 + \frac{2}{27} b_2^2 + \frac{11}{324} b_2 b_3 + \frac{13}{54} b_2 c_3 + \frac{29}{972} b_3^2 - \frac{7}{162} b_3 c_3 + \frac{17}{432} c_3^2 \right) m_1 \\ &+ \left( \frac{7}{72} a_1^2 + \frac{1}{27} a_1 b_2 + \frac{23}{324} a_1 b_3 - \frac{1}{108} a_1 c_3 + \frac{5}{216} b_2^2 + \frac{1}{81} b_2 b_3 + \frac{23}{1944} b_3^2 - \frac{1}{432} c_3^2 \right) m_2 \\ &+ \left( \frac{1}{54} a_1^2 + \frac{11}{324} a_1 b_2 + \frac{29}{486} a_1 b_3 - \frac{23}{324} a_1 c_3 + \frac{2}{81} b_2^2 + \frac{11}{972} b_2 b_3 + \frac{29}{2916} b_3^2 - \frac{23}{1296} c_3^2 \right) m_3 \\ &+ \left( -\frac{7}{54} a_1^2 + \frac{1}{12} a_1 b_2 + \frac{3}{48} a_1 b_3 - \frac{7}{108} a_1 c_3 + \frac{2}{108} b_2 b_3 + \frac{1}{216} b_2^2 \right) m_1 \\ &+ \left( \left( \frac{1}{24} a_1^2 + \frac{1}{12} a_1 b_2 + \frac{1}{36} a_1 b_3 + \frac{1}{24} b_2^2 + \frac{1}{36} b_2 b_3 + \frac{1}{216} b_3^2 \right) m_1 \\ &+ \left( \left( \frac{1}{24} a_1^2 + \frac{1}{12} a_1 b_2 + \frac{1}{36} a_1 b_3 + \frac{1}{24} b_2^2 + \frac{1}{36} b_2 b_3 + \frac{1}{216} b_3^2 \right) m_1 \\ &+ \left( \frac{1}{72} a_1^2 + \frac{1}{36} a_1 b_2 + \frac{1}{108} a_1 b_3 + \frac{1}{72} b_2^2 + \frac{1}{108} b_2 b_3 + \frac{1}{648} b_3^2 \right) m_2 \\ &+ \left( \frac{1}{72} a_1^2 + \frac{1}{36} a_1 b_2 + \frac{1}{108} a_1 b_3 + \frac{1}{72} b_2^2 + \frac{1}{108} b_2 b_3 + \frac{1}{648} b_3^2 \right) m_2 \\ &+ \left( \frac{1}{72} a_1^2 + \frac{1}{36} a_1 b_2 + \frac{1}{108} a_1 b_3 + \frac{1}{72} b_2^2 + \frac{1}{108} b_2 b_3 + \frac{1}{648} b_3^2 \right) m_2 \\ &+ \left( \frac{1}{72}$$

$$\begin{split} \delta\mu_{\Sigma^{-}}^{(\text{loop 2ad)}} &= \left[ \left( -\frac{1}{12}a_{1}^{2} - \frac{13}{108}a_{1}b_{2} - \frac{5}{81}a_{1}b_{3} + \frac{1}{108}a_{1}c_{3} - \frac{1}{36}b_{2}^{2} - \frac{1}{36}b_{2}b_{3} - \frac{1}{54}b_{2}c_{3} - \frac{1}{81}b_{3}^{2} + \frac{1}{162}b_{3}c_{3} - \frac{1}{432}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{13}{72}a_{1}^{2} - \frac{7}{54}a_{1}b_{2} - \frac{37}{324}a_{1}b_{3} - \frac{1}{108}a_{1}c_{3} - \frac{7}{216}b_{2}^{2} - \frac{7}{162}b_{2}b_{3} - \frac{37}{1944}b_{3}^{2} - \frac{1}{432}c_{3}^{2} \right)m_{2} \\ &+ \left( \frac{7}{324}a_{1}^{2} - \frac{1}{36}a_{1}b_{2} - \frac{2}{81}a_{1}b_{3} + \frac{19}{324}a_{1}c_{3} - \frac{1}{108}b_{2}^{2} - \frac{7}{162}b_{2}b_{3} - \frac{37}{1944}b_{3}^{2} - \frac{1}{432}c_{3}^{2} \right)m_{3} \\ &+ \left( \frac{1}{54}a_{1}^{2} - \frac{1}{36}a_{1}b_{2} - \frac{2}{81}a_{1}b_{3} + \frac{19}{324}a_{1}c_{3} - \frac{1}{108}b_{2}^{2} - \frac{1}{108}b_{2}b_{3} - \frac{1}{243}b_{3}^{2} + \frac{19}{1296}c_{3}^{2} \right)m_{3} \\ &+ \left( \frac{1}{54}a_{1}^{2} - \frac{1}{34}a_{1}b_{2} + \frac{1}{162}a_{1}b_{3} + \frac{19}{324}a_{1}c_{3} - \frac{1}{108}b_{2}c_{3} + \frac{1}{324}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[ \left( -\frac{11}{144}a_{1}^{2} - \frac{31}{216}a_{1}b_{2} - \frac{89}{648}a_{1}b_{3} + \frac{7}{54}a_{1}c_{3} - \frac{1}{48}b_{2}^{2} - \frac{5}{216}b_{2}b_{3} - \frac{1}{27}b_{2}c_{3} - \frac{35}{1296}b_{3}^{2} + \frac{1}{81}b_{3}c_{3} + \frac{5}{216}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{7}{48}a_{1}^{2} - \frac{17}{216}a_{1}b_{2} - \frac{89}{648}a_{1}b_{3} + \frac{5}{54}a_{1}c_{3} - \frac{7}{432}b_{2}^{2} - \frac{17}{648}b_{2}b_{3} - \frac{103}{3888}b_{3}^{2} + \frac{5}{216}c_{3}^{2} \right)m_{2} \\ &+ \left( \frac{575}{1296}a_{1}^{2} - \frac{5}{216}a_{1}b_{2} - \frac{35}{648}a_{1}b_{3} + \frac{85}{162}a_{1}c_{3} - \frac{1}{144}b_{2}^{2} - \frac{5}{648}b_{2}b_{3} - \frac{35}{3888}b_{3}^{2} + \frac{85}{648}c_{3}^{2} \right)m_{3} \\ &+ \left( \frac{1}{27}a_{1}^{2} - \frac{1}{27}a_{1}b_{2} + \frac{1}{81}a_{1}b_{3} + \frac{1}{54}a_{1}c_{3} - \frac{1}{54}b_{2}c_{3} + \frac{1}{162}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[ \left( -\frac{1}{27}a_{1}b_{3} + \frac{1}{18}a_{1}c_{3} - \frac{1}{162}b_{3}^{2} + \frac{7}{72}c_{3}^{2} \right)m_{1} + \left( -\frac{1}{27}a_{1}b_{3} + \frac{1}{18}a_{1}c_{3} - \frac{1}{162}b_{3}^{2} + \frac{1}{72}c_{3}^{2} \right)m_{2} \\ &+ \left( \frac{5}{27}a_{1}^{2} - \frac{1}{81}a_{1}b_{3} + \frac{1}{54}a_{1}c_{3} - \frac{1}{126}b_{3}$$

$$\begin{split} \delta\mu_{\Sigma^{0}}^{(\text{loop2ad})} &= \left[ \left( \frac{1}{12}a_{1}^{2} + \frac{2}{27}a_{1}b_{2} + \frac{11}{162}a_{1}b_{3} - \frac{1}{54}a_{1}c_{3} + \frac{1}{27}b_{2}^{2} + \frac{4}{81}b_{2}b_{3} - \frac{1}{27}b_{2}c_{3} + \frac{19}{972}b_{3}^{2} - \frac{2}{81}b_{3}c_{3} + \frac{1}{72}c_{3}^{2} \right)m_{1} \\ &+ \left( \frac{25}{324}a_{1}^{2} + \frac{4}{81}a_{1}b_{2} + \frac{19}{486}a_{1}b_{3} + \frac{1}{54}a_{1}c_{3} + \frac{1}{81}b_{2}^{2} + \frac{4}{243}b_{2}b_{3} + \frac{19}{2916}b_{3}^{2} + \frac{1}{216}c_{3}^{2} \right)m_{3} \\ &+ \left( -\frac{2}{27}a_{1}^{2} - \frac{1}{27}a_{1}b_{2} - \frac{2}{81}a_{1}b_{3} - \frac{1}{27}a_{1}c_{3} - \frac{1}{54}b_{2}c_{3} - \frac{1}{81}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{7}{144}a_{1}^{2} - \frac{1}{54}a_{1}b_{2} + \frac{1}{648}a_{1}b_{3} + \frac{5}{108}a_{1}c_{3} + \frac{5}{432}b_{2}^{2} + \frac{1}{162}b_{2}b_{3} - \frac{1}{54}b_{2}c_{3} + \frac{41}{3888}b_{3}^{2} - \frac{5}{162}b_{3}c_{3} + \frac{5}{144}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{1}{6}a_{1}^{2} - \frac{1}{72}a_{1}b_{2} - \frac{1}{54}a_{1}b_{3} - \frac{5}{36}a_{1}c_{3} - \frac{1}{216}b_{2}b_{3} - \frac{1}{324}b_{3}^{2} - \frac{5}{144}c_{3}^{2} \right)m_{2} \\ &+ \left( -\frac{139}{1296}a_{1}^{2} + \frac{1}{162}a_{1}b_{2} + \frac{41}{1944}a_{1}b_{3} - \frac{5}{36}a_{1}c_{3} + \frac{5}{1296}b_{2}^{2} + \frac{1}{486}b_{2}b_{3} + \frac{41}{11664}b_{3}^{2} - \frac{5}{144}c_{3}^{2} \right)m_{3} \\ &+ \left( -\frac{5}{54}a_{1}^{2} - \frac{1}{54}a_{1}b_{2} - \frac{5}{162}a_{1}b_{3} - \frac{5}{108}a_{1}c_{3} - \frac{1}{108}b_{2}c_{3} - \frac{5}{324}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[ \left( \frac{1}{36}a_{1}^{2} + \frac{1}{36}a_{1}c_{3} + \frac{1}{162}b_{3}^{2} - \frac{1}{54}b_{3}c_{3} + \frac{1}{48}c_{3}^{2} \right)m_{1} + \left( \frac{5}{108}a_{1}^{2} + \frac{1}{81}a_{1}b_{3} + \frac{1}{36}a_{1}c_{3} + \frac{1}{148}b_{3}^{2} + \frac{1}{144}c_{3}^{2} \right)m_{3} \\ &+ \left( -\frac{1}{18}a_{1}^{2} - \frac{1}{54}a_{1}b_{3} - \frac{1}{54}b_{3}c_{3} + \frac{1}{48}c_{3}^{2} \right)m_{1} + \left( \frac{5}{108}a_{1}^{2} + \frac{1}{81}a_{1}b_{3} + \frac{1}{36}a_{1}c_{3} + \frac{1}{148}c_{3}^{2} \right)m_{3} \\ &+ \left( -\frac{1}{18}a_{1}^{2} - \frac{1}{54}a_{1}b_{3} - \frac{1}{36}a_{1}c_{3} - \frac{1}{108}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$

$$\begin{split} \delta\mu_{\Sigma^+}^{(\text{loop 2ad)}} &= \left[ \left( \frac{1}{4} a_1^2 + \frac{29}{108} a_1 b_2 + \frac{16}{81} a_1 b_3 - \frac{5}{108} a_1 c_3 + \frac{11}{108} b_2^2 + \frac{41}{324} b_2 b_3 - \frac{1}{18} b_2 c_3 + \frac{25}{486} b_3^2 - \frac{1}{18} b_3 c_3 + \frac{13}{432} c_3^2 \right) m_1 \\ &+ \left( \frac{13}{72} a_1^2 + \frac{7}{54} a_1 b_2 + \frac{37}{324} a_1 b_3 + \frac{1}{108} a_1 c_3 + \frac{7}{216} b_2^2 + \frac{7}{162} b_2 b_3 + \frac{37}{1944} b_3^2 + \frac{1}{432} c_3^2 \right) m_2 \\ &+ \left( \frac{43}{324} a_1^2 + \frac{41}{324} a_1 b_2 + \frac{25}{243} a_1 b_3 - \frac{7}{324} a_1 c_3 + \frac{11}{324} b_2^2 + \frac{41}{972} b_2 b_3 + \frac{25}{1458} b_3^2 - \frac{7}{1296} c_3^2 \right) m_3 \\ &+ \left( -\frac{1}{6} a_1^2 - \frac{1}{18} a_1 b_2 - \frac{1}{18} a_1 b_3 - \frac{1}{12} a_1 c_3 - \frac{1}{36} b_2 c_3 - \frac{1}{36} b_3 c_3 \right) m_4 \right] I_2(m_\pi, 0, \mu) \\ &+ \left[ \left( \frac{25}{144} a_1^2 + \frac{23}{216} a_1 b_2 + \frac{91}{648} a_1 b_3 - \frac{1}{27} a_1 c_3 + \frac{19}{432} b_2^2 + \frac{23}{648} b_2 b_3 + \frac{187}{3888} b_3^2 - \frac{2}{27} b_3 c_3 + \frac{5}{108} c_3^2 \right) m_1 \\ &+ \left( -\frac{3}{16} a_1^2 + \frac{11}{216} a_1 b_2 + \frac{91}{648} a_1 b_3 - \frac{10}{27} a_1 c_3 + \frac{7}{432} b_2^2 + \frac{11}{648} b_2 b_3 + \frac{187}{3888} b_3^2 - \frac{5}{54} c_3^2 \right) m_2 \\ &+ \left( -\frac{853}{1296} a_1^2 + \frac{23}{648} a_1 b_2 - \frac{18}{194} a_1 b_3 - \frac{65}{81} a_1 c_3 + \frac{19}{1296} b_2^2 + \frac{23}{1944} b_2 b_3 + \frac{187}{11664} b_3^2 - \frac{65}{324} c_3^2 \right) m_3 \\ &+ \left( -\frac{2}{9} a_1^2 - \frac{2}{27} a_1 b_3 - \frac{1}{9} a_1 c_3 - \frac{1}{27} b_3 c_3 \right) m_4 \right] I_2(m_K, 0, \mu) \\ &+ \left[ \left( \frac{1}{18} a_1^2 + \frac{1}{27} a_1 b_3 + \frac{1}{54} b_3^2 - \frac{1}{27} b_3 c_3 + \frac{1}{36} c_3^2 \right) m_1 + \left( \frac{1}{27} a_1 b_3 - \frac{1}{18} a_1 c_3 + \frac{1}{162} b_3^2 - \frac{1}{72} c_3^2 \right) m_2 \\ &+ \left( -\frac{5}{54} a_1^2 + \frac{1}{27} a_1 b_3 - \frac{4}{27} a_1 c_3 + \frac{1}{162} b_3^2 - \frac{1}{27} c_3^2 \right) m_3 + \left( -\frac{1}{9} a_1^2 - \frac{1}{27} a_1 b_3 - \frac{1}{18} a_1 c_3 - \frac{1}{54} b_3 c_3 \right) m_4 \right] \\ \times I_2(m_\eta, 0, \mu), \end{split}$$

$$\begin{split} \delta\mu_{\Xi^{-}}^{(\text{loop 2ad)}} &= \left[ \left( \frac{1}{48} a_1^2 - \frac{1}{24} a_1 b_2 + \frac{1}{72} a_1 b_3 - \frac{7}{432} b_2^2 + \frac{7}{648} b_2 b_3 - \frac{1}{27} b_2 c_3 - \frac{7}{388} b_3^2 + \frac{1}{81} b_3 c_3 - \frac{1}{108} c_3^2 \right) m_1 \right. \\ &+ \left( - \frac{7}{144} a_1^2 + \frac{5}{216} a_1 b_2 - \frac{5}{648} a_1 b_3 - \frac{1}{27} a_1 c_3 - \frac{5}{432} b_2^2 + \frac{5}{648} b_2 b_3 - \frac{5}{3888} b_3^2 - \frac{1}{108} c_3^2 \right) m_2 \\ &+ \left( \frac{19}{432} a_1^2 + \frac{7}{648} a_1 b_2 - \frac{7}{1944} a_1 b_3 + \frac{4}{81} a_1 c_3 - \frac{7}{1296} b_2^2 + \frac{7}{1944} b_2 b_3 - \frac{7}{11664} b_3^2 + \frac{1}{81} c_3^2 \right) m_3 \\ &+ \left( \frac{1}{27} a_1^2 - \frac{1}{27} a_1 b_2 + \frac{1}{81} a_1 b_3 + \frac{1}{54} a_1 c_3 - \frac{1}{54} b_2 c_3 + \frac{1}{162} b_3 c_3 \right) m_4 \right] I_2(m_{\pi}, 0, \mu) \\ &+ \left[ \left( -\frac{1}{9} a_1^2 - \frac{5}{36} a_1 b_2 - \frac{1}{6} a_1 b_3 + \frac{5}{36} a_1 c_3 - \frac{1}{54} b_2^2 - \frac{11}{324} b_2 b_3 - \frac{1}{7194} b_2^2 + \frac{1}{162} b_3 c_3 + \frac{13}{432} c_3^2 \right) m_1 \\ &+ \left( -\frac{5}{24} a_1^2 - \frac{4}{27} a_1 b_2 - \frac{71}{324} a_1 b_3 + \frac{13}{108} a_1 c_3 - \frac{5}{216} b_2^2 - \frac{4}{81} b_2 b_3 - \frac{71}{1944} b_3^2 + \frac{13}{432} c_3^2 \right) m_2 \\ &+ \left( \frac{4}{9} a_1^2 - \frac{11}{324} a_1 b_2 - \frac{29}{486} a_1 b_3 + \frac{173}{324} a_1 c_3 - \frac{1}{162} b_2^2 - \frac{11}{972} b_2 b_3 - \frac{29}{2916} b_3^2 + \frac{173}{1296} c_3^2 \right) m_3 \\ &+ \left( \frac{1}{54} a_1^2 - \frac{1}{12} a_1 b_2 - \frac{1}{12} a_1 b_3 + \frac{1}{18} a_1 c_3 - \frac{1}{12} b_2^2 - \frac{1}{36} b_2 b_3 - \frac{1}{72} b_3^2 + \frac{1}{72} c_3^2 \right) m_1 \\ &+ \left( \left( -\frac{5}{72} a_1^2 - \frac{1}{12} a_1 b_2 - \frac{1}{12} a_1 b_3 + \frac{1}{18} a_1 c_3 - \frac{1}{72} b_2^2 - \frac{1}{36} b_2 b_3 - \frac{1}{72} b_3^2 + \frac{1}{72} c_3^2 \right) m_1 \\ &+ \left( -\frac{5}{72} a_1^2 - \frac{1}{12} a_1 b_2 - \frac{1}{12} a_1 b_3 + \frac{1}{18} a_1 c_3 - \frac{1}{72} b_2^2 - \frac{1}{36} b_2 b_3 - \frac{1}{72} b_3^2 + \frac{1}{72} c_3^2 \right) m_2 \\ &+ \left( \frac{35}{216} a_1^2 - \frac{1}{36} a_1 b_2 - \frac{1}{36} a_1 b_3 + \frac{1}{18} a_1 c_3 - \frac{1}{72} b_2^2 - \frac{1}{36} b_2 b_3 - \frac{1}{216} b_3^2 + \frac{1}{1216} c_3^2 \right) m_3 \right] I_2(m_{\pi}, 0, \mu), \quad (D6)$$

