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We revisit the three nonstrange pentaquarks ½1
2
1
2
−�S¼0;1 and ½12 32−�S¼1 predicted using the holographic dual

description, where chiral and heavy quark symmetry are manifest in the triple limit of a large number of
colors, large quark mass and strong ’t Hooft gauge coupling. In the heavy quark limit, the pentaquarks with
internal heavy quark spin S are all degenerate. The holographic pentaquarks are dual to an instanton bound
to heavy mesons in bulk, without the shortcomings related to the nature of the interaction and the choice of
the hard core inherent to the molecular constructions. We explicitly derive the spin-spin and spin-orbit
couplings arising from next to leading order in the heavy quark mass, and lift totally the internal spin
degeneracy, in fair agreement with the newly reported charmed pentaquarks from LHCb. New charm and
bottom pentaquark states are predicted.
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I. INTRODUCTION

Recently the LHCb Collaboration revisited its analysis of
the pentaquark states using a ninefold increase in recon-
structed Λ0

b → J=ΨpK− decays from the LHCb Run-2 data
batch at 13 TeV [1]. The LHCb new high statistics analysis
shows that the previously reported Pþ

c ð4450Þ [2] splits into
two narrow peaks Pþ

c ð4440Þ and Pþ
c ð4457Þ below the

Σþ
c D̄�0 threshold, with the appearance of a new and narrow

Pþ
c ð4312Þ state below the Σþ

c D̄0. The evidence for the
previously reported state Pþ

c ð4380Þ [2] has weakened.
We regard the new LHCb data as evidence that supports

the three lowest nonstrange pentaquarks with spin-isospin
assignments ½1

2
1
2
−�S¼0;1 and ½12 32−�S¼1 predicted by holography

[3], in the triple limit of a large number of colors, strong
’t Hooft gauge coupling and a large quark mass. More
importantly, we will show below that the degeneracy in the

internal heavy quark spin S ¼ 1 is lifted by spin-orbit effects
at next to leading order in the heavy quark mass as heavy
quark symmetry is broken, in fair agreement with the new
data. Furthermore, we regard the closeness of the penta-
quarks Pþ

c ð4457Þ and Pþ
c ð4312Þ to the Σþ

c D̄�0 and Σþ
c D̄0

thresholds respectively, as further evidence in support of this
construction, as both thresholds coalesce in the heavy
quark limit.
Pentaquark states with hidden charm were initially sug-

gested in [4,5], and since have been addressed by many (see
[6–12] and references therein). In short, the current descrip-
tions range from pentaquarks made of compact diquarks
[13,14], to hadrocharmonia [15] and loosely bound hadronic
molecules [16] (see also references therein). Heavy penta-
quarks, as multiquark states composed of heavy and light
quarks, fall outside the realm of the canonical quark model.
Their description calls for a novel hadronic paradigm with
manifest chiral and heavy quark symmetry.
It is well established that chiral symmetry dictates most of

the interactions between light quarks, while heavy quark
symmetry organizes the spin interactions between heavy
quarks [17,18]. Both symmetries are intertwined by the
phenomenon of chiral doubling [19–21], as shown exper-
imentally in [22,23]. Therefore, a theoretical approach to the
multiquark states should have manifest chiral and heavy
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quark symmetry, a clear organizational principle in the
confining regime, and should address concisely the multi-
body bound state problem.
The holographic principle in general [24,25], and the

D4-D8-D8̄ holographic setup in particular [26] provide a
framework for addressing QCD in the infrared in the double
limit of a large number of colors and strong ’t Hooft gauge
coupling λ ¼ g2YMNc. It is confining and exhibits sponta-
neous chiral symmetry breaking geometrically. The light
meson sector is well described by an effective action with
manifest chiral symmetry and very few parameters, yet
totally in line with more elaborate effective theories of QCD
[27]. The same setup can be minimally modified to account
for the description of heavy-light mesons, with manifest
heavy quark symmetry [3,28–31].
Light and heavy-light baryons are dual to instantons and

instanton-heavy meson bound states in bulk [32–37],
providing a robust geometrical approach to the multibody
bound state problem. The holographic construction pro-
vides a dual realization of the chiral soliton approach and its
bound state variants [38,39], without the shortcomings
of the derivative expansion. It is a geometrical realization of
the molecular approach [4,5], without the ambiguities
of the nature of the meson exchanges, and the arbitrariness
in the choice of the many couplings and form factors [40].
Alternative holographic models for the description of heavy
hadrons have been developed in [41,42].
The organization of the paper is as follows: In Sec. II we

recall the essential aspects of the Nf ¼ 2 heavy-light
effective action in leading order in the heavy quark mass
introduced in [3,28]. In Sec. III we extend this analysis at
next to leading order in the heavy quark mass for the bound
heavy baryons seeded by instantons in bulk. In Sec. IV we
detail the spin-orbit and spin-spin effects for the heavy
baryons and their exotics. The induced quantum effective
potentials are made explicit in Sec. V. In Sec. VI we derive
the holographic mass formula for the heavy-light baryons
and their exotic pentaquarks, including the spin contribu-
tions. By adjusting the chief Kaluza-Klein scale used in
[3,29], a more refined heavy-baryon spectrum emerges,
including the newly reported charmed pentaquarks by
LHCb. Our conclusions are in Sec. VII. A number of
Appendixes are added to support the various results.

II. HOLOGRAPHIC HEAVY-LIGHT EFFECTIVE
ACTION

The D4-D8-D8̄ setup for light flavor branes is standard
[26]. The minimal modification that accommodates heavy
mesons makes use of an extra-heavy brane, as discussed in
[3,28,29]. It consists of Nf light D8-D8̄ branes (L) and
one heavy (H) probe brane in the cigar-shaped geometry
that spontaneously breaks chiral symmetry. We assume
that the L-brane world volume consists of R4 × S1 × S4

with ½0 − 9� dimensions. The light 8-branes are embedded

in the ½0 − 3þ 5 − 9� dimensions and set at the antipodes
of S1, which lies in the fourth dimension. The warped
½5 − 9�-space is characterized by a finite size R and a
horizon at UKK.

A. Dirac-Born-Infeld (DBI) action

The effective action on the probe L-branes consists of the
non-Abelian DBI and Chern-Simons action. After integrat-
ing over the S4, the leading contribution in 1=λ to the DBI
action is

SDBI ≈ −κ
Z

d4xdzTrðfðzÞFμνFμν þ gðzÞFμzFνzÞ: ð1Þ

The warping factors are

fðzÞ ¼ R3

4Uz
; gðzÞ ¼ 9

8

U3
z

UKK
; ð2Þ

with U3
z ¼ U3

KK þUKKz2, and κ ≡ aλNc and a ¼ 1=
ð216π3Þ [26]. All dimensions are in units of MKK
(Kaluza-Klein scale) unless given explicitly. Our conventions
are ð−1; 1; 1; 1; 1Þ with A†

M ¼ −AM and the labels M, N
running over μ, z only in this section. The effective fields in
the field strengths are [3,28]

FMN ¼
0
@ FMN −Φ½MΦ

†
N� ∂ ½MΦN� þA½MΦN�

−∂ ½MΦ†
N� −Φ†

½MAN� −Φ†
½MΦN�

1
A: ð3Þ

The matrix valued 1-form gauge field is

A ¼
�

A Φ
−Φ† 0

�
: ð4Þ

For Nf ¼ 2, the naive Chern-Simons 5-form is

SCS ¼
iNc

24π2

Z
M5

Tr

�
AF2 −

1

2
A3F þ 1

10
A5

�
: ð5Þ

We note that only for Nf > 2 does it fail to reproduce the
correct transformation law under the combined gauge and
chiral transformations [35]. In particular, when addressing
the Nf ¼ 3 baryon spectra, Eq. (5) does not reproduce the
important hypercharge constraint [35], but can be minimally
modified to do that.
For Nf coincidental branes, the Φ multiplet is massless,

but for separated branes they are massive with the addi-
tional contribution

1

2
m2

HTrðΦ†
MΦMÞ: ð6Þ

The value ofmH is related to the separation between the light
and heavy branes, which is about the length of the HL string.

