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We investigate the IR phases of nonsupersymmetric (non-SUSY) SOðNcÞ gauge theories with NF

fermions in the vector representation obtained by perturbing the SUSY theory with anomaly mediated
SUSY breaking (AMSB). We find that of the wide variety of phases appearing in the SUSY theory only two
survive: for NF ≤ 3

2
ðNc − 2Þ the theory confines, breaking the SUðNFÞ global symmetry to SOðNFÞ, while

for 3
2
ðNc − 2Þ < NF < 3ðNc − 2Þ the theory flows to a (super)conformal fixed point. The Abelian

Coulomb and free magnetic phases do not survive and collapse to the confining phase. We also investigate
the behavior of loop operators in order to provide a clear distinction between the confining and screened
phases. With the choice of SpinðNcÞ for the global structure of the gauge group, we find that the electric
Wilson loop indeed obeys an area law, providing one of the first demonstrations of true confinement with
chiral symmetry breaking in a non-SUSY theory. We identify monopole condensation as the dynamics
underlying confinement. These monopoles arise naturally for NF ¼ Nc − 2. The case with a smaller
number of flavors can be obtained by integrating out flavors, and we confirm numerically that the
monopole condensate persists in the presence of AMSB and mass perturbations.

DOI: 10.1103/PhysRevD.104.114018

I. INTRODUCTION

Understanding the phases of strongly coupled gauge
theories is one of the most important outstanding goals of
particle physics. A great deal of progress was made on this
problem in the mid-1990s, led by Seiberg [1–3], when the
vacuum structures of a large variety of supersymmetric
(SUSY) gauge theories were established, including N ¼ 1

SUSY QCD, N ¼ 2 Seiberg-Witten theories, and also
various interesting chiral gauge theories. A wide variety of
gauge theory phases were encountered in this process: the
confining phase, the screened/Higgs phase (which are
indistinguishable due to complementarity), a free magnetic
phase with an IR free dual gauge group, true conformal
field theories (CFTs) with a nontrivial interacting fixed
point dubbed the non-Abelian Coulomb phase, and finally

the Abelian Coulomb phase, which in the SUSY case
usually includes points in the moduli space with massless
monopoles [4]. These phases form an intricate web that can
be nicely connected by integrating out flavors or Higgsing
the theories. One particularly interesting example is the
case of SOðNcÞ gauge theories withNf chiral superfields in
the vector Nc representation: as Nf is varied between 1 and
3Nc − 2, all of the above phases actually appear, making
SOðNcÞ an ideal test lab for studying the phases of gauge
theories.
SUSY gauge theories are very interesting in their own

right, though one would obviously like to ask what phases
appear for the non-SUSY versions of these theories. This
question was investigated in a series of papers in the late
1990s [5–18], by perturbing SUSY gauge theories with soft
supersymmetry breaking terms (see also the more recent
[19]). In [20], a simple and efficient method was introduced
for studying nonsupersymmetric gauge theory by starting
with its supersymmetric version and perturbing it by
anomaly mediated SUSY breaking (AMSB) [21,22] (see
also [23,24] for earlier work containing some important
aspects of AMSB). The main advantage of this method is
that a single spurion provides both the positive scalar mass
squared and the gaugino mass, thereby preparing exactly
the UV theory of interest. By the UV insensitive nature of
AMSB the determination of the low-energy phase of the
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theory can be reliably performed within the dual low-
energy effective theory. Indeed, many interesting results
have been obtained this way including the phases and
global symmetry breaking pattern of SUSY QCD [20] as
well as in the simplest nonsupersymmetric chiral gauge
theories with an antisymmetric [25] or symmetric [26]
fermion. These results allowed the reexamination of old
conjectured phases of non-SUSY chiral gauge theories
based on the tumbling/most attractive channel (MAC)
framework [27,28]. It was found that all cases needed
some form of modification, and in some cases it was not the
condensate in the MAC that was actually generated. The
theories with a larger number of flavors included more
chiral symmetry breaking and also examples of super-
conformal fixed points from non-SUSY UV theories.
However, all of the theories explored so far with AMSB

contained some particles in the fundamental representation,
which led to screening and a perimeter law for all of their
Wilson loops. Consequently, their chiral symmetry break-
ing took place in a screened/Higgs phase, rather than a
genuine confining phase. This will no longer be the case for
gauge theories with Lie algebra soðNcÞ [more specifically
SpinðNcÞ] and matter in the vector representation, where
the Wilson loop in the spinor cannot be screened. This
makes the appearance of an area law possible—which is the
strict definition of a confining phase.
In this paper we study the low-energy dynamics of the

SOðNcÞ gauge theories with NF Weyl fermions in the
vector representation, obtained by perturbing the corre-
sponding N ¼ 1 SOðNcÞ theory via AMSB. We will also
include a discussion of the global properties of these
theories, which is necessary to distinguish the truly con-
fining theories with an area law for the Wilson loop from
those with a perimeter law. Thus, as will be explained later,
we will have to distinguish between SpinðNcÞ and the
SOðNcÞ� groups. The NF ¼ Nc − 2 case will be particu-
larly interesting: the SUSY theory in this case corresponds
to a pure Coulomb branch, where a pair of monopoles
becomes massless at one point, together with a full
multiplet of dyons becoming massless at the origin. We
will show that the AMSB perturbation of this theory leads
to the condensation of monopoles, along with (partial)
breaking of the chiral global symmetries at the true ground
state. Such monopole (or dyon) condensation was conjec-
tured by Mandelstam [29] and ’t Hooft [30] long ago to be
the dynamics leading to confinement via the dual Meissner
effect. This has indeed been found to be the case by Seiberg
and Witten when perturbing pure N ¼ 2 to pure N ¼ 1
supersymmetric Yang-Mills (SYM) [4], and also by
[6,7,9,12] who studied the small non-SUSY perturbations
of the Seiberg-Witten theory. Our results provide one of the
first examples of (true) confinement with chiral symmetry
breaking in a non-SUSY gauge theory.
By considering mass deformations to the NF ¼ Nc − 2

case, we will be able to show that all of the cases with

NF < 3
2
ðNc − 2Þ exhibit the same behavior as for

NF ¼ Nc − 2, i.e., electric confinement via monopole
condensation, together with chiral symmetry breaking. In
contrast, for 3

2
ðNc − 2Þ < NF ≤ 3ðNc − 2Þ the non-SUSY

UV theory flows as expected to a (super)conformal theory
in the IR. The case with NF ¼ 3