$$\begin{split} \delta\mu_{\Xi^{0}}^{(\text{loop2ad})} &= \left[ \left( -\frac{1}{16}a_{1}^{2} + \frac{1}{72}a_{1}b_{2} - \frac{1}{216}a_{1}b_{3} - \frac{1}{18}a_{1}c_{3} - \frac{11}{432}b_{2}^{2} + \frac{11}{648}b_{2}b_{3} - \frac{1}{54}b_{2}c_{3} - \frac{11}{3888}b_{3}^{2} + \frac{1}{162}b_{3}c_{3} - \frac{1}{54}c_{3}^{2} \right)m_{1} \right. \\ &+ \left( \frac{13}{144}a_{1}^{2} + \frac{1}{216}a_{1}b_{2} - \frac{1}{648}a_{1}b_{3} + \frac{5}{54}a_{1}c_{3} - \frac{1}{432}b_{2}^{2} + \frac{1}{648}b_{2}b_{3} - \frac{1}{3888}b_{3}^{2} + \frac{5}{216}c_{3}^{2} \right)m_{2} \\ &+ \left( \frac{13}{144}a_{1}^{2} + \frac{11}{648}a_{1}b_{2} - \frac{11}{1944}a_{1}b_{3} + \frac{8}{81}a_{1}c_{3} - \frac{11}{1296}b_{2}^{2} + \frac{11}{1944}b_{2}b_{3} - \frac{11}{11664}b_{3}^{2} + \frac{2}{81}c_{3}^{2} \right)m_{3} \\ &+ \left( \frac{13}{54}a_{1}^{2} - \frac{1}{54}a_{1}b_{2} + \frac{1}{162}a_{1}b_{3} + \frac{1}{108}a_{1}c_{3} - \frac{11}{108}b_{2}c_{3} + \frac{1}{324}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[ \left( -\frac{25}{144}a_{1}^{2} - \frac{5}{216}a_{1}b_{2} + \frac{25}{648}a_{1}b_{3} - \frac{1}{18}a_{1}c_{3} - \frac{19}{432}b_{2}^{2} - \frac{47}{648}b_{2}b_{3} + \frac{2}{27}b_{2}c_{3} - \frac{163}{3888}b_{3}^{2} + \frac{7}{81}b_{3}c_{3} - \frac{17}{216}c_{3}^{2} \right)m_{1} \\ &+ \left( \frac{35}{144}a_{1}^{2} + \frac{5}{216}a_{1}b_{2} + \frac{25}{648}a_{1}b_{3} + \frac{5}{27}a_{1}c_{3} + \frac{1}{432}b_{2}^{2} + \frac{5}{648}b_{2}b_{3} + \frac{25}{3888}b_{3}^{2} + \frac{5}{108}c_{3}^{2} \right)m_{2} \\ &+ \left( \frac{7}{432}a_{1}^{2} - \frac{47}{648}a_{1}b_{2} - \frac{163}{1944}a_{1}b_{3} + \frac{23}{162}a_{1}c_{3} - \frac{19}{1296}b_{2}^{2} - \frac{47}{1944}b_{2}b_{3} - \frac{163}{11664}b_{3}^{2} + \frac{23}{648}c_{3}^{2} \right)m_{3} \\ &+ \left( \frac{7}{27}a_{1}^{2} + \frac{2}{27}a_{1}b_{2} + \frac{7}{81}a_{1}b_{3} + \frac{7}{54}a_{1}c_{3} + \frac{1}{27}b_{2}c_{3} + \frac{7}{162}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[ \left( -\frac{1}{12}a_{1}^{2} - \frac{1}{18}a_{1}b_{2} - \frac{1}{18}a_{1}b_{3} - \frac{1}{36}b_{2}^{2} - \frac{1}{18}b_{2}b_{3} + \frac{1}{18}b_{2}c_{3} - \frac{1}{36}b_{3}^{2} + \frac{1}{18}b_{3}c_{3} - \frac{1}{24}c_{3}^{2} \right)m_{3} \\ &+ \left( -\frac{5}{36}a_{1}^{2} - \frac{1}{18}a_{1}b_{3} - \frac{1}{18}a_{1}b_{3} - \frac{1}{16}b_{2}b_{2} - \frac{1}{5}b_{2}b_{3} - \frac{1}{36}b_{3}^{2} - \frac{1}{3}b_{3}b_{3} \right)m_{4} \right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$

$$\begin{split} \delta\mu_{\Lambda}^{(\text{loop 2ad})} &= \left[ \left( \frac{1}{18} a_1 b_3 - \frac{1}{12} a_1 c_3 - \frac{1}{108} b_3^2 + \frac{1}{18} b_3 c_3 - \frac{1}{16} c_3^2 \right) m_1 \\ &+ \left( -\frac{1}{9} a_1^2 - \frac{1}{54} a_1 b_3 - \frac{1}{12} a_1 c_3 - \frac{1}{324} b_3^2 - \frac{1}{48} c_3^2 \right) m_3 \right] I_2(m_{\pi}, 0, \mu) \\ &+ \left[ \left( -\frac{5}{48} a_1^2 - \frac{1}{18} a_1 b_2 - \frac{19}{216} a_1 b_3 + \frac{1}{36} a_1 c_3 - \frac{7}{144} b_2^2 - \frac{1}{18} b_2 b_3 + \frac{1}{18} b_2 c_3 - \frac{1}{48} b_3^2 + \frac{1}{54} b_3 c_3 - \frac{1}{144} c_3^2 \right) m_1 \\ &+ \left( \frac{1}{6} a_1^2 + \frac{1}{72} a_1 b_2 + \frac{1}{54} a_1 b_3 + \frac{5}{36} a_1 c_3 + \frac{1}{216} b_2 b_3 + \frac{1}{324} b_3^2 + \frac{5}{144} c_3^2 \right) m_2 \\ &+ \left( \frac{49}{432} a_1^2 - \frac{1}{18} a_1 b_2 - \frac{1}{24} a_1 b_3 + \frac{19}{108} a_1 c_3 - \frac{7}{432} b_2^2 - \frac{1}{54} b_2 b_3 - \frac{1}{144} b_3^2 + \frac{19}{432} c_3^2 \right) m_3 \\ &+ \left( \frac{1}{18} a_1^2 + \frac{1}{18} a_1 b_2 + \frac{1}{54} a_1 b_3 + \frac{1}{36} a_1 c_3 + \frac{1}{36} b_2 c_3 + \frac{1}{108} b_3 c_3 \right) m_4 \right] I_2(m_K, 0, \mu) \\ &+ \left[ \left( -\frac{1}{18} a_1^2 - \frac{1}{27} a_1 b_3 - \frac{1}{162} b_3^2 \right) m_1 + \left( -\frac{1}{54} a_1^2 - \frac{1}{81} a_1 b_3 - \frac{1}{486} b_3^2 \right) m_3 \right] I_2(m_\eta, 0, \mu), \end{split}$$

$$\begin{split} \delta\mu_{\Delta^{++}}^{(\text{loop 2ad)}} &= \left[ \left( \frac{9}{16} a_1^2 + \frac{23}{24} a_1 b_2 + \frac{115}{72} a_1 b_3 + \frac{1}{12} a_1 c_3 + \frac{31}{48} b_2^2 + \frac{155}{72} b_2 b_3 - \frac{1}{6} b_2 c_3 + \frac{775}{432} b_3^2 - \frac{5}{18} b_3 c_3 + \frac{1}{16} c_3^2 \right) m_1 \right. \\ &+ \left( \frac{17}{16} a_1^2 + \frac{31}{24} a_1 b_2 + \frac{155}{72} a_1 b_3 + \frac{5}{12} a_1 c_3 + \frac{31}{48} b_2^2 + \frac{155}{72} b_2 b_3 + \frac{775}{432} b_3^2 + \frac{5}{48} c_3^2 \right) m_2 \\ &+ \left( \frac{263}{144} a_1^2 + \frac{155}{72} a_1 b_2 + \frac{775}{216} a_1 b_3 + \frac{3}{4} a_1 c_3 + \frac{155}{144} b_2^2 + \frac{775}{216} b_2 b_3 + \frac{3875}{1296} b_3^2 + \frac{3}{16} c_3^2 \right) m_3 \\ &+ \left( -\frac{1}{6} a_1^2 - \frac{1}{6} a_1 b_2 - \frac{5}{18} a_1 b_3 - \frac{1}{12} a_1 c_3 - \frac{1}{12} b_2 c_3 - \frac{5}{36} b_3 c_3 \right) m_4 \right] I_2(m_x, 0, \mu) \\ &+ \left[ \left( \frac{5}{16} a_1^2 + \frac{11}{24} a_1 b_2 + \frac{55}{72} a_1 b_3 + \frac{1}{12} a_1 c_3 + \frac{19}{48} b_2^2 + \frac{95}{72} b_2 b_3 - \frac{1}{6} b_2 c_3 + \frac{475}{432} b_3^2 - \frac{5}{18} b_3 c_3 + \frac{1}{16} c_3^2 \right) m_1 \\ &+ \left( \frac{13}{16} a_1^2 + \frac{19}{24} a_1 b_2 + \frac{95}{72} a_1 b_3 + \frac{5}{12} a_1 c_3 + \frac{19}{48} b_2^2 + \frac{95}{72} b_2 b_3 + \frac{475}{432} b_3^2 - \frac{5}{18} b_3 c_3 + \frac{1}{16} c_3^2 \right) m_1 \\ &+ \left( \frac{203}{144} a_1^2 + \frac{95}{72} a_1 b_3 + \frac{475}{12} a_1 c_3 + \frac{19}{48} b_2^2 + \frac{95}{72} b_2 b_3 + \frac{475}{1296} b_3^2 + \frac{3}{16} c_3^2 \right) m_3 \\ &+ \left( -\frac{1}{6} a_1^2 - \frac{1}{6} a_1 b_2 - \frac{5}{18} a_1 b_3 - \frac{1}{12} a_1 c_3 - \frac{1}{12} b_2 c_3 - \frac{5}{36} b_3 c_3 \right) m_4 \right] I_2(m_K, 0, \mu) \\ &+ \left[ \left( \frac{1}{12} a_1^2 + \frac{1}{6} a_1 b_2 - \frac{5}{18} a_1 b_3 - \frac{1}{12} a_1 c_3 - \frac{1}{12} b_2 c_3 - \frac{5}{36} b_3 c_3 \right) m_4 \right] I_2(m_K, 0, \mu) \\ &+ \left[ \left( \frac{1}{12} a_1^2 + \frac{1}{6} a_1 b_2 + \frac{5}{18} a_1 b_3 + \frac{1}{12} b_2^2 + \frac{5}{18} b_2 b_3 + \frac{25}{108} b_3^2 \right) m_2 \\ &+ \left( \frac{5}{36} a_1^2 + \frac{5}{18} a_1 b_2 + \frac{55}{18} a_1 b_3 + \frac{1}{12} b_2^2 + \frac{5}{18} b_2 b_3 + \frac{25}{108} b_3^2 \right) m_2 \\ &+ \left( \frac{5}{36} a_1^2 + \frac{5}{18} a_1 b_2 + \frac{25}{54} a_1 b_3 + \frac{5}{36} b_2^2 + \frac{25}{54} b_2 b_3 + \frac{25}{324} b_3^2 \right) m_3 \right] I_2(m_\eta, 0, \mu), \end{split}$$

$$\begin{split} \delta\mu_{\Delta^+}^{(\text{loop 2ad)}} &= \left[ \left( \frac{5}{16} a_1^2 + \frac{11}{24} a_1 b_2 + \frac{55}{72} a_1 b_3 + \frac{1}{12} a_1 c_3 + \frac{41}{144} b_2^2 + \frac{205}{216} b_2 b_3 - \frac{1}{18} b_2 c_3 + \frac{1025}{1296} b_3^2 - \frac{5}{54} b_3 c_3 + \frac{5}{144} c_3^2 \right) m_1 \right. \\ &+ \left( \frac{23}{48} a_1^2 + \frac{41}{72} a_1 b_2 + \frac{205}{216} a_1 b_3 + \frac{7}{36} a_1 c_3 + \frac{41}{144} b_2^2 + \frac{205}{216} b_2 b_3 + \frac{1025}{1296} b_3^2 + \frac{7}{144} c_3^2 \right) m_2 \\ &+ \left( \frac{41}{48} a_1^2 + \frac{205}{216} a_1 b_2 + \frac{1025}{648} a_1 b_3 + \frac{41}{108} a_1 c_3 + \frac{205}{432} b_2^2 + \frac{1025}{648} b_2 b_3 + \frac{5125}{3888} b_3^2 + \frac{41}{432} c_3^2 \right) m_3 \\ &+ \left( -\frac{1}{18} a_1^2 - \frac{1}{18} a_1 b_2 - \frac{5}{54} a_1 b_3 - \frac{1}{36} a_1 c_3 - \frac{1}{36} b_2 c_3 - \frac{5}{108} b_3 c_3 \right) m_4 \right] I_2(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{1}{8} a_1^2 + \frac{1}{4} a_1 b_2 + \frac{5}{12} a_1 b_3 + \frac{17}{72} b_2^2 + \frac{85}{108} b_2 b_3 - \frac{425}{648} b_3^2 - \frac{5}{27} b_3 c_3 + \frac{1}{36} c_3^2 \right) m_1 \\ &+ \left( \frac{1}{12} a_1^2 + \frac{17}{36} a_1 b_2 + \frac{85}{108} a_1 b_3 + \frac{2}{9} a_1 c_3 + \frac{17}{72} b_2^2 + \frac{85}{108} b_2 b_3 + \frac{425}{216} b_2^2 + \frac{2125}{1944} b_3^2 + \frac{5}{54} c_3^2 \right) m_3 \\ &+ \left( -\frac{5}{92} a_1^2 + \frac{85}{108} a_1 b_2 + \frac{425}{324} a_1 b_3 + \frac{10}{27} a_1 c_3 + \frac{85}{216} b_2^2 + \frac{425}{324} b_2 b_3 + \frac{2125}{1944} b_3^2 + \frac{5}{54} c_3^2 \right) m_3 \\ &+ \left( -\frac{1}{9} a_1^2 - \frac{1}{9} a_1 b_2 - \frac{5}{27} a_1 b_3 - \frac{1}{18} a_1 c_3 - \frac{1}{18} b_2 c_3 - \frac{5}{54} b_3 c_3 \right) m_4 \right] I_2(m_K, 0, \mu) \\ &+ \left[ \left( \frac{1}{24} a_1^2 + \frac{1}{12} a_1 b_2 + \frac{5}{36} a_1 b_3 + \frac{1}{24} b_2^2 + \frac{5}{36} b_2 b_3 + \frac{25}{216} b_3^2 \right) m_2 \\ &+ \left( \frac{1}{24} a_1^2 + \frac{1}{12} a_1 b_2 + \frac{5}{36} a_1 b_3 + \frac{1}{24} b_2^2 + \frac{5}{36} b_2 b_3 + \frac{25}{216} b_3^2 \right) m_2 \\ &+ \left( \frac{1}{24} a_1^2 + \frac{1}{12} a_1 b_2 + \frac{5}{36} a_1 b_3 + \frac{1}{24} b_2^2 + \frac{5}{36} b_2 b_3 + \frac{25}{216} b_3^2 \right) m_3 \right] I_2(m_\eta, 0, \mu),$$

$$\begin{split} \delta\mu_{\Delta^0}^{(\text{loop 2ad})} &= \left[ \left( \frac{1}{16} a_1^2 - \frac{1}{24} a_1 b_2 - \frac{5}{72} a_1 b_3 + \frac{1}{12} a_1 c_3 - \frac{11}{144} b_2^2 - \frac{55}{216} b_2 b_3 + \frac{1}{18} b_2 c_3 - \frac{275}{1296} b_3^2 + \frac{5}{54} b_3 c_3 + \frac{1}{144} c_3^2 \right) m_1 \right. \\ &+ \left( -\frac{5}{48} a_1^2 - \frac{11}{72} a_1 b_2 - \frac{55}{216} a_1 b_3 - \frac{1}{36} a_1 c_3 - \frac{11}{144} b_2^2 - \frac{55}{216} b_2 b_3 - \frac{275}{1296} b_3^2 - \frac{1}{144} c_3^2 \right) m_2 \\ &+ \left( -\frac{17}{144} a_1^2 - \frac{55}{216} a_1 b_2 - \frac{275}{648} a_1 b_3 + \frac{1}{108} a_1 c_3 - \frac{55}{432} b_2^2 - \frac{275}{648} b_2 b_3 - \frac{1375}{3888} b_3^2 + \frac{1}{432} c_3^2 \right) m_3 \\ &+ \left( \frac{1}{18} a_1^2 + \frac{1}{18} a_1 b_2 + \frac{5}{54} a_1 b_3 + \frac{1}{36} a_1 c_3 + \frac{1}{36} b_2 c_3 + \frac{5}{108} b_3 c_3 \right) m_4 \right] I_2(m_\pi, 0, \mu) \\ &+ \left[ \left( -\frac{1}{16} a_1^2 + \frac{1}{24} a_1 b_2 + \frac{5}{72} a_1 b_3 - \frac{1}{12} a_1 c_3 + \frac{11}{144} b_2^2 + \frac{55}{216} b_2 b_3 - \frac{1}{18} b_2 c_3 + \frac{275}{1296} b_3^2 - \frac{5}{54} b_3 c_3 - \frac{1}{144} c_3^2 \right) m_1 \\ &+ \left( \frac{5}{48} a_1^2 + \frac{11}{72} a_1 b_2 + \frac{55}{216} a_1 b_3 + \frac{1}{36} a_1 c_3 + \frac{11}{144} b_2^2 + \frac{55}{216} b_2 b_3 - \frac{1}{18} b_2 c_3 + \frac{275}{1296} b_3^2 - \frac{5}{54} b_3 c_3 - \frac{1}{144} c_3^2 \right) m_2 \\ &+ \left( \frac{17}{144} a_1^2 + \frac{55}{216} a_1 b_2 + \frac{275}{216} a_1 b_3 - \frac{1}{108} a_1 c_3 + \frac{55}{432} b_2^2 + \frac{275}{648} b_2 b_3 + \frac{1375}{1296} b_3^2 - \frac{1}{432} c_3^2 \right) m_2 \\ &+ \left( \frac{17}{144} a_1^2 + \frac{55}{216} a_1 b_2 + \frac{275}{648} a_1 b_3 - \frac{1}{108} a_1 c_3 + \frac{55}{432} b_2^2 + \frac{275}{648} b_2 b_3 + \frac{1375}{3888} b_3^2 - \frac{1}{432} c_3^2 \right) m_3 \\ &+ \left( -\frac{1}{18} a_1^2 - \frac{1}{18} a_1 b_2 - \frac{5}{54} a_1 b_3 - \frac{1}{36} a_1 c_3 - \frac{1}{36} b_2 c_3 - \frac{5}{108} b_3 c_3 \right) m_4 \right] I_2(m_K, 0, \mu),$$

