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Holographic charm and bottom pentaquarks. I. Mass spectra
with spin effects
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We revisit the three nonstrange pentaquarks [337]s_o ; and [337]s_, predicted using the holographic dual
description, where chiral and heavy quark symmetry are manifest in the triple limit of a large number of
colors, large quark mass and strong "t Hooft gauge coupling. In the heavy quark limit, the pentaquarks with
internal heavy quark spin § are all degenerate. The holographic pentaquarks are dual to an instanton bound
to heavy mesons in bulk, without the shortcomings related to the nature of the interaction and the choice of
the hard core inherent to the molecular constructions. We explicitly derive the spin-spin and spin-orbit
couplings arising from next to leading order in the heavy quark mass, and lift totally the internal spin
degeneracy, in fair agreement with the newly reported charmed pentaquarks from LHCb. New charm and

bottom pentaquark states are predicted.
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I. INTRODUCTION

Recently the LHCb Collaboration revisited its analysis of
the pentaquark states using a ninefold increase in recon-
structed AY — J/¥WpK~ decays from the LHCb Run-2 data
batch at 13 TeV [1]. The LHCb new high statistics analysis
shows that the previously reported P (4450) [2] splits into
two narrow peaks P} (4440) and P (4457) below the
>+ D*0 threshold, with the appearance of a new and narrow
Pf(4312) state below the £/ D°. The evidence for the
previously reported state P/ (4380) [2] has weakened.

We regard the new LHCD data as evidence that supports
the three lowest nonstrange pentaquarks with spin-isospin
assignments [317]¢_ | and [137]s_, predicted by holography
[3], in the triple limit of a large number of colors, strong
’t Hooft gauge coupling and a large quark mass. More
importantly, we will show below that the degeneracy in the
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internal heavy quark spin S = 1 is lifted by spin-orbit effects
at next to leading order in the heavy quark mass as heavy
quark symmetry is broken, in fair agreement with the new
data. Furthermore, we regard the closeness of the penta-
quarks P (4457) and P}(4312) to the fD** and =} D°
thresholds respectively, as further evidence in support of this
construction, as both thresholds coalesce in the heavy
quark limit.

Pentaquark states with hidden charm were initially sug-
gested in [4,5], and since have been addressed by many (see
[6—12] and references therein). In short, the current descrip-
tions range from pentaquarks made of compact diquarks
[13,14], to hadrocharmonia [15] and loosely bound hadronic
molecules [16] (see also references therein). Heavy penta-
quarks, as multiquark states composed of heavy and light
quarks, fall outside the realm of the canonical quark model.
Their description calls for a novel hadronic paradigm with
manifest chiral and heavy quark symmetry.

It is well established that chiral symmetry dictates most of
the interactions between light quarks, while heavy quark
symmetry organizes the spin interactions between heavy
quarks [17,18]. Both symmetries are intertwined by the
phenomenon of chiral doubling [19-21], as shown exper-
imentally in [22,23]. Therefore, a theoretical approach to the
multiquark states should have manifest chiral and heavy
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quark symmetry, a clear organizational principle in the
confining regime, and should address concisely the multi-
body bound state problem.

The holographic principle in general [24,25], and the
D4-D8-D8 holographic setup in particular [26] provide a
framework for addressing QCD in the infrared in the double
limit of a large number of colors and strong 't Hooft gauge
coupling 4 = g3y N, It is confining and exhibits sponta-
neous chiral symmetry breaking geometrically. The light
meson sector is well described by an effective action with
manifest chiral symmetry and very few parameters, yet
totally in line with more elaborate effective theories of QCD
[27]. The same setup can be minimally modified to account
for the description of heavy-light mesons, with manifest
heavy quark symmetry [3,28-31].

Light and heavy-light baryons are dual to instantons and
instanton-heavy meson bound states in bulk [32-37],
providing a robust geometrical approach to the multibody
bound state problem. The holographic construction pro-
vides a dual realization of the chiral soliton approach and its
bound state variants [38,39], without the shortcomings
of the derivative expansion. It is a geometrical realization of
the molecular approach [4,5], without the ambiguities
of the nature of the meson exchanges, and the arbitrariness
in the choice of the many couplings and form factors [40].
Alternative holographic models for the description of heavy
hadrons have been developed in [41,42].

The organization of the paper is as follows: In Sec. Il we
recall the essential aspects of the Ny =2 heavy-light
effective action in leading order in the heavy quark mass
introduced in [3,28]. In Sec. III we extend this analysis at
next to leading order in the heavy quark mass for the bound
heavy baryons seeded by instantons in bulk. In Sec. IV we
detail the spin-orbit and spin-spin effects for the heavy
baryons and their exotics. The induced quantum effective
potentials are made explicit in Sec. V. In Sec. VI we derive
the holographic mass formula for the heavy-light baryons
and their exotic pentaquarks, including the spin contribu-
tions. By adjusting the chief Kaluza-Klein scale used in
[3,29], a more refined heavy-baryon spectrum emerges,
including the newly reported charmed pentaquarks by
LHCb. Our conclusions are in Sec. VII. A number of
Appendixes are added to support the various results.

II. HOLOGRAPHIC HEAVY-LIGHT EFFECTIVE
ACTION

The D4-D8-D8 setup for light flavor branes is standard
[26]. The minimal modification that accommodates heavy
mesons makes use of an extra-heavy brane, as discussed in
[3,28,29]. It consists of N light D8-DS§ branes (L) and
one heavy (H) probe brane in the cigar-shaped geometry
that spontaneously breaks chiral symmetry. We assume
that the L-brane world volume consists of R* x S! x §*
with [0 — 9] dimensions. The light 8-branes are embedded

in the [0 — 3 + 5 — 9] dimensions and set at the antipodes
of S!, which lies in the fourth dimension. The warped
[5 — 9]-space is characterized by a finite size R and a
horizon at Ugg.

