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We develop an inverse matrix method to solve for resonance masses from a dispersion relation obeyed by
a correlation function. Given the operator product expansion (OPE) of a correlation function in the deep
Euclidean region, we obtain the nonperturbative spectral density, which exhibits resonance structures
naturally. The value of the gluon condensate in the OPE is fixed by producing the ρ meson mass in the
formalism, and then input into the dispersion relations for the scalar, pseudoscalar, and tensor glueballs. It is
shown that the low-energy limit of the correlation function for the scalar glueball, derived from the spectral
density, discriminates the lattice estimate for the triple-gluon condensate from the single-instanton estimate.
The spectral densities for the scalar and pseudoscalar glueballs reveal a double-peak structure; the peak
located at lower mass implies that the f0ð500Þ and f0ð980Þ (η ad η0) mesons contain small amount of
gluonium components, and should be included into scalar (pseudoscalar) mixing frameworks. Another
peak determines the scalar (pseudoscalar) glueball mass around 1.50 (1.75) GeV with a broad width about
200 MeV, suggesting that the f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ [ηð1760Þ] mesons are the glue-rich states.

We also predict the topological susceptability χ1=4t ¼ 75 MeV–78 MeV, deduced from the correlation
function for the pseudoscalar glueball at zero momentum. Our analysis gives no resonance solution for the
tensor glueball, which may be attributed to the insufficient nonperturbative condensate information in the
currently available OPE.

DOI: 10.1103/PhysRevD.104.114017

I. INTRODUCTION

We recently proposed a method to handle QCD sum
rules [1] for nonperturbative observables like the ρ meson
mass, as an inverse problem [2]. The spectral density on the
hadron side of a dispersion relation, including both reso-
nance and continuum contributions, is regarded as an
unknown. The operator product expansion (OPE) on the
quark side is calculated in the standard way. The spectral
density (similar to a source distribution) is then determined
from the OPE input (similar to a potential observed outside
the distribution). This approach does not involve a con-
tinuum threshold, because the spectral density is supposed
to be a smooth distribution, and may differ from the
perturbative one (the quark-hadron duality is likely to be
broken). It does not require a Borel transformation to
suppress the continuum contribution, which will be solved
from the inverse problem. The suppression of higher-power
corrections to the OPE can be achieved by considering the
input in the deep Euclidean region. Once a dispersion
relation is solved directly, the optional stability criterion

[3,4] for sum rules is not necessary either. The long-
existing concern on the rigorousness and predictive power
of QCD sum rules [5,6] is then resolved. As an example, we
demonstrated how to extract the masses and decay con-
stants of the series of ρ resonances from the dispersion
relation obeyed by a two-current correlator [2]. This new
viewpoint, based only on the analyticity of physical
observables, has been extended to the explanation of the
D-meson mixing parameters [7], and to the constraint on
the hadronic vacuum polarization contribution to the muon
anomalous magnetic moment [8].
The spectral density was parametrized as a sum of a pole

contribution, which depends on the ρ meson mass and
decay constant, and an arbitrary continuum contribution in
[2]. The latter was expanded in terms of a set of orthogonal
polynomials with unknown coefficients, which, together
with the mass and decay constant, were deduced from the
best fit of the hadron side to the OPE on the quark side.
The continuum contribution turned out to be a ramp
function, instead of a step function postulated in sum
rules. A weakness of the above treatment is that the
existence of the bound state, presumed from the beginning,
is not a direct consequence of solving the inverse problem.
In fact, the Bayesian approach [6] was applied to sum rules
with a similar motivation in which the form of a spectral
density was not specified, but obtained using the maximum
entropy method. It was found [9] that the resultant spectral
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density associated with the ρ meson exhibits a resonance
peak at low energy, followed by a smooth continuum tail at
high energy. Unfortunately, this approach is numerically
intricate, and the peak location, i.e., the ρ meson mass,
depends on some parameters introduced in the maximum
entropy method. The complexity is expected, since it is
notoriously difficult to solve an ill-posed inverse problem.
We will develop a simple inverse matrix method to solve

for a spectral density from a dispersion relation without
assuming the existence of a resonance: the whole spectral
density is expanded in terms of the generalized Laguerre
polynomials, whose coefficients are derived from the OPE
input directly. The quark-hadron duality for a spectral
density on the hadron side and the discretionary criteria
for balancing perturbative and nonperturbative contribu-
tions [10,11] are not implemented. That is, unambiguous
predictions for nonperturbative observables can be acquired
in the above dispersive formalism. Besides, the precision of
our predictions can be improved systematically by adding
higher-order and higher-power corrections to the OPE
input. We first test this proposal by solving for the ρ
meson mass, and demonstrate that a resonance peak shows
up in the spectral density naturally, a result the same as
from the maximum entropy method [9]. It means that our
formalism is equivalent to but technically simpler than the
Bayesian approach [6]. By producing the ρ meson mass
mρ ¼ 0.78 GeV [12] from the peak location, we fix the
value of the gluon condensate hαsG2i ¼ 0.08 GeV4, αs
being the strong coupling constant, which is within the
range accepted in the literature (see [13], for example). Our
solution contains only a single peak corresponding to the
ground-state ρ meson, manifesting the difficulty to explore
properties of excited states with denser spectra, which is
also encountered by the Bayesian approach [9].
The framework with the fixed gluon condensate is then

applied to the analyses of the scalar, pseudoscalar, and
tensor glueball masses. Though the instanton background
may contribute to the OPE [14], we will not consider its
effect as in [13] to avoid the model dependence from, e.g.,
parametrizations for the instanton size distribution. We will
show that the gluon condensates of various dimensions are
enough for establishing the gluonium states, and confront
our findings with those in [13]. For sum-rule investigations
on scalar and pseudoscalar glueball properties in the
instanton background, refer to [11,15–19]. The quark-loop
and quark-condensate corrections, which shift the scalar
glueball mass by about few percent [20], will be neglected
in this work. Other theoretical approaches to the explora-
tion of glueball physics have been introduced in the review
[21]. Note that there exist several estimates for a crucial
higher-power contribution to the OPE, i.e., the triple-gluon
condensate, such as those from the single-instanton
[1,22,23] and lattice [24] evaluations, and that determined
from heavy quark systems [25], which differ dramatically.
Once the spectral density is obtained from the dispersion

relation, one can compute the correlation function asso-
ciated with the scalar glueball at zero momentum. It will be
elaborated that the spectral density corresponding to the
lattice estimate respects better the low-energy theorem for
the correlation function [14,26,27]. That is, our method
helps discriminate the different estimates for the triple-
gluon condensate.
Appropriate moments of a Borel transformed correlator

have to be selected to form ratios for the extraction of a
glueball mass in sum rules, because the stability window in
the Borel mass may not exist for ratios of other moments
[10,13]. On the other hand, the lower (higher) moments are
more sensitive to light (heavy) resonances [13]. The above
subtlety is not an issue in our formalism, in which the full
information of the OPE input is utilized to solve a
dispersion relation. It will be seen that a double-peak
structure with both light and heavy resonances is revealed
by the solution to a spectral density in support of the
observation in [28]. We emphasize that the positivity
constraint on the spectral density plays a crucial role for
establishing the bound states. The shorter peak located at
0.60 GeV in the spectral density for the scalar glueball can
be identified as the light scalar meson f0ð500Þ perhaps with
little admixture from f0ð980Þ. Another located at 1.50 GeV
with a broader width about 200 MeV arises from the
combined contribution of the f0ð1370Þ, f0ð1500Þ, and
f0ð1700Þ mesons, since f0ð1500Þ with a narrow width
cannot accommodate the broad peak alone. Our solution
indicates that f0ð500Þ and f0ð980Þ contain some amount of
gluonia, and the f0ð1370Þ, f0ð1500Þ, and f0ð1700Þmesons
are the glue-rich states, in agreement with the multiple-
resonance mixing picture for scalar mesons widely dis-
cussed in the literature [29–35]. The prediction for the
scalar glueball mass around 1.50 GeV is close to those from
sum rules [13,18,36] (but a bit lower than in [37]) and
quenched lattice QCD [38–41], and smaller than from
holographic QCD [42]. The quenched lattice calculation in
[43] favors the interpretation of f0ð1710Þ as composed
mainly of the lightest scalar glueball. We mention that a
double-peak parametrization for the spectral density has
been found to yield a fit to the sum rule for the scalar
glueball with the instanton effect better than a single-peak
one [11].
The spectral density for the pseudoscalar glueball is also

featured with a double-peak structure; the shorter peak
located at 0.71 GeV comes from the combined contribution
of the η and η0 mesons naturally, which have been known to
comprise some gluonium components [44]. Another at
1.75 GeV with a broad width about 200 MeV strongly
suggests that the ηð1760Þ meson is a promising candidate
for the pseudosclar glueball. This mass is lower than most
results in the literature, which are above 2 GeV, such as
those from sum rules [13], quenched lattice QCD [38–41],
the Bethe-Salpeter approach [45,46] and holographic QCD
[42]. Nevertheless, when the resonance contribution was
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parametrized by a Breit-Wigner form with a finite
width, the pseudoscalar glueball mass drops to 1.407�
0.162 GeV in sum rules with the instanton effect [19]. We
note that measurements of J=ψ radiative decays do not
affirm any glue-rich pseudoscalar resonances with masses
above 2 GeV [the quantum numbers of Xð2370Þ are not
certain yet] [12]. The ηð1760Þ meson was proposed to
be the pseudoscalar glueball two decades ago [47,48],
and examined experimentally via the decay J=ψ →
γðηð1760Þ →Þωω in [49]. It is abundantly produced in
J=ψ radiative decays, but not seen in the J=ψ → γγV
channels [50], V ¼ ρ, ϕ, implying that the partial width of
ηð1760Þ → γV is tiny, namely, ηð1760Þ is likely to be a
glueball. Our solution to the spectral density for the
pseudoscalar glueball advocates that ηð1760Þ should be
included into the mixing framework for pseudoscalar
mesons [51–55] for a complete scenario.
The topological susceptibility χt, an important quantity