2
ðNc − 2Þ is marginal, and

will be discussed in future work. In other words, with the
AMSB perturbation the many phases present in the SUSY
case collapse down to just two: the confining phase, and the
conformal phase. The Coulomb and free magnetic phases
do not survive the breaking of supersymmetry.
The paper is organized as follows. First, we present

a short summary of the moduli space and symmetries of
N ¼ 1 SUSY SOðNcÞ theories with NF vectors. The
quantum vacuum structure of the entire SUSY series has
been worked out in a beautiful paper by Intriligator and
Seiberg in [31], which will be the basis of our analysis for
the AMSB perturbations. We begin our discussion of the
various cases with the most novel NF ¼ Nc − 2 case,
which is the only one known example so far giving rise
to monopole condensation with chiral symmetry breaking
in a non-SUSY theory. We then show that whenever
“nontrivial” (spinorial) Wilson lines exist in the theory
with NF ¼ Nc − 2, they exhibit an area law, signaling true
electric confinement. By considering mass deformations to
the NF ¼ Nc − 2 case, we demonstrate this fact, as well as
chiral symmetry breaking, for all SOðNcÞ theories with
1 < NF ≤ Nc − 2. While there are several special cases to
examine following the analysis of [31], in the end the
global minimum of the theory for 1 < NF ≤ Nc − 2 is
always the one with the SUðNFÞ → SOðNFÞ chiral sym-
metry breaking pattern. We have also summarized this
important result in a companion letter [32].
We then continue on to consider the cases with a larger

number of flavors. We find results similar to the case of
SUSY QCD. For Nc − 2 < NF ≤ 3

2
ðNc − 2Þ we again find

a global minimum where the chiral symmetry is broken to
SOðNFÞ. In this case monopole condensation does not
directly appear in the description, but nontrivial Wilson
loops still exhibit an area law. To see this, note that at a
generic point in the moduli space of the dual theory, the
dual quarks are integrated out, leaving us with pure
SOðNF − Nc þ 4Þ SYM. Consequently, whenever the dual
gauge group allows for dyonic (’t Hooft) loops, these
exhibit an area (perimeter) law. By the duality of [33],
whenever the original theory allows for nontrivial Wilson
(’t Hooft) loops, they exhibit an area (perimeter) law.
Finally, for 3

2
ðNc − 2Þ ≤ NF ≤ 3ðNc − 2Þ we find that

the theory flows to a superconformal fixed point, even
though the UV theory explicitly breaks supersymmetry. For
3ðNc − 2Þ < NF, the theory with AMSB has tachyonic
squarks and hence no ground state, and it is not contin-
uously connected to the nonsupersymmetric SOðNcÞ
theory.
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II. SOðNcÞ WITH NF FUNDAMENTALS

We consider a supersymmetric gauge theory with
gauge group SOðNcÞ, NF vectors, and no tree-level super-
potential. This theory has been thoroughly studied in,
e.g., [31,34]. The anomaly-free global symmetry of the
theory is ðSUðNFÞ ×Uð1ÞR × Z2NF

× Z2=ZNF
Þ, where the

Z2 is charge conjugation [35]. Under the continuous part
of the global symmetry, the matter fields transform
as Qð□ÞNF−Ncþ2

NF

.

For NF < Nc, the D-flat directions of the theory are
given, up to gauge and global transformations, by

Q ¼

0
B@φ1

. .
.

0
φNF

1
CA: ð1Þ

For NF < Nc D-flat directions are conveniently parame-
trized by the 1

2
NFðNF þ 1Þ gauge invariant “meson”

operators Mij ¼ QiQj. Along the D-flat directions, they
are given by

M ¼ diagðφ2
1;…;φ2

Nf
Þ: ð2Þ

For NF ≥ Nc, the D-flat direction is given by

Q ¼

0
BBB@

φ1

. .
.

φNc

0

1
CCCA: ð3Þ

It is conveniently parametrized in terms of meson operators,
as well as the baryon operators B½i1;…;iNc � ¼ Q½i1 � � �QiNc �,
where the i are flavor indices and we take the gauge singlet
out of the tensor product of Nc fundamentals of SOðNcÞ.
The gauge invariant operators are given, up to global trans-
formations, by

M ¼
� diagðφ2

1;…;φ2
Nc
Þ 0

0 0NF−Nc×NF−Nc

�

B1;…;Nc ¼ φ1 � � �φNc
: ð4Þ

The IR behavior of the theory strongly depends on the
relative magnitudes of Nc and NF and is summarized
in Table I. Below we will show that adding AMSB to
the theory leads to chiral symmetry breaking for all
1 < NF ≤ 3

2
ðNc − 2Þ. Furthermore, in this range the theory

confines; belowwegive an exactmeaning to this statement in
terms of the loop operators of the theory. We assume
throughout that Nc > 3, and we leave the Nc ¼ 3 to future
work.

III. PHASES OF GAUGE THEORIES

One often hears the word “confinement” describing the
situation in which colored degrees of freedom (DOF) are
bound into color-singlet states, even if a linear potential is
lacking due to screening from quark-antiquark production.
We will be more careful with the word and, following [33],
only use it in the narrow context of a particular Wilson/’t
Hooft/dyonic loop operator [36] exhibiting an area law,
in which case we will say that the given loop operator
confines. We are especially interested in the confinement of
nontrivial loop operators—the ones which transform non-
trivially under the center of the gauge group. Note that in
some of the literature, e.g., [33], these closed loops are
referred to as line operators—we will use the more conven-
tional name “loop operators” to stress their gauge invariance.
The allowed nontrivial loop operators in the theory

depend on the choice of the global properties of the gauge
group—for example, with the Lie algebra soðNcÞ the gauge
group can be SpinðNcÞ; SOðNcÞ, and so on. Depending on
the choice of gauge group, the allowed nontrivial loop
operators can be Wilson, ’t Hooft, or dyonic loops.
Whatever the choice may be, these loops exhibit either a
perimeter or an area law, depending on the local physics,

TABLE I. Summary of IR behavior of SOðNcÞ theories with NF fundamentals with AMSB. χSB stands for chiral
symmetry breaking. For NF ¼ Nc − 1 and Nc, two branches appear along the flat direction of the maximum rank of
the meson Mij, yet the AMSB chooses one over the other, resulting in the χSB.