LIU, NOWAK, and ZAHED PHYS. REV. D 104, 114021 (2021)

114021-2



It is related to the heavy meson masses MD ¼ 1870 MeV
(charmed) and MB ¼ 5279 MeV (bottomed) through [28]

MD;B ¼ mH þMKK

2
ffiffiffi
2

p : ð7Þ

Given MKK and MD;B, the mass parameter mH is therefore
totally fixed.
While the use of one heavy brane is well suited for single

heavy baryons, doubly heavy baryons require a priori two
heavy branes. However, in the heavy quark limit and to
order 1=mH, including the spin-orbit effects as we will
discuss below, there is no need to double the heavy branes.
Such doubling will be needed if e.g., spin-spin interactions
are retained to order 1=m2

H.

B. Light fields

In the coincidental brane limit, light baryons are inter-
changeably described as a flavor instanton or a D4 brane
wrapping the S4. The instanton mass isM0 ¼ 8π2κ in units
of MKK . The instanton size is small with ρ ∼ 1=

ffiffiffi
λ

p
after

balancing the order λ bulk gravitational attraction with the
subleading and of order λ0 U(1) induced topological
repulsion [26]. The bulk instanton is described by the O
(4) gauge field

AMðyÞ ¼ −σ̄MN∂NFðyÞ; FzmðyÞjjyj¼R ¼ 0: ð8Þ

From here onM, N run only over 1; 2; 3; z unless specified
otherwise. If ρ ∼ 1=

ffiffiffi
λ

p
is the typical size of these tunneling

configurations, then it is natural to recast the DBI action
using the rescaling

ðx0; xMÞ → ðx0; xM=
ffiffiffi
λ

p
Þ;

ffiffiffi
λ

p
ρ → ρ; ðA0; AMÞ

→ ðA0;
ffiffiffi
λ

p
AMÞ: ð9Þ

The rescaled fields satisfy the equations of motion

DMFMN ¼ 0; ∂2
MA0 ¼ −

1

32π2a
FaMN⋆FaMN; ð10Þ

with the use of the Hodge dual notation.

C. Heavy-light fields

Let ðΦ0;ΦMÞ be the pair of heavy quantum fields that
bind to the tunneling configuration above. If again ρ ∼ 1=

ffiffiffi
λ

p
is their typical size, then it is natural to recast the heavy-light
part of the DBI action using the additional rescaling

ðΦ0;ΦMÞ → ðΦ0;
ffiffiffi
λ

p
ΦMÞ: ð11Þ

The interactions between the light gauge fields ðA0; AMÞ and
the heavy fields ðΦ0;ΦMÞ to quadratic order split to several
contributions [3,28]

L ¼ aNcλL0 þ aNcL1 þ LCS; ð12Þ

which are quoted in Eq. (A1). We start by recalling
the leading contributions in 1=mH stemming from
Eq. (12), as thoroughly discussed in [3,29]. For that, we
split ΦM ¼ ϕMe−imHx0 for particles (mH → −mH for anti-
particles). The leading-order contribution takes the form

L0 ¼−
1

2
jfMN −⋆fMN j2þ 2ϕ†

MðFMN −⋆FMNÞϕN; ð13Þ

subject to the constraint equation DMϕM ¼ 0 with

fMN ¼ ∂ ½MϕN� þ A½MϕN�; ð14Þ

while the subleading contributions in Eq. (12) to order λ0mH
simplify to

L1

aNc
→ 4mHϕ

†
MiD0ϕM; LCS →

mHNc

16π2
ϕ†
M⋆FMNϕN:

ð15Þ

For self-dual light gauge fields with FMN ¼ ⋆FMN , the last
contribution in Eq. (13) vanishes, and the minimum is
reached for fMN ¼ ⋆fMN. This observation when combined
with the transversality condition for DMϕM ¼ 0, amounts to
a first-order equation for the combination ψ ¼ σ̄MϕM with
σM ¼ ði; σ⃗Þ, i.e.,

σMDMψ ¼ Dψ ¼ 0; ð16Þ

as noted in [3,28]. In a self-dual gauge configuration, the
heavy spin-1 meson transmutes to a massless spin-1

2

spinor that is Bogomol’nyi-Prasad-Sommerfeld bound
in leading order.

III. THE ORDER 1=m2
H LAGRANGIAN

To account for the spin effects and the breaking of heavy
quark symmetry we need to account for the 1=mH con-
tributions to Eqs. (12)–(15). This will be sought by
restricting the quantum and heavy fields to the quantum
moduli. More specifically, we choose to parametrize the
fields using

AMðt;xÞ¼VðAcl
M− i∂MÞV−1; A0ðt;xÞ¼0

ΦMðt;xÞ¼
e−imHtffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
16mHaNc

p Vðt;xÞfðXðtÞ;ZðtÞÞσ̄MχðtÞ; ð17Þ

which is equivalent to
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AMðt; xÞ ¼ Acl
MðXðtÞ; ZðtÞÞ; A0ðt; xÞ ¼ −iV∂tV−1 ≡Φ;

ΦMðt; xÞ ¼ fðXðtÞ; ZðtÞÞσ̄MχðtÞ ð18Þ

after gauge transformation. The Φ is parametrized as

Φ ¼ − _XNAcl
N þ χaΦa; ð19Þ

where Φa diagonalizes Dcl
MD

cl
MΦa and where

χa ¼ trðτaa−1 _aÞ ð20Þ

are expressed in terms of the collective variables a ∈ SUð2Þ
for a rigid SU(2) rotation. The temporal component Φ0

satisfies the constraint

ð−D2
M þm2

HÞΦ0 þ 2FM0ΦM −
i

16π2a
FPQð∂P þ APÞΦQ

¼ 0 ð21Þ

and in leading order in 1=mH can be ignored.
Inserting the expansion (18) into Eq. (A1) yields the

quadratic 1=mH contributions,

Lquadratic ¼
1

8mH
χ†σMfð∂t − A0 −ΦÞð∂t − A0 −ΦÞσ̄Mfχ − L̃1 þ L̃CS: ð22Þ

Here L̃CS contains only ΦM. Each of the contributions in Eq. (22) is discussed in Appendix A. Combining the results of
Eqs. (A21), (A50), and (A56) we have for the quadratic contributions to order 1

mH

Lquadratic ¼
1

mH

�
c1

π4a2ρ4
χ†χ þ i

c2
π2aρ2

χ† _χ þ i
c3

π2aρ2
χ†τaχχa þ _χ† _χ

2

�

−
37þ 12 Z2

ρ2

192mH
χ†χ þ

�
1

4mH

_ρ2

ρ2
þ _a2I
4mH

þ
_X2

4mHρ
2

�
χ†χ; ð23Þ

with the constants fixed to

c1 ¼
13

3840
þ 7

1280
¼ 17

1920
;

c2 ¼
2

32
;

c3 ¼
1

128
þ 1

80
¼ 13

640
: ð24Þ

In the meantime, one has also to take into account the
Chern-Simons term contribution

−
i

16π2
ϵMNPQΦ

†
MΦNΦ

†
P∂tΦQ þ c:c:; ð25Þ

which is

Lquartic;CS ¼ −
Nc

5mHm2
yρ

4
χ†τaχχ†τaχ; ð26Þ

where my ¼ 16π2a.
The above analysis ignores the Coulomb backreaction

(repulsion from the bound charged fields) as we discussed
in [3,28] and can lead to instabilities. In Appendix B we
detail the backreaction from the Coulomb field with the
final result for Eq. (23) to order Oð1=m2

HÞ,

L → iχ† _χ þ 1

2mH
_χ† _χ þ 78

5mHρ̃
2
iχ†τaχχa −

12

5mHρ̃
4
S⃗2

−
37þ 12 Z2

ρ2

192mH
nþ 1

ρ̃2

�
−
18

5
þ 9

2
n −

2

3
n2
�

þ 1

mHρ̃
4

�
102

5
n −

56

5
n2 þ 4

3
n3 þ jρ̃2

�
9

2
−
4n
3

��

þ 1

m2
Hρ̃

6

�
−
128n4

45
þ 376n3

15
−
4017n2

70

− jnρ̃2
�
56

5
−
8

3
n

�
−
2

3
j2ρ̃4

�
; ð27Þ

with

j ¼ i
2
ðχ† _χ − _χ†χÞ; n ¼ χ†χ: ð28Þ

This is the first major result of this paper. We now study
the quantization of Eq. (27) and the ensuing heavy-light
baryonic spectra.