characterizing the nonperturbative QCD vacuum, is related
to the low-energy limit of the correlation function for the
pseudoscalar glueball, which has been analyzed in sum
rules with the pure Yang-Mills theory [56]. Similarly, once
the spectral density is ready, one can compute the corre-
sponding correlation function at zero momentum. We then
predict χ1=4t ¼ 75–78 MeV, which is quite precise and
matches those from lattice QCD [57–62] and the chiral
perturbation theory [63–65]. Viewing that, our formalism
produces the observed ρ meson mass, the widely accepted
scalar glueball mass around 1.5 GeV, and the topological
susceptibility in consistency with the expectations from
other approaches; we are convinced that the ηð1760Þmeson
deserves thorough investigations on whether it is the
pseudoscalar glueball in the long-lasting quest.
Finally, we find no resonance solution to the spectral

density for the tensor glueball. Distinct from the scalar and
pseudoscalar glueball cases, only a single dimension-eight
condensate is available for the OPE input. It has been
verified [2] that at least two condensates of different
dimensions are necessary for establishing the ρ meson
state. We thus speculate that the absence of a resonance
solution for the tensor glueball may be due to the
insufficient nonperturbative input in the present setup.
Nevertheless, a tensor glueball mass of about 2.0 GeV
was extracted from specific moments of the sum rule in
[13]. As stated before, full information of the OPE input is
utilized in our formalism, so the condition on the existence
of a resonance may be more stringent. It is necessary to
calculate more higher-power corrections to the OPE of the
correlation function, so that the tensor glueball mass can be
inferred from the dispersion relation and compared with the
lattice predictions [39,66,67].
The rest of the paper is organized as follows. In Sec. II

we illustrate the inverse matrix method to solve a dispersion
relation as an inverse problem. The mock data from several
test functions are constructed and treated as inputs. It is

shown that the solutions reproduce the test functions
accurately in the inverse matrix method. Our approach is
then applied to the determination of the ρ meson mass, via
which the value of the gluon condensate is fixed for the
analyses of the glueball masses. We explain how boundary
conditions of a spectral density select the suitable set of
generalized Laguerre polynomials for its expansion, and
why it is difficult to probe excited states. In Sec. III we
solve for the scalar, pseudoscalar, and tensor glueball
masses, suggest the physical states they correspond to,
and discuss their impact on meson mixing scenarios. The
correlation functions at zero momentum for the scalar and
pseudoscalar glueballs are also deduced from the spectral
densities. The former serves to discriminate the different
estimates for the triple-gluon condensate, and the latter is
used to predict the topological susceptibility. Section IV
contains the conclusion and outlook.

II. DISPERSIVE RELATION FOR ρ RESONANCE

A. Inverse matrix method

We first demonstrate our inverse matrix method to solve
a dispersion relation, which belongs to the first kind of
Fredholm integral equations, by means of several simple
examples. The goal is to find the unknown function ρðyÞ
from the integral equation

Z
∞

0

dy
ρðyÞ
x − y

¼ ωðxÞ; ð1Þ

given the input function ωðxÞ of the variable x. Suppose
that ρðyÞ decreases quickly enough with the variable y, so
the major contribution to the integral on the left-hand side
originates from a finite range of y. It is then justified to
expand the integral into a series in 1=x up to some power N
for a sufficiently large jxj by inserting

1

x − y
¼

XN
m¼1

ym−1

xm
; ð2Þ

into Eq. (1). Also, suppose that ωðxÞ can be expanded into a
power series in 1=x for a large jxj,

ωðxÞ ¼
XN
n¼1

bn
xn

: ð3Þ

Note that jxj being large enough is only a formal statement
and does not have a substantial influence on our
calculation.
There are four types of classical orthogonal polynomials

constructed from solutions to second-order differential
equations; the Jacobi-like polynomials (including the
Gegenbauer polynomials, the Legendre polynomials,
etc.) with the support ½−1; 1�, the Laguerre polynomials
with the support ½0;∞Þ, the Bessel polynomials with the
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support ½0;∞Þ, and the Hermite polynomials with the
support ð−∞;∞Þ [68]. Since ρðyÞ in Eq. (1) (and also
spectral densities to be studied later) is defined in the
interval ½0;∞Þ, the Laguerre and Bessel polynomials may
be considered for its expansion. However, the latter are
orthogonal with respect to the weight expð−2=yÞ, which
suppresses the small-y region we are interested in. Hence,
the Laguerre polynomials, orthogonal with respect to the
weight expð−yÞ, are the only appropriate choice for the
basis functions. We thus decompose the unknown into

ρðyÞ ¼
XN
n¼1

anyαe−yL
ðαÞ
n−1ðyÞ; ð4Þ

in terms of a set of generalized Laguerre functions LðαÞ
n up

to degree N − 1, which satisfies the orthogonality

Z
∞

0

yαe−yLðαÞ
m ðyÞLðαÞ

n ðyÞdy ¼ Γðnþ αþ 1Þ
n!

δmn: ð5Þ

The maximal number N will be fixed later, and the choice
of the parameter α depends on the behavior of ρðyÞ in the
limit y → 0. Substituting Eqs. (2), (3), and (4) into Eq. (1),
and equating the coefficients of 1=xn, we arrive at the
matrix equation Ma ¼ b with the matrix elements

Mmn ¼
Z

∞

0

dyym−1þαe−yLðαÞ
n−1ðyÞ; ð6Þ

with m and n running from 1 to N, and the vectors
a ¼ ða1; a2;…; aNÞ and b ¼ ðb1; b2;…; bNÞ.
If the inverse ofM exists, one can get a solution of a via

a ¼ M−1b with the known input b trivially. The existence
of M−1 thus implies the uniqueness of the solution to ρðyÞ.
In principle, the true solution can be approached to by
increasing the number of polynomials N in Eq. (4). The
difference between the true solution and the approximate
one produces a power correction 1=xNþ1 to the left-hand
side of Eq. (1), because of the orthogonality in Eq. (5),
which is beyond the considered precision. The orthogon-
ality also leads to Mmn ¼ 0 for m < n. Namely, M is a
triangular matrix, such that the coefficients an built up

previously are not altered, when an additional higher-
degree polynomial is added to the expansion in Eq. (4).
Nevertheless, both m and n have to stop at a finite N
in a practical application, since the determinant of M
diminishes with its dimension eventually. An approximate
solution of a would then deviate from the true solution
violently, when a tiny fluctuation of the input vector b is
present and amplified by the huge elements ofM−1. This is
a generic feature of an ill-posed inverse problem. Hence,
the optimal choice of N is set to its maximal value, above
which a solution goes out of control.
We test the above inverse matrix method on the follow-

ing simple examples. We generate the mock data using a
single-peak function

ρðyÞ ¼ y2e−y
2

; ð7Þ

for the input ωðxÞ with the coefficients

bn ¼
Z

∞

0

dyyn−1y2e−y
2

: ð8Þ

The factor e−y
2

in the test function guarantees that the
dominant contribution to the integral comes from the region
with finite y, and justifies the power expansion in 1=x with
a sufficiently large jxj. The matrix M is computed accord-
ing to Eq. (6) with α ¼ 2, motivated by the limit ρðyÞ → y2

as y → 0. The inverse M−1 gives the solutions for the
coefficients an via a ¼ M−1b, and ρðyÞ in Eq. (4), whose
behaviors with the expansions up to N ¼ 22, 23, and 24

generalized Laguerre polynomials Lð2Þ
n ðyÞ are displayed in

Fig. 1. It is found that the curves labeled by N ¼ 22 and 23
are almost identical, implying the stability of the solutions
for a sufficiently large N. In fact, the solutions have
changed little as N > 20. It is also seen that the curve
becomes oscillatory, and differs drastically from the single-
peak function when N reaches 24. The big ratio of the last
two coefficients a24=a23 ≈ 58, compared with a22=a21 ≈ 1
for N ¼ 22 and a23=a22 ≈ 2 for N ¼ 23, hints that the
inverse M−1 is out of control at N ¼ 24.
We fix N ¼ 22 in the demonstration below, though the

choices N ¼ 21 and N ¼ 23 also serve the purpose.

FIG. 1. Solutions to ρðyÞ for the input from Eq. (8) with the expansions up to N ¼ 22, 23, and 24 generalized Laguerre polynomials

Lð2Þ
n ðyÞ.
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Figure 2 collects the solutions to ρðyÞ from the parameters
α ¼ 0, 2, and 4 for the generalized Laguerre polynomials

LðαÞ
n ðyÞ, compared with the true solution in Eq. (7). The

curve corresponding to α ¼ 2, namely, the expansion of
ρðyÞ in Eq. (4) with the correct behavior in the y → 0 limit,
matches the true solution most perfectly. The curve labeled
by α ¼ 0, despite of describing the true solution equally
well at finite y, shows deviation near the origin y ¼ 0.
When α ¼ 4, the approximate solution differs completely
from the true solution. The above test manifests the
importance of the information on the boundary conditions
of the unknown and the choice of the appropriate set of
generalized Laguerre polynomials for solving Eq. (1).
It will be made explicit in the next sections that the
α ¼ 1 (α ¼ 2) set of generalized Laguerre polynomials
is selected for the analysis of the ρ meson (glueball) mass.
We highlight that the exponential factor e−y in the

polynomial expansion in Eq. (4) characterizes the reso-
lution powerΔy ∼ 1 of our method to probe the structure of
the unknown ρðyÞ. To elaborate this point, consider the two
double-peak functions

ρ1ðyÞ ¼ e−20ðy−0.5Þ2 þ e−20ðy−1.0Þ2 ;

ρ2ðyÞ ¼ e−20ðy−0.5Þ2 þ e−20ðy−2.0Þ2 ; ð9Þ

in which the two peaks are separated by Δy ∼ 0.5 and
Δy ∼ 1.5, respectively. The large coefficients of 20 in the

exponents are designed to make sharp peaks for transparent
illustration. The above two functions are substituted for
y2e−y

2

in Eq. (8) to generate the mock data for the inputs.
The same procedure, with the expansion up to 22 gener-

alized Laguerre polynomials Lð0Þ
n ðyÞ, gives the solutions to

ρ1ðyÞ and ρ2ðyÞ in Fig. 3. It is observed that the approxi-
mate solution contains a single peak in the left plot, since
the two peaks of ρ1ðyÞ are too close to resolve. On the
contrary, the two-peak structure of ρ2ðyÞ, with a separation
within the designated resolution, can be reproduced rea-
sonably. The above test reflects the limitation of our
method to probe a physical system with certain character-
istic scales.