Range SUSY þAMSB

NF ¼ 1 Runaway Confinement
1 < NF < Nc − 4 Runaway Confinementþ χSB
NF ¼ Nc − 4 2 branches Confinementþ χSB
NF ¼ Nc − 3 2 branches Confinementþ χSB
NF ¼ Nc − 2 Coulomb Confinementþ χSB
NF ¼ Nc − 1 Free magnetic 2 branches Confinementþ χSB
NF ¼ Nc Free magnetic 2 branches Confinementþ χSB
Nc þ 1 ≤ NF ≤ 3

2
ðNc − 2Þ Free magnetic Confinementþ χSB

3
2
ðNc − 2Þ < NF ≤ 3ðNc − 2Þ CFT CFT

3ðNc − 2Þ < NF IR free Runaway
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which is in and of itself insensitive to the global properties
of the gauge group.
One possible choice of the gauge group is SpinðNcÞ,

which is the universal cover of all Lie groups that share the
Lie algebra soðNcÞ. In this case the nontrivial loop
operators are Wilson loops, while others are forbidden
by Dirac quantization. An area law for nontrivial Wilson
loops indicates the confinement of the electric degrees
of freedom associated with it. Other choices for the
global structure are obtained by modding out the
SpinðNcÞ by subgroups of its center, which is Z2 for
odd Nc and larger for even Nc [33]. Here we only consider
SOðNcÞ ¼ SpinðNcÞ=Z2. In this case the nontrivial loop
operators are either purely magnetic ’t Hooft loops, a
choice denoted by SOðNcÞþ, or dyonic loops, a choice
denoted by SOðNcÞ−. In each case, other nontrivial loop
operators are forbidden by Dirac quantization. Below, when
we speak of “the loop” in a particular theory, we will be
referring to the single nontrivial loop that the theory admits,
whether electric, magnetic, or dyonic. Additionally, when
we are only concerned with the local physics we will
simply refer to the gauge group as SOðNcÞ.
While SpinðNcÞ and SOðNcÞ� exist on equal footing as

possible gauge groups, we will be particularly interested in
SpinðNcÞ, as it can provide what eludes us for SUðNÞ
gauge theories with fundamental matter: an order parameter
for electric confinement. Whereas the fundamental Wilson
loop of SUðNÞ (which is its own universal cover) can be
screened by the fundamental matter, the spinorial Wilson
loop of SpinðNcÞ cannot be screened by the vectorial quarks.
The main objective of our study is to determine the

phases of supersymmetric SOðNcÞ gauge theories when
perturbed by AMSB. We will be able to determine the local
behavior of the theory—be it chiral symmetry breaking,
monopole condensation, etc. As a result, we will be able to
establish the behavior of the allowed nontrivial loop
operators in the theory, and whether they exhibit an area
or a perimeter law. Our final results about the phase
structure (along with the corresponding SUSY phases)
are summarized in Table I. We can see that in the non-
SUSY theory the only surviving phases are those of
confinement (with chiral symmetry breaking), or a con-
formal phase. The Abelian Coulomb and the free magnetic
phases do not survive the AMSB perturbation, and they all
collapse to the generic confiningþ χSB phase.

IV. CONFINEMENT WITH CHIRAL SYMMETRY
BREAKING FOR 1 < NF ≤ 3

2 ðNc − 2Þ
Next we present a detailed analysis of the vacuum

structure of SOðNcÞ with NF flavors in the presence of
AMSB. For NF ¼ Nc − 2 we show monopole condensa-
tion with chiral symmetry breaking—leading to the con-
finement of nontrivial Wilson lines for SpinðNcÞ [37].
For NF < Nc − 2 we can still explicitly see chiral sym-
metry breaking, while monopole condensation and thus

electric confinement is established by adding mass defor-
mations to the NF ¼ Nc − 2 case. Finally, theories with
Nc − 2 < NF ≤ 3

2
ðNc − 2Þ exhibit chiral symmetry break-

ing, while confinement is demonstrated by finding a
“hidden” monopole condensate in the dual theory.

A. NF =Nc − 2
In this case the supersymmetric theory is in an Abelian

Coulomb phase [31]. Since the Mij are not charged
underUð1ÞR, there is no superpotential even at the quantum
level, and hence the theory has a quantum moduli space.
On this moduli space, the gauge symmetry is Higgsed
to a SOð2Þ ≃Uð1Þ; namely, the theory is on the
Coulomb branch. On the moduli space, the gauge coupling
τ ¼ θ

2π þ i8π
g2 is given only as a function of the SUðNFÞ

invariant U ≡ detM. It is singular at two points U ¼ 0

(U ¼ U1 ≡ 16Λ2NF ), where the dyons q�i (monopoles E�)
of the Uð1Þ gauge symmetry become massless. In the
original paper [31], the authors chose to label the particles
condensing at U ¼ 0 and U ¼ U1 as monopoles and
dyons, respectively. Our opposite labeling leads to line
behaviors consistent with those in [33] for all confining
theories and is also consistent with the finding in [38].
Around the singular point U ¼ 0 the relevant light

degrees of freedom are the dyons q�i with magnetic charge
�1, which transform under the UV global symmetry
SUðNFÞ ×Uð1ÞR as q�i ð□̄Þ1. These have a dynamically
generated superpotential about U ¼ 0 of

Wdyon ¼
1

μ
fðtÞMij qþi q−j ; ð5Þ

where μ is an effective mass scale, t ¼ UΛ4−2Nc , and fðtÞ is
a holomorphic function in the neighborhood of t ¼ 0,
normalized so that fð0Þ ¼ 1. Expanding f to higher orders
in t introduces tree-level AMSB, but it is highly suppressed
by powers of the meson vacuum expectation value (VEV)
over Λ and results in no qualitative changes. Exactly at
U ¼ 0, ’t Hooft anomaly matching is saturated by q�i ;M

ij,
and the photinos Wα ∼WαQNc−2 [31], whose charges are
given in Table II.
Using the formulas for loop-level AMSB Eq. (A2), we

can explore the local minima around the origin of moduli
space. The IR free nature of the Uð1Þ gauge theory gives a
tachyonic contribution to the dyon masses. However, the
dyons also receive a positive mass-squared contribution
from the Yukawa-like coupling to the meson field Eq. (5).
The codependence of the Yukawa and gauge beta functions
results in a flow to a fixed ratio between the two couplings.
This ratio is such that the mass-squared due to loop AMSB
is positive for both the meson and the dyons. Thus, the
loop-level AMSB trilinear term in combination with the
tree-level quartic potential gives a local minimum a dis-
tance Oð m

16π2
Þ from the origin. To understand the symmetry

CSÁKI, GOMES, MURAYAMA, and TELEM PHYS. REV. D 104, 114018 (2021)

114018-4



breaking pattern at this minimum, we must examine the
form of the tree-level potential in terms of the SUðNFÞ
matrix M and vectors q�,

V ¼ 1

2
ðqþ · qþ�Þðq− · q−�Þ þ 1

2
jqþ · q−�j2

þ jMqþj2 þ jMq−j2 þ VAMSB: ð6Þ

The dot product term is due to the symmetric nature of the
meson matrix (i.e., Mij couples to qþi q

−
j and qþj q

−
i ). This

term encourages the q� VEVs to point in different
directions in flavor space. We find a minimum along the
direction,

qþ ¼

0
BBBBBBBB@

1

0

0

..

.

0

1
CCCCCCCCA
α; q− ¼

0
BBBBBBBB@

0

1

0

..

.

0

1
CCCCCCCCA
α; ð7Þ

M ∝

0
BBBBB@

0 1 0 � � � 0

1 0 0 � � � 0

0 0 0 � � � 0

..

. ..
. ..

. . .
. ..

.

0 0 0 � � � 0

1
CCCCCA; ð8Þ

breaking the global flavor symmetry to SUðNF − 2Þ.
The vacuum energy of this minimum is V ¼ −Oð m

16π2
Þ4.