$$\begin{split} \delta\mu_{\Delta}^{(\text{loop 2ad)}} &= \left[ \left( -\frac{3}{16} a_1^2 - \frac{13}{24} a_1 b_2 - \frac{65}{72} a_1 b_3 + \frac{1}{12} a_1 c_3 - \frac{7}{16} b_2^2 - \frac{35}{24} b_2 b_3 + \frac{1}{6} b_2 c_3 - \frac{175}{144} b_3^2 + \frac{5}{18} b_3 c_3 - \frac{1}{48} c_3^2 \right) m_1 \right. \\ &+ \left( -\frac{11}{16} a_1^2 - \frac{7}{8} a_1 b_2 - \frac{35}{24} a_1 b_3 - \frac{1}{4} a_1 c_3 - \frac{7}{16} b_2^2 - \frac{35}{24} b_2 b_3 - \frac{175}{144} b_3^2 - \frac{1}{16} c_3^2 \right) m_2 \\ &+ \left( -\frac{157}{144} a_1^2 - \frac{35}{24} a_1 b_2 - \frac{175}{72} a_1 b_3 - \frac{13}{36} a_1 c_3 - \frac{35}{48} b_2^2 - \frac{175}{72} b_2 b_3 - \frac{875}{432} b_3^2 - \frac{13}{144} c_3^2 \right) m_3 \\ &+ \left( \frac{1}{6} a_1^2 + \frac{1}{6} a_1 b_2 + \frac{5}{18} a_1 b_3 + \frac{1}{12} a_1 c_3 + \frac{1}{12} b_2 c_3 + \frac{5}{36} b_3 c_3 \right) m_4 \right] I_2(m_{\pi}, 0, \mu) \\ &+ \left[ \left( -\frac{1}{4} a_1^2 - \frac{1}{6} a_1 b_2 - \frac{5}{18} a_1 b_3 - \frac{1}{6} a_1 c_3 - \frac{1}{12} b_2^2 - \frac{5}{18} b_2 b_3 - \frac{25}{108} b_3^2 - \frac{1}{24} c_3^2 \right) m_1 \\ &+ \left( -\frac{1}{4} a_1^2 - \frac{1}{6} a_1 b_2 - \frac{5}{18} a_1 b_3 - \frac{1}{6} a_1 c_3 - \frac{1}{12} b_2^2 - \frac{5}{18} b_2 b_3 - \frac{25}{108} b_3^2 - \frac{1}{24} c_3^2 \right) m_1 \\ &+ \left( -\frac{1}{4} a_1^2 - \frac{1}{6} a_1 b_2 - \frac{5}{36} a_1 b_3 - \frac{1}{6} a_1 c_3 - \frac{1}{12} b_2^2 - \frac{5}{36} b_2 b_3 - \frac{25}{126} b_3^2 - \frac{7}{72} c_3^2 \right) m_1 \\ &+ \left( -\frac{19}{36} a_1^2 - \frac{5}{18} a_1 b_3 - \frac{1}{6} a_1 c_3 - \frac{1}{12} b_2^2 - \frac{5}{36} b_2 b_3 - \frac{25}{216} b_3^2 - \frac{7}{72} c_3^2 \right) m_1 \\ &+ \left( \left( -\frac{1}{24} a_1^2 - \frac{1}{12} a_1 b_2 - \frac{5}{36} a_1 b_3 - \frac{1}{24} b_2^2 - \frac{5}{36} b_2 b_3 - \frac{25}{216} b_3^2 \right) m_1 \\ &+ \left( \left( -\frac{1}{24} a_1^2 - \frac{1}{12} a_1 b_2 - \frac{5}{36} a_1 b_3 - \frac{1}{24} b_2^2 - \frac{5}{36} b_2 b_3 - \frac{25}{216} b_3^2 \right) m_1 \\ &+ \left( \left( -\frac{1}{24} a_1^2 - \frac{1}{12} a_1 b_2 - \frac{5}{36} a_1 b_3 - \frac{1}{24} b_2^2 - \frac{5}{36} b_2 b_3 - \frac{25}{216} b_3^2 \right) m_2 \\ &+ \left( \left( -\frac{5}{72} a_1^2 - \frac{5}{36} a_1 b_2 - \frac{25}{108} a_1 b_3 - \frac{5}{72} b_2^2 - \frac{25}{108} b_2 b_3 - \frac{25}{216} b_3^2 \right) m_2 \\ &+ \left( \left( -\frac{5}{72} a_1^2 - \frac{5}{36} a_1 b_2 - \frac{25}{108} a_1 b_3 - \frac{5}{72} b_2^2 - \frac{25}{108} b_2 b_3 - \frac{25}{216} b_3^2 \right) m_2 \\ &+ \left( \left( -\frac{5}{72} a_1^2 - \frac{5}{36} a_1 b_2 - \frac{25}{108} a_1 b_3 - \frac{5}{72}$$
$$\begin{split} \delta\mu_{\Sigma^{+}}^{(\text{loop 2ad})} &= \left[ \left( \frac{3}{8} a_1^2 + \frac{19}{36} a_1 b_2 + \frac{95}{108} a_1 b_3 + \frac{1}{9} a_1 c_3 + \frac{19}{72} b_2^2 + \frac{95}{108} b_2 b_3 + \frac{475}{648} b_3^2 + \frac{1}{36} c_3^2 \right) m_1 \\ &+ \left( \frac{11}{24} a_1^2 + \frac{19}{36} a_1 b_2 + \frac{95}{108} a_1 b_3 + \frac{7}{36} a_1 c_3 + \frac{19}{72} b_2^2 + \frac{95}{108} b_2 b_3 + \frac{475}{648} b_3^2 + \frac{7}{144} c_3^2 \right) m_2 \\ &+ \left( \frac{163}{216} a_1^2 + \frac{95}{108} a_1 b_2 + \frac{475}{324} a_1 b_3 + \frac{17}{54} a_1 c_3 + \frac{95}{216} b_2^2 + \frac{475}{324} b_2 b_3 + \frac{2375}{1944} b_3^2 + \frac{17}{216} c_3^2 \right) m_3 \right] I_2(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{5}{48} a_1^2 + \frac{19}{72} a_1 b_2 + \frac{95}{216} a_1 b_3 - \frac{1}{36} a_1 c_3 + \frac{43}{144} b_2^2 + \frac{215}{216} b_2 b_3 - \frac{1}{6} b_2 c_3 + \frac{1075}{1296} b_3^2 - \frac{5}{18} b_3 c_3 + \frac{5}{144} c_3^2 \right) m_1 \\ &+ \left( \frac{7}{16} a_1^2 + \frac{43}{72} a_1 b_2 + \frac{215}{216} a_1 b_3 + \frac{5}{36} a_1 c_3 + \frac{43}{144} b_2^2 + \frac{215}{216} b_2 b_3 + \frac{1075}{1296} b_3^2 + \frac{5}{144} c_3^2 \right) m_2 \\ &+ \left( \frac{331}{432} a_1^2 + \frac{215}{216} a_1 b_2 + \frac{1075}{648} a_1 b_3 + \frac{29}{108} a_1 c_3 + \frac{215}{432} b_2^2 + \frac{1075}{648} b_2 b_3 + \frac{5375}{3888} b_3^2 + \frac{29}{432} c_3^2 \right) m_3 \\ &+ \left( -\frac{1}{6} a_1^2 - \frac{1}{6} a_1 b_2 - \frac{5}{18} a_1 b_3 - \frac{1}{12} a_1 c_3 - \frac{1}{12} b_2 c_3 - \frac{5}{36} b_3 c_3 \right) m_4 \right] I_2(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{1}{12} a_1^2 + \frac{1}{12} a_1 c_3 + \frac{1}{48} c_3^2 \right) m_2 + \left( \frac{1}{6} a_1^2 + \frac{1}{6} a_1 c_3 + \frac{1}{24} c_3^2 \right) m_3 \right] I_2(m_{\pi}, 0, \mu), \end{split} \right]$$

$$\begin{split} \delta\mu_{\Sigma^{e0}}^{(\text{loop 2ad})} &= \left[ \left( \frac{1}{8} a_1^2 + \frac{1}{9} a_1 b_2 + \frac{5}{27} a_1 b_3 + \frac{5}{72} a_1 c_3 + \frac{1}{18} b_2 c_3 + \frac{5}{54} b_3 c_3 + \frac{1}{288} c_3^2 \right) m_1 \\ &+ \left( \frac{1}{216} a_1^2 + \frac{1}{216} a_1 c_3 + \frac{1}{864} c_3^2 \right) m_3 \\ &+ \left( \frac{1}{18} a_1^2 + \frac{1}{18} a_1 b_2 + \frac{5}{54} a_1 b_3 + \frac{1}{36} a_1 c_3 + \frac{1}{36} b_2 c_3 + \frac{5}{108} b_3 c_3 \right) m_4 \right] I_2(m_{\pi}, 0, \mu) \\ &+ \left[ \left( -\frac{1}{12} a_1^2 - \frac{1}{9} a_1 b_2 - \frac{5}{27} a_1 b_3 - \frac{1}{36} a_1 c_3 - \frac{1}{18} b_2 c_3 - \frac{5}{54} b_3 c_3 + \frac{1}{144} c_3^2 \right) m_1 \\ &+ \left( \frac{1}{108} a_1^2 + \frac{1}{108} a_1 c_3 + \frac{1}{432} c_3^2 \right) m_3 \\ &+ \left( -\frac{1}{18} a_1^2 - \frac{1}{18} a_1 b_2 - \frac{5}{54} a_1 b_3 - \frac{1}{36} a_1 c_3 - \frac{1}{36} b_2 c_3 - \frac{5}{108} b_3 c_3 \right) m_4 \right] I_2(m_K, 0, \mu) \\ &+ \left[ \left( -\frac{1}{24} a_1^2 - \frac{1}{24} a_1 c_3 - \frac{1}{96} c_3^2 \right) m_1 + \left( -\frac{1}{72} a_1^2 - \frac{1}{72} a_1 c_3 - \frac{1}{288} c_3^2 \right) m_3 \right] I_2(m_{\eta}, 0, \mu), \end{split}$$
(D14)

$$\begin{split} \delta\mu_{\Sigma^{+}}^{(\text{loop 2ad})} &= \left[ \left( -\frac{1}{8}a_1^2 - \frac{11}{36}a_1b_2 - \frac{55}{108}a_1b_3 + \frac{1}{36}a_1c_3 - \frac{19}{72}b_2^2 - \frac{95}{108}b_2b_3 + \frac{1}{9}b_2c_3 - \frac{475}{648}b_3^2 + \frac{5}{27}b_3c_3 - \frac{1}{48}c_3^2 \right)m_1 \\ &+ \left( -\frac{11}{24}a_1^2 - \frac{19}{36}a_1b_2 - \frac{95}{108}a_1b_3 - \frac{7}{36}a_1c_3 - \frac{19}{72}b_2^2 - \frac{95}{108}b_2b_3 - \frac{475}{648}b_3^2 - \frac{7}{144}c_3^2 \right)m_2 \\ &+ \left( -\frac{161}{216}a_1^2 - \frac{95}{108}a_1b_2 - \frac{475}{324}a_1b_3 - \frac{11}{36}a_1c_3 - \frac{95}{216}b_2^2 - \frac{475}{324}b_2b_3 - \frac{2375}{1944}b_3^2 - \frac{11}{144}c_3^2 \right)m_3 \\ &+ \left( \frac{1}{9}a_1^2 + \frac{1}{9}a_1b_2 + \frac{5}{27}a_1b_3 + \frac{1}{18}a_1c_3 + \frac{1}{18}b_2c_3 + \frac{5}{54}b_3c_3 \right)m_4 \right]I_2(m_{\pi}, 0, \mu) \\ &+ \left[ \left( -\frac{13}{48}a_1^2 - \frac{35}{72}a_1b_2 - \frac{175}{216}a_1b_3 - \frac{1}{36}a_1c_3 - \frac{43}{144}b_2^2 - \frac{215}{216}b_2b_3 + \frac{1}{18}b_2c_3 - \frac{1075}{1296}b_3^2 + \frac{5}{54}b_3c_3 - \frac{1}{48}c_3^2 \right)m_1 \\ &+ \left( -\frac{7}{16}a_1^2 - \frac{43}{72}a_1b_2 - \frac{215}{216}a_1b_3 - \frac{5}{36}a_1c_3 - \frac{43}{144}b_2^2 - \frac{215}{216}b_2b_3 - \frac{1075}{1296}b_3^2 - \frac{5}{144}c_3^2 \right)m_2 \\ &+ \left( -\frac{323}{432}a_1^2 - \frac{215}{216}a_1b_2 - \frac{1075}{648}a_1b_3 - \frac{1}{4}a_1c_3 - \frac{215}{432}b_2^2 - \frac{1075}{108}b_2b_3 - \frac{5375}{3888}b_3^2 - \frac{1}{16}c_3^2 \right)m_3 \\ &+ \left( \frac{1}{18}a_1^2 + \frac{1}{18}a_1b_2 + \frac{5}{54}a_1b_3 + \frac{1}{36}a_1c_3 - \frac{41}{36}b_2c_3 + \frac{5}{108}b_3c_3 \right)m_4 \right]I_2(m_K, 0, \mu) \\ &+ \left[ \left( -\frac{1}{12}a_1^2 - \frac{1}{12}a_1c_3 - \frac{1}{48}c_3^2 \right)m_1 + \left( -\frac{1}{12}a_1^2 - \frac{1}{12}a_1c_3 - \frac{1}{48}c_3^2 \right)m_2 \\ &+ \left( -\frac{7}{36}a_1^2 - \frac{7}{36}a_1c_3 - \frac{7}{144}c_3^2 \right)m_1 + \left( -\frac{1}{12}a_1^2 - \frac{1}{12}a_1c_3 - \frac{1}{48}c_3^2 \right)m_2 \\ &+ \left( -\frac{7}{36}a_1^2 - \frac{7}{36}a_1c_3 - \frac{7}{144}c_3^2 \right)m_1 + \left( -\frac{1}{12}a_1^2 - \frac{1}{12}a_1c_3 - \frac{1}{48}c_3^2 \right)m_2 \\ &+ \left( -\frac{7}{36}a_1^2 - \frac{7}{36}a_1c_3 - \frac{7}{144}c_3^2 \right)m_3 \right]I_2(m_\eta, 0, \mu), \end{split}$$

$$\begin{split} \delta\mu_{\Xi^{*0}}^{(\text{loop 2ad)}} &= \left[ \left( \frac{3}{16} a_1^2 + \frac{5}{24} a_1 b_2 + \frac{25}{72} a_1 b_3 + \frac{1}{12} a_1 c_3 + \frac{11}{144} b_2^2 + \frac{55}{216} b_2 b_3 + \frac{1}{36} b_2 c_3 + \frac{275}{1296} b_3^2 + \frac{5}{108} b_3 c_3 + \frac{1}{72} c_3^2 \right) m_1 \right. \\ &+ \left( \frac{5}{48} a_1^2 + \frac{11}{72} a_1 b_2 + \frac{55}{216} a_1 b_3 + \frac{1}{36} a_1 c_3 + \frac{11}{144} b_2^2 + \frac{55}{216} b_2 b_3 + \frac{275}{1296} b_3^2 + \frac{1}{144} c_3^2 \right) m_2 \\ &+ \left( \frac{7}{48} a_1^2 + \frac{55}{216} a_1 b_2 + \frac{275}{648} a_1 b_3 + \frac{1}{54} a_1 c_3 + \frac{55}{432} b_2^2 + \frac{275}{648} b_2 b_3 + \frac{1375}{3888} b_3^2 + \frac{1}{216} c_3^2 \right) m_3 \\ &+ \left( \frac{1}{36} a_1^2 + \frac{1}{36} a_1 b_2 + \frac{5}{108} a_1 b_3 + \frac{1}{72} a_1 c_3 + \frac{1}{72} b_2 c_3 + \frac{5}{216} b_2 b_3 + \frac{1}{18} b_2 c_3 - \frac{275}{1296} b_3^2 + \frac{5}{54} b_3 c_3 - \frac{5}{144} c_3^2 \right) m_1 \\ &+ \left[ \left( -\frac{5}{48} a_1^2 - \frac{1}{24} a_1 b_2 - \frac{5}{72} a_1 b_3 - \frac{1}{12} a_1 c_3 - \frac{11}{144} b_2^2 - \frac{55}{216} b_2 b_3 + \frac{1}{18} b_2 c_3 - \frac{275}{1296} b_3^2 + \frac{5}{54} b_3 c_3 - \frac{5}{144} c_3^2 \right) m_1 \\ &+ \left( -\frac{5}{48} a_1^2 - \frac{1}{72} a_1 b_2 - \frac{55}{216} a_1 b_3 - \frac{1}{36} a_1 c_3 - \frac{11}{144} b_2^2 - \frac{55}{216} b_2 b_3 - \frac{275}{1296} b_3^2 - \frac{1}{144} c_3^2 \right) m_2 \\ &+ \left( -\frac{25}{144} a_1^2 - \frac{55}{216} a_1 b_2 - \frac{275}{648} a_1 b_3 - \frac{5}{108} a_1 c_3 - \frac{5}{432} b_2^2 - \frac{275}{648} b_2 b_3 - \frac{1375}{3888} b_3^2 - \frac{5}{432} c_3^2 \right) m_3 \\ &+ \left( \frac{1}{18} a_1^2 + \frac{1}{18} a_1 b_2 - \frac{5}{54} a_1 b_3 - \frac{1}{36} a_1 c_3 - \frac{1}{36} b_2 c_3 + \frac{5}{108} b_3 c_3 \right) m_4 \right] I_2(m_K, 0, \mu) \\ &+ \left[ \left( -\frac{1}{12} a_1^2 - \frac{1}{6} a_1 b_2 - \frac{5}{18} a_1 b_3 - \frac{1}{12} b_2 c_3 - \frac{5}{36} b_3 c_3 + \frac{1}{48} c_3^2 \right) m_1 + \left( \frac{1}{36} a_1^2 + \frac{1}{36} a_1 c_3 + \frac{1}{144} c_3^2 \right) m_3 \\ &+ \left( -\frac{1}{12} a_1^2 - \frac{1}{6} a_1 b_2 - \frac{5}{18} a_1 b_3 - \frac{1}{12} b_2 c_3 - \frac{5}{36} b_3 c_3 + \frac{1}{48} c_3^2 \right) m_1 + \left( \frac{1}{36} a_1^2 + \frac{1}{36} a_1 c_3 + \frac{1}{144} c_3^2 \right) m_3 \\ &+ \left( -\frac{1}{12} a_1^2 - \frac{1}{12} a_1 b_2 - \frac{5}{36} a_1 b_3 - \frac{1}{12} b_2 c_3 - \frac{5}{36} b_3 c_3 + \frac{1}{48} c_3^2 \right) m_1 + \left( \frac{1}{36} a_1^2 + \frac{1}{36} a_1 c_3 + \frac{1}{144} c_3^2 \right) m$$

$$\begin{split} \delta\mu_{\Xi^{**}}^{(\text{loop 2ad)}} &= \left[ \left( -\frac{1}{16} a_1^2 - \frac{1}{8} a_1 b_2 - \frac{5}{24} a_1 b_3 - \frac{17}{144} b_2^2 - \frac{85}{216} b_2 b_3 + \frac{1}{18} b_2 c_3 - \frac{425}{1296} b_3^2 + \frac{5}{54} b_3 c_3 - \frac{1}{72} c_3^2 \right) m_1 \right. \\ &+ \left( -\frac{11}{48} a_1^2 - \frac{17}{72} a_1 b_2 - \frac{85}{216} a_1 b_3 - \frac{1}{9} a_1 c_3 - \frac{17}{144} b_2^2 - \frac{85}{216} b_2 b_3 - \frac{425}{1296} b_3^2 - \frac{1}{36} c_3^2 \right) m_2 \\ &+ \left( -\frac{55}{144} a_1^2 - \frac{85}{216} a_1 b_2 - \frac{425}{648} a_1 b_3 - \frac{5}{27} a_1 c_3 - \frac{85}{432} b_2^2 - \frac{425}{648} b_2 b_3 - \frac{2125}{3888} b_3^2 - \frac{5}{108} c_3^2 \right) m_3 \\ &+ \left( \frac{1}{18} a_1^2 + \frac{1}{18} a_1 b_2 + \frac{5}{54} a_1 b_3 + \frac{1}{36} a_1 c_3 + \frac{1}{36} b_2 c_3 + \frac{5}{108} b_3 c_3 \right) m_4 \right] I_2(m_x, 0, \mu) \\ &+ \left[ \left( -\frac{7}{24} a_1^2 - \frac{7}{12} a_1 b_2 - \frac{35}{36} a_1 b_3 - \frac{29}{72} b_2^2 - \frac{145}{108} b_2 b_3 + \frac{1}{9} b_2 c_3 - \frac{725}{648} b_3^2 - \frac{1}{36} c_3^2 \right) m_2 \\ &+ \left( -\frac{5}{8} a_1^2 - \frac{29}{36} a_1 b_2 - \frac{145}{108} a_1 b_3 - \frac{2}{9} a_1 c_3 - \frac{29}{72} b_2^2 - \frac{145}{108} b_2 b_3 - \frac{725}{648} b_3^2 - \frac{1}{18} c_3^2 \right) m_2 \\ &+ \left( -\frac{25}{24} a_1^2 - \frac{145}{108} a_1 b_2 - \frac{725}{324} a_1 b_3 - \frac{10}{27} a_1 c_3 - \frac{145}{216} b_2^2 - \frac{725}{324} b_2 b_3 - \frac{3625}{1044} b_3^2 - \frac{5}{54} c_3^2 \right) m_3 \\ &+ \left( \frac{1}{9} a_1^2 + \frac{1}{9} a_1 b_2 + \frac{5}{27} a_1 b_3 + \frac{1}{18} a_1 c_3 - \frac{1}{12} a_1 c_3 - \frac{1}{24} b_2^2 - \frac{5}{36} b_2 b_3 - \frac{25}{216} b_3^2 - \frac{1}{48} c_3^2 \right) m_1 \\ &+ \left( -\frac{1}{8} a_1^2 - \frac{1}{12} a_1 b_2 - \frac{5}{36} a_1 b_3 - \frac{1}{12} a_1 c_3 - \frac{1}{24} b_2^2 - \frac{5}{36} b_2 b_3 - \frac{25}{216} b_3^2 - \frac{1}{48} c_3^2 \right) m_1 \\ &+ \left( -\frac{1}{8} a_1^2 - \frac{1}{12} a_1 b_2 - \frac{5}{36} a_1 b_3 - \frac{1}{12} a_1 c_3 - \frac{1}{24} b_2^2 - \frac{5}{36} b_2 b_3 - \frac{25}{216} b_3^2 - \frac{1}{48} c_3^2 \right) m_1 \\ &+ \left( -\frac{1}{8} a_1^2 - \frac{1}{12} a_1 b_2 - \frac{5}{36} a_1 b_3 - \frac{1}{12} a_1 c_3 - \frac{1}{24} b_2^2 - \frac{5}{36} b_2 b_3 - \frac{25}{216} b_3^2 - \frac{1}{48} c_3^2 \right) m_1 \\ &+ \left( -\frac{1}{8} a_1^2 - \frac{1}{12} a_1 b_2 - \frac{5}{36} a_1 b_3 - \frac{1}{12} a_1 c_3 - \frac{1}{24} b_2^2 - \frac{5}{36} b_2 b_3 - \frac{25}{216} b_3^2 - \frac{1}{48} c_3^2 \right) m_2 \\ &+ \left( -\frac{1}$$