IV. QUANTUM SPIN EFFECTS

A. Spin-orbit effect

The first major spin contribution occurs through the spin-
angular momentum coupling χaχ†τaχ. Recall that χa in
modular variables is
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χa ¼ 2iða4 _aa − _a4aa þ ϵabcab _acÞ; ð29Þ

with a24 þ
P

3
a¼1 a

2
a ¼ 1 parametrizing the SUð2Þ ∼ S3

moduli. Thus, the canonical momenta for yI read

Πa ¼myρ
2 _aa−

2c3
mHπ

2aρ2
ða4χ†τaχþ ϵcbaχ

†τcχabÞ; ð30Þ

Π4 ¼ myρ
2 _a4 þ

2c3
mHπ

2aρ2
χ†τaχaa: ð31Þ

Therefore the spin-orbit contribution to the Hamiltonian is

H ¼ 1

2myρ
2
ð−i∇S3 þ

4c3
mHπ

2aρ2
r⃗× S⃗Þ2

¼ −∇2
S3

2myρ
2
þ 8c3
mHπ

2aρ2
L⃗ · S⃗
myρ

2
þ
�

4c3
mHπ

2aρ2

�
2 χ† τ⃗

2
χ · χ† τ⃗

2
χ

2myρ
2

;

ð32Þ

with the orbital angular momentum

L⃗ ¼ 1

2
ðia⃗∇4 − ia4∇⃗ − ia⃗ × ∇⃗Þ: ð33Þ

The integer-valued spin of the heavy-light doublet trans-
lates to a half-integer spin on the moduli

S⃗ ¼ χ†
τ⃗

2
χ; ð34Þ

a nontrivial transmutation induced by the binding of the
zero mode to the instanton in bulk [28]. To leading order in
1=mH only the first two contributions in Eq. (32) will be
retained. The last contribution in Eq. (32) is the induced
spin-spin interaction of the heavy mesons and is suppressed
by 1=m2

H.

B. Spin effects

The leading spin effects to order 1=mH stem from the
quadratic and quartic χ contributions detailed above. The
terms with a first-order time derivative of χ are

�
1þ 3Nc

2mHmyρ
2

�
iχ† _χ þ _χ† _χ

2mH
− i

2χ†χðχ† _χ − _χ†χÞ
3mHmyρ

2
; ð35Þ

and imply the equation of motion

−
1

2mH
∂2
t χ þ i

�
1þ 3Nc

2mHmyρ
2

�
∂tχ þ

3Nc

2myρ
2
χ

þ 4iðχ†χ _χ þ χ† _χχÞ
3mHmyρ

2
¼ 0: ð36Þ

Therefore to second order in 1=mH one has

i∂tχ ¼ −
3Nc

2myρ
2
χ þ 9N2

c

8mHm2
yρ

4
χ þ 4χ†χχNc

mHm2
yρ

4

þ 81N3
c

32m2
Hm

3
yρ

6
χ −

32Ncðχ†χÞ2χ
3m2

Hm
2
yρ

6
; ð37Þ

from which the Hamiltonian can be easily extracted.

C. Hamiltonian

With the above in mind and to obtain the Hamiltonian
in leading order in 1=mH, it is sufficient to perform the
following substitution:

j → −
3Nc

2ρ̃2
; ð38Þ

and add

δH ¼ 81

8mHρ̃
4
nþ 1

m2
Hρ̃

6

�
81N3

c

32
n −

32Nc

9
n3
�

ð39Þ

to the spin-independent Hamiltonian [28].
More specifically, for a single heavy quark with n ¼ 1,

the total Hamiltonian to order 1=mH now reads (Nc ¼ 3)

Hsingle¼
39L⃗ · S⃗

5mHm2
yð1þ 1

2mHmyρ
2Þρ4

þ
�
−

553

120mHm2
yρ

4
þ 67.94
m2

Hm
4
yρ

6
þ
37þ12Z2

ρ2

192mH

�

−
1

2myρ
3ð1þ 1

2mHmyρ
2Þ2

∂
∂ρ

�
ρ3
�
1þ 1

2mHmyρ
2

� ∂
∂ρ

�

þ 4L⃗2

2myρ
2ð1þ 1

2mHmyρ
2Þ : ð40Þ

The change in the Laplacian is due to the _ρ2

ρ2
þ a2I term

following from the new line element on the moduli,

ds2 ¼
�
1þ 1

2mHmyρ
2

�
dy2I ; ð41Þ

with a change in the small ρ behavior. For the pentaquark
states where NQ̄ ¼ NQ ¼ 1, the corresponding Hamiltonian
is (Nc ¼ 3)
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Hdouble ¼
39L⃗ · S⃗

5mHm2
yð1þ 1

mHmyρ
2Þρ4

þ
�
−

411

20mHm2
yρ

4
þ 133.30
m2

Hm
4
yρ

6
þ
37þ 12Z2

ρ2

96mH

�

−
1

2myρ
3ð1þ 1

mHmyρ
2Þ2

∂
∂ρ

�
ρ3
�
1þ 1

mHmyρ
2

� ∂
∂ρ

�

þ 4L⃗2

2myρ
2ð1þ 1

mHmyρ
2Þ : ð42Þ

Below we solve the corresponding Schrödinger equation
numerically.

V. INDUCED QUANTUM POTENTIALS

A. The effective potential for a single-heavy quark: l = 0
state

For l ¼ 0, the spin-orbit coupling vanishes, i.e.,
L⃗ · S⃗ ¼ 0, and the induced effective potential simplifies to

VðρÞ¼myω
2
ρ

2
ρ2−

7

30myρ
2
þ
�
−

553

120mHm2
yρ

4
þ 67.94
m2

Hm
4
yρ

6

�
:

ð43Þ

Although the sign of the 1
ρ2
is negative, the mH ¼ ∞ system

is still stable due to the uncertainty principle. Indeed, for
small ρ, the kinetic contribution is of order 1

ρ2
and compen-

sates for the negative sign to maintain stability. In this case,
the 1=mH term implies additional repulsion that further
stabilizes the system. AsmH → ∞, the spectrum approaches
the infinite mass limit smoothly.

B. The effective potential for a single-heavy quark:
l > 0 state

For l ¼ 2; 4;…, one has J ¼ ðl� 1Þ=2. We first con-
sider the J ¼ ðl − 1Þ=2 case. Again for NQ ¼ 1 and
Nc ¼ 3, the effective potential reads

V

�
J ¼ l − 1

2
; ρ

�
¼ 1

2myð1þ 1
2mHmyρ

2Þρ2
�
lðlþ 2Þ − ðlþ 2ÞαNc

mHmyρ
2

þ 3α2N2
c

4m2
Hm

2
yρ

4

�

þmyω
2
ρ

2
ρ2 −

7

30myρ
2
þ
�
−

553

120mHm2
yρ

4
þ 67.94
m2

Hm
4
yρ

6

�
; ð44Þ

with α ¼ 13
10
. The 1=m2

H term due to the spin-orbit coupling is kept to maintain stability at small ρ. The change of the
potential as one increases mH tends to decrease for larger l. For l ¼ 2, the shapes of the potential at mH ¼ 2 and mH ¼ ∞
differ moderately, but for l ¼ 2 the difference is already quite small.
Similarly, in the J ¼ lþ1

2
case the effective potential is

V

�
J ¼ lþ 1

2
; ρ

�
¼ 1

2myð1þ 1
2mHmyρ2Þρ2

�
lðlþ 2Þ þ lαNc

mHmyρ
2
þ 3α2N2

c

4m2
Hm

2
yρ

4

�

þmyω
2
ρ

2
ρ2 −

7

30myρ
2
þ
�
−

553

120mHm2
yρ

4
þ 67.94
m2

Hm
4
yρ

6

�
: ð45Þ

Again, the 1=mH contribution further stabilizes the system
and pushes the spectrum a little bit higher.