A. Dirac-Born-Infeld (DBI) action

The effective action on the probe L-branes consists of the
non-Abelian DBI and Chern-Simons action. After integrat-
ing over the S*, the leading contribution in 1/ to the DBI
action is

Spe1 & —K,'/ d4xdzTr(f(z)Fm,F”” + g(z)F, . F7). (1)

The warping factors are

R3 9 U3
f = — = _—Z
(2) 4U," 8(z) =3 Uk

(2)
with U2 = Uyy + Ugxz?, and x=aiN, and a=1/
(2167%) [26]. All dimensions are in units of Mg
(Kaluza-Klein scale) unless given explicitly. Our conventions
are (—1,1,1,1,1) with A}, = —A,, and the labels M, N
running over , z only in this section. The effective fields in
the field strengths are [3,28]

FMN = ¥ ¥ + . (3)
_a[Mq)N] - cI)[MAN] _¢>[M¢>N]

The matrix valued 1-form gauge field is

S A

For Ny = 2, the naive Chern-Simons 5-form is

iN 1 1
=—S | TrlAF?—-AF+—A%|. (5
S =22y, r< 2o > ®)

We note that only for Ny > 2 does it fail to reproduce the
correct transformation law under the combined gauge and
chiral transformations [35]. In particular, when addressing
the N, = 3 baryon spectra, Eq. (5) does not reproduce the
important hypercharge constraint [35], but can be minimally
modified to do that.

For N [ coincidental branes, the @ multiplet is massless,
but for separated branes they are massive with the addi-
tional contribution

1
S TH(®] D). (©)

The value of my; is related to the separation between the light
and heavy branes, which is about the length of the HL string.
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It is related to the heavy meson masses M = 1870 MeV
(charmed) and Mz = 5279 MeV (bottomed) through [28]

Mgk
Mpp=my+——. 7
D.B H WG (7)

Given Mgy and Mp g, the mass parameter my is therefore
totally fixed.

While the use of one heavy brane is well suited for single
heavy baryons, doubly heavy baryons require a priori two
heavy branes. However, in the heavy quark limit and to
order 1/my, including the spin-orbit effects as we will
discuss below, there is no need to double the heavy branes.
Such doubling will be needed if e.g., spin-spin interactions
are retained to order 1/m?,.

B. Light fields

In the coincidental brane limit, light baryons are inter-
changeably described as a flavor instanton or a D4 brane
wrapping the $*. The instanton mass is M, = 8z« in units
of Myg. The instanton size is small with p ~ 1/+/2 after
balancing the order A bulk gravitational attraction with the
subleading and of order A° U(1) induced topological
repulsion [26]. The bulk instanton is described by the O
(4) gauge field

Ap(y) = =GunONF(y), FonO)ljy=r = 0. (8)

From here on M, N run only over 1, 2, 3, z unless specified

otherwise. If p ~ 1/+/4 is the typical size of these tunneling
configurations, then it is natural to recast the DBI action
using the rescaling

(X0, xp) = (XO’XM/\/E)’ \/ZP = p, (Ao, Ay)
= (Ag. VIAy). )

The rescaled fields satisfy the equations of motion

1

Dy Fyy =0, Ay = —mFaMN*FaMN, (10)

with the use of the Hodge dual notation.

C. Heavy-light fields

Let (®(, ®,,) be the pair of heavy quantum fields that
bind to the tunneling configuration above. If again p ~ 1/1/2
is their typical size, then it is natural to recast the heavy-light
part of the DBI action using the additional rescaling

(Pg, Pyy) — (CDO’\/E(I)M)' (11)
The interactions between the light gauge fields (4, A,;) and

the heavy fields (@, ®,,) to quadratic order split to several
contributions [3,28]

ﬁszCﬂE()—i-chﬁl +£CS’ (12)
which are quoted in Eq. (Al). We start by recalling
the leading contributions in 1/my stemming from
Eq. (12), as thoroughly discussed in [3,29]. For that, we

split @), = ¢y,e~ "% for particles (my — —my for anti-
particles). The leading-order contribution takes the form

1 i
Ly= 3 \faan = *fun > +200 (Fuy = xFn) gy, (13)
subject to the constraint equation D¢, = 0 with

fun = Omdn + Apdn, (14)

while the subleading contributions in Eq. (12) to order A%m,
simplify to

myN .
Les — H—¢L*FMN¢N-

1672
(15)

£y

an, = 4mudiuiDodu.

For self-dual light gauge fields with Fy;y = *Fy, the last
contribution in Eq. (13) vanishes, and the minimum is
reached for f,y = * f - This observation when combined
with the transversality condition for D,¢,, = 0, amounts to
a first-order equation for the combination y = &y,¢,, with
oy = (i,0), i.e.,

oyDyy = Dy =0, (16)

as noted in [3,28]. In a self-dual gauge configuration, the
heavy spin-1 meson transmutes to a massless spin-%
spinor that is Bogomol’'nyi-Prasad-Sommerfeld bound
in leading order.

III. THE ORDER 1/m% LAGRANGIAN

To account for the spin effects and the breaking of heavy
quark symmetry we need to account for the 1/my con-
tributions to Egs. (12)—(15). This will be sought by
restricting the quantum and heavy fields to the quantum
moduli. More specifically, we choose to parametrize the
fields using

Ay (t,x) =V(ASI—=ioy) V7L, Ap(t,x)=0
<1>M<r,x>—7%v<r,x>ﬂx<z>,z<r>>aMx<z>, (17)

which is equivalent to
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Ay(t,x) = A(X(1), Z2(2),  Ay(t,x) = =iVo, V! =@,
Dy (1, x) = f(X(2), Z(1))Gpx (1) (18)

after gauge transformation. The @ is parametrized as

@ = —XyAS + 49D, (19)
where ®, diagonalizes D§;D$®, and where
7 = tr(r“a'a) (20)

) _ - -
‘Cquadratic = 8—)(} UMf(at —Ag— q))(at —Ap— q))UMf)( - Ly + Lcs-

mpyg

are expressed in terms of the collective variables a € SU(2)
for a rigid SU(2) rotation. The temporal component @,
satisfies the constraint

i

(=D3s + miy) o + 2F yo@u = 75— Fro(0p + Ap)Dg

’a
=0 (21)
and in leading order in 1/my can be ignored.