$$\begin{split} \delta\mu_{\Omega^{-}}^{(\text{loop 2ad})} &= \left[ \left( -\frac{5}{16}a_{1}^{2} - \frac{11}{24}a_{1}b_{2} - \frac{55}{72}a_{1}b_{3} - \frac{1}{12}a_{1}c_{3} - \frac{19}{48}b_{2}^{2} - \frac{95}{72}b_{2}b_{3} + \frac{1}{6}b_{2}c_{3} - \frac{475}{432}b_{3}^{2} + \frac{5}{18}b_{3}c_{3} - \frac{1}{16}c_{3}^{2} \right)m_{1} \right. \\ &+ \left( -\frac{13}{16}a_{1}^{2} - \frac{19}{24}a_{1}b_{2} - \frac{95}{72}a_{1}b_{3} - \frac{5}{12}a_{1}c_{3} - \frac{19}{48}b_{2}^{2} - \frac{95}{72}b_{2}b_{3} - \frac{475}{432}b_{3}^{2} - \frac{5}{48}c_{3}^{2} \right)m_{2} \\ &+ \left( -\frac{203}{144}a_{1}^{2} - \frac{95}{72}a_{1}b_{2} - \frac{475}{216}a_{1}b_{3} - \frac{3}{4}a_{1}c_{3} - \frac{95}{144}b_{2}^{2} - \frac{475}{216}b_{2}b_{3} - \frac{2375}{1296}b_{3}^{2} - \frac{3}{16}c_{3}^{2} \right)m_{3} \\ &+ \left( \frac{1}{6}a_{1}^{2} + \frac{1}{6}a_{1}b_{2} + \frac{5}{18}a_{1}b_{3} + \frac{1}{12}a_{1}c_{3} + \frac{1}{12}b_{2}c_{3} + \frac{5}{36}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[ \left( -\frac{1}{6}a_{1}^{2} - \frac{1}{3}a_{1}b_{2} - \frac{5}{9}a_{1}b_{3} - \frac{1}{6}b_{2}^{2} - \frac{5}{9}b_{2}b_{3} - \frac{25}{54}b_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{1}{6}a_{1}^{2} - \frac{1}{3}a_{1}b_{2} - \frac{5}{9}a_{1}b_{3} - \frac{1}{6}b_{2}^{2} - \frac{5}{9}b_{2}b_{3} - \frac{25}{54}b_{3}^{2} \right)m_{2} \\ &+ \left( -\frac{5}{18}a_{1}^{2} - \frac{5}{9}a_{1}b_{2} - \frac{25}{27}a_{1}b_{3} - \frac{5}{18}b_{2}^{2} - \frac{25}{27}b_{2}b_{3} - \frac{125}{162}b_{3}^{2} \right]I_{2}(m_{\eta}, 0, \mu), \tag{D18}$$

$$\begin{split} \sqrt{3}\delta\mu_{\Sigma^{0}\Lambda}^{(\text{loop 2ad)}} &= \left[ \left( \frac{1}{4}a_{1}^{2} + \frac{5}{36}a_{1}b_{3} + \frac{1}{24}a_{1}c_{3} + \frac{1}{24}b_{2}^{2} + \frac{1}{27}b_{2}b_{3} - \frac{1}{18}b_{2}c_{3} + \frac{25}{648}b_{3}^{2} - \frac{5}{108}b_{3}c_{3} + \frac{13}{288}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{1}{3}a_{1}^{2} - \frac{1}{36}a_{1}b_{2} - \frac{1}{27}a_{1}b_{3} - \frac{5}{18}a_{1}c_{3} - \frac{1}{108}b_{2}b_{3} - \frac{1}{162}b_{3}^{2} - \frac{5}{72}c_{3}^{2} \right)m_{2} \\ &+ \left( -\frac{7}{36}a_{1}^{2} + \frac{1}{27}a_{1}b_{2} + \frac{25}{324}a_{1}b_{3} - \frac{67}{216}a_{1}c_{3} + \frac{1}{72}b_{2}^{2} + \frac{1}{81}b_{2}b_{3} + \frac{25}{1944}b_{3}^{2} - \frac{67}{864}c_{3}^{2} \right)m_{3} \\ &+ \left( -\frac{5}{36}a_{1}^{2} - \frac{1}{18}a_{1}b_{2} - \frac{5}{7108}a_{1}b_{3} - \frac{5}{72}a_{1}c_{3} - \frac{1}{36}b_{2}c_{3} - \frac{5}{216}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{3}{16}a_{1}^{2} + \frac{1}{6}a_{1}b_{2} + \frac{5}{72}a_{1}b_{3} + \frac{1}{12}a_{1}c_{3} + \frac{5}{48}b_{2}^{2} + \frac{7}{54}b_{2}b_{3} - \frac{1}{9}b_{2}c_{3} + \frac{79}{1296}b_{3}^{2} - \frac{4}{27}b_{3}c_{3} + \frac{19}{144}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{1}{6}a_{1}^{2} - \frac{1}{72}a_{1}b_{2} - \frac{1}{54}a_{1}b_{3} - \frac{5}{36}a_{1}c_{3} - \frac{1}{216}b_{2}b_{3} - \frac{1}{324}b_{3}^{2} - \frac{5}{144}c_{3}^{2} \right)m_{2} \\ &+ \left( \frac{25}{144}a_{1}^{2} + \frac{7}{54}a_{1}b_{2} + \frac{79}{648}a_{1}b_{3} - \frac{1}{108}a_{1}c_{3} + \frac{5}{144}b_{2}^{2} + \frac{7}{162}b_{2}b_{3} + \frac{79}{3888}b_{3}^{2} - \frac{1}{432}c_{3}^{2} \right)m_{3} \\ &+ \left( -\frac{4}{9}a_{1}^{2} - \frac{1}{9}a_{1}b_{2} - \frac{4}{27}a_{1}b_{3} - \frac{2}{9}a_{1}c_{3} - \frac{1}{18}b_{2}c_{3} - \frac{2}{27}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[ \left( \frac{1}{24}a_{1}^{2} + \frac{1}{24}a_{1}c_{3} + \frac{1}{108}b_{3}^{2} - \frac{1}{36}b_{3}c_{3} + \frac{1}{32}c_{3}^{2} \right)m_{1} + \left( \frac{5}{72}a_{1}^{2} + \frac{1}{54}a_{1}b_{3} + \frac{1}{24}a_{1}c_{3} + \frac{1}{324}b_{3}^{2} + \frac{1}{96}c_{3}^{2} \right)m_{3} \\ &+ \left( -\frac{1}{12}a_{1}^{2} - \frac{1}{36}a_{1}b_{3} - \frac{1}{24}a_{1}c_{3} - \frac{1}{72}b_{3}c_{3} \right)m_{4} \right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$

$$\begin{split} \sqrt{2}\delta\mu_{\Delta^+p}^{(loop\,2ad)} &= \left[ \left( \frac{1}{3}a_1^2 + \frac{1}{3}a_1c_3 + \frac{23}{54}b_2^2 + \frac{115}{81}b_2b_3 - \frac{5}{18}b_2c_3 + \frac{575}{486}b_3^2 - \frac{25}{54}b_3c_3 + \frac{43}{216}c_3^2 \right) m_1 \\ &+ \left( -\frac{5}{9}a_1^2 - \frac{13}{27}a_1b_2 - \frac{65}{81}a_1b_3 - \frac{5}{18}a_1c_3 - \frac{13}{54}b_2c_3 - \frac{65}{162}b_3c_3 \right) m_2 \\ &+ \left( -\frac{25}{27}a_1^2 - \frac{65}{81}a_1b_2 - \frac{325}{243}a_1b_3 - \frac{25}{54}a_1c_3 - \frac{65}{162}b_2c_3 - \frac{325}{486}b_3c_3 \right) m_3 \\ &+ \left( \frac{17}{27}a_1^2 + \frac{5}{18}a_1b_2 + \frac{25}{54}a_1b_3 + \frac{43}{108}a_1c_3 + \frac{23}{108}b_2^2 + \frac{115}{162}b_2b_3 + \frac{575}{972}b_3^2 + \frac{43}{432}c_3^2 \right) m_4 \right] I_2(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{1}{4}a_1^2 + \frac{1}{9}a_1b_2 + \frac{13}{54}a_1b_3 + \frac{1}{6}a_1c_3 + \frac{17}{108}b_2^2 + \frac{41}{81}b_2b_3 - \frac{1}{18}b_2c_3 + \frac{485}{972}b_3^2 - \frac{1}{9}b_3c_3 + \frac{17}{216}c_3^2 \right) m_1 \\ &+ \left( -\frac{1}{9}a_1^2 - \frac{2}{27}a_1b_2 - \frac{13}{81}a_1b_3 - \frac{1}{18}a_1c_3 - \frac{13}{162}b_2c_3 - \frac{34}{243}b_3c_3 \right) m_3 \\ &+ \left( -\frac{2}{9}a_1^2 - \frac{13}{81}a_1b_2 - \frac{68}{243}a_1b_3 - \frac{1}{9}a_1c_3 - \frac{13}{162}b_2c_3 - \frac{34}{243}b_3c_3 \right) m_3 \\ &+ \left( \frac{59}{216}a_1^2 + \frac{1}{9}a_1b_2 + \frac{25}{108}a_1b_3 + \frac{1}{18}b_2^2 + \frac{2}{9}b_2b_3 + \frac{41}{162}b_2^2 \right) m_1 \\ &+ \left( \left( \frac{1}{18}a_1^2 + \frac{1}{9}a_1b_2 + \frac{2}{9}a_1b_3 + \frac{1}{18}b_2^2 + \frac{2}{9}b_2b_3 + \frac{41}{162}b_3^2 \right) m_1 \\ &+ \left( \left( \frac{1}{36}a_1^2 + \frac{1}{18}a_1b_2 + \frac{1}{9}a_1b_3 + \frac{1}{36}b_2^2 + \frac{1}{9}b_2b_3 + \frac{41}{324}b_3^2 \right) m_1 \\ &+ \left( \frac{1}{36}a_1^2 + \frac{1}{18}a_1b_2 + \frac{1}{9}a_1b_3 + \frac{1}{36}b_2^2 + \frac{1}{9}b_2b_3 + \frac{41}{324}b_3^2 \right) m_1 \\ &+ \left( \frac{1}{36}a_1^2 + \frac{1}{18}a_1b_2 + \frac{1}{9}a_1b_3 + \frac{1}{36}b_2^2 + \frac{1}{9}b_2b_3 + \frac{41}{324}b_3^2 \right) m_1 \\ &+ \left( \frac{1}{36}a_1^2 + \frac{1}{18}a_1b_2 + \frac{1}{9}a_1b_3 + \frac{1}{36}b_2^2 + \frac{1}{9}b_2b_3 + \frac{41}{324}b_3^2 \right) m_4 \right] I_2(m_{\pi}, 0, \mu), \end{aligned}$$

$$\begin{split} \sqrt{2}\delta\mu_{\Delta^{5}n}^{(loop 2ad)} &= \left[ \left( \frac{1}{3}a_{1}^{2} + \frac{1}{3}a_{1}c_{3} + \frac{23}{54}b_{2}^{2} + \frac{115}{81}b_{2}b_{3} - \frac{5}{18}b_{2}c_{3} + \frac{575}{486}b_{3}^{2} - \frac{25}{54}b_{3}c_{3} + \frac{43}{216}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{5}{9}a_{1}^{2} - \frac{13}{27}a_{1}b_{2} - \frac{65}{81}a_{1}b_{3} - \frac{5}{18}a_{1}c_{3} - \frac{13}{54}b_{2}c_{3} - \frac{65}{162}b_{3}c_{3} \right)m_{2} \\ &+ \left( -\frac{25}{27}a_{1}^{2} - \frac{65}{81}a_{1}b_{2} - \frac{325}{243}a_{1}b_{3} - \frac{25}{54}a_{1}c_{3} - \frac{65}{162}b_{2}c_{3} - \frac{325}{486}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{17}{27}a_{1}^{2} + \frac{5}{18}a_{1}b_{2} + \frac{25}{54}a_{1}b_{3} + \frac{43}{108}a_{1}c_{3} + \frac{23}{108}b_{2}^{2} + \frac{115}{162}b_{2}b_{3} + \frac{575}{972}b_{3}^{2} + \frac{43}{432}c_{3}^{2} \right)m_{4} \right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{1}{4}a_{1}^{2} + \frac{1}{9}a_{1}b_{2} + \frac{13}{54}a_{1}b_{3} + \frac{1}{6}a_{1}c_{3} + \frac{17}{108}b_{2}^{2} + \frac{41}{81}b_{2}b_{3} - \frac{1}{18}b_{2}c_{3} + \frac{485}{972}b_{3}^{2} - \frac{1}{9}b_{3}c_{3} + \frac{17}{216}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{1}{9}a_{1}^{2} - \frac{2}{27}a_{1}b_{2} - \frac{13}{81}a_{1}b_{3} - \frac{1}{18}a_{1}c_{3} - \frac{1}{27}b_{2}c_{3} - \frac{13}{162}b_{3}c_{3} \right)m_{2} \\ &+ \left( -\frac{2}{9}a_{1}^{2} - \frac{13}{81}a_{1}b_{2} - \frac{68}{243}a_{1}b_{3} - \frac{1}{9}a_{1}c_{3} - \frac{13}{162}b_{2}c_{3} - \frac{34}{243}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{2}{9}a_{1}^{2} - \frac{13}{81}a_{1}b_{2} - \frac{68}{243}a_{1}b_{3} - \frac{1}{9}a_{1}c_{3} - \frac{13}{162}b_{2}c_{3} - \frac{34}{243}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{59}{216}a_{1}^{2} + \frac{1}{9}a_{1}b_{2} + \frac{25}{108}a_{1}b_{3} + \frac{17}{108}a_{1}c_{3} + \frac{17}{216}b_{2}^{2} + \frac{41}{162}b_{2}b_{3} + \frac{485}{1944}b_{3}^{2} + \frac{47}{432}c_{3}^{2} \right)m_{4} \right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[ \left( \frac{1}{18}a_{1}^{2} + \frac{1}{9}a_{1}b_{2} + \frac{2}{9}a_{1}b_{3} + \frac{1}{18}b_{2}^{2} + \frac{2}{9}b_{2}b_{3} + \frac{41}{162}b_{3}^{2} \right)m_{1} \\ &+ \left( \frac{1}{36}a_{1}^{2} + \frac{1}{18}a_{1}b_{2} + \frac{1}{9}a_{1}b_{3} + \frac{1}{36}b_{2}^{2} + \frac{1}{9}b_{2}b_{3} + \frac{41}{324}b_{3}^{2} \right)m_{4} \right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$

$$\begin{split} \sqrt{6}\delta\mu_{\Sigma^{*0}\Lambda}^{(loop 2ad)} &= \left[ \left( \frac{1}{2}a_{1}^{2} + \frac{1}{36}a_{1}b_{3} + \frac{11}{24}a_{1}c_{3} + \frac{5}{12}b_{2}^{2} + \frac{35}{27}b_{2}b_{3} - \frac{5}{18}b_{2}c_{3} + \frac{677}{648}b_{3}^{2} - \frac{19}{36}b_{3}c_{3} + \frac{67}{288}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{2}{3}a_{1}^{2} - \frac{5}{9}a_{1}b_{2} - \frac{26}{27}a_{1}b_{3} - \frac{1}{3}a_{1}c_{3} - \frac{5}{18}b_{2}c_{3} - \frac{137}{27}b_{3}c_{3} \right)m_{2} \\ &+ \left( -\frac{19}{18}a_{1}^{2} - \frac{25}{27}a_{1}b_{2} - \frac{257}{162}a_{1}b_{3} - \frac{19}{36}a_{1}c_{3} - \frac{25}{54}b_{2}c_{3} - \frac{257}{324}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{13}{18}a_{1}^{2} + \frac{5}{18}a_{1}b_{2} + \frac{13}{24}a_{1}b_{3} + \frac{67}{144}a_{1}c_{3} + \frac{5}{24}b_{2}^{2} + \frac{35}{54}b_{2}b_{3} + \frac{677}{1296}b_{3}^{2} + \frac{67}{576}c_{3}^{2} \right)m_{4} \right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{3}{8}a_{1}^{2} + \frac{1}{3}a_{1}b_{2} + \frac{23}{36}a_{1}b_{3} + \frac{1}{4}a_{1}c_{3} + \frac{13}{24}b_{2}^{2} + \frac{52}{27}b_{2}b_{3} - \frac{2}{9}b_{2}c_{3} + \frac{1195}{648}b_{3}^{2} - \frac{11}{36}b_{3}c_{3} + \frac{11}{12}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{1}{3}a_{1}^{2} - \frac{5}{18}a_{1}b_{2} - \frac{13}{27}a_{1}b_{3} - \frac{1}{6}a_{1}c_{3} - \frac{5}{3}b_{2}c_{3} - \frac{13}{3}b_{3}c_{3} \right)m_{2} \\ &+ \left( -\frac{11}{18}a_{1}^{2} - \frac{14}{27}a_{1}b_{2} - \frac{133}{27}a_{1}b_{3} - \frac{1}{6}a_{1}c_{3} - \frac{7}{27}b_{2}c_{3} - \frac{133}{324}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{79}{144}a_{1}^{2} + \frac{7}{18}a_{1}b_{2} + \frac{5}{8}a_{1}b_{3} + \frac{11}{36}a_{1}c_{3} - \frac{7}{27}b_{2}c_{3} - \frac{133}{324}b_{3}c_{3} \right)m_{3} \\ &+ \left( \left( \frac{1}{12}a_{1}^{2} + \frac{1}{36}a_{1}b_{3} + \frac{1}{24}a_{1}c_{3} + \frac{1}{72}b_{3}^{2} - \frac{1}{36}b_{3}c_{3} + \frac{1}{32}c_{3}^{2} \right)m_{1} \\ &+ \left( \left( \frac{1}{12}a_{1}^{2} + \frac{1}{36}a_{1}b_{3} + \frac{1}{24}a_{1}c_{3} - \frac{1}{72}b_{3}^{2} - \frac{1}{36}b_{3}c_{3} + \frac{1}{32}c_{3}^{2} \right)m_{1} \\ &+ \left( \left( \frac{1}{8}a_{1}^{2} - \frac{1}{4}a_{1}b_{3} - \frac{1}{36}a_{1}c_{3} - \frac{1}{108}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{1}{8}a_{1}^{2} + \frac{1}{24}a_{1}b_{3} + \frac{1}{16}a_{1}c_{3} + \frac{1}{14}b_{3}^{2} + \frac{1}{64}c_{3}^{2} \right)m_{4} \right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$