C. The effective potential for a pentaquark state

Here we focus on the pentaquark states with NQ ¼
N̄Q ¼ 1 state or hiddenQ ¼ c, b, with S ¼ 0, 1. For S ¼ 0,
the potential reads

V

�
J¼ l

2
;S¼ 0

�
¼myω

2
ρρ

2

2
þ 18

5myρ
2
þ lðlþ 2Þ
2myð1þ 1

mHm2
yρ

2Þρ2

þ
�
−

411

20mHm2
yρ

4
þ 133.30
m2

Hm
4
yρ

6

�
: ð46Þ

For S ¼ 1 we can have J ¼ l − 1; l; lþ 1, and the potential
in this case reads
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VðJ; S ¼ 1; ρÞ ¼ 1

2myð1þ 1
mHm2

yρ
2Þρ2

�
lðlþ 2Þ þ 2NcΔðJÞβ

mHmyρ
2
þ 2N2

cβ
2

m2
Hm

2
yρ

4

�
þ 18

5myρ
2

þmyω
2
ρ

2
ρ2 þ

�
−

411

20mHm2
yρ

4
þ 133.30
m2

Hm
4
yρ

6

�
; ð47Þ

with β ¼ 13
10

and

ΔðJÞ ¼ JðJ þ 1Þ − lðlþ 2Þ
4

− 2: ð48Þ

More specifically, for l ¼ 1we haveΔðJ ¼ 1=2Þ ¼ −2 and
ΔðJ ¼ 3=2Þ ¼ 1.

VI. SPECTRA

Given the Hamiltonian and the explicit induced quantum
potentials, we can now obtain the spectra of the holographic
heavy-light hadrons. Our strategy is the following: we treat
the warping contribution as a small perturbation, while
solving the radial part numerically. For the warping part,
using the average

�
Z2

ρ2

�
nz;nρ

¼ nz þ 1
2

l̃þ 1
; ð49Þ

we obtain

δMwarp ¼
37þ 6

l̃þ1

192mH
ðNQ þ NQ̄Þ; ð50Þ

in units of MKK .
To obtain the radial part, we need to solve the Schrödinger

equation

−
1

2myρ
3ð1þ 1

2mHmyρ
2Þ2

∂
∂ρ

�
ρ3
�
1þ 1

2mHmyρ
2

� ∂
∂ρ

�
Ψn;lðρÞ

þVlðρÞΨn;lðρÞ¼En;lΨn;lðρÞ; ð51Þ

with the warped normalization condition

2π2
Z

∞

0

ρ3
�
1þ 1

2myρ
2

�
2

jΨn;lðρÞj2dρ ¼ 1: ð52Þ

For this purpose we perform the transformation Ψ → u and
use ρ̃2 ¼ myρ

2,

Ψ ¼ uffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ρ3ð1þ 1

2mHmyρ
2Þ

q ; ð53Þ

to simplify Eq. (51) as

−
1

2ð1þ 1
2mH ρ̃

2Þ u
00
n;lðρ̃Þ þ

�3ð1þ 1
mHρ

2 − 1
12m2

H ρ̃
4Þ

8ρ̃2ð1þ 1
2mH ρ̃

2Þ
�
un;lðρ̃Þ

þ Vlðρ̃Þun;lðρ̃Þ ¼ En;lun;lðρ̃Þ; ð54Þ

with the normalization condition

2π2
Z

∞

0

dρ̃

�
1þ 1

2mHρ̃
2

�
jun;lðρ̃Þj2 ¼ 1: ð55Þ

Notice that the normalization condition actually requires the
un;l to vanish near ρ̃ ¼ 0. In this case one can show that
although the additional term [large bracket in Eq. (51)]
becomes negative at small ρ̃, the spectrum En;l is still
bounded from below. The above equation for un;l can be
diagonalized numerically and below we present the results
for different states.
To fix the parameters for the charmed heavy baryons,

we choose MD ¼ 1.87 GeV for the D-meson mass in
Eq. (7) and fix MKK ¼ 0.475 GeV to reproduce the
MΛc

¼ 2.286 GeV. This low value of MKK is consistent
with the value used to reproduce the nucleon spectra [32],
but about half the value of MKK ∼ 1 GeV used originally
in Eq. [26] and adopted in [3,28,29]. In this case we have
mH ¼ ð1.87–0.168Þ GeV ¼ 3.66MKK . In Fig. 1 we show
the radial wave functions for the first and second excited
states following from Eq. (51) for a single heavy-baryon
(top panel) and double-heavy-baryon or pentaquark state
(bottom panel). Note the rapid decay of the wave func-
tions near the instanton core as ρ → 0.
The corresponding charm and bottom states for single-

and double-heavy hadrons are listed in Tables I and II
respectively. Note that while mΛc

¼ 2.286 GeV is fitted to
fix the Kaluza-Klein scale MKK ¼ 0.475 GeV, mΛb

¼
5.608 GeV is a holographic prediction which is remarkably
close to the experimental value of 5.620 GeV. The details of
the mass budgets for each of the states in terms of the three
holographic parameters are given in Appendix C. The
results for the single-heavy baryon spectrum are surpris-
ingly good, given the small number of parameters used in
this holographic approach. The spin contributions improve
considerably the predictions for the masses and their
hierarchy. In particular, the empirical mass ordering Σc −
Λc < Λ�

c − Λc is obtained, contrary to the claim in [31].
The mass splitting between Σc and Σb is higher than
observed due to the sizable repulsion from the l ¼ 2
intrinsic angular momentum assignment.
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The holographic construction with spin corrections
allows for only three pentaquark states which are close
to the observed charmed pentaquark states reported by
LHCb, although with slightly smaller masses (the 80 MeV
difference can be easily narrowed by adjusting the Kaluza-
Klein scale MKK ¼ 0.475 GeV at the expense of Λc). The
spin-orbit effects split away the ½1

2
1
2
−�S¼1 and ½1

2
3
2
−�S¼1

states, lifting the degeneracy reported originally in [3].
The present holographic construction rules out a

pentaquark with a ½1
2
5
2
�� assignment since the instanton

core carries equal spin and isospin [3]. The splittings
between the different pentaquark states are somehow
smaller than expected, due to the strength of the spin-orbit
coupling to order 1=m2

H. Additional contributions are
expected to order 1=m3

H. This construction supports addi-
tional Roper-like and odd-parity-like pentaquark states
which we have denoted by P�

c;b, although they are heavier
and more susceptible to decay.

VII. CONCLUSIONS

In the holographic construction presented in [3,28,29],
heavy hadrons are described in bulk using a set of
degenerate Nf light D8-D8̄ branes plus one heavy probe
brane in the cigar-shaped geometry that spontaneously
breaks chiral symmetry. This construction enforces both
chiral and heavy-quark symmetry and describes well the
low-lying heavy-light mesons and baryons. Heavy baryons
are composed of heavy-light mesons bound to a core
instanton in bulk. Remarkably, the bound heavy-light
mesons with spin 1 transmute to heavy quarks with spin
1
2
, an amazing spin-statistics transmutation by geometry.
In [3,28,29] the analysis of the bound states and spectra

was carried to order m0
H where the spin effects are absent.

In this work and for Nf ¼ 2, we have now carried the
analysis at next to leading order in 1=mH where the spin-
orbit and spin corrections are manifest. By refining the
Kaluza-Klein scale MKK from 1 GeV used in [3,29] to
0.475 GeV used here, a rich spectrum with single- and
double-heavy baryons emerges with fair agreement with
the empirically observed states, including the newly
reported charm pentaquark states by LHCb.
This is remarkable, given that only three parameters were

used in the holographic construction: M0;MKK;mH. For
charm, they are fixed by M0 → mN (nucleon mass),
MKK → MΛc

(lambda mass) and mH → MD (D-meson
mass). The only parameter adjustment for the bottom
spectrum is mH → MB (B-meson mass). Needless to say,

TABLE I. Charm baryons and pentaquarks.