Inserting the expansion (18) into Eq. (Al) yields the
quadratic 1/my contributions,

(22)

Here zcs contains only ®,,. Each of the contributions in Eq. (22) is discussed in Appendix A. Combining the results of
Egs. (A21), (A50), and (A56) we have for the quadratic contributions to order W%H

1 Cl + . 62 . .
L quadratic = —— <mﬂ( X+ lmﬂ( T+

c . e
S g +u)

my \x*a“p ©ap? 2
37+ 124 S ¢
- 2o Pl t 23
192my, ¥4T <4mH 2 am, +4me2>’( © (23)
|
with the constants fixed to e ... 78 4 12 -
L—ifyp+ i+ iy - — 8
2my Smyp Smyp
13 7 17 z
173820 T 1280 1920’ —%wrl LN
5 192my P 5 2 3
) =—, 1 102 56 4 9 4
TR —~4(—n——nz+—n3+j/~72<___n>>
1 1 13 myp® \ 5 5 3 2 3
“T128780 640 (24) 1 128n* | 376n° 4017’
m%,p° 45 15 70
In the meantime, one has also to take into account the . 56 8 2
Chern-Simons term contribution — jnp? (? —3 ”) - §J2ﬁ4> ; (27)
1622 eunpoPyPy®p0,dy +c.C., )
':i Ty — ot — o7 28
which is J=sWi=x%).  n=x% (28)
This is the first major result of this paper. We now study
L quartic.cs = Xy, (26)  the quantization of Eq. (27) and the ensuing heavy-light

B Smymip

where m, = 167%a.

The above analysis ignores the Coulomb backreaction
(repulsion from the bound charged fields) as we discussed
in [3,28] and can lead to instabilities. In Appendix B we
detail the backreaction from the Coulomb field with the
final result for Eq. (23) to order O(1/m%),

baryonic spectra.

IV. QUANTUM SPIN EFFECTS
A. Spin-orbit effect

The first major spin contribution occurs through the spin-
angular momentum coupling y“y'7%. Recall that y* in
modular variables is
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Za = 2i(a4(:lg - &4da + eabcabac‘)’ (29)

with af + > 3_ a2 =1 parametrizing the SU(2) ~ S°
moduli. Thus, the canonical momenta for y; read

2c

. 3
I, = mypzaa -——5 5 (asx Tax +€cpartexa,),  (30)
myn-ap
. 2c3
I, = myp’a, + — zj(*ra)(au. (31)
mym-ap

Therefore the spin-orbit contribution to the Hamiltonian is

1 4C3

H= —iVg +——Fx §)>
2myp2< Vet mprlap® )
_ -V, 8 LS dey \2x'ixatix
2myp*  mymtap*myp*  \myrap? 2myp*
(32)
with the orbital angular momentum
= 1 . L2 e
L= 5 (iaVy —iaysV — id x V). (33)

The integer-valued spin of the heavy-light doublet trans-
lates to a half-integer spin on the moduli

S=x1x (34)
2

a nontrivial transmutation induced by the binding of the
zero mode to the instanton in bulk [28]. To leading order in
1/my only the first two contributions in Eq. (32) will be
retained. The last contribution in Eq. (32) is the induced
spin-spin interaction of the heavy mesons and is suppressed
by 1/m2,.

B. Spin effects

The leading spin effects to order 1/my stem from the
quadratic and quartic y contributions detailed above. The
terms with a first-order time derivative of y are

3N o A 2y -4t
<]+ ¢ 2)i)(‘;(+)“(—l)“(()“( )gx), (35)
2mymyp 2mpy 3mymyp

and imply the equation of motion

1 3N, 3N,
—— Oy till+—5 0+
2my . < 2mHmyp2 & Zmypﬂ(

N i xx +x'ax)

=0. 36
3mym,p* (36)

Therefore to second order in 1/my one has

0 = 3N, . 9N? 47" xxN.
2myp2 8mHm§/)4 mh,mg/)4
8IN? 32N ) (37)
32mg;m;p° 3mzmip®

from which the Hamiltonian can be easily extracted.

C. Hamiltonian

With the above in mind and to obtain the Hamiltonian
in leading order in 1/my, it is sufficient to perform the
following substitution:

3N
> -, 38
J= =0 (38)
and add
81 1 81N? 32N
OH = —n+ 2~6< “n— Cn3> (39)
8mpyp myp 32 9

to the spin-independent Hamiltonian [28].
More specifically, for a single heavy quark with n = 1,
the total Hamiltonian to order 1/my now reads (N, = 3)

o 39L-§
single ™ 5y ami(1+ 2mH1m‘_p2)p4
. ( 553 67.94 37+12§—§>
120mym3p* ~ mymip®  192my

i)
2m},p3(1+2mH1mvp2)28p 2mym,p* ) Op

+ 4L . (40)
2myp*(1+ 2mH1m‘.p2)

The change in the Laplacian is due to the i—z—l— a? term
following from the new line element on the moduli,

ds? = (1 + (41)

1
— |dy?,
2mHmyp2> I

with a change in the small p behavior. For the pentaquark
states where N = N = 1, the corresponding Hamiltonian
is (N, =3)
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39L-§
Smym?(1+—L)p*

2
mymyp

H jouple =

411 n 133.30
ZOmHm§p4 mi,m‘y‘p6

)
2myp3(l+m)23p mym,p*) Op
47

2myp*(1+——)

2
mymyp

37+ 12/{-3

(42)

Below we solve the corresponding Schrodinger equation
numerically.

V. INDUCED QUANTUM POTENTIALS
A. The effective potential for a single-heavy quark: /=0
state
For [ =0, the spin-orbit coupling vanishes, i.e.,

L-S =0, and the induced effective potential simplifies to
|

1

-1
14 Jz—,p): <l(l+2)—
( 2 2mV(1 + 2mH1'nyp2)p2

2
myp, 7

2 p _3Omyp2

n 553 n 67.94
120mym3p* ~ mymip®)’

- +
120m Hm%p4 m%m;‘p6

(43)

Cmya, , T < 553

L 67.94
30myp2

Although the sign of the /% is negative, the my = oo system
is still stable due to the uncertainty principle. Indeed, for
small p, the kinetic contribution is of order /}iz and compen-

sates for the negative sign to maintain stability. In this case,
the 1/my term implies additional repulsion that further
stabilizes the system. As my — oo, the spectrum approaches
the infinite mass limit smoothly.