$$\begin{split} \sqrt{2}\delta\mu_{\Sigma^{0}\Sigma^{0}}^{(loop2ad)} &= \left[ \left( \frac{1}{12}a_{1}^{2} + \frac{2}{27}a_{1}b_{2} + \frac{49}{324}a_{1}b_{3} + \frac{1}{24}a_{1}c_{3} + \frac{2}{27}b_{2}^{2} + \frac{23}{81}b_{2}b_{3} - \frac{1}{54}b_{2}c_{3} + \frac{583}{1944}b_{3}^{2} - \frac{7}{324}b_{3}c_{3} + \frac{23}{864}c_{3}^{2} \right)m_{1} \right. \\ &+ \left( -\frac{7}{162}a_{1}^{2} - \frac{1}{81}a_{1}b_{2} - \frac{7}{486}a_{1}b_{3} - \frac{7}{324}a_{1}c_{3} - \frac{1}{162}b_{2}c_{3} - \frac{7}{972}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{23}{216}a_{1}^{2} + \frac{1}{18}a_{1}b_{2} + \frac{7}{72}a_{1}b_{3} + \frac{23}{432}a_{1}c_{3} + \frac{1}{27}b_{2}^{2} + \frac{23}{162}b_{2}b_{3} + \frac{583}{3888}b_{3}^{2} + \frac{23}{1728}c_{3}^{2} \right)m_{4} \right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{11}{72}a_{1}^{2} + \frac{1}{27}a_{1}b_{2} + \frac{23}{324}a_{1}b_{3} + \frac{5}{36}a_{1}c_{3} + \frac{53}{216}b_{2}^{2} + \frac{64}{81}b_{2}b_{3} - \frac{4}{27}b_{2}c_{3} + \frac{1289}{1944}b_{3}^{2} - \frac{83}{324}b_{3}c_{3} + \frac{19}{216}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{1}{3}a_{1}^{2} - \frac{5}{18}a_{1}b_{2} - \frac{13}{27}a_{1}b_{3} - \frac{1}{6}a_{1}c_{3} - \frac{5}{36}b_{2}c_{3} - \frac{13}{54}b_{3}c_{3} \right)m_{2} \\ &+ \left( -\frac{83}{162}a_{1}^{2} - \frac{38}{81}a_{1}b_{2} - \frac{383}{486}a_{1}b_{3} - \frac{83}{324}a_{1}c_{3} - \frac{19}{81}b_{2}c_{3} - \frac{383}{972}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{125}{432}a_{1}^{2} + \frac{1}{6}a_{1}b_{2} + \frac{7}{24}a_{1}b_{3} + \frac{19}{108}a_{1}c_{3} + \frac{53}{432}b_{2}^{2} + \frac{32}{81}b_{2}b_{3} + \frac{1289}{3888}b_{3}^{2} + \frac{19}{432}c_{3}^{2} \right)m_{4} \right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[ \left( \frac{12}{12}a_{1}^{2} + \frac{1}{108}a_{1}b_{3} + \frac{5}{72}a_{1}c_{3} + \frac{1}{216}b_{3}^{2} - \frac{1}{108}b_{3}c_{3} + \frac{7}{288}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{1}{54}a_{1}^{2} - \frac{1}{162}a_{1}b_{3} - \frac{1}{108}a_{1}c_{3} - \frac{1}{324}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{5}{72}a_{1}^{2} + \frac{1}{72}a_{1}b_{3} + \frac{7}{7144}a_{1}c_{3} + \frac{1}{432}b_{3}^{2} + \frac{7}{7576}c_{3}^{2} \right)m_{4} \right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$

$$\begin{split} \sqrt{2}\delta\mu_{\Sigma^{+}\Sigma^{+}}^{(\text{loop 2ad)}} &= \left[ \left( \frac{1}{4}a_{1}^{2} + \frac{5}{27}a_{1}b_{2} + \frac{59}{162}a_{1}b_{3} + \frac{1}{6}a_{1}c_{3} + \frac{7}{36}b_{2}^{2} + \frac{17}{27}b_{2}b_{3} - \frac{1}{54}b_{2}c_{3} + \frac{31}{54}b_{3}^{2} + \frac{11}{324}b_{3}c_{3} + \frac{1}{16}c_{3}^{2} \right)m_{1} \\ &+ \left( \frac{1}{18}a_{1}^{2} + \frac{2}{27}a_{1}b_{2} + \frac{23}{162}a_{1}b_{3} + \frac{1}{36}a_{1}c_{3} + \frac{1}{27}b_{2}c_{3} + \frac{23}{324}b_{3}c_{3} \right)m_{2} \\ &+ \left( \frac{11}{162}a_{1}^{2} + \frac{1}{9}a_{1}b_{2} + \frac{37}{162}a_{1}b_{3} + \frac{11}{324}a_{1}c_{3} + \frac{1}{18}b_{2}c_{3} + \frac{37}{324}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{5}{24}a_{1}^{2} + \frac{1}{9}a_{1}b_{2} + \frac{4}{27}a_{1}b_{3} + \frac{1}{8}a_{1}c_{3} + \frac{7}{72}b_{2}^{2} + \frac{17}{54}b_{2}b_{3} + \frac{31}{108}b_{3}^{2} + \frac{1}{32}c_{3}^{2} \right)m_{4} \right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{5}{18}a_{1}^{2} + \frac{1}{27}a_{1}b_{2} + \frac{8}{81}a_{1}b_{3} + \frac{2}{9}a_{1}c_{3} + \frac{4}{9}b_{2}^{2} + \frac{41}{27}b_{2}b_{3} - \frac{17}{54}b_{2}c_{3} + \frac{73}{54}b_{3}^{2} - \frac{47}{81}b_{3}c_{3} + \frac{1}{6}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{2}{3}a_{1}^{2} - \frac{17}{27}a_{1}b_{2} + \frac{8}{81}a_{1}b_{3} - \frac{1}{3}a_{1}c_{3} - \frac{17}{54}b_{2}c_{3} - \frac{74}{81}b_{3}c_{3} \right)m_{2} \\ &+ \left( -\frac{94}{81}a_{1}^{2} - \frac{29}{27}a_{1}b_{2} - \frac{148}{81}a_{1}b_{3} - \frac{47}{81}a_{1}c_{3} - \frac{29}{54}b_{2}c_{3} - \frac{74}{81}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{7}{12}a_{1}^{2} + \frac{1}{3}a_{1}b_{2} + \frac{17}{27}a_{1}b_{3} + \frac{1}{3}a_{1}c_{3} - \frac{29}{9}b_{2}c_{3} - \frac{74}{81}b_{3}c_{3} \right)m_{3} \\ &+ \left( \left( \frac{1}{9}a_{1}^{2} + \frac{1}{9}a_{1}c_{3} + \frac{1}{108}b_{3}^{2} - \frac{1}{36}b_{3}c_{3} + \frac{7}{144}c_{3}^{2} \right)m_{1} + \left( -\frac{1}{18}a_{1}^{2} - \frac{1}{54}a_{1}b_{3} - \frac{1}{36}a_{1}c_{3} - \frac{1}{108}b_{3}c_{3} \right)m_{2} \\ &+ \left( -\frac{1}{18}a_{1}^{2} - \frac{1}{54}a_{1}b_{3} - \frac{1}{36}a_{1}c_{3} - \frac{1}{108}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{5}{36}a_{1}^{2} + \frac{1}{36}a_{1}b_{3} + \frac{7}{72}a_{1}c_{3} + \frac{1}{26}b_{3}^{2} + \frac{7}{288}c_{3}^{2} \right)m_{4} \right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$

$$\begin{split} \sqrt{2}\delta\mu_{\Sigma^{*}\Sigma^{-}}^{(loop2ad)} &= \left[ \left( -\frac{1}{12}a_{1}^{2} - \frac{1}{27}a_{1}b_{2} - \frac{5}{81}a_{1}b_{3} - \frac{1}{12}a_{1}c_{3} - \frac{5}{108}b_{2}^{2} - \frac{5}{81}b_{2}b_{3} - \frac{1}{54}b_{2}c_{3} + \frac{25}{972}b_{3}^{2} - \frac{25}{324}b_{3}c_{3} - \frac{1}{108}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{1}{18}a_{1}^{2} - \frac{2}{27}a_{1}b_{2} - \frac{23}{162}a_{1}b_{3} - \frac{1}{36}a_{1}c_{3} - \frac{1}{27}b_{2}c_{3} - \frac{23}{324}b_{3}c_{3} \right)m_{2} \\ &+ \left( -\frac{25}{162}a_{1}^{2} - \frac{11}{81}a_{1}b_{2} - \frac{125}{486}a_{1}b_{3} - \frac{25}{324}a_{1}c_{3} - \frac{11}{162}b_{2}c_{3} - \frac{125}{972}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{1}{216}a_{1}^{2} + \frac{5}{108}a_{1}b_{3} - \frac{1}{54}a_{1}c_{3} - \frac{5}{216}b_{2}^{2} - \frac{5}{162}b_{2}b_{3} + \frac{25}{1944}b_{3}^{2} - \frac{1}{216}c_{3}^{2} \right)m_{4} \right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{1}{36}a_{1}^{2} + \frac{1}{27}a_{1}b_{2} + \frac{7}{162}a_{1}b_{3} + \frac{1}{18}a_{1}c_{3} + \frac{5}{108}b_{2}^{2} + \frac{5}{81}b_{2}b_{3} + \frac{1}{54}b_{2}c_{3} - \frac{25}{972}b_{3}^{2} + \frac{11}{162}b_{3}c_{3} + \frac{1}{108}c_{3}^{2} \right)m_{1} \\ &+ \left( \frac{2}{27}a_{1}b_{2} + \frac{10}{81}a_{1}b_{3} + \frac{1}{27}b_{2}c_{3} + \frac{5}{81}b_{3}c_{3} \right)m_{2} \\ &+ \left( \frac{11}{81}a_{1}^{2} + \frac{11}{81}a_{1}b_{2} + \frac{61}{243}a_{1}b_{3} + \frac{11}{162}a_{1}c_{3} + \frac{11}{162}b_{2}c_{3} + \frac{61}{486}b_{3}c_{3} \right)m_{3} \\ &+ \left( -\frac{1}{216}a_{1}^{2} - \frac{5}{108}a_{1}b_{3} + \frac{1}{54}a_{1}c_{3} + \frac{5}{216}b_{2}^{2} + \frac{5}{162}b_{2}b_{3} - \frac{25}{1944}b_{3}^{2} + \frac{1}{216}c_{3}^{2} \right)m_{4} \right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[ \left( \frac{1}{18}a_{1}^{2} + \frac{1}{54}a_{1}b_{3} + \frac{1}{36}a_{1}c_{3} + \frac{1}{108}b_{3}c_{3} \right)m_{1} + \left( \frac{1}{18}a_{1}^{2} + \frac{1}{54}a_{1}b_{3} + \frac{1}{36}a_{1}c_{3} + \frac{1}{108}b_{3}c_{3} \right)m_{2} \\ &+ \left( \frac{1}{18}a_{1}^{2} + \frac{1}{162}a_{1}b_{3} + \frac{1}{108}a_{1}c_{3} + \frac{1}{108}b_{3}c_{3} \right)m_{1} + \left( \frac{1}{18}a_{1}^{2} + \frac{1}{54}a_{1}b_{3} + \frac{1}{36}a_{1}c_{3} + \frac{1}{108}b_{3}c_{3} \right)m_{2} \\ &+ \left( \frac{1}{18}a_{1}^{2} + \frac{1}{162}a_{1}b_{3} + \frac{1}{108}a_{1}c_{3} + \frac{1}{324}b_{3}c_{3} \right)m_{1} \right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$

$$\begin{split} \sqrt{2}\delta\mu_{\Xi^{+}\Xi^{0}\Xi^{0}}^{(loop2ad)} &= \left[ \left( \frac{1}{4}a_{1}^{2} + \frac{1}{9}a_{1}b_{2} + \frac{13}{54}a_{1}b_{3} + \frac{1}{6}a_{1}c_{3} + \frac{11}{108}b_{2}^{2} + \frac{49}{162}b_{2}b_{3} - \frac{1}{36}b_{2}c_{3} + \frac{74}{243}b_{3}^{2} - \frac{1}{12}b_{3}c_{3} + \frac{25}{432}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{1}{9}a_{1}^{2} - \frac{2}{27}a_{1}b_{2} - \frac{13}{81}a_{1}b_{3} - \frac{1}{18}a_{1}c_{3} - \frac{27}{27}b_{2}c_{3} - \frac{13}{162}b_{3}c_{3} \right)m_{2} \\ &+ \left( -\frac{1}{6}a_{1}^{2} - \frac{23}{162}a_{1}b_{2} - \frac{127}{486}a_{1}b_{3} - \frac{1}{12}a_{1}c_{3} - \frac{23}{324}b_{2}c_{3} - \frac{127}{972}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{41}{216}a_{1}^{2} + \frac{1}{12}a_{1}b_{2} + \frac{11}{54}a_{1}b_{3} + \frac{25}{216}a_{1}c_{3} + \frac{11}{216}b_{2}^{2} + \frac{49}{324}b_{2}b_{3} + \frac{37}{243}b_{3}^{2} + \frac{25}{864}c_{3}^{2} \right)m_{4} \right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{5}{18}a_{1}^{2} + \frac{1}{9}a_{1}b_{2} + \frac{2}{9}a_{1}b_{3} + \frac{2}{9}a_{1}c_{3} + \frac{13}{27}b_{2}^{2} + \frac{133}{81}b_{2}b_{3} - \frac{5}{18}b_{2}c_{3} + \frac{349}{243}b_{3}^{2} - \frac{25}{54}b_{3}c_{3} + \frac{37}{216}c_{3}^{2} \right)m_{1} \\ &+ \left( -\frac{5}{9}a_{1}^{2} - \frac{13}{27}a_{1}b_{2} - \frac{65}{81}a_{1}b_{3} - \frac{5}{18}a_{1}c_{3} - \frac{13}{154}b_{2}c_{3} - \frac{65}{162}b_{3}c_{3} \right)m_{2} \\ &+ \left( -\frac{25}{27}a_{1}^{2} - \frac{65}{81}a_{1}b_{2} - \frac{325}{54}a_{1}c_{3} - \frac{15}{54}a_{1}c_{3} - \frac{15}{162}b_{2}c_{3} - \frac{325}{486}b_{3}c_{3} \right)m_{3} \\ &+ \left( \frac{65}{108}a_{1}^{2} + \frac{1}{3}a_{1}b_{2} + \frac{31}{54}a_{1}b_{3} + \frac{37}{108}a_{1}c_{3} + \frac{13}{54}b_{2}^{2} + \frac{133}{162}b_{2}b_{3} + \frac{349}{486}b_{3}^{2} + \frac{37}{432}c_{3}^{2} \right)m_{4} \right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[ \left( \frac{1}{9}a_{1}^{2} + \frac{1}{9}a_{1}c_{3} + \frac{1}{18}b_{2}^{2} + \frac{1}{162}b_{2}b_{3} - \frac{1}{65}b_{2}b_{2}c_{3} - \frac{325}{486}b_{3}c_{3} \right)m_{3} \\ &+ \left( -\frac{1}{18}a_{1}^{2} - \frac{1}{54}a_{1}b_{2} - \frac{1}{54}a_{1}b_{3} - \frac{1}{36}b_{2}c_{3} + \frac{7}{36}b_{3}^{2} - \frac{1}{36}b_{3}c_{3} \right)m_{3} \\ &+ \left( -\frac{1}{18}a_{1}^{2} - \frac{1}{54}a_{1}b_{2} - \frac{1}{54}a_{1}b_{3} - \frac{1}{36}b_{2}c_{3} - \frac{7}{36}b_{3}^{2} - \frac{1}{36}b_{3}c_{3} \right)m_{3} \\ &+ \left( -\frac{1}{18}a_{1}^{2} - \frac{1}{54}a_{1}b_{2} - \frac{1}{54}a_{1}b_{3} - \frac{1}{36}a_{1}c_{3} - \frac{1}{108}b_{2}c_{3}$$

$$\begin{split} \sqrt{2}\delta\mu_{\Xi^*\Xi^*}^{(loop 2ad)} &= \left[ \left( -\frac{1}{12}a_1^2 - \frac{1}{12}a_1c_3 - \frac{5}{108}b_2^2 - \frac{5}{81}b_2b_3 + \frac{25}{972}b_3^2 - \frac{5}{108}b_3c_3 - \frac{1}{108}c_3^2 \right) m_1 \\ &+ \left( -\frac{1}{18}a_1^2 - \frac{1}{27}a_1b_2 - \frac{13}{162}a_1b_3 - \frac{1}{36}a_1c_3 - \frac{1}{54}b_2c_3 - \frac{13}{324}b_3c_3 \right) m_2 \\ &+ \left( -\frac{5}{54}a_1^2 - \frac{5}{81}a_1b_2 - \frac{65}{486}a_1b_3 - \frac{5}{108}a_1c_3 - \frac{5}{162}b_2c_3 - \frac{65}{972}b_3c_3 \right) m_3 \\ &+ \left( \frac{1}{216}a_1^2 + \frac{5}{108}a_1b_3 - \frac{1}{54}a_1c_3 - \frac{5}{216}b_2^2 - \frac{5}{162}b_2b_3 + \frac{25}{1944}b_3^2 - \frac{1}{216}c_3^2 \right) m_4 \right] I_2(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{1}{36}a_1^2 - \frac{1}{9}a_1b_2 - \frac{11}{54}a_1b_3 + \frac{1}{18}a_1c_3 + \frac{5}{108}b_2^2 + \frac{5}{81}b_2b_3 - \frac{1}{18}b_2c_3 - \frac{25}{972}b_3^2 - \frac{1}{18}b_3c_3 + \frac{1}{108}c_3^2 \right) m_1 \\ &+ \left( -\frac{2}{27}a_1b_2 - \frac{10}{81}a_1b_3 - \frac{1}{27}b_2c_3 - \frac{5}{81}b_3c_3 \right) m_2 \\ &+ \left( -\frac{1}{9}a_1^2 - \frac{13}{81}a_1b_2 - \frac{59}{243}a_1b_3 - \frac{1}{18}a_1c_3 - \frac{13}{162}b_2c_3 - \frac{59}{1944}b_3^2 + \frac{1}{216}c_3^2 \right) m_4 \right] I_2(m_K, 0, \mu) \\ &+ \left[ \left( \frac{1}{18}a_1^2 + \frac{1}{9}a_1b_2 + \frac{11}{54}a_1b_3 + \frac{1}{36}a_1c_3 + \frac{1}{18}b_2c_3 - \frac{25}{164}b_3c_3 \right) m_3 \\ &+ \left( -\frac{1}{216}a_1^2 - \frac{5}{108}a_1b_3 + \frac{1}{54}a_1c_3 + \frac{5}{216}b_2^2 + \frac{5}{162}b_2b_3 - \frac{25}{1944}b_3^2 + \frac{1}{216}c_3^2 \right) m_4 \right] I_2(m_K, 0, \mu) \\ &+ \left[ \left( \frac{1}{18}a_1^2 + \frac{1}{9}a_1b_2 + \frac{11}{54}a_1b_3 + \frac{1}{36}a_1c_3 + \frac{1}{18}b_2c_3 + \frac{11}{108}b_3c_3 \right) m_1 \\ &+ \left( \frac{1}{18}a_1^2 + \frac{1}{9}a_1b_2 + \frac{11}{54}a_1b_3 + \frac{1}{36}a_1c_3 + \frac{1}{18}b_2c_3 + \frac{11}{108}b_3c_3 \right) m_1 \\ &+ \left( \frac{1}{18}a_1^2 + \frac{1}{9}a_1b_2 + \frac{11}{54}a_1b_3 + \frac{1}{36}a_1c_3 + \frac{1}{18}b_2c_3 + \frac{11}{108}b_3c_3 \right) m_2 \\ &+ \left( \frac{11}{13}a_1^2 + \frac{2}{9}a_1b_2 + \frac{61}{162}a_1b_3 + \frac{11}{108}a_1c_3 + \frac{1}{9}b_2c_3 + \frac{61}{324}b_3c_3 \right) m_3 \right] I_2(m_\eta, 0, \mu). \end{split}$$