B. ρ meson mass

After exploring the aspects of our approach, we apply it
to the determination of the ρ meson mass from the
corresponding dispersion relation. We first recapitulate
and expand the idea of handling QCD sum rules as an
inverse problem [2], starting with the two-point correlator

Πμνðq2Þ ¼ i
Z

d4xeiq·xh0jT½JμðxÞJνð0Þ�j0i

¼ ðqμqν − gμνq2ÞΠðq2Þ; ð10Þ

for the quark current Jμ ¼ ðūγμu − d̄γμdÞ=
ffiffiffi
2

p
. The vacuum

polarization function Πðq2Þ obeys the identity

FIG. 2. Solutions to ρðyÞ with the expansions up to 22 generalized Laguerre polynomials LðαÞ
n ðyÞ for α ¼ 0, 2, and 4, compared with

the true solution represented by the dashed (red) lines.

FIG. 3. Solutions to ρ1ðyÞ (left) and to ρ2ðyÞ (right) with the expansions up to 22 generalized Laguerre polynomials Lð0Þ
n ðyÞ, compared

with the true solutions represented by the dashed (red) lines.
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Πðq2Þ ¼ 1

2πi

I
ds

ΠðsÞ
s − q2

; ð11Þ

where the contour consists of two pieces of horizontal lines
above and below the branch cut along the positive real axis
on the complex s plane, and a circle of large radius R [2].
The OPE of the function Πðq2Þ in the deep Euclidean
region of q2 is reliable, and we have ΠOPEðq2Þ [1] for the
left-hand side of Eq. (11),

ΠOPEðq2Þ ¼ Πpertðq2Þ þ 1

12π

hαsG2i
ðq2Þ2 þ 2

hmqq̄qi
ðq2Þ2

þ 224π

81

καshq̄qi2
ðq2Þ3 ; ð12Þ

Πpertðq2Þ ¼ 1

4π2

�
1þ αs

π

�
ln

μ2

−q2
≡ c ln

μ2

−q2
; ð13Þ

up to the dimension-six condensate, i.e., to the power
correction of 1=ðq2Þ3. The second expression of the
perturbative term Πpertðq2Þ defines the constant c. In
Eq. (12) hαsG2i≡ hαsGa

μνGaμνi is the gluon condensate,
mq is a quark mass, and the parameter κ ¼ 2–4 [69–71]
quantifies the violation in the factorization of the four-
quark condensate hðq̄qÞ2i into the square of the quark
condensate hq̄qi. A regularization-scheme dependent con-
stant in Πpertðq2Þ [72] has been dropped, which is irrelevant
in the search for a resonance solution. The fact that this
constant can be eliminated by the Borel operator in
standard sum rules confirms the above statement.
The contour integral on the right-hand side of Eq. (11)

can be written as

1

2πi

I
ds

ΠðsÞ
s − q2

¼ 1

π

Z
R

0

ds
ImΠðsÞ
s − q2

þ 1

2πi

Z
C
ds

ΠpertðsÞ
s − q2

;

ð14Þ

in which the lower bound of the first integral on the right-
hand side, being of order of the pion mass squared, has
been set to zero for simplicity, and the imaginary part
ImΠðsÞ, involving nonperturbative dynamics from the low
s region, will be solved for later. The numerator in the
second integral, with C representing the large circle of
radius R, has been replaced by ΠpertðsÞ, because the
perturbative evaluation of ΠðsÞ is reliable for s far away
from physical poles, in accordance with the employment of
the OPE in Eq. (12). We also express the perturbative piece
Πpertðq2Þ by means of an integration along the same
contour, so Eq. (12) becomes

ΠOPEðq2Þ ¼ 1

2πi

I
ds

ΠpertðsÞ
s − q2

þ 1

12π

hαsG2i
ðq2Þ2 þ 2

hmqq̄qi
ðq2Þ2

þ 224π

81

καshq̄qi2
ðq2Þ3 : ð15Þ

Equating Eqs. (14) and (15) according to Eq. (11), we get
the sum rule

1

π

Z
R

0

ds
ImΠðsÞ
s − q2

¼ 1

π

Z
R

0

ds
ImΠpertðsÞ
s − q2

þ 1

12π

hαsG2i
ðq2Þ2

þ 2
hmqq̄qi
ðq2Þ2 þ 224π

81

καshq̄qi2
ðq2Þ3 ; ð16Þ

where the contributions of ΠpertðsÞ along the big circle C,
togetherwith the dependence on the renormalization scale μ,
have canceled from both sides.
We introduce a subtracted spectral density, which is

related to the original one ρðsÞ≡ ImΠðsÞ=π via

Δρðs;ΛÞ ¼ ρðsÞ − 1

π
ImΠpertðsÞ½1 − expð−s=ΛÞ�: ð17Þ

The scale Λ characterizes the transition of ImΠðsÞ to the
perturbative expression ImΠpertðsÞ. The smooth function
1 − expð−s=ΛÞ vanishes like s as s → 0, and approaches to
the unity at large s ≫ Λ, such that Δρðs;ΛÞ respects the
behavior of ρðsÞ ∼ s in the limit s → 0 [73], and diminishes
quickly as s > Λ. Note that Δρðs;ΛÞ bears the nontrivial
resonance structure the same as ρðsÞ for s < Λ, which is not
affected by the perturbative subtraction term. We have
confirmed that other smooth functions with similar limiting
behaviors lead to basically identical solutions for ρðsÞ.
If one adopts the step function instead of the smooth
function in Eq. (17) to define Δρðs;ΛÞ, the resultant ρðsÞ,
as a sum of the smooth Δρðs;ΛÞ from solving the
dispersion relation and the discontinuous perturbative
contribution caused by the step function, will exhibit a
sudden jump. The radius R in Eq. (16) can be pushed
towards infinity, when the sum rule is formulated in terms
of the subtracted spectral density,

Z
∞

0

ds
Δρðs;ΛÞ
s − q2

¼
Z

∞

0

ds
ce−s=Λ

s − q2
þ 1

12π

hαsG2i
ðq2Þ2

þ 2
hmqq̄qi
ðq2Þ2 þ 224π

81

καshq̄qi2
ðq2Þ3 ; ð18Þ

where the constant c has been defined in Eq. (13), and the
aforementioned regularization-scheme dependent constant
is absent from ImΠpertðsÞ. It is stressed that the quark-
hadron duality for the unknown spectral density is not
assumed at any finite scale s in the above derivation.
Since the subtracted spectral density Δρðs;ΛÞ is a

dimensionless quantity, it can be expressed as a function
in the form Δρðs=ΛÞ. Certainly, the subtracted spectral
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density may depend on other constant scales, such as the ρ
meson mass mρ, which however appears as a constant ratio
mρ=Λ for a given Λ, and needs not be shown as an explicit
argument. Equation (18) then reduces, with the variable
changes x ¼ q2=Λ and y ¼ s=Λ, to

Z
∞

0

dy
ΔρðyÞ
x − y

¼
Z

∞

0

dy
ce−y

x − y
−

1

12π

hαsG2i
x2Λ2

− 2
hmqq̄qi
x2Λ2

−
224π

81

καshq̄qi2
x3Λ3

; ð19Þ

where Λ in the subtracted spectral density has moved into
the condensate terms to make them dimensionless. On one
hand, the scale Λ prefers to be small to enhance the
resolution of our method. On the other hand, it cannot
be too small to spoil the OPE. WhenΛ increases from a low
scale, the physical ρmeson mass, if generated, corresponds
to a peak location of ρðsÞ, which should be insensitive to
the change of Λ. As Λ further increases, it disappears with
the condensate contributions from Eq. (19). Then a solution
for ΔρðyÞ, if existent, will imply that Δρðs=ΛÞ is a solution
for an arbitrary Λ. A peak location of ρðsÞ, endowed by
Δρðs=ΛÞ, thus shifts with Λ such that none of its structure
can be interpreted as a physical state. The numerical
analyses to be performed below verify this tendency of
the ρ meson mass mρ, as well as of the glueball masses,
with respect to the variation of Λ; the obtained mρ remains
stable first, and then grows with Λ monotonically. In the
sense of searching for a stability window in which a
resonance mass stays constant, Λ plays a role similar to
the Borel mass in conventional sum rules.
Viewing the boundary conditions of ΔρðyÞ ∼ y at y → 0

andΔρðyÞ → 0 at y → ∞, we expandΔρðyÞ in terms of the

generalized Laguerre polynomials Lð1Þ
n ðyÞ, namely, we

employ Eq. (4) with the parameter α ¼ 1. The dependence
on the constant ratios mentioned before then goes into the
coefficients an; a solution of an depends on Λ, as indicated
by the right-hand side of Eq. (19). Equation (2), which
holds for jxj > 1, i.e., for jq2j > Λ, is inserted into the left-
hand side of Eq. (19) to construct the matrix elementsMmn
in Eq. (6), and inserted into the integral on the right-hand
side of Eq. (19) to compute the coefficients bn for the input.
The coefficients b2 and b3 of the 1=x2 and 1=x3 terms,

respectively, receive additional contributions from the
condensates. The following OPE parameters and the strong
coupling αs, evaluated at the scale of 1 GeVand within their
accepted ranges [1,13,16,69–71,74,75], are adopted

hmqq̄qi¼0.007×ð−0.246Þ3GeV4; hαsG2i¼0.08GeV4;