B IJP l nρ nz NQ NQ̄ Mass (MeV) Experiment (MeV)

Λc 01
2
þ 0 0 0 1 0 2286 2286

Σc 11
2
þ 2 0 0 1 0 2557 2453

13
2
þ 2 0 0 1 0 2596 2520

Λ�
c 01

2
− 0 0 1 1 0 2683 2595

01
2
þ 0 1 0 1 0 2726 2765

Σ�
c 11

2
−; 13

2
− 2 0 1 1 0 [2947=2986] � � �

11
2
þ; 13

2
þ 2 1 0 1 0 [2948=2995] � � �

Pc
1
2
1
2
−; 1

2
3
2
− 1 0 0 1 1 [4340=4360=4374] [4312=4440=4457]

P�
c 11

2
−; 13

2
− 1 0 1 1 1 [4732=4752=4767] � � �

11
2
þ; 13

2
þ 1 1 0 1 1 [4725=4746=4763] � � �

2 4 6 8 10 12

0.02

0.04

0.06

0.08

0.10

2 4 6 8 10 12

0.02

0.04

0.06

0.08

0.10

FIG. 1. The l ¼ 0 radial wave functions for single heavy-
baryon (top panel) and double-heavy-baryon or pentaquark state
(bottom panel) as a function of ρ̃. See text.
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the light-light, heavy-light and heavy-heavy mesons and baryons are described simultaneously, without changing the
number of parameters.
The holographic construction predicts a triplet of nearly degenerate charm pentaquark states with the isospin-spin-parity

assignments,

��
Pcð4340Þ

1

2

1

2

−
�
S¼1

;

�
Pcð4360Þ

1

2

1

2

−
�
S¼0

;

�
Pcð4374Þ

1

2

3

2

−
�
S¼1

�
;

which are to be compared to Pc½4312j4440j4457� recently reported by LHCb. The small mass discrepancy can be readily
eliminated by adjusting the Kaluza-Klein scale at the expense of Λc. The spin-orbit effects split away the states with
intrinsic spin S ¼ 1. The analysis rules out the assignment ½1

2
5
2
�� for these states, and predicts a triplet of bottomed

pentaquark states,

��
Pbð11532Þ

1

2

1

2

−
�
S¼1

;

�
Pbð11543Þ

1

2

1

2

−
�
S¼0

;

�
Pbð11579Þ

1

2

3

2

−
�
S¼1

�
;

not yet observed. New Roper-like and odd-parity penta-
quark states are also suggested, although much heavier and
more susceptible to falling apart.
The recently reported Pcð4337Þ at 3σ significance [43] is

not supported by our current holographic analysis of the
low-lying pentaquark states. The even- and odd-parity
excited holographic pentaquark states P�

c are heavier.
More statistics to improve the significance of this penta-
quark would be welcome.
Finally, the present holographic description can be

regarded as the holographic dual of the chiral soliton
construction of heavy-light baryons (see [39,44] and
references therein). However, in the latter the uncertainties
in combining chiral and heavy quark symmetry strongly
limit their predictive range, especially when one addresses
the spin corrections. This is not the case for the holographic
description as we have shown, as both symmetries are
geometrically embedded in the bulk brane construction
with just three parameters. The dual approach is vastly
superior.
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Note added.—We should also mention that our setup allows
the determination of not only the masses of the penta-
quarks, but also their decay widths. This will be explored in
part II [45] and part III [46] of the series of papers.

APPENDIX A: DETAILS OF THE HEAVY MASS
EXPANSION

Following the rescaling in Eq. (9) the effective action for
the heavy-light fields split into the following contributions:

L ¼ aNcλL0 þ aNcðL1 þ L̃1Þ þ LCS; ðA1Þ

with each contribution given by

TABLE II. Bottom baryons and pentaquarks.

B IJP l nρ nz NQ NQ̄ Mass (MeV) Experiment (MeV)

Λb 01
2
þ 0 0 0 1 0 5608 5620

Σb 11
2
þ 2 0 0 1 0 5962 5810

13
2
þ 2 0 0 1 0 5978 5830

Λ�
b 01

2
− 0 0 1 1 0 5998 5912

01
2
þ 0 1 0 1 0 6029 (6072)

Σ�
b 11

2
−; 13

2
− 2 0 1 1 0 [6351=6367] � � �

11
2
þ; 13

2
þ 2 1 0 1 0 [6344=6367] � � �

Pb
1
2
1
2
−; 1

2
3
2
− 1 0 0 1 1 [11155=11163=11167] � � �

P�
b 11

2
−; 13

2
− 1 0 1 1 1 [11544=11553=11556] � � �

11
2
þ; 13

2
þ 1 1 0 1 1 [11532=11543=11579] � � �
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L0¼−ðDMΦ
†
N−DNΦ

†
MÞðDMΦN−DNΦMÞ

þ2Φ†
MFMNΦN;

L1¼þ2ðD0Φ
†
M−DMΦ

†
0ÞðD0ΦM−DMΦ0Þ−2Φ†

0F
0MΦM

−2Φ†
MF

M0Φ0−2m2
HΦ

†
MΦM;

L̃1¼þz2

3
ðDiΦj−DjΦiÞ†ðDiΦj−DjΦiÞ

−2z2ðDiΦz−DzΦiÞ†ðDiΦz−DzΦiÞ

−
2

3
z2Φ†

i FijΦjþ2z2ðΦ†
zFziΦiþc:c:Þ

LCS¼−
iNc

16π2
Φ†ðdAþA2ÞDΦ

−
iNc

16π2
ðDΦÞ†ðdAþA2ÞΦþOðΦ3Þ: ðA2Þ

We now use the expansion (17) to explicitly derive the
various contributions in Eq. (A1) in leading order in 1=mH.
The net result has manifest heavy quark symmetry to order
m0

H, with the spin-orbit and spin-spin contributions break-
ing this symmetry to order 1=mH.

1. Kinetic contribution: Lkin

The explicit form of the kinetic contribution is

Lkin ¼
1

8mH
χ†σMfð−∂t − Â0 −ΦÞð∂t þ Â0 þΦÞσ̄Mfχ;

ðA3Þ

which contains a derivative of χ. With the help of the
identity for Weyl matrices σMτaσ̄M ¼ 0, Eq. (A3) reads

1

2mH
f2 _χ† _χþ 1

2mH

_XN
_XM∂Nf∂Mfχ†χþ

f2

2mH
Â0ð_χ†χ−χ† _χÞ

−
f2

2mH
Â2
0χ

†χ−
f2

4mH
trðΦÞ2χ†χ; ðA4Þ

which can be further simplified by using the explicit
relations

−trΦ2 ¼ X4

4ðX2 þ ρ2Þ2 2χ
a†χa − _XN

_XMtrANAM

¼ 2X4

ðX2 þ ρ2Þ2 _a
2
I þ

3X2

2ðX2 þ ρ2Þ2
_X2 ðA5Þ

and

Â0 ¼ −
i

8π2ax2

�
1 −

ρ4

ðx2 þ ρ2Þ2
�

ðA6Þ

to have

Lkin ¼
_χ† _χ

2mH
þ
�

1

4mH

_ρ2

ρ2
þ _a2I
4mH

þ
_X2

4mHρ
2

�
χ†χ

þ 1

16mHπ
2aρ2

iχ†∂tχ þ
13

3840mHπ
4a2ρ4

χ†χ ðA7Þ

after integration over space.