Using relations (21) and (43) yields the magnetic moments expressed in terms of the SU(3) invariants  $\mu_D$ ,  $\mu_F$ ,  $\mu_C$ ,  $\mu_T$ , D, F, C, and H. These expressions read

$$\delta\mu_{n}^{(\text{loop 2ad})} = \left[ \left( -\frac{3}{2} (D+F)^{2} - \frac{4}{3} C^{2} \right) \mu_{D} + \frac{1}{2} (D+F)^{2} \mu_{F} + \frac{10}{27} C^{2} \mu_{C} + \frac{4}{9} (D+F) C \mu_{T} \right] I_{2}(m_{\pi}, 0, \mu) \\ + \left[ \left( -\frac{23}{18} D^{2} + \frac{5}{3} DF - \frac{7}{2} F^{2} - \frac{1}{3} C^{2} \right) \mu_{D} - \frac{1}{2} (D-F)^{2} \mu_{F} + \frac{5}{27} C^{2} \mu_{C} + \frac{2}{9} F C \mu_{T} \right] I_{2}(m_{K}, 0, \mu) \\ + \left[ \left( -\frac{2}{9} D^{2} + \frac{4}{3} DF - 2F^{2} \right) \mu_{D} \right] I_{2}(m_{\eta}, 0, \mu),$$
(D28)

$$\begin{split} \delta\mu_{p}^{(\text{loop 2ad})} &= \left[ \left( \frac{1}{2} (D+F)^{2} + \frac{2}{3} \mathcal{C}^{2} \right) \mu_{D} + \left( \frac{5}{2} (D+F)^{2} + 2\mathcal{C}^{2} \right) \mu_{F} - \frac{40}{27} \mathcal{C}^{2} \mu_{C} - \frac{4}{9} (D+F) \mathcal{C} \mu_{T} \right] I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{8}{9} D^{2} - 2DF + 2F^{2} + \frac{1}{6} \mathcal{C}^{2} \right) \mu_{D} + \left( 3D^{2} - 4DF + 5F^{2} + \frac{1}{2} \mathcal{C}^{2} \right) \mu_{F} \right. \\ &- \frac{5}{27} \mathcal{C}^{2} \mu_{C} - \frac{1}{9} (3D - F) \mathcal{C} \mu_{T} \right] I_{2}(m_{K}, 0, \mu) \\ &+ \left[ \left( \frac{1}{9} D^{2} - \frac{2}{3} DF + F^{2} \right) \mu_{D} + \left( \frac{1}{3} D^{2} - 2DF + 3F^{2} \right) \mu_{F} \right] I_{2}(m_{\eta}, 0, \mu), \end{split}$$
(D29)

$$\delta\mu_{\Sigma^{-}}^{(\text{loop 2ad})} = \left[ \left( \frac{2}{9} D^2 + \frac{2}{3} DF + \frac{8}{3} F^2 + \frac{1}{9} C^2 \right) \mu_D + \left( -D^2 - 7F^2 - \frac{1}{3} C^2 \right) \mu_F + \frac{5}{54} C^2 \mu_C + \frac{1}{9} (D - F) C \mu_T \right] I_2(m_\pi, 0, \mu) \\ + \left[ \left( \frac{5}{6} D^2 + DF + \frac{5}{6} F^2 + \frac{5}{9} C^2 \right) \mu_D + \left( -\frac{7}{2} D^2 - DF - \frac{7}{2} F^2 - \frac{5}{3} C^2 \right) \mu_F \right] \\ + \frac{20}{27} C^2 \mu_C + \frac{2}{9} (D - F) C \mu_T \right] I_2(m_K, 0, \mu) \\ + \left[ \left( \frac{4}{9} D^2 + \frac{1}{6} C^2 \right) \mu_D + \left( -\frac{4}{3} D^2 - \frac{1}{2} C^2 \right) \mu_F + \frac{5}{18} C^2 \mu_C \right] I_2(m_\eta, 0, \mu),$$
(D30)

$$\delta\mu_{\Sigma^{0}}^{(\text{loop 2ad})} = \left[ \left( \frac{2}{9} D^{2} + \frac{8}{3} F^{2} + \frac{1}{9} C^{2} \right) \mu_{D} - \frac{2}{9} F C \mu_{T} \right] I_{2}(m_{\pi}, 0, \mu) \\ + \left[ \left( \frac{5}{6} D^{2} + \frac{5}{6} F^{2} + \frac{5}{9} C^{2} \right) \mu_{D} - D F \mu_{F} - \frac{5}{18} C^{2} \mu_{C} - \frac{1}{9} (D + F) C \mu_{T} \right] I_{2}(m_{K}, 0, \mu) \\ + \left[ \left( \frac{4}{9} D^{2} + \frac{1}{6} C^{2} \right) \mu_{D} - \frac{1}{9} D C \mu_{T} \right] I_{2}(m_{\eta}, 0, \mu),$$
(D31)

$$\delta\mu_{\Sigma^{+}}^{(\text{loop 2ad})} = \left[ \left( \frac{2}{9} D^{2} - \frac{2}{3} DF + \frac{8}{3} F^{2} + \frac{1}{9} C^{2} \right) \mu_{D} + \left( D^{2} + 7F^{2} + \frac{1}{3} C^{2} \right) \mu_{F} - \frac{5}{54} C^{2} \mu_{C} - \frac{1}{9} (D + 3F) C \mu_{T} \right] I_{2}(m_{\pi}, 0, \mu) \\ + \left[ \left( \frac{5}{6} D^{2} - DF + \frac{5}{6} F^{2} + \frac{5}{9} C^{2} \right) \mu_{D} + \left( \frac{7}{2} D^{2} - DF + \frac{7}{2} F^{2} + \frac{5}{3} C^{2} \right) \mu_{F} - \frac{35}{27} C^{2} \mu_{C} - \frac{4}{9} D C \mu_{T} \right] I_{2}(m_{K}, 0, \mu) \\ + \left[ \left( \frac{4}{9} D^{2} + \frac{1}{6} C^{2} \right) \mu_{D} + \left( \frac{4}{3} D^{2} + \frac{1}{2} C^{2} \right) \mu_{F} - \frac{5}{18} C^{2} \mu_{C} - \frac{2}{9} D C \mu_{T} \right] I_{2}(m_{\eta}, 0, \mu), \tag{D32}$$

$$\begin{split} \delta\mu_{\Xi^{-}}^{(\text{loop 2ad})} &= \left[ \left( \frac{1}{2} (D-F)^2 + \frac{1}{6} \mathcal{C}^2 \right) \mu_D + \left( -\frac{5}{2} (D-F)^2 - \frac{1}{2} \mathcal{C}^2 \right) \mu_F + \frac{5}{54} \mathcal{C}^2 \mu_C + \frac{2}{9} (D-F) \mathcal{C}\mu_T \right] I_2(m_{\pi}, 0, \mu) \\ &+ \left[ \left( \frac{8}{9} D^2 + 2DF + 2F^2 + \frac{1}{2} \mathcal{C}^2 \right) \mu_D + \left( -3D^2 - 4DF - 5F^2 - \frac{3}{2} \mathcal{C}^2 \right) \mu_F \right. \\ &+ \frac{20}{27} \mathcal{C}^2 \mu_C + \frac{1}{9} (D-F) \mathcal{C}\mu_T \right] I_2(m_K, 0, \mu) \\ &+ \left[ \left( \frac{1}{9} D^2 + \frac{2}{3} DF + F^2 + \frac{1}{6} \mathcal{C}^2 \right) \mu_D + \left( -\frac{1}{3} D^2 - 2DF - 3F^2 - \frac{1}{2} \mathcal{C}^2 \right) \mu_F + \frac{5}{18} \mathcal{C}^2 \mu_C \right] I_2(m_{\eta}, 0, \mu), \end{split}$$
(D33)

$$\delta\mu_{\Xi^{0}}^{(\text{loop 2ad})} = \left[ \left( -\frac{3}{2} (D-F)^{2} - \frac{1}{3} C^{2} \right) \mu_{D} - \frac{1}{2} (D-F)^{2} \mu_{F} + \frac{5}{27} C^{2} \mu_{C} + \frac{1}{9} (D-F) C \mu_{T} \right] I_{2}(m_{\pi}, 0, \mu) + \left[ \left( -\frac{23}{18} D^{2} - \frac{5}{3} DF - \frac{7}{2} F^{2} - C^{2} \right) \mu_{D} + \frac{1}{2} (D+F)^{2} \mu_{F} + \frac{10}{27} C^{2} \mu_{C} + \frac{2}{9} (D+2F) C \mu_{T} \right] I_{2}(m_{K}, 0, \mu) + \left[ \left( -\frac{2}{9} D^{2} - \frac{4}{3} DF - 2F^{2} - \frac{1}{3} C^{2} \right) \mu_{D} + \frac{1}{9} (D+3F) C \mu_{T} \right] I_{2}(m_{\eta}, 0, \mu),$$
(D34)

$$\delta\mu_{\Lambda}^{(\text{loop 2ad})} = \left[ \left( -\frac{2}{3}D^2 - \frac{1}{2}C^2 \right) \mu_D \right] I_2(m_{\pi}, 0, \mu) \\ + \left[ \left( -\frac{7}{18}D^2 - \frac{7}{2}F^2 - \frac{1}{3}C^2 \right) \mu_D + DF\mu_F + \frac{5}{18}C^2\mu_C - \frac{1}{9}(D - 3F)C\mu_T \right] I_2(m_K, 0, \mu) \\ + \left[ -\frac{4}{9}D^2\mu_D \right] I_2(m_\eta, 0, \mu),$$
(D35)

$$\delta\mu_{\Delta^{++}}^{(\text{loop 2ad})} = \left[ -\frac{1}{6} \mathcal{C}^2 \mu_D - \frac{1}{2} \mathcal{C}^2 \mu_F + \left( \mathcal{C}^2 + \frac{31}{54} \mathcal{H}^2 \right) \mu_C + \frac{1}{9} \mathcal{C} \mathcal{H} \mu_T \right] I_2(m_\pi, 0, \mu) \\ + \left[ -\frac{1}{6} \mathcal{C}^2 \mu_D - \frac{1}{2} \mathcal{C}^2 \mu_F + \left( \mathcal{C}^2 + \frac{19}{54} \mathcal{H}^2 \right) \mu_C + \frac{1}{9} \mathcal{C} \mathcal{H} \mu_T \right] I_2(m_K, 0, \mu) + \left[ \frac{2}{27} \mathcal{H}^2 \mu_C \right] I_2(m_\eta, 0, \mu), \quad (D36)$$

$$\delta\mu_{\Delta^{+}}^{(\text{loop 2ad})} = \left[ -\frac{1}{3} \mathcal{C}^{2} \mu_{F} + \left( \frac{1}{2} \mathcal{C}^{2} + \frac{41}{162} \mathcal{H}^{2} \right) \mu_{C} + \frac{1}{27} \mathcal{C} \mathcal{H} \mu_{T} \right] I_{2}(m_{\pi}, 0, \mu) \\ + \left[ -\frac{1}{6} \mathcal{C}^{2} \mu_{D} - \frac{1}{6} \mathcal{C}^{2} \mu_{F} + \left( \frac{1}{2} \mathcal{C}^{2} + \frac{17}{81} \mathcal{H}^{2} \right) \mu_{C} + \frac{2}{27} \mathcal{C} \mathcal{H} \mu_{T} \right] I_{2}(m_{K}, 0, \mu) + \left[ \frac{1}{27} \mathcal{H}^{2} \mu_{C} \right] I_{2}(m_{\eta}, 0, \mu), \quad (D37)$$

$$\delta\mu_{\Delta^{0}}^{(\text{loop 2ad})} = \left[\frac{1}{6}\mathcal{C}^{2}\mu_{D} - \frac{1}{6}\mathcal{C}^{2}\mu_{F} - \frac{11}{162}\mathcal{H}^{2}\mu_{C} - \frac{1}{27}\mathcal{C}\mathcal{H}\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) \\ + \left[-\frac{1}{6}\mathcal{C}^{2}\mu_{D} + \frac{1}{6}\mathcal{C}^{2}\mu_{F} + \frac{11}{162}\mathcal{H}^{2}\mu_{C} + \frac{1}{27}\mathcal{C}\mathcal{H}\mu_{T}\right]I_{2}(m_{K}, 0, \mu),$$
(D38)

$$\delta\mu_{\Delta^{-}}^{(\text{loop 2ad})} = \left[\frac{1}{3}\mathcal{C}^{2}\mu_{D} + \left(-\frac{1}{2}\mathcal{C}^{2} - \frac{7}{18}\mathcal{H}^{2}\right)\mu_{C} - \frac{1}{9}\mathcal{C}\mathcal{H}\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) \\ + \left[-\frac{1}{6}\mathcal{C}^{2}\mu_{D} + \frac{1}{2}\mathcal{C}^{2}\mu_{F} + \left(-\frac{1}{2}\mathcal{C}^{2} - \frac{2}{27}\mathcal{H}^{2}\right)\mu_{C}\right]I_{2}(m_{K}, 0, \mu) + \left[-\frac{1}{27}\mathcal{H}^{2}\mu_{C}\right]I_{2}(m_{\eta}, 0, \mu), \quad (\text{D39})$$

$$\delta\mu_{\Sigma^{*+}}^{(\text{loop 2ad})} = \left[ -\frac{5}{36} \mathcal{C}^2 \mu_D - \frac{1}{12} \mathcal{C}^2 \mu_F + \left( \frac{5}{12} \mathcal{C}^2 + \frac{19}{81} \mathcal{H}^2 \right) \mu_C \right] I_2(m_\pi, 0, \mu) \\ + \left[ \frac{1}{18} \mathcal{C}^2 \mu_D - \frac{1}{6} \mathcal{C}^2 \mu_F + \left( \frac{1}{3} \mathcal{C}^2 + \frac{43}{162} \mathcal{H}^2 \right) \mu_C + \frac{1}{9} \mathcal{C} \mathcal{H} \mu_T \right] I_2(m_K, 0, \mu) \\ + \left[ -\frac{1}{12} \mathcal{C}^2 \mu_D - \frac{1}{4} \mathcal{C}^2 \mu_F + \frac{1}{4} \mathcal{C}^2 \mu_C \right] I_2(m_\eta, 0, \mu),$$
(D40)

$$\begin{split} \delta\mu_{\Sigma^{*0}}^{(\text{loop 2ad})} &= \left[\frac{1}{36}\mathcal{C}^{2}\mu_{D} - \frac{1}{27}\mathcal{C}\mathcal{H}\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) + \left[\frac{1}{18}\mathcal{C}^{2}\mu_{D} + \frac{1}{27}\mathcal{C}\mathcal{H}\mu_{T}\right]I_{2}(m_{K}, 0, \mu) + \left[-\frac{1}{12}\mathcal{C}^{2}\mu_{D}\right]I_{2}(m_{\eta}, 0, \mu), \quad (\text{D41}) \\ \delta\mu_{\Sigma^{*-}}^{(\text{loop 2ad})} &= \left[\frac{7}{36}\mathcal{C}^{2}\mu_{D} + \frac{1}{12}\mathcal{C}^{2}\mu_{F} + \left(-\frac{5}{12}\mathcal{C}^{2} - \frac{19}{81}\mathcal{H}^{2}\right)\mu_{C} - \frac{2}{27}\mathcal{C}\mathcal{H}\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[\frac{1}{18}\mathcal{C}^{2}\mu_{D} + \frac{1}{6}\mathcal{C}^{2}\mu_{F} + \left(-\frac{1}{3}\mathcal{C}^{2} - \frac{43}{162}\mathcal{H}^{2}\right)\mu_{C} - \frac{1}{27}\mathcal{C}\mathcal{H}\mu_{T}\right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[-\frac{1}{12}\mathcal{C}^{2}\mu_{D} + \frac{1}{4}\mathcal{C}^{2}\mu_{F} - \frac{1}{4}\mathcal{C}^{2}\mu_{C}\right]I_{2}(m_{\eta}, 0, \mu), \quad (\text{D42}) \end{split}$$

$$\begin{split} \delta\mu_{\Xi^{*0}}^{(\text{loop 2ad})} &= \left[\frac{1}{6}\mathcal{C}^{2}\mu_{F} + \frac{11}{162}\mathcal{H}^{2}\mu_{C} - \frac{1}{54}\mathcal{C}\mathcal{H}\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[-\frac{1}{6}\mathcal{C}^{2}\mu_{D} - \frac{1}{6}\mathcal{C}^{2}\mu_{F} - \frac{11}{162}\mathcal{H}^{2}\mu_{C} - \frac{1}{27}\mathcal{C}\mathcal{H}\mu_{T}\right]I_{2}(m_{K}, 0, \mu) + \left[\frac{1}{6}\mathcal{C}^{2}\mu_{D} + \frac{1}{18}\mathcal{C}\mathcal{H}\mu_{T}\right]I_{2}(m_{\eta}, 0, \mu), \quad (\text{D43}) \\ \delta\mu_{\Xi^{*-}}^{(\text{loop 2ad})} &= \left[\frac{1}{12}\mathcal{C}^{2}\mu_{D} + \frac{1}{12}\mathcal{C}^{2}\mu_{F} + \left(-\frac{1}{4}\mathcal{C}^{2} - \frac{17}{162}\mathcal{H}^{2}\right)\mu_{C} - \frac{1}{27}\mathcal{C}\mathcal{H}\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[\frac{1}{6}\mathcal{C}^{2}\mu_{D} + \frac{1}{6}\mathcal{C}^{2}\mu_{F} + \left(-\frac{1}{2}\mathcal{C}^{2} - \frac{29}{81}\mathcal{H}^{2}\right)\mu_{C} - \frac{2}{27}\mathcal{C}\mathcal{H}\mu_{T}\right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[-\frac{1}{12}\mathcal{C}^{2}\mu_{D} + \frac{1}{4}\mathcal{C}^{2}\mu_{F} - \frac{1}{4}\mathcal{C}^{2} - \frac{1}{27}\mathcal{H}^{2}\mu_{C}\right]I_{2}(m_{\eta}, 0, \mu), \quad (\text{D44}) \end{split}$$

$$\begin{split} \delta\mu_{\Omega^{-}}^{(\text{loop 2ad})} &= \left[\frac{1}{6}\mathcal{C}^{2}\mu_{D} + \frac{1}{2}\mathcal{C}^{2}\mu_{F} + \left(-\mathcal{C}^{2} - \frac{19}{54}\mathcal{H}^{2}\right)\mu_{C} - \frac{1}{9}\mathcal{C}\mathcal{H}\mu_{T}\right]I_{2}(m_{K}, 0, \mu) + \left[-\frac{4}{27}\mathcal{H}^{2}\mu_{C}\right]I_{2}(m_{\eta}, 0, \mu), \quad (D45)\\ \sqrt{3}\delta\mu_{\Sigma^{0}\Lambda}^{(\text{loop 2ad})} &= \left[\left(\frac{7}{3}D^{2} + 3F^{2} + \frac{11}{12}\mathcal{C}^{2}\right)\mu_{D} - 2DF\mu_{F} - \frac{5}{9}\mathcal{C}^{2}\mu_{C} - \frac{1}{18}(D + 6F)\mathcal{C}\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu)\\ &+ \left[\left(\frac{3}{2}D^{2} + \frac{15}{2}F^{2} + \frac{4}{3}\mathcal{C}^{2}\right)\mu_{D} - DF\mu_{F} - \frac{5}{18}\mathcal{C}^{2}\mu_{C} + \left(-\frac{4}{9}D - \frac{2}{3}F\right)\mathcal{C}\mu_{T}\right]I_{2}(m_{K}, 0, \mu)\\ &+ \left[\left(\frac{2}{3}D^{2} + \frac{1}{4}\mathcal{C}^{2}\right)\mu_{D} - \frac{1}{6}D\mathcal{C}\mu_{T}\right]I_{2}(m_{\eta}, 0, \mu), \quad (D46) \end{split}$$

$$\begin{split} \sqrt{2}\delta\mu_{\Delta^{+}p}^{(\text{loop 2ad})} &= \left[\frac{2}{3}(D+F)\mathcal{C}\mu_{D} + \frac{2}{3}(D+F)\mathcal{C}\mu_{F} - \frac{50}{81}\mathcal{C}\mathcal{H}\mu_{C} \right. \\ &+ \left(-\frac{3}{8}(D+F)^{2} - \frac{25}{108}(D+F)\mathcal{H} - \frac{43}{108}\mathcal{C}^{2} - \frac{25}{216}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[\frac{2}{9}(D+3F)\mathcal{C}\mu_{D} + \frac{2}{3}(D-F)\mathcal{C}\mu_{F} - \frac{10}{81}\mathcal{C}\mathcal{H}\mu_{C} \right. \\ &+ \left(-\frac{5}{12}D^{2} + \frac{1}{2}DF - \frac{3}{4}F^{2} - \frac{5}{27}F\mathcal{H} - \frac{17}{108}\mathcal{C}^{2} - \frac{5}{108}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[\left(-\frac{1}{24}D^{2} + \frac{1}{4}DF - \frac{3}{8}F^{2} + \frac{5}{108}(D-3F)\mathcal{H} - \frac{5}{216}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$
(D47)

$$\begin{split} \sqrt{2}\delta\mu_{\Delta^{0}n}^{(\text{loop 2ad})} &= \left[\frac{2}{3}(D+F)\mathcal{C}\mu_{D} + \frac{2}{3}(D+F)\mathcal{C}\mu_{F} - \frac{50}{81}\mathcal{C}\mathcal{H}\mu_{C} \right. \\ &+ \left(-\frac{3}{8}(D+F)^{2} - \frac{25}{108}(D+F)\mathcal{H} - \frac{43}{108}\mathcal{C}^{2} - \frac{25}{216}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[\frac{2}{9}(D+3F)\mathcal{C}\mu_{D} + \frac{2}{3}(D-F)\mathcal{C}\mu_{F} - \frac{10}{81}\mathcal{C}\mathcal{H}\mu_{C} \right. \\ &+ \left(-\frac{5}{12}D^{2} + \frac{1}{2}DF - \frac{3}{4}F^{2} - \frac{5}{27}F\mathcal{H} - \frac{17}{108}\mathcal{C}^{2} - \frac{5}{108}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[\left(-\frac{1}{24}D^{2} + \frac{1}{4}DF - \frac{3}{8}F^{2} + \frac{5}{108}(D-3F)\mathcal{H} - \frac{5}{216}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$
(D48)