αshq̄qi2¼1.49×10−4GeV6; αs¼0.5; κ¼2; ð20Þ

which will be shown to produce the observed ρmeson mass
mρ ¼ 0.78 GeV [12]. Though higher-order corrections to
the condensate terms are available [74,76], it may not mean
much to include them, because their effects can be
mimicked by tuning the unknown factorization violation
parameter κ. We have checked that the renormalization-
group evolutions of αs and the condensates around the
scales 1 GeV–2 GeV affect our results for mρ by only few
percent, so they will not be taken into account in the
numerical study.
We derive the inverse matrix M−1, the coefficients an

from the OPE coefficients bn, the solution to Δρðs;ΛÞ, and
then the spectral density ρðsÞ from Eq. (17). The outcomes
for the characteristic scale Λ ¼ 2.5 GeV2 with the expan-
sions up to N ¼ 22, 23, and 24 generalized Laguerre

polynomials Lð1Þ
n ðyÞ are displayed in Fig. 4. It is found

that the curves labeled by N ¼ 22 and 23 are very similar,
assuring the stability of the solutions for a sufficiently large
N, and consistent with those obtained in the maximum
entropy method [9]. The curve becomes oscillatory, and
differs significantly from the other two as N reaches 24.
The big ratio of the last two coefficients a24=a23 ≈ 7,
compared with a22=a21 ≈ a23=a22 < 2 for N ¼ 22 and 23,
indicates that the matrix elements of M−1 start to increase
rapidly as N ¼ 24. It is encouraging that the positivity of
the spectral density is satisfied automatically. We read the ρ
meson mass mρ ¼ 0.78 GeV (m2

ρ ¼ 0.61 GeV2) off the
location of the sharp peak in the plot for N ¼ 23, which
agrees with the measured value in [12]. The bump located
at s > 2 GeV2, being shorter and broader, may be attrib-
uted to the combination of nonresonant contributions and
resonant ones from excited ρ states. It is obvious that the
continuum contribution to the spectral density ρðsÞ, distinct
from the perturbative value c ≈ 0.029, violates the local

FIG. 4. Solutions to ρðsÞ for Λ ¼ 2.5 GeV2 with the expansions up to N ¼ 22, 23 and 24 generalized Laguerre polynomials Lð1Þ
n ðyÞ.
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quark-hadron duality, though ρðsÞ approaches c
asymptotically.
We then seek the solutions of Eq. (19) for various

characteristic scales Λ ¼ 1–8 GeV2 by repeating the above
procedure, and present the spectral densities ρðsÞ for
Λ ¼ 1, 4 and 8 GeV2 in Fig. 5 for illustration. It is noticed
that the expansion in terms of the generalized Laguerre
polynomials diverges more quickly at lower Λ, such that
solutions for Λ < 1 GeV2 with the polynomial numbers
roughly smaller than 10 may not be reliable. A clear signal
for a divergent expansion is that the positivity of the
spectral density is lost owing to strong oscillation. We
have to terminate the expansion at N ¼ 12 (N ¼ 22) for
Λ ¼ 1 GeV2 (Λ ¼ 2 GeV2), and at N ¼ 23 for higher Λ.
Figure 5 suggests that the peaks are located at the same
s ≈ 0.61 GeV2 for Λ between 1 and 4 GeV2, which
specifies the stability window in Λ for the physical
solutions. The peak in the plot for Λ ¼ 8 GeV2 moves
toward a bigger s ¼ 1.24 GeV2, exhibiting the growth of
the mass at large Λ with the disappearance of the con-
densate effects. We point out that the peak of ρðsÞ always
exists even without the condensates [2]; the vanishing of
the spectral density at s ¼ 0 gives a contribution to the
dispersive integral smaller than the constant perturbative
piece does, which must be made up by a peak at finite s in
order to match the OPE input. Therefore, one has to be
cautious about the identification of a peak in ρðsÞ as a
physical resonance, for which the stability of the peak
location inspected above is crucial. Accordingly, the broad
bump in Fig. 5 cannot be interpreted as a specific bound
state, since its location shifts with Λ as disclosed in the
three plots. We also observe that the peak becomes less
evident at large Λ, for the bad resolution of our method
stops probing the structure of ρðsÞ at low s.
Next we scan the ρ meson mass mρ in the range

1 GeV2 < Λ < 8 GeV2, and depict its dependence on Λ
in Fig. 6. The expected features are salient; the curve goes
up and down around mρ ¼ 0.78 GeV in the interval
1 GeV2 < Λ < 3 GeV2, and then ascends monotonically
withΛ asΛ > 3 GeV2. We assess the theoretical error from
our method using the extreme values at Λ ¼ 2.2 GeV2 and
3.0 GeV2, and get mρ ¼ ð0.78� 0.03Þ GeV. To check the

sensitivity of our results to the uncertainties of the OPE, we
vary the gluon condensate hαsG2i and the factorization
violation parameter κ by�20% separately. The variation of
the former can simulate that of the quark condensate hq̄qi,
which is also of dimension four. The variation of the
latter is equivalent to that of the dimension-six condensate
hq̄qi2. It turns out that the obtained mρ changes by only
about ∓ 5% and �7%, respectively. Namely, results in
our formalism are insensitive to the OPE uncertainties.
Adding the above sources of errors in quadrature, we
conclude

mρ ¼ ð0.78� 0.07Þ GeV: ð21Þ

The above examination also reveals that hαsG2i and κ must
be anticorrelated in order to fix mρ. Hence, the input value
of κ (hαsG2i) in Eq. (20), close to the lower (upper) edge of
its favored range, is the optimal choice.
It was stated [77] that the area under the resonance peak

of the spectral density ρðsÞ represents the square of the ρ
meson decay constant fρ. In our formulation, the resonance
peak is appropriately described by the subtracted spectral
density Δρðs;ΛÞ, where the continuum contribution has
been largely removed. We thus have

FIG. 5. Solutions to ρðsÞ for Λ ¼ 1, 4, and 8 GeV2 with the expansions up to N ¼ 12, 23, and 23 generalized Laguerre polynomials

Lð1Þ
n ðyÞ, respectively.

FIG. 6. Dependence of the ρ meson mass mρ on the character-
istic scale Λ.
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f2ρ ≈
Z

∞

0

dsΔρðs;ΛÞ; ð22Þ

with the scale Λ ¼ 1.3 GeV2 corresponding to the ρmeson
mass mρ ¼ 0.78 GeV in Fig. 6. The above integral leads to
fρ ≈ 0.20 GeV, consistent with the value in [12], which
further supports our approach to the extraction of non-
perturbative observables from dispersion relations. Note
that fρ derived from Eq. (22) depends onΛ; varyingΛ from
1.0 GeV2 to 3.0 GeV2, we find that fρ increases from
0.17 GeV to 0.29 GeV. This Λ dependence of fρ is
expected, because Eq. (22) holds better for a narrower
resonance, but the ρ meson width is not small; Eq. (22) can
be understood via a pole parametrization, which originates
from the narrow-width approximation.
At last, a remark is in order. The well-known Weinberg

sum rules [78] for the difference ρVðsÞ − ρAðsÞ, where
ρVðsÞ corresponds to the vector spectral density investi-
gated in this subsection and ρAðsÞ denotes the axial-vector
spectral density, have been analyzed in the literature. These
sum rules, according to their derivation, are expected to be
respected in our formalism, where the spectral densities are
solved with the input from the OPE of the relevant
correlation functions. Certainly, one has to obtain ρAðsÞ
before verifying the above postulation, which can be a
subject of future studies. In such an approach, the Weinberg
sum rules serve as a check of the theoretical consistency of
our solutions for the spectral densities. It differs from the
approaches in [79,80], where the data of eþe− annihilation
and τ decays were employed to construct ρVðsÞ and ρAðsÞ
for examining whether the sum rules are satisfied.

III. DISPERSIVE RELATIONS FOR GLUEBALLS

A. Formalism

We apply the formalism developed in the previous
section to the determination of the scalar and pseudoscalar

glueball masses. Consider the correlation function for the
glueball channel

ΠGðq2Þ ¼ i
Z

d4xeiq·xh0jTOGðxÞOGð0Þj0i; ð23Þ

where the local composite operators OG with G ¼ S and P
denote the gluonic interpolating fields for the scalar ð0þþÞ
and pseudoscalar ð0−þÞ glueballs, respectively. Their explicit
definitions with the lowest mass dimension are given by

OSðxÞ ¼ αsGa
μνðxÞGaμνðxÞ;

OPðxÞ ¼ αsGa
μνðxÞG̃aμνðxÞ; ð24Þ

G̃μν ≡ iϵμνρσGρσ=2 being the dual of the gluon field strength.
The low-energy theorem demands the zero-momentum limits
of the glueball correlators [14,26],

ΠSðq2 ¼ 0Þ ¼ 32π

β0
hαsG2i; ð25Þ

ΠPðq2 ¼ 0Þ ¼ð32π2αsÞ2χt; ð26Þ

in which β0 ¼ 11Nc=3 − 2Nf=3, Nc and Nf being the
numbers of colors and flavors, respectively, is the lowest-
order coefficient of the QCD β-function, and the topological
susceptibility

χt ¼ i
Z

d4xh0jQðxÞQð0Þj0i; ð27Þ

is defined with the topological charge density QðxÞ ¼
GaμνðxÞG̃a

μνðxÞ=ð32π2Þ. The above low-energy limits will
be used to test the consistency of our calculations below.
Similarly, we have the OPE of the correlation function

ΠGðq2Þ in the deep Euclidean region of q2 [1],

ΠOPE
G ðq2Þ ¼ q4 ln

−q2

μ2

�
AðGÞ
0 þ AðGÞ

1 ln
−q2

μ2
þ AðGÞ

2 ln2
−q2

μ2

�
þ
�
BðGÞ
0 þ BðGÞ

1 ln
−q2

μ2

�
hαsG2i

−
�
CðGÞ
0 þ CðGÞ

1 ln
−q2

μ2

� hgG3i
q2

þDðGÞ
0

hα2sG4iG
ðq2Þ2 ; ð28Þ

up to the dimension-eight condensate, i.e., up to the power correction of 1=ðq2Þ2, where the various gluon condensates are
defined as

hgG3i≡ hgfabcGa
μνGbν

ρ Gcρμi;
hα2sG4iS ≡ 14hðαsfabcGb

μρG
cρ
ν Þ2i − hðαsfabcGb

μνGc
ρλÞ2i;

hα2G4iP ≡ 2½10hðαsfabcGb
μρG

cρ
ν Þ2i þ hðαsfabcGb

μνGc
ρλÞ2i�: ð29Þ

The four-gluon condensates are approximated, under the vacuum factorization assumption [81,82]
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hðfabcGb
μρG

cρ
ν Þ2i ≈ 1

16
hGa

μνGaμνi2; hðfabcGb
μνGc

ρλÞ2i ≈
5

16
hGa

μνGaμνi2; ð30Þ

by

hα2sG4iS ≈
9

16
hαsG2i2; hα2sG4iP ≈

15

8
hαsG2i2: ð31Þ

As stated in the introduction, we consider only the condensate contributions to the OPE, which are sufficient for
establishing the scalar and pseudoscalar glueballs, without the instanton effect.
The coefficients in Eq. (28) for the scalar glueball with Nc ¼ Nf ¼ 3 read [81,83–86]

AðSÞ
0 ¼ −2

�
αs
π

�
2
�
1þ 659

36

αs
π
þ 247.48

�
αs
π

�
2
�
;

AðSÞ
1 ¼ 2

�
αs
π

�
3
�
β0
4
þ 65.781

αs
π

�
; AðSÞ

2 ¼ −10.125
�
αs
π

�
4

;

BðSÞ
0 ¼ 4αs

�
1þ 175

36

αs
π

�
; BðSÞ

1 ¼ −
α2s
π
β0;

CðSÞ
0 ¼ 8α2s ; CðSÞ

1 ¼ 0; DðSÞ
0 ¼ 8παs: ð32Þ

Those for the pseudoscalar glueball were found to be [81,87,88]

AðPÞ
0 ¼ −2

�
αs
π

�
2
�
1þ 20.750

αs
π
þ 305.95

�
αs
π

�
2
�
;

AðPÞ
1 ¼ 2

�
αs
π

�
3
�
β0
4
þ 72.531

αs
π

�
; AðPÞ

2 ¼ −10.125
�
αs
π

�
4

;

BðPÞ
0 ¼ 4αs; BðPÞ

1 ¼ α2s
π
β0

CðPÞ
0 ¼ −8α2s ; CðPÞ

1 ¼ 0; DðPÞ
0 ¼ 4παs: ð33Þ

Notice CðSÞ
1 ¼ CðPÞ

1 ¼ 0, which will not appear in our formulas afterwards.
We extend the derivation of Eqs. (11)–(16) to the construction of the dispersion relations for the glueball masses, arriving

at

1

π

Z
R

0

ds
ImΠGðsÞ
s − q2

¼ 1

π

Z
R

0

ds
ImΠpert

G ðsÞ
s − q2

− CðGÞ
0

hgG3i
q2

þDðGÞ
0

hα2sG4iG
ðq2Þ2 : ð34Þ

The imaginary part ImΠpert
G ðsÞ collects the contributions in Eq. (28) without poles at q2 → 0, i.e., those which can be

produced by the contour integration of the perturbative piece, like the first term in Eq. (15),

ImΠpert
G ðsÞ ¼ −π

�
AðGÞ
0 s2 þ 2AðGÞ

1 s2 ln
s
μ2

þ AðGÞ
2 s2

�
3ln2

s
μ2

− π2
�
þ BðGÞ

1 hαsG2i
�
: ð35Þ

It is seen that the term BðGÞ
0 hαsG2i in Eq. (28) is absent in the above expression, since it has no discontinuity along the

branch cut. As stated before, a constant piece in the OPE is irrelevant to the search for a resonance solution. The thresholds
in the dispersive integrals on both sides of Eq. (34) have been set to zero for simplicity. We remind that ImΠpert

G ðsÞ contains
the nonperturbatve gluon condensate hαsG2i actually.
We introduce the subtracted spectral density

ΔρGðs;ΛÞ ¼ ρGðsÞ þ s2
�
AðGÞ
0 þ 2AðGÞ

1 ln
s
μ2

þ AðGÞ
2

�
3ln2

s
μ2

− π2
��

½1 − expð−s=ΛÞ� þ BðGÞ
1 hαsG2i½1 − expð−s2=Λ2Þ�;

ð36Þ
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in terms of the original one ρGðsÞ≡ ImΠGðsÞ=π. The smooth function 1 − expð−s=ΛÞ vanishes like s and 1 −
expð−s2=Λ2Þ vanishes like s2 as s → 0, so the subtraction terms do not modify the behavior of ρGðsÞ ∼ s2 in the low-
energy limit s → 0 [14,26,89,90]. Note that s2 ln s and s2 ln2 s are regarded as being much larger than s2 as s → 0, so
additional suppression from the first smooth function is necessary. Both the smooth functions approach unity at large
s ≫ Λ, where the subtracted spectral density Δρðs;ΛÞ diminishes quickly, and the radius R can be pushed towards infinity.
The scale in the exponent of the second smooth function can differ from Λ in principle. However, we have verified that our
numerical results are insensitive to its variation, so it is chosen as Λ without loss of generality. It has been also confirmed
that the solutions to ρG are basically identical, when different smooth functions are employed in Eq. (36). The subtracted
spectral density ΔρGðs;ΛÞ exhibits the resonant structure almost the same as ρðsÞ does, which is barely affected by the
subtraction term. It will be shown that the introduction of a subtracted spectral density facilitates the evaluation of the
correlation function at zero momentum.
Equation (34) is then converted into

Z
∞

0

ds
ΔρGðs;ΛÞ
s − q2

¼ −
Z

∞

0

ds
s2e−s=Λ

s − q2

�
AðGÞ
0 þ 2AðGÞ

1 ln
s
μ2

þ AðGÞ
2

�
3ln2

s
μ2

− π2
��

−
Z

∞

0

ds
e−s

2=Λ2

s − q2
BðGÞ
1 hαsG2i − CðGÞ

0

hgG3i
q2

þDðGÞ
0

hα2sG4iG
ðq2Þ2 : ð37Þ

The renormalization scale μ is usually set to the Borel mass, when the Borel transformation is applied to sum rules
[10,13,16]. We set μ2 to the characteristic scale Λ, and apply the variable changes x ¼ q2=Λ and y ¼ s=Λ to Eq. (37),
obtaining

Z
∞

0

dy
ΔρGðyÞ
x − y

¼ −
Z

∞

0

dy
y2e−y

x − y
½AðGÞ

0 þ 2AðGÞ
1 ln yþ AðGÞ

2 ð3 ln2 y − π2Þ�

−
Z

∞

0

dy
e−y

2

x − y
BðGÞ
1

hαsG2i
Λ2

þ CðGÞ
0

hgG3i
xΛ3

−DðGÞ
0

hα2sG4iG
x2Λ4

; ð38Þ

where the dimensionless function ΔρGðs;ΛÞ=Λ2 has been
replaced by ΔρGðyÞ, according to the reasoning in the
previous section. The scale Λ characterizes the region with
y < 1, from which the dominant nonperturbative contri-
bution to the dispersive integral arises. It has been argued
that a range of Λ exists, in which a glueball mass mG,
corresponding to a peak location of ΔρGðs;ΛÞ, is stable
against the variation of Λ. As Λ becomes large enough, it
diminishes the nonperturbative condensate effects, and the
scaling of a solution with Λ appears. When the scaling
occurs, no structure of a solution can be interpreted as a
physical state.
Since the subtracted spectral density ΔρGðyÞ follows the

behaviors ΔρGðyÞ ∼ y2 as y → 0 and ΔρGðyÞ → 0 as
y → ∞, we expand it in terms of the generalized

Laguerre polynomials Lð2Þ
n ðyÞ; namely, we adopt Eq. (4)

with α ¼ 2. Equation (2) is inserted into the left-hand side
of Eq. (38) to compute the matrix elementsMmn in Eq. (6),
and inserted into the right-hand side of Eq. (38) to gain the
coefficients bn for the input. The coefficients b1 and b2 of
the 1=x and 1=x2 terms, respectively, receive additional
contributions from the condensates. We take the inputs of

the gluon condensate hαsG2i and of the strong coupling αs
the same as in Eq. (20) for consistency. The triple-gluon
condensate is given by

hgG3i ¼ 0.27 GeV2 hαsG2i; ð39Þ

hgG3i ¼ −1.5hαsG2i3=2; ð40Þ

from the single-instanton estimate [1,22,23] and the lattice
estimate [24], respectively. The value in [25] has a positive
sign with magnitude about five times higher than in
Eq. (39). They are different apparently as having been
noticed in [91], and affect numerical outcomes. We will
discriminate the above estimates by the low-energy limit of
the correlation function for the scalar glueball in Eq. (25).
Besides, we do not consider the minor renormalization-
group effect either.
As emphasized before, the low-energy limit of the

correlation function can be derived from a solution to
the spectral density. Start with the dispersion relation for
the correlation function ΠGðq2Þ similar to Eq. (14),
and write
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ΠGðq2Þ ¼
Z

R

0

ds
s − q2

�
ΔρGðs;ΛÞ þ s2

�
AðGÞ
0 þ 2AðGÞ

1 ln
s
μ2

þ AðGÞ
2

�
3ln2

s
μ2

− π2
��

expð−s=ΛÞ

þ BðGÞ
1 hαsG2i expð−s2=Λ2Þ

�
þ 1

2πi

I
ds

Πperp
G ðsÞ
s − q2

; ð41Þ

in which Eq. (36) has been substituted for ImΠGðsÞ=π, and the pieces in Eq. (35) have been grouped into the second term on
the right-hand side to allow a closed contour. Because the dispersive integral is finite, the radius R can be pushed to infinity.
We then derive the low-energy limit

ΠGð0Þ ¼ lim
ϵ→0

ΠGð−ϵΛÞ

¼ lim
ϵ→0

�Z
∞

0

dy
yþ ϵ

fΛ2ΔρGðyÞ þ Λ2½AðGÞ
0 þ 2AðGÞ

1 ln yþ AðGÞ
2 ð3ln2y − π2Þ�y2e−y

þBðGÞ
1 hαsG2ie−y2g þ ðBðGÞ

0 þ BðGÞ
1 ln ϵÞhαsG2i

�
; ð42Þ

where the last term proportional to hαsG2i is from the

contour integral for q2 ¼ 0 and μ2 ¼ Λ. The constant BðGÞ
0 ,

despite of being absent in Eq. (38), appears in the above
expression. We point out that ΔρGðyÞ corresponds exactly
to the ultraviolet regularized spectral density with the
high-frequency contribution being removed, which has
been used to define a correlation function at zero momen-
tum in [16]. Equation (42) thus specifies explicitly how to
perform the ultraviolet regularization for a dispersive
integral.

B. Scalar glueball masses

We extract the scalar glueball mass by solving Eq. (38) as
an inverse problem first with the triple-gluon condensate in
Eq. (39), getting the inverse matrixM−1, the coefficients an
from the OPE coefficients bn, the solution to ΔρSðs;ΛÞ,
and the spectral density ρSðsÞ for various characteristic
scales Λ. The results of ρSðsÞ for Λ ¼ 1.5 GeV2 with the
expansions up to N ¼ 15, 16, and 17 generalized Laguerre

polynomials Lð2Þ
n ðyÞ are displayed in Fig. 7. The coeffi-

cients an have not yet grown quickly, and the three curves
are similar, implying the stability of the solutions. We find

the ratios of the last two coefficients, a15=a14 ≈ a16=a15 ≈
a17=a16 ≈ 1 in the three cases. However, the spectral
density ρSðsÞ, supposed to be positive, becomes negative
around s ≈ 1.2 GeV2 for N ¼ 17. The positivity constraint
forces us to terminate the polynomial expansion at N ¼ 16.
That is, the positivity of the spectral density plays a more
important role in the determination of glueball masses than
in the ρ meson case. The same procedure for the triple-
gluon condensate in Eq. (40) yields the solutions for the
characteristic scale Λ ¼ 1.5 GeV2 with the expansions up
to N ¼ 18, 19, and 20 generalized Laguerre polynomials

Lð2Þ
n ðyÞ in Fig. 8. The curves in the three plots are also

similar, and we select the one with N ¼ 19 as the solution
to avoid violating the positivity constraint.
A closer look reveals that the two solutions with N ¼ 16

in Fig. 7 and with N ¼ 19 in Fig. 8 are different; for
instance, the first peak of the former is taller and located at
larger s ≈ 0.5 GeV2, while the first peak of the latter is
shorter and located at lower s ≈ 0.4 GeV2. It means that
one has to decide which triple-gluon condensate is adopted
in order to predict glueball masses unambiguously. The
discrimination can be achieved by confronting the solutions

FIG. 7. Solutions to ρSðsÞ=Λ2 for Λ ¼ 1.5 GeV2 and the triple-gluon condensate in Eq. (39) with the expansions up toN ¼ 15, 16 and

17 generalized Laguerre polynomials Lð2Þ
n ðyÞ.
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with Eq. (25) from the low-energy theorem, namely,
ΠSð0Þ ¼ 0.78 GeV4 for the gluon condensate hαsG2i ¼
0.08 GeV4 in Eq. (20). Inserting the subtracted spectral
densities ΔρSðsÞ corresponding to Eqs. (39) and (40) into
Eq. (42), we have ΠSð0Þ ¼ 1.08 and 0.60 GeV4, respec-
tively. That is, the lattice estimate for the triple-gluon
condensate in Eq. (40) leads to the zero-momentum
correlation function more consistent with the low-
energy theorem. If the large triple-gluon condensate in
[25] is adopted, we will find ΠSð0Þ ≈ 1.7 GeV4 for
Λ ¼ 1.5 GeV2, and that the first peak of the spectral
density shifts to a higher s ≈ 0.6 GeV2. The central value
of ΠSð0Þ resulting from the same triple-gluon condensate
was also found to be larger than that set by the low-energy
theorem recently [36]. It has been ensured by varying the
characteristic scale Λ that the values ΠSð0Þ from the single-
instanton estimate in Eq. (39) and from [25] are far above
0.78 GeV4 [ΠSð0Þ is not sensitive to the variation of Λ].
Therefore, we will pick up the input in Eq. (40) for the rest
of numerical investigations.
It is interesting to notice in Fig. 8 that two peaks, one at

s ≈ 0.4 GeV2 and another at s ≈ 2.3 GeV2, appear in all
the three plots, though the latter seems not obvious due to
the huge perturbative background from ImΠperp

S ðsÞ=π. To
highlight these two peaks, we turn to the subtracted spectral
density ΔρSðs;ΛÞ below. The expansion in terms of the
generalized Laguerre polynomials diverges more quickly at
lower Λ, such that solutions for Λ < 1 GeV2 with the
polynomial numbers roughly smaller than 10 may not be
reliable. The maximal number N for the polynomial

expansion then increases with Λ under the positivity
constraint till Λ ¼ 1.6 GeV2, above which the spectral
density is always positive, but the matrix elements of M−1

and the coefficients an grow quickly. For example, we find
a23=a22 ≈ 2.3 for Λ ¼ 2.5 GeV2 and N ¼ 23, so we stick
to N ¼ 22 for the polynomial expansion in the range
Λ ¼ 1.7–2.5 GeV2. The above prescribes how the maximal
number of polynomials is fixed for an expansion. The
behaviors of ΔρSðs;ΛÞ for Λ ¼ 1.5, 1.8, and 2.5 GeV2 are
shown in Fig. 9, where the double-peak structure in the first
two plots is significant. We stress that these two peaks are
not a numerical artifact, since we have demonstrated that a
double-peak structure can be disclosed by our method, as
the resolution power, i.e., the scale Λ is appropriately
chosen. In the present case Λ ∼Oð1Þ GeV2 is able to
resolve the two peaks located at m2

S1
≈ 0.4 GeV2 and

m2
S2
≈ 2.3 GeV2. The similar shapes in the first two plots

of Fig. 9 for Λ ¼ 1.5 GeV2 and 1.8 GeV2 indicate that the
solutions for the scalar masses are stable in an interval
of Λ. Note that the smooth functions in the subtraction term
in Eq. (36) are close to the unity as s > 4 GeV2 for
the considered Λ ¼ 1.5 GeV2 or 1.8 GeV2. Therefore,
the small deviation from zero above s ≈ 4 GeV2 signals
the mild violation of the local quark-hadron duality of the
spectral density ρSðsÞ in the high s region. It is apparent that
the third plot in Fig. 9 labeled by Λ ¼ 2.5 GeV2 differs
much from the first two; the peaks move toward larger s,
manifesting the scaling behavior of ΔρSðs;ΛÞ at large Λ
ascribed to the disappearance of the nonperturbative

FIG. 9. Solutions to ΔρSðs;ΛÞ=Λ2 for Λ ¼ 1.5, 2.0 and 2.5 GeV2 with the expansions up to N ¼ 19, 22 and 22 generalized Laguerre

polynomials Lð2Þ
n ðyÞ, respectively.

FIG. 8. Solutions to ρSðsÞ=Λ2 for Λ ¼ 1.5 GeV2 and the triple-gluon condensate in Eq. (40) with the expansions up toN ¼ 18, 19 and

20 generalized Laguerre polynomials Lð2Þ
n ðyÞ.

DISPERSIVE ANALYSIS OF GLUEBALL MASSES PHYS. REV. D 104, 114017 (2021)

114017-13



condensate effects. The double-peak structure also blurs
since the resolution of our method becomes worse at this
large Λ.
We remark that the matrix element Mmn in Eq. (6)

corresponds to the mth moment of a sum rule for a glueball
mass. As postulated in [13], the lower moments of a sum
rule are more sensitive to low-lying resonances, while
higher moments are, on the contrary, more sensitive to
heavy resonances: the light masses about 700 MeV–
900 MeV were extracted from the lower moments of the
sum rule in [92], and the heavy ones about 1.5 GeV–
1.7 GeV were extracted from the higher moments in
[10,13,84]. It is then easy to understand why our formal-
ism, which takes into account more moments than in
conventional sum rules [13,93,94], produces the two peaks
simultaneously with the similar squared masses m2

S1
≈

0.4 GeV2 and m2
S2
≈ 2.3 GeV2. The double-peak structure

in Fig. 9 is consistent with the observation in the sum-rule
analysis [11], where a double-resonance parametrization
for the spectral density was shown to give a fit to the OPE
side better than a single-resonance one. The mass range
0.8 GeV–1.6 GeV for the peak locations in [11] is similar to
ours, but the mass gap between the two resonances (about
few hundreds of MeV in [11]) is smaller than in our
solution, which is about 1 GeV. Another distinction is that
the lighter resonance has a broader width in [11], while the
heavier one does in our solution, which may be due to the
different nonperturbative effects included in the theoretical
frameworks; they come from the instanton contribution to
the correlation function in [11], but from the gluon
condensates in ours. We mention that the scalar glueball
mass of around 1.5 GeV, being very close to our mS2, was
derived from sum rules [15,18] with only the instanton
effects. It supports our claim that the gluon condensates are
sufficient for establishing the glueballs.
We scan the scalar masses mS1 and mS2 in the

range 1 GeV2 < Λ < 2.5 GeV2, and depict their depend-
encies on Λ in Fig. 10, where the two curves describe the

two peak locations of the subtracted spectral density
ΔρSðs;ΛÞ. It is seen that the lower and upper curves
ascend first from Λ ¼ 1 GeV2, reaching mS1 ¼ 0.60 GeV
and mS2 ¼ 1.50 GeV, respectively, become stable in the
window 1.2 GeV2 < Λ < 1.7 GeV2 and then go up again
monotonically. These features, having appeared in Fig. 6
for the ρ meson mass, are completely anticipated. We then
survey the dependence of the correlation function ΠSð0Þ at
zero momentum on Λ according to Eq. (42), given the
solutions for ΔρSðs;ΛÞ, and obtain ΠSð0Þ ¼ 0.65 GeV4 at
Λ ¼ 1.7 GeV2. Considering the typical 20% uncertainty
around ΠSð0Þ ¼ 0.78 GeV4 from Eq. (26), we are sure that
the low-energy limit is satisfactorily respected by our
solutions in the stability window. It is legitimate to choose
mS1 ¼ 0.60 GeV and mS2 ¼ 1.50 GeV as the central val-
ues, and to estimate the theoretical errors in our method
using the minimal (maximal) values at Λ ¼ 1.4 (1.5) GeV2.
We get mS1 ¼ ð0.60� 0.01Þ GeV and mS2 ¼ ð1.50�
0.01Þ GeV whose tiny errors reflect the remarkable stabil-
ity of our solutions. Because the subtracted spectral
densities for other values of Λ in the interval 1.2 GeV2 <
Λ < 1.7 GeV2 are very similar to that for Λ ¼ 1.5 GeV2 in
Fig. 9, we do not present them here.
We investigate the theoretical uncertainties arising from

the variation of the involved parameters, which all turn out
to be under control. Decreasing the strong coupling αs from
0.5 to 0.4, which corresponds to the scale variation within
the stability window roughly, we find 8% enhancement on
the determined scalar masses. This check justifies the
neglect of the renormalzation-group effect in our calcu-
lation. The typical �20% change of the gluon condensate
hαsG2i causes about �5% impact. We also examine the
sensitivity of the scalar masses to choices of the renorm-
alization scale μ, and observe 2% increase from μ2 ¼ 2Λ
and μ2 ¼ Λ=2. Adding the above sources of errors in
quadrature, we conclude

mS1 ¼ ð0.60� 0.06Þ GeV; mS2 ¼ ð1.50� 0.15Þ GeV:
ð43Þ

We interpret the solutions to the spectral density for the
scalar glueball, bearing in mind that any physical state with
a gluonic content can contribute to the considered spectral
density. The major peak of the subtracted spectral density
located at mS2 ¼ 1.50 GeV points to the f0ð1500Þ meson
[29]. Since f0ð1500Þ has a narrower width 112MeV [12], it
cannot accommodate the broad width shown in Fig. 9
alone. Hence, it is likely that f0ð1370Þ and f0ð1710Þ also
have gluonic contents and contribute to the spectral density,
in accordance with the prevailing consensus in the literature
[33]. That is, all f0ð1370Þ, f0ð1500Þ, and f0ð1710Þ are
glue-rich states (nevertheless, a recent phenomenological
analysis on J=ψ radiative decays prefers a higher scalar
glueball mass resulting from the mixing with heavier scalar

FIG. 10. Dependence of the scalar masses mS1 and mS2 on the
characteristic scale Λ.
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states [95,96]). The shorter peak located atmS1 ≈ 0.60 GeV
might arise from the contribution of the f0ð500Þ meson
with a broad width. The smaller area under the peak implies
a lower f0ð500Þ decay constant defined via the gluon field,
and less gluonic content in this light scalar, consistent with
the observation in [31]. This implication does not depend
on the quark structure of the f0ð500Þmeson [97]. Note that
a little amount of gluonium in the f0ð980Þ meson with a
narrow width 10 MeV cannot be excluded, as hinted by the
spectral densities in Fig. 8. The above interpretation agrees
with the conclusion drawn based on a five-state mixing
scenario in a nonlinear chiral Lagrangian framework
[32,98] and with the analysis in [13]. The mass gaps
between f0ð500Þ and f0ð980Þ, and among f0ð1370Þ,
f0ð1500Þ, and f0ð1710Þ are too small to be resolved by
our method with the characteristic scale Λ ∼Oð1Þ GeV2,
so only two peaks are revealed in the spectral density.

C. Pseudoscalar glueball masses

Next we extract the pseudoscalar glueball mass by
solving Eq. (38) from the corresponding set of OPE inputs
in Eq. (33) with the triple-gluon condensate in Eq. (40). The
prescription for fixing the number N of polynomials in an
expansion is the same, and the plots for ρPðsÞ are similar to
those in Fig. 8. The behavior of the subtracted spectral
densityΔρPðs;ΛÞ forΛ ¼ 1.5 GeV2 with the expansion up

to N ¼ 14 generalized Laguerre polynomials Lð2Þ
n ðyÞ is

exhibited in Fig. 11, from which we read the pseudoscalar
masses. The coefficients an in this case have not yet grown
quickly, but the positivity constraint forces us to terminate
the polynomial expansion at N ¼ 14. The maximal number
N increases with Λ under the positivity constraint till
Λ ¼ 2.3 GeV2, above which the spectral density is always
positive, but the matrix elements of M−1 and the coef-
ficients an go out of control as N > 22. Therefore, we stick
to N ¼ 22 for the polynomial expansion in the range
Λ ¼ 2.3–3.5 GeV2. Likewise, we observe the clear double-
peak structure in Fig. 11 with the locationsm2

P1
≈ 0.5 GeV2

and m2
P2

¼ 3.1 GeV2, which are above the
scalar ones m2

S1
≈ 0.4 GeV2 and m2

S2
≈ 2.3 GeV2 in

Fig. 9, respectively.
We scan the pseudoscalar masses mP1

and mP2
in the

range 1 GeV2 < Λ < 3.5 GeV2, and display their depend-
encies onΛ in Fig. 12,where the two curves describe the two
peak locations of the subtracted spectral density ΔρPðs;ΛÞ.
It is found that the lower and upper curves almost remain flat
in the interval 1.0 GeV2 < Λ < 2.3 GeV2, around
mP1

¼ 0.71 GeV and mP2
¼ 1.75 GeV, and then go up

monotonically as expected. The stability window is wider
than in the scalar glueball case illustrated in Fig. 10. We
estimate the theoretical errors in our method using the
extreme values in the window, and get mP1

¼ ð0.71�
0.02Þ GeV and mP2

¼ ð1.75� 0.02Þ GeV, whose tiny
errors reflect the remarkable stability of our solutions. We
investigate the theoretical uncertainties from the variation of
the involved parameters in a similar manner. The decrease of
the strong coupling αs from 0.5 to 0.4 yields only 7%
enhancement on the determined pseudoscalarmasses,which
justifies the neglect of the renormalzation-group evolution in
our analysis. The typical �20% change of the gluon
condensate hαsG2i causes about �5% effect. The choice
for the renormalization scale μ2 ¼ 2Λ decreases the pseu-
doscalar masses by 3%, and the choice μ2 ¼ Λ=2 does not
alter the outcomes. Adding the above sources of errors in
quadrature, we conclude

mP1
¼ð0.71�0.07ÞGeV; mP2

¼ð1.75�0.16ÞGeV:
ð44Þ

That is, the theoretical uncertainties are under control in our
formalism.
The major peak of the subtracted spectral density located

atmP2
≈ 1.75 GeVmay point to the ηð1760Þmeson, whose

broad width about 240 MeV [12] can accommodate the
width in Fig. 12 alone. This mass is just a bit higher than the
scalar glueball one determined in the previous subsection,

FIG. 12. Dependence of the pseudoscalar masses mP1
and mP2

on the characteristic scale Λ.

FIG. 11. Solution to ΔρPðs;ΛÞ=Λ2 for Λ ¼ 1.5 GeV2 with the

expansion up to 14 generalized Laguerre polynomials Lð2Þ
n ðyÞ.
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as anticipated from the minor difference between their OPE
inputs and argued in [99]. Our result is lower than most
predictions in the literature, which are above 2 GeV, as
stated in the introduction. We stress again that measure-
ments of J=ψ radiative decays do not confirm any glue-rich
pseudoscalar resonances with masses greater than 2 GeV
[12]. The branching ratio of the J=ψ → γXð2370Þ decay is
so small [12], that Xð2370Þ is unlikely to be the pseudo-
scalar glueball, even if it carried the correct quantum
numbers. On the contrary, the ηð1760Þmeson is abundantly
produced in J=ψ radiative decays, but not seen in the
J=ψ → γγV decays [50]. Another nearby pseudoscalar
Xð1835Þ is produced less abundantly in J=ψ radiative
decays, and seen in the J=ψ → γγϕ decay [100]. It should
be reminded that the relevant experimental studies are not
yet conclusive. For instance, it is puzzling that the J=ψ →
γðηð1760Þ →Þωω branching ratio, despite of the stronger
phase space suppression, is about one order of magnitude
larger than the J=ψ → γðηð1760Þ →Þρ0ρ0 one [12].
Nevertheless, the currently available data do support that
ηð1760Þ is a glueball.
Our solution disfavors the speculation, deduced from a

pseudoscalar meson mixing formalism based on the
anomalous Ward identity [51–53], that the ηð1405Þ is
the lightest pseudoscalar glubeball [101]. It should be
pointed out that a pseudoscalar glueball mass as heavy
as 1.75 GeV is not excluded in [51], when some inputs are
allowed to vary. A similar mixing formalism with more
conservative assumption [55] shows that the pseudoscalar
glueball tends to be heavier. Our prediction 1.75 GeV
matches their results with a large angle ϕG for the mixing
between the pure glueball and the flavor-singlet light quark
states. It is fair to allege, based on the theoretical uncer-
tainties, that the ηð1405=1475Þ mesons [102] contain some
gluonium components, which are not dominant as found in
[13]. Indeed, the ηð1405=1475Þ mesons are produced
copiously in J=ψ radiative decays, and are also seen in
the J=ψ → γγρ decay [12].
The shorter peak located atmP1

≈ 0.71 GeV between the
η and η0 meson masses comes from the combined con-
tributions of these two states with similar weights. A low-
lying state with mass around 1 GeV has been also identified
and assigned to the η0 meson in the lattice calculation [106],
when the topological charge density with a strong coupling
to flavor-singlet light quark states, the same as in the
present work, is employed to define the correlation func-
tion. This observation is in accordance with the imple-
mentation of the η-η0-glueball mixing, which has been
intensively discussed in the literature. The comparison of
the relative heights between the two peaks in Figs. 9 and 11
suggests that η and η0 have more gluonic content than
f0ð500Þ and f0ð980Þ. Our solutions hint that a more
complete mixing scenario involving η, η0, ηð1405=1475Þ,
and ηð1760Þ is needed for a deeper understanding of the
pseudoscalar glueball properties. We will examine whether

more quantitative information on the scalar and pseudo-
scalar mixings can be drawn from our formalism in the
future. For the same reason, the mass gap between η and η0
is too small to be resolved by our method with the
characteristic scale Λ ∼Oð1Þ GeV2, although they have
quite narrow widths.
Once the spectral densityΔρPðs;ΛÞ is ready, we evaluate

the correlation function ΠPð0Þ at zero momentum in the
stability window of Λ following Eq. (42), and deduce
the topological susceptibility from Eq. (26). It is seen
that the topological susceptibility increases slightly from
χ1=4t ¼ 75 MeV at Λ ¼ 1.0 GeV2, reaches χ1=4t ¼ 78 MeV
at Λ ¼ 1.5 GeV2, and then saturates. Namely, the topo-
logical susceptibility is predicted to be in the range
χ1=4t ¼ 75 MeV–78 MeV, which is almost independent
of the scale Λ. This prediction is compatible with the
results χ1=4t ¼ 66 MeV–120 MeV from recent lattice QCD
evaluations involving at least two light flavors of fermions
[57–62], and χ1=4 ≈ 75 MeV in chiral perturbation theory
[63–65].

D. Tensor glueball mass

We extend the above formalism to the study of the tensor
glueball ð2þþÞ, for which the correlation function is
defined as

Πμνρσðq2Þ≡ i
Z

d4xeiq·xh0jTΘμνðxÞΘρσð0Þj0i;

¼ 1

2

�
ημρηνσ þ ημσηνρ −

2

3
ημνηρσ

�
ΠTðq2Þ; ð45Þ

with ημν ¼ gμν − qμqν=q2, and

ΘμνðxÞ ¼ −αsGaα
μ Ga

να þ
gμν
4

αsGa
αβG

aαβ; ð46Þ

being the energy-momentum stress tensor of QCD. The
OPE of the correlation function ΠTðq2Þ in the deep
Euclidean region of q2 is given by [14]

ΠOPE
T ðq2Þ ¼ −

1

20

�
αs
π

�
2

q4 ln
−q2

μ2
þ 5

3
παs

hα2sG4iT
ðq2Þ2 ; ð47Þ

up to the dimension-eight condensate, i.e., to the power
correction of 1=ðq2Þ2 which can be approximated under the
vacuum factorization assumption by

hα2sG4iT ¼ 2hðαsfabcGb
μρG

cρ
ν Þ2i − hðαsfabcGb

μνGc
ρλÞ2i;

≈ −
3

16
hαsG2i2: ð48Þ

Repeating the same steps, we notice that the tensor
glueball case differs much from those of the scalar and
pseudoscalar glueballs. The positivity requirement on the
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spectral density forces us to terminate the expansion in
terms of the generalized Laguerre polynomials Lð2Þ

n ðyÞ at
very low N: the maximal N’s are found to be 3, 4, 6, and 8
for Λ ¼ 1.5, 2.0, 3.0, and 4.0 GeV2, respectively. The
maximal number N for a polynomial expansion increases
with Λ under the positivity constraint, but it reaches only
N ¼ 10 even when Λ is as high as 5.0 GeV2. Hence, we
accept the expansions up to fewer polynomials in the
analysis of the tensor glueball mass, and obtain the spectral
density ρTðsÞ and the subtracted spectral density ΔρTðs;ΛÞ
for Λ ¼ 3.0 GeV2 and N ¼ 6 given in Fig. 13. The
coefficients an in the expansion have not increased rapidly,
with a6=a5 ≈ 1.2. If N ¼ 7 is chosen, ρTðsÞ will become
negative and violate the positivity constraint in the range
0 GeV2 < s < 0.7 GeV2. No evident bump like those in
Fig. 7 appears in the curve for ρTðsÞ, which always ascends
in the range 1.0 GeV2 < Λ < 5.0 GeV2. After the huge
perturbative background is removed, the subtracted spectral
density ΔρTðs;ΛÞ exhibits a single peak with diminishing
height (note the scale on the vertical axis in Fig. 13).
The single-peak structure of ΔρTðs;ΛÞ persists till
Λ ¼ 5.0 GeV2, and becomes broader with Λ. It has been
underlined that a peak of the spectral density cannot be

interpreted as a physical state, unless a stability window in
Λ for its location exists.
We thus investigate the dependence of the peak location

on Λ in the range 1.5 GeV2 < Λ < 5.0 GeV2, and present
it in Fig. 14. It turns out that the mass mT always grows
with Λ monotonically; namely, a stable region for the
tensor glubeball mass is not found. The number of the
generalized Laguerre polynomials is smaller than three for
Λ < 1.5 GeV2, but the resultant masses, if depicted in
Fig. 14, follow the same trend. The curve is a bit bumpy,
because the polynomials are few, such that the disconti-
nuity at each increment of N is more significant. It has been
elaborated [2] that at least two condensates with different
dimensions are necessary for establishing the ρ meson
state. Hence, we speculate that the absence of a resonance
solution for the tensor glueball may be ascribed to the
insufficient nonperturbative input in the present setup;
the single four-gluon condensate may not be able to fix
the tensor glueball mass. An OPE, which includes higher-
dimensional operators compared to Eq. (47), is needed.
Note that a minimum of mT ≈ 2.0 GeV was extracted from
the ratio of two selected moments by varying the Borel
mass in sum rules [13]. However, no minimum existed as
the continuum threshold was varied, a situation different
from the scalar and pseudoscalar glueball cases [13]. We
suspect that more moments considered in our formalism
may have imposed a stronger constraint on the existence of
the tensor glueball. This issue is worth more thorough
studies.

IV. CONCLUSION

We have refined our previous proposal for handling
QCD sum rules as an inverse problem by solving dispersion
relations with OPE inputs directly. A nonperturbative
spectral density is expanded in terms of a suitable set of
generalized Laguerre polynomials up to some degree,
according to its boundary condition at vanishing energy.
A dispersive integral and power corrections to an OPE
from condensates render possible expansions of both
sides of a dispersion relation into power series in 1=q2.

FIG. 13. Solutions to ρTðsÞ=Λ2 and ΔρTðs;ΛÞ=Λ2 for Λ ¼ 3.0 GeV2 with the expansion up to six generalized Laguerre polynomials

Lð2Þ
n ðyÞ.

FIG. 14. Dependence of the tensor glueball mass mT on the
characteristic scale Λ.
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The coefficients in the power series on the hadron side
can then be derived in the inverse matrix method from the
known OPE coefficients on the quark side straight-
forwardly. An additional polynomial in the expansion for
the spectral density appears as a higher-power correction in
1=q2 to the dispersion relation, such that the convergence of
the OPE guarantees the convergence of the polynomial
expansion for the spectral density. Certainly, a solution
from an ill-posed inverse problem will go out of control, as
the matrix dimension becomes sufficiently large. However,
a reasonable solution can be obtained in most cases, as
elaborated in Sec. II A by means of mock data constructed
from several test functions. The employment of the
generalized Laguerre polynomials introduces an arbitrary
scale Λ into the theoretical framework, which characterizes
the resolution power of the method. It has been explained
that a peak in the spectral density can be identified as a
physical resonance, if its location is stable against the
variation of Λ.
The applications of the above formalism to the deter-

minations of the ρ meson, scalar glueball and pseudoscalar
glueball masses have been quite successful in the sense that
the stability windows in Λ do exist. By producing the ρ
meson mass mρ ¼ 0.78 GeV, we fixed the gluon conden-
sate hαsG2i and the factorization violation parameter κ,
which are both within the ranges commonly accepted in the
literature. The double-peak structures, appearing naturally
in the spectral densities for the scalar and pseudoscalar
glueballs, indicate some gluonium components in the light
quark states. The locations of the major broad peaks,
1.50 GeV and 1.75 GeV, point to the f0ð1500Þ and
ηð1760Þ as the glue-rich states in the scalar and pseudo-
scalar sectors, respectively. The former, together with
f0ð1370Þ and f0ð1710Þ, have been well recognized and
extensively analyzed in mixing frameworks. However, the
latter, with its mass below most predictions from quenched
lattice QCD and sum rules, has not, and deserves more
theoretical and experimental endeavors. We stress that we
did not find a resonance solution for the spectral density
associated with the tensor glueball. As shown in our
previous work, at least two condensates with different
dimensions in the OPE input are required for establishing
the ρ meson state. We have speculated that the absence
of a solution for the tensor glueball may be due to the
insufficient nonperturbative input at present. An OPE
for the corresponding correlation function with higher-
dimensional operators is thus in demand.
A merit of our approach is that the correlation functions

for the scalar and pseudoscalar glueballs at zero momentum
can be calculated from the subtracted spectral densities
introduced in this paper, which realize explicitly the
ultraviolet regularization required for dispersive integrals
in the literature. The former served to discriminate the
lattice estimate for the triple-gluon condensate from
the others, and the latter gave rise to our prediction for

the topological susceptibility χ1=4t ¼ 75 MeV–78 MeV,
whose range overlaps with that from lattice QCD.
Combined with the other findings on the measured ρ
meson mass and the widely accepted scalar glueball mass
around 1.5 GeV in the same formalism, and the exper-
imental observations from J=ψ radiative decays, we tend to
advocate that the ηð1760Þ meson is a promising candidate
for the pseudoscalar glueball.
We have explored various sources of theoretical uncer-

tainties in our method, which are all under control. The
error from the variation of Λ in the stability window is tiny,
as reflected by the flat curves for the resonance masses. The
error from the renormalization-group evolution is also
minor, because it is the relative importance among the
different terms in an OPE that determines the resonance
masses, which is not sensitive to the running effect. The
variations of the condensates are not crucial either; a typical
20% change of the gluon condensate causes about 5%
effects on the ρ meson and glueball masses. Compared to
conventional sum rules, outcomes from directly solving
dispersive relations have less model dependence. Besides,
our theoretical framework can be improved systematically
by taking into account higher-order and higher-power
corrections to an OPE on the quark side. Note that
the dimension-eight condensates are still quite uncertain
[107–110], on which more progress is needed.
Our work suggests that the multiple-resonance mixing

scenario for the pseudoscaalr mesons should include
ηð1760Þ for completeness. To explore mixing properties
in our formalism, one has to consider additional off-
diagonal correlation functions, in which one of the gluon
operator is replaced by a quark one [111,112]. The decay
constants of glueballs ought to be extracted in mixing
frameworks, since their definitions depend on the currents
adopted. Moreover, the input from the triple-gluon con-
densate, which affects mixing patterns [36], should be fixed
accurately first. Though our method is powerful for study-
ing properties of low-lying resonances, it is difficult to
probe excited states and finer structures, such as the ρ-ω
mixing. To attempt the former, one may resort to the
multiple-pole parametrization plus an arbitrary continuum
contribution for a spectral density as in conventional sum
rules [94,113–117]. However, it is likely that we can avoid
the ad hoc prescriptions for choosing relevant hadronic
parameters, such as continuum thresholds [118]. It is
worthwhile to extend our formalism to investigations of
three-gluon states [119] and other hadronic states. There is
no doubt that our proposal will have wide applications to
analyses of nonperturbative observables.
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