2. Chern-Simons contribution: LCS

The Chern-Simons term is

LCS ¼ −
iNc

16π2
Φ†ðdAþA2ÞDΦ−

iNc

16π2
ðDΦÞ†ðdAþA2ÞΦ

¼ −
iNc

8π2
Φ†ðdAþA2ÞDΦ; ðA8Þ

where on the second line we have performed a partial
integration with the help of the Bianchi identity DF ¼ 0.
More explicitly, we have

i
128mHπ

2a
f2χ†σMFMN σ̄N _χ

þ iϵMNPQ

128mHπ
2a

fχ†σMF0Nð∂P þ APÞfσ̄Qχ

þ Â0

�
iNc

128mHπ
2a

χ†σMFMN σ̄Nχf2
�
; ðA9Þ

which is seen to contain χ†χ as well as linear terms in
derivatives. Recall that the electric field F0M after solving
for the Gauss constraint reads

F0M ¼ _XNFMN þ _ρ
∂AM

∂ρ − χaDMΦa: ðA10Þ

The linear terms in _ρ, _XN vanish due to parity and
translational invariance, but there are terms of the form

χaχ†
τa

2
χ ¼ iχ†a−1 _aχ; ðA11Þ

which couple to isospin. Again, using the identity for Weyl
matrices

ϵMNPQσ̄QR ¼ −δMRσ̄MP þ δNRσ̄MP − δPQσ̄MN; ðA12Þ

all terms that require antisymmetrization to vanish,

−ϵMNPQσMF0N σ̄P∂Qf ¼ 0; ðA13Þ

but the more involved one
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− ϵMNPQσMF0NAPσ̄Q

¼ σMF0N σ̄NQσ̄QXM

X2 þ ρ2
−
σMF0N σ̄MQσ̄QXN

X2 þ ρ2

þ σMF0N σ̄MN σ̄QXQ

X2 þ ρ2
ðA14Þ

does not. Using the identity σMτ
iσ̄M ¼ 0, the second term

vanishes, while the first and the third term read

σMF0N σ̄NQσ̄QXM

X2þ ρ2
¼ 3σ ·XF0N σ̄N

X2þ ρ2
¼ −

9ρ2f
ðX2 þ ρ2Þ2 τ

aχa;

σMF0N σ̄MN σ̄QXQ

X2þ ρ2
¼ −

σMF0N σ̄NσMσ̄ ·X
2ðX2 þ ρ2Þ ¼ 3ρ2f

ðX2 þ ρ2Þ2 τ
aχa:

ðA15Þ

Since

−ϵMNPQσMF0NAPσ̄Q ¼ −
6ρ2f

ðX2 þ ρ2Þ2 τ
aχa; ðA16Þ

we finally have

−ϵMNPQΦ
†
MF0NDPΦQ ¼ −

6ρ2f2

16mHNcaðX2 þ ρ2Þ2 χ
†τaχχa:

ðA17Þ

One should also consider the contribution from F̂0N ¼
− 1

r
∂Â0∂r xN ,

−ϵMNPQσMF̂0NAPσ̄Q ¼ 6X2

X2 þ ρ2
1

r
∂Â0

∂r : ðA18Þ

The final Chern-Simons contribution to order 1=mH after
rescaling is

3

16mHπ
2a

f2ρ2

ðX2 þ ρ2Þ2 iχ
†ð∂t þ Â0Þχ

þ 3

64mHπ
2a

ρ2f2

ðX2 þ ρ2Þ2 χ
†τaχiχa

−
3i

64mHπ
2a

X2f2

X2 þ ρ2
1

r
∂Â0

∂r χ†χ: ðA19Þ

In fact, the first term can be obtained from the leading-order
result by noticing that ∂t → −imH þ ∂t and requiring
gauge invariance. Using

Â0 ¼ −
i

8π2ax2

�
1 −

ρ4

ðx2 þ ρ2Þ2
�
; ðA20Þ

and performing the spatial integration we finally have

LCS ¼
1

32mHπ
2aρ2

iχ†∂tχ þ
7

1280mHπ
4a2ρ4

χ†χ

þ 1

128mHπ
2aρ2

χ†τaχiχa: ðA21Þ

3. The contribution: Φ0

This is the most difficult term to unravel to order 1=mH.
The equation of motion for Φ0 reads

ð−D2
M þm2

HÞΦ0 þ 2FM0ΦM −
i

16π2a
FPQð∂P þ APÞΦQ

¼ 0 ðA22Þ

after using the self-dual condition for F. Using the standard
relations for σ̄MN, we have for the last two contributions in
Eq. (A22)

FPQ∂PΦQ ¼ 6ρ2

ðX2 þ ρ2Þ2
1

r
df
dr

σ̄ · Xχ; ðA23Þ

FPQAPΦQ ¼ −
6ρ2

ðX2 þ ρ2Þ3 fσ̄ · Xχ: ðA24Þ

For the first contribution in Eq. (A22) we have

FM0ΦM¼ 6f
ðX2þρ2Þ2 ðρ

2σ̄ · _Xþ σ̄ ·Xρ_ρÞχþχaDMΦaσ̄Mχf;

ðA25Þ

with

Φa ¼ 1

2ðX2 þ ρ2Þ σ̄ · Xτaσ · X; ðA26Þ

or more explicitly

χaDMΦaσ̄Mχf ¼ 3ρ2f
ðX2 þ ρ2Þ2 σ̄ · Xτaχχa: ðA27Þ

Inserting Eqs. (A27) and (A28) into Eq. (A22) we have

ð−D2
M þm2

HÞΦ0 þ J0 ¼ 0; ðA28Þ

with

J0 ¼
12f

ðX2 þ ρ2Þ2 ðρ
2σ̄ · _X þ σ̄ · Xρ_ρÞχ þ 6fρ2

ðX2 þ ρ2Þ2 σ̄

· Xτaχχa þ 3i
2π2a

ρ2f
ðX2 þ ρ2Þ3 σ̄ · Xχ þ 2f

r
∂Â0

∂r σ̄ · Xχ

ðA29Þ
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the source for Φ0. In this equation the Abelian part of FN0

has been included. Since

1

r
∂Â0

∂r ¼ i
4π2a

1

ðX2 þ ρ2Þ2
�
1þ 2ρ2

X2 þ ρ2

�
ðA30Þ

one finally has

J0 ¼
12f

ðX2þ ρ2Þ2 ðρ
2σ̄ · _Xþ σ̄ ·Xρ_ρÞχþ 6ρ2f

ðX2þ ρ2Þ2 σ̄ ·Xτ
aχχa

þ i
2π2a

f
ðX2þ ρ2Þ2

�
1þ 5ρ2

X2þ ρ2

�
σ̄ ·Xχ: ðA31Þ

In the large mH limit, the contribution to Φ0 is 1=m2
H

suppressed compared to ΦM

Φ0 ¼ −
1

−D2
M þm2

H
J0 ¼ −

1

m2
H
J0 þO

�
1

m4
H

�
; ðA32Þ

and can be neglected from the Lagrangian.

4. Φ0 at mH = 0

In the opposite limit of mH ¼ 0, it is instructive to see
how the field Φ0 solves the constraint equation. To solve
Eq. (A28), we define the Green’s function

GðX; YÞ≡ 1

−D2
M
ðX; YÞ

¼ ρ2 þ σ̄ · Xσ · Y

4π2ðX2 þ ρ2Þ12ðX − YÞ2ðY2 þ ρ2Þ12 ; ðA33Þ

in terms of which the solution can be written as

Φ0ðXÞ ¼ −
Z

d4YGðX; YÞJ0ðYÞ: ðA34Þ

To perform the integral one needs the following elementary
integrals:

Z
d4Y

ρ2 þ σ̄ · Xσ · Y

4π2ðX − YÞ2ðY2 þ ρ2Þ1=2
σ̄ · Y

ðY2 þ ρ2Þnþ3=2

≡ fnðX2; ρ2Þσ̄ · X ðA35Þ

with

fnðX2;ρ2Þ¼ ΓðnÞ
4Γðnþ2Þ

1

X2

��
2−ðn−2Þ ρ

2

X2

�
Δðn−1;X2Þ

n−1

þ 1

X2
Δðn−2;X2Þ

�
ðA36Þ

and

Z
d4Y

ρ2 þ σ̄ · Xσ · Y

4π2ðX − YÞ2ðY2 þ ρ2Þ1=2
1

ðY2 þ ρ2Þnþ3=2

≡ gnðX2; ρ2Þ; ðA37Þ

with

gnðX2; ρ2Þ ¼ 1

4ðnþ 1ÞX2

Δðn − 1; X2Þ
n − 1

: ðA38Þ

Here Δðn; X2Þ reads

Δðn; X2Þ ¼ 1

ρ2n
−

1

ðX2 þ ρ2Þn ; ðA39Þ

with the limit

lim
n→0

Δðn; X2Þ
n

¼ ln

�
1þ X2

ρ2

�
ðA40Þ

subsumed, as X → 0, fn and gn are all regular. With the
above in mind, the explicit solution for Φ0 follows:

Φ0 ¼−
c

ðX2þ ρ2Þ12
�
12ρ2g2ðX2;ρ2Þσ̄ · _X

þ 6ρ2f2ðX2;ρ2Þσ̄ ·Xτaχaþ 12f2ðX2;ρ2Þρ_ρ σ̄ ·X

þ i
2π2a

ðf2ðX2;ρ2Þþ 5ρ2f3ðX2;ρ2ÞÞσ̄ ·X
�
χ; ðA41Þ

where we have used the zero-mode profile

f ¼ c

ðX2 þ ρ2Þ32 ; ðA42Þ

with c ¼ ffiffiffi
2

p
ρ=π.

In terms of Eq. (A41), the Φ0 contribution to the
Lagrangian is

S ¼ 1

8mH

Z
d4XJ†0ðXÞΦ0ðXÞ: ðA43Þ

Using the fact that χa is anti-Hermitian, all the mixing terms
vanish, with the exception of

6i
8π2amH

Z
d4X

c2ρ2X2

ðX2 þ ρ2Þ4

×

�
1þ 5ρ2

X2 þ ρ2

�
f2ðX2; ρ2Þχ†τaχχa; ðA44Þ

which couples the spin of the nucleon core and the heavy
quarks. After the spatial integration, it reads

i
32mHπ

2aρ2
χ†τaχχa: ðA45Þ
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The diagonal terms give

−
1

8mH

�
_X2χ†χ

Z
d4X

122ρ4c2g2ðX2; ρ2Þ
ðX2 þ ρ2Þ4

þ ρ2 _ρ2χ†χ

Z
d4X

122c2X2f2ðX2; ρ2Þ
ðX2 þ ρ2Þ4

þ χa†χaχ†χ

Z
d4X

62c2ρ2X2f2ðX2; ρ2Þ
ðX2 þ ρ2Þ4

þ c2ρ4

4π4a2
χ†χ

Z
d4X

X2½f2ðX2; ρ2Þ þ 5ρ2f3ðX2; ρ2Þ�
ðX2 þ ρ2Þ4

×

�
1þ 5ρ2

X2 þ ρ2

��
ðA46Þ

and reduce to

−χ†χ
�

_X2

4mHρ
2
þ 1

4mH

_ρ2

ρ2
þ 1

4mH
_a2I þ

25

6144mHπ
4a2ρ4

�

ðA47Þ

after integration. Equations (A45)–(A47) yield the final Φo
contribution to the action

LΦ0
¼−χ†χ

�
_X2

4mHρ
2
þ 1

4mH

_ρ2

ρ2
þ 1

4mH
_a2I þ

25

6144mHπ
4a2ρ4

�

þ i
32mHπ

2aρ2
χ†τaχχa: ðA48Þ

5. The warping contribution: δLwarp

The warping contribution stems from S̃1 and does not
have any derivative coupling. More specifically, we have

δS̃1¼
ðzþZÞ2
24mH

��
3−

2z2

z2þx2

�
f02þ 6x2þ12z2

ðx2þz2þρ2Þ2f
2

�
χ†χ

−
ðzþZÞ2
8mH

��
1þ 2z2

x2þz2

�
f02þ 9x2þ3z2

ðx2þz2þρ2Þ2f
2

�
χ†χ

þ ρ2ðzþZÞ2
mHðz2þx2þρ2Þ2f

2χ†χ: ðA49Þ

After spatial integration, Eq. (A49) gives rise to a Z2

ρ2
χ†χ

term as well as a χ†χ term, namely

Lwarp ¼ −
37þ 12 Z2

ρ2

192mH
χ†χ: ðA50Þ

Notice that the Z2 contribution is negative, which is
consistent with an instability at large Z.

6. The contribution: L0

To leading order in λ, this contribution vanishes since
ΦM satisfies the equation of motion. However, there are
contributions to ÂM at order 1=λ,

L0 ¼ 4aNcλΦ
†
MΦNF̂MN ¼ 8aNcλΦ

†
MΦN∂MÂN: ðA51Þ

To linear order in χa, we need the explicit solution to ÂM,

ÂM ¼ i
16π2aλ

χatrτaσMNXN

2ðX2 þ ρ2Þ2 : ðA52Þ

With this in mind and using the identities

σNM ¼ iη̄aNMτ
a; ðA53Þ

η̄aNMη̄
b
NM ¼ 4δab; ðA54Þ

we have

8aNcλΦ†
MΦN∂MÂN ¼ 1

8mHπ
2a

ρ4f2

ðX2 þ ρ2Þ3 iχ
aχ†τaχ;

ðA55Þ

which after spatial integration reduces to

L0 ¼
i

80mHπ
2a

χaχ†τaχ: ðA56Þ

APPENDIX B: COULOMB-BACK REACTION

Here we provide a complete treatment of the Coulomb-
back interaction contribution. After rescaling A0 → iA0, the
Lagrangian for A0 reads

L½A0� ¼
aNc

2
ð∇⃗A0Þ2 þ

f2

2mH
χ†χA2

0

þ A0

�
ρcl þ ρ0 þ

1

mH
ρ1

�
; ðB1Þ

where ρcl is the source without the heavy-quark field

ρcl ¼ aNc∇2Acl
0 ¼ −

3Nc

π2
ρ4

ðx2 þ ρ2Þ4 ðB2Þ

and we have

ρ0 ¼ f2χ†χ;

ρ1 ¼
f2

2
iðχ† _χ − _χ†χÞþ 3

16mHπ
2a

2ρ2−X2

ðX2þ ρ2Þ2 f
2χ†χ: ðB3Þ

Notice that
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3

16mHπ
2a

2ρ2 − X2

ðX2 þ ρ2Þ2

¼ 3

16mHπ
2a

f2ρ2

ðX2 þ ρ2Þ2 χ
†χ

þ 3

64mHπ
2a

∂N

�
xNf2

ðx2 þ ρ2Þ
�
χ†χ ðB4Þ

originates purely from the Chern-Simons contribution.
Given the action for A0, at a minimum we have

LCoulumb ¼ −
�
ρcl þ ρ0 þ

1

mH
ρ1

�
1

2ð−aNc∇2 þ f2

mH
χ†χÞ

×

�
ρcl þ ρ0 þ

1

mH
ρ1

�
; ðB5Þ

which is a complicated function in χ†χ and always leads to

positive energy. In fact, the f2

mH
term in the denominator

plays the role of a screening mass which can be seen after
certain coordinate transformations.
To estimate how good the first-order expansion is, one

can consider the simplest case where the inversion is acting
only on the ρ0 ∝ f2. To keep track of the dependence on ρ
and mH, it is useful to perform the rescaling

X →
1ffiffiffiffi
m

p
y
ρ̃ X̃; ρ →

1ffiffiffiffi
m

p
y
ρ̃: ðB6Þ

As a result we have

1

ð−aNc∇2 þ f2

mH
χ†χÞ

f2 ¼ 32

ρ̃2
1

−∇̃2 þ 32χ†χ
mH ρ̃

2
1

ðX̃2þ1Þ3

1

ðX̃2 þ 1Þ3 ;

ðB7Þ

which can be exactly solved as

1

−∇̃2þ 32χ†χ
mH ρ̃

2
1

ðX̃2þ1Þ3

1

ðX̃2þ1Þ3¼
1

b
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X̃2ð1þ X̃2Þ

p
I1ð

ffiffiffiffiffiffiffiffiffi
bX̃2

1þX̃2

q
Þ

bI1ð
ffiffiffi
b

p ÞX̃2
;

ðB8Þ

with b ¼ 32χ†χ
mH ρ̃

. Therefore, one has

f2
1

ð−aNc∇2 þ f2

mH
χ†χÞ

f2

¼ 64

π2ρ̃2

Z
d4X̃

1

ðX̃2 þ 1Þ3
�
1

b
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X̃2ð1þ X̃2Þ

p
I1ð

ffiffiffiffiffiffiffiffiffi
bX̃2

1þX̃2

q
Þ

bI1ð
ffiffiffi
b

p ÞX̃2

�
:

ðB9Þ

Notice that although the 1
b appears to be at variance with

power counting, the Taylor expansion

gðb;X̃Þ≡1

b
−

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
X̃2ð1þX̃2Þ

p
I1ð

ffiffiffiffiffiffiffiffiffi
bX̃2

1þX̃2

q
Þ

bI1ð
ffiffiffi
b

p ÞX̃2

¼ 1

8ðX̃2þ1Þþ
�
−

X̃4

192ðX̃2þ1Þ2þ
X̃2

64ðX̃2þ1Þ−
1

96

�
b

þ
�
−

X̃6

9216ðX̃2þ1Þ3þ
X̃4

1536ðX̃2þ1Þ2

−
X̃2

768ðX̃2þ1Þþ
7

9216

�
b2þOðb3Þ ðB10Þ

formally converges for any b. However, for the case where
ρ̃ ¼ 1 and χ†χ ¼ 1, one has b ¼ 32

mH
≈ 8 for charm and ≈3.2

for bottom, the convergence is poor for the first few terms.
To perform an estimate, one can consider the ratio

RðbÞ ¼
R
d4X̃ gðb;X̃Þ

ð1þX̃Þ3R
d4X̃ limb→0gðb;X̃Þ

ð1þX̃2Þ3
; ðB11Þ

which is shown in Fig. 2. One can actually show that RðbÞ
is always positive and goes to zero as b → ∞ or ρ̃ → 0,
which implies a weaker repulsion compared to the leading-
order Coulomb one. However, expanding to leading order
in b, the potential becomes unbounded from below at large
b or small ρ. Apparently, this instability is caused by the
breakdown of the small b expansion near the core. To fix
the instability, we can include the second-order term in the
expansion. In fact, in Fig. 2 we note that after including the
second-order term, the difference between the full result is

0.12 0.14 0.16 0.18 0.20 0.22 0.24

0.55

0.60

0.65

0.70

0.75

0.80

0.85

FIG. 2. The ratio Rðb≡ 32
mH
Þ (blue) compared with its first-order

(yellow) and second-order (green) Taylor expansion. At 1
mH

¼ 1
4

one has RðbÞ ≈ 0.67, while at 1
mH

¼ 1
10
one has RðbÞ ≈ 0.84, and

as b → ∞, RðbÞ → 0. At 1
mH

¼ 1
4
the second-order result is about

10% larger than that of the full result.
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around 10% for 1=mH ≈ 4 at ρ̃ ≈ 1 for the charm quark. It is even better for the bottom quark.
Using the explicit form of the inversion

1

−∇̃2 þ b
ðX̃2þ1Þ3

1

ðX̃2 þ 1Þ4

¼ X̃2 þ 2

24ðX2 þ 1Þ2 −
ð3X̃4 þ 9X̃2 þ 7Þ
1152ðX̃2 þ 1Þ3 bþ ð16X̃6 þ 64X̃4 þ 86X̃2 þ 39Þ

92160ðX̃2 þ 1Þ4 b2

−
ð130X̃8 þ 650X̃6 þ 1220X̃4 þ 1020X̃2 þ 321Þ

11059200ðX̃2 þ 1Þ5 b3

þ ð1485X̃10 þ 8910X̃8 þ 21365X̃6 þ 25605X̃4 þ 15345X̃2 þ 3681Þ
1857945600ðX̃2 þ 1Þ6 b4 ðB12Þ

and

1

−∇̃2 þ b
ðX̃2þ1Þ3

1

ðX̃2 þ 1Þ5

¼ X̃4 þ 3X̃2 þ 3

48ðX̃2 þ 1Þ3 −
ð18X̃6 þ 72X̃4 þ 98X̃2 þ 47Þ

11520ðX̃2 þ 1Þ4 bþ ð50X̃8 þ 250X̃6 þ 470X̃4 þ 395X̃2 þ 126Þ
460800ðX̃2 þ 1Þ5 b2

−
ð575X̃10 þ 3450X̃8 þ 8275X̃6 þ 9925X̃4 þ 5958X̃2 þ 1434Þ

77414400ðX̃2 þ 1Þ6 b3

þ ð26355X̃12 þ 184485X̃10 þ 537355X̃8 þ 833875X̃6 þ 727335X̃4 þ 338205X̃2 þ 65523Þ
52022476800ðX̃2 þ 1Þ7 b4: ðB13Þ

Equation (27) follows to order Oð1=m2
HÞ.

APPENDIX C: DETAILS OF THE HEAVY PENTAQUARK MASSES

Here we detail the various contributions to the mass spectra recorded in Tables I and II. For completeness, we recall that
we fix MD ¼ 1.87 GeV to reproduce the D-meson mass in Eq. (7) and fix MKK ¼ 0.475 GeV to reproduce the
MΛc

¼ 2.286 GeV. As result, we have for the charmed heavy-light hadrons recorded in Table I

MΛc
¼ mH þmN − 0.82MKK þ 0.253

M2
KK

mH
¼ 2.286 GeV; ðC1Þ

MΣc

�
1

2

�
¼ mH þmN − 0.234MKK þ 0.203

M2
KK

mH
¼ 2.557 GeV; ðC2Þ

MΣc

�
3

2

�
¼ mH þmN − 0.154MKK þ 0.203

M2
KK

mH
¼ 2.596 GeV; ðC3Þ

MΛ⋆
c
ðP ¼ −1Þ ¼ mH þmN − 0.82MKK þ 2ffiffiffi

6
p MKK þ 0.321

M2
KK

mH
¼ 2.683 GeV; ðC4Þ

MΛ⋆
c
ðP ¼ 1Þ ¼ mH þmN þ 0.107MKK þ 0.253

M2
KK

mH
¼ 2.726 GeV; ðC5Þ

Pc

�
J ¼ 1

2
; S ¼ 0

�
¼ 2mH þmN − 0.078MKK þ 0.404

M2
KK

mH
¼ 4.360 GeV; ðC6Þ
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Pc

�
J ¼ 1

2
; S ¼ 1

�
¼ 2mH þmN − 0.119MKK þ 0.404

M2
KK

mH
¼ 4.341 GeV; ðC7Þ

Pc

�
J ¼ 3

2
; S ¼ 1

�
¼ 2mH þmN − 0.05MKK þ 0.404

M2
KK

mH
¼ 4.373 GeV: ðC8Þ

For the bottom heavy-light hadrons we fix the heavy-light meson mass mH ¼ ð5.28–0.168Þ GeV ¼ 10.76MKK .
The bottom heavy-light mass spectra recorded in Table II follow from

MΛb
¼ mH þmN − 0.958MKK þ 0.253

M2
KK

mH
¼ 5.608 GeV; ðC9Þ

MΣb

�
1

2

�
¼ mH þmN − 0.207MKK þ 0.203

M2
KK

mH
¼ 5.962 GeV; ðC10Þ

MΣb

�
3

2

�
¼ mH þmN − 0.174MKK þ 0.203

M2
KK

mH
¼ 5.978 GeV; ðC11Þ

MΛ⋆
b
ðP ¼ −1Þ ¼ mH þmN − 0.958MKK þ 2ffiffiffi

6
p MKK þ 0.321

M2
KK

mH
¼ 5.998 GeV; ðC12Þ

M⋆
Λb
ðP ¼ 1Þ ¼ mH þmN − 0.072MKK þ 0.253

M2
KK

mH
¼ 6.029 GeV; ðC13Þ

Pb

�
J ¼ 1

2
; S ¼ 0

�
¼ 2mH þmN − 0.0393MKK þ 0.404

M2
KK

mH
¼ 11.163 GeV; ðC14Þ

Pb

�
J ¼ 1

2
; S ¼ 1

�
¼ 2mH þmN − 0.056MKK þ 0.404

M2
KK

mH
¼ 11.155 GeV; ðC15Þ

Pb

�
J ¼ 3

2
; S ¼ 1

�
¼ 2mH þmN − 0.030MKK þ 0.404

M2
KK

mH
¼ 11.196 GeV: ðC16Þ
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