$$\sqrt{6}\delta\mu_{\Sigma^{*0}\Lambda}^{(\text{loop 2ad})} = \left[\frac{2}{3}D\mathcal{C}\mu_{D} + \frac{4}{3}D\mathcal{C}\mu_{F} - \frac{20}{27}\mathcal{C}\mathcal{H}\mu_{C} + \left(-\frac{3}{4}D^{2} - \frac{5}{27}D\mathcal{H} - \frac{67}{144}\mathcal{C}^{2} - \frac{5}{54}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) \\
+ \left[2F\mathcal{C}\mu_{D} + \frac{2}{3}D\mathcal{C}\mu_{F} - \frac{10}{27}\mathcal{C}\mathcal{H}\mu_{C} + \left(-\frac{1}{4}(D^{2} + 9F^{2}) - \frac{5}{54}(D + 9F)\mathcal{H} - \frac{11}{36}\mathcal{C}^{2} - \frac{5}{27}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{K}, 0, \mu) \\
+ \left[\frac{2}{3}D\mathcal{C}\mu_{D} + \left(-\frac{1}{4}D^{2} - \frac{1}{16}\mathcal{C}^{2}\right)\mu_{T}\right]I_{2}(m_{\eta}, 0, \mu), \tag{D49}$$

$$\begin{split} \sqrt{2}\delta\mu_{\Sigma^{*0}\Sigma^{0}}^{(\text{loop 2ad})} &= \left[\frac{2}{9}(D+2F)\mathcal{C}\mu_{D} + \left(-\frac{1}{12}D^{2} - \frac{1}{2}F^{2} - \frac{5}{27}F\mathcal{H} - \frac{23}{432}\mathcal{C}^{2} - \frac{5}{162}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[\frac{2}{9}F\mathcal{C}\mu_{D} + \frac{2}{3}D\mathcal{C}\mu_{F} - \frac{10}{27}\mathcal{C}\mathcal{H}\mu_{C} + \left(-\frac{1}{4}(D^{2} + F^{2}) - \frac{5}{54}(D+F)\mathcal{H} - \frac{19}{108}\mathcal{C}^{2} - \frac{5}{81}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[\frac{2}{9}D\mathcal{C}\mu_{D} + \left(-\frac{1}{12}D^{2} - \frac{7}{144}\mathcal{C}^{2}\right)\mu_{T}\right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$
(D50)

$$\begin{split} \sqrt{2}\delta\mu_{\Sigma^{*+}\Sigma^{+}}^{(\text{loop 2ad})} &= \left[\frac{10}{9}F\mathcal{C}\mu_{D} + \frac{2}{3}F\mathcal{C}\mu_{F} + \frac{10}{81}\mathcal{C}\mathcal{H}\mu_{C} + \left(-\frac{1}{6}(D^{2} + 6F^{2}) - \frac{5}{54}(D + 3F)\mathcal{H} - \frac{1}{8}\mathcal{C}^{2} - \frac{5}{81}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[\frac{2}{9}(3D + F)\mathcal{C}\mu_{D} + \frac{2}{3}(D - F)\mathcal{C}\mu_{F} - \frac{70}{81}\mathcal{C}\mathcal{H}\mu_{C} + \left(-\frac{1}{2}(D^{2} + F^{2}) - \frac{5}{54}(D + 3F)\mathcal{H} - \frac{1}{3}\mathcal{C}^{2} - \frac{10}{81}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[\frac{2}{9}D\mathcal{C}\mu_{D} + \frac{2}{3}D\mathcal{C}\mu_{F} + \left(-\frac{1}{6}D^{2} - \frac{7}{72}\mathcal{C}^{2}\right)\mu_{T}\right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$
(D51)

$$\begin{split} \sqrt{2}\delta\mu_{\Sigma^{*}\Sigma^{-}}^{(\text{loop 2ad})} &= \left[\frac{4}{9}(D-2F)\mathcal{C}\mu_{D} - \frac{2}{3}F\mathcal{C}\mu_{F} - \frac{10}{81}\mathcal{C}\mathcal{H}\mu_{C} + \left(\frac{5}{54}(D-F)\mathcal{H} + \frac{1}{54}\mathcal{C}^{2}\right)\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[-\frac{2}{9}(3D-F)\mathcal{C}\mu_{D} + \frac{2}{3}(D+F)\mathcal{C}\mu_{F} + \frac{10}{81}\mathcal{C}\mathcal{H}\mu_{C} + \left(-\frac{5}{54}(D-F)\mathcal{H} - \frac{1}{54}\mathcal{C}^{2}\right)\mu_{T}\right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[\frac{2}{9}D\mathcal{C}\mu_{D} - \frac{2}{3}D\mathcal{C}\mu_{F}\right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$
(D52)

$$\begin{split} \sqrt{2}\delta\mu_{\Xi^{*0}\Xi^{0}}^{(\text{loop 2ad})} &= \left[\frac{2}{3}(D-F)\mathcal{C}\mu_{F} - \frac{10}{81}\mathcal{C}\mathcal{H}\mu_{C} + \left(-\frac{3}{8}(D-F)^{2} + \frac{5}{108}(D-F)\mathcal{H} - \frac{25}{216}\mathcal{C}^{2} - \frac{5}{216}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) \\ &+ \left[\frac{2}{3}(D+F)\mathcal{C}\mu_{D} + \frac{2}{3}(D+F)\mathcal{C}\mu_{F} - \frac{50}{81}\mathcal{C}\mathcal{H}\mu_{C} \right. \\ &+ \left(-\frac{5}{12}D^{2} - \frac{1}{2}DF - \frac{3}{4}F^{2} - \frac{5}{27}(D+2F)\mathcal{H} - \frac{37}{108}\mathcal{C}^{2} - \frac{5}{36}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{K}, 0, \mu) \\ &+ \left[\frac{2}{9}(D+3F)\mathcal{C}\mu_{D} + \left(-\frac{1}{24}D^{2} - \frac{1}{4}DF - \frac{3}{8}F^{2} - \frac{5}{108}(D+3F)\mathcal{H} - \frac{7}{72}\mathcal{C}^{2} - \frac{5}{216}\mathcal{H}^{2}\right)\mu_{T}\right]I_{2}(m_{\eta}, 0, \mu), \end{split}$$
(D53)

$$\sqrt{2}\delta\mu_{\Xi^{*-\Xi^{-}}}^{(\text{loop 2ad})} = \left[\frac{1}{3}(D-F)\mathcal{C}\mu_{D} + \frac{1}{3}(D-F)\mathcal{C}\mu_{F} - \frac{5}{81}\mathcal{C}\mathcal{H}\mu_{C} + \left(\frac{5}{54}(D-F)\mathcal{H} + \frac{1}{54}\mathcal{C}^{2}\right)\mu_{T}\right]I_{2}(m_{\pi}, 0, \mu) \\
+ \left[-\frac{2}{9}(D-3F)\mathcal{C}\mu_{D} - \frac{2}{3}(D+F)\mathcal{C}\mu_{F} - \frac{10}{81}\mathcal{C}\mathcal{H}\mu_{C} + \left(-\frac{5}{54}(D-F)\mathcal{H} - \frac{1}{54}\mathcal{C}^{2}\right)\mu_{T}\right]I_{2}(m_{K}, 0, \mu) \\
+ \left[-\frac{1}{9}(D+3F)\mathcal{C}\mu_{D} + \frac{1}{3}(D+3F)\mathcal{C}\mu_{F} + \frac{5}{27}\mathcal{C}\mathcal{H}\mu_{C}\right]I_{2}(m_{\eta}, 0, \mu).$$
(D54)

## 2. Figure 2(e)

The final expressions for the loop contribution Fig. 2(e) simply read

$$\delta\mu_n^{(\text{loop 2e})} = \left[\frac{5}{12}m_1 + \frac{1}{12}m_2 + \frac{5}{36}m_3\right]I_2(m_\pi, 0, \mu) + \left[\frac{1}{12}m_1 - \frac{1}{12}m_2 + \frac{1}{36}m_3\right]I_2(m_K, 0, \mu), \tag{D55}$$

$$\delta\mu_p^{(\text{loop 2e})} = \left[ -\frac{5}{12}m_1 - \frac{1}{12}m_2 - \frac{5}{36}m_3 \right] I_2(m_\pi, 0, \mu) + \left[ -\frac{1}{3}m_1 - \frac{1}{6}m_2 - \frac{1}{9}m_3 \right] I_2(m_K, 0, \mu), \tag{D56}$$

$$\delta\mu_{\Sigma^{-}}^{(\text{loop 2e})} = \left[\frac{1}{3}m_1 + \frac{1}{6}m_2 + \frac{1}{9}m_3\right]I_2(m_{\pi}, 0, \mu) + \left[-\frac{1}{12}m_1 + \frac{1}{12}m_2 - \frac{1}{36}m_3\right]I_2(m_K, 0, \mu), \tag{D57}$$

$$\delta\mu_{\Sigma^0}^{(\text{loop 2e})} = \left[ -\frac{1}{4} m_1 - \frac{1}{12} m_3 \right] I_2(m_K, 0, \mu), \tag{D58}$$

$$\delta\mu_{\Sigma^{+}}^{(\text{loop 2e})} = \left[-\frac{1}{3}m_{1} - \frac{1}{6}m_{2} - \frac{1}{9}m_{3}\right]I_{2}(m_{\pi}, 0, \mu) + \left[-\frac{5}{12}m_{1} - \frac{1}{12}m_{2} - \frac{5}{36}m_{3}\right]I_{2}(m_{K}, 0, \mu), \tag{D59}$$

$$\delta\mu_{\Xi^{-}}^{(\text{loop 2e})} = \left[-\frac{1}{12}m_1 + \frac{1}{12}m_2 - \frac{1}{36}m_3\right]I_2(m_{\pi}, 0, \mu) + \left[\frac{1}{3}m_1 + \frac{1}{6}m_2 + \frac{1}{9}m_3\right]I_2(m_K, 0, \mu), \tag{D60}$$

$$\delta\mu_{\Xi^0}^{(\text{loop 2e})} = \left[\frac{1}{12}m_1 - \frac{1}{12}m_2 + \frac{1}{36}m_3\right]I_2(m_\pi, 0, \mu) + \left[\frac{5}{12}m_1 + \frac{1}{12}m_2 + \frac{5}{36}m_3\right]I_2(m_K, 0, \mu), \tag{D61}$$

$$\delta\mu_{\Lambda}^{(\text{loop 2e})} = \left[\frac{1}{4}m_1 + \frac{1}{12}m_3\right]I_2(m_K, 0, \mu),\tag{D62}$$

$$\sqrt{3}\delta\mu_{\Sigma^0\Lambda}^{(\text{loop 2e})} = \left[-\frac{1}{2}m_1 - \frac{1}{6}m_3\right]I_2(m_\pi, 0, \mu) + \left[-\frac{1}{4}m_1 - \frac{1}{12}m_3\right]I_2(m_K, 0, \mu),\tag{D63}$$

$$\delta\mu_{\Delta^{++}}^{(\text{loop 2e})} = \left[ -\frac{3}{4}m_1 - \frac{3}{4}m_2 - \frac{5}{4}m_3 \right] I_2(m_\pi, 0, \mu) + \left[ -\frac{3}{4}m_1 - \frac{3}{4}m_2 - \frac{5}{4}m_3 \right] I_2(m_K, 0, \mu), \tag{D64}$$

$$\delta\mu_{\Delta^+}^{(\text{loop 2e})} = \left[ -\frac{1}{4}m_1 - \frac{1}{4}m_2 - \frac{5}{12}m_3 \right] I_2(m_\pi, 0, \mu) + \left[ -\frac{1}{2}m_1 - \frac{1}{2}m_2 - \frac{5}{6}m_3 \right] I_2(m_K, 0, \mu), \tag{D65}$$

$$\delta\mu_{\Delta^0}^{(\text{loop 2e})} = \left[\frac{1}{4}m_1 + \frac{1}{4}m_2 + \frac{5}{12}m_3\right]I_2(m_\pi, 0, \mu) + \left[-\frac{1}{4}m_1 - \frac{1}{4}m_2 - \frac{5}{12}m_3\right]I_2(m_K, 0, \mu), \tag{D66}$$

$$\delta\mu_{\Delta^{-}}^{(\text{loop 2e})} = \left[\frac{3}{4}m_1 + \frac{3}{4}m_2 + \frac{5}{4}m_3\right]I_2(m_{\pi}, 0, \mu),\tag{D67}$$

$$\delta\mu_{\Sigma^{*+}}^{(\text{loop 2e})} = \left[-\frac{1}{2}m_1 - \frac{1}{2}m_2 - \frac{5}{6}m_3\right]I_2(m_{\pi}, 0, \mu) + \left[-\frac{1}{4}m_1 - \frac{1}{4}m_2 - \frac{5}{12}m_3\right]I_2(m_K, 0, \mu), \tag{D68}$$

$$\delta\mu_{\Sigma^{*0}}^{(\text{loop 2e})} = 0, \tag{D69}$$

$$\delta\mu_{\Sigma^{*-}}^{(\text{loop 2e})} = \left[\frac{1}{2}m_1 + \frac{1}{2}m_2 + \frac{5}{6}m_3\right]I_2(m_{\pi}, 0, \mu) + \left[\frac{1}{4}m_1 + \frac{1}{4}m_2 + \frac{5}{12}m_3\right]I_2(m_K, 0, \mu), \tag{D70}$$

$$\delta\mu_{\Xi^{*0}}^{(\text{loop 2e})} = \left[ -\frac{1}{4}m_1 - \frac{1}{4}m_2 - \frac{5}{12}m_3 \right] I_2(m_\pi, 0, \mu) + \left[ \frac{1}{4}m_1 + \frac{1}{4}m_2 + \frac{5}{12}m_3 \right] I_2(m_K, 0, \mu), \tag{D71}$$

$$\delta\mu_{\Xi^{*-}}^{(\text{loop 2e})} = \left[\frac{1}{4}m_1 + \frac{1}{4}m_2 + \frac{5}{12}m_3\right]I_2(m_{\pi}, 0, \mu) + \left[\frac{1}{2}m_1 + \frac{1}{2}m_2 + \frac{5}{6}m_3\right]I_2(m_K, 0, \mu), \tag{D72}$$

$$\delta\mu_{\Omega^{-}}^{(\text{loop 2e})} = \left[\frac{3}{4}m_1 + \frac{3}{4}m_2 + \frac{5}{4}m_3\right]I_2(m_K, 0, \mu),\tag{D73}$$

$$\sqrt{2}\delta\mu_{\Delta^+p}^{(\text{loop 2e})} = \left[-\frac{2}{3}m_1 - \frac{1}{3}m_4\right]I_2(m_\pi, 0, \mu) + \left[-\frac{1}{3}m_1 - \frac{1}{6}m_4\right]I_2(m_K, 0, \mu),\tag{D74}$$

$$\sqrt{2}\delta\mu_{\Delta^0 n}^{(\text{loop 2e})} = \left[-\frac{2}{3}m_1 - \frac{1}{3}m_4\right]I_2(m_\pi, 0, \mu) + \left[-\frac{1}{3}m_1 - \frac{1}{6}m_4\right]I_2(m_K, 0, \mu),\tag{D75}$$

$$\sqrt{6}\delta\mu_{\Sigma^{*0}\Lambda}^{(\text{loop 2e})} = \left[-m_1 - \frac{1}{2}m_4\right]I_2(m_\pi, 0, \mu) + \left[-\frac{1}{2}m_1 - \frac{1}{4}m_4\right]I_2(m_K, 0, \mu), \tag{D76}$$

## 114024-85

$$\sqrt{2}\delta\mu_{\Sigma^{*0}\Sigma^{0}}^{(\text{loop 2e})} = \left[-\frac{1}{2}m_{1} - \frac{1}{4}m_{4}\right]I_{2}(m_{K}, 0, \mu), \tag{D77}$$

$$\sqrt{2}\delta\mu_{\Sigma^{*+}\Sigma^{+}}^{(\text{loop }2e)} = \left[-\frac{1}{3}m_{1} - \frac{1}{6}m_{4}\right]I_{2}(m_{\pi}, 0, \mu) + \left[-\frac{2}{3}m_{1} - \frac{1}{3}m_{4}\right]I_{2}(m_{K}, 0, \mu),$$
(D78)

$$\sqrt{2}\delta\mu_{\Sigma^{*}-\Sigma^{-}}^{(\text{loop 2e})} = \left[\frac{1}{3}m_{1} + \frac{1}{6}m_{4}\right]I_{2}(m_{\pi}, 0, \mu) + \left[-\frac{1}{3}m_{1} - \frac{1}{6}m_{4}\right]I_{2}(m_{K}, 0, \mu), \tag{D79}$$

$$\sqrt{2}\delta\mu_{\Xi^{*0}\Xi^{0}}^{(\text{loop 2e})} = \left[-\frac{1}{3}m_{1} - \frac{1}{6}m_{4}\right]I_{2}(m_{\pi}, 0, \mu) + \left[-\frac{2}{3}m_{1} - \frac{1}{3}m_{4}\right]I_{2}(m_{K}, 0, \mu), \tag{D80}$$

$$\sqrt{2}\delta\mu_{\Xi^{*-}\Xi^{-}}^{(\text{loop 2e})} = \left[\frac{1}{3}m_{1} + \frac{1}{6}m_{4}\right]I_{2}(m_{\pi}, 0, \mu) + \left[-\frac{1}{3}m_{1} - \frac{1}{6}m_{4}\right]I_{2}(m_{K}, 0, \mu).$$
(D81)

The use of relations (21) to rewrite the above expressions in terms of the SU(3) invariants  $\mu_D$ ,  $\mu_F$ ,  $\mu_C$ , and  $\mu_T$  yields

$$\delta\mu_n^{(\text{loop 2e})} = \frac{1}{2}(\mu_D + \mu_F)I_2(m_\pi, 0, \mu) + \frac{1}{2}(\mu_D - \mu_F)I_2(m_K, 0, \mu), \tag{D82}$$

$$\delta\mu_p^{(\text{loop 2e})} = -\frac{1}{2}(\mu_D + \mu_F)I_2(m_\pi, 0, \mu) - \mu_F I_2(m_K, 0, \mu),$$
(D83)

$$\delta\mu_{\Sigma^{-}}^{(\text{loop 2e})} = \mu_F I_2(m_{\pi}, 0, \mu) - \frac{1}{2}(\mu_D - \mu_F) I_2(m_K, 0, \mu), \tag{D84}$$

$$\delta\mu_{\Sigma^0}^{(\text{loop 2e})} = -\frac{1}{2}\mu_D I_2(m_K, 0, \mu), \tag{D85}$$

$$\delta\mu_{\Sigma^+}^{(\text{loop 2e})} = -\mu_F I_2(m_\pi, 0, \mu) - \frac{1}{2}(\mu_D + \mu_F) I_2(m_K, 0, \mu),$$
(D86)

$$\delta\mu_{\Xi^{-}}^{(\text{loop 2e})} = -\frac{1}{2}(\mu_D - \mu_F)I_2(m_{\pi}, 0, \mu) + \mu_F I_2(m_K, 0, \mu), \tag{D87}$$

$$\delta\mu_{\Xi^0}^{(\text{loop 2e})} = \frac{1}{2}(\mu_D - \mu_F)I_2(m_\pi, 0, \mu) + \frac{1}{2}(\mu_D + \mu_F)I_2(m_K, 0, \mu),$$
(D88)

$$\delta\mu_{\Lambda}^{(\text{loop 2e})} = \frac{1}{2}\mu_{D}I_{2}(m_{K}, 0, \mu), \tag{D89}$$

$$\sqrt{3}\delta\mu_{\Sigma^0\Lambda}^{(\text{loop 2e})} = -\mu_D I_2(m_\pi, 0, \mu) - \frac{1}{2}\mu_D I_2(m_K, 0, \mu),$$
(D90)

$$\delta\mu_{\Delta^{++}}^{(\text{loop 2e})} = -\frac{3}{2}\mu_C I_2(m_{\pi}, 0, \mu) - \frac{3}{2}\mu_C I_2(m_K, 0, \mu), \tag{D91}$$

$$\delta\mu_{\Delta^+}^{(\text{loop 2e})} = -\frac{1}{2}\mu_C I_2(m_\pi, 0, \mu) - \mu_C I_2(m_K, 0, \mu),$$
(D92)

$$\delta\mu_{\Delta^0}^{(\text{loop 2e})} = \frac{1}{2}\mu_C I_2(m_\pi, 0, \mu) - \frac{1}{2}\mu_C I_2(m_K, 0, \mu), \tag{D93}$$

$$\delta\mu_{\Delta^-}^{(\text{loop 2e})} = \frac{3}{2}\mu_C I_2(m_\pi, 0, \mu), \tag{D94}$$

$$\delta\mu_{\Sigma^{*+}}^{(\text{loop 2e})} = -\mu_C I_2(m_\pi, 0, \mu) - \frac{1}{2}\mu_C I_2(m_K, 0, \mu),$$
(D95)