In the vicinity of the singular point U ¼ U1, on the other
hand, the light degrees of freedom are the monopoles
E� ∼ q�i Q

i, whose magnetic charges are �1. These trans-
form under the SUðNFÞ ×Uð1ÞR global symmetry of
the UV theory as E�ð1Þ1. Since detM ≡U ≠ 0, the
global SUðNFÞ ×Uð1ÞR is spontaneously broken to
SOðNFÞ ×Uð1ÞR. In the neighborhood of U ¼ U1, the
theory generates a dynamical superpotential

Wmon ¼ f̃

�
U −U1

Λ2NF

�
EþE−: ð9Þ

Here f̃ðtÞ ¼ tþ � � � is holomorphic near t ¼ 0. For all
practical purposes, only the leading order in f̃ matters for
the stabilization of the minimum. Using canonically nor-
malized fields we have

Wmon ¼ Λ
�

Ũ
ΛNF

− 16

�
Ẽþ Ẽ−; ð10Þ

where Ẽ� ¼ E�=
ffiffiffiffi
Λ

p
, Ũ ¼ det M̃, and M̃ ¼ M=Λ

is the canonically normalized meson. Exactly at
Ũ ¼ Ũ1 ≡ 16ΛNF , ’t Hooft anomaly matching is saturated
by E�; M̃ij, and the photinos Wα ∼WαQNc−2, whose
charges are given in Table III.
Explicitly, Uð1ÞRgravity2 and Uð1Þ3R:

ð−1ÞNFNc þ ð1ÞNcðNc − 1Þ
2

¼ ð1Þ þ ð−1ÞNFðNF þ 1Þ
2

;

ð11Þ

Uð1ÞRSOðNFÞ2:

ð−1Þð1ÞNc ¼ ð−1ÞðNF þ 2Þ: ð12Þ

Contrary to the point Ũ ¼ 0, here adding AMSB
generates a tree-level contribution to the scalar potential
from (A1). This results in the global minimum at Ũ ¼ Ũ1.
In particular, the scalar potential along M̃ij ¼ M̃δij is given
locally as

TABLE III. DOF of the SOðNcÞ theory with NF ¼ Nc − 2 near
Mij ∼ δij, U ¼ U1. The unbroken global symmetry near Mij ∼
δij; U ¼ U1 is SOðNFÞ × Uð1ÞR, with Uð1ÞR explicitly broken
by AMSB.

SOðNcÞ SUðNFÞ Uð1ÞR Uð1Þmag SOðNFÞ
Qi □ □ 0 � � � □

λ 1 1 � � � 1

Mij 1 0 � � �
E� � � � 1 1 �1 1
λmag � � � 1 1 0 1

TABLE II. DOF of the SOðNcÞ theory with NF ¼ Nc − 2 near
M ¼ 0. λ are the SOðNcÞ gauginos, while λmag are the photinos of
the unbroken (magnetic) Uð1Þ in the IR. For the supersymmetric
theory at the origin, the full global symmetry is unbroken. With
AMSB there is a local minimum, where the global symmetry is
broken to SUðNF − 2Þ.

SOðNcÞ SUðNFÞ Uð1ÞR
Qi □ □ 0
λ 1 1

Mij 1 0
q�i � � � □̄ 1
λmag � � � 1 1
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VŨ∼Ũ1
¼ Λ2

����
�
M̃
Λ

�NF

− 16

����2ðjẼþj2 þ jẼ−j2Þ

þ 1

kNF

����NF

�
M̃
Λ

�NF−1
����2jẼþẼ−j2 þ VAMSB: ð13Þ

Note the ðkNFÞ−1 factor in the second line, which comes
from the Kähler term kNFM̃†M̃ for M̃, where k is an
unknown Oð1Þ normalization factor. The tree-level AMSB
contribution is given by (A1), i.e.,

VAMSB ¼ mΛ
�
16þ ðNF − 1Þ

�
M̃
Λ

�NF
�
ẼþẼ− þ c:c: ð14Þ

This potential has a minimum at

M̃ ¼ 16
1

NFΛ; jẼþjjẼ−j ¼ 16
2

NF
−1 kmΛ;

Vmin ¼ −16
2

NFNF km2Λ2: ð15Þ

Since M̃ij ¼ M̃δij in this minimum, the global symmetry is
broken to SOðNfÞ, and there are no ’t Hooft anomalies
to match. Because it is generated by a tree-level contribu-
tion from AMSB, it is lower than the local minimum near
the origin U ≈ 0, and so it is the global minimum of the
theory. A similar phenomenon of AMSB leading to a global
minimum generated by a tree-level contribution and a local
minimum generated at loop level was seen in [25]. It is easy
to see that there are no minima with Mij ≠ 0, Mij =∝ δij.
Notably, the minimum (15) involves the condensation

of monopoles E�, which in turn leads to confinement
[30,39,40], in the sense that nontrivial Wilson lines get an
area law. Famously, monopole condensation has also been
seen in the breaking of N ¼ 2 Seiberg-Witten theory to
N ¼ 1 via a tree-level superpotential for the matter field
[4]. In [11,12], it was shown in a nonsupersymmetric
theory by introducing soft SUSY breaking on top of the
breaking to N ¼ 1. Here, on the other hand, monopole
condensation and SUSY breaking emerge together as a
result of AMSB. Furthermore, since the global SUðNFÞ
symmetry is spontaneously broken to SOðNFÞ, this is a
demonstration of confinement with chiral symmetry break-
ing in a nonsupersymmetric setting.
We can also connect the chiral symmetry breaking

observed here to the familiar one due to fermion bilinears.
To see this, note that the UV theory of quarks has no
superpotential and their F components vanish. Therefore
the only contribution to the F component of the meson
superfield comes from fermion bilinears:

hψ�
iψ

�
ji ¼ F�

Mij
¼ 16Λ2M−1

ij E
þE− ∝ δijkmΛ2 ≠ 0: ð16Þ

In other words, our analysis demonstrates the condensation
of fermion bilinears in a nonsupersymmetric theory, in
addition to the monopole condensate.

B. NF < Nc − 4
At a generic point in the moduli space, the gauge group

SOðNcÞ is Higgsed down to SOðNc − NFÞ pure SYM,
whose gaugino condensation induces an Affleck-Dine-
Seiberg (ADS) superpotential given by [41]

WADS ¼
Nc − NF − 2

2
ωk

�
16Λ3Nc−NF−6

detM

� 1
Nc−NF−2

; ð17Þ

where Λ is the strong scale of the theory and ω ¼
e2πi=ðNc−NF−2Þ with k ¼ 0; 1;…; Nc − NF − 3.
The Kähler potential of M is singular at the origin, and

writing Mij ¼ φ2δij, we identify φ as the canonical DOF.
Turning on AMSB stabilizes the runaway behavior of the
superpotential via the tree-level scalar potential

VAMSB ¼ −mΛ3
3Nc − NF − 6

2

�
16Λ2NF

φ2NF

� 1
Nc−NF−2 þ c:c:;

ð18Þ

which together with the scalar potential derived from the
superpotential (17) gives a minimum

φ ¼ 2
2

Nc−2

�
fNF

Λ
m

�Nc−NF−2
2ðNc−2Þ Λ;

Vmin ¼ −2
4

Nc−2
Nc − 2

f2NF

�
fNF

Λ
m

�Nc−NF−2
Nc−2

m2Λ2; ð19Þ

with fNF
¼ NcþNF−2

3Nc−NF−6
. We see that the minimum is at

φ ≫ Λ, which justifies a weakly coupled analysis in an
asymptotically free theory. Since M̃ij ∝ δij, in this mini-
mum the global symmetry is broken to SOðNFÞ. There are
no minima with M̃ij ≠ 0, M̃ij=∝δij. Since the Uð1ÞR
symmetry was explicitly broken by AMSB, there are no
’t Hooft anomaly matching conditions to check in this
scenario.
The nontrace components of M̃ij are split into massless

Nambu-Goldstone bosons (NGBs), massive fermions, and
massive scalar partners of the NGBs, where masses are
OðmÞ. The NGBs form the chiral Lagrangian on the
SUðNFÞ=SOðNFÞ coset space. Once the massive fermions
are integrated out, the one-loop diagram [42] produces
the Wess-Zumino-Witten (WZW) term [43,44] because
π5ðSUðNFÞ=SOðNFÞÞ ¼ Z (NF ≥ 3). For NF ¼ 2, there
is no WZW term. To summarize, we establish that the 1 <
NF < Nc − 4 case with AMSB has a global minimum in
which the chiral symmetry is broken to SOðNFÞ, similar to
the NF ¼ Nc − 2 case.
The case NF ¼ 1 is an exception because the meson has

only one component. There is no exact flavor symmetry, no
massless NGB, and the theory is gapped.
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C. NF =Nc − 4
In this case the gauge symmetry is Higgsed on the

moduli space to SOð4Þ ≃ SUð2ÞL × SUð2ÞR. The theory
has two distinct branches corresponding to the gaugino
condensates in SUð2ÞL;R having the same, or opposite
signs. On the first branch with aligned condensates, the
superpotential is of the same form as (17), while on the
second branch, it vanishes. The second branch contains
the point M ¼ 0, at which there is confinement without
chiral symmetry breaking. In [45], it was shown that on this
branch there is also a VEV for the exotic baryon
S ¼ WαWαQNF , which breaks the discrete global sym-
metry Z2F down to ZF.
With AMSB, the theory on the first branch develops a

minimum identical to (19), breaking the global symmetry
down to SOðNFÞ. This is the global minimum of the theory.
As for the second branch, the identically zero super-
potential means we need to consider a more general version
of Eq. (A1) that accounts for a noncanonical Kähler
potential. We find for a general W and K

V tree ¼ ∂iWgij
�∂�

jW
� þm�mð∂iKgij

�∂�
jK − KÞ

þmð∂iWgij
�∂�

jK − 3WÞ þ c:c:; ð20Þ

where gij is the inverse of the Kähler metric gij ¼ ∂i∂̄jK.
With a vanishing superpotential, interactions originate only
from the Kähler potential. Higher order terms in the Kähler
potential will give rise to irrelevant interactions, and as the
theory is IR free, we expect the effects of AMSB to be
highly suppressed by the dynamical scale. To estimate
these effects, consider the leading corrections to the
canonical Kähler potential for M,

K ¼ TrM†M þ a
Λ2

ðTrM†MÞ2 þ b
Λ2

TrM†MM†M; ð21Þ

where a and b are order one numbers. Note that cubic terms
are forbidden because M is in the symmetric of SUðNFÞ.
In this case, only the second term in Eq. (20) will

contribute, and at leading order it gives

V ∼�m2

Λ2
jMj4: ð22Þ

The potential in this theory arises exclusively from
AMSB. Clearly the power series expansion makes sense
only up to M ∼ Λ, and the maximum contribution of the
higher dimension terms to the potential is Oðm2Λ2Þ. Note
that the minimum we obtained in Eq. (19) (and is also
relevant for the branch with nonzero superpotential) is
parametrically enhanced by ðΛ=mÞ2=ðNc−2Þ. Therefore the
branch with W ¼ 0 does not yield the global minimum,
which instead arises from the branch with the ADS-type
superpotential.

D. NF =Nc − 3
Here the gauge symmetry on the moduli space is

Higgsed down to SOð3Þ. As in [31], it is useful to first
turn on the VEVs of NF − 1 of the fundamentals, in which
case the theory is Higgsed to SUð2ÞL × SUð2ÞR. Then, the
VEVof the last fundamental Higgses SUð2ÞL × SUð2ÞR to
the diagonal SOð3Þ. The superpotential for this theory is
dynamically generated by a combination of gaugino con-
densation in the un-Higgsed SOð3Þ and instantons in the
broken SUð2ÞL × SUð2ÞR=SOð3Þ. The theory again has
two branches: on the first, the gaugino contribution is
aligned with the instanton contributions, and the super-
potential is of the form (17). On the second branch, the
contributions cancel out, and the ADS-type superpotential
vanishes. However, it was shown via a mass deformation
to the NF ¼ Nc − 4 case that the second branch has a
dynamically generated superpotential:

Wdyn ¼
1

2μ
fðtÞMijqiqj; ð23Þ

where qi ¼ ðWαWαQNF−1Þi=ΛNFþ1 is the exotic baryon
of the theory. Here μ is an effective mass scale,
t ¼ 1

Λ2NFþ4 detMMijqiqj, and fðtÞ is a holomorphic function
in the neighborhood of t ¼ 0, normalized so that fð0Þ ¼ 1.
We can canonically normalize the superpotential yielding

Wdyn ¼
1

2
fðtÞ M̃ijqiqj; ð24Þ

where M̃ is the canonically normalized meson.
As usual, adding AMSB to the theory generates for the

first branch the minimum (19) and breaks the global
symmetry down to SOðNFÞ. This is again the global
minimum of the theory. On the second branch, the tree-
level AMSB contribution vanishes atOðt0Þ, while the loop-
level contribution (A2) generates a minimum in the
neighborhood of M̃ij ¼ 0, with

V ≈ −
�

m
16π2

�
4

: ð25Þ

Again the OðtÞ corrections give a subleading contribution.
Around the origin loop-level AMSB is again the dominant
perturbation, which will clearly not be the global minimum
of the theory, since its (negative) height is loop suppressed.

E. Nc − 1 ≤ NF ≤ 3
2 ðNc − 2Þ

In this case the correct IR description of the theory is in
terms of its IR free Seiberg dual SOðNF − Nc þ 4ÞwithNF

fundamentals qi and 1
2
NFðNF þ 1Þ singlets Mij in the

qið□̄ÞNc−2
NF

and representations of the

global SUðNFÞ ×Uð1ÞR, respectively. First, we will focus
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on the case when NF ≥ Nc þ 1, leaving the NF ¼ Nc − 1
and NF ¼ Nc special cases to the end of the section. For
NF ≥ Nc þ 1, the dual theory has a superpotential

Wdual ¼
1

2μ
Mijqiqj: ð26Þ

The scales of the original and dual theories are related by

28Λ3ðNc−2Þ−NF Λ̃2NF−3ðNc−2Þ ¼ ð−1ÞNf−NcμNF : ð27Þ

For later convenience, we switch to canonically normalized
fields M̃,

Wdual ¼
1

2
M̃ijqiqj; ð28Þ

with M̃ ¼ M=μ. When we turn on AMSB, the situation is
similar to the one encountered in [25] and to the NF ¼
Nc − 2 case in the present work. Near M ¼ 0 there is a
local minimum generated by the loop-level AMSB con-
tribution. The tree-level contribution vanishes as usual
because the superpotential (28) is marginal. Again we
expect only a local minimumwith V ¼ −Oð m

16π2
Þ4 along the

direction

q ∝

0
BBBBBBBBBB@

1 � � � 0

..

. . .
. ..

.

0 � � � 1

0 � � � 0

..

. . .
. ..

.

0 � � � 0

1
CCCCCCCCCCA
; M ∝

0
BBBBBBBB@

1 � � � 0 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � 1 0 � � � 0

0 � � � 0 0 � � � 0

..

. . .
. ..

. ..
. . .

. ..
.

0 � � � 0 0 � � � 0

1
CCCCCCCCA
;

ð29Þ

where q is a NF × ðNF − Nc þ 4Þ matrix.
At nonzero M with rankðMÞ ¼ NF on the moduli space

for NF ≥ Nc þ 1, the dual quarks qi are integrated out, and
we are left with pure SOðNF − Nc þ 4Þ SYM, with a scale

Λ̃3NF−3ðNc−2Þ
L ¼ detðM̃Þ Λ̃2NF−3ðNc−2Þ: ð30Þ

Gaugino condensation in the dual theory now generates a
dynamical superpotential

Wλλ ¼ 2
−NF−ðNc−2Þ−4

NF−ðNc−2Þ ϵNF−ðNc−2ÞΛ̃
3
L: ð31Þ

With AMSB this superpotential leads to the tree-level
SUSY breaking scalar potential

VAMSB ¼ −2mΛ̃3
3
2
ðNc − 2Þ − NF

NF − ðNc − 2Þ

×

�
16

1
NF detðM̃Þ
Λ̃NF

� 1
NF−ðNc−2Þ

þ c:c: ð32Þ

For NF > Nc, this potential, together with the usual scalar
potential from the superpotential, is minimized at

M̃ij ∼ 4
NF−ðNc−2Þ−2
2ðNc−2Þ−NF

�
f
m
Λ

� NF−ðNc−2Þ
2ðNc−2Þ−NFΛδij;

Vmin ∼ −4
NF−4

2ððNc−2Þ−NF
2ðNc − 2Þ − NF

½NF − ðNc − 2Þ�2
�
f
m
Λ

� 2ðNc−2Þ
2ðNc−2Þ−NFΛ4;

ð33Þ

where f ¼ 1
Nc−2

½NF − ðNc − 2Þ�½3
2
ðNc − 2Þ − NF�. Noting

that Nc − 2 < NF ≤ 3
2
ðNc − 2Þ from (33), this minimum

satisfies Λ̃L ≪ M̃ ≪ Λ̃, below the Landau pole of the UV
magnetic theory and above the scale of gaugino condensa-
tion in the IR pure SYM. This justifies our weakly coupled
analysis. Again the global symmetry at the minimum is
broken down to SOðNFÞ.
We now comment on the NF ¼ Nc − 1 and NF ¼ Nc

cases. For NF ¼ Nc − 1, the dual gauge group is SOð3Þ.
The superpotential of the dual now includes a contribution
from instantons:

Wdual;Nc−1 ¼
1

2μ
Mijqiqj −

detM

64Λ̃2Nc−5
: ð34Þ

The extra contribution can be seen by deforming the dual
for NF ¼ Nc by a mass term for the last flavor, which leads
to instantons in the broken SUð2ÞL × SUð2ÞR=SOð3Þ in the
magnetic theory [46]. Here the scale matching is given by

214 ðΛ2Nc−5Λ̃4−NcÞ2 ¼ ðμNc−1Þ2: ð35Þ

Interestingly, this relation looks like the square of the usual
relation (27)—for more details, see the original [31]. When
M has full rank on the moduli space, the qi become massive
and the gaugino condensation in the IR SOð3Þ SYM
generates a superpotential

Wλλ;dual;Nc−1 ¼ ϵ2
detM

64Λ2Nc−5
: ð36Þ

Note that this superpotential has the same magnitude as the
instanton contribution in (34), and so the theory again has
two branches: one in which the two contributions add,
leading to an AMSB minimum of the form (33), and
another with vanishing superpotential. On the second
branch there is no superpotential, and we can repeat the
arguments concerning the second branch in the case of
NF ¼ Nc − 4. Again, any minimum produced by AMSB
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and a noncanonical Kähler is parametrically suppressed in
comparison with the first branch.
For NF ¼ Nc, the magnetic gauge group is

SUð2ÞL × SUð2ÞR. There is no instanton contribution
to the tree-level superpotential, but when M is given full
rank, there are again two branches: one with aligned
gaugino condensates in the IR pure SUð2ÞL × SUð2ÞR
SYM, and one with opposite sign condensates and vanish-
ing superpotential. As usual, with AMSB the first branch
leads to a global minimum of the form (33), while any
minimum in the second branch is again subdominant.
Finally,we note that forNc < 6wehave 3

2
ðNc − 2Þ < Nc,

and so the theories with NF ¼ Nc ¼ 4, 5 have to be
considered separately. Indeed, for NF ¼ Nc ¼ 4, 5 the
magnetic theory is no longer IR free, but rather has an IR
fixed point.

F. Monopole condensation for NF < Nc − 2
via mass deformations

When discussing the theory with NF ¼ Nc − 2, the
nonsupersymmetric vacuum of the theory explicitly
involved monopole condensation. In the next section, this
will enable us to determine the behavior of the loop
operators in the theory, and in particular establish the
confinement of nontrivial Wilson loops for SpinðNcÞ. In
this section we wish to make contact between the NF ¼
Nc − 2 case and the cases with fewer flavors, by treating the
latter as the NF ¼ Nc − 2 deformed by a supersymmetric
mass μ, with μ ≫ Λ.
We begin by considering the NF ¼ Nc − 2 theory in the

supersymmetric limit, with just one mass term for the last
flavor,

W ¼ Λ
�
det M̃
ΛNF

− 16

�
ẼþẼ− þ 1

2
μΛM̃NFNF

: ð37Þ

The equation of motion for M̃NFNF
gives

ẼþẼ− ¼ −
1

2

μΛNF

det M̃0 ; ð38Þ

where M̃0 is the matrix of the remaining mesons. As already
demonstrated, tree-level AMSB corrections to the ADS
superpotential stabilize the runaway, and the finite VEV
of M0 ensures that a nonvanishing monopole condensate
persists. In Fig. 1 we show this explicitly by studying the
minimum of the mass-deformed theory (37) in the presence
of AMSB withm < μ. Since we are ultimately interested in
the infinite μ limit, this does not interfere with our
extrapolation to the non-SUSY limit with large m. As
can be seen in the plot, the VEVof the first Nc − 3 flavors
interpolates between the minimum (15) for μ ¼ 0 and the
ADSþ AMSB minimum (19) with Nf ¼ Nc − 3 and Λ →
ΛNF¼Nc−3 in the large μ limit. We can see that the monopole
condensate persists in the large μ limit.

To correctly reproduce the ADSþ AMSB minimum,
we had to interpolate the Kähler potential between the
neighborhood of det M̃ ∼ Ũ1, where it is canonical in M̃,
to large det M̃, where the Kähler potential is canonical
in φ ∼

ffiffiffiffiffiffiffiffi
M̃Λ

p
. More specifically, we used the following

interpolating Kähler potential in the numerical study:

Kinterp ¼ Λ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1þ M̃M̃†

Λ2

s
: ð39Þ

For μ < m, the UV theory has a runaway at EþE− ¼ 0 and
Mi → ∞. This is a consequence of the mass term in (37) in
the presence of AMSB. In this regime we follow the local
minimum, which goes over to the global minimum for
μ > m. Importantly, the condensation of monopoles in the
large μ limit is independent of this subtlety.
Similarly, we can give a mass term to any number of

flavors in the NF ¼ Nc − 2 theory and show that monopole
condensation persists. In Fig. 2 we present the case where
all of the flavors get the same mass term, resulting in a pure
SYM theory with monopole condensation. In the small μ
limit, the minimum is given by the NF ¼ Nc − 2 vacuum
(15). The μ ≫ m case can be fully understood in the
supersymmetric limit—the monopoles get a VEV

ẼþẼ− ¼ −
μΛ
2

�
Λ
M̃

�
NF−1

; ð40Þ

where M̃ is the common VEV of all of the flavors.
This generates an ADS superpotential for the M̃,

FIG. 1. The supersymmetry breaking minimum for the theory
with AMSB and NF ¼ Nc − 2, with the extra mass term
1
2
μMNFNF . E is the VEV of the monopoles Ẽ�, while Mi is

the VEVof the first Nc − 3 flavors. The labeling on the different
curves indicates different values of m=Λ. For μ ¼ 0, the curves
are at the Nc − 2 minimum (15). As μ grows, the VEV of Mi
initially decreases, but then starts increasing as μ passes m. For
large μ=Λ → ∞, the vacuum of the theory goes over to Eq. (19)
with NF ¼ Nc − 3, while the monopole condensate persists. The
relation (38) is shown in the dashed line for μ ¼ 50Λ. We chose
Nc ¼ 13 for this plot.
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which is balanced by the μ term and leads to an overall
minimum at

M̃ ¼ 16
1

NFΛ;

ẼþẼ− ¼ −2
4

NF
−5 μΛ: ð41Þ

Notably, the VEV of M̃ in this case is equal to the pure
NF ¼ Nc − 2 case. This vacuum is the one depicted by the
dashed line in Fig. 2.
Though we do not show this explicitly, the same

conclusion persists for any number of flavors that are
integrated out from the NF ¼ Nc − 2 theory, and so we
explicitly see monopole condensation for the entire
range 0 ≤ NF ≤ Nc − 2.

G. Loop operators and confinement

The observed monopole condensation for NF ≤ Nc − 2
implies the confinement of electric and dyonic loop
operators and a perimeter law for magnetic ’t Hooft loops.
This is in agreement with arguments made in [33]. For
NF < Nc − 4, the VEV of the meson field Higgses the
gauge group to pure Yang-Mills (YM) with more than four
colors, in which Wilson and dyonic loops confine while ’t
Hooft loops do not.
With Nc − 4 flavors, the situation is a bit more subtle

because the unbroken SOð4Þ ≃ SUð2ÞL × SUð2ÞR gauge
theory forms a gaugino condensate for each SUð2Þ factor.
The branch where the gaugino condensates are aligned is
connected by a mass deformation to the Nc − 2 case, and
so by the argument of the previous section it involves
monopole condensation. Consequently, magnetic loops

acquire a perimeter law while dyonic loops acquire an
area law. The other branch with anti-aligned condensates is
related to the first one by a shift θ1 → θ1 þ 2π [33], and so
by the Witten effect, on this branch it is the dyons that
condense. On this branch, dyonic loops acquire a perimeter
law while magnetic loops acquire an area law. In both cases
the electric Wilson loop is confined.
In the case of Nc − 3 flavors, the unbroken gauge group

is again special because SOð3Þþ is, in fact, related to
SOð3Þ− by a shift of the vacuum angle θ → θ þ 2π [33].
Such a shift permutes the magnetic and dyonic loops;
however, the shift also exchanges the two orientations of
the gaugino condensate, thus exchanging the ADS and
exotic baryon branches. Again the global minimum exhib-
its the same loop operator behavior as of all other values of
NF ≤ Nc − 2. We are free to interpret this case as either
monopoles condensing in SOð3Þ− or dyons condensing
in SOð3Þþ.
For Nc − 1 ≤ NF ≤ 3

2
ðNc − 2Þ, the global minimum of

the dual theory finds the meson with nonvanishing VEV.
Integrating out the dual quarks leaves behind pure YM, for
which we already demonstrated monopole condensation in
the previous section. Thus, the electric and dyonic loops of
the dual theory confine. Matching the behavior of the
single nontrivial loop in each of the dual theories, the
correspondence of gauge groups is [33,47]

SpinðNcÞ ↔ SOðNF − Nc þ 4Þ−;
SOðNcÞþ ↔ SOðNF − Nc þ 4Þþ;
SOðNcÞ− ↔ SpinðNF − Nc þ 4Þ: ð42Þ

Put concisely, the duality exchanges the electric and dyonic
loops. The duality (42) therefore implies the same loop
operator behavior as in the NF ≤ Nc − 2 case.
As first noted in [31] and elaborated in [33], the cases

NF ¼ Nc − 1; Nc are special in the sense that there are
extra dual descriptions for the same theory. Let us first
focus on the NF ¼ Nc − 1 case, and take the original
theory to be SpinðNcÞ. In that case the dual is SOð3Þ− with
Nf ¼ Nc − 1 flavors and a superpotential (34). But we
know that this theory is equivalent to SOð3Þþ with θ shifted
by 2π, which results in an exchange of the ADS and the
exotic baryon branch. Dualizing back, we find another IR
description of the theory in terms of SOðNcÞþ and a
superpotential W2nd dual ¼ − detM

32Λ2Nc−5. By the arguments
above, at the AMSB minimum the dyonic loop of the
SOð3Þ− description and the Wilson loop of the SpinðNcÞ
description confine, while the ’t Hooft loop of the SOðNcÞþ
description has a perimeter law. A similar logic applies if
we choose the original theory to be SOðNcÞ−, in which case
the first dual is Spin(3) and the second dual is again
SOðNcÞ−. Here both the Wilson loop of Spin(3) and the
dyonic loop of SOðNcÞ− confine. For NF ¼ Nc there are
again two dual descriptions of the original theory, albeit

FIG. 2. Location of the minimum in the theory with AMSB and
NF ¼ Nc − 2, deformed by a universal mass term 1

2
μMii for all

flavors. E is the VEV of the condensed monopoles, while Mi is
the common VEV for all of the flavors. The different curves are
labeled by the value of m=Λ. The curves start at the Nc − 2
minimum (15) for μ ¼ 0. As μ=Λ → ∞, the theory goes over to
pure SYM, while the VEV of the monopoles E is given by (41),
represented by the dashed line. We have again chosen set Nc ¼
11 for this plot.

CSÁKI, GOMES, MURAYAMA, and TELEM PHYS. REV. D 104, 114018 (2021)

114018-10



with a different superpotential for the second dual. Since
the loop behavior is identical to the NF ¼ Nc − 1 case, we
do not repeat the analysis here.
In summary, theories with NF ≤ 3

2
ðNc − 2Þ and AMSB

all experience monopole condensation and the same
behavior for their loop operators. In particular, the non-
trivial Wilson loop has an area law, signaling electric
confinement.

V. NONCONFINING PHASES

For the supersymmetric theories with 3
2
ðNc − 2Þ <

NF ≤ 3ðNc − 2Þ, there is an IR fixed point, while for
3ðNc − 2Þ < NF the theories are IR free. Below we explore
the behavior of the theory in these ranges when we
add AMSB.

A. 3
2 ðNc − 2Þ < NF ≤ 3ðNc − 2Þ

In this regime the theory has an IR fixed point. The IR
dynamics is described by either the electric or the magnetic
theory. At the fixed point, the electric and magnetic degrees
of freedom pick up an anomalous dimension γi ¼ 3Ri − 2,
where Ri is the R charge. Since there is no additional
anomaly-free global Uð1Þ symmetry, the R symmetry in
this case is uniquely defined. The anomalous dimensions
are then

γQ ¼ NF − 3Nc þ 6

NF
;

γq ¼
3Nc − 2NF − 12

NF
;

γM ¼ 4NF − 6Nc þ 12

NF
: ð43Þ

It is easy to see that these anomalous dimensions are
consistent with the vanishing of the Novikov-Shifman-
Vainshtein-Zakharov (NSVZ) beta function. With AMSB,
the theory becomes supersymmetric again at the IR fixed
point, as in [20,25]. This is reminiscent of the IR restoration
of supersymmetry presented in [48,49]. At intermediate
scales, the gaugino mass is power suppressed and
approaches zero quickly in the IR [20,25].

B. 3ðNc − 2Þ < NF

Here the theory is in the free-electric phase, and so there
is no superpotential. With AMSB, the squarks get a
negative soft mass from (A2) and become tachyonic.
The theory then has no ground state. The theory is then
not continuously connected to non-SUSY SOðNcÞ with
3ðNc − 2Þ < NF fundamentals.

VI. CONCLUSIONS

We have examined the low-energy phase structure of
SOðNcÞ gauge theories with NF Weyl fermions in the

vector representation, obtained by perturbing the SUSY
version of this theory via AMSB. We found that the
intricate phase structure of the SUSY theory does not
survive the non-SUSY perturbation. Instead, the phase
structure is very simple: for a small number of
flavors NF ≤ 3

2
ðNc − 2Þ the theory is confining with

chiral symmetry breaking, while for 3
2
ðNc − 2Þ < NF <

3ðNc − 2Þ it flows to a (super)conformal fixed point.
This suggests that the free magnetic and Abelian
Coulomb phases are rather special to supersymmetry
and are lifted as soon as SUSY is broken. We have
also paid special attention to the loop operators of the
theory that can be used as proper order parameters. In
the most interesting case of SpinðNcÞ (in which case the
electric Wilson loop in the spinor cannot be screened by
the dynamical matter fields) we indeed find an area
law behavior corresponding to true confinement for all
NF ≤ 3

2
ðNc − 2Þ, while the SUðNFÞ global symmetry is

broken to SOðNFÞ. The dynamics leading to confine-
ment is monopole condensation. This is most clearly
seen for the NF ¼ Nc − 2 special case, where massless
monopoles (and dyons) indeed appear at special points
in the moduli space. With AMSB, we indeed find a
nonvanishing monopole condensate in accordance with
the original conjecture by Mandelstam and ’t Hooft.
By considering mass deformations to the NF ¼ Nc − 2
case, we have numerically verified that the monopole
condensate persists for all NF ≤ Nc − 2. For the
Nc− 2<NF ≤ 3

2
ðNc− 2Þ, the AMSB vacuum is obtained

when the quarks of the dual theory are integrated out
and the dual theory becomes pure YM, for which we
already established monopole condensation as the spe-
cial case NF ¼ 0.
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APPENDIX: ANOMALY MEDIATION

Anomaly mediation of supersymmetry breaking is para-
metrized by a single number m that explicitly breaks
supersymmetry in two different ways. One is the tree-level
contribution based on the superpotential
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V tree ¼ m

�
φi

∂W
∂φi

− 3W

�
þ c:c: ðA1Þ

The other is the loop-level supersymmetry breaking effects
in trilinear couplings, scalar masses, and gaugino masses
[21,50],

AijkðμÞ ¼ −
1

2
ðγi þ γj þ γkÞðμÞm; ðA2Þ

m2
i ðμÞ ¼ −

1

4
_γiðμÞm2; ðA3Þ

mλðμÞ ¼ −
βðg2Þ
2g2

ðμÞm: ðA4Þ

Here, γi ¼ μ d
dμ lnZiðμÞ, _γ ¼ μ d

dμ γi, and βðg2Þ ¼ μ d
dμ g

2.

When the gauge theory is asymptotically free, m2
i > 0,

which stabilizes the theory against runaway behaviors.
Note that Eqs. (A1) and (A2) also break the Uð1ÞR
symmetry explicitly, and hence we do not need to study
its anomaly matching conditions.
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