B. The effective potential for a single-heavy quark:
[ > 0 state

For [ =2,4,..., one has J = (I +1)/2. We first con-
sider the J = (/—1)/2 case. Again for No =1 and
N. = 3, the effective potential reads

(I+2)aN.,

2
mymyp

3a’N?
4m%_1m§p4

(44)

with o = %. The 1/m?, term due to the spin-orbit coupling is kept to maintain stability at small p. The change of the

potential as one increases my tends to decrease for larger /. For [ = 2, the shapes of the potential at my = 2 and my = o0
differ moderately, but for / = 2 the difference is already quite small.

Similarly, in the J = HT] case the effective potential is

[+1 1 laN, 3a*N?
1% J=—,/)>= (l(l+2)+ < -
( 2 2m (1 + 2mH:nypz)p2 mym,p*  dmymipt
2
ma? , 7 553 67.94
- - 45
Tt 30m,p? + 120mym2p* + m;mp° (43)

Again, the 1/my contribution further stabilizes the system
and pushes the spectrum a little bit higher.

C. The effective potential for a pentaquark state

Here we focus on the pentaquark states with Ny =
Ny = 1 state or hidden Q = ¢, b, with § = 0, 1. For § = 0,
the potential reads

l mywZp* 18 I(1+2)
V(Jzz’sz()): 2 smp? T am(1+—1)
yP y mym3p* P

411 133.30
- . (46
( 20mym;p* * mi,m‘;p6> (46)

2

For S =1 wecanhave J =1 —1,1[,]+ 1, and the potential
in this case reads

114021-6
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1 INAW) 2N 18
V(I,S=1,p) = - 2<l(l+2 + ()2/3 5 54)+ 5
2my (1 + mﬁmﬁpz)/} mym,p mgmyp Smyp
2
ma? 411 133.30
%% - 47
+ 2 rt ( 2OmHm§p4 m%{m;‘,p6 47)
with # = 13 and 1 ' ) {3(1 + o ‘W)} )
o1 Uy (D) F = |t (P
I(1+2) 201+ ZmLﬁz) ! 8p*(1+ ZmLf)Z)
AJ)=JJ+1)- - 2. (48) _ _ _
4 + Vi(p)un1(P) = Ep 1t (D), (54)

More specifically, for / = 1 we have A(J = 1/2) = —2 and
A(J=3/2)=1.

VI. SPECTRA

Given the Hamiltonian and the explicit induced quantum
potentials, we can now obtain the spectra of the holographic
heavy-light hadrons. Our strategy is the following: we treat
the warping contribution as a small perturbation, while
solving the radial part numerically. For the warping part,
using the average

7?2 n, +1
<z> T (49)
P lum, 141
we obtain
37414
oM 7(NQ+NQ), (50)

P 190 my,

in units of Mgg.
To obtain the radial part, we need to solve the Schrodinger
equation

1 9 [, 1\ o
- — )%y
2myp*(1+5—1—)20p (p < +2mHmyp2> 8p> niP)

2mHmvp2

+V[(P>\Pn1(ﬂ) :En.lan.l(/))’ (51)

with the warped normalization condition

0 1 2
22 [T (1 g ) WP =1 (52)

¥

For this purpose we perform the transformation ¥ — « and
use p* = m,p?,

Y= , (53)

to simplify Eq. (51) as

with the normalization condition

o 1 B
22 [T (14 5 ) =1 (59)
0 2myp

Notice that the normalization condition actually requires the
u,; to vanish near p = 0. In this case one can show that
although the additional term [large bracket in Eq. (51)]
becomes negative at small p, the spectrum E, ; is still
bounded from below. The above equation for u,; can be
diagonalized numerically and below we present the results
for different states.

To fix the parameters for the charmed heavy baryons,
we choose Mp = 1.87 GeV for the D-meson mass in
Eq. (7) and fix Mg = 0.475 GeV to reproduce the
M, = 2286 GeV. This low value of Mgy is consistent
with the value used to reproduce the nucleon spectra [32],
but about half the value of Mgx ~ 1 GeV used originally
in Eq. [26] and adopted in [3,28,29]. In this case we have
my = (1.87-0.168) GeV = 3.66M k. In Fig. 1 we show
the radial wave functions for the first and second excited
states following from Eq. (51) for a single heavy-baryon
(top panel) and double-heavy-baryon or pentaquark state
(bottom panel). Note the rapid decay of the wave func-
tions near the instanton core as p — 0.

The corresponding charm and bottom states for single-
and double-heavy hadrons are listed in Tables I and II
respectively. Note that while m, = 2.286 GeV is fitted to
fix the Kaluza-Klein scale Mgg = 0.475 GeV, m,, =
5.608 GeV is a holographic prediction which is remarkably
close to the experimental value of 5.620 GeV. The details of
the mass budgets for each of the states in terms of the three
holographic parameters are given in Appendix C. The
results for the single-heavy baryon spectrum are surpris-
ingly good, given the small number of parameters used in
this holographic approach. The spin contributions improve
considerably the predictions for the masses and their
hierarchy. In particular, the empirical mass ordering X. —
A, < A} — A, is obtained, contrary to the claim in [31].
The mass splitting between X. and X, is higher than
observed due to the sizable repulsion from the [ =2
intrinsic angular momentum assignment.
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@i(p)
010
008
0.06
0.04
0.02 -
- P
2 4 6 8 10 12
¢i(p)
0.10
008
0.06
0.04
0.02 -
. . \ . — b
2 4 6 8 10 12
FIG. 1. The [ =0 radial wave functions for single heavy-

baryon (top panel) and double-heavy-baryon or pentaquark state
(bottom panel) as a function of p. See text.

The holographic construction with spin corrections
allows for only three pentaquark states which are close
to the observed charmed pentaquark states reported by
LHCD, although with slightly smaller masses (the 80 MeV
difference can be easily narrowed by adjusting the Kaluza-
Klein scale Mg = 0.475 GeV at the expense of A.). The
spin-orbit effects split away the [J37]s_; and [337]5_,
states, lifting the degeneracy reported originally in [3].
The present holographic construction rules out a

pentaquark with a [%%i] assignment since the instanton

core carries equal spin and isospin [3]. The splittings
between the different pentaquark states are somehow
smaller than expected, due to the strength of the spin-orbit
coupling to order 1/m?. Additional contributions are
expected to order 1/mj3,. This construction supports addi-
tional Roper-like and odd-parity-like pentaquark states
which we have denoted by Py, although they are heavier
and more susceptible to decay.

VII. CONCLUSIONS

In the holographic construction presented in [3,28,29],
heavy hadrons are described in bulk using a set of
degenerate N light D8-D8 branes plus one heavy probe
brane in the cigar-shaped geometry that spontaneously
breaks chiral symmetry. This construction enforces both
chiral and heavy-quark symmetry and describes well the
low-lying heavy-light mesons and baryons. Heavy baryons
are composed of heavy-light mesons bound to a core
instanton in bulk. Remarkably, the bound heavy-light
mesons with spin 1 transmute to heavy quarks with spin
%, an amazing spin-statistics transmutation by geometry.

In [3,28,29] the analysis of the bound states and spectra
was carried to order mY, where the spin effects are absent.
In this work and for Nf =2, we have now carried the
analysis at next to leading order in 1/my where the spin-
orbit and spin corrections are manifest. By refining the
Kaluza-Klein scale Mgg from 1 GeV used in [3,29] to
0.475 GeV used here, a rich spectrum with single- and
double-heavy baryons emerges with fair agreement with
the empirically observed states, including the newly
reported charm pentaquark states by LHCb.

This is remarkable, given that only three parameters were
used in the holographic construction: My, Mg, my. For
charm, they are fixed by M, — my (nucleon mass),
Mgg — M, (lambda mass) and my — Mp (D-meson
mass). The only parameter adjustment for the bottom
spectrum is my — Mp (B-meson mass). Needless to say,

TABLE I. Charm baryons and pentaquarks.
B J* l n, n, No Ng Mass (MeV) Experiment (MeV)
A, O%Jf 0 0 0 1 0 2286 2286
z. ]%* 2 0 0 1 0 2557 2453
1%‘L 2 0 0 1 0 2596 2520
A} 0%‘ 0 0 1 1 0 2683 2595
O%* 0 1 0 1 0 2726 2765
z 1%‘, 1%‘ 2 0 1 1 0 [2947/2986]
1%+, 1%+ 2 1 0 1 0 [2948/2995] e
P, %%— %%— 1 0 0 1 1 [4340/4360/4374] [4312/4440/4457]
P; 1%‘, 1%— 1 0 1 1 1 [4732/4752/4767] e
1%*, ]%+ 1 1 0 1 1 [4725/4746/4763]
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TABLE II. Bottom baryons and pentaquarks.

B Jj° l n, n, No Ngp Mass (MeV) Experiment (MeV)
Ay 03" 0 0 0 1 0 5608 5620
%, 15* 2 0 0 1 0 5962 5810
13° 2 0 0 1 0 5978 5830
A; B 0 0 1 1 0 5998 5912
05" 0 1 0 1 0 6029 (6072)
% 15,137 2 0 1 1 0 [6351/6367] .
157, 13F 2 1 0 1 0 [6344/6367]
P, =13 1 0 0 1 1 [11155/11163/11167]
P; 13,13~ 1 0 1 1 1 [11544/11553/11556]
11 13+ 1 1 0 1 1 [11532/11543/11579]

the light-light, heavy-light and heavy-heavy mesons and baryons are described simultaneously, without changing the
number of parameters.

The holographic construction predicts a triplet of nearly degenerate charm pentaquark states with the isospin-spin-parity
assignments,

( [PC (4340) %_] L {PC (4360) %_] o {Pc(4374) %ﬂ s1> :

which are to be compared to P.[4312|4440|4457] recently reported by LHCb. The small mass discrepancy can be readily
eliminated by adjusting the Kaluza-Klein scale at the expense of A.. The spin-orbit effects split away the states with
intrinsic spin S = 1. The analysis rules out the assignment [% %ﬂ for these states, and predicts a triplet of bottomed
pentaquark states,

([Pb(11532)%%_} ,[Pb(11543)%%_} ,[Pb(11579)%%_} >
S=1 S=0 S=1

not yet observed. New Roper-like and odd-parity penta- ACKNOWLEDGMENTS
quark states are also suggested, although much heavier and
more susceptible to falling apart.

The recently reported P,.(4337) at 3o significance [43] is
not supported by our current holographic analysis of the
low-lying pentaquark states. The even- and odd-parity
excited holographic pentaquark states P; are heavier.
More statistics to improve the significance of this penta-
quark would be welcome.

Finally, the present holographic description can be
regarded as the holographic dual of the chiral soliton
construction of heavy-light baryons (see [39,44] and
references therein). However, in the latter the uncertainties APPENDIX A: DETAILS OF THE HEAVY MASS

in combining chiral and heavy quark symmetry strongly EXPANSION

limit their predi.ctive range, especially when one addresse.:s Following the rescaling in Eq. (9) the effective action for
the spin corrections. This is not the case for the holographic  the heavy-light fields split into the following contributions:
description as we have shown, as both symmetries are

This work is supported by the Office of Science, U.S.
Department of Energy, under Contract No. DE-FG-
88ER40388 and by Polish National Science Centre
(NCN) Grant No. UMO-2017/27/B/ST2/01139.

Note added.—We should also mention that our setup allows
the determination of not only the masses of the penta-
quarks, but also their decay widths. This will be explored in
part II [45] and part IIT [46] of the series of papers.

geometrically embedded in the bulk brane construction L =aN ALy +aN (L, + El) + Les, (A1)
with just three parameters. The dual approach is vastly
superior. with each contribution given by
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Lo=—(Dy®y—Dy®@},)(Dy®@y—DyPy)
Ly =+2(Dy®}, — Dy @) (D@ — Dy Dy) — 20 FM D,
—20! FMOD —2m2, @), @,
2
~ Z
L, :+§(D,.<1>j—Dj¢>i)T(D,.q>j—Dj<1>,~)
_2Z2(Diq>z _qu)i)T(Dich _chDi)
2 +
—gzzq)j-F”él + 2Z2 ((Dz in¢i + C.C.)

iN.
Log=——5
s 1672
iN,
1672

@' (dA+A*)DD

(D®)' (dA+A2) D+ O(DY). (A2)

We now use the expansion (17) to explicitly derive the
various contributions in Eq. (A1) in leading order in 1/my.
The net result has manifest heavy quark symmetry to order
mY,, with the spin-orbit and spin-spin contributions break-
ing this symmetry to order 1/my.

1. Kinetic contribution: L£y;,

The explicit form of the kinetic contribution is

| N N _
Lyin = S—XIGMf(_at —Ag—D)(0, + Ay + D@)Gy [y
my

(A3)

which contains a derivative of y. With the help of the
identity for Weyl matrices 6,76, = 0, Eq. (A3) reads

1 e I . . .. .
— 2 — XXy OnfOufa x +=—Ac (= x"1)
2my 2my

2mH
1?4 1?
—%A(Z))(TZ—MU@)ZZTZ’ (Ad)

which can be further simplified by using the explicit
relations

4
—trq)2 = mzla )(tl - XNXMtrANAM
2x4 5 3x2 .
= ' x? A5
(X2 +p2)2 ap + 2(X2 +p2)2 (AS)
and
4
o i p
Ay=——+— (1 ——F———= A6
0 8r2ax? < (x? +p2)2> (A6)
to have

"I" () (%) 2
x'x L p ap s
Y — F
kin ZmH + <4mH p2 4mH + 4me2>)( X
. 13 .
i Oy ey (AT
+ 16myn*ap® w t)(+3840m,.17t4a2p4)()( (A7)

after integration over space.

2. Chern-Simons contribution: Lcg

The Chern-Simons term is

N, N
Los = ——S @ (dA + A)D® — < (DD)' (dA + A2)D
167z 167
iN,
=5 @' (dA + A?)D®, (A8)

where on the second line we have performed a partial
integration with the help of the Bianchi identity DF = 0.
More explicitly, we have

i _ .
WfQXTGMFMNGN)(
l€yNPQ
128myn’a

N iIN,
Ag| ———yToy Fino 2,
+ 0(128mH7r2aZ oM MNUN)(f>

fxiouFon(0p + Ap)fEox

(A9)

which is seen to contain y'y as well as linear terms in
derivatives. Recall that the electric field F,, after solving
for the Gauss constraint reads

. .0A
Foy = XnFun +/’a—: —x‘Dy®‘.  (Al0)

The linear terms in p, Xy vanish due to parity and
translational invariance, but there are terms of the form

( e .
yd SX= ix'a~lay, (A11)

which couple to isospin. Again, using the identity for Weyl
matrices

€unpBor = —OMrOMP T ONRGMP — OpOyn,  (A12)
all terms that require antisymmetrization to vanish,
—eunpoouFonopOof =0, (A13)

but the more involved one
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—€eunroouFonApGg
_ GMF0N5NQ5QXM _ GMFONéMQ(_TQXN
GMFONa-MNaQXQ (A14)

does not. Using the identity ¢,,7'G), = 0, the second term
vanishes, while the first and the third term read

GMFON(?NQ&QXM:3O-'XF0N5N:_ 9p2f Ta)(a
ouFonGunGoXo  oyFonoyoys- X 3p*f .
2, 2 =- 2, 2 =yv2 L ot X
X*+p 2(X*+p?) (X*+p7)
(A15)
Since
—eunproomFonApGy = —ﬂfa)(a (Al6)
9] 0 (Xz +[)2)2 ’
we finally have
6p2f2
- O FoyDp®, = — et
EMNnPOP L oNP PP o 16mHNCa(X2+p2)2)(T}(Z
(A17)

One should also consider the contribution from Fgy =
_ 104,

erN’
6X2 104,

—_— Al
X2 4 p*r Or ( )

—eunproomFonApGy =

The final Chern-Simons contribution to order 1/my after
rescaling is

3 f2p? + n
iy (0, + A
Tompyria (X2 + 22 4 (O F Aol
N 3 p2f2
64myn*a (X + p?)
3i X2 104
64mynta X* +p*r ar X

2)”1’“}(1.)(“

(A19)

In fact, the first term can be obtained from the leading-order
result by noticing that 9, - —imy + 9, and requiring
gauge invariance. Using

Ay = (A20)

i | pt
8r2ax? (x> +p%)?)"

and performing the spatial integration we finally have

Lcs s iy O xx

7
= 4
R2myntap 1280my*a’p*

1 T oln,ia,d
sx Tyt

S T A21
128myr*ap ( )

3. The contribution: ®,

This is the most difficult term to unravel to order 1/my.
The equation of motion for ®, reads
i
(=Djy + mip)@g + 2F 0Py — mFPQ(aP +Ap)@g
=0 (A22)
after using the self-dual condition for F. Using the standard
relations for &,,y, we have for the last two contributions in

Eq. (A22)

6p>  ldf _

60> .

For the first contribution in Eq. (A22) we have

6f T . _
Fro®u ZW(PZU'X‘FU‘XPP)Z +x'Dy @ pxf.

(A25)
with
(Of 1 - Xt - X (A26)
=——— 06 Xt% - X,
2(X% +p?)

or more explicitly

4Dy, f =T 5 Xeigye (A27)
X ol = 7o 550 Xtux”.
M M. (X2 +p2)2

Inserting Eqs. (A27) and (A28) into Eq. (A22) we have

with
12f o 6fp*
Jo=— " (p*6-X X A
0 (XZ +ﬂ2)2 (ﬂ o +0 pp))(+(x2 +p2)20
3i pf 2f 0A, _
Xty P x5 x
vax +2 za(X2+p2)36 zt ror
(A29)
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the source for @, In this equation the Abelian part of Fy,
has been included. Since

104, i 1 2p*
S 1 A30
ror  4n’a(X* + p?)? ( +X2 +p? (A30)
one finally has
12f e op°f
Jo=———(p*6-X+5-X B
e (p°6-X+65 pp)x+(xz+p2)26 (74

i f 507\ .
+ 1+ -Xy.
2na (X? +p?)? ( X2+p2>0 “
In the large my limit, the contribution to @ is 1/m3
suppressed compared to @,

(A31)

1 1 1

- 2 2
—Dy + my my H

and can be neglected from the Lagrangian.

4. (I)() at mH=0

In the opposite limit of my = 0, it is instructive to see
how the field @, solves the constraint equation. To solve
Eq. (A28), we define the Green’s function

1
G(X.Y) = (X,Y)
_Dzzvf
_ pP+6-Xo-Y (A33)
42 (X2 4 PP (X = Y)2(Y2 4 )
in terms of which the solution can be written as
®y(X) = — / FYGX,Y)o(Y).  (A34)

To perform the integral one needs the following elementary
integrals:

/d4Y P+6-Xo-Y G-Y
4”2(X_ Y)Z(YZ +p2)1/2 (YZ +p2)n+3/2

= f,(X%p")5-X (A35)
with
I(n) 1 PP\ A(n—1,X?)
Ja(X2.0%) ST X [(2_@_2)?) 1
—|-;2A(n—2,X2)} (A36)
and

/d4Y pP’+6-Xo-Y 1
47T2(X _ Y)Z(y2 +p2)1/2 (Y2 +p2)n+3/2
= g.(X*.p%). (A37)
with
I A(=1,X2)
X%, p%) = . . A38
(X% p7) 4n+1)X> n-1 (A38)
Here A(n, X?) reads
Amx) =~ L (A39)
’ p2n <X2 +p2)n’
with the limit
A(n, X? X?
fim A0 X0 _ ln<1 + —2> (A40)
n—0 n P

subsumed, as X — 0, f, and g, are all regular. With the
above in mind, the explicit solution for @, follows:

D) = 1202, (X?.p%)5 - X

vl
(X2 +p?):
+ 607 [2(X?,p)5 - Xty + 12f,(X*,p*)pp &-X

l

5 (2(X00%) +5pf3(X2p7))5 - X |1, (AdL)
where we have used the zero-mode profile
c
f=—"—3, A42
(X2 +p%)2 A%

with ¢ = /2p/x.
In terms of Eq. (A4l), the @, contribution to the
Lagrangian is

1
S =

= AXTTH(X)Dy(X).
8mH d JO( ) 0( )

(A43)

Using the fact that y“ is anti-Hermitian, all the mixing terms
vanish, with the exception of

6i 2,22
2l /d4X Czp v}
8ntamy (X*+p7)

2
(12 (X2, 2 e,

(A44)

which couples the spin of the nucleon core and the heavy
quarks. After the spatial integration, it reads

i
L A45
32mH7r2ap2)( v (A45)
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The diagonal terms give

1 [Xz ; /d4X122p4czgz(X2,p2)
8mpy (X2 +p?)*
122¢ 2X2f (X2 )
242, i d*X 2
+,0.0)H(/ X2+p2)4
2X2f2(X2 14 )
+ at.,a.,t / °
X XXX X2+p )
Xx/d [f2(X2%0%) + 52 f5(X2 p?)]
4 a2 (X2 —|—p2)4
A46
(1557 (0
and reduce to
X2 1 2 1 25
ot F_ 52
X)((4me2 dmpy 2+4mHaI+6144mHJr4 2p4>
(A47)

after integration. Equations (A45)—(A47) yield the final ®,,
contribution to the action

L i X2+1")2+1'2+ 2
p— a
&=L dmyp*  Amyp*  4my | 6144mynta’p?
i
ey A48
+32msz2ap2% “yx (A48)

5. The warping contribution: 6L,

The warping contribution stems from S, and does not
have any derivative coupling. More specifically, we have

531:(Z+Z)2 ((3 272 )f’2 ( 6x-+12z

————@
24my 2Z+x? x* 422 +p?)?

7+ 2Z)? 272 Ox2 4372
_(z42) <<1+ P >f’2 17 2f2)x*x

SmH

P (z+2)
my (22427 +p?)

s x. (A49)

After spatial integration, Eq. (A49) gives rise to a IZ)—ZZ Y4

term as well as a y'y term, namely

37+12§—§

AS0
192my, (A50)

'Cwarp == X T)( .
Notice that the Z> contribution is negative, which is
consistent with an instability at large Z.

6. The contribution: £,

To leading order in 4, this contribution vanishes since
®,, satisfies the equation of motion. However, there are
contributions to A,, at order 1/4,

Ly = 4aN @, ®yF )y = 8aN AP, ®pndyAy.  (AS])

To linear order in y“, we need the explicit solution to AM,

~ i )(atrTaJMNXN
Ay = A52
M l6n2ad 2(X2 + p?)? (A52)
With this in mind and using the identities
onm = iyt (AS3)
Memii = 46°, (A54)
we have
R 1 P4f2
8aN A}, Oy Ay = iy,
aiv . M*NYMAN 8mHﬂ2a <X2 +p2)3 wxvxy
(A55)
which after spatial integration reduces to
i
Ly =———y7"tY. A56
0= SomataX X TX (A56)

APPENDIX B: COULOMB-BACK REACTION

Here we provide a complete treatment of the Coulomb-
back interaction contribution. After rescaling Aq — iA, the
Lagrangian for A? reads

2

+f—)()(A2
2mpy

£l =T (94,

1
+A0<PCI+P0+—P1)v (B1)
my

where p! is the source without the heavy-quark field

3N p*
A= aN,V2Ad = - P B2
an . 0 2 (x2—|—p2)4 ( )
and we have
po=1x"x.
e 3 207 =X* .
= - . B3
p=Zi =20+ 16mHﬂa(X2+p)2f)m (B3)

Notice that
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3 2p? — X?
16myna (X* + p?)?
3 f2P2

— T
omurta (X2 + )2 % ¥

3 fo2 -
6 l
* 64mynia " <()c2 + pz))){ “

originates purely from the Chern-Simons contribution.
Given the action for Aj, at a minimum we have

(B4)

1
2(-aN V? +LyTy)

1
X (ﬂd +Po +m_pl>’
H

which is a complicated function in y'y and always leads to

1
Lcoutumb = — (PCI +po+ —P1>
my

(B5)

positive energy. In fact, the % term in the denominator
plays the role of a screening mass which can be seen after
certain coordinate transformations.

To estimate how good the first-order expansion is, one
can consider the simplest case where the inversion is acting
only on the p,  f2. To keep track of the dependence on p
and my, it is useful to perform the rescaling

1 1

X*ﬁyﬁfﬁ v (B6)
As a result we have
1 , 32 1 1
(aNV+ L) P R (R )
(B7)

which can be exactly solved as

XO+XL (/%)

1 1 1
=0 | 327 2 b 2 ’
FEmG N L AN F
(B8)
with b = 3;” j Therefore, one has

1
(=aN V2 +:L3')
¢ my

2 2

e
P (X2+1)7°\b bl,(vVb)X? '

(B9)

Notice that although the i appears to be at variance with
power counting, the Taylor expansion

. VX (1+HX) \ 1+x2

0.5 = b, (Vb) X2

1 X4 X2 1
YES) +\ - ) >+ ) —oc |
8(X2+1) 192(X2+1)* ' 64(X2+1) 96

X0 x4
’ <_9216(5(2+ 17 1536(X2+1)2

X - b*+0O(b?)
768(X*+1) 9216

(B10)

formally converges for any b. However, for the case where
p=1andy’y = 1,onehas b = % ~ 8 for charm and ~3.2
for bottom, the convergence is poor for the first few terms.
To perform an estimate, one can consider the ratio

f d4X 1+X)

lim,_yg(b,X
Jax gt

R(b) = (B11)

which is shown in Fig. 2. One can actually show that R(b)
is always positive and goes to zero as b — oo or p — 0,
which implies a weaker repulsion compared to the leading-
order Coulomb one. However, expanding to leading order
in b, the potential becomes unbounded from below at large
b or small p. Apparently, this instability is caused by the
breakdown of the small b expansion near the core. To fix
the instability, we can include the second-order term in the
expansion. In fact, in Fig. 2 we note that after including the
second-order term, the difference between the full result is

0.85

0.80

0.75

0.65
0.60

0.55

1 1 1 1 1 1 1

)’ 0.12 0.14 0.16 0.18 0.20 0.22 0.24

FIG.2. TheratioR(b= 32) (blue) compared with its first- order
(yellow) and second-order (green) Taylor expansion. At .- %
one has R(b) ~ 0.67, while at - mH 0. 84 and
as b — o0, R(b) — 0. At m%, = % the second-order result is about

10% larger than that of the full result.

= 5 one has R(b) ~
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around 10% for 1/my ~ 4 at p ~ 1 for the charm quark. It is even better for the bottom quark.
Using the explicit form of the inversion

1 1
_@2 + ﬁ (sz + 1)4
X242 (BX*+9X2+7) (16X° + 64X* + 86X* +39) ,
T24(XT 12 1152(X% + 1) N 92160(X> + 1)*

_ (130X® + 650X° + 1220X* + 1020X* + 321) b3

11059200(X? + 1)3
N (1485X"0 + 8910X® + 21365X° + 25605X* + 15345X* + 3681) »
1857945600(X> + 1)°

(B12)

and

1 1
-V 4+ ﬁ (X% 4+ 1)°
_ X 43X 43 (I8XC+ 7284 +98%% +47)  (50X® 4 250X° + 470%* + 3958 + 126) 2
48(X% + 1) 11520(X% + 1)* 460800(X? + 1)°
(575X'0 + 34503 + 8275X6 + 9925X* + 5958X? + 1434) b3
77414400(X> + 1)°
N (26355X"2 + 184485X'0 + 537355X® + 833875X° 4- 727335X* + 338205X? + 65523)
52022476800(X> + 1)’

b*. (B13)

Equation (27) follows to order O(1/m%).

APPENDIX C: DETAILS OF THE HEAVY PENTAQUARK MASSES

Here we detail the various contributions to the mass spectra recorded in Tables I and II. For completeness, we recall that
we fix Mp = 1.87 GeV to reproduce the D-meson mass in Eq. (7) and fix Mgx = 0.475 GeV to reproduce the
M, = 2286 GeV. As result, we have for the charmed heavy-light hadrons recorded in Table I

M2
My = my +my —0.82M gy + 0.253 —2K = 2.286 GeV, (C1)
my
1 M%
Ms, (5 ) = my+my - 0.234M i + 0.203 —5K — 2557 GeV, (C2)
my
3 M3
2 M2y
MAt (P = —1) = mg + my — OSZMKK + _MKK + 0321 —_— = 2683 GeV, (C4)
‘ V6 my
M2
My. (P =1) = my + my + 0.107TMgy + 0.253 —%K = 2,726 GeV, (C5)
C mH
1 M3,
P(J=5.8=0) =2my +my - 0.078Mgx + 0.404 — 5 = 4360 GeV, (C6)
my
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1 M>
P, (J = 5,S = 1) =2my + my — 0.119M g + 0.404 —KK — 4341 GeV, (C7)
myg
3 My
P.J= E,S =1 =2my + my —0.05Mgg + 0.404 —5K — 4373 GeV. (C8)
my

For the bottom heavy-light hadrons we fix the heavy-light meson mass my = (5.28-0.168) GeV = 10.76M .
The bottom heavy-light mass spectra recorded in Table II follow from

M
My = my + my —0.958Mx + 0.253 KK — 5608 GeV,

2

: s (c9)
1 M%
Mz, 5 ) = my + my = 0207M g +0.203—#% = 5962 GeV, (C10)
H
3 M3,
mpy
2 M2,
MA:(P: —1) :mH+mN—0958MKK+—MKK+O321 :5998 GCV, (C12)
b V6 my
MZ
M3 (P =1) = my 4 my —0.072M g + 0.253 —5K = 6.029 GeV, (C13)
mg
1 M2,
P,lJ= E’S =0) =2my + my —0.0393M gx + 0.404 =11.163 GeV, (C14)
mg
1 M3y
Py(J=5.8=1)=2my +my = 0.056Mgx +0.404—5% = 11155 GeV, (C15)
my
3 M3
Py =3.8=1) =2my +my = 0.030Mg +0.404—FE = 11.196 GeV. (C16)
mpy
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