## 114024-86

$$\delta\mu_{\Sigma^{*0}}^{(\text{loop 2e})} = 0, \tag{D96}$$

$$\delta\mu_{\Sigma^{*-}}^{(\text{loop 2e})} = \mu_C I_2(m_\pi, 0, \mu) + \frac{1}{2}\mu_C I_2(m_K, 0, \mu), \tag{D97}$$

$$\delta\mu_{\Xi^{*0}}^{(\text{loop 2e})} = -\frac{1}{2}\mu_C I_2(m_\pi, 0, \mu) + \frac{1}{2}\mu_C I_2(m_K, 0, \mu), \tag{D98}$$

$$\delta\mu_{\Xi^{*-}}^{(\text{loop 2e})} = \frac{1}{2}\mu_C I_2(m_\pi, 0, \mu) + \mu_C I_2(m_K, 0, \mu), \tag{D99}$$

$$\delta\mu_{\Omega^{-}}^{(\text{loop 2e})} = \frac{3}{2}\mu_{C}I_{2}(m_{K}, 0, \mu), \tag{D100}$$

$$\sqrt{2}\delta\mu_{\Delta^+p}^{(\text{loop 2e})} = \frac{1}{3}\mu_T I_2(m_\pi, 0, \mu) + \frac{1}{6}\mu_T I_2(m_K, 0, \mu),$$
(D101)

$$\sqrt{2}\delta\mu_{\Delta^0 n}^{(\text{loop 2e})} = \frac{1}{3}\mu_T I_2(m_\pi, 0, \mu) + \frac{1}{6}\mu_T I_2(m_K, 0, \mu),$$
(D102)

$$\sqrt{6}\delta\mu_{\Sigma^{*0}\Lambda}^{(\text{loop 2e})} = \frac{1}{2}\mu_T I_2(m_\pi, 0, \mu) + \frac{1}{4}\mu_T I_2(m_K, 0, \mu),$$
(D103)

$$\sqrt{2}\delta\mu_{\Sigma^{*0}\Sigma^{0}}^{(\text{loop 2e})} = \frac{1}{4}\mu_{T}I_{2}(m_{K}, 0, \mu),$$
(D104)

$$\sqrt{2}\delta\mu_{\Sigma^{*+}\Sigma^{+}}^{(\text{loop 2e})} = \frac{1}{6}\mu_{T}I_{2}(m_{\pi}, 0, \mu) + \frac{1}{3}\mu_{T}I_{2}(m_{K}, 0, \mu),$$
(D105)

$$\sqrt{2}\delta\mu_{\Sigma^{*}-\Sigma^{-}}^{(\text{loop }2e)} = -\frac{1}{6}\mu_{T}I_{2}(m_{\pi},0,\mu) + \frac{1}{6}\mu_{T}I_{2}(m_{K},0,\mu),$$
(D106)

$$\sqrt{2}\delta\mu_{\Xi^{*0}\Xi^{0}}^{(\text{loop 2e})} = \frac{1}{6}\mu_{T}I_{2}(m_{\pi}, 0, \mu) + \frac{1}{3}\mu_{T}I_{2}(m_{K}, 0, \mu),$$
(D107)

$$\sqrt{2}\delta\mu_{\Xi^{*-}\Xi^{-}}^{(\text{loop 2e})} = -\frac{1}{6}\mu_{T}I_{2}(m_{\pi}, 0, \mu) + \frac{1}{6}\mu_{T}I_{2}(m_{K}, 0, \mu).$$
(D108)

## APPENDIX E: COMPLETE EXPRESSIONS FROM EXPLICIT SYMMETRY BREAKING CORRECTIONS

Contributions to baryon magnetic moments due to explicit SB for  $N_f = N_c = 3$  read

$$\sqrt{3}\delta\mu_n^{\rm SB} = \frac{1}{2}m_1^{1,1} + \frac{1}{12}m_3^{1,1} - \frac{1}{2}n_1^{1,8} - \frac{1}{6}n_2^{1,8} - \frac{1}{6}n_3^{1,8} - \frac{1}{3}m_2^{1,10+\overline{10}} - \frac{1}{3}m_2^{1,27} - \frac{1}{9}\bar{c}_3^{1,27},\tag{E1}$$

$$\sqrt{3}\delta\mu_p^{\rm SB} = \frac{1}{2}m_1^{1,1} + \frac{1}{12}m_3^{1,1} + \frac{1}{3}n_1^{1,8} + \frac{1}{9}n_3^{1,8} + \frac{1}{3}m_2^{1,10+\overline{10}} + \frac{2}{3}m_2^{1,27} + \frac{1}{3}m_3^{1,27} + \frac{1}{6}\bar{c}_3^{1,27}, \tag{E2}$$

$$\sqrt{3}\delta\mu_{\Lambda}^{\rm SB} = \frac{1}{2}m_1^{1,1} + \frac{1}{12}m_3^{1,1} + \frac{1}{6}n_1^{1,8} + \frac{1}{18}n_3^{1,8} + \frac{1}{9}\bar{c}_3^{1,27},\tag{E3}$$

$$\sqrt{3}\delta\mu_{\Sigma^0}^{\rm SB} = \frac{1}{2}m_1^{1,1} + \frac{1}{12}m_3^{1,1} - \frac{1}{6}n_1^{1,8} - \frac{1}{18}n_3^{1,8} + \frac{1}{9}\bar{c}_3^{1,27},\tag{E4}$$

$$\sqrt{3}\delta\mu_{\Sigma^{+}}^{\mathrm{SB}} = \frac{1}{2}m_{1}^{1,1} + \frac{1}{12}m_{3}^{1,1} + \frac{1}{6}n_{1}^{1,8} + \frac{1}{6}n_{2}^{1,8} + \frac{1}{18}n_{3}^{1,8} - \frac{1}{3}m_{2}^{1,10+\overline{10}} + \frac{1}{3}m_{2}^{1,27} + \frac{1}{3}\bar{c}_{3}^{1,27}, \tag{E5}$$

$$\sqrt{3}\delta\mu_{\Sigma^{-}}^{\mathrm{SB}} = \frac{1}{2}m_{1}^{1,1} + \frac{1}{12}m_{3}^{1,1} - \frac{1}{2}n_{1}^{1,8} - \frac{1}{6}n_{2}^{1,8} - \frac{1}{6}n_{3}^{1,8} + \frac{1}{3}m_{2}^{1,10+\overline{10}} - \frac{1}{3}m_{2}^{1,27} - \frac{1}{9}\bar{c}_{3}^{1,27}, \tag{E6}$$

$$\sqrt{3}\delta\mu_{\Xi^{0}}^{\mathrm{SB}} = \frac{1}{2}m_{1}^{1,1} + \frac{1}{12}m_{3}^{1,1} + \frac{1}{6}n_{1}^{1,8} + \frac{1}{6}n_{2}^{1,8} + \frac{1}{18}n_{3}^{1,8} + \frac{1}{3}m_{2}^{1,10+\overline{10}} + \frac{1}{3}m_{2}^{1,27} + \frac{1}{3}\bar{c}_{3}^{1,27}, \tag{E7}$$

$$\sqrt{3}\delta\mu_{\Xi^{-}}^{\mathrm{SB}} = \frac{1}{2}m_{1}^{1,1} + \frac{1}{12}m_{3}^{1,1} + \frac{1}{3}n_{1}^{1,8} + \frac{1}{9}n_{3}^{1,8} - \frac{1}{3}m_{2}^{1,10+\overline{10}} + \frac{2}{3}m_{2}^{1,27} + \frac{1}{3}m_{3}^{1,27} + \frac{1}{6}\bar{c}_{3}^{1,27}, \tag{E8}$$

$$\delta\mu_{\Sigma^0\Lambda}^{\rm SB} = \frac{1}{6}n_1^{1,8} + \frac{1}{18}n_3^{1,8},\tag{E9}$$

$$\sqrt{3}\delta\mu_{\Delta^{++}}^{\mathrm{SB}} = \frac{3}{2}m_1^{1,1} + \frac{5}{4}m_3^{1,1} + \frac{1}{2}n_1^{1,8} + \frac{1}{2}n_2^{1,8} + \frac{5}{6}n_3^{1,8} + 2m_2^{1,27} + 2m_3^{1,27} + \frac{5}{3}\bar{c}_3^{1,27}, \tag{E10}$$

$$\sqrt{3}\delta\mu_{\Delta^{+}}^{\text{SB}} = \frac{3}{2}m_{1}^{1,1} + \frac{5}{4}m_{3}^{1,1} + m_{2}^{1,27} + m_{3}^{1,27} + \frac{5}{6}\bar{c}_{3}^{1,27}, \tag{E11}$$

$$\sqrt{3}\delta\mu_{\Delta^0}^{\rm SB} = \frac{3}{2}m_1^{1,1} + \frac{5}{4}m_3^{1,1} - \frac{1}{2}n_1^{1,8} - \frac{1}{2}n_2^{1,8} - \frac{5}{6}n_3^{1,8},\tag{E12}$$

$$\sqrt{3}\delta\mu_{\Delta^{-}}^{\rm SB} = \frac{3}{2}m_1^{1,1} + \frac{5}{4}m_3^{1,1} - n_1^{1,8} - n_2^{1,8} - \frac{5}{3}n_3^{1,8} - m_2^{1,27} - m_3^{1,27} - \frac{5}{6}\bar{c}_3^{1,27}, \tag{E13}$$

$$\sqrt{3}\delta\mu_{\Sigma^{*+}}^{\mathrm{SB}} = \frac{3}{2}m_1^{1,1} + \frac{5}{4}m_3^{1,1} + \frac{1}{2}n_1^{1,8} + \frac{1}{2}n_2^{1,8} + \frac{5}{6}n_3^{1,8}, \tag{E14}$$

$$\sqrt{3}\delta\mu_{\Sigma^{*-}}^{\mathrm{SB}} = \frac{3}{2}m_1^{1,1} + \frac{5}{4}m_3^{1,1} - \frac{1}{2}n_1^{1,8} - \frac{1}{2}n_2^{1,8} - \frac{5}{6}n_3^{1,8}, \tag{E15}$$

$$\sqrt{3}\delta\mu_{\Sigma^{*0}}^{\mathrm{SB}} = \frac{3}{2}m_1^{1,1} + \frac{5}{4}m_3^{1,1},\tag{E16}$$

$$\sqrt{3}\delta\mu_{\Xi^{*0}}^{\mathrm{SB}} = \frac{3}{2}m_1^{1,1} + \frac{5}{4}m_3^{1,1} + \frac{1}{2}n_1^{1,8} + \frac{1}{2}n_2^{1,8} + \frac{5}{6}n_3^{1,8}, \tag{E17}$$

$$\sqrt{3}\delta\mu_{\Xi^{*-}}^{\mathrm{SB}} = \frac{3}{2}m_1^{1,1} + \frac{5}{4}m_3^{1,1} + m_2^{1,27} + m_3^{1,27} + \frac{5}{6}\bar{c}_3^{1,27},\tag{E18}$$

$$\sqrt{3}\delta\mu_{\Omega^{-}}^{\mathrm{SB}} = \frac{3}{2}m_{1}^{1,1} + \frac{5}{4}m_{3}^{1,1} + \frac{1}{2}n_{1}^{1,8} + \frac{1}{2}n_{2}^{1,8} + \frac{5}{6}n_{3}^{1,8} + 2m_{2}^{1,27} + 2m_{3}^{1,27} + \frac{5}{3}\bar{c}_{3}^{1,27}, \tag{E19}$$

$$\sqrt{6}\delta\mu_{\Delta^+p}^{\rm SB} = \frac{2}{3}n_1^{1,8} + \frac{1}{3}\bar{n}_3^{1,8} + \frac{2}{3}m_2^{1,10+\overline{10}} + \frac{1}{3}m_3^{1,10+\overline{10}} + \frac{2}{3}m_2^{1,27} + \frac{1}{3}\bar{c}_3^{1,27}, \tag{E20}$$

$$\sqrt{6}\delta\mu_{\Delta^0 n}^{\rm SB} = \frac{2}{3}n_1^{1,8} + \frac{1}{3}\bar{n}_3^{1,8} + \frac{2}{3}m_2^{1,10+\overline{10}} + \frac{1}{3}m_3^{1,10+\overline{10}} + \frac{2}{3}m_2^{1,27} + \frac{1}{3}\bar{c}_3^{1,27}, \tag{E21}$$

$$\sqrt{2}\delta\mu_{\Sigma^{*0}\Lambda}^{\text{SB}} = \frac{1}{3}n_1^{1,8} + \frac{1}{6}\bar{n}_3^{1,8} - \frac{1}{9}\bar{c}_3^{1,27},\tag{E22}$$

$$\sqrt{6}\delta\mu_{\Sigma^{*0}\Sigma^{0}}^{\text{SB}} = -\frac{1}{3}n_{1}^{1,8} - \frac{1}{6}\bar{n}_{3}^{1,8} + \frac{1}{9}\bar{c}_{3}^{1,27},\tag{E23}$$

$$\sqrt{6}\delta\mu_{\Sigma^{*+}\Sigma^{+}}^{\text{SB}} = -\frac{2}{3}m_{2}^{1,\mathbf{10}+\overline{\mathbf{10}}} - \frac{1}{3}m_{3}^{1,\mathbf{10}+\overline{\mathbf{10}}} + \frac{2}{3}m_{2}^{1,\mathbf{27}} + \frac{5}{9}\bar{c}_{3}^{1,\mathbf{27}}, \tag{E24}$$

$$\sqrt{6}\delta\mu_{\Sigma^{*-}\Sigma^{-}}^{\mathrm{SB}} = -\frac{2}{3}n_{1}^{1,8} - \frac{1}{3}\bar{n}_{3}^{1,8} + \frac{2}{3}m_{2}^{1,10+\overline{10}} + \frac{1}{3}m_{3}^{1,10+\overline{10}} - \frac{2}{3}m_{2}^{1,27} - \frac{1}{3}\bar{c}_{3}^{1,27}, \tag{E25}$$

$$\sqrt{6}\delta\mu_{\Xi^{*0}\Xi^{0}}^{\mathrm{SB}} = -\frac{2}{3}m_{2}^{1,\mathbf{10}+\overline{\mathbf{10}}} - \frac{1}{3}m_{3}^{1,\mathbf{10}+\overline{\mathbf{10}}} - \frac{2}{3}m_{2}^{1,\mathbf{27}} - \frac{5}{9}\bar{c}_{3}^{1,\mathbf{27}}, \tag{E26}$$

$$\sqrt{6}\delta\mu_{\Xi^{*-}\Xi^{-}}^{\text{SB}} = -\frac{2}{3}n_{1}^{1,8} - \frac{1}{3}\bar{n}_{3}^{1,8} + \frac{2}{3}m_{2}^{1,10+\overline{10}} + \frac{1}{3}m_{3}^{1,10+\overline{10}} - \frac{2}{3}m_{2}^{1,27} - \frac{1}{3}\bar{c}_{3}^{1,27}.$$
(E27)

- S. R. Coleman and S. L. Glashow, Electrodynamic Properties of Baryons in the Unitary Symmetry Scheme, Phys. Rev. Lett. 6, 423 (1961).
- [2] R. Flores-Mendieta, Baryon magnetic moments in large-N<sub>c</sub> chiral perturbation theory, Phys. Rev. D 80, 094014 (2009).
- [3] Y. Xiao, X. L. Ren, J. X. Lu, L. S. Geng, and U. G. Meißner, Octet baryon magnetic moments at next-to-next-to-leading order in covariant chiral perturbation theory, Eur. Phys. J. C 78, 489 (2018).
- [4] D. G. Caldi and H. Pagels, Chiral perturbation theory and the magnetic moments of the baryon octet, Phys. Rev. D 10, 3739 (1974).
- [5] E. E. Jenkins and A. V. Manohar, Baryon chiral perturbation theory using a heavy fermion Lagrangian, Phys. Lett. B 255, 558 (1991).
- [6] E. E. Jenkins and A. V. Manohar, Chiral corrections to the baryon axial currents, Phys. Lett. B 259, 353 (1991).
- [7] R. F. Dashen and A. V. Manohar, Baryon-pion couplings from large-N<sub>c</sub> QCD, Phys. Lett. B **315**, 425 (1993).
- [8] R. F. Dashen and A. V. Manohar,  $1/N_c$  corrections to the baryon axial currents in QCD, Phys. Lett. B **315**, 438 (1993).
- [9] R. F. Dashen, E. E. Jenkins, and A. V. Manohar, The  $1/N_c$  expansion for baryons, Phys. Rev. D **49**, 4713 (1994); Erratum, Phys. Rev. D **51**, 2489 (1995).
- [10] R. F. Dashen, E. E. Jenkins, and A. V. Manohar, Spin flavor structure of large N<sub>c</sub> baryons, Phys. Rev. D 51, 3697 (1995).
- [11] J. Dai, R. F. Dashen, E. E. Jenkins, and A. V. Manohar, Flavor symmetry breaking in the  $1/N_c$  expansion, Phys. Rev. D 53, 273 (1996).
- [12] E. E. Jenkins, M. E. Luke, A. V. Manohar, and M. J. Savage, Chiral perturbation theory analysis of the baryon magnetic moments, Phys. Lett. B **302**, 482 (1993); Erratum, Phys. Lett. B **388**, 866 (1996).
- [13] M. A. Luty, J. March-Russell, and M. J. White, Baryon magnetic moments in a simultaneous expansion in  $1/N_c$  and  $m_s$ , Phys. Rev. D **51**, 2332 (1995).
- [14] E. E. Jenkins, Chiral Lagrangian for baryons in the  $1/N_c$  expansion, Phys. Rev. D 53, 2625 (1996).

- [15] G. Ahuatzin, R. Flores-Mendieta, M. A. Hernandez-Ruiz, and C. P. Hofmann, Baryon magnetic moments in large- $N_c$ chiral perturbation theory: Effects of the decuplet-octet mass difference and flavor symmetry breaking, Phys. Rev. D **89**, 034012 (2014).
- [16] R. Flores-Mendieta, C. I. Garcia, and J. Hernandez, Baryon axial vector current in large- $N_c$  chiral perturbation theory: Complete analysis for  $N_c = 3$ , Phys. Rev. D **103**, 094032 (2021).
- [17] P. A. Zyla *et al.* (Particle Data Group), Review of particle physics, Prog. Theor. Exp. Phys. **2020**, 083C01 (2020).
- [18] R. Flores-Mendieta, C. P. Hofmann, E. E. Jenkins, and A. V. Manohar, On the structure of large  $N_c$  cancellations in baryon chiral perturbation theory, Phys. Rev. D **62**, 034001 (2000).
- [19] R. F. Lebed and D. R. Martin, Complete analysis of baryon magnetic moments in  $1/N_c$ , Phys. Rev. D **70**, 016008 (2004).
- [20] A. Krause, Baryon matrix elements of the vector current in chiral perturbation theory, Helv. Phys. Acta 63, 3 (1990).
- [21] G. Lopez-Castro and A. Mariano, Determination of the  $\Delta^{++}$  magnetic dipole moment, Phys. Lett. B **517**, 339 (2001).
- [22] D. Keller *et al.* (CLAS Collaboration), Electromagnetic decay of the  $\Sigma^0(1385)$  to  $\Lambda\gamma$ , Phys. Rev. D **83**, 072004 (2011).
- [23] D. Keller *et al.* (CLAS Collaboration), Branching ratio of the electromagnetic decay of the  $\Sigma^+(1385)$ , Phys. Rev. D **85**, 052004 (2012).
- [24] U. G. Meissner and S. Steininger, Baryon magnetic moments in chiral perturbation theory, Nucl. Phys. B499, 349 (1997).
- [25] B. Kubis and U. G. Meissner, Baryon form-factors in chiral perturbation theory, Eur. Phys. J. C 18, 747 (2001).
- [26] D. Severt, U. G. Meißner, and J. Gegelia, Flavor decomposition of the pion-nucleon  $\sigma$ -term, J. High Energy Phys. 03 (2019) 202.
- [27] M. R. Schindler and D. R. Phillips, Bayesian methods for parameter estimation in effective field theories, Ann. Phys. (Amsterdam) **324**, 682 (2009); Erratum, Ann. Phys. (Amsterdam) **324**, 2051 